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Abstract—This paper describes the end-to-end components of
an on-line system for diagnostics and anomaly detection. The
system provides condition monitoring capabilities for two in-
service transmission transformers in the UK. These transformers
are nearing the end of their design life, and it is hoped that
intensive monitoring will enable them to stay in service for longer.
The paper discusses the requirements on a system for interpreting
data from the sensors installed on site, as well as describing the
operation of specific diagnostic and anomaly detection techniques
employed. The system is deployed on a substation computer,
collecting and interpreting site data on-line.

I. INTRODUCTION

As transformers reach the end of their design lives, utili-
ties wishing to minimize replacement costs must handle the
conflicting requirements of retaining plant items in service
for as long as possible, whilst avoiding failures in service.
The application of various on-line monitoring and diagnostic
techniques can aid in the identification of faults within the
transformer [1], highlighting the need for maintenance or
removal from service. Increasing this level of monitoring,
by augmenting various monitoring techniques, can provide a
fuller picture of plant health, increasing the certainty when
a fault is identified and thus helping to anticipate imminent
failure.

However, transformers nearing the end of their lives will
have known, minor problems that are being managed and that
do not pose an immediate risk. These known problems can
mask the inception of new, potentially more critical issues
when using standard diagnostic techniques such as dissolved
gas analysis (DGA) [2]. Therefore, this paper proposes the
use of machine learning techniques that allow the ‘normal’
behavior, be it without any faults or with known ones, to be
learnt for a given transformer.

Each transformer will age at a different rate due to many
factors, including different load profiles experienced and dif-
ferent weather conditions. Since each transformer behaves
individually, machine learning techniques can be applied to
learn what normal behavior is for a particular item of plant [3].
If the item’s behavior diverges from normal, it can be identified
that an anomalous event has occurred within this plant item.

This approach has a second advantage, relating to fault
identification, when data has no standard model or approach
for interpretation. This type of data can arise, for instance,
when new sensors are retrofitted to the transformer. In these

cases, by first learning normal data signals, anomalies in
indecipherable data can be detected and may then potentially
be identified with recognized causes.

Anomaly detection tends to identify an event that is statis-
tically unlikely; however, it cannot explain why it is unlikely.
Identification of the type of fault that is occurring within
the transformer can be achieved by automated diagnostic
techniques. Therefore, the creation of a flexible, on-line system
that incorporates a suite of anomaly detection and diagnostic
techniques is required to give detailed health analyses about
plant behavior.

This paper describes the on-going intensive monitoring of
two 275/132kV 180MVA transformers in the UK. Multi-agent
systems technology is used to integrate various diagnostic and
anomaly detection modules, with data from approximately 50
sensors captured every five minutes. This paper will show
how the collaboration of various sensory data can lead to
an enhanced estimation of the transformers health. Section II
describes the sensor installation and data infrastructure. Sec-
tion III introduces the multi-agent system architecture used to
mesh together the various detection and diagnostic techniques.
Details of the Conditional Anomaly Detection technique, and
how it is applied to these transformers is given in Section IV.
The integration of previous work on partial discharge (PD)
analysis is described in Section V and the paper concludes in
Section VI.

II. SITE INSTALLATION

Two 275/132kV 180MVA transformers at a substation in the
UK are nearing the end of their design life. The owner utility
wants to keep this plant in service for as long as possible
without too great a risk of failure in service. To achieve this,
the transformers are under intensive monitoring with a wide
set of on-line sensors, allowing engineers constant access to
the latest measurements.

The aims of the project were threefold. First, the utility
wanted to be able to detect anomalous transformer behavior
on-line, potentially having early warning of failure. Secondly,
the transformers are sister units installed in successive years,
yet one is showing more signs of aging than the other. Any
correlations or deviations in behavior between the two units
should provide information about their relative states of health.
Thirdly, this project employs a mixture of conventional and



unusual sensors, both internal and external to the transformers,
with the aim of assessing the advantages and disadvantages of
cheaper, externally mounted sensors.

To this end, a large number of sensors monitor the more
aged unit, with a subset of the same sensors on the other.
These include temperature and vibration sensors externally
mounted at various positions on the transformer tank and tap
changer, external vibration sensors on the cooling bank pumps
and fans, and load and auxiliary system currents. The internal
sensors include top and bottom oil moisture and temperature.
Additionally, a Kelman TRANSFIX unit monitors levels of
eight dissolved gases, while a GE Hydran unit measures
hydrogen.

The substation environmental conditions are also being
monitored. Ambient temperature, wind speed and direction,
air pressure, and rain intensity and duration are recorded by
an on site weather station.

The TRANSFIX unit was installed before the other sensors,
and the data is archived with all the utility’s dissolved gas data
in a data warehouse. Since this archive is commercially sensi-
tive, on-line access for the researchers was not possible. Files
of historical data give an off-line record of the hourly readings.
However, the remaining sensors were installed specifically
for this project, and the data is archived to a second data
warehouse. On-line access to this data is possible using a
web site for engineers, or a web service for machine-readable
access. These sensors take measurements every five minutes.

The more conventional parameters of dissolved gas levels
and top oil temperature have the disadvantage of needing
internal sensors. This has safety and scheduling implications,
as an outage may be required to get internal access. On the
other hand, external sensors may be fitted without an outage,
but give a more approximate estimation of top oil and hot spot
temperature.

Further, in the case of vibration and weather parameters,
there is little knowledge about what such parameters may tell
about transformer health. This indicates the strong need for
a flexible condition monitoring system, capable of handling
various types of parameter, and extensible enough to incor-
porate new types of data interpretation as more is understood
about the data. The design of such a system is described in
the following section.

IIT. MULTI-AGENT SYSTEM FOR CONDITION
MONITORING

Based on the mixture of sensors deployed on site and
the aims of the monitoring project, the condition monitoring
system had to meet the following requirements:

1) It must be capable of taking input data from various
sources, namely the on-line data warehouse and files of
TRANSFIX data;

2) It must monitor the transformers for anomalous behav-
ior, and indicate when an anomaly occurs;

3) It should attempt to diagnose possible faults, in order to
provide more information about anomalies;

4) 1It should include multiple techniques for analyzing data,
and be extensible as more techniques are developed;

5) Where possible, the same techniques should be applied
to both transformers, to allow comparison of perfor-
mance.

Fundamentally, these requirements mean the system must be
capable of flexibly adding and duplicating modules to gather
and interpret data, and must be extensible for future uses. To
meet these needs, multi-agent system technology was chosen
as the platform for system design.

Within the power engineering community, the definition of
an agent proposed by Wooldridge has gained most support[4].
This defines an intelligent agent as software that displays
flexible autonomy, through a mixture of pro-activeness, reac-
tivity, and social ability. A multi-agent system is a collection
of agents operating autonomously but co-operatively, which
results in some system goal being achieved.

For a condition monitoring application, that system goal is
to derive as much information about plant health as possible.
Agent technology allows multiple data collection and interpre-
tation techniques to be created as separate agents, which use
their social ability to find others within the system with which
to usefully co-operate and share data.

Specifically for the monitoring project reported here, agents
were created for a variety of tasks, including interfacing to the
data warehouse, applying data analysis techniques to recorded
measurements, and alerting engineers to transformer condition.
The complete system is shown in Figure 1, with the following
sections describing the design and functionality of each group
of agents.

A. Architecture Overview

Each agent within the architecture conforms to one of five
different types. Data provider agents take data from an external
source, such as the data warehouse or historical files, and
convert it into a format understandable by other agents in the
system. This means that other agents in the system need not
be concerned with where data is stored, they can simply query
the data provider for the appropriate data type or time period.

Data interpretation and analysis is performed by service
provider agents. The data director agents link appropriate
data providers with service providers, allowing great flexibility
in the order of data processing tasks. This flexibility may
be needed when deploying the same monitoring software in
different environments, such as adding a filtering stage to data
analysis in a noisy EM environment. The filter can be deployed
as a separate agent, with the data director deciding when it is
appropriate to filter noise, and when data can be sent directly
for interpretation.

A fourth type of agent is an archive, for long term storage
of the output of service provider agents. Finally, an external
interface is required to convert from agent-format data into
external formats, such as an engineer’s user interface or other
systems. This is essentially the opposite of the data provider’s
task.
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In order to keep this architecture as open and future-proof
as possible, agent messaging conforms to the standards created
by the Foundation for Intelligent Physical Agents (FIPA)[S].
Specifically, agents send messages using FIPA Agent Com-
munication Language (FIPA ACL), where message content
conforms to FIPA Semantic Language (FIPA SL). However,
standards do not cover the ontology—the dictionary of terms
used within messages—since this is application dependent.
Previous work suggested the Common Information Model
(CIM) could form the basis of a standard ontology for the
power engineering domain[4], as it is an object-oriented model
for data exchange between Energy Management Systems;
therefore this architecture uses an ontology based on CIM.

B. Utility Agents

Figure 1 shows four utility agents, which perform tasks
related to the operation of the system rather than data interpre-
tation. Two data provider agents are needed: one to parse his-
torical files of dissolved gas data from the TRANSFIX system,
and one to interface with the on-line data warehouse via a web
service. In both cases, measurements from the transformers
under study are converted into the system ontology, and the
agents answer queries about the measurements they hold.

One interface agent is required to populate a web-based
system interface for engineers. This web application displays
the latest information about transformer health, based on
the most recent site measurements and any diagnostics or
anomaly detection agents running. Additionally, one archive
agent stores the information generated by other system agents.
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The complete on-line condition monitoring architecture, with groups of agents split by high-level function.

C. Dissolved Gas Analysis

Dissolved Gas Analysis (DGA) is a widely-used technique
for diagnosing transformer faults[2]. There are a handful
of popular interpretation methods, based on ratios of gases,
absolute levels, or the gas with the highest concentration.
For this project, three were implemented as separate agents:
Duval’s Triangle, Rogers’ Ratio, and CIGRE thresholds[6].
One data director agent is required to collect gas measurements
and forward to these techniques. The resulting collection of
agents is shown in Figure 1.

The output of this group of agents is information about the
levels of dissolved gases in the transformer. Specifically, the
CIGRE threshold agent identifies which gases have an absolute
level within standard limits, and which are higher. Duval’s
Triangle and Rogers’ Ratio give diagnoses of the likely cause
of these deviations, such as PD or thermal fault.

D. Conditional Anomaly Detection

To complement Dissolved Gas Analysis, which diagnoses
specific fault types, a technique for multivariate anomaly
detection was implemented. Anomaly detection looks for
deviations from normal or expected plant behavior, where
‘normal’ can include known low-level faults. It can therefore
detect changes due to incipient faults at an earlier stage than
diagnostic techniques such as DGA, which can be confused
by multiple faults.

The specific technique chosen for this application is Condi-
tional Anomaly Detection, where anomalous plant behavior
is assessed in the context of the environmental conditions
experienced by the plant, such as ambient temperature and load
current. Detail of how this is achieved follows in Section IV.



The group of agents deployed for anomaly detection is shown
in Figure 1, and described further in Section IV.

E. Partial Discharge

In addition to the agents and techniques developed specifi-
cally for monitoring the application transformers, the authors
have previous experience with a multi-agent system for PD
analysis[7]. Developed as the stand-alone system COMMAS,
this set of diagnostic and anomaly detection agents were inte-
grated with the full monitoring system to show its extensibility
to future developments and updates. Shown in Figure 1, the
operation of the COMMAS agents, as well as the means of
agent integration, is described in detail in Section V. In short,
this group of agents offers classification and explanation of
partial discharge-causing defects, with detection of anomalous
PD behavior.

F. Installation

On-line operation of this system was required to deliver
timely health information about the transformers under study.
To this end, the multi-agent system was installed on an ABB
substation computer and deployed in a lab at the University
of Strathclyde.

Every five minutes, the on-line data provider agent connects
to the data warehouse’s web service and collects new measure-
ments. As new files of dissolved gas data become available,
they are fed to the historical data provider agent. The data
director agents pick up new data as appropriate, and pass it to
service provider agents, collecting service output for archival.

Engineers can view the system through the engineer’s web
interface, to see up-to-date results of the diagnostic and
anomaly detection agents.

IV. CONDITIONAL ANOMALY DETECTION

Conditional Anomaly Detection (CAD)[8] is a type of con-
textual anomaly detection[9]; that is, the context of measure-
ments is considered before identifying something as anoma-
lous. This is of particular importance for transformer moni-
toring, as network events such as reconfiguration may cause
transient unusual operating conditions that could be reflected
in monitoring data. A technique that considers the environmen-
tal and operating context of the plant can reduce the number
of false anomalies by recognizing that unusual conditions may
cause unusual behavior without being indicative of a problem
or fault.

To detect anomalous transformer measurements, the CAD
technique learns two models: the statistical behavior of the
monitored plant, and the statistical behavior of the environ-
ment. The probabilistic links between the models are also
learned, giving a combined model of likely data that co-occurs
in the environment and the plant. True anomalies can then be
defined as statistically unlikely events in the plant parameters
that occur when the environment is normal. Within the CAD
literature, the parameters from the plant under study are termed
the indicator parameters, while those from the surrounding
conditions are the environment parameters.

1 |
environment | '
data _>| :
: Correlation : anomaly/

\ model, 1 no anomaly

1 ]
ulv —

indicator | PUIV) |
data —ppp{ - '
| R AN !
1 CAD Model !

Fig. 2. The CAD model comprises Gaussian mixture models U and V' for
indicator and environment parameters, and the correlation model p(U|V').

The technique used in [8] for learning the indicator and
environment models is Gaussian mixture modeling. This is a
method of representing a dataset as a mixture of Gaussian (nor-
mal) components, giving a probabilistic model of correlations
between different measurement parameters. The parameters
of the model are © = (fy,01,...,0;) for k components.
Each 0 comprises the Gaussian parameters (g, 32, 7r) for mean,
covariance matrix, and mix proportion.

A. Learning the CAD Model

The process of learning a CAD model has three stages.
First, a Gaussian mixture model, U, of the indicator param-
eters is trained. Next, a Gaussian mixture model, V, of the
environment is trained. Lastly, the correlation model, p(U|V),
is trained. These three parts together form the CAD model,
shown in Figure 2.

All three stages of training can be performed using the
Expectation Maximization algorithm: an iterative technique
that converges towards a locally optimal set of values for
unknown model parameters, which maximize the likelihood
of the overall model[10]. In the case of Gaussian mixture
models, the unknown model parameters are the (u,, X;, ;)
for all components ¢. For the correlation model, the unknown
parameters are the probabilities of a component in the indicator
model co-occurring with a component in the environment
model, p(U;|V;) for all components i, j.

With this model, new site measurements can be assessed for
anomalousness. Given particular values for the indicator and
environmental parameters, the CAD model returns a value,
fcap, which indicates the likelihood of these indicator con-
ditions weighted by the likelihood of the environment. If the
value of foap is below a certain threshold, the measurements
represent an anomaly; if it is above the threshold, either
the indicator measurements are within normal ranges, or the
environmental conditions are also anomalous, likely due to
transient unusual operating conditions.

The threshold for anomalousness must be chosen through
experimentation with an individual CAD model, as it is
dependent on the particular application. The anomaly detector
can be made more or less sensitive by varying the threshold,
allowing control over the model output even after training.

B. Transformer Monitoring

CAD was applied to the transformers under study. An engi-
neer’s visual inspection of data from September and October



TABLE I
ANOMALIES FOUND IN THE SEVEN MONTH TEST SET

Month Anomalies (fcap < 1 x 10~20)

November 2008 0
December 2008 14
January 2009 0
February 2009 1
March 2009 5
April 2009 0
May 2009 0

2008 revealed normal transformer behavior during that time,
so these two months of data were used for training the CAD
model.

The environmental model consists of five parameters: am-
bient temperature, solar radiation, wind speed, wind direction,
and Y-phase load current. The indicator model focusses on
transformer oil parameters: top oil temperature, bottom oil
moisture, and levels of hydrogen from the GE Hydran unit.
In both cases, a set of Gaussian mixture models ranging in
size from five components to 17 were trained, with the best fit
model being used for CAD. The correlation model was trained
using the selected Gaussian mixture models: a 14-component
indicator model, and a 16-component environment model.

C. Results

The complete CAD model, comprising the indicator, envi-
ronment, and correlation models, was wrapped as a service
provider agent for deployment within the monitoring architec-
ture. Data from the seven months following the training period
was used for model testing (November 2008 to May 2009).
Based on this testing, the threshold for anomalous values was
set to foap =1 x 10720,

The results of this testing are shown in Table I. This period
contains great differences in the ambient weather conditions,
from cold winter in December and January through to (un-
seasonably) warm summer conditions in May. However, there
is no pattern to the occurrence of anomalies that suggests
performance is affected by the season.

Indeed, the 20 anomalies detected during this time are
all due to temporary sensor and logging failures for one or
two measurements in a row, not due to transformer behav-
ior. This suggests that individual occurrences of anomalous
measurements are not of great interest to engineers. Rather,
it is continuous anomalous measurements or an increasing
frequency of anomalies that are important.

As a result, a second stage of processing was added as the
CAD Report Agent shown in Figure 1. This agent aggregates
statistics about the frequency of anomalies, looking hourly
over the last seven days, and daily over the last 30 days.
This information is presented as histograms in the engineer’s
interface, so that trends are immediately apparent. If particular
anomalies warrant further investigation, the engineer can view
the CAD model output and operation for the associated mea-
surements. This gives detail of which parameters are causing
the anomaly.

By deploying this set of agents, the system gains multivari-
ate anomaly detection to supplement the diagnostic techniques.
A great benefit of this particular technique is that it reduces
the potential for ‘false alarm’ anomalies caused during unusual
operating conditions. With the addition of the CAD report
stage, engineers can see at-a-glance the history of anomalous
behavior.

V. INTEGRATING PARTIAL DISCHARGE ANALYSIS

For a condition monitoring system to be useful in the long-
term, it must be both flexible, allowing easy modification to
integrate new sensory data, and extensible, providing a way
of augmenting new diagnostic techniques. This transformer
monitoring project exemplifies why these requirements are so
important. Here, a number of sensors with no known diag-
nostic techniques, such as accelerometers detecting vibration
levels, have been retrofitted. In this case, the system must be
flexible to integrate the new data sources and, as the data
becomes more familiar over time, must be extensible to allow
new diagnosis tools to be added. This flexibility and room
for expansion, along with the ability to collate interpretations
from various diagnostic techniques, is key to this project. In
order to test the extensibility of the full condition monitoring
architecture, the system was integrated with a multi-agent
system for PD anomaly detection and diagnosis, COndition
Monitoring Multi-agent System (COMMAS).

A. Prior Work on PD Analysis

Within the University of Strathclyde, various PD analy-
sis techniques have been the focus of research. These in-
clude data-driven techniques [11], knowledge-based interpre-
tation [12], and anomaly detection [3]. It was discovered
that whilst, individually, the data-driven diagnostic techniques
could each diagnose faults in the transformer to some de-
gree, certain diagnostic approaches would lead to a more
accurate diagnosis of particular types of fault. This led to
the creation of the COndition Monitoring Multi-agent System
(COMMAS) [7], which combined and interpreted outputs from
various data mining and intelligent techniques.

To add explanation and therefore confidence to the overall
classification result that COMMAS produced, a knowledge-
based approach was introduced [12]. Although originally cre-
ated as a stand-alone system, it was felt that the integration of
this system into the COMMAS architecture would provide the
engineer with varying degrees of explanation concerning the
diagnosis. The flexible and extensible architecture offered by
the multi-agent approach meant it could be easily extended
and the knowledge-based approach integrated by wrapping
the technique within an agent (shown in Figure 1 as the KB
analyzer agent).

The knowledge-based method utilizes expert knowledge
regarding phase-resolved patterns [13] and PD phenomena to
identify defects causing PD. A five step method is utilized
mimicking the approach an expert would take to diagnose a
defect when examining a phase-resolved pattern. This pro-
cess provides the engineer with an explanation regarding the



features of the pattern used to distinguish the classification,
along with the identified PD behaviors, defect characteristics
and potential location of the defect.

To further improve the original COMMAS, an anomaly de-
tection agent was created as the first stage of PD analysis [3].
This agent learns normal PD behavior for individual transform-
ers, after which the detection of anomalous events can warrant
classification by the diagnostic agents and explanation through
the knowledge-based approach.

Together this set of agents implement a suite of PD analysis
techniques, informing the engineer of specific plant anomalies,
providing a classification and diagnosis of faults, and supply-
ing a detailed explanation of how the diagnosis was achieved
(shown as the COMMAS block within Figure 1). This suite
of agents could be usefully integrated into the overall archi-
tecture, supplementing dissolved gas analysis and multivariate
anomaly detection with complete PD interpretation.

B. Integration

Since the detection and diagnostic techniques in COMMAS
were developed as agents, the whole suite could be easily
deployed with the agents of the full system. The only difficulty
arose with agent message ontology.

Since the COMMAS agents predate the new architecture,
they also predate the CIM-based ontology (discussed in Sec-
tion III-A). Agent ontology is often fundamental to the way
agents represent data internally, in addition to their external
communication, and so changing the agent ontology requires
a significant amount of development time. Rather than re-
implementing the ‘legacy’ PD agents, or forgoing the benefits
of a standards-based ontology, the solution was to deploy an
ontology translation agent capable of understanding both the
older and newer ontologies.

This agent is shown in Figure 1 straddling the COMMAS
boundary, as it translates messages from all of the COM-
MAS agents into the CIM-based ontology for archival, while
translating messages from the wider community of agents into
appropriate COMMAS-ontology format. In this way, it appears
as a service and data provider in wider system, allowing the
COMMAS system to fully integrate without redevelopment.

The addition of COMMAS to the overall system for trans-
former monitoring demonstrates that the architecture is indeed
flexible and extensible, due to the use of multi-agent system
technology. The addition of PD analysis for fault detection
and diagnosis provides further monitoring capabilities for the
complete system.

VI. CONCLUSION

This paper details the design and operation of an on-
line agent-based system for the monitoring of two in-service
transmission transformers. This application had particular re-
quirements of handling data from disparate sources, including
multiple techniques for data interpretation, and replicating data
analysis across both units. Agent technology was chosen to
support the delivery of a flexible and modular system to meet
these needs, leading to the creation of a condition monitoring

architecture of five different types of agent with a CIM-based
ontology.

In addition to flexibility requirements, the application called
for anomaly detection and diagnostic capabilities. To support
this, groups of agents handling dissolved gas diagnosis, Con-
ditional Anomaly Detection, and partial discharge anomaly de-
tection and diagnosis were integrated into the architecture. The
system is installed and deployed on a substation PC running in
the laboratory, collecting and interpreting measurements from
the site every five minutes.
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