113 research outputs found

    Reduction of False Positives in Intrusion Detection Based on Extreme Learning Machine with Situation Awareness

    Get PDF
    Protecting computer networks from intrusions is more important than ever for our privacy, economy, and national security. Seemingly a month does not pass without news of a major data breach involving sensitive personal identity, financial, medical, trade secret, or national security data. Democratic processes can now be potentially compromised through breaches of electronic voting systems. As ever more devices, including medical machines, automobiles, and control systems for critical infrastructure are increasingly networked, human life is also more at risk from cyber-attacks. Research into Intrusion Detection Systems (IDSs) began several decades ago and IDSs are still a mainstay of computer and network protection and continue to evolve. However, detecting previously unseen, or zero-day, threats is still an elusive goal. Many commercial IDS deployments still use misuse detection based on known threat signatures. Systems utilizing anomaly detection have shown great promise to detect previously unseen threats in academic research. But their success has been limited in large part due to the excessive number of false positives that they produce. This research demonstrates that false positives can be better minimized, while maintaining detection accuracy, by combining Extreme Learning Machine (ELM) and Hidden Markov Models (HMM) as classifiers within the context of a situation awareness framework. This research was performed using the University of New South Wales - Network Based 2015 (UNSW-NB15) data set which is more representative of contemporary cyber-attack and normal network traffic than older data sets typically used in IDS research. It is shown that this approach provides better results than either HMM or ELM alone and with a lower False Positive Rate (FPR) than other comparable approaches that also used the UNSW-NB15 data set

    Industrial Applications: New Solutions for the New Era

    Get PDF
    This book reprints articles from the Special Issue "Industrial Applications: New Solutions for the New Age" published online in the open-access journal Machines (ISSN 2075-1702). This book consists of twelve published articles. This special edition belongs to the "Mechatronic and Intelligent Machines" section

    Optimizing IC engine efficiency: A comprehensive review on biodiesel, nanofluid, and the role of artificial intelligence and machine learning

    Get PDF
    Transportation and power generation have historically relied upon Internal Combustion Engines (ICEs). However, because of environmental impact and inefficiency, considerable research has been devoted to improving their performance. Alternative fuels are necessary because of environmental concerns and the depletion of non-renewable fuel stocks. Biodiesel has the potential to reduce emissions and improve sustainability when compared to diesel fuel. Several researchers have examined using nanofluids to increase biodiesel performance in internal combustion engines. Due to their thermal and physical properties, nanoparticles in a host fluid improve engine combustion and efficiency. This comprehensive review examines three key areas for improving ICE efficiency: biodiesel as an alternative fuel, application of nanofluids, and artificial intelligence (AI)/machine learning (ML) integration. The integration of AI/ML in nanoparticle-infused biodiesel offers exciting possibilities for optimizing production processes, enhancing fuel properties, and improving engine performance. This article first discusses, the benefits of biodiesel concerning the environment and various difficulties associated with its usage. The review then explores the effects and characteristics of nanofluids in IC engines, aiming to know their impact on engine emissions and performance. After that, this review discusses the utilization of AI/ML techniques in enhancing the biodiesel-nanofluid combustion process. This article sheds light on the ongoing efforts to make ICE technology more environmentally friendly and energy-efficient by examining current research and emerging patterns in these fields. Finally, the review presents the challenges and future perspectives of the field, paving the way for future research and improvement

    Modélisation formelle des systÚmes de détection d'intrusions

    Get PDF
    L’écosystĂšme de la cybersĂ©curitĂ© Ă©volue en permanence en termes du nombre, de la diversitĂ©, et de la complexitĂ© des attaques. De ce fait, les outils de dĂ©tection deviennent inefficaces face Ă  certaines attaques. On distingue gĂ©nĂ©ralement trois types de systĂšmes de dĂ©tection d’intrusions : dĂ©tection par anomalies, dĂ©tection par signatures et dĂ©tection hybride. La dĂ©tection par anomalies est fondĂ©e sur la caractĂ©risation du comportement habituel du systĂšme, typiquement de maniĂšre statistique. Elle permet de dĂ©tecter des attaques connues ou inconnues, mais gĂ©nĂšre aussi un trĂšs grand nombre de faux positifs. La dĂ©tection par signatures permet de dĂ©tecter des attaques connues en dĂ©finissant des rĂšgles qui dĂ©crivent le comportement connu d’un attaquant. Cela demande une bonne connaissance du comportement de l’attaquant. La dĂ©tection hybride repose sur plusieurs mĂ©thodes de dĂ©tection incluant celles sus-citĂ©es. Elle prĂ©sente l’avantage d’ĂȘtre plus prĂ©cise pendant la dĂ©tection. Des outils tels que Snort et Zeek offrent des langages de bas niveau pour l’expression de rĂšgles de reconnaissance d’attaques. Le nombre d’attaques potentielles Ă©tant trĂšs grand, ces bases de rĂšgles deviennent rapidement difficiles Ă  gĂ©rer et Ă  maintenir. De plus, l’expression de rĂšgles avec Ă©tat dit stateful est particuliĂšrement ardue pour reconnaĂźtre une sĂ©quence d’évĂ©nements. Dans cette thĂšse, nous proposons une approche stateful basĂ©e sur les diagrammes d’état-transition algĂ©briques (ASTDs) afin d’identifier des attaques complexes. Les ASTDs permettent de reprĂ©senter de façon graphique et modulaire une spĂ©cification, ce qui facilite la maintenance et la comprĂ©hension des rĂšgles. Nous Ă©tendons la notation ASTD avec de nouvelles fonctionnalitĂ©s pour reprĂ©senter des attaques complexes. Ensuite, nous spĂ©cifions plusieurs attaques avec la notation Ă©tendue et exĂ©cutons les spĂ©cifications obtenues sur des flots d’évĂ©nements Ă  l’aide d’un interprĂ©teur pour identifier des attaques. Nous Ă©valuons aussi les performances de l’interprĂ©teur avec des outils industriels tels que Snort et Zeek. Puis, nous rĂ©alisons un compilateur afin de gĂ©nĂ©rer du code exĂ©cutable Ă  partir d’une spĂ©cification ASTD, capable d’identifier de façon efficiente les sĂ©quences d’évĂ©nements.Abstract : The cybersecurity ecosystem continuously evolves with the number, the diversity, and the complexity of cyber attacks. Generally, we have three types of Intrusion Detection System (IDS) : anomaly-based detection, signature-based detection, and hybrid detection. Anomaly detection is based on the usual behavior description of the system, typically in a static manner. It enables detecting known or unknown attacks but also generating a large number of false positives. Signature based detection enables detecting known attacks by defining rules that describe known attacker’s behavior. It needs a good knowledge of attacker behavior. Hybrid detection relies on several detection methods including the previous ones. It has the advantage of being more precise during detection. Tools like Snort and Zeek offer low level languages to represent rules for detecting attacks. The number of potential attacks being large, these rule bases become quickly hard to manage and maintain. Moreover, the representation of stateful rules to recognize a sequence of events is particularly arduous. In this thesis, we propose a stateful approach based on algebraic state-transition diagrams (ASTDs) to identify complex attacks. ASTDs allow a graphical and modular representation of a specification, that facilitates maintenance and understanding of rules. We extend the ASTD notation with new features to represent complex attacks. Next, we specify several attacks with the extended notation and run the resulting specifications on event streams using an interpreter to identify attacks. We also evaluate the performance of the interpreter with industrial tools such as Snort and Zeek. Then, we build a compiler in order to generate executable code from an ASTD specification, able to efficiently identify sequences of events

    Blockchain research, practice and policy: Applications, benefits, limitations, emerging research themes and research agenda

    Get PDF
    YesThe blockchain has received significant attention from technology focussed researchers, highlighting its perceived impact and emerging disruption potential, but has been slow to engender any significant momentum within the Information Systems (IS) and Information Management (IM) literature. This study approaches the subject through an IS/IM lens developing the key themes from the blockchain based research via a comprehensive review. This analysis of the body of literature highlights that although few commercial grade blockchain applications currently exist, the technology demonstrates significant potential to benefit a number of industry wide use cases. This study expands on this point articulating through each of the key themes to develop a detailed narrative on the numerous potential blockchain applications and future direction of the technology, whilst discussing the many barriers to adoption. The study asserts that blockchain technology has the potential to contribute to a number of the UN Sustainability Development Goals and engender widespread change within a number of established industries and practices

    Cyber-Attack Detection and Cyber-Security Enhancement in Smart DC-Microgrid Based on Blockchain Technology and Hilbert Huang Transform

    Get PDF
    Due to the simultaneous development of DC-microgrids (DC-MGs) and the use of intelligent control, monitoring and operation methods, as well as their structure, these networks can be threatened by various cyber-attacks. Overall, a typical smart DC-MG includes battery, supercapacitors and power electronic devices, fuel cell, solar Photovoltaic (PV) systems, and loads such as smart homes, plug-in hybrid electrical vehicle (PHEV), smart sensors and network communication like fiber cable or wireless to send and receive data. Given these issues, cyber-attack detection and securing data exchanged in smart DC-MGs like CPS has been considered by experts as a significant subject in recent years. In this study, in order to detect false data injection attacks (FDIAs) in a MG system, Hilbert-Huang transform methodology along with blockchain-based ledger technology is used for enhancing the security in the smart DC-MGs with analyzing the voltage and current signals in smart sensors and controllers by extracting the signal details. Results of simulation on the different cases are considered with the objective of verifying the efficacy of the proposed model. The results offer that the suggested model can provide a more precise and robust detection mechanism against FDIA and improve the security of data exchanging in a smart DC-MG

    Developing reliable anomaly detection system for critical hosts: a proactive defense paradigm

    Full text link
    Current host-based anomaly detection systems have limited accuracy and incur high processing costs. This is due to the need for processing massive audit data of the critical host(s) while detecting complex zero-day attacks which can leave minor, stealthy and dispersed artefacts. In this research study, this observation is validated using existing datasets and state-of-the-art algorithms related to the construction of the features of a host's audit data, such as the popular semantic-based extraction and decision engines, including Support Vector Machines, Extreme Learning Machines and Hidden Markov Models. There is a challenging trade-off between achieving accuracy with a minimum processing cost and processing massive amounts of audit data that can include complex attacks. Also, there is a lack of a realistic experimental dataset that reflects the normal and abnormal activities of current real-world computers. This thesis investigates the development of new methodologies for host-based anomaly detection systems with the specific aims of improving accuracy at a minimum processing cost while considering challenges such as complex attacks which, in some cases, can only be visible via a quantified computing resource, for example, the execution times of programs, the processing of massive amounts of audit data, the unavailability of a realistic experimental dataset and the automatic minimization of the false positive rate while dealing with the dynamics of normal activities. This study provides three original and significant contributions to this field of research which represent a marked advance in its body of knowledge. The first major contribution is the generation and release of a realistic intrusion detection systems dataset as well as the development of a metric based on fuzzy qualitative modeling for embedding the possible quality of realism in a dataset's design process and assessing this quality in existing or future datasets. The second key contribution is constructing and evaluating the hidden host features to identify the trivial differences between the normal and abnormal artefacts of hosts' activities at a minimum processing cost. Linux-centric features include the frequencies and ranges, frequency-domain representations and Gaussian interpretations of system call identifiers with execution times while, for Windows, a count of the distinct core Dynamic Linked Library calls is identified as a hidden host feature. The final key contribution is the development of two new anomaly-based statistical decision engines for capitalizing on the potential of some of the suggested hidden features and reliably detecting anomalies. The first engine, which has a forensic module, is based on stochastic theories including Hierarchical hidden Markov models and the second is modeled using Gaussian Mixture Modeling and Correntropy. The results demonstrate that the proposed host features and engines are competent for meeting the identified challenges

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Machine Learning Methods with Noisy, Incomplete or Small Datasets

    Get PDF
    In many machine learning applications, available datasets are sometimes incomplete, noisy or affected by artifacts. In supervised scenarios, it could happen that label information has low quality, which might include unbalanced training sets, noisy labels and other problems. Moreover, in practice, it is very common that available data samples are not enough to derive useful supervised or unsupervised classifiers. All these issues are commonly referred to as the low-quality data problem. This book collects novel contributions on machine learning methods for low-quality datasets, to contribute to the dissemination of new ideas to solve this challenging problem, and to provide clear examples of application in real scenarios

    Cyber Security and Critical Infrastructures 2nd Volume

    Get PDF
    The second volume of the book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles, including an editorial that explains the current challenges, innovative solutions and real-world experiences that include critical infrastructure and 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems
    • 

    corecore