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This Editorial analyzes the manuscripts accepted, after a careful peer-reviewed process, for the
Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing
Systems and Pervasive Intelligence” of the Sensors MDPI journal. The Special Issue was co-organized
by the University of Pisa (Professor Sergio Saponara at the Department of Information Engineering)
and University of Genoa (Professors Alessandro de Gloria and Francesco Bellotti at the Department of
Electrical, Electronics and Telecommunication Engineering and Naval Architecture) in Italy. Most of
the papers were selected as the best papers of the 2019 edition of the “Applications in Electronics
Pervading Industry, Environment and Society” (Applepies) Conference that was held in Pisa in
September 2019. All these papers were significantly enhanced with novel experimental results, as we
show in the following.

The selected papers give an overview of the trends in research and development activities about
the pervasive application of electronics to the industry, environment and society. The focus of the
papers is on cyber physical systems (CPS) with research proposals for new sensor acquisition and ADC
(analog-to-digital converter) methods, high-speed communication systems, cybersecurity and data
processing, including emerging machine-learning techniques.

For each paper, the physical implementation aspects are always discussed, as well as the trade-off
to be found between functional performances and hardware costs is exhaustively analyzed.

The Special Issue is characterized by 13 original research papers [1–13] that we briefly introduce
in the following.

The first paper [1] is entitled “A Portable Support Attitude Sensing System for Accurate Attitude
Estimation of Hydraulic Support Based on Unscented Kalman Filter”, written by Xuliang Lu, Zhongbin
Wang, Chao Tan, Haifeng Yan, Lei Si and Dong Wei from the School of Mechatronic Engineering, China
University of Mining and Technology, Daxue Road, Xuzhou 221116, China.

The paper proposes the design of a support attitude sensing system composed of an inertial
measurement unit (IMU) with MEMS (microelectromechanical system) sensors. In the classis attitude,
a control system’s yaw angle estimation with magnetometers is disturbed by the perturbed magnetic
field generated by a coal rock structure and by high-power equipment. On the other hand, roll and pitch
angles are often estimated using a MEMS gyroscope and accelerometer, and the accuracy is not reliable
with time, usually due to long-term bias instability problems. In order to eliminate the measurement
error of the sensors and to obtain an accurate attitude estimation, the paper proposed the use of an
unscented Kalman filter based on quaternion, according to the characteristics of complementation of the
magnetometer, accelerometer and gyroscope. Then, the gradient descent algorithm is used to optimize
the key parameter of the unscented Kalman filter—namely, processing the noise covariance—to
improve the accuracy of the attitude calculation. An industrial application shows that the average

Sensors 2020, 20, 7295; doi:10.3390/s20247295 www.mdpi.com/journal/sensors1
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measurement error of the yaw angle is less than 2◦ and that of the pitch angle and roll angle are less
than 1◦, which proves the efficiency and feasibility of the proposed cyber physical system.

The second paper [2] is entitled “Analysis and Comparison of Rad-Hard Ring and LC-Tank
Controlled Oscillators in 65 nm for SpaceFibre Applications”, written by D. Monda et al. from the
University of Pisa and by INFN (the Italian National Institute for Nuclear Physics).

This work presents a comparison between two voltage-controlled oscillators (VCOs) designed in
a commercial 1.2-V 65-nm CMOS (complementary metal oxide semiconductor) technology to address
the needs of SpaceFibre, a recent standard for high-speed communications in space applications.
The first architecture based on a ring oscillator (RO) was designed using three current mode logic (CML)
stages connected in a loop, while the second one was based on an LC-tank resonator. This analysis
aimed to choose a VCO architecture able to be integrated into a rad-hard phase-locked loop to meet
the specifications of the SpaceFibre protocol, supporting frequencies up to 6.25 GHz. The paper
presents the full custom schematic and the layout designs. The single-event effect simulation results,
performed according to an IMEC (Interuniversity MicroElectronics Center, Belgium) model with a
double-exponential current pulses generator, are also discussed. The performance of the RO-VCO are
quite attractive in terms of technology scaling and reduced area occupation. However, the RO-VCO
solutions suffer from larger frequency spreading due to process variations and due to operations in
harsh space conditions. On the contrary, the LC-VCO solution is characterized by a lower sensitivity to
PVT (process–voltage–temperature) variations. Hence, the LC-VCO architecture is the one selected to
fulfill the specifications of the new SpaceFibre aerospace standard.

The third paper [3] is entitled “Analysis and Design of Integrated Blocks for a 6.25 GHz SpaceFibre
PLL” and is written by M. Mestice at al., with authors from the University of Pisa and by INFN
(the Italian National Institute for Nuclear Physics).

Additionally, this paper refers to the SpaceFibre standard for high-speed communication in space
applications and presents the design of the key blocks for a phase-locked loop (PLL) to generate the
clock reference up to 6.25 Gbps: triple-modular redundancy phase/frequency detector, charge pump
and a passive loop filter. Modeling and simulation activities were carried out in the ADS (Advanced
Design System) RadioFrequency environment and in the Cadence Virtuoso environment. The results
achieved proved that the PLL can be fully integrated on-chip in a commercial 1.2-V 65-nm CMOS
technology with an area size dominated by the passive loop filter. Both system-level and layout-level
rad-hard techniques were proposed. The results achieved showed that a compact (0.09 mm2) and
low-power (about 10 mW) dead zone-free and rad-hard PLL can be obtained with a phase noise below
−80 dBc/Hz @ 1 MHz and targeting the 6.25-Gbps maximum data rate of the SpaceFibre standard.

The fourth paper [4] is entitled “Machine Learning on Mainstream Microcontrollers” and is
authored by F. Sakr at al. from University of Genoa.

This work addresses the emerging problem of implementing machine-learning (ML) techniques in
edge devices. More in detail, the paper introduces the edge-learning machine (ELM), a machine-learning
framework for edge devices. The goal is managing the ML training phase on a desktop computer,
while the inference phase is implemented on a STM32 (STMicroelectronics 32-bit) microcontroller.
By using a platform-independent C language, the paper deals with several supervised ML algorithms
(a support vector machine with a linear kernel, k-nearest neighbors and decision tree) and exploits the
capability of the STM X-Cube AI to implement artificial neural networks (ANNs) on STM32 Nucleo
boards. Multiple datasets are considered for classifications and regression. The results of the research
work prove that the edge platforms reach the same performance score of a desktop computing platform
with a similar time latency. To support the community of developers and makers, the ELM framework
is released as an open source.

The fifth paper [5] deals with cybersecurity. It is entitled “Cryptographically Secure Pseudo-Random
Number Generator IP-Core Based on SHA2 Algorithm” by L. Baldanzi et al., a group of authors from
the University of Pisa.
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The adoption of advanced sensors and systems for autonomous driving, combined with an
increased connectivity of vehicles, robots and drones, is increasing the importance of embedding
security features in computing and communication platforms. To this aim, RNG (random number
generation) has a crucial role in ensuring the robustness of the security chain. RNG is a key technology to
generate the encryption keys to be used for ciphers. Hence, any weakness in the key generation process
will lead to leaks of information and will increase the probability to breach even the strongest cipher.
More in detail, the paper shows the architecture of a CSPRNG (cryptographically secure pseudo-random
number generator) macrocell that was validated by using the official Statistical Test Suite of the NIST
(National Institute for Standard and Technology) to assess the degree of randomness of the numbers
generated. The proposed CSPRNG macrocell was characterized by both FPGA (field-programmable
gate array) and ASIC (application-specific integrated circuit) standard-cell technologies.

The sixth paper [6] is entitled “Data Processing and Information Classification—An In-Memory
Approach” and is authored by M. Andrighetti et al. from Politecnico di Torino.

In the Internet of Things (IoT) era, an enormous amount of data, generated by billions of electronic
devices full of sensors that constantly acquire data, must be processed and classified. A classic approach
is transferring these data to servers that elaborate them remotely in the cloud. This approach is
energy-inefficient (there is a huge battery drain due to the high amount of information to be transferred)
and is affected by latency problems in safety-critical time-sensitive applications. Data may be processed
locally in edge devices, near the sensor itself, but this solution requires a high-performance computation
(HPC) and memory capability that is often missing in mobile microprocessors and microcontrollers.
To address these issues, the paper presents a PIM (processing-in-memory) approach where new
memories are designed to elaborate the data inside them, overcoming the well-known “memory wall”
issue. More in detail, the work, with reference to a bitmap indexing case study, presents a hardware
accelerator designed in CMOS technology around the PIM approach. The hardware accelerator is
capable of implementing the bitmap indexing algorithm and can also be reconfigured to implement
other tasks. The achieved results show that the PIM approach allows to process and classify huge
amounts of data locally, with a very low power consumption.

The seventh paper [7] is entitled “Digital Circuit for Seamless Resampling ADC Output Streams”
and is authored by M. D’Arco et al. from the Federico II University of Naples.

This work first presents DSP (digital signal processing) techniques to change the sampling rate of
digital storage oscilloscopes (DSOs) by means of digital resampling approaches. Then, it proposes a new
digital circuit to be included in the acquisition channel of a DSO, between the internal analog-to-digital
converter (ADC) and the acquisition memory, that allows the user to select any sampling rate lower
than the maximum one with fine resolution. The new circuit exploits both digital-filtering techniques
with dynamically generated coefficients and ad-hoc memory management strategies. For the circuit,
both FPGA and ASIC implementations are evaluated.

The eighth paper [8] is entitled “Embedded Bio-Mimetic System for Functional Electrical
Stimulation Controlled by Event-Driven sEMG” and is authored by F. Rossi et al., a group of authors
from Politecnico di Torino.

This paper deals with an assistive technology application and, particularly, with the surface
electromyographic (sEMG) signal for controlling the functional electrical stimulation (FES) therapy,
a technique that is being widely accepted as an active rehabilitation method for the restoration of
neuromuscular disorders. To this aim, the paper proposes an embedded implementation of the
average threshold crossing (ATC)-FES control system. The system was characterized and validated
by analyzing the computing core and memory usage in different operating conditions, as well as
measuring the system latency. Experimental results on a testing population of 11 subjects was also
carried out.

The ninth paper [9] is entitled “Fast Approximations of Activation Functions in Deep Neural
Networks when using Posit Arithmetic” and is authored by M. Cococcioni et al., a group from the
University of Pisa and the company MMI srl.
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The paper addresses the problem of an arithmetic format to achieve real-time computing for
deep neural networks (DNNs). Overcoming the limits of a classic IEEE 754 standard floating-point
representation, the paper presents a new numerical format called Posits. While waiting for the
widespread availability of hardware-native Posit Processing Units, the paper shows that it is possible
to exploit the Posit representation and the currently available arithmetic-logic unit (ALU) in every
microprocessor to speed up DNNs by manipulating the low-level bit string representations of Posits.
To this aim, the paper presents a new class of Posit operators called L1 operators, which consists of
fast and approximated versions of existing arithmetic operations or functions, such as the hyperbolic
tangent (TANH) and the extended linear unit (ELU), while being adopted as activation functions
in DNNs. The achieved results show that using either 64-bit ARM processors or x86 Intel 10-bit
Posits can represent an exact replacement for 32-bit floats, while 8-bit Posits could be an interesting
alternative to 32-bit floats, since their performances are a bit lower, but their high-speed and-low
storage properties are very appealing. This size reduction will lead to a lower bandwidth demand and
more cache-friendly codes. Moreover, with only 8- or 10-bit Posit operations, they can be tabulated in a
very efficient way.

The tenth paper [10] is entitled “Steerable-Discrete-Cosine-Transform (SDCT): Hardware
Implementation and Performance Analysis” and is from R. Peloso et al., a group of authors from
Politecnico di Torino.

This paper deals with the hardware acceleration of new, efficient video compression methods and,
particularly, the steerable discrete cosine transform (SDCT) that were proposed to exploit directional
DCT using the basis of having different orientation angles. With respect to classic solutions, the SDCT
leads to a sparser representation and, hence, to an improved compression efficiency. The hardware
accelerator for SDCT processing proposed in this paper is able to work at about 200 MHz with a
throughput of 3G sample/s and can support an 8k UHD (ultra-high definition) format at 60 frames
per second.

The eleventh paper [11] is entitled “Distillation of an End-to-End Oracle for Face Verification
and Recognition Sensors” and is authored by F. Guzzi et al., a group of authors from the University
of Trieste, the Elettra Sincrotrone Trieste S.C.p.A and the Abdus Salam International Centre for
Theoretical Physics.

This paper deals with face recognition functions that are important for many applications,
including security systems, inclusion devices and others. In this work, a distillation technique is
applied to a complex model to enable fast recognition on low-complex hardware face recognition
sensors. The proposed biometric systems are examined for the two problems of face verification and
face recognition in an open set by using training/testing methodologies and datasets.

The twelfth paper [12] is entitled “A Model-Based Design Floating-Point Accumulator. Case
of Study: FPGA Implementation of a Support Vector Machine Kernel Function” and is authored by
M. Bassoli et al., a group of authors from the University of Parma.

This paper presents a novel model-based floating-point accumulation circuit (relying on the
state-of-the-art delayed buffering algorithm) to accelerate ML functions, such as the kernel function
of support vector machines. The proposed model was implemented in a Simulink environment and
then implemented, by means of an HDL (hardware description language) design, in FPGA technology.
The simulation results showed that it has a better performance in terms of speed and occupied area
when compared to other solutions. To better evaluate its figure, a practical case of a polynomial kernel
function was considered.

Finally, paper thirteen [13], “Managing Big Data for Addressing Research Questions in a
Collaborative Project on Automated Driving Impact Assessment”, is authored by Bellotti et al.,
an international group of researchers collaborating in the L3Pilot project, which is the piloting of
Society of Automotive Engineers (SAE) level 3 automated vehicle functions.

The paper presents the development of a set of tools for a big data management process
involving several project actors (vehicle manufacturers, research institutions, suppliers and developers),
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with different perspectives and requirements. In order to implement a reference methodology,
the authors highlight the importance of (i) a common data format to process all the source data coming
from proprietary sources, (ii) a measurement-oriented application programming interface (API) for
storing and retrieving data and of a tool to synthetize meaningful data from the original, proprietary
vehicular time series.

Author Contributions: All guest editors contributed equally to this editorial. All authors have read and agreed to
the published version of the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.
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Abstract: While extracting meaningful information from big data is getting relevance, literature lacks
information on how to handle sensitive data by different project partners in order to collectively
answer research questions (RQs), especially on impact assessment of new automated driving
technologies. This paper presents the application of an established reference piloting methodology
and the consequent development of a coherent, robust workflow. Key challenges include ensuring
methodological soundness and data validity while protecting partners’ intellectual property.
The authors draw on their experiences in a 34-partner project aimed at assessing the impact of
advanced automated driving functions, across 10 European countries. In the first step of the workflow,
we captured the quantitative requirements of each RQ in terms of the relevant data needed from
the tests. Most of the data come from vehicular sensors, but subjective data from questionnaires are
processed as well. Next, we set up a data management process involving several partners (vehicle
manufacturers, research institutions, suppliers and developers), with different perspectives and
requirements. Finally, we deployed the system so that it is fully integrated within the project big data
toolchain and usable by all the partners. Based on our experience, we highlight the importance of the
reference methodology to theoretically inform and coherently manage all the steps of the project and
the need for effective and efficient tools, in order to support the everyday work of all the involved
research teams, from vehicle manufacturers to data analysts.

Keywords: research data collection and sharing; connected and automated driving;
deployment and field testing; vehicular sensors; impact assessment; knowledge management;
collaborative project methodology
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1. Introduction

Solving grand challenges, such as automated connected driving, often requires collaboration across
multiple domains and technical areas. A key factor in the success of collaborative research projects is the
methodology and the relevant tools used to address the challenges. Some collaborative tools are well
established (e.g., for managing the project and its risks, sharing documentation and source code, etc.),
while others are less general and more related to application-specific tasks. The literature is rich
in guidelines, techniques and tools for general project challenges (e.g., [1,2]), but there is a lack of
specific information and tools for different partners to deal with sensitive data in order to answer a set
of research questions (RQs) at project level. This task is gaining relevance in the current industrial
research context, where there is a growing focus on big data, especially from ever more pervasive and
sophisticated sensors and on extracting meaningful information from them. However, while there is
significant work published on application-oriented data analysis (e.g., [3]), we found a lack in data
management for assessing the impact of the new technologies’ adoption.

We thus intend to investigate how to organize a robust workflow for quantitatively addressing RQs
in a collaborative project sharing sensitive data among various partners, while ensuring methodological
soundness and data validity and protecting partners’ intellectual property (IP).

We think that the automated driving sector represents a highly significant investigation domain
given the huge amount of research that is being carried out in the field (e.g., [4–6]). As an example
use case, we thus discuss our experience in a 34-partner EU-funded project, L3Pilot, which is assessing
the impact of Society of Automotive Engineers (SAE) Level 3 (L3) and Level 4 (L4) automated driving
functions (ADFs). Tests are being conducted in pilots in 10 European countries, with vehicles provided
by 13 vehicle owners (original equipment manufacturer (OEM), suppliers or research facilities).

The L3Pilot RQs cover different leading-edge ICT adoption impact assessment areas, including
(i) technical performance of the tested L3 ADFs, (ii) user acceptance and behaviour, (iii) impact
on traffic and mobility and (iv) societal impacts (see L3Pilot Deliverable D3.1 [7]). This paper
presents how we implemented a reference methodology for large scale pilots and field operational
automotive tests—namely Field opErational teSt supporT Action (FESTA) [8]—in order to get the
quantitative information needed to answer the project’s research questions (RQs). A key novelty in
this process is the use of the Consolidated Database (CDB), which allows data from all the pilot sites
to be shared anonymously and securely amongst project partners to facilitate data analysis aimed at
answering the project’s RQs.

This paper presents the challenges we have faced in implementing the methodology and
consequently developing a coherent, robust workflow. First, we needed to quantitatively capture
each RQ’s requirements in terms of raw data to be collected during the tests, so as to allow a proper
investigation. Then, we set up the needed tools in an iterative development process involving
several partners (vehicle manufacturers, research institutions, suppliers and developers), with different
perspectives and requirements. Finally, we deployed the system so that it is fully integrated within the
project’s data toolchain and usable by all the partners.

It is important to highlight that this paper focuses on the method, workflow and tools and does
not discuss the actual domain-specific data, which will be the subject of another publication.

The remainder of the paper is organized as follows. Section 2 gives an overview of the related work,
while Section 3 presents the methodology and the consequent specifications for the target process.
Section 4 presents the design and implementation of the CDB. Section 5 discusses what we have learnt
from the deployment of the system, while Section 6 draws the final conclusions.

2. Related Work

Beside the general overviews cited in the Introduction, there is a rich literature on privacy and risk
management in projects. For instance, [9] deal with Risk Assessment in Multi-Disciplinary Engineering
Projects, [10] with privacy risks when sharing data on information systems. Furthermore, [11]
investigates the validity of sharing privacy-preserving versions of datasets. They propose a
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Privacy-preserving Federated Data Sharing (PFDS) protocol that each agent can run locally to produce
a privacy-preserving version of its original dataset. The PFDS protocol is evaluated on several standard
prediction tasks and experimental results demonstrate the potential of sharing privacy-preserving
datasets to produce accurate predictors. In addition, [12] provides an extensive review of data analytic
applications in road traffic safety, with particular attention to crash risk modelling.

Furthermore, [13] deals with integrating diverse knowledge through boundary spanning processes,
with a particular focus on multidisciplinary project teams. The concept of a Project Consortia
Knowledge Base (PC-KB) is presented in [14] in an integration framework based on semantic
knowledge that facilitates project-level communication as well as access to project data across tool and
partner boundaries.

Commercial companies (e.g., Amazon, Microsoft, Google) have established efficient cloud
ecosystems for data management providing very powerful services, but they rely on proprietary
technologies, with very limited interoperability and development opportunities for third parties.
However, we could not find in the literature guidelines on how to exploit these cloud technologies to
support project partners in processing big data to address quantitative research questions.

In recent years, a number of field operational tests (FOTs) have been executed to test new
Advanced driver-assistance systems (ADAS) in authentic traffic conditions, involving thousands of
drivers (e.g., euroFOT [15,16]). With a view to ensure scientific soundness, the Field opErational teSt
supporT Action (FESTA) project developed a methodology for field operational tests (FOTs), with three
main focuses: user, vehicle, context [8]. This methodology is described in the FESTA Handbook which
has been frequently updated according to the latest lessons learned [17]. It records lessons learned and
provides best practices collected in several European FOTs in the last ten years. L3Pilot decided to
adopt this methodology, as illustrated in the next section.

Several collaborative industrial research projects have been conducted in Europe addressing the
first levels of automated driving. The AdaptIVe project developed several functionalities providing
various levels of driver assistance, such as partial, conditional and high automation [18]. Drive C2X
investigated cooperative awareness, which was enabled by periodic message exchange between
vehicles and roadside infrastructure [19,20]. The FOT-Net Data project prepared the Data Sharing
Framework, which provides hands-on recommendations on how to manage data sharing of data
from the transportation research area [21]. The TEAM project developed an app suite for supporting
collaborative road mobility [22].

3. Methodology

3.1. Overview

The RQs for all impact areas in the L3Pilot project (listed in the Introduction, see also [7]) were
generated through the top-down approach recommended by the FESTA Handbook [17]. The process
began with a review of the descriptions of automated driving functions (ADFs) that were going to
be piloted during the project. Therefore, in the early stages, only high-level RQs (Levels 1 and 2 in
Table 1 example) were defined, to meet the project objectives.

Table 1. An example on definition of logging requirements for a hypothesis [7].

Item Example

Evaluation area Technical and traffic

RQ level 1 “What is the impact of the ADF on driving behaviour?”

RQ level 2 “What is the ADF impact on driven speed in different scenarios?”

RQ level 3 “What is the ADF impact on driven speed in driving scenario X?”

Hypothesis
Example 1: “There is no difference in the driven mean speed for the ADF compared to manual driving.”

Example 2: “There is no difference in the standard deviation of speed for the ADF compared to
manual driving.”

Required Performance indicators (PIs) Mean speed, standard deviation of speed, max speed, plot (speed/time)

Logging requirements/sensors available CAN bus of vehicle: Ego speed in x direction
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In such a top-down approach, the generation RQs and hypotheses typically is based on theoretical
understanding of the mechanisms how different impact areas are influenced. Thus, the process
was started with an extensive literature review, which aimed to identify the key elements related
to different impact areas. In addition, the review aimed to find knowledge gaps. The process was
iterative (generate RQs, review them) to ensure that all major topics were covered and RQs were well
formulated. In this step, a wide range of RQs was created, not limiting them by means of any single
data collection method. The RQs were simply based on literature and the experience of the project
members in previous, related work. The generation of the first (higher) level of research questions was
structured according to the four L3Pilot evaluation areas. The second stage involved the development
of more detailed RQs related to specific components of the higher-level questions, where appropriate.
For each RQ, the underlying hypothesis is then made explicit. Table 1 provides an example in the
Technical and Traffic area.

The top-down approach to setting RQs was followed by a bottom-up revision. In that phase,
the RQs were cross-checked for their feasibility in terms of the data generation, a suitable experimental
procedure at the pilot sites and availability of evaluation methods and tools [23]. RQs were prioritized
based on test site characteristics, data coding and processing demand, ethical constraints, resources
and time available in the project and importance for the research. In this phase, some of the first two
levels of RQs were updated to be in line with the evaluation possibilities in the project.

In line with the FESTA Handbook, the next steps after generation of the hypotheses concerned
the definition of the relevant performance indicators (we cover them in detail in the next subsections)
and of the logging needs related to them. Here, we differentiated the subjective and objective data [7].
Questionnaires would collect subjective data across test participants (drivers and possible passengers),
and objective data would be collected mostly from the data loggers of the test vehicles, additional
cameras installed on them, and, when necessary, from external data sources (e.g., weather information,
road type, etc.) [24]. Figure 1 provides an overview of the RQ definition and implementation workflow.

Figure 1. Overview of the research questions (RQ) definition and implementation workflow.

3.2. Objective (Vehicular) Data

The adopted methodology requires defining (i) the performance indicators (PIs) through which
the RQs can be answered, (ii) the derived measures that are needed to calculate these indicators, and (iii)
the actual vehicular signals that are needed to calculate these measures (see the full process in [24]).
Beside the standard vehicular signals (e.g., speed, acceleration, pedal activity, etc.), source data come
also from state-of-the-art automated driving sensors, such as cameras, Light Detection and Ranging
(lidars) and radars. As a single PI may be derived from different alternative derived measures—and a
single measure from different alternative signals—a collaboration was set up among the evaluation team
(who express the data needs), the vehicle owners (who provide and share the data) and those responsible
for developing the processing tools. The collaboration aimed at defining performance indicators (PIs)
and derived measures for all RQs [7], as illustrated in the Table 1 example. The overall analysis defined
a set of signals to be provided by all the vehicle owners that are specified in a common data format [25].

Four different types of PIs (Table 2) were defined to be computed from the vehicular signals
and stored in the Consolidated database (CDB) as the factual basis for answering the RQs. PIs are
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typically constituted by statistical aggregations (e.g., avg/std/min/max) in significant intervals of
a trip. Two PI types are computed at trip level: while Trip_PIs are general indicators synthetizing
a trip, ScenarioSpecific_TripPIs are computed aggregating trip segments from a specific scenario
only. The other two PI types (namely, ScenarioInstance_PI and Datapoints) are much more specific,
as they are computed for each instance of a given driving scenario detected during a trip. Table 2
provides an overview of the L3Pilot vehicular PI types, with some examples. The table reports only
two Datapoint types, as examples, since there is one datapoint type for each driving scenario type.

Table 2. An overview of the L3Pilot vehicular sensor data performance indicators (PI) types.

PI Type Description Example of PIs

Trip PI PIs computed at trip level
Mean (stdev) longitudinal

acceleration, percentage of time
elapsed per driving scenario type

Scenario specific Trip PI
PIs computed at trip level but only when a specific driving scenario occurs.
Example of driving scenarios, described later, are: driving in a traffic jam,

lane change.

Mean duration of sections with
speed lower than a threshold

Scenario instance PI PIs computed for each instance of a driving scenario. The same PIs are computed
in each type of scenario

Mean (stdev) time headway,
mean(stdev) position in lane

Datapoint for a Following
a lead vehicle scenario

Datapoint PIs are computed for each instance of a driving scenario. Different types
of scenario have a different datapoint structure. Here we report two examples.
Datapoints are used as input for the impact assessment by either resimulating

driving scenarios or constructing artificial scenarios based on statistical analyses of
scenarios encountered during piloting

Mean (stdev) relative velocity,
Time headway at minimum time

to collision

Datapoint for Approaching
a traffic jam scenario

Vehicle speed at brake or steering
onset, Longit. position of object at

brake or steering onset

Several research questions required analysing context data beyond the actual vehicular signals
and questionnaire answers. Context data were useful, particularly to segment information so to allow
comparisons and more focused analysis. Among context data we highlight:

• Experimental conditions. Different conditions have to be considered, such as: baseline,
ADF not available, ADF off, ADF on.

• Road types. Tests are performed on various road types, such as: motorways, major urban arterials,
other urban roads.

• Driving scenarios. The system has to track different types of driving scenarios, that are typical
driving situations, such as uninfluenced driving, lane change, lane merge, following a lead
vehicle, etc. Scenarios are computed by the L3Pilot data toolchain, processing the vehicular time
series [26].

So, Trip PIs are to be computed for different segments, based on the actual experimental condition
(i.e., baseline, ADF off, ADF on) and road type; and Scenario Instance PIs are to be segmented not only
on the basis of the scenario type itself, as per definition, but also considering the different experimental
conditions and road types.

Other metadata were mandated as well, such as driver type (professional or ordinary), temperature
and speed limits, in order to better characterize the context of each PI measurement.

3.3. Confidentiality

There are several external factors that impact the extent to which the project RQs can be addressed.
For example, when assessing the effects of the ADFs on driving (i.e., observed differences between the
ADF and human driver with respect to, e.g., car-following behaviour), the maturity of the system is
important to take into account and whether the test vehicle represents the driving experience of a mature
product. In addition, to get the open road testing permission for an ADF, public authorities demand
safety of testing. The details of the driving dynamics can also be a sensitive topic to the manufacturers.
For that reason, it is important to make sure that vehicle telemetry data are kept confidential, and that the
manufacturers or their tested systems cannot be identified, ranked or compared from any information
shared within the project or with others, as their competitiveness at a crucial development stage would
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be compromised. Another challenge for gaining a good understanding of the impacts of ADFs is that
the data is limited to specific test routes, speed ranges and weather conditions, which are defined by
the function’s Operational Design Domains (ODD). All pilot studies must also adhere to the rules
of respective OEM and to national regulations on testing of automated driving, like the mandatory
use of safety drivers in certain situations. Therefore, all this limits the possibilities of the project
to address all of the RQs set for evaluation. To address these limitations, L3Pilot has specified a
common methodology, data format and analysis toolkit, which will be used across all pilot sites and
for evaluation of different ADFs [26]. Other solutions include the use of a dedicated research partner
for analysis of data from a single pilot site to ensure that the access to commercially sensitive data is
controlled and that data is pseudonymised before uploading to the CDB and shared among partners.

The CDB includes aggregated data from several sites in such a manner that commercially sensitive
information is protected. A key requirement for being able to merge data is, that, in addition to
protecting the privacy of manufacturers, the result is meaningful for the user of the result as such or
those performing the following evaluation steps. In other words, the results must describe the impacts
of automated driving but without compromising this privacy. The merging of data from different sites
also leads to the outcome where the L3Pilot results do not represent the impact of single (OEM)-specific
ADFs but the generic impacts that can be expected once these systems are introduced to the road [27].

As confidentiality is a key requirement when sharing valuable data, three main constraints were
applied to data uploaded to the CDB:

• It should not be possible to identify which pilot site the data came from. For example, attention
was paid not to insert metadata, such as temperature and date, that might hint to identify the
location of the pilot site.

• No personal data about the driver, passengers nor other test participants.
• No possibility to characterize in detail the behaviour of ADFs. This was achieved by the fact that

vehicular sensor data are not uploaded to the CDB as time series but as summarised performance
indicators, which are described later.

As an ID of the trip and of the user was considered necessary to allow data owners to track their data
in the CDB (also to update or delete them, if needed), an SHA-256 hashing-based pseudonymization
was implemented [26]. Knowing the encrypted IDs, the data owners can track their data in the CDB,
while such IDs are not decipherable by the other users.

Despite these constraints, there is no 100% guarantee that data cannot be linked to a pilot site,
if malicious and highly sophisticated techniques we did not foresee are applied to the data.

3.4. Subjective Data

While until now we have focused on vehicular sensor data, a complete assessment of ADF functions
also requires processing subjective data. One of the primary sources of data for the user and acceptance
evaluation within L3Pilot is a pilot site questionnaire, which gathers subjective data from participants at
the various pilot sites (for the full questionnaire see [23]). L3Pilot tests four different types of Automated
Driving Functions (ADFs), including motorway, traffic jam, urban and parking. We developed a
base questionnaire for background information, including questions related to sociodemographic
factors, vehicle use and purchasing decisions, driving history, in-vehicle system usage, activities while
driving, trip choices and mobility patterns. The data collected in the first part will be used to create
different user groups for the user and acceptance evaluation. We also included questions specific to
the ADF. For example, these questions assess various aspects of participants’ initial reactions to using
the particular ADF. To understand whether having daily access to the ADF might change any decisions
or behaviours, they were reasked questions about vehicle use and purchasing decisions, driving history,
in-vehicle system usage, engagement with nondriving tasks, trip choices and mobility patterns.
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3.5. Workflow Requirements

From a process viewpoint, requirements included efficiency of workflow, and in particular,
upload and download of data to/from the CDB. We highlight in particular:

• Recursive upload. The user should define the source directory and the system should automatically
detect the files to be processed and do the upload of their contents to the CDB. All the subdirectories
should be recursively explored.

• CSV download. The system should allow the possibility of downloading contents in either
.json or .csv format, which is the typical input format for the statistical processing packages used
by the analysts. The granularity of download is at the feature level. That is, a user should be
able to download all the measurements of all the accessible features (Trip_PI, Scenario_Instances,
Datapoints, etc.) or only some of them.

• Postediting of the performance indicators. Once the performance indicators for a trip are computed,
the data provider should be able to check and edit them before the upload to the CDB.

The above requirements were typically defined during the development, in an iterative fashion,
as the data providers and analysts suggested improvements based on their working experience.

4. Design and Implementation of the Consolidated Database (CDB)

In order to meet the above presented methodological goals, L3Pilot defined a data flowchart
(Figure 2), which is the basis for the system architecture. The workflow starts with data collection at the
pilot sites and ends with data analysis by impact experts. At the beginning there is a different processing
for vehicular sensor data (Section 4.1) and subjective data (Section 4.2), then these data are managed
seamlessly. The first, fundamental step consists in translating all the heterogeneous data sources in
the Common Data Format (CDF), which has been described in [25] and made publicly available [28].
The CDF postprocessing phase is described in detail in [26], while this paper focuses on the CDB. In the
CDF postprocessing, the project’s analysis partners use the Derived Measures—Performance Indicator
Framework (DM-PI-Framework) to enrich the vehicular signal time series from a vehicle’s trip with
the computed derived measures (DM) and the detected driving scenarios, which are fundamental for
the computation of CDB PIs, as described in the next subsection.

Figure 2. L3Pilot data workflow.

4.1. CDB PI Computation for Vehicular Sensor Data

The CDB PI computation step consists in synthesizing the vehicular time series so that the CDB
stores only high-level information that allows tackling the project RQs, without compromising the
confidentiality of the single-vehicle owner companies. This stage is undertaken by the CDB Aggregator
module, which processes HDF5 files (one per each trip), containing the original time series formatted in
CDF and enriched by the DM-PI-Framework’s, as mentioned above. The output of the CDB Aggregator
module is represented by a set of .json files storing the computed PIs. Processing an input HDF5 file,
the Aggregator produces one .json file for each one of the four PI types defined in Table 3 (i.e., Trip PI,
Scenario Instance PI, etc.). The .json files are ready to be uploaded to the CDB, for instance through a
well-established Application Programming Interface (API) client such as Postman, or, better, through
the Uploader, a dedicated module described in Section 4.3. The same information contained in the
.json files is also saved in corresponding .csv files, that are more easily readable by the analysts.
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Table 3. Measurify user roles and rights. General description and mapping in the L3Pilot case.

Role Description L3Pilot Configuration/Notes

Providers
Provider users are data owners.

They can upload data and retrieve
only their own data.

In L3Pilot, Providers are vehicle owners or their in-depth analysis
partner for vehicular sensor data and pilot leaders for subjective data

Analysts
Analyst users cannot upload data

but can see all the data of their
typology.

In L3Pilot, analysts are the experts responding to the research questions.
Utilizing the Measurify’s Right resource, we have implemented three
typologies, matching the type of relevant data: Technical and Traffic

analysts, that access all vehicular sensor data apart from the Datapoints;
Impact analysts, that access Datapoints; User analysts, that access

subjective data

Admin

The admin configures the CDB
(e.g., setting up the users and

rights) and can see (only in case of
need) all data entries

Given the adopted ID pseudonymization, the admin cannot resolve IDs
(i.e., relating a data entry with its vehicle owner or driver).

The CDB Aggregator module consists of a set of Matlab scripts. Figure 3 provides a high-level
outlook of the programme, with three main phases: initialization, reading signals from the input
HDF5 file; processing loop; and a final saving of the four types of PIs. The processing loop is the
core of the programme, as it processes the time series and segments the computation of the PIs
according to the context information presented in Section 3.2. First, the experimental condition is
considered. Then, for each identified segment, the road type is considered. This level of segmentation
leads to the computation of Trip PIs. Computation of Scenario Instance PIs and Datapoints requires
further segmentation of the timeline based on the detected driving scenarios. Scenario Specific Trip
PIs introduce the need for accumulating the indicator values across all the scenario instances in
the trip. Similarly, the length of each scenario instance is needed for the Trip PI indicator reporting the
percentage of time passed in each scenario within the trip.

 

Figure 3. Flowchart of the vehicular sensor data processing Matlab scripts.
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An example of the resulting segmentation is reported in Figure 4, where we can see eight different
scenario instance PIs computed. A slice, indicated as Unrecognized 1 (U1), will not produce Scenario
Instance PI, nor Datapoints, nor Scenario Specific Trip PI, as a scenario could not be detected there.
However, the signal values contained in that segment will contribute to the Trip PI indicators in the
ADF on condition.

Figure 4. Example of scenario segmentation during a trip.

4.2. Subjective Data Processing

When conducting studies across multiple sites, it is essential that any data collection methodologies
are applied uniformly. For example, the pilot site questionnaires are administered across all pilot sites,
which vary in many respects (e.g., country language), but most relevant here is the interexperimenter
variability. Therefore, to control for this variability, the questionnaire was implemented using the online
tool LimeSurvey, where the only task for the pilot site staffwas to transfer the translated versions of the
questionnaire into the online LimeSurvey platform, enabling the administration of the questionnaire
via laptops or mobile tablet computers. The use of LimeSurvey also ensures that the data output aligns
with the CDF used by a consortium-wide consolidated database.

The imported surveys may then be customised and translated versions can be implemented
accordingly. Pilot sites are then able to export their newly generated surveys and/or to export their
results to CSV or SPSS format (Statistical Package for the Social Sciences). Note: the SPSS output of
the reference version of the questionnaire is in line with the common data format requirements for
the consolidated database. Although selected partners/pilot sites responsible can create, edit or view
a survey, it is imperative that the questionnaire item codes are not changed, as this is the mechanics
which allows tracking responses from different pilot sites. Thus, to ensure that a CDF was applied
across pilot sites, instructions on the questionnaire implementation, administration and metadata were
defined at the consortium level.

In terms of the administration of the questionnaire, there are differences between pilot sites
regarding the length and number of drives by each participant. Therefore, the project recommendation
is that the questionnaire should be completed after the last test ride, irrespective of whether a driver
has multiple drives (see further details in [29]).

Following the completion of all questionnaires, each pilot site must export the test participants’
response results to the SPSS file format (as illustrated in Figure 5), to ensure a common data format in
the CDB for the user and acceptance evaluation area.

Quality checking has been implemented both for vehicular and subjective data. In this paper,
we briefly present the procedure we set up for this second type of data.

Using the common LimeSurvey implementation should ensure that all questionnaire items and
responses follow the nomenclature set out in the CDF for the official L3Pilot questionnaire. However,
some partners used other implementations, and there is always the chance that some item names and
codes deviate from the original. A data format map is prepared for each type of questionnaire, with all
expected questions and possible answer codes and ranges. Before being uploaded to the CDB, a Matlab
data quality script parses each questionnaire outcome file, searching for inconsistencies compared to
the CDF.
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Figure 5. Example data output in SPSS.

A strategy is also adopted for missing data. Data may be missing because there was an error in
data collection or during the data transfer process between data collection, LimeSurvey and SPSS.
In order for analysts to identify cases where data is known to be missing, pilot sites are asked to fill
these cells with a dummy response (1).

Should a pilot site attempt to upload a dataset including empty cells or errors from the Matlab data
quality script, they will receive an error message and be asked to verify the contents of the missing cells.
These steps ensure the reliability and validity of the uploaded data.

4.3. Uploader

The previous two steps prepare the files with the vehicular or subjective PIs to be uploaded to
the CDB, via its RESTful APIs, that will be described later. For this step, a third party API development
tool such as Postman can be used. However, we decided to develop an ad-hoc tool, namely the
Uploader, to enhance usability, according to the specifications. This solution for uploading was
preferred to a browser-based one, as it allows full access to the local file system. Given the typical
On-Line Analytical Processing (OLAP) [30] pattern of usage foreseen for the CDB, we were in fact
required to support an efficient upload of batches of files. The Uploader allows the user to indicate
a source directory and then recursively searches in all the subdirectories all the matching .json files.
Compliance is given by the name of the file, which must start with an eight-digit and end with a code
indicating the type of the PI (e.g., Trip PI, Datapoint, Urban questionnaire).

Another functionality implemented by the Uploader concerns the support of postediting the csv
files output by the CDB-aggregator. Postediting of PIs can be made by analysts on .csv files and the
uploader offers the functionality of transforming .csv files into uploadable .json files. In addition,
in this case, recursive processing of a root directory is implemented.

The Uploader is a NodeJS Command Line Interface (CLI). The user can execute some simple .json
encoded command files that specify the operation to be performed on the CDB (upload, download,
update, delete) or on local data (.csv to .json functionality) and the value of the corresponding
parameters (e.g., source/destination directory, data override option, etc.).

4.4. Measurement API Back-End

For the data storage, we used Measurify (formerly, Atmosphere), an open-source RESTful API
dedicated to storing measurements, typically but not exclusively from the Internet of Things [31,32].
Measurify is implemented in NodeJS and relies on MongoDB, a state-of-the-art nonrelational database,
as the underlying database management system.

Measurify is a generic measurement API, which can be configured for different applications in
different installations. This is achieved by inserting values for some fundamental resource collections.
The most important one is the characterization of the features that describe the data type of the
measurements to be uploaded and managed. This resource is used for the data integrity check at
each measurement upload. For the L3Pilot installation (i.e., the CDB), we created one feature for
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each vehicular and subjective data type. Thus, we have four vehicular features: Trip PIs, Scenario
Instance Trip PI, Datapoint (actually, since the structure of a Datapoint is scenario-dependent, we have
one feature for each driving scenario type—Table 2), and Scenario Instance PI; and three subjective
features: urban questionnaire, motorway questionnaire and parking questionnaire. In order to allow
such a conceptually straightforward mapping, the Measurify’s data structure needed to be extended
so to contain data of different dimensions in each item. For instance, a measurement with a feature
of type Trip PI has some scalar items (e.g., the number of harsh brakings per hour) and some vector
items (e.g., percentage of time in each driving scenario type). Other configuration values concern the
specification of the tags, that are strings that will be available in the user interface (UI) menus, and the
specification of the constraints, that are used for specifying the relationships between tags, in order
to support the automatic filling of the UI menus. Once correctly configured, the L3Pilot Measurify
installation can be regularly used, i.e., for uploading and downloading the measurements.

User Roles and Data Access Rights

Measurify offers the possibility of providing three different roles to users: Providers,
Analysts and Admin. Moreover, user rights can be assigned in the configuration, so to have finer
control on data access for every single user. For instance, only certain features (not all) could be visible
to a certain user. The mapping of user roles and rights in the L3Pilot domain is sketched in Table 3.

Data from the CDB API can be made available to the user through clients such as the Graphical User
Interface (GUI), described in the next subsection, the Uploader and third parties tools, such as Postman.
In this last case, there is no filter on the clients on the fields of a measurement. This would lead to a
confidentiality breach, as the Trip and User IDs should not be visible to the user. Thus, the Measurify
APIs have been enriched with the Fieldmask property, settable by the administrator, that allows
specifying for each user what fields of a measurement are retrievable (e.g., only values and
source device).

4.5. Graphical User Interface (GUI)

A web-based Graphical User Interface (GUI) application was created to facilitate access to the data
available in the CDB. Although the data is available for download using the Uploader script described
in the previous subsection, the user interface provides easier means to access, filter and download the
data from a web browser.

Implementation Details

The choice of a web-based application in contrast to a native application (Windows/Linux/Mac)
is motivated, firstly, by completely removing the burden of installing specific software from the
user side, as the application is accessible from any web-browser, including mobile platforms. Secondly,
adopting a web-based application allows maintaining a single code base, which would not be generally
possible in the case of native applications since they require operating system-specific platforms.
Thirdly, web-based development allows one to choose from a wide range of development frameworks,
Vue.js [33] being the preferred solution for its API simplicity and flexibility, which enables fast
development compared to other solutions such as AngularJS or ReactJS [34].

Architecturally, the GUI is the front-end which renders the data and resources obtained by the
CDB RESTful API back-end. This interface was created envisioning a balance between user experience
and software modularity. While a very flexible design may allow to easily change the GUI from the
API back-end, it limits the user experience as generic forms and fields are required in this paradigm.
As a compromise, we designed general Query and Download forms that are dynamically loaded
with custom options according to presets in the CDB API. This design choice allows changes to
scenario names, PIs and conditions to be transparent to the GUI, increasing modularity and avoiding
repetition in the code base.
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The GUI is deployed efficiently using Docker containers and a Docker image available in
DockerHub. The CDB offers an HTTPS-enabled GUI, which is the main portal for project-wide
data access.

4.6. Functionalities

The Query functionality is split into Vehicular and Subjective data, each with its respective page.
The first is based on five query parameters: Query type (also known as a Performance indicator),
Experimental condition, Road type, Driver type and Scenario type. The available options for each
query parameter are dynamically loaded from the CDB API and filtered according to constraints
indicating possible combinations of the query parameters. All parameters except for the first have a
null choice, which ignores filtering records by that parameter.

Given choices of query parameters, the results are retrieved following a logical AND operation
between all the parameter choices, i.e., the records retrieved must match all the query parameter criteria
simultaneously. The results are displayed in a table which is populated asynchronously for optimal
performance. The table’s column’s titles are obtained dynamically from the CDB, complying with the
flexible design thereof. After visualizing the data, the user can also choose to download the resulting
records to a CSV file using the Export button. Figure 6 illustrates a query for Scenario Instance PI with
different querying parameters.

 

Figure 6. Example of vehicular query with (dummy) results displayed in a table.

Similarly, a download page allows users to download all data available in the database by
compressing results for all queries into a single file. The results are saved in separate spreadsheets
per query type and compressed into a single “.zip”. A progress bar shows which query type is being
handled at a given time. This feature has been implemented to allow data analysts to easily take
frequent snapshots of all data accessible to their role.

The subjective query page offers only a query type parameter which selects a type of subjective
questionnaire from the ones available. The functionality is the same as described for the vehicular
query page, despite having only a single query parameter. The solution follows the modular architecture
described earlier such that future requirements, such as new query parameters for subjective data,
can be easily incorporated into the interface.

The delete functionality is considered in the GUI in case a data owner needs to remove a
measurement no longer required (e.g., wrong measurement). The authorized user specifies the trip ID
(which is known only to the Provider itself, according to the specified confidentiality rules).

5. Deployment at the Pilot Sites

After lab tests, the CDB was deployed in the cloud, together with the web user interface. In parallel,
the Uploader was distributed to all the pilot sites. After the login to the CDB, each data row from
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the input files is tentatively inserted to the CDB provided that the structure of its data matches the
corresponding Feature resource, which is checked for integrity assurance.

In order to make tests on their data and get familiarity with the process, the Pilot sites asked for
the possibility of having own instances of the CDB, beside the cloud database, which was reserved
for official data, shared among all the vehicle owners and pilot sites, in production. Thus, the Local
CDB concept was defined. This was made possible thanks to the open-source release of Measurify.
The installation procedure involved the configuration of Atmosphere/Measurify with the latest L3Pilot
data structure and the installation of MongoDB, for the actual storage.

Given the complexity of the overall system, some partners asked for simplifying the set-up process.
This led to the development of a single Docker containing the Measurify API, with automatic
configuration based on Postman scripts, the MongoDB and the GUI accessible through the local host.
The image is available on DockerHub.

As the internal organization rules prevented some partners from installing Docker and NodeJS
(necessary for running the Uploader) on their own machines, the Information Technology (IT) experts
of such organization were asked to install a local server, accessible from different machines in the local
network through the web-browser GUI and the Uploader. To avoid installing NodeJS, a stand-alone
version of the Uploader was set up. In one pilot site, it was preferred not to make any local installation.
To this end, we set up a development installation of the CDB in the cloud.

These different architectural options allowed every partner involved in the pilot sites to get
familiarity with the process, according to their different roles. Various patterns of use could be observed.
Vehicle owner companies uploaded and checked their data and analysts accessed and analysed data
from all the pilot sites but only concerning their specific features.

Needless to say, writing detailed instructions in the project’s collaboration tool was useful to
facilitate the usage of the system. Feedback on this from the users helped to improve communication
and overall effectiveness, in an iterative process.

Not only did these “early” installations highlight some bugs in the code but they also enabled
us to tune the overall process and suggest significant improvements, based on the experience and
the analysis of the first sets of actual data. Such suggestions were discussed with the developers and
then implemented. Important system functionalities have been added thanks to this collaboration.
For instance, we initially considered more experimental conditions than those presented in Section 3.
There was also a “Treatment” condition, aggregating a trip’s measurements independent of the status of
the ADF—it is sufficient that the ADF is on the vehicle, as opposed to the baseline condition. However,
analysts asked to remove this condition, in order to reduce the amount of data to be processed.

A conceptual problem found at the beginning of the deployment was that if the experimental
condition changes within an occurring scenario, two scenario instances are created and uploaded to
the database although there is only one scenario occurring. This is fine in some scenarios. For others,
however, it gives wrong results for, e.g., the duration of a lane change or the standard deviation
of the speed during following a lead vehicle. The problem became apparent when looking at lane
changes. During the recordings, lane changes are often not performed by the ADF but by the
safety driver, or at least signs off on them. In the aggregated data this leads to three scenarios that are
uploaded to the database and that are evaluated at the end, which is not the desired output. We thus
introduced the concept of “partial” (uninfluenced driving, following a lead vehicle) and “complete”
(all the others) scenarios. For partial scenarios, splitting them up, due to an intervening condition
change (e.g., from ADF on to ADF off), is fine. For all others, the complete scenario instance is always
needed, no matter the condition changes during the scenario. Moreover, all the transitions of conditions
that may occur during a complete scenario need to be traced.

Another improvement concerned the maximum length of scenario instances. Since some scenario
instances (particularly Uninfluenced driving and Following a lead vehicle) are quite long, in some cases,
leading to a low level of meaningfulness for the PIs’ statistical indicators (e.g., min/max/avg/stdev),
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we were asked to set a maximum length of an instance, for “limited” scenarios. Longer instances of
such scenarios are split in fixed-length chunks.

We also implemented the StringMapper tool. All data on the CDB are numeric, as this format was
considered best suited for automatic processing of the downloaded data by analysts using their own
statistical elaboration packages. An ancillary tool (the StringMapper) was developed on request of
some pilot sites, which allows mapping some columns of the downloaded .csv files from codes to the
corresponding predefined string values, thus favouring data readability.

As of the end of October 2020, the CDB has been employed in 14 L3Pilot tests sites, from Italy
to Sweden, both in its cloud and local versions. Vehicular sensor data are being processed by six impact
analysis teams and as many traffic analysis teams, while subjective data by three teams, in order to
respond to the research questions.

The cloud CDB, and the GUI as well, are hosted on an Elastic Compute Cloud (EC2) server
from Amazon Web Server (AWS). A variety of hardware (CPU, memory, storage) and software
(operating system) solutions can be considered, based on the project’s requirements. This solution
allows achieving a state-of-the-art level in terms of infrastructure performance, scalability and security.
MongoDB also supports sharding, which significantly increases performance by distributing data
across multiple machines. Sharding was not necessary in our application case, also because we used PIs,
not the raw signal time-series.

At the time of writing, the system has been operational for eight months and the first results have
already been achieved by the analysts processing the CDB data. Feedback from analysts and other
project partners (vehicle manufacturers and suppliers) is a testament to the ability of the system to
meet the requirements. We particularly highlight the ability of extracting and managing the indicators
to answer the RQs, while preserving confidentiality, and the workflow requirements (integration with
the proprietary workflows and dataflows, recursive CDB upload, .csv download and postediting of
the PIs).

Feedback from all the project partners also highlights some good practices that were applied and
verified during the project, implementing the workflow depicted in Figure 2:

• an extensive use of abstractions, in order to support functional extensibility and
module/code reusability

• the modular approach depicted in Figure 3 for extracting PIs from signal time series revealed itself
very useful to deal with a set of specification upgrades, that occurred during the project

• the development of a tool that computes the PIs from the raw data and makes them ready
for sharing

• the possibility of postediting the PIs before inserting them in the shared database
• the definition of a tool for efficiently uploading files to the database.
• the development of a web-based, open-source GUI for supporting a proper user experience when

querying the database
• the usage of effective, well-established data formats, such as .hdf5, .json, .csv. This was key to

guarantee interoperability with different tools, particularly for data logging and data analysis,
as research teams are accustomed to various tools, such as VBOX, DL2, Matlab, SPSS, etc.

• the use of state-of-the-art tools for distributed project development (e.g., for code versioning)

A key component of the system is the Measurify measurement-oriented API back-end, which has
been appreciated for several reasons, such as:

• Efficient storage and sharing of complex measurements, thanks to the underlying MongoDB
nonrelational database management system.

• Easy configurability by specifying the features to be supported in the specific installation
(i.e., application database). In the L3Pilot CDB, the features correspond to the types of vehicular
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and subjective data to be uploaded. Changes in the data structure are easily managed by simply
changing the Feature records (old data are to be deleted and reinserted in the new format).

• Ability to seamlessly deal with both vehicular and subjective data
• Open source availability.
• Robustness, as the API was tested in other projects as well.
• Platform-independence, given by the use of the intrinsically platform-independent NodeJS

technology and MongoDB open source tool for data storage
• Non-vendor-lockedness. Differently from the typical cloud-based data management solutions,

Measurify does not depend on vendor APIs. This makes the service easily portable across
cloud providers

• Ease of deployment. The CDB has been deployed in a cloud installation and locally in all the
pilot sites, also on laptops.

6. Conclusions

This paper has proposed a methodology and implemented a workflow for quantitatively
addressing RQs in a collaborative project sharing among partners sensitive big data information
(both objective, from vehicular sensors, and subjective, from user questionnaires), which is still not
well covered in the literature. We have applied the workflow in L3Pilot, a large-scale project aimed at
assessing the impact of automated driving as a safe and efficient means of transportation on public
roads. While the project is not finished and its RQs have not been answered yet, the toolchain and the
CDB API/GUI have been widely used across all pilot sites. Based on our working experience, we first
stress the importance of establishing a collaborative community of researchers and developers who are
knowledgeable in their respective domains. This team has been vital to allow a full understanding of
the requirements, development of specifications and system and proper handling of all the issues that
emerged with the concrete operations in the pilot sites. Discussions between experts in different fields
have been very useful to achieve quality in a reasonable timeframe.

The process of sharing data among different providers and analysts for quantitatively answering
RQs is complex, as is the development of the supporting systems and tools. Thus, time and effort need
to be carefully spent in order to make everything work smoothly. Iterations and flexibility/availability
are needed, as specifications (also those established during the project) had to be refined based on the
actual test information, also with major design implications.

Our experience has shown the key importance of a reference methodology (in our case, FESTA),
to theoretically inform and coherently manage all the steps of the project, in a top-down approach,
from higher-level RQs, down to quantitative PIs and the actual signals or questionnaire items needed
to answer them. The methodology needs to be put in practice in the everyday work of all the involved
research teams, from car manufacturers to data analysts. As we could not find a proper solution ready
for the whole chain, we designed a system architecture and developed the missing tools. Particularly,
we highlight the following three key components:

• the Common Data Format (CDF) [25], which allowed all partners to deal with all the data in the
same format, sharing tools and knowledge, but not the proprietary data, especially those coming
from advanced driving assistance systems (ADAS). Not only does the CDF cover the original
signal time-series but also additional information (e.g., the driving scenarios), that are computed
by the Derived Measures—Performance Indicator Framework.

• the Measurify API, a non-vendor-locked cloud system for sharing appropriate measurements
among relevant partners.

• the CDB Aggregator tool, which computes the sharable information, obtained through simple
statistical data processing on relevant time segments based on such factors as experimental
condition, road type and driving scenario (Figures 3 and 4).
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We have described the implementation of the workflow, showing the challenges to overcome to
meet the expectations of a real-world SAE automation level 3 pilot project. Feedback from the various
types of users of the system (data analysts, original equipment manufacturers and suppliers) has been
largely positive and stresses that a proper methodology and a chain of interoperable tools to manage
big data are a key factor to the success of a collaborative research project.

While the implementation is exclusively in the automotive field, we argue that the proposed
methodological approach and system architecture (Figure 2) and tools are general and could be efficiently
adapted and employed in different domains in order to support quantitative research analyses:

• a common data format can be defined for any application domain, if not yet available.
• the Measurify API is released open source and installations can be easily configured for different

domains [31], by specifying different features (i.e., measurement types)
• the principles of the CDB Aggregator (segmentation and statistical data synthesis) are generally

applicable. Different factors (experimental condition, types of context of usage of a new system
to test, etc.) can be efficiently nested in the modular processing schema presented in Figure 3.

The team of automotive and traffic analysts is now processing the data to answer the project RQs,
that will be published in other articles. In a longer-term view, the next steps concern the study of
more advanced ADFs, also considering the further impact on safety, security, privacy and freedom.
Besides this, it will be interesting to apply and verify the proposed workflow and system architecture
in other application domains other than automotive.
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Abstract: To measure the support attitude of hydraulic support, a support attitude sensing system
composed of an inertial measurement unit with microelectromechanical system (MEMS) was designed
in this study. Yaw angle estimation with magnetometers is disturbed by the perturbed magnetic field
generated by coal rock structure and high-power equipment of shearer in automatic coal mining
working face. Roll and pitch angles are estimated using the MEMS gyroscope and accelerometer,
and the accuracy is not reliable with time. In order to eliminate the measurement error of the sensors
and obtain the high-accuracy attitude estimation of the system, an unscented Kalman filter based on
quaternion according to the characteristics of complementation of the magnetometer, accelerometer
and gyroscope is applied to optimize the solution of sensor data. Then the gradient descent algorithm
is used to optimize the key parameter of unscented Kalman filter, namely process noise covariance,
to improve the accuracy of attitude calculation. Finally, an experiment and industrial application
show that the average measurement error of yaw angle is less than 2◦ and that of pitch angle and roll
angle is less than 1◦, which proves the efficiency and feasibility of the proposed system and method.

Keywords: support attitude; inertial measurement unit; coal mining; unscented Kalman filter;
quaternion; gradient descent

1. Introduction

Hydraulic support is an important safety support equipment in the automatic coal mining working
face, which is of great significance to the safety of coal miners and the normal operation of coal mining
equipment. In recent years, with the continuous development of intelligent mining technology [1,2],
the roboticized hydraulic support technology has been paid more and more attention by scholars and
coal mining managers. In particular, the precise estimation of the support attitude of hydraulic support
directly determines the intelligent ability of hydraulic support. Therefore, it is urgent to study a new
attitude sensing method to obtain accurate support attitude of hydraulic support [3], especially in the
special application scenarios with a large demand for the number of sensors and complex environment.

The existing studies on the support attitude sensing measurement of hydraulic support are
mainly focused on the mechanism and kinematics of hydraulic support and trying to achieve the
accurate estimation of support attitude by kinematic analysis of its mechanism [4]. In [5,6], Polish
scholars analyzed the structural composition and empirical formula of support strength of hydraulic
support, and developed a new type of support mechanism for vertical displacement of hydraulic
support, but which can only approximately estimate the yaw angle of hydraulic support by experience.
In [7,8], through the analysis of the four-linkage mechanism and parameters of hydraulic support,
the kinematics equation is established, and then the support attitude can only be roughly estimated
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due to the neglected clearance between the hinge joint and the pin shaft. In [9], a laser radar detection
method is used for measuring the relative attitude angle of hydraulic support based on the position of
inspection robot, but the estimation result is disturbed greatly due to the influence of robot motion
vibration. In [10,11], a mechanical-electrical-hydraulic coordination technique based on the dynamic
response of the load is exploited to adjust the attitude of hydraulic support, but it is easily affected
by the pressure of the pump station. In [12], a virtual adjustment method of support attitude under
the propulsive state of hydraulic support groups is proposed and the estimation accuracy is highly
dependent on the modeling precision of the virtual model, and different hydraulic supports need
different virtual models, which is difficult to establish and has poor universality. In [13], an approach
for monitoring the posture of hydraulic support with fiber Bragg grating tilt sensor based on gravity
is presented, but it is not applied to measure yaw angle of the canopy. However, in automatic coal
mining working face with the complicated geological structures, the above methods are characterized
by complex solutions, difficult modelling, large estimation disturbance and lack of universality with
estimating attitude or relative attitude indirectly based on kinematic parameters of mechanism, or can
only estimate a single attitude angle. In this paper, we try to explore a new approach for estimating
directly the support attitude of hydraulic support with comprehensive consideration of estimation
accuracy, measurement method, universality and sensor size.

Inertial measurement unit (IMU) can be independent of the existing mechanism of hydraulic
support to estimate support attitude directly, which is not affected by the mechanism of hydraulic
support itself. In recent years, the development of microelectromechanical system technology has
accelerated leaps and bounds the development process of IMU, which makes the IMUs become low in
cost, low in power consumption and small in size. Additionally, it is widely applied in robotics [14,15],
navigation [16,17] and virtual reality [18]. Scientific research is not limited to sensor applications [19],
but also includes the performance of IMUs [20]. The performance improvement and calibration analysis
of IMU provide precise attitude estimation technologies for its application [21], such as the method
of improving estimation performance based of sine rotation vector; the acceleration and magnetic
field measurements are transformed into the differences between the Euler angles of the measured
attitude and the predicted attitude to correct the predicted attitude [22]. However, the measurement
accuracy and performance of these low-cost MEMS inertial measurement units are easily limited
by the complex working environment [23,24], especially the automatic coal mining working face
with complex magnetic interference produced by coal structure and high-power electromechanical
equipment. Therefore, it is necessary to use a filtering algorithm to improve the estimation accuracy.

The Kalman filter (KF) and particle filter (PF) are the most studied and widely used filtering
algorithms. The Kalman filter for linear filtering and the extended Kalman filter (EKF) with Jacobian
matrix and the unscented Kalman filter (UKF) for nonlinear filtering are frequently used to process
inertial information, including object tracking [25] and rotation estimation [26]. In order to reduce
yaw drift of attitude rotation estimation in indoor scenarios, an improved EKF combining INS
mechanization algorithm and zero velocity update methodology is proposed to improve the accuracy
of yaw estimation [27], but the Jacobian matrix is used to update the state transition matrix and the
observation matrix in the linearization steps of system equation in attitude determination, which
leads to poor stability and large estimation bias. Owing to the system, equations are updated based
on the sigma-point approximation generated by unscented transformation in UKF [28,29], which
has been demonstrated to have more attitude solution accuracy and strong robustness than EKF in
estimating attitude with highly nonlinear kinematics models. In [30,31], a quaternion-based MEMS
sensors fusion algorithm and heading estimation approach based on rotation matrix and principal
component analysis are proposed to improve the heading estimation accuracy of indoor pedestrians,
which shows that quaternion is easier to implement than other methods in sensor fusion technology.
However, the particle filter is a sequential importance sampling filtering method based on Bayesian
estimation [32] and its idea is based on the Monte Carlo method to represent probability with particle
set, which can be used in any state space models [33,34]. In [35], a method of filtering and predicting
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time-varying signals under model uncertainty is proposed to realize dynamic estimation of the data.
In [36], a particle metropolis Hastings algorithm driven by multiple parallel particle filters is proposed
to make inference on dynamic and static variables. In any case, although the particle filter has good
estimation performance in nonlinear filtering, the mathematical process of particle filters is more
complex, and the algorithm implementation and calculation are difficult. Moreover, the resampling,
particle degradation and calculation amount in the calculation process lead to the complexity of the
implementation process and poor real-time performance. Therefore, the operation time is much longer
than that of UKF.

Through the above research on attitude estimation of nonlinear systems, and considering the
estimation accuracy, calculation speed and real-time performance of algorithm, UKF is proved to be a
powerful technique for estimating attitude angle and a superior alternative to the EKF and PF in various
nonlinear system filtering [37,38]. Unfortunately, the key parameter of UKF selected by experience,
process noise covariance Q, has a great influence on the estimation accuracy in the complex working
environment [39], so the research on tuning of parameter Q is very meaningful [40,41]. Therefore,
the gradient descent algorithm [42] with the advantages of fast global convergence, faster operation
speed and simple realization could be used to tune the process noise covariance Q to improve the
estimation performance of UKF.

In this paper, a support attitude sensing system with a character of intrinsic safety is designed to
measure the support attitude of hydraulic support in the special application scenarios with a large
demand for the number of sensors and complex environment. The designed support attitude sensing
system is a nine-axis low-cost MEMS measurement unit composed of a gyroscope, magnetometer
and accelerometer. The proposed gradient descent algorithm-optimized quaternion-based unscented
Kalman filter makes full use of the characteristics of complementation of the magnetometers without
long-term drift, accelerometers and gyroscopes which are not affected by magnetic disturbance to
improve the support attitude estimation accuracy of hydraulic support.

The remaining parts of this paper are organized as follows. In Section 2, the support attitude
sensing system designed in our laboratory is described. Section 3 introduces the proposed optimized
quaternion-based unscented Kalman filter based on the complementary characteristics of MEMS
sensors in detail. In Section 4, an experiment is conducted and analyzed to validate the estimation
performance of the proposed system and approach. Then, industrial applications and tests are carried
out in Section 5. Section 6 summarizes our conclusions and future work.

2. Support Attitude Sensing System

2.1. Establishing the Coordinate System and Attitude Angle

The two coordinate systems and three attitude angles need to be established in the support attitude
measurement of hydraulic support, as shown in Figure 1, which are the geographical coordinate
system, carrier coordinate system, pitch angle, yaw angle and roll angle. The geographical coordinate
system (frame n) is the North-East-Down (NED) orthogonal coordinate defined by the relative geoid.
The Down axis (D axis) is perpendicular to the ellipsoid of the reference system and points to the
interior of the earth. The North axis (N axis) points to true north (the velocity vector projection along
the earth’s rotation angle on the plane perpendicular to the D axis). Finally, the East axis (E axis) points
horizontally east and completes the right-hand orthogonal coordinate system. The carrier coordinate
system (frame b) is fixed to the carrier, which is the reference coordinate system. The Zb axis and Xb
axis point to the bottom and forward along the longitudinal axis of the carrier, respectively. The Yb
axis points to the right wing (side) and completes the right-hand orthogonal coordinate system with
the axes Xb and Zb.
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Figure 1. Definition of coordinate systems and carrier attitude angles: (a) local geographical coordinate
system (N’E’D’) defined relative to the geoid; (b) carrier coordinate system (XbYbZb) and carrier attitude
angles including roll, pitch and yaw angles.

The support attitude of hydraulic support includes yaw angle, roll angle and pitch angle. The yaw
angle of rotation around Zb axis of the carrier is the angle between the N axis and the longitudinal
axis Xb of the carrier, measured on the horizontal plane and clockwise is positive. The pitch angle of
rotation around the Yb axis of the carrier is the angle between the horizontal plane and the longitudinal
axis Xb of carrier, measured on the vertical plane and the direction of the carrier’s head up is positive.
The roll angle of rotation around the Xb axis of the carrier is the angle between the horizontal plane
and the cross axis Yb of the carrier, measured on the cross section, and the lifting direction of the carrier
on the left side is positive.

The carrier coordinate system and NED coordinate system can coordinate transformation with
each other by rotating yaw angle, pitch angle and roll angle around the X axis, Y axis and Z axis in turn,
and the transformation relationship from ONED to OXbYbZb is shown in Figure 2. The coordinate
transformation matrix is also called direction cosine matrix, which is written as:

Cb
n = [φ]N2

[θ]E1
[ψ]D

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ cosψ cosθ sinψ − sinθ

cosψ sinφ sinθ− cosφ sinψ sinφ sinθ sinψ+ cosφ cosψ sinφ cosθ
cosφ sinθ cosψ+ sinφ sinψ cosφ sinθ sinψ− sinφ cosψ cosφ cosθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

 

Figure 2. Coordinate transformation and directional cosine matrix definition of the canopy between
frame b and frame n based on hydraulic support.
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On the contrary, the transformation from OXbYbZb to ONED is written as:

Cn
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ+ sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+ cosφ cosψ cosφ sinθ sinψ− sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where φ, θ and ψ are roll angle, pitch angle and yaw angle of support attitude of hydraulic support
canopy, respectively.

2.2. Intrinsically Safe Micro Inertial Sensor

The support attitude sensing system based on the intrinsically safe micro inertial sensor is designed
as a small strapdown inertial navigation system in our lab to meet the coal mine special environment
navigation requirements of hydraulic support, mine inspection robot, support robot and driving
robot. The intrinsically safe micro inertial sensor combining the IMU and magnetometer is composed
of a three-axis gyroscope, three-axis magnetometer, three-axis accelerometer, an intrinsically safe
microprocessor and a flameproof shell. The three single-axis gyroscopes and accelerometer use the
ICM-42605 with the measuring range of ±125◦/s and ±16 g. The three single-axis magnetometers use
the LSM3030C with a measurement range of ±16 gauss magnetic full scale. STM32MP157 is selected as
the microprocessor of the system and it is based on the high-performance dual-core Arm® Cortex®-A7
32-bit RISC core with an operating frequency of up to 650 MHz. The support attitude sensing system
uses an I2C/SPI bus for digital output.

2.3. Support Attitude Estimation

According to the mining process of automatic coal mining working face, there are two working
states in the support process for the canopy of hydraulic support, namely, static working state and
moving working state. An accelerometer with superior static characteristics has high measurement
accuracy in static state. A gyroscope with stable static performance has high measurement accuracy in
moving state. A magnetometer with the measurement stability in a long time test is easily disturbed
by the external perturbed magnetic sources produced by coal rock structure and high-power shearer
equipment. Nevertheless, the gyroscope is not disturbed by magnetic sources from the automatic
coal mining working face. Therefore, this paper proposes a new attitude estimation method for
measuring the pitch angle, yaw angle and roll angle of hydraulic support based on the characteristics
of complementation of accelerometers, gyroscopes and magnetometers, which eliminates the errors
derived from the MEMS sensors by the quaternion-based UKF.

In addition, the tuning parameter of UKF, the process noise covariance Q, is usually a general
value set by experience, which sometimes makes UKF produce large estimation errors, especially in a
complex environment. Therefore, a gradient descent algorithm is used to optimize Q to improve the
estimation accuracy and performance in this paper. The flow chart of accurate estimation of support
attitude of hydraulic support using the quaternion-based unscented Kalman filter through tuning
process noise covariance is shown in Figure 3. The other key tuning parameter, the observation noise
covariance R, is related to the deviation of the magnetometer, accelerometer and gyroscope, which can
be obtained by calculating the expectation of the square of deviation of the sensors.
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Yb
Zb

Xb

 
Figure 3. Block diagram of support attitude sensing system based on unscented Kalman filter for
attitude measurement according to the complementary characteristics of the MEMS inertial sensor.

2.3.1. Support Attitude Estimation Based on Magnetometer

The magnetometer output is the sensitive geomagnetic field intensity. On the earth’s surface,
the geomagnetic field always points to the north along the magnetic induction, with components in
the north direction and vertical direction of that, and no component in the east direction. Therefore,
magnetic field coordinate is (N, 0, D) in the geomagnetic coordinate system. The magnetometer output

is Mmag
n =

[
MN 0 MD

]T
when the geomagnetic coordinate system coincides with the frame b.

The magnetometer output is Mn =
[

Mx My Mz
]T

in frame n and mb =
[

mx my mz
]T

in

frame b. According to mb = Cb
n

∣∣∣ψ=ψm ·Mmag
n , the relationship of geomagnetic field intensity between

the two coordinate systems can be obtained as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
mx

my

mz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

MN cosθ cosψm −MD sinθ
MD sinφ cosθ+ MN(sinφ sinθ cosψm − cosφ sinψm)

MD cosφ cosθ+ MN(cosφ sinθ cosψm + sinφ sinψm)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (3)

Thus, the components of geomagnetic vector in a horizontal direction are:

{
mz cosφ sinθ+ my sinφ sinθ+ mx cosθ = MN cosψm

mz sinφ−my cosφ = MN sinψm
(4)

Then, the yaw angle can be expressed as:

ψm = arctan
(

My

Mx

)
= arctan

(
− my cosφ−mz sinφ

mx cosθ+ my sinθ sinφ+ mz sinθ cosφ

)
(5)

In fact, the geomagnetic North Pole and the geographical North Pole do not coincide, and the
difference between them is one magnetic declination angle α (calculated by IGRF or WMM geomagnetic
model according to the longitude and latitude height of the observation point). Therefore, the real
local yaw angle of the carrier obtained based on magnetometer is:

ψmagn = ψm + α (6)

2.3.2. Support Attitude Estimation Based on Accelerometer

The accelerometer output is the sensitive carrier acceleration, including the acceleration of
the support attitude sensing system and the gravitational acceleration. For support attitude angle

computation with an accelerometer, the relationship between the gravitational acceleration
[

0 0 g
]T
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in frame n and the gravitational acceleration ab =
[

ax ay az
]T

measured by the accelerometer in
frame b could be expressed as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
ax

ay

az

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Cb
n

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
0
0
g

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
−g sinθ

g cosθ sinφ
g cosθ cosφ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (7)

According to the acceleration output of Equation (7), the roll and pitch angles obtained based on
accelerometer can be calculated as follows:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
θ = −arctan

⎛⎜⎜⎜⎜⎜⎝ ax√
a2

y+a2
z

⎞⎟⎟⎟⎟⎟⎠
φ = arctan

( ay
az

) (8)

2.3.3. Support Attitude Estimation Based on Gyroscope

The gyroscope output is the sensitive carrier angular acceleration. In this paper, quaternion
is applied to calculate the support attitude of hydraulic support. Quaternion has the advantage of
faster calculation speed, smooth interpolation, effectively avoiding the universal lock problem and
small storage space. Quaternion is a vector composed of four elements, and matrix expression and
normalized quaternion of that are defined as follows:

q =
[

q0 q1 q2 q3
]T

, q2
0 + q2

1 + q2
2 + q2

3 = 1 (9)

Due to the movement of the carrier, q is constantly updated. The updated dynamic model based
on quaternion using the angular velocity of the gyroscope is expressed as:

.
q =

1
2

q⊗ωb (10)

where ωb =
[
ωx ωy ωz

]
is the angular velocity and measured based on the gyroscope.

Then, the matrix form of Equation (10) is as follows:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.
q0.
q1.
q2.
q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

q2

q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(11)

The Picard successive approximation method of quaternion differential equation is used to solve
Equation (11), and the discrete form is as follows:

q(tk) =
[
cos
(Δα

2

)
I + sin

(Δα
2

)ΔΩ
Δα

]
q(tk−1) (12)

where Δα and ΔΩ involve the integration of angular velocity ωb in the kth sampling period, k = 1, 2,

. . . n, Δα =
√
α2

x + α
2
y + α

2
z is the angular increment of the gyroscope in the [tk-1,tk] sampling interval,

αi =
∫ tk

tk−1
ωidt, i = x, y, z, and ΔΩ =

∫ tk
tk−1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
dt, dt is the sampling interval.
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The coordinate transformation matrix expressed by direction cosine, Euler angle and quaternion
from carrier coordinate system to the NED coordinate system is written as:

Cn
b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
C11 C12 C13

C21 C22 C23

C31 C32 C33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
cosθ cosψ sinφ sinθ cosψ− cosφ sinψ cosφ sinθ cosψ+ sinφ sinψ
cosθ sinψ sinφ sinθ sinψ+ cosφ cosψ cosφ sinθ sinψ− sinφ cosψ
− sinθ sinφ cosθ cosφ cosθ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
q2

1 − q2
2 − q2

3 + q2
0 2(q1q2 − q0q3) 2(q0q2 + q1q3)

2(q0q3 + q1q2) −q2
1 + q2

2 − q2
3 + q2

0 2(q2q3 − q0q1)

2(q1q3 − q0q2) 2(q0q1 + q2q3) −q2
1 − q2

2 + q2
3 + q2

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

Therefore, the support attitude angle can be expressed in the form of Euler angle represented by
direction cosine, and is written as:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

φ = arctan C32
C33

θ = arctan −C31√
C2

32+C2
33

ψ = arctan C21
C11

(14)

The carrier yaw angle in form of Euler angle represented by quaternion is written as:

ψgyro = arctan

⎛⎜⎜⎜⎜⎝ 2(q1q2 + q0q3)

q2
0 + q2

1 − q2
2 − q2

3

⎞⎟⎟⎟⎟⎠ (15)

3. The Optimized Quaternion-Based Unscented Kalman Filter

In this section, we propose an unscented Kalman filter based on quaternion for estimating the
support attitude of hydraulic support. In order to improve the performance of the support attitude
estimation algorithm, the gradient descent algorithm is used for tuning the key parameter of the
unscented Kalman filter, i.e., process noise covariance Q. The whole procedure of accurate estimation of
support attitude using the gradient descent algorithm-optimized quaternion-based unscented Kalman
filter (GD-UKF) is also presented.

3.1. Gradient Descent Algorithm

Gradient descent algorithm with the advantages of simple implementation is a common method
to solve unconstrained optimization problems. The basic idea of the gradient descent is to select an
appropriate initial value x(0), update the value of x iteratively, and minimize the objective function
until it converges. The input of gradient descent is the objective function f (x), the gradient function
g(x) = ∇ f (x) and the calculation accuracy ε; the output is the minimum point x∗ of f (x). The process
of the gradient descent can be summarized in detail as follows:

Step 1.1: Initial key parameters x(0) and k.
Step 1.2: Calculate the objective function f

(
x(k)

)
.

Step 1.3: Calculate the gradient gk = g(x(k)). If ‖gk‖ < ε, stop iteration and let x∗ = x(k). Otherwise,
let pk = −g(x(k)) and then find λk for equation f

(
x(k) + λkpk

)
= min
λ≥0

f (x(k) + λpk).

Step 1.4: Set the variable x(k+1) = x(k) + λkpk and update the function f
(
x(k+1)

)
. If the expression

‖ f (x(k+1)) − f (x(k))‖ < ε or ‖x(k+1) − x(k)‖ < ε, stop iteration and let x∗ = x(k). Otherwise, let k = k + 1
and go back to Step 1.3 to find another better minimum.

When the objective function is a convex function, the solution of gradient descent is the global
optimal solution.
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3.2. Unscented Transformation

For unscented Kalman filter in a nonlinear system, unscented transformation (UT) is the core
technique for propagating mean and covariance based on Cholesky decomposition, and can effectively
approximate mean and covariance changes of the random variables when it undergoes a nonlinear
transformation, including cross-correlation between state and measurement. The basic principle of UT
can be considered in this way. We assume that the mean and covariance of a random variable X with n
dimensions are x and P, respectively, and mean x and covariance P propagate through a nonlinear
function y = f (x). In order to calculate the statistics of the variable y, 2n + 1 sigma points X(i) and
corresponding weights W(i) are formed and calculated as follows:

(1) Calculate 2n + 1 sigma points

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
X(0) = x, i = 0
X(i) = x +

(√
(n + λ)P

)
i
, i = 1 ∼ n

X(i) = x−
(√

(n + λ)P
)
i
, i = n + 1 ∼ 2n

(16)

where
(√

p
)T(√

p
)
= p,

(√
p
)
i

is the i-th column of the matrix of the square root.

(2) Calculate the corresponding weight of sigma point

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
W(0)

m = λ
n+λ

W(0)
c = λ

n+λ +
(
1− α2 + β

)
W(i)

m = W(i)
c = λ

2(n+λ) , i = 1 ∼ 2n

(17)

where λ = α2(n + κ) − n is the scaling factor for reducing total prediction error; α is set to a small
positive value to control the distribution of sigma points; κ is the parameter to be selected to
ensure a positive semidefinite and is usually set to 0; and β is a nonnegative weight coefficient
and is set for 2 for Gaussian distribution in this paper. The subscript m and c represent covariance
and mean, respectively.

3.3. Unscented Kalman Filter Design

Generally, the dynamic system of the unscented Kalman filter can be described in two system
equations: firstly, state equation; and secondly, observation equation. Considering the discrete-time
nonlinear dynamic model of support attitude estimation of hydraulic support, the model state variable

is x =
[

q0 q1 q2 q3
]T

, which is a vector composed of four elements of quaternion; and the model

observation variable is z =
[
φ θ ψ

]T
, which is a vector composed of attitude angles. The state

variable is unknown and is constantly updated according to the gyroscope; the observation variable is
known and measured by the accelerometer and magnetometer. The details of the mathematical model
are described with the following steps.

(1) State equation

The state prediction is based on the previous optimal estimation, and the discrete-time nonlinear
dynamic state equation of unscented Kalman filter is shown as:

xk = Ak−1xk−1 + wk−1 (18)
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where xk and xk−1 are the prior estimation at time k and the posterior estimation at time k − 1,
respectively; wk is the process noise with covariance Q and simplified as independent Gaussian
white noise. Ak is the state transition matrix and can be obtained as:

A = cos
(Δα

2

)
I + sin

(Δα
2

)ΔΩ
Δα

(19)

(2) Observation equation

The correction state is the essential step for refining measurement estimation. The observation
equation is expressed as

zk = H[xk] + vk (20)

where vk is the independent Gaussian measurement noise with noise covariance R. Hk[xk] is the
output function and can be calculated as follows:

H[x] =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
arctan

(
2(q2q3 + q0q1)/

(
q2

0 − q2
1 − q2

2 + q2
3

))
arcsin(2(q0q2 − q1q3))

arctan
(
2(q1q2 + q0q3)/

(
q2

1 − q2
2 − q2

3 + q2
0

))
⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (21)

3.4. Noise Covariance of Process and Observation

The observation noise covariance and process noise covariance are the two key parameters of
unscented Kalman filter, which sometimes leads to large support attitude estimation errors. However,
it is essential to optimize the noise covariance of the process and observation to minimize the support
attitude estimation errors of hydraulic support.

(1) Process noise covariance

In the process of hydraulic support moving and canopy supporting in the automatic coal mining
working face, the uneven floor could cause random acceleration of the hydraulic support movement.
Meanwhile the coupling effect of roof rock and hydraulic support can produce random impact on the
hydraulic support in the moving process and static state, and the left and right adjacent hydraulic
support could also produce impact vibration on hydraulic support. Therefore, the coupling effect
between hydraulic support and the surrounding environment could lead to random vibration and
acceleration on the support attitude sensing system in the static and moving process of hydraulic
support, which leads to difficulty in determining the process covariance Q.

We assume that ωx = ωx + wx, ωy = ωy + wy, ωz = ωz + wz where ωx,ωy,ωz are the mean
of ωx,ωy,ωz; wx, wy, wz are the process deviations of the support attitude sensing system caused
by the disturbance of coupling interaction between the hydraulic support and the surrounding
environment. σ2

ωx = E
(
wx ·wT

x

)
, σ2
ωy = E

(
wy ·wT

y

)
and σ2

ωz = E
(
wz ·wT

z

)
are the variance of wx, wy, wz.

Thus, Equation (11) can be rewritten as:

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

.
q0.
q1.
q2.
q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −(ωx + wx) −
(
ωy + wy

)
−(ωz + wz)

(ωx + wx) 0 (ωz + wz) −
(
ωy + wy

)
(
ωy + wy

)
−(ωz + wz) 0 (ωx + wx)

(ωz + wz)
(
ωy + wy

)
−(ωx + wx) 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

q2

q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −ωx −ωy −ωz

ωx 0 ωz −ωy

ωy −ωz 0 ωx

ωz ωy −ωx 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

q0

q1

q2

q3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+ 1

2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
wx

wy

wz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

(22)
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The second term on the right of Equation (22) can be considered as the process noise

w = 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
wx

wy

wz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ and the process noise covariance Q is:

Q = E
(
w ·wT

)
=

1
4

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2
ωx 0 0
0 σ2

ωy 0
0 0 σ2

ωz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

T

(23)

However, it can be determined from Equation (23) that the optimal Q of UKF can be obtained by
optimizing variance σ2

ωx , σ2
ωy and σ2

ωz based on the optimization algorithm.

(2) Observation noise covariance

The observation noise covariance R is determined by the measurement process and related to
the characteristics of the measuring instrument, which can be obtained through long-term probability
statistics of sensor measurement data. In this paper, the observation noise covariance R is determined
by the measurement deviation of accelerometer and magnetometer.

We assume that vax , vay and vaz are the observation deviation of accelerometer three-axis output
ax, ay and az. Then, the first-order Taylor series expansion of trigonometric function is applied to
Equation (8), and the deviation of the roll and pitch angles measured by the accelerometer can be
derived as

[
vθ
vφ

]
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
−

√
a2

y+a2
z

a2
x+a2

y+a2
z

axay

(a2
x+a2

y+a2
z)
√

a2
y+a2

z

axaz

(a2
x+a2

y+a2
z)
√

a2
y+a2

z

0 az
a2

y+a2
z

− ay

a2
y+a2

z

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
vax

vay

vaz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Φθφ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
vax

vay

vaz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (24)

Through Equation (24), the covariance of pitch angle and roll angle based on the accelerometer is
as follows:

σ2
θφ = E

([
vθ vφ

]T · [ vθ vφ
])
= Φθφ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

ax 0 0
0 σ2

ay 0
0 0 σ2

az

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ΦT
θφ (25)

where σ2
ax = E

(
vax · vT

ax

)
, σ2

ay = E
(
vay · vT

ay

)
and σ2

az = E
(
vaz · vT

az

)
is the variance of accelerometer

three-axis output ax, and az.
Similarly, through Equations (3) and (5) in the first-order Taylor series expansion of trigonometric

function, the deviation of yaw angle measured by magnetometer can be derived as

vψmagn =
[
− My

M2
x+M2

y

Mx
M2

x+M2
y

][ Mx

My

]

=
[
− My

M2
x+M2

y

Mx
M2

x+M2
y

][ cosθ sinθ sinφ sinθ cosφ
0 − cosφ sinφ

]⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
vmx

vmy

vmz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Φψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
vmx

vmy

vmz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(26)

where vmx , vmy and vmz are the deviation of magnetometer output mx, my and mz.
Through Equation (26), the covariance of yaw angle based on magnetometer is as follows:

σψ = E
(
vψmagn · vT

ψmagn

)
= Φψ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
σ2

mx 0 0
0 σ2

my 0
0 0 σ2

mz

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ΦT
ψ (27)
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where σ2
mx = E

(
vmx · vT

mx

)
, σ2

my = E
(
vmy · vT

my

)
and σ2

mz = E
(
vmz · vT

mz

)
are the variances of the

magnetometer output mx, my and mz, respectively.
Finally, it can be determined from Equations (25) and (27) that the observation noise covariance

R is:

R =

⎡⎢⎢⎢⎢⎢⎣
σ2
θφ 0

0 σ2
ψ

⎤⎥⎥⎥⎥⎥⎦ (28)

3.5. Unscented Kalman Filter Based on Gradient Descent

The UKF with Kalman linear filtering framework is not the traditional method of linearizing
nonlinear functions, which uses unscented transformation to propagate mean and covariance.
Compared with the extended Kalman filter, the UKF without deriving Jacobian matrix can make the
state variable approximate the probability density distribution of nonlinear function and is more robust
and accurate. However, the process noise covariance Q affects the filtering performance to a certain
extent, and gradient descent can be used to improve the unscented Kalman filter. The flow of gradient
descent algorithm-optimized quaternion-based unscented Kalman filter (GD-UKF) can be elaborated
as below:

Step 2.1: The key parameters of the initial setup are dimension (n = 4), initial value x̂0 = E(x0),
covariance initial value P0 = E

(
(x0 − x̂0)(x0 − x̂0)

T
)

of random variable. Through Equations (16) and
(17), a set of sigma points and the corresponding weights are computed by: i = 1, 2, · · ·, 2n + 1

X(i)
k−1 =

[
x̂k−1 x̂k−1 +

√
(n + λ)Pk−1 x̂k−1 −

√
(n + λ)Pk−1

]
(29)

Step 2.2: The predicted value and covariance matrix of system state variable calculated through
the state Equation (18) based on the sigma points obtained in Step 2.1 are expressed as:

X(i)
k = Ak−1X(i)

k−1

x̂−k =
2n∑

i=0
W(i)

m X(i)
k

P−k =
2n∑

i=0
W(i)

c

[
X(i)

k − x̂−k
][

X(i)
k − x̂−k

]T
+ Q

(30)

Step 2.3: Through using UT again for the predicted value in Step 2.2, the new sigma points are
calculated as follows: i = 1, 2, · · ·, 2n + 1

X(i)
k =

[
x̂−k x̂−k +

√
(n + λ)P−k x̂−k −

√
(n + λ)P−k

]
(31)

Step 2.4: The predicted value and covariance matrix of observation variable calculated through
the observation in Equation (20) based on the new sigma points obtained in Step 2.3 are expressed as
follows:i = 1, 2, · · ·, 2n + 1

Z(i)
k = H

[
X(i)

k

]

ẑ−k =
2n∑

i=0
W(i)

m Z(i)
k

Pzkzk =
2n∑

i=0
W(i)

c

[
Z(i)

k − ẑ−k
][

Z(i)
k − ẑ−k

]T
+ R

Pxkzk =
2n∑

i=0
W(i)

c

[
X(i)

k − ẑ−k
][

Z(i)
k − ẑ−k

]T
(32)

Step 2.5: The unscented Kalman filter gain matrix K is calculated as:

Kk = Pxkzk P−1
zkzk

(33)
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Step 2.6: The state update and covariance update of the unscented Kalman filter system are
calculated as:

x̂k = x̂−k + Kk
[
zk − ẑ−k

]
Pk = P−k −KkPzkzk KT

k

(34)

Step 2.7: The process noise covariance Q is updated by calculating and updating process variance

σ =
[
σ2
ωx σ2

ωy σ2
ωz

]T
of the support attitude sensing system based on gradient descent. And the

objective function of gradient descent is

f (σ) = L(mb, ab,ωb, σ) = RMSE(x, x̂k) =
√

E
[
(x− x̂k) · (x− x̂k)

T
]

σ = arg min
σ

f (σ)
(35)

where L(·) is the loss function; RMSE(·) is the root mean square error of estimation results; x is the
true state value of the support attitude sensing system. The flowchart of the proposed GD-UKF is
presented in Figure 4.

σ

σ f σ
σ

∇f σ

 

Figure 4. The flowchart of the proposed gradient descent algorithm-optimized quaternion-based
unscented Kalman filter.

4. Experiments and Analysis

In this section, in order to evaluate measurement accuracy and performance of the designed
support attitude sensing system based on GD-UKF, the static test and dynamic test experiment are
carried out on the two-axis experiment platform. Then, the experimental results are contrasted with
the Dutch XSENS high-precision attitude measurement system to prove the out-performing and
practicability of the designed system.

4.1. Experiment on Two-Axis Turntable

The two-axis turntable experimental platform with U-frame structure is a high-precision electric
precision machinery and is illustrated in Figure 5. The experiment platform is used for static test with
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an accuracy of 0.05◦ and dynamic test with an accuracy of 0.1◦. The intrinsically safe micro inertial
sensor is mounted on the precision electric rotary table.

 

Figure 5. The experimental platform for testing the support attitude sensing system.

In the actual work of hydraulic support in the automatic coal mining working face, the hydraulic
supports are closely arranged to support the surrounding rock. According to the coupling relationship
between the hydraulic support and surrounding rock, the hydraulic support can appear yaw, pitch and
tilt in the movement process, and the allowable range of the canopy pitch is ±15◦. Additionally, the roll
angle of hydraulic support, that is, the inclination of the coal mining working face, is nonnegative and
the maximum value is 40◦. The coupling relationship between adjacent hydraulic supports limits the
allowable ranges of hydraulic support yaw to ±10◦. Therefore, in the experiment setup, the test ranges
of pitch, roll and yaw of the experimental platform are set to ±15◦, 0◦ to 40◦ and ±10◦, respectively,
which is consistent with the actual working state of hydraulic support. Meanwhile, the attitude angle
estimation performance of the support attitude sensing system based on Kalman filter, unscented
Kalman filter and the proposed gradient descent algorithm-optimized quaternion-based unscented
Kalman filter are tested and compared, respectively. The dynamic test of pitch angle is set from −15◦ to
+15◦ in 0 s to 200 s, and the angle is maintained at 15◦ for static test in 200 s to 500 s. The test experiment
of roll angle is designed as a dynamic test from 0◦ to 40◦ in 0 s to 250 s and static test at 40◦ in 250 s to
500 s. The dynamic test from −10◦ to 10◦ in 0 s to 250 s and the static test at 10◦ in 250 s to 500 s of yaw
angle are set.

4.2. Result Analysis

The experimental results of the support attitude sensing system-based KF, UKF and GD-UKF on
the two-axis experimental platform are shown in Figures 6–8, in which Figures 6, 7 and 8a show three
attitude angles measured by the three methods, and the attitude calculation results of the three methods
are consistent with the variational trend set by the experimental platform. In this paper, the root mean
square error is used to evaluate the estimation accuracy of the algorithms, and the estimation errors of
the three attitude angles are shown in Figures 6b, 7 and 8. The estimation errors (shown in the red
curve) of pitch angle and roll angle based on Kalman filter are relatively large, and the maximum errors
are greater than 3◦, as shown in Figures 6b and 7b. Compared with the Kalman filter, the unscented
Kalman filter improves the estimation accuracy to a certain extent, the blue curve is closer to the green
curve than the red curve, but the estimation errors with maximum error greater than 2.4◦ are still
relatively large. The reason for this is that the covariance Q, the key parameter of the algorithm, is set
to the empirical value. In Figures 6 and 7, the estimation value (the pink curve) based on the proposed
GD-UKF, is rather close to the theoretical value (the green curve), the dynamic and static estimation
errors are less than 1◦ and 0.5◦, respectively. The reason is that Q is tuned by gradient descent, and the
variances σ2

ωx , σ2
ωy and σ2

ωz in the optimized Q matrix are infinitely close to the true process noise
covariance value caused by the inherent deviation of the experimental platform, as shown in Table 1,
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which greatly improves the estimation performance of UKF. Therefore, the estimation errors of pitch
angle and roll angle based on GD-UKF are distinctly smaller than those of UKF and KF methods, and
the accuracies of dynamic estimation and static estimation are better than 1◦ and 0.5◦, respectively.

(a) (b) 

Figure 6. Pitch angle test of support attitude sensing system: (a) pitch angle estimation based on three
methods; (b) pitch error of three methods.

(a) (b) 

Figure 7. Roll angle test of support attitude sensing system: (a) roll angle estimation based on three
methods; (b) roll error of three methods.

Table 1. Process noise covariance.

Inherent Covariance of Experimental Platform Covariance Optimized by Gradient Descent

Static test
⎡⎢⎢⎢⎢⎢⎢⎣

0.0025 0 0
0 0.0025 0
0 0 0.0025

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0.0046 0 0
0 0.0053 0
0 0 0.0032

⎤⎥⎥⎥⎥⎥⎥⎦
Dynamic test

⎡⎢⎢⎢⎢⎢⎢⎣
0.0100 0 0

0 0.0100 0
0 0 0.0100

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

0.0196 0 0
0 0.0182 0
0 0 0.0134

⎤⎥⎥⎥⎥⎥⎥⎦
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(a) (b) 

Figure 8. Yaw angle test of support attitude sensing system: (a) yaw angle estimation based on three
methods; (b) yaw error of three methods.

As shown in Figure 8a, the fluctuation of yaw angle estimation results of three methods are
stable. The maximum estimation errors based on KF and UKF are 1.8◦ and 1.3◦, respectively, as shown
in Figure 8b, the average estimation error of yaw angle of GD-UKF is 0.2◦ to 0.4◦ smaller than that
of the other two algorithms, which is not obviously demonstrated to have the superior estimation
performance of the proposed algorithm. The reason is that there is no magnetic field interference such
as high-power equipment in the laboratory, and the estimations of yaw angle by the three methods
are almost the same in the environment without magnetic noise interference. For the estimation
performance of yaw angle based on GD-UKF, an industrial application needs to be operated in the
automatic coal mining working face to validate the superiority and practicability of the proposed
algorithm in yaw angle estimation.

The accuracy of our support attitude sensing system, with the static measurement accuracy better
than 0.5◦ and dynamic measurement accuracy better than 1◦, is lower than that of MTi-630 AHRS
based on industrial-grade MEMS sensor from XSENS [43], but the support attitude sensing system is
much cheaper than MTi-630 AHRS and its size is also smaller, which can meet the support accuracy
requirements of hydraulic support. Moreover, the support attitude sensing system with 200 mW power
consumption has lower power consumption than MTi-630 AHRS with 345 mW power consumption
and especially meets the technical requirements of an intrinsically safe system [44], which can be
directly applied to the automatic coal mining working face in explosive atmospheres. Considering
the support accuracy requirement, the total price and power consumption of sensors and intrinsically
safe technology requirements in the automatic coal mining working face, we argue that the designed
support attitude sensing system is more suitable for the special application scenarios with a large
demand for the number of sensors and complex environment. Therefore, it can be directly applied to
measure the support attitude of hydraulic support canopy, and is also more suitable for the coal mine
special environment navigation applications of other mobile equipment like mine inspection robots,
support robots, driving robots, and so on.

5. Industrial Experiment and Application

In this section, our support attitude sensing system based on the proposed GD-UKF is applied in the
automatic coal mining working face to test practical performance, as shown in Figure 9. The industrial
experiment and application were tested at the 13230 coal mining working face of Gengcun Mine
of Yima Coal Industrial Group Co., Ltd. (Yima, China). The intrinsically safe micro inertial sensor
was installed on the canopy of hydraulic support to measure support attitude of hydraulic support.
The attitude angle information was transmitted to the remote monitoring center by the network switch,
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and then the support attitude of hydraulic support was adjusted by the support attitude controller to
satisfy the support requirements of coal mining.

 
(a) (b) 

Figure 9. Industrial application of the support attitude sensing system: (a) application environment;
(b) remote monitoring center.

The initial pitch angle of the hydraulic support canopy was 3.5◦, then the angle was adjusted
to −2.6◦ and remained stationary. In this process, the roll angle fluctuated and finally returned to
the initial angle of 10◦ which was the inclination of the 13,230 coal mining working face, and the
yaw angle was also changed from 6.9◦ to 3.9◦. The industrial application results using the support
attitude sensing system are shown in Figure 10. The pitch and roll estimation errors of support sensing
system base GD-UDF were less than 1◦, which could meet the requirements of the automatic coal
mining working face. In order to verify the feasibility and superiority of the proposed algorithm for
magnetic disturbances filtering, an industrial experiment of yaw angle was carried out, and the test
results were shown in Figure 11. However, we could obviously find out that the yaw angle had a
larger variation range than the other two angles and the yaw estimation error was relatively large,
as shown in Figure 11a, the measurement error of original data was about 5◦ and that of yaw angle
based on GD-UKF was less than 2◦. The reason is that the high-power equipment, such as a shearer
in the automatic coal mining working face, can generate a certain complex external magnetic field
interference, which has a great influence on the yaw estimation of hydraulic support and is difficult
to eliminate.

  
(a) (b) 

Figure 10. Industrial application results of support attitude sensing system-based GD-UKF: (a) attitude
angle estimation; (b) estimation error.

41



Sensors 2020, 20, 5459

 
(a) (b) 

Figure 11. Estimation results of yaw angle tested in industrial experiment: (a) yaw angle estimation
based on three methods; (b) estimation error of three methods.

The industrial application has verified that the support attitude estimation of hydraulic support
with our support attitude sensing system using gradient descent algorithm-optimized quaternion-based
unscented Kalman filter for attitude solution has high measurement accuracy, but the movement
conditions of the automatic coal mining working face are complex, especially the magnetic disturbance.
Therefore, the experiments for improving the yaw angle estimation algorithm need to be carried out
under more complicated conditions.

6. Conclusions and Future Work

In order to tackle the problem of support attitude measurement of hydraulic support, this paper
proposes a support attitude sensing system with the feature of intrinsic safety based on the low-cost
MEMS-IMU and STM32MP157. The proposed gradient descent algorithm-optimized quaternion-based
unscented Kalman filter makes full use of the characteristics of complementation of gyroscope,
accelerometer and magnetometer to improve the accuracy of attitude estimation. In the proposed
method, the gradient descent algorithm is employed to tune the process noise covariance for optimizing
the state forecasting estimation. To verify the attitude estimation performance of the designed system
and the proposed approach, an experiment was carried out and some analysis and comparisons were
conducted. The experiment analysis results show that the support attitude sensing system based on
the proposed approach has accurate attitude estimation performance with a dynamic measurement
precision better than 1◦ and a static measurement precision better than 0.5◦. Finally, the industrial
experiment and application for estimating support attitude of hydraulic support in the automatic
coal mining working face were performed to validate the practicability and feasibility of the designed
support attitude sensing system.

However, the error elimination of support attitude sensing system is still a challenge, especially
eliminating the estimation error of yaw angle in the environment of complex magnetic disturbance.
In future studies, the authors will focus on algorithm research on error elimination in the complex
magnetic perturbation environment. These studies may include updating the covariance of the
algorithm in combination with other potential interference factors affecting support attitude estimation
to further improve the estimation accuracy. In addition, the tuning parameter intelligent algorithm
based on the maximum likelihood estimation of mathematic statistics is also worth further research,
and the covariance is approximately solved based on the statistical model trained by machine learning
with existing data.
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Abstract: This work presented a comparison between two Voltage Controlled Oscillators (VCOs)
designed in 65 nm CMOS technology. The first architecture based on a Ring Oscillator (RO) was
designed using three Current Mode Logic (CML) stages connected in a loop, while the second
one was based on an LC-tank resonator. This analysis aimed to choose a VCO architecture able
to be integrated into a rad-hard Phase Locked Loop. It had to meet the requirements of the
SpaceFibre protocol, which supports frequencies up to 6.25 GHz, for space applications. The full
custom schematic and layout designs are shown, and Single Event Effect simulations results,
performed with a double exponential current pulses generator, are presented in detail for both VCOs.
Although the RO-VCO performances in terms of technology scaling and high-integration density
were attractive, the simulations on the process variations demonstrated its inability to generate the
target frequency in harsh operating conditions. Instead, the LC-VCO highlighted a lower influence
through Process-Voltage-Temperature simulations on the oscillation frequency. Both architectures
were biased with a supply voltage of 1.2 V. The achieved results for the second architecture analyzed
were attractive to address the requirements of the new SpaceFibre aerospace standard.

Keywords: ring oscillator; LC-tank oscillator; SpaceFibre; rad-hard circuits; radiation effects;
high-speed data transfer

1. Introduction

Several thousand launch activities have been performed during the last half-century, and with
the rapid development of technology, satellites are playing an important role in human society.
These systems are widely used for navigation, communication, and earth observation. One of the
first communication experiments with laser was conducted between two Low Earth Orbit (LEO)
satellites and a geostationary satellite ARTEMIS. The experiment was performed with a data rate of up
to 50 Mbps. Then, other experiments followed with an increased data rate to achieve inter-satellite
communication links. Today, current trends in satellites show a rapid increase in data traffic and
digital processing. The throughput of next-generation satellites for digital telecom applications, as well
as scientific missions, surveillance, and remote sensing, will exceed terabits per second of data that
must be processed on board. For instance, the high-resolution cameras and synthetic aperture radars
need high-speed communications between the instruments and the on-board data storage system [1].
The optical technology, thanks to its high bandwidth-length product, the lightweight cabling, and
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electromagnetic hardness, can potentially be the solution for data-rate increment in satellites. In this
direction, the European Space Agency (ESA) has recently released the new SpaceFibre standard for
on-board satellite communication up to 6.25 Gbps [2,3]. The standard describes the very high-speed
serial link and network technology, and it was designed specifically for use on-board spacecraft and
satellites. This protocol provides a coherent quality of service mechanism able to support bandwidth
reserved, scheduled, and priority-based qualities of service. SpaceFibre provides robust, long-distance
communications for launcher applications and supports avionics applications with deterministic
delivery constraints using virtual channels. Communication performances are strongly related to
the ability to synchronize the receiver with the transmitter. This issue is typically fixed with a Clock
Data Recovery (CDR), and the key block used for its synchronization is the Phase Locked Loop (PLL).
The Voltage Controlled Oscillator (VCO) is the core system, inside the PLL, able to generate the required
frequency of 6.25 GHz to be compliant with the SpaceFibre protocol. Although the required Total
Ionizing Dose (TID) level is lower than 1 Mrad for space applications [4], the main problems are due
to Single Event Effects (SEEs) that temporarily disturb the typical operation of the circuit. This work
targets, as implementation technology, a commercial 65 nm CMOS from TSMC (Taiwan Semiconductor
Manufacturing Company). This technology, thanks to its thin gate-oxide thickness, could be considered
radiation hard up to few hundred Mrad TID levels, as proved in [5], and by us in previous designs of
other high-speed circuits in [6–8]. To the best of the authors’ knowledge, in literature and market, there
are not examples of rad-hard VCOs able to work at 6.25 GHz. The paper [9] showed the design of a
PLL in the range from 0.2 GHz to 1.2 GHz, designed in 65 nm STMicroelectronics space technology.
This system was irradiated up to 300 krad TID level, and its behavior was verified with different
protons. In [10], a comparison between Ring Oscillator (RO) and LC-tank VCO for PLL was made
for Large Hadron Collider’s (LHC) applications. Both were designed for a working frequency from
2.2 GHz to 3.2 GHz, and the SEE test performed with heavy-ions showed that the LC-VCO had a larger
cross-section than the RO-VCO. Varactors have been identified as the most sensitive part of LC-tank
architectures, and Triple Modular Redundancy (TMR) technique has been adopted to face SEEs in the
design of the phase frequency divider. The goal of this work was to compare the performances of the
widely used RO and LC controlled oscillators in radiation environments and to contribute with new
approaches for exploiting the characteristics that have made these systems the most implemented.

This work is an extension of the preliminary work presented by us at the conference [11].
With respect to the conference presentation, this work presented the complete full custom design of
schematic and layout for both the RO and the LC-tank controlled oscillator (respectively reported
in Sections 2 and 3). Moreover, this work in Section 4 provides transient and SEE simulations
results, missing in [11]. Section 5 compares this work vs. The state-of-the-art. Conclusions are drawn
in Section 6.

2. Ring Oscillator Based on a Cascade of Three Current Mode Logic (CML) Buffer

2.1. Ring Oscillator Schematic Design

The RO-VCO presented in this work is composed of a cascade of inverting amplifiers in closed-loop,
as shown in Figure 1. The transconductance gm is the gain of the single amplifier, while R and C are
the equivalent output resistance and the equivalent input capacitance, respectively, of previous and
following stages. According to Figure 1, the open-loop gain of the system composed of N generic
stages is expressed as

H( jω) =

(
− gmR

1 + jωRC

)N
(1)

For the Barkhausen oscillation criterion [12], the module of the transfer function has to be higher
than one for the start-up condition and then equal to one to sustain the oscillation, while the transfer
function phase has to be an integer multiple of 2π.
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Figure 1. Ring oscillator modalized using inverting stage amplifiers.

Applying this criterion at the model in Figure 1, we obtain the oscillation condition in terms of
design parameters, expressed as

gmR ≥ 1
cosθ

(2)

where θ is the phase shift introduced by each RC load, which for the Barkhausen oscillation criterion
must be an integer multiple of π/N. In a ring oscillator, the frequency f0 = 1/2NτD, where τD is the
delay of a single stage, and N is the number of stages in the loop. In order to limit power consumption
and to reduce the silicon area to decrease the number of collisions caused by ionizing particles, N = 3
was chosen for the RO-VCO design. Although two stages ring oscillator provides a quadrature clock,
as demonstrated in [13], a three stages oscillator is conventionally used for differential architecture [14].
Moreover, a smaller value of N provides a better phase noise [15] and a higher value of the working
frequency f0. With this choice, in accordance with Equation (2), the following condition is extracted as
the main design guideline

gmR ≥ 2 (3)

Although CMOS architectures are largely used for their low static-power dissipation and high
integration density, the designed RO-VCO is composed of three CML stages. The current mode
logic architecture, based only on n-MOSFETs and resistors, is more suitable for high-frequency
applications, thanks to their lower voltage swing and lower output impedance than a standard CMOS
approach [16,17]. Moreover, the use of a differential structure allows obtaining higher common-mode
disturb immunity than the use of a single-ended structure, as in classic CMOS circuits [18]. Guard rings
and deep n-well are also used for the design of MOSFETs devices to prevent Single Event Latch-up
(SEL) and to mitigate SEEs [19,20]. The single CML stage, shown in Figure 2, is made by a source
coupled pair with a resistive load, a simple current mirror, and accumulation-mode MOSFETs varactors.
Active components M1 and M2 are designed with the minimum channel length allowed by technology,
and the transistor width is chosen in order to ensure, in the worst case, a gm*R value of 4, which is two
times higher than the critical value expressed in Equation (3). The supply voltage for this technology
is 1.2 V, and the value chosen for resistors shifts the output common-mode voltage level at 0.9 V.
The RO-VCO bias current is controlled by the external generator I0 through the simple current mirror
M3 and M4 with a unity current gain. These MOSFETs are designed with the maximum MOSFET
length allowed by the RF-device model to increase the output resistance. A current of 4 mA feeds the
controlled oscillator, and the post-layout simulated power consumption is 18 mW. In order to take
control of the oscillation frequency, a couple of varactors are added at the output of each stage [21,22].

The frequency tuning is made, thanks to accumulation-mode MOSFETs devices. A single varactor
is designed by 40 fingers divided into 2 groups, and each finger is designed with the minimum finger
length of 200 nm and a finger width of 550 nm. They can assume the value in the range from 69.53 fF
to 34.93 fF, respectively, for the minimum and maximum value of the control voltage in the typical case.
As shown in Figure 3a, the variation of the capacitance value through the corner cases is lower than 5%.
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Figure 2. Circuit schematic of the single-stage, based on a Current Mode Logic (CML) buffer, of the
ring oscillator and a couple of varactors connected at the two outputs.

 
(a) (b) 

Figure 3. Varactor capacitance vs. control voltage for RO-VCO (a) and LC-VCO (b), different corner
cases. RO, Ring Oscillator; VCO, Voltage Controlled Oscillator.

The oscillation frequency of the RO-VCO based on a CML architecture is closely related to the
value of the gate capacitance [23], and it is expressed by the relation f0 = 1/2πRCT, where R is the
parallel between the pull-up CML resistive load and the output MOSFET resistance, while CT is the
cumulative capacitance due by varactors and the gate capacitance of the following stage.

2.2. Ring Oscillator Layout Design

The complete layout of the RO-VCO designed in 65 nm CMOS bulk-silicon technology is shown
in Figure 4. The simple current mirror, in the bottom side, and the three source-coupled pairs are
designed, adopting the common centroid technique to increase matching. All the gate terminals are
turned in the same way so that the current flows in the same direction, and the space between instances
is the minimum allowed by technology rules. A trade-off between metal width and length is made
to prevent the electro-migration phenomena due to high current density. Moreover, alternate layers
perpendicular to each other are drawn to minimize parasitic capacitances that lead to a frequency
reduction. The total layout area of the proposed RO-VCO is 249 × 86 μm2.

50



Sensors 2020, 20, 4612

 

Figure 4. Full custom layout of the RO-VCO based on the CML buffer designed with Cadence
Virtuoso [24].

3. LC-Tank Oscillator

3.1. LC-Tank Schematic Design

The second architecture designed is based on an LC-tank resonator. This architecture bases its
oscillation frequency on the filtering effect of an LC-tank, leaving for active components only the role
of setting the feedback gain [25] and compensate for the loss of the inductor.

The design guideline to respect Barkhausen oscillation criterion must be

gm > 1/RP (4)

where gm is the value of the transconductance of the n-MOSFETs devices inside the cross-coupled cell,
and RP is the parasitic resistance of the inductor [26]. Figure 5 shows the schematic of the LC-VCO
designed to generate the target 6.25 GHz frequency. A polysilicon resistor is used to shift the output
common-mode level at VDD/2, preventing the damaging or lifetime reduction of the low-voltage
MOSFETs used for the cross-coupled pair.

Figure 5. LC-tank VCO circuit schematic and a couple of varactors connected at the outputs.

This resistor is connected to the center tap of the symmetrical inductor chosen for its lower layout
area than that of two separate inductors. In order to achieve the best frequency performance of this
technology, the cross-coupled pair is sized using minimum length MOSFETs and a MOSFET width
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of 3.6 μm to guarantee a cell gain of at least 6 dB for start-up condition. The VCO bias current is
controlled by the external current Io through the simple current mirror M3 and M4 with a current gain
of 5, and the power consumption is less than 3 mW. The oscillation frequency of the LC-VCO is set by
f0 = 1/

(
2π
√

L(C + Cvar)
)

[26], where C is the equivalent capacitance due to the cross-coupled cell
and the first stage of the output buffer, and Cvar is the capacitance of the accumulation-mode MOSFETs
varactors connected at the controlled oscillator outputs. The Tuning Range (TR) is made with the
control voltage Vctrl in the range from 0 V to VDD, and varactors assume, respectively, the value in the
range from 629.6 fF to 197.6 fF, as shown in Figure 3b. A single varactor is composed of 120 fingers
divided into 6 groups, and each finger is designed with 300 nm finger length and 1.2 μm finger width.

Figure 6 shows the simulated frequency response of the VCO for the two extreme values of the
control voltage, and a minimum cell gain of about 10 dB for the minimum value of the control voltage,
allowing to achieve a robust start-up condition for the oscillator.

Figure 6. Frequency response simulated for minimum (red line) and maximum (blue line) values of
the control voltage. The vertical marker indicates the target frequency of 6.25 GHz.

3.2. LC-Tank Layout Design

The complete layout of the LC-VCO is shown in Figure 7, and it is composed of the simple current
tail mirror, varactors, cross-coupled cell, inductor, and poly-silicon resistance from bottom to the top.

The current mirror is designed as a single strip, and a common centroid technique is adopted for
the cross-coupled cell. Moreover, the minimum space allowed by technology rules is used, helping to
increase matching. About 85% of the total area is occupied by the differential inductor (177 × 198 μm2)
that has a quality factor of 20. It has been chosen with an odd number of turns because the two output
terminals are on the same side of the cell, thus making the routing shorter with MOSFETs devices.
Moreover, the single resistor connected to the center tap helps to reduce the metal connection length
between the inductor and the cross-coupled cell.
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Figure 7. Full custom layout of the LC-tank VCO designed with Cadence Virtuoso [21].

The oscillator is designed to work properly in the temperature range −55 ◦C, +125 ◦C with
10% variations of current bias and voltage supply. The total layout area of the proposed LC-VCO is
308 × 198 μm2.

4. Simulations Results

4.1. Design Simulations

The small length size n-MOSFETs allowed to achieve high-frequency performance, but on the
other hand, this choice increased the deviation of the device parameters from the typical condition.
Although the frequency tuning was made with the use of accumulation-mode varactors, the frequency
shift due to the technology simulations was so high that it could not be compensated using the control
voltage. Figure 8 shows a post-layout simulation of the free-running oscillation frequency of the
RO-VCO for the only three corners process. The frequency values were plotted versus an increasing
value of the control voltage from the minimum to the maximum values. The oscillation frequency in the
slow-slow corner case did not reach the 6.25 GHz frequency value required by the SpaceFibre standard,
even using the maximum value of the control voltage. In the fast-fast corner case, the frequency was
higher than the targeted frequency, even with the minimum value of the control voltage. Although
the RO-VCO resulted as strongly dependent on the device parameters, in space applications, the best
components should be selected.

Although n-MOSFETs devices in the cross-coupled cell were designed with the minimum MOSFET
length, the frequency shift in the LC-VCO, due to the technology simulations, could be recovered with
the use of varactors and the control voltage. This can be seen by the curves in Figure 9, showing LC-tank
VCO post-layout simulation of the free running-frequency versus control voltage in fast-fast (red line),
typical (green line), and slow-slow (blue line) technology corner cases.
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Figure 8. RO-VCO post-layout simulation of the free-running frequency versus control voltage
in fast-fast (red line), typical (green line), and slow-slow (blue line) technology corner cases.
The horizontal marker indicates the target frequency.

Figure 9. LC-tank VCO post-layout simulation of the free-running frequency versus control voltage
in fast-fast (red line), typical (green line), and slow-slow (blue line) technology corner cases.
The horizontal marker indicates the target frequency.

In addition to technology simulations, thus increasing the simulation realism, PVT (Process-Voltage-
Temperature) simulations were performed by also changing temperature and supply voltage for
both architectures. The SpaceFibre standard required the system to properly work under harsh
conditions. In Table 1, the process and fabrication results are listed, respectively, in the third and
fourth columns. The frequency variations were calculated as a variation from the nominal condition
for temperature, supply voltage, and polarization current in each technology corner. The variations
were obtained for temperature variations in the range −55 ◦C, 125 ◦C, and for ±10% supply voltage
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and polarization current deviations. Fabrication results were expressed as the frequency standard
deviation σ, and data were obtained from the Monte Carlo simulations. Monte Carlo simulations were
performed with 200 simulations in the nominal condition for each corner case considering process and
mismatch variations.

Table 1. Frequency variations and standard frequency deviation, respectively, for PVT (Process-Voltage-
Temperature) and Monte Carlo simulations.

Oscillator Technology Corners Frequency Variations Standard Deviation σ (Hz)

RO

slow-slow 31.46% 0.63

typical 28.34% 0.89

fast-fast 15.72% 3.34

LC

slow-slow 9.01% 99.69

typical 9.07% 578.5

fast-fast 7.04% 132.2

Figure 10 shows the simulated phase noise of the two architectures with the harmonic balance
simulation in post-layout. Both VCOs were simulated at the same frequency, and the LC-VCO exhibited
a better phase noise of about 30 dB than the other architecture (at 1 MHz offset, in Figure 9, there was a
phase noise of −110 dBc/Hz for the LC-VCO vs. The −82 dBc/Hz for the RO-VCO). Device noise was
considered in every simulation for both oscillator architecture and for all simulations performed in
this work.

Figure 10. Phase noise simulated for RO-VCO (red line) and LC-VCO (blue line) at post-layout in
typical conditions at the same working frequency of 6.25 GHz. These simulations were performed
using the Cadence environment.

The integrated RMS jitter was calculated from Figure 10 in the bandwidth from 100 kHz to 10 MHz.
The RMS jitter obtained was 9.51 ps and 0.44 ps for RO-VCO and LC-VCO, respectively. Moreover,
the RO was more sensitive to temperature variations than the LC-VCO. The time-domain VCO stability
was made with the use of the Allan variance [27,28], or two-sample variance, defined as

σ2
x(τ) =

1
2

E
[
(x2 − x1)

2
]

(5)
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Figure 11 shows the Allan deviation, or σ-τ plot, calculated as the square root of Equation (5) when
the VCO was in the steady-state oscillation. In particular, Figure 11a,b show the comparison between
the Allan deviation in frequency and in amplitude, respectively, for both architectures. LC-VCO
exhibited lower variations in frequency and amplitude than the RO-VCO.

 

(a) (b) 

Figure 11. Allan deviation of (a) frequency and (b) amplitude for RO-VCO (red line) and LC-VCO
(blue line) calculated in typical condition at the same oscillation frequency.

4.2. Single Event Effect Simulations

The model used for SEE simulations and widely accepted by the scientific community [29–31]
is shown in Equation (6), where tinj is the injection instant, ta is the collection time constant of the
junction, tb is the ion track establishment time constant, and Q is the critical charge.

ISET =
Q

ta− tb

[
e−(

t−tinj
ta ) − e−(

t−tinj
tb )
]

(6)

SEEs were modeled as double exponential current pulses at sensitivity nodes, and two different
sets of values, with a Linear Energy Transfer (LET) of 5 and 60 MeV×cm2/mg, were used [32]. The two
sets of values were expressed for different time constants versus critical charge Q and LET. The strike
of an ionizing particle could be modeled by inserting a current pulse on each P-N junction, with the
direction of the injected current depending on the device type [33], as shown in Figure 12. Moreover,
the effects generated by the injected currents were strongly sensitive to the circuit conditions, requiring
the analysis of the system in different states.

Both VCOs based their frequency tuning on accumulation-mode MOSFETs varactors, and the
output nodes resulted as the most sensitive nodes in the whole architectures. Indeed, the strike of
an ionizing particle generated a voltage variation in the node that was then translated in a frequency
deviation by varactors. In this subsection, SEE simulations results are discussed, respectively, for RO
and LC controlled oscillators.
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Figure 12. The model used for the correct stimulation of the P-N junction with the double exponential
current pulses generators.

Figures 13 and 14 show the effects generated by a particle strike for the two values of LET provided
for the model in Equation (5). Particles with 5 and 60 MeV×cm2/mg are representant in the following
figures with the label hit1 and hit2, respectively. The two exponential current generators excited
sensitive nodes of RO-VCO at 25 ns and 30 ns, and the LC-VCO ones at 10 ns and 15 ns.

 

(a) (b) 

Figure 13. Two sets of values with a Linear Energy Transfer (LET) of 5 and 60 MeV×cm2/mg were used
for Single Event Effect (SEE) simulations, and the free-running frequency was plotted for the control
voltage value equal to 0 V (red line) and VDD (blue line). (a) shows the free-running frequency in the
RO-VCO, while (b) shows the free-running frequency in the LC-VCO.

 
(a) (b) 

Figure 14. Differential amplitude variations due to the hit of the two LET values provided for the
model. (a) shows the differential amplitude in the RO-VCO, while (b) shows the differential amplitude
in the LC-VCO.
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In Figure 13, the free-running frequency versus time is plotted for minimum (red line) and
maximum (blue line) values of control voltage, and in Figure 14, the differential output amplitudes for
the maximum value of the control voltage, respectively, for RO-VCO and LC-VCO are shown.

In Table 2, the data extracted from Figures 13 and 14 are listed, where the column called clock
cycles shows the number of clock cycles in which the frequency assumes different values respect to
the nominal due to the strike of the particle. In the last two columns, the maximum variations for
frequency and amplitude are reported.

Table 2. Variations due to a SEE for RO-VCO and LC-VCO.

Oscillator Hit Control Voltage Clock Cycles
Frequency
Variations

Amplitude
Variations

RO
hit1

0 6 0.61% −1.65%
VDD 3 0.27% −2.93%

hit2
0 9 1.53% −15.38%

VDD 9 3.12% −16.27%

LC
hit1

0 6 0.11% 1.55%
VDD 13 0.46% 3.17%

hit2
0 15 1.24% 43.80%

VDD 24 2.45% 57.49%

As it is shown in the last two columns of Table 2, when the VCOs were hit by the ionizing particle
with a LET of 5 MeV×cm2/mg (called hit1 in Table 2), both architectures showed nearly the same
amplitude and frequency variations. Instead, when a particle with higher LET (called hit2 in Table 2)
did hit the two VCOs, the amplitude variations of the LC-tank were greater than that of the RO,
while the frequency variations were lower in the LC-tank-based architecture. This was despite that
the LC architecture used one order greater varactor capacitances than RO one. This greater frequency
deviation in RO-VCO was due to the frequency relationship with capacitance, which was 1/C for the
RO-VCO and 1/

√
C for the LC-VCO. This attested that a small capacitance variation generated a huge

frequency variation in the RO-VCO, as highlighted in Table 2.
n-MOSFETs devices in both architectures were designed with the minimum channel length

targeting high-frequency applications, but a maximum number of fingers and an oversized MOSFET
width were used to increase the parasitic capacitance of devices. Although this SEE mitigation technique
increased the silicon area and reduced the tuning range, it increased the SEE tolerant property of
both VCOs. Indeed, following the simple rule V = Q/C, if the capacitance value was increased for
a fixed value of charge, then a lower variation of the voltage occurred. Moreover, guard rings and
deep n-wells were adopted to isolate the devices by the charge generated in the substrate during a
particle strike. Indeed, if an ionizing particle passed through the device, electron-hole pairs could
be generated, which, thank to guard rings and deep n-wells, were rapidly collected, avoiding the
activation of parasitic latch-up.

5. Comparison vs. The State-of-the-Art

A state-of-the-art comparison of voltage controlled oscillator designed in 65 nm technology is
made in Table 3. In works [9,10], the PLLs were based on a RO and LC-VCO. They were irradiated up to
300 krad TID level compliant with SpaceFibre protocol and tested with different protons. Their working
frequency did not meet that required by the SpaceFibre standard, and the aim of this work was
to investigate the behavior of these two well-known architectures at a higher frequency. In [34],
a VCO based on LC tank was optimized against SEEs, and in [35], a three stages ring oscillator was
designed targeting Bluetooth front-end applications, but no process simulations were performed.
Another solution presented in [36] was based on a Colpitts architecture for mm-wave applications.
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Table 3. State-of-the-art comparison.

Ref.
Frequency

(GHz)
Power

Consumption (mW)
SEE Tolerant Architecture Area (mm2)

[9] 0.2–1.2 n.a. tested Ring n.a.

[10] 2.2–3.2 6 tested Ring and LC n.a.

[34] 2.25–2.88 1.8 tested LC tank n.a.

[35] 3.7–6.5 2 no Ring 0.011

[36] 23.8–29.1 2.3 no Colpitts 0.221

This work 6.20–6.75 18 simulated Ring 0.021

This work 5.35–6.55 <3 simulated LC tank 0.061

6. Conclusions

In this work, the comparison between two VCO architectures designed in a commercial 65 nm
technology was made. Targeting high-frequency space applications, as the SpaceFibre protocol, a CML
approach was adopted for the design of the RO-VCO. CML architecture was preferred, targeting
high frequency, thanks to its lower voltage swing than a CMOS. The RO-VCO was an appetible VCO
configuration in terms of technology scaling, high-integration density, and area occupancy, which was
about 35% of the total silicon area required for the LC-VCO. Although the RO-VCO resulted as strongly
dependent on the device parameters, in space applications, the best components should be selected.
To overcome the effects of the device parameters deviation on the oscillation frequency, an LC-tank
VCO architecture was designed. This architecture, despite its large area, mainly occupied by the
inductor, presented promising performances in terms of the frequency range, covering the 5.35 GHz
to 6.55 GHz range, in the typical case, with a control voltage swing of VDD. SEE simulation results
highlighted the output nodes as the most sensitive nodes for both VCOs, for the effects due to the
varactors. Although the LC-tank VCO used one order greater varactor values than RO, and the ionizing
particle hits generated higher amplitude variation on its output signals, the frequency variations of
this VCO were lower than that showed by the RO architecture, thanks to the different relationship
between frequency and capacitance. In the literature, VCOs based on Colpitts architecture for space
applications are not available because of their large silicon area. The LC system, whose layout is shown
in Figure 7, would be integrated into a 1 mm2 chip containing a SERDES (Serializer-Deserializer) to test
system-level performance. The whole chip would be electrically tested in standard condition, then it
would be exposed to X-rays to achieve the 300 krad TID and to heavy ions for SEE characterization.
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Abstract: The design of a Phase-Locked Loop (PLL) to generate the clock reference for the new
Spacefibre standard is presented in this paper. Spacefibre has been recently released by the European
Space Agency (ESA) and supports up to 6.25 Gbps for on-board satellite communications. Taking as a
starting point a rad-hard 6.25 GHz Voltage Controlled Oscillator in 65 nm technology, this work presents
the design of the key blocks for an integrated PLL: a Triple Modular Redundancy Phase/Frequency
Detector, a Charge Pump, and a passive Loop Filter. The modeling activities carried out in an
Advanced Design System have proven that the proposed PLL can be completely integrated on-chip,
with a Loop Filter area consumption of only 6000 μm2 (considering the 65 nm technology). The design
of active circuits has been carried out at the transistor level in a Cadence Virtuoso environment,
implementing both system and layout rad-hard techniques, and different solutions are discussed in
this paper. As a result, a compact (0.09 mm2), low power (10.24 mW), dead zone free and rad-hard
PLL is obtained with a Phase Noise below −80 dBc/Hz @ 1 MHz. A preliminary block view and floor
plan of the test chip is also proposed.

Keywords: rad-hard; PLL (phase-locked loop); SEE (single event effects); Spacefibre; TID (total
ionization dose); charge pump; phase/frequency detector; frequency divider

1. Introduction

Recently, the new Spacefibre standard [1] has been released by the European Space Agency
(ESA). To cope with the data transfer of high bandwidth sensors, required in scientific, surveillance,
and telecom satellite applications, Spacefibre supports up to 6.25 Gbps. The clock reference generator
is a key block for the Spacefibre implementation. It must be hardened against SEE (Single Event
Effects) [2] and TID (Total Ionization Dose) [3], it should work in a −55 to 125 ◦C temperature range,
and it should sustain up to 6.25 GHz. Moreover, output frequency divided by 2 and by 4 should
be supported. In aerospace applications, the radiation issues are mainly related to SEE because the
TID levels are from several dozen to a few hundred krad, even lower if aluminum shields are used.
As discussed in [4] with a 5 mm aluminum shielding, the estimated total TID received by three satellites
for earth observation and environmental data collection, RazakSAT-1, SCD-2, and ALOS are 2.30 rads,
170 rads, and 24200 rads, respectively. Therefore, rad-hard techniques should be employed to mitigate
SEEs, whose effect in PLLs (Phase-Locked Loops) has been widely analyzed and demonstrated [5,6].
Although several solutions have been proposed in the literature [7–9], the state-of-the-art rad-hard PLLs
are limited to frequencies below 6 GHz in normal conditions(e.g. less than 3 GHz is achieved in [10–12])
but, in order to reach 6.25 GHz in all PVT (Process–Voltage–Temperature) corners and in environments
pervaded by radiations, it is necessary to work at even higher frequencies in nominal conditions.

An issue that needs to be dealt with is that radiation hardness comes at the cost of power and area
consumption, since redundancy techniques are usually implemented. Currently, the Triple Modular
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Redundancy (TMR) technique is one of the most effective techniques for digital blocks, such as the PFD
(Phase Frequency Detector) [13]. It consists of triplicating a cell and adding a voter to choose between
the outputs following a majority approach. For the Charge Pump (CP), instead, voltage-switching
Charge Pumps (V-CP) have been demonstrated to be a good choice in terms of SEE mitigation, but they
lead to a great degradation in terms of noise performance compared to CPs [14].

Among the state-of-the-art designs, the 4.8–6 GHz PLL proposed in [15] represents a good tradeoff
in terms of power consumption, area, and noise performance, while really low-noise performances are
achieved in [13] with a 2.2–3.2 GHz PLL.

In this paper, we present a low-power, low-area consumption and reliable 6.25 GHz PLL for
aerospace environments. Here, a complete project flow in 65 nm TSMC technology is developed
starting from an already designed Voltage Controlled Oscillator (VCO) [16], from an already designed
Frequency Divider (FD), and from a preliminary system level analysis performed by us in the conference
work [17], of which this work is an extension. With respect to [17], in which the modeling activities and
the preliminary system level analysis and design were presented, in this work, beside this, the complete
development at the circuit and layout level of the blocks that compose the PLL in 65 nm TSMC
technology is illustrated, together with the implemented rad-hard techniques, and with comparisons
among different solutions.

The Loop Filter’s components and the Charge Pump’s current have been chosen through a
system-level analysis carried out in an ADS (Advanced Design System) environment, while the design
of the Charge Pump and the Phase/Frequency Detector has been carried out in a Cadence Virtuoso
environment. A preliminary block view and floor plan of the test chip is also proposed.

Hereafter, Section 2 presents the PLL system-level analysis and the design of the passive Loop
Filter circuit. Section 3 deals with the transistor-level design of the main circuit blocks. Section 4 shows
the results of the SEE simulation and post-layout simulations of the whole PLL. In Section 5, a starting
point for a test chip is proposed, while the conclusions are drawn in Section 6.

2. System-Level Design of PLL and Passive Filter Sizing

The target architecture of this work is a CP-PLL [18]. As shown in Figure 1, the blocks that
compose the proposed PLL are a PFD, a CP circuit, a passive Loop Filter, a VCO, whose output
corresponds to one of the PLL outputs, and an FD with an integer divide ratio, which generates the
other three frequencies required by the application. The input signals of the PFD are the reference
signal (REF in Figure 1) and the FD output, while the outputs related to the input phase/frequency
difference are named UP and DOWN in the figure. These signals are converted by the CP in a charging
or discharging current needed to control the VCO through the Loop Filter. The PLL proposed in this
work is designed starting from an LC-tank VCO macrocell, which is integrated by the University of
Pisa in 65 nm CMOS technology [16] and has the following characteristics: a frequency tuning range
between 5.9 and 7.5 GHz, obtained through integrated varactors; the control voltage leads to a gain in
the center of the frequency range of 2 GHz/V; the Phase Noise is below −100 dBc/Hz at 1 MHz from
the carrier.

Starting from the system-level analysis and design, the Loop Filter’s components, the Charge
Pump’s current (Icp), and the Frequency Divider ratio (N) have been chosen. Thanks to a divider ratio
of 40 and with 156.25 MHz as the reference frequency, the output at 6.25 GHz is obtained. According
to the Spacefibre standard, the PLL has also to generate the frequencies 3.125 GHz and 1.5625 GHz,
which are obtained using an integer FD with the following ratios: one-half, one-fourth, and 1/40th.

Moving onto the Loop Filter, as shown in Figure 2, it is composed of a capacitor C1, a resistor
R1, which is needed to stabilize the loop, and a capacitor C2, whose aim is to reduce the spurious
tones at multiples of the reference frequency and whose value, according to [19], should be no more
than C1/5. Thanks to the modeling and simulation activity in the ADS environment in Section 2.1,
a bandwidth of 6 MHz has been targeted as a tradeoff between the noise behavior and Loop Filter
integrability. A completely integrated filter allows the avoidance of all the problems deriving from
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the parasitic effects of external components. A higher loop bandwidth, obtained with small passive
devices, provides a better reduction of the VCO and Loop Filter contribution to Phase Noise. Instead,
a lower bandwidth leads to lower CP and reference noise contributions, but it can be achieved only
with large capacitors. A lower CP noise contribution can also be obtained thanks to a higher Icp, at the
cost of larger capacitors for a given bandwidth. Given all these reasons, an Icp of 40 μA has been chosen,
and consequently, the values of C1, C2, and R1 have been derived: 8 pF, 1 pF, and 12 kΩ, respectively.

Figure 1. Block schematic of the Charge Pump Phase-Locked Loop (CP-PLL).

 
Figure 2. Loop Filter’s schematic view.

2.1. PLL Modeling in “Advanced Design System” Environment

A phase domain model has been firstly built to analyze the PLL bandwidth and stability. There,
all the blocks are linearized: the PFD/CP and the FD have constant gains of Icp/2π and 1/N, respectively,
while the VCO is modeled as an integrator with gain Kvco. The transfer functions for the open,
Equation (1), and closed, Equation (2), loop models are the following:

Hol =
Icp

2π
Z(s)

Kvco

s
1
N

, (1)

Hcl =

Icp
2πZ(s)Kvco

s

1 +
Icp
2πZ(s)Kvco

s
1
N

, (2)

with an Icp of 40 μA, N of 40, and:

Kvco = 12.57 ∗ 109 rad/(V ∗ s), (3)

Z(s) =
1

s(C1 + C2)
1 + sR1C1

1 + sR1 C1C2
C1+C2

. (4)
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Figure 3 shows the results obtained using an AC simulation. As expected, R1, introducing a
zero, increases the stability of the loop. In contrast, C2, introducing a pole, reduces the Phase Margin;
therefore, its value has been selected to maximize the latter. The main results of the simulations are a
unity gain frequency of 3.31 MHz with 50.9◦ of Phase Margin, and a 5.37 MHz closed loop bandwidth.

 
(a) 

 
(b) 

Figure 3. Results of the AC analysis performed on the phase domain models: magnitude on the left
and phase on the right of (a) the open loop model and (b) the closed loop model.

Secondly, to evaluate the noise and lock performances, a behavioral model of the closed loop PLL,
as shown in Figure 4 together with the model of the VCO alone, has been built to perform simulations
in time and frequency domains. Since all the blocks of the model are noise-free, the block labeled
NoiseVCO is added to consider the VCO contribution to phase noise. It is a voltage noise source that
approximates with a piecewise linear curve the simulated phase noise of the VCO designed in [16],
and starting from it, it generates the equivalent input noise. Regarding the Loop Filter, the noise model
provided by ADS has been used for the analysis. Figure 5a shows the PLL lock behavior, which presents
a lock time of 555.6 ns for a locking error below 0.01%. The peaks in Figure 5a, due to the resistor of the
Loop Filter, are not seen when the PLL is locked because the CP model is ideal. However, since the
real CP will be affected by non-idealities, the second capacitor is needed to attenuate these peaks.
Instead, Figure 5b shows that the phase noise is well below −80 dBc/Hz. However, the reference and
CP contributions have not yet been considered in this simulation, since this represents a preliminary
analysis (the PFD and CP contributions to Phase Noise are analyzed in Section 3.1.3). As expected
from the theory [19], the loop has a band-pass response with respect to the Loop Filter noise and a
high-pass response with respect to the VCO noise.
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Figure 4. Closed-loop PLL (TOP) and Voltage Controlled Oscillator (VCO, BOTTOM) models in the
time and frequency domains.

 

(a) (b) 

Figure 5. Results of the envelope analysis performed on the model of Figure 4: (a) locking process of
the PLL; (b) comparison between the phase noise of the VCO and the phase noise of the closed loop
PLL, considering the noise contribution of the VCO and the Loop Filter.

2.2. Second-Order Loop Filter’s Layout

Choosing to realize C1 and C2 as Metal–Insulator–Metal (MIM) capacitors and R1 as an N-well
under OD resistor, in order to minimize the area consumption, have led to the Loop Filter’s layout
shown in Figure 6, in which C1 can be recognized on the left, C2 can be recognized on the right, and R1
can be recognized in the lower right corner, with an area consumption of only 6000 μm2.
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Figure 6. Layout in 65 nm technology of the Loop Filter in Figure 2.

3. Transistor Level Design of the PLL

3.1. Charge Pump and Phase/Frequency Detector

3.1.1. Charge Pump

Ideally, a Charge Pump is a current sink or source, depending on its inputs. To obtain this behavior,
there are three main topologies of CP in the literature:

• Drain Switching,
• Source Switching,
• Gate Switching.

Therefore, firstly, three basic Charge Pumps [20] have been designed and compared, one for each
topology: the conventional CP’s Drain Switching architecture is shown in Figure 7a. It consists of two
mirrors, one type n (M0 master) with two slaves (M1 and M2) and one type p (M4 master, M5 slave).
The switch M3 is realized with an NMOS transistor, while the switch M6 is realized with a PMOS
transistor. M0, M1, M2, M4, and M5 have no minimum length to obtain a higher output impedance
and the necessary width to have the drain current of M3 (sink current) and M6 (source current) of
40 μA and the output voltage of 520 mV when the output is left open. 520 mV is the nominal control
voltage needed to have 6.25 GHz as the output frequency of the VCO in [16]. Therefore, the CP has
been sized to have near-zero current mismatch and an Icp of 40 μA when the control voltage of the VCO
(Vctrl) is 520 mV. Instead, the switch transistors are wide and short to minimize their VDS (drain-source
voltage drop).

Instead, the Source Switching-based architecture is shown in Figure 7b. Its operation is very similar
to the previous CP, and therefore, it is sized with the same criteria: enhance the output impedance and
reduce the current mismatch near 520 mV of Vctrl.

Finally, the Gate switching architecture is shown in Figure 7c. In contrast with the other two
architectures, in this one, it is necessary to add another type p (M6, M7) and type n (M3, M4) current
mirror, since causing the main type n mirror (M0, M1, M2) in the OFF state to switch off the sink
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current would lead to the shutdown of the source current, too. Given that, the circuit in Figure 7c has
been sized with the same criteria of the other two architectures.

  
(a) (b) 

 
(c) 

Figure 7. Charge Pump’s architectures: (a) Drain Switching architecture, (b) Source Switching
architecture, (c) Gate Switching architecture.

To analyze the output impedance of the three CP circuits in Figure 7, imagine placing an ideal
voltage source on the output node of each CP circuit. Then, we measure the output current and its
derivative when UP is low and DOWN is high for the Source and Drain Switching, and when UP
is high, and DOWN is low for the Gate Switching. The three CP circuits, because of their similarity,
show almost the same DC characteristics: an output range between 0.15 and 0.9 V, but quite a low
output impedance of about 30 kΩ. Instead, regarding the transient behavior shown in Figure 8,
the three CP architectures show different characteristics. In this case, the simulations were performed
forcing the output node at 520 mV with an ideal voltage source, and the source and sink currents were
measured. Since the ON time of the PFD’s outputs during the reset period depends on several factors,
such as the PVT conditions and layout, which were unknown at this design level, the simulations
were performed considering two different values of ON time: 3.2 ns to let the two currents exhaust
the transient and therefore analyze all their transient behavior; and 500 ps to approximate a more
realistic reset time of the PFD and then analyze the current’s behavior in an approximation of the
locked state of the PLL. The Drain Switching CP in Figure 7a is the fastest one, while the Source and
Gate Switching CP ones are too slow to turn ON in less than 500 ps. The Source Switching CP in
Figure 7b is the slowest one, as can be seen in Figure 8b. Both the Source and Drain Switching CP
architectures show peaks during the switching period, and this leads to a degradation of the transient
matching. Instead, the Gate Switching CP architecture does not show any peak current during the
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switching period, and therefore, although the Drain Switching is the fastest architecture and all of them
can be enhanced, increasing the complexity, it has been chosen as the target topology for the whole
PLL design. However, it is important to notice that this architecture is intrinsically more complex
because there is the need to separate the bias circuits for the UP (M8, M9, M10) and DOWN (M3, M4,
M5) branches.

 
(a) 

 
(b) 

 
(c) 

Figure 8. Transient behavior of the three CPs of Figure 7. The source current is represented in red,
while the sink current is represented in black for two different values of ON time of the input signals
(UP and DOWN): 3.2 ns on the left, which corresponds to a duty cycle of 50%, and 500 ps on the right,
which corresponds to a duty cycle of 7.8125%. The Drain Switching CP results are represented in (a);
the Source Switching CP results are represented in (b); the Gate Switching CP results are represented
in (c).
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Once the CP topology has been chosen, the target architecture has been modified to obtain better
performances, as shown in Figure 9 versus Figure 7c. Firstly, the output simple current mirrors have
been replaced with high swing current mirrors to enhance the output impedance without degrading
the output range too much. This change also allowed the reduction of the sizes of the output transistors,
leading to a faster CP. Moreover, both the UP and DOWN branches have their bias circuitry in order to
reduce the effect of the UP signal on the sink current and of the DOWN signal on the source current.
This has led to an output impedance of 250 kΩ, with an output range of 0.3–0.9 V. Instead, in terms
of DC current mismatch, the worst case of process–temperature corners is 1.454 μA. Regarding the
transient characteristics shown in Figure 10, the designed architecture is peak-free, and it is able to
start sinking or sourcing the current in less than 500 ps.

 
Figure 9. Enhanced CP’s Gate Switching architecture with CMOS standard inputs.

  

(a) (b) 

Figure 10. Transient behavior of the CP of Figure 9. The source current is in red, and the sink current is
in black for two different values of ON time of the input signals (UP and DW_N): (a) 3.2 ns, (b) 500 ps.

A differential input Gate Switching CP has also been developed. Indeed, a differential PFD/CP
guarantees a better current matching during the switching period, thanks to the symmetric input load
of the CP and to the lack of necessity of adding an inverter between one of the PFD outputs and the
corresponding CP’s input. Hence, the switch transistors have been replaced with differential pairs
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(M6–M7 and M8–M9), and the mirror M22–M23 has been added to enhance the switching speed of the
source current during the ON-to-OFF switch [21], as shown in Figure 11. The DC characteristics are
similar to the previous architecture: an output range of about 0.3–0.9 V, an output impedance of about
250 kΩ, and a DC current mismatch in the worst case of all the temperature–process variations of
1.66 μA. Instead, regarding the transient behavior, it is peak-free and shows a better transient current
matching, as can be seen from Figure 12.

 
Figure 11. Enhanced CP’s Gate Switching architecture with differential inputs.

  
(a) (b) 

Figure 12. Transient behavior of the CP of Figure 11. The source current is in red and the sink current
is in black for two different values of ON time of the input signals (UP_P-UP_N and DW_P-DW_N):
(a) 3.2 ns, (b) 500 ps.

3.1.2. Phase/Frequency Detector

Since the PFD is essentially a digital block, the easiest and most effective way of hardening it
against radiation is the TMR [13]. The designed architecture is shown in Figure 13a. The block-labeled
PFDs in Figure 13a consist of the conventional PFD architecture shown in Figure 13b, and every PFD
has its own reset voter that decides between all the output resets. In this way, the only possible loss of
lock for the PLL happens when an SEE occurs on the UP and/or DOWN voters. However, this error
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does not lead the PFD into a wrong state causing cycle slipping, i.e., one of the input’s loss (or gain) of
one cycle with respect to the other input. This architecture has been developed in both CMOS logic
and CML (Current Mode Logic), in order to be compatible with the designed CPs.

 
(a) 

 
(b) 

Figure 13. Triple modular redundant PFD architecture in (a) and simple PFD architecture in (b).

3.1.3. Comparison between the Two PFD/CP Architectures

In order to compare the two different solutions (CMOS and CML versions of the PFD/CP), two PLL
testbenches have been built in Cadence. In these testbenches, the VCO model with parasitic effects is
considered, while the CP’s and PFD’s schematic view has been used to reduce the simulation time.
Finally, a Verilog-A frequency divider, which can be found in the Cadence’s rf-library, has been used.
For the Phase Noise comparison, because of the non-linear nature of the PLL, a direct time domain
noise analysis was necessary. This has been done exploiting the Transient Noise Analysis option
embedded in the Spectre RF’s Transient Analysis. Since this type of simulation is time consuming,
a resolution bandwidth of 500 KHz to reduce the simulation time has been set. In Figure 14, the Phase
Noise results are shown: the two solutions have almost the same behavior in terms of noise, but the
CMOS solution shows higher peaks at multiples of the reference frequency because of the worse current
matching during the switch of the CP currents from ON to OFF and vice versa. Instead, in Table 1,
the comparison in terms of DC current matching of the CP and power consumption between the CML
and CMOS solutions is summarized. The DC current mismatch has been measured performing a DC

73



Sensors 2020, 20, 4013

simulation on the CP circuits and measuring the output current when the output node is forced at
520 mV with an ideal voltage source, and the inputs are such that both the source and sink current are
ON. Considering that (1) the noise performance difference is negligible, (2) the CMOS solution has
a better current matching in the worst case, and (3) the CML solution shows 25 times higher power
consumption, then the CMOS solution has been chosen and has been developed at layout level for the
whole PLL design.

 
Figure 14. Comparison between the two CP/PFD (Phase Frequency Detector) architectures in terms
of phase noise: Current Mode Logic (CML) architecture’s results in red, CMOS architecture’s results
in black.

Table 1. Comparison between the two CP/PFD architectures in terms of CP’s current matching and
CP+PFD’s power consumption.

CMOS CML

Charge Pump DC current mismatch (worst case) 1.454 μA 1.66 μA
Power Consumption Charge Pump + PFD ≈200 μW ≈5 mW

3.1.4. PFD/CP Layout

The CP’s layout is shown in Figure 15. The output mirrors, since their slaves are composed of two
MOS in parallel, are interleaved with the master transistor to enhance the technology process matching.
Moreover, every mirror and the switch transistors are surrounded by guard rings connected to the
voltage supply. These rings have two main functions:

1. They reduce the possibility of SEL (Single Event Latch-Up) and Latch-Up in general;
2. They reduce the drift current generated after an SEE in the sensitive nodes near the hit node [22].

Regarding the PFD, as for the CP, guard rings have been placed around the transistor to avoid
latch-up and to reduce the drift current deriving from an SEE. Moreover, the triplicated cells have been
placed at a distance of 10 μm from each other to avoid MBUs (Multi Bit Upsets). The TMR technique
would become useless if an SEE causes an SEU (Single Event Upset) in more than one PFD each time.
In Figure 16, the complete layout of the TMR PFD is shown: the three PFDs with their reset majority
logic can be recognized on the left, while the output majority logic can be recognized on the right.

74



Sensors 2020, 20, 4013

 
Figure 15. Charge Pump’s layout.

 
Figure 16. Phase/Frequency Detector’s layout.

4. Simulation’s Results

4.1. PFD/CP Characterization

In Figure 17, the average CP current is represented as function of the phase difference between the
inputs for different technology corners (Figure 17a) and different temperatures (Figure 17b). As can
be seen from the figure, the PFD/CP is dead zone-free thanks to the presence of the RESET state in
the PFD.

4.2. Single Event Effect Simulations on the CP

The current caused on a sensible node by an SEE can be modeled as a double exponential
function [23] in Equation (5). In this work, the parameter model of Equation (6), which was taken from
a previous high-frequency design we have done in the same technology [24], has been used:

I(t) = Q
e−

t
τ1 − e−

t
τ2

τ1 − τ2
. (5)

τ1 = 200÷ 400 ps , τ2 = 50÷ 100 ps , Q = 67 ÷ 800 f C, (6)
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where τ1 and τ2 are the constant times of the double exponential shape and Q is the charge released
in the silicon substrate during a particle strike, which corresponds to a particle LET (Linear Energy
Transfer) between 5 and 60 Mev·cm2/mg.

  
(a) (b) 

Figure 17. PFD/CP characteristic for different technology corners at 27 ◦C (a) and different temperatures
in typical case (b).

The SEE analysis is focused on the most critical block, the CP, since the PFD adopts a TMR
mitigation approach, the passive Loop Filter avoids the use of feedback loops and of active circuits,
while the VCO was inherited from a previous SEE-tested designed block in [16]. Hence, double
exponential current generators from the Cadence’s analogLib library have been placed on every
sensitive node of the CP (all the drains and sources of the MOSFETs that were not connected to the
supply voltage), taking care of the direction of the current. Then these generators have been delayed to
analyze their effect separately, and the output current has been measured in order to see how an SEE
on each node of the CP affects the output current. Then, these results have been reported to the ADS
behavioral model of the PLL to see how the PLL reacts to Single Event Transients (SETs) on the CP (see
Figure 18).

 

Figure 18. Output frequency of the ADS PLL model as function of time, for Single Event Transients
(SETs) spaced 1 μs apart, hitting every sensitive node of the CP and with a Linear Energy Transfer (LET)
of 60 MeV·cm2/mg.

As shown in Figure 18, the PLL, which loses lock after an SET, is able to recover the locked state
in less than 600 ns. The largest peaks, which are indicated in Figure 18 with the numbers 1 and 2,
are the ones derived by an SET on the output nodes, as highlighted in Figure 19 with the corresponding
numbers, because the charge injected into these nodes goes directly through the output node, charging
or discharging the Loop Filter and then modifying the control voltage of the VCO.
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Figure 19. Highlight of the output nodes of the CP.

4.3. PLL Testbench

Once all the blocks that compose the PLL have been designed, a testbench has been built. Here,
the netlist generated by the layout parasitic extraction has been used for all the blocks (CP, PFD, VCO,
Loop Filter, and FD), while the connections between the blocks are still ideal. On this testbench,
a Transient simulation has been performed to analyze the locking behavior and the Phase Noise. As
for the simulations presented in Section 3.1.3, the Transient Noise Analysis Option has been used for
the Phase Noise evaluation.

4.3.1. Locking Process

The locking process in the typical technology corner at 27 ◦C is shown in Figure 20. The lock
time is 1 μs, which is twice that expected from the ADS behavioral model. This is mainly due to two
factors: (1) the non-linearity of the VCO’s characteristic, and (2) the cycle slipping. In the ADS model,
the VCO was approximated to have a linear characteristic with 2 GHz/V gain, but this is true only in a
small range of frequencies. For the other frequencies, a smaller gain and consequently, a smaller loop
bandwidth and damping factor results, which leads to a higher lock time. Moreover, as can be seen
from the locking process, at the beginning of the process, two cycle slips are seen. This is due to the
RESET state of the PFD necessary to cancel the dead zone. When the phase difference between the
two PFD’s inputs is high enough that the new edge of the input ahead comes while the PFD is in its
RESET state, this edge is not seen, and the PFD goes into the wrong state with respect to the ideal one.
From that, it recovers the correct state when the cycle slip happens, but this leads to an enlargement of
the lock time.

4.3.2. Noise Simulations

In Figure 21, the resulting post-layout Phase Noise for the whole PLL is shown. It is below
−85 dBc/Hz, which is in line with that of the VCO. The largest contribution is due to the CP/PFD at low
and middle frequencies, while the VCO’s noise is predominant at higher frequencies, as expected from
the theory [19].

Since in digital design, a temporal characterization of noise is usually preferred, the absolute
Jitter has been measured, resulting in a peak-to-peak value of 8.8 ps and an RMS (root mean square)
value of 2.03 ps (typical corner, considering 12,500 cycles, which in terms of Phase Noise means a
bandwidth between 500 kHz and 1 GHz). Absolute Jitter is really important for communications
systems, since it measures how much an edge of the clock is in a different position from the ideal one.
For other applications, Period Jitter is of most interest, since it measures the difference between a clock
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period and the average one. Therefore, Period Jitter has been also measured, in the typical corner as
well, resulting in a peak-to-peak of 96 fs and an RMS value of 14.744 fs.

 
Figure 20. Post-layout locking process.

 

Figure 21. Post-layout phase noise.

5. Test Chip

To prototype the designed PLL, a block view of a possible test chip has been developed and
is shown in Figure 22. As can be seen, it consists of a whole PLL, which can be recognized at the
bottom, and a duplicate of the PFD and CP. The main idea is to test every block separately: there is the
possibility of giving the inputs from an external source, and all the outputs are outputs of the test chip.
Since the PFD/CP’s area consumption is low, duplicating these blocks gives the possibility of testing
them separately, without adding multiplexer and buffer inside the loop, disturbing the PLL’s operation.
The FD is not duplicated because it consists of three stages that need bias currents. This means that at
least 4 pads are necessary for it and, therefore, duplicating it would lead to a too high requirement
in terms of pads. Moreover, in Figure 23, a draft of the floor plan is shown: the chip’s area to be
fabricated using a Europractice Multi Project Wafer is 1 mm2. As can be seen from the figure, the whole
PLL occupies an area of about 0.09 mm2 (the remaining area and pads are used for other designs not
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discussed in this paper). It is to be noted that the design of the pads is inherited from a previous design,
where they were tested also with respect to resistance to radiation effects [24].

Figure 22. Block schematic of the test chip.

 
Figure 23. Draft floor plan of the test chip.

Although the figures and tables proposed in this paper refer to post-layout simulation results,
the experience of our research group from previous designs in the same 65 nm TSMC technology,
using the CAD (Computer-Aided Design) design environment and targeting similar operating
frequencies, has proven that there is a coherent alignment between post-layout simulations and
experimental measurements. In the next step, when the measures of the prototyped chip will be
performed, a complete assessment of the results accuracy will be done.

6. Conclusions and Future Work

The design of a PLL for the new ESA Spacefibre standard has been presented in this paper.
The work was carried out in ADS for the modeling activity and Cadence Virtuoso for the design
activity. In particular, the design of a TMR PFD, a CP, and a passive Loop Filter has been presented,
starting from an already designed 6.25 GHz rad-hard VCO in 65 nm technology. The modeling activity
has shown that the PLL can be completely integrated on-chip, with a Loop Filter area consumption
of only 6000 μm2. The PLL is able to generate three output signals at 6.25, 3.125, and 1.5625 GHz
with a gain margin of 86 dB and phase margins of 50◦. The Phase Noise of the PLL, considering the
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higher frequency output, is below −85 dBc/Hz @ 1 MHz, and hence, it is in line with that of the VCO.
The PLL power consumption in the locked state is about 10.24 mW. The PFD/CP is dead-zone free
and shows a current matching below 2 μA (5% of the nominal CP’s current value) in the worst case of
process–temperature corners. Moreover, the PLL is highly immune to SEE on the PFD, while it is able
to relock in less than 600 ns for an SEE on the CP. Finally, an area estimation has been done considering
also the VCO, resulting in a total area of 0.09 mm2.

In Table 2, a comparison with the state-of-the-art rad-hard PLLs is performed. In [15], a CP-PLL in
65 nm technology for high-energy physics is presented. It generates a tunable output frequency in the
range of 4.8–6 GHz, which is slightly lower the SpaceFibre standard. As reported in [15], the CP-PLL
was not designed to be SEE tolerant; indeed, a simple PFD was used in the PLL loop. Instead, in this
work, a TMR PFD was implemented to increase the hardness against SEE. In [13], all the digital logic
of the CP-PLL is implemented using a TMR approach, but its low-frequency range is not suitable for
SpaceFibre application. In [25], the design of a rad-hard CP-PLL that is able to generate an output
frequency in the range 1.17-3.16 GHz is reported. It bases its radiation hardness on the use of a Silicon
On Sapphire (SOS) substrate. Indeed, the SOS having a resistive sapphire in the substrate reduces the
creation of electron–hole pairs and their migration in the device bulk in the case of energetic ion strikes.
An example of radiation hardness improvement achieved using a different technology is presented
also in [26], where a high-frequency CP-PLL is designed in 250 nm SiGe technology. Instead, this work
presents the design of a PLL that is suitable for space applications in standard silicon CMOS technology,
whose radiation hardness is achieved by TMR and layout techniques.

Table 2. Comparison with the state-of-the-art Rad-Hard PLLs. SOS: Silicon On Sapphire.

This Work [13] * [15] * [25] * [26] *

Technology 65 nm CMOS 65 nm CMOS 65 nm CMOS 250 nm SOS 250 nm SiGe

Frequency Range (GHz) 5.2–6.4 2.2–3.2 4.8–6 1.17–3.16 17.5–18.9
Power Consumption (mW) 10.24 11.7 18 102.5 -

Area (mm2) 0.09 - 0.124 0.52 5
Absolute Jitter (ps) (RMS) 2.03 0.345 3.23 - -

Period Jitter (fs) (RMS) 14.74 - 3550 - -
Phase noise @ 1MHz (dBc/Hz) −85 - - −100 −110

* measured.

The next step is test chip fabrication to prototype the proposed PLL solution. The design has been
submitted to tape out through MPW (Multi Project Wafer), and hence, the experimental verification of
the fabricated prototype is part of the future roadmap.
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Abstract: This paper presents the Edge Learning Machine (ELM), a machine learning framework for
edge devices, which manages the training phase on a desktop computer and performs inferences on
microcontrollers. The framework implements, in a platform-independent C language, three supervised
machine learning algorithms (Support Vector Machine (SVM) with a linear kernel, k-Nearest Neighbors
(K-NN), and Decision Tree (DT)), and exploits STM X-Cube-AI to implement Artificial Neural
Networks (ANNs) on STM32 Nucleo boards. We investigated the performance of these algorithms on
six embedded boards and six datasets (four classifications and two regression). Our analysis—which
aims to plug a gap in the literature—shows that the target platforms allow us to achieve the same
performance score as a desktop machine, with a similar time latency. ANN performs better than
the other algorithms in most cases, with no difference among the target devices. We observed that
increasing the depth of an NN improves performance, up to a saturation level. k-NN performs
similarly to ANN and, in one case, even better, but requires all the training sets to be kept in the
inference phase, posing a significant memory demand, which can be afforded only by high-end edge
devices. DT performance has a larger variance across datasets. In general, several factors impact
performance in different ways across datasets. This highlights the importance of a framework like
ELM, which is able to train and compare different algorithms. To support the developer community,
ELM is released on an open-source basis.

Keywords: machine learning; edge computing; embedded devices; edge analytics; ANN; k-NN;
SVM; decision trees; ARM; X-Cube-AI; STM32 Nucleo

1. Introduction

The trend of moving computation towards the edge is becoming ever more relevant, leading
to performance improvements and the development of new field data processing applications [1].
This computation shift from the cloud (e.g., [2]) to the edge has advantages in terms of response
latency, bandwidth occupancy, energy consumption, security and expected privacy (e.g., [3]). The huge
amount, relevance and overall sensitivity of the data now collected also raise clear concerns about their
use, as is being increasingly acknowledged (e.g., [4]), meaning that this is a key issue to be addressed
at the societal level.

The trend towards edge computing also concerns machine learning (ML) techniques, particularly
for the inference task, which is much less computationally intensive than the previous training phase.
ML systems “learn” to perform tasks by considering examples, in the training phase, generally without
being programmed with task-specific rules. When running ML-trained models, Internet of Things
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(IoT) devices can locally process their collected data, providing a prompter response and filtering the
amount of bits exchanged with the cloud.

ML on the edge has attracted the interest of industry giants. Google has recently released the
TensorFlow Lite platform, which provides a set of tools that enable the user to convert TensorFlow
Neural Network (NN) models into a simplified and reduced version, then run this version on edge
devices [5,6]. EdgeML is a Microsoft suite of ML algorithms designed to work off the grid in
severely resource-constrained scenarios [7]. ARM has published an open-source library, namely Cortex
Microcontroller Software Interface Standard Neural Network (CMSIS-NN), for Cortex-M processors,
which maximizes NN performance [8]. Likewise, a new package, namely X-Cube-AI, has been released
for implementing deep learning models on STM 32-bit microcontrollers [9].

While the literature is increasingly reporting on novel or adapted embedded machine learning
algorithms, architectures and applications, there is a lack of quantitative analyses about the
performance of common ML algorithms on state-of-the-art mainstream edge devices, such as ARM
microcontrollers [10]. We argue that this has limited the development of new applications and the
upgrading of existing ones through an edge computing extension.

In this context, we have developed the Edge Learning Machine (ELM), a framework that performs
ML inference on edge devices using models created, trained, and optimized on a Desktop environment.
The framework provides a platform-independent C language implementation of well-established ML
algorithms, such as linear Support Vector Machine (SVM), k-Nearest Neighbors (k-NN) and Decision
Tree. It also supports artificial neural networks by exploiting the X-Cube-AI package for STM 32
devices [9]. We validated the framework on a set of STM microcontrollers (families F0, F3, F4, F7, H7,
and L4) using six different datasets, to answer a set of ten research questions exploring the performance
of microcontrollers in typical ML Internet of Things (IoT) applications. The research questions concern
a variety of aspects, ranging from inference performance comparisons (also with respect to a desktop
implementation) to training time, and from pre-processing to hyperparameter tuning. The framework
is released on an open-source basis (https://github.com/Edge-Learning-Machine), with a goal to support
researchers in designing and deploying ML solutions on edge devices.

The remainder of this paper is organized as follows: Section 2 provides background information
about the ML techniques that are discussed in the manuscript. Section 3 describes the related work
in this field. Section 4 shows the implemented framework and the supported algorithms. Section 5
presents the extensive experimental analysis we conducted by exploiting the framework. Finally,
Section 6 draws conclusions and briefly illustrates possible future research directions.

2. Background

The Edge Learning Machine framework aims to provide an extensible set of algorithms to perform
inference on the edge. The current implementation features four well-established supervised learning
algorithms, which we briefly introduce in the following subsections. They all support both classification
and regression problems.

2.1. Artificial Neural Network (ANN)

An Artificial Neural Network is a model that mimics the structure of our brain’s neural network.
It consists of a number of computing neurons connected to each other in a three-layer system; one
input layer, several hidden layers, and one output layer. Artificial Neural Networks (ANNs) can model
complex and non-linear or hidden relationships between inputs and outputs [11]. This one of the most
powerful and well-known ML algorithms, which is used in a variety of applications, such as image
recognition, natural language processing, forecasting, etc.

2.2. Linear Kernel Support Vector Machine (SVM)

The SVM algorithm is a linear classifier that computes the hyperplane that maximizes the
distance from it to the nearest samples of the two target classes. It is a memory-efficient inference
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algorithm and is able to capture complex relationships between data points. The downside is that
the training time increases with huge and noisy datasets [12]. While the algorithm deals well with
non-linear problems, thanks to the utilization of kernels that map the original data in higher dimension
spaces, we implemented only the original, linear kernel [13] for simplicity of implementation into the
edge device.

2.3. K-Nearest Neighbor (k-NN)

k-NN is a very simple algorithm based on feature similarity that assigns, to a sample point,
the class of the nearest set of previously labeled points. k-NN’s efficiency and performance depends
on the number of neighbors K, the voting criterion (for K > 1) and the training data size. The training
phase produces a very simple model (the K parameter), but the inference phase requires exploring the
whole training set. Its performance is typically sensitive to noise and irrelevant features [12,14].

2.4. Decision Tree (DT)

This is a simple and useful algorithm, which has the advantage of clearly exposing the criteria
of decisions that are made. In building the decision tree, at each step, the algorithm splits data so
as to maximize the information gain, thus creating homogeneous subsets. The typical information
gain criteria are Entropy and Gini. DT is able to deal with linearly inseparable data and can handle
redundancy, missing values, and numerical and categorical types of data. It is negatively affected
by high dimensionality and high numbers of classes, because of error propagation [12,15]. Typical
hyperparameters that are tuned in the model selection phase concern regularization and typically
include depth, the minimum number of samples for a leaf, and the minimum number of samples for a
split, the maximum number of leaf nodes and the splitter strategy (the best one, which is the default,
or a random one, which is typically used for random forests), etc. Several DTs can be randomly built
for a problem, in order to create complex but high-performing random forests.

3. Related Work

A growing number of articles are being published on the implementation of ML on embedded
systems, especially with a focus on the methodology of moving computation towards the edge.
Zhang et al. [16] presented an object detector, namely MobileNet-Single Shot Detector (SSD), which was
trained using a deep convolutional neural network with the popular Caffe framework. The pre-trained
model was then deployed on NanoPi2, an ARM board developed by FriendlyARM, which uses
Samsung Cortex-A9 Quad-Core S5P4418@1.4GHz SoC and 1 GB 32bit DDR3 RAM. MobileNet-SSD
can run at 1.13FPS.

Yazici et al. [17] tested the ability of a Raspberry Pi to run ML algorithms. Three algorithms
were tested, Support Vector Machine (SVM), Multi-Layer Perceptron, and Random Forests, with an
accuracy above 80% and a low energy consumption. Fraunhofer Institute for Microelectronic Circuits
and Systems have developed Artificial Intelligence for Embedded Systems (AIfES), a library that can
run on 8-bit microcontrollers and recognize handwriting and gestures without requiring a connection
to the cloud or servers [18]. Cerutti et al. [19] implemented a convolutional neural network on STM
Nucleo-L476RG for people detection using CMSIS-NN, which is an optimized library that allows for
the deployment of NNs on Cortex-M microcontrollers. In order to reduce the model size, weights are
quantized to an 8-bit fixed point format, which slightly affects the performance. The network fits in
20 KB of flash and 6 KB of RAM with 77% accuracy.

Google has recently released Coral Dev Board, which includes a small low power
Application-Specific Integrated Circuit (ASIC) called Edge TPU, and provides high-performance
ML inferencing without running the ML model on any kind of server. Edge TPU can run TensorFlow
Lite, with a low processing power and high performance [20]. There are a few application
programming interfaces (APIs) in the Edge tencor processing unit (TPU) module that perform
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inference (ClassificationEngine) for image classification, for object detection (DetectionEngine) and
others that perform on-device transfer learning [21].

Microsoft is developing EdgeML, a library of machine learning algorithms that are trained on the
cloud/desktop and can run on severely resource-constrained edge and endpoint IoT devices (also with
2 KB RAM), ranging from the Arduino to the Raspberry Pi [7]. They are currently releasing tree- and
k-NN-based algorithms, called Bonsai and ProtoNN, respectively, for classification, regression, ranking
and other common IoT tasks. Their work also concerns recurrent neural networks [22]. A major
achievement concerns the translation of floating-point ML models into fixed-point code [23], which is,
however, not the case in state-of-the-art mainstream microcontrollers.

The Amazon Web Services (AWS) IoT Greengrass [24] supports machine learning inference locally
on edge devices. The user could use his own pre-trained model or use models that are created, trained,
and optimized in Amazon SageMaker (cloud), where massive computing resources are available.
AWS IoT Greengrass features lambda runtime, a message manager, resource access, etc. The minimum
hardware requirements are 1 GHz of computing speed and 128 MB of RAM.

Ghosh et al. [25] used autoencoders at the edge layer that are capable of dimensionality reduction
to reduce the required processing time and storage space. The paper illustrates three scenarios. In the
first one, data from sensors are sent to edge nodes, where data reduction is performed, and machine
learning is then carried out in the cloud. In the second scenario, encoded data at the edge are decoded
in the cloud to obtain the original amount of data and then perform machine learning tasks. Finally,
pure cloud computing is performed, where data are sent from the sensors to the cloud. Results show
that an autoencoder at the edge reduces the number of features and thus lowers the amount of data
sent to the cloud.

Amiko’s Respiro is a smart inhaler sensor featuring an ultra-low-power ARM Cortex-M
processor [26]. This sensor uses machine learning to interpret vibration data from an inhaler.
The processor allows for the running of ML algorithms where the sensor is trained to recognize
breathing patterns and calculate important parameters. The collected data are processed in an
application and feedback is provided.

Magno et al. [27] presented an open-source toolkit, namely FANNCortexM. It is built upon the Fast
Artificial Neural Network (FANN) library and can run neural networks on the ARM Cortex-M series.
This toolkit takes a neural network trained with FANN and generates code suitable for low-power
microcontrollers. Another paper by Magno et al. [28] introduces a wearable multi-sensor bracelet for
emotion detection that is able to run multilayer neural networks. In order to create, train, and test
the neural network, the FANN library is used. To deploy the NN on the Cortex-M4F microcontroller,
the above-mentioned library needs to be optimized using CMSIS and TI-Driverlib libraries.

FidoProject is a C++ machine learning library for embedded devices and robotics [29].
It implements a neural network for classification and other algorithms such as Reinforcement Learning.
Alameh et al. [30] created a smart tactile sensing system by implementing a convolutional neural
network on various hardware platforms like Raspberry Pi 4, NVidia Jetson TX2, and Movidius NCS2
for tactile data decoding.

As recent works used knowledge transfer (KT) techniques to transfer information from a large
neural network to a small one in order to improve the performance of the latter, Sharma et al. [31]
investigated the application of KT to edge devices, achieving good results by transferring knowledge
from both the intermediate layers and the last layer of the teacher (original model) to a shallower
student (target).

While most of the listed works use powerful edge devices (e.g., Cortex-A9, Raspberry PI) to test
algorithms, especially NNs, there is a lack of performance analysis of common ML algorithms on
mainstream microcontrollers. We intend to plug this gap by providing an open-source framework that
we used for an extensive analysis.
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4. Framework and Algorithm Understanding

The proposed Edge Learning Machine (EML) framework consists of two modules, one working on
the desktop (namely DeskLM, for training and testing), and one on the edge (MicroLM, for inferencing
and testing), as sketched in Figure 1.

Figure 1. Block diagram of the Edge Learning Machine system architecture.

1. Desktop: the Desk-LM module is implemented in python and works on a PC to identify the
best models for an input dataset. The current implementation involves four algorithms for both
classification and regression: artificial neural networks (ANN), linear support vector machines
(SVM), K-Nearest Neighbors (k-NN), and Decision Tree (DT) algorithms. For each algorithm,
Desk-LM identifies the best model through hyperparameter tuning, as is described later in Table
2. Desk-LM relies on the scikit-learn python libraries [32] and exploits the TensorFlow [5] and
Keras [33] packages for ANNs;

2. Edge: the MicroLM module reads and executes the models generated by Desk-LM. It is
implemented in platform-independent C language (for linear kernel SVM, k-NN, DT) and
can run on both microcontrollers and desktops, in order to perform inferences. ANNs are
deployed using the X-Cube-AI expansion package for STM32 microcontrollers (TensorFlow and
Keras on desktops).

The tool has been designed to support a four-step workflow, as shown in Figure 2.

Figure 2. Supported workflow.
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1. Preparation: in this first phase, the user provides the dataset and defines the range of the
parameters to be investigated for each algorithm. The parameters are listed in Tables 1 and 2
(common and algorithm-specific, respectively—these common parameters are used by all the
algorithms, even if they have different values);

2. Preprocessing: in this phase, data goes through the scaling and dimensionality reduction steps,
which are important in order to allow optimal processing by the prediction algorithms [34].
The type of algorithm used for this step is one of the common parameters set by the user (Table 1);

3. Model generation: in this phase, all the configurations resulting from combining the values of the
user-specified parameters (both common and algorithm-specific; see Tables 1 and 2, respectively)
are evaluated through cross-validation, and their k values are, again, used as the parameters
(Table 1). Most of the parameters (the algorithm’s hyperparameters) can be assigned a list of
values, each one of which is evaluated (scikit-learn exhaustive grid search), in order to allow for
the selection of the best values. At the end of this step, the best model is saved in the disk, to
be deployed on the edge. Desk-LM also saves the preprocessing parameters and, if needed for
performance assessment purposes, the testing set (or a reduced version of it). All these files are
then compiled in Micro-LM for the processing of data on the edge;

4. Deployment: in this final phase, the MicroLM module loads the model prepared on the desktop.
The deployment process for our tests on microcontrollers is done using the STM32CubeIDE
integrated development environment, which exploits the X-Cube-AI pack for ANNs. The software
output by our framework supports both single-sample inference and whole dataset inference,
for performance analysis purposes. In the latter case, Micro-LM exploits the testing set file
produced by Desk-LM.

Table 1. Common configuration parameters.

Common Parameters

Algorithm type (SVM, k-NN, DT, ANN)
Dataset

Content format (dataset start and end column, target column, etc.)
Number of classes (if classification)

Testing set size
Regression (True or False)

PCA (a specific number of features or MLE algorithm)
Normalization (standard or minmax)

K-fold cross-validation
Scoring metrics (accuracy, R2)

Table 2. Algorithm-specific configuration parameters.

Algorithm-Specific Configuration

ANN Linear SVM k-NN DT

Layer Shape C K (number of neighbors) Splitting criterion
Activation Function Training set size for targets max_depth

Dropout min_samples_split
Loss metrics min_samples_leaf

Number of epochs max_leaf_nodes
Batch size

Number of repeats

As anticipated, the current version of the EdgeLM framework features four well-established
supervised learning algorithms, of which, in the following subsections, we briefly describe the
implementation on both the desktop and edge side.
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4.1. Artificial Neural Network (ANN)

In Desk-LM, ANNs are implemented through the TensorFlow [5] and its wrapper Keras [33]
packages. As an optimizer, we use adaptive moment estimation (‘adam’) [35]. At each execution run,
the DeskLM module performs the hyperparameter tuning by analyzing different ranges of parameters
(Table 1 and first column of Table 2) specified by the user. The ANN model hyperparameters include
layer shape (number and size of input, hidden, and output layers), activation function for the hidden
layers (Rectified Linear Unit (ReLU), or Tangent Activation Function (Tanh)), number of epochs,
batch size, number of repeats (in order to reduce result variance), and dropout rate. The best selected
model is then saved in the high-efficiency Hierarchical Data Format 5 (HDF5) compressed format [36].

For the edge implementation, DeskLM relies on the STM X-Cube-AI expansion package, which is
supported by STM32CubeIDE, and allows for its integration in the application of a trained Neural
Network model. The package offers the possibility of compressing models up to eight times, with an
accuracy loss which is estimated by the package. The tool also provides an estimation of the complexity,
through the Multiply and Accumulate Operation (MACC) figure, and of the Flash and RAM memory
footprint [37].

4.2. Linear Support Vector Machine (SVM)

As anticipated, for the simplicity of the implementation of the edge device, we implemented only
the original, linear kernel SVM [13]. The linear model executes the y =w*x + b function, where w is
the support vector and b is the bias. Model selection concerns the C regularization parameter [38]
(Table 2). As an output model, Desk-LM generates a C source file containing the w and b values.

4.3. K-Nearest Neighbor (KNN)

For simplicity of implementation, we used a Euclidean distance criterion and majority voting
(for K > 1). The training phase produces a very simple model (the K parameter), but deployment also
requires the availability of the whole training set (Table 2).

4.4. Decision Tree (DT)

In order to cope with the limited resources of edge devices, our framework allows us to analyze
different tree configurations in terms of depth, leaf size, and number of splits. Concerning the splitting
criterion, for simplicity of implementation on the target microcontrollers, we implemented only the
“Gini” method.

5. Experimental Analysis and Result

We conducted the experimental analysis using six ARM Cortex-M microcontrollers produced
by STM, namely F091RC, F303RE, F401RE, F746ZG, H743ZI2, and L452RE. The F series represents a
wide range of microcontroller families in terms of execution time, memory size, data processing and
transfer capabilities [39], while the H series provides higher performance, security, and multimedia
capabilities [40]. L microcontrollers are ultra-low-power devices used in energy-efficient embedded
systems and applications [41]. All listed MCUs have been used in our experiments with their
STM32CubeIDE default clock values, that could be increased for a faster response. Table 3 synthesizes
the main features of these devices. In the analysis, we compare the performance of the embedded
devices with that of a desktop PC hosting a 2.70 GHz Core i7 processor, with 16 GB RAM and
8 MB cache.

In order to characterize the performance of the selected edge devices, we have chosen six
benchmark datasets to be representative of IoT applications (Table 4). These datasets represent different
application scenarios: binary classification, multiclass classification, and regression. University of
California Irvine (UCI) heart disease is a popular medical dataset [42]. Virus is a dataset developed by
the University of Genova to deal with data traffic analysis [43–45]. Sonar represents the readings of
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a sonar system that analyses materials, distinguishing between rocks and metallic material [46,47].
Peugeot 207 contains various parameters collected from cars, which are used to predict either the road
surface or the traffic (two labels were considered in our studies: label_14: road surface and label_15:
traffic) [48]. The EnviroCar dataset records various vehicular signals through the onboard diagnostic
(OBDII) interface to the Controller Area Network (CAN) bus [49–51]. The air quality index (AQI)
dataset measures air quality in Australia during a period of one year [52]. Before processing, all data
were converted to float32, according to the target execution platform.

Table 3. Microcontroller specifications.

Microcontroller Flash Memory SRAM
Processor Speed

Used (MHz)
Processor Cost ($) Board Cost ($)

F091RC 256 Kb 32 Kb 48 (max: 48) 4.8 10.32
F303RE 512 Kb 80 Kb 72 (max: 72) 7.72 10.32
F401RE 512 Kb 96 Kb 84 (max: 84) 6.43 13
F746ZG 1 Mb 340 Kb 96 (max: 216) 12.99 23
H743ZI2 2 Mb 1 Mb 96 (max: 480) 13.32 27
L452RE 512 Kb 160 Kb 80 (max: 80) 7.03 14

Table 4. Dataset specifications.

Dataset Samples Features Type

Heart 303 × 13 Binary Classification
Virus 24736 × 13 Binary Classification
Sonar 209 × 60 Binary Classification

Peugeot 207 * 8615 × 14 Multiclass Classification
EnviroCar 47077 × 5 Regression

AQI 367 × 8 Regression

* For Peugeot 207, we considered two different labels.

Our analysis was driven by a set of questions, synthesized in Table 5, aimed at investigating
the performance of different microcontrollers in typical ML IoT contexts. We are also interested in
comparing the inference performance of microcontrollers vs. desktops. The remainder of this section
is devoted to the analysis of each research question. In a few cases, when the comparison is important,
results are reported for every tested target platform. On the other hand, in most of the cases, when not
differently stated, we chose the F401RE device as the reference for the embedded targets.

Table 5. Research questions.

Research Questions (RQ) Description

1. Performance Score (accuracy, R2) and inference time
2. Scaling Effect of scaling data
3. PCA Effect of dimensionality reduction on score
4. ANN Layer Configuration Different layer shapes (depth and thickness)
5. ANN Activation Function Effect of different neuron activation functions
6. ANN Batch Size Effect of batch size on score and time
7. ANN Epochs Effect of number of epochs in training
8. ANN Dropout Effect of a regularization technique to avoid overfitting

9. SVM Regularization Training Time SVM training time with different values of the “C”
regularization parameter

10. DT Parameters Tuning the decision tree
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5.1. Performance

The first research question concerns the performance achieved both on desktop and on edge.
For SVM, k-NN and DT on desktops, we report the performance of both our C implementation
and the python scikit-learn implementation, while for ANN we have only the TensorFlow Keras
implementation. The following set of tables show, for each algorithm, the obtained score, which is
expressed in terms of accuracy (in percent, for classification problems), or coefficient of determination,
R-Squared (R2, for regression problems). R2 is the proportion of the variance in the dependent variable
that is predictable from the independent variable(s). The best possible score for R2 is 1.0. In scikit-learn,
R2 can assume negative values, because the model can be arbitrarily worse. The second performance
we consider is the inference time.

In the following (Tables 6–13), we report two tables for each algorithm. The first one provides the
best performance (in terms of score) obtained in each dataset. The second shows the hyperparameter
values of the best model.

Table 6. Artificial Neural Network (ANN) performance.

ANN

DatasetDataset Performance Desktop MCUs

Type Name Python F0 F3 F4 F7 H7 L4

Binary Heart Accuracy 84% * 84% 84% 84% 84% 84%
Inf. Time <1 ms * 3 ms 1 ms <1 ms <1 ms 1 ms

Virus Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 5 ms 3 ms 1 ms 1 ms 4 ms

Sonar Accuracy 87% * 87% 87% 87% 87% 87%
Inf. Time <1 ms * 16 ms 8 ms 3 ms 3 ms 10 ms

Multiclass Peugeot_Target 14 Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 2 ms 1 ms <1 ms <1 ms 1 ms

Peugeot_Target 15 Accuracy 99% * 99% 99% 99% 99% 99%
Inf. Time <1 ms * 18 ms 10 ms 4 ms 4 ms 12 ms

Regression
Enviro Car

R2 0.99 * 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 ms * <1 ms <1 ms <1 ms <1 ms <1 ms

AQI R2 0.86 * 0.86 0.86 0.86 0.86 0.86
Inf. Time <1 ms * 4 ms 2 ms 1 ms 1 ms 3 ms

*: F0 not supported by the STM X-Cube-AI package.

Table 7. ANN corresponding configurations.

Dataset
Best Configuration (Table 1, Table 2)

AF LC PCA Dropout Scaling

Heart Tanh [500] 30% 0 StandardScaler
Virus Tanh [100,100,100] None 0 StandardScaler
Sonar ReLU [300,200,100,50] 30% 0 MinMaxScaler

Peugeot_Target 14 ReLU [500] None 0 StandardScaler
Peugeot_Target 15 Tanh [300,200,100,50] None 0 StandardScaler

EnviroCar Tanh [50] mle 0 MinMaxScaler
AQI ReLU [300,200,100,50] None 0 MinMaxScaler

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

1. ANN:

Remarkably, all the embedded platforms were able to achieve the same score (accuracy or R2) as
the desktop python implementation. None of the chosen datasets required the compression of the
models by the STM X-Cube-AI package. ANN performed well in general, except for the Heart and
Virus datasets, where the accuracy is under 90%. The inference time is relatively low in both desktop
and MCUs (with similar values, in the order of ms and sometimes less). However, there is an exception
in some cases—especially for Peugeot_Target_15 and Sonar—when using the F3 microcontroller.
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Table 8. Linear Support Vector Machine (SVM) performance.

Linear SVM

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Binary Heart Acc. 84% 84% 84% 84% 84% 84% 84% 84%
Inf. Time <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Virus Acc. 94% 94% 94% 94% 94% 94% 94% 94%
Inf. Time <1 ms <1 ms 1 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Sonar Acc. 78% 78% 78% 78% 78% 78% 78% 78%
Inf. Time <1 ms <1 ms 3 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Multiclass Peugeot_Target 14 Acc. 91% 91% 91% 91% 91% 91% 91% 91%
Inf. Time <1 ms <1 ms 2 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Peugeot_Target 15 Acc. 90% 90% 90% 90% 90% 90% 90% 90%
Inf. Time <1 ms <1 ms 2 ms <1 ms <1 ms <1 ms <1 ms <1 ms

Regress EnviroCar R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 ms <1 ms 5 ms 3 ms <1 ms <1 ms <1 ms <1 ms

AQI R2 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Inf. Time <1 ms <1 ms 5 ms 3 ms <1 ms <1 ms <1 ms <1 ms

Table 9. Linear SVM corresponding configuration.

Dataset
Best Configuration (Table 1, Table 2)

C PCA Scaling

Heart 0.1 30% StandardScaler
Virus 1 None StandardScaler
Sonar 0.01 None StandardScaler

Peugeot_Target 14 0.1 mle StandardScaler
Peugeot_Target 15 10 mle StandardScaler

EnviroCar 0.1 None StandardScaler
AQI 1 mle StandardScaler

SVM regularization parameter (C), Principal Component Analysis (PCA).

Table 10. k-Nearest Neighbors (k-NN) performance.

k-NN

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Bin. Heart Acc. 83% 83% 83% 83% 83% 83% 83% 83%
Inf Time <1 ms <1 ms 366 ms 71 ms 7 ms 4 ms 4 ms 8 ms

Virus Acc. 99% 99% 95% 95% 95% 95% 95% 95%
Inf Time <1 ms <1 ms 199 ms 38 ms 4 ms 3 ms 3 ms 4 ms

Sonar Acc. 92% 92% 76% 92% 92% 92% 92% 92%
Inf Time <1 ms <1 ms 329 ms 140 ms 14 ms 10 ms 10 ms 14 ms

Multi
class

Peugeot_Target 14 Acc. 98% 98% 88% 88% 88% 88% 98% 88%
Inf Time <1 ms <1 ms 205 ms 39 ms 4 ms 3 ms 200 ms 4 ms

Peugeot_Target 15 Acc. 97% 97% 86% 86% 86% 86% 97% 86%
Inf Time <1 ms <1 ms 204 ms 39 ms 4 ms 3 ms 200 ms 4 ms

Regr Enviro
Car

R2 0.99 0.99 0.97 0.97 0.97 0.97 0.97 0.97
Inf Time <1 ms <1 ms 125 ms 30 ms 3 ms 2 ms 2 ms 4 ms

AQI R2 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73
Inf Time <1 ms <1 ms 414 ms 85 ms 9 ms 6 ms 6 ms 10 ms

2. Linear SVM:

As with ANN, for the linear SVM, we obtained the same score across all the target platforms, and
relatively short inference times (again, with almost no difference between desktop and microcontroller
implementations). However, we obtained significantly worse results than ANN for more than half of the
investigated datasets. Table 9 stresses the importance of tuning the C regularization parameter, which
implies the need for longer training times, particularly in the absence of normalization. We explore
this in more depth when analyzing research question 9.
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Table 11. k-NN corresponding configurations.

Dataset
Best Configuration (Table 1, Table 2)

K PCA Scaling Notes

Heart 10 mle StandardScaler This configuration fits all targets
Virus 1 None StandardScaler In all MCUs K = 1, training set cap = 100
Sonar 1 None MinMaxScaler In F0 K = 1, training set cap = 50

Peugeot_Target 14 1 mle MinMaxScaler In F0, F3, F4, F7, L4 K = 4, training set cap = 100
Peugeot_Target 15 1 mle MinMaxScaler In F0, F3, F4, F7, L4 K = 3, training set cap = 100

EnviroCar 3 mle MinMaxScaler In all MCUs K = 2, training set cap = 100
AQI 1 mle StandardScaler This configuration fits all targets

Number of neighbors (K), Principal Component Analysis (PCA).

Table 12. Desktop (DT) performance.

DT

Dataset Score Desktop MCUs

Type Name Python C F0 F3 F4 F7 H7 L4

Bin. Heart Accuracy 78% 78% 78% 78% 78% 78% 78% 78%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Virus Accuracy 99% 99% 99% 99% 99% 99% 99% 99%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Sonar Accuracy 76% 76% 76% 76% 76% 76% 76% 76%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Multi
class

Peugeot_Target 14 Accuracy 99% 99% 99% 99% 99% 99% 99% 99%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Peugeot_Target 15 Accuracy 98% 98% 98% 98% 98% 98% 98% 98%
Inf. Time <1 ms <1 <1 <1 <1 <1 <1 <1

Regr Enviro
Car

R2 0.99 0.99 0.99 0.99 0.99 0.99 0.99 0.99
Inf. Time <1 <1 2 2 <1 <1 <1 <1

AQI R2 0.65 0.65 0.65 0.65 0.65 0.65 0.65 0.65
Inf. Time <1 ms <1 2 2 <1 <1 <1 <1

Table 13. DT corresponding configurations. Time is in ms (omitted for reasons of space).

Dataset

Best Configuration (Table 1, Table 2)

Max
Depth

Min Sample
Split

Min Sample
Leaf

Max Leaf
Nodes

PCA Notes

Heart 7 2 10 80 mle *
Virus None 5 1 80 None *
Sonar 7 2 10 80 mle *

Peugeot_Target 14 None 2 3 80 None *
Peugeot_Target 15 None 2 1 200 None *

EnviroCar None 2 1 5000 None

Max leaf
nodes = 1000
in F3, F4, L4;

max leaf
nodes = 200

for F0
AQI None 10 3 80 None *

Principal Component Analysis (PCA). * This configuration fits all targets.

3. k-NN:

Notably, in some cases, the training set cap needed to be set to 100, because the Flash size was a
limiting factor for some MCUs. Hence, for different training sets, we also had a different number of
neighbors (K). Accordingly, the accuracy is also affected by the decrease in training set size, since the
number of examples used for training is reduced. This effect is apparent for Sonar with an F0 device.
This dataset has sixty features, much more than the others (typically 10–20 features). The inference time
varies a lot among datasets, microcontrollers and in comparison with the desktop implementations.
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This is because the k-NN inference algorithm always requires the exploration of the whole training set,
and thus its size plays an important role in performance, especially for less powerful devices. In the
multiclass problems, k-NN exploits the larger memory availability of H7 well, outperforming SVM,
and reaching a performance level close to that of ANN. It is important to highlight that the Sonar
labels were reasonably well predicted by k-NN compared to ANN and SVM (92% vs. 87% and 78%).
In general, k-NN achieves performance levels similar to ANN, but requires a much larger memory
footprint, which is possible only on the highest-end targets.

4. DT:

When processing the EnviroCar dataset, the DT algorithm saturated the memory in most of
the targets. We had to reduce the leaf size for all MCU families, apart from F7 and H7. However,
this reduction did not significantly reduce the R2 value. In addition, DT performs worse than the
others in two binary classification datasets, Heart and Sonar, and in the AQI regression dataset as
well, but performs at the same level as the ANNs for the multiclass datasets and in the EnviroCar
regression problem. Notably, DT achieves the fastest inference time among all algorithms, with F0 and
F3 performing worse than the others, particularly in the regression problems.

As a rough summary of the first research question, we can conclude that ANN and, surprisingly,
k-NN, had the highest accuracy in most cases, and Decision Tree had the shortest response time,
but accuracy results were quite dependent on the dataset. The main difference between ANN and
k-NN results is represented by the fact that high performance in ANN is achieved by all the targets
(but not F0, which is not supported by the STM X-Cube-AI package), while k-NN poses much higher
memory requirements. Concerning the timing performance, microcontrollers perform similarly to
desktop implementations on the studied datasets. The only exception is found in k-NN, for which
each inference requires the exploration of the whole dataset, and the corresponding computational
demand penalizes the performance, especially on low-end devices. When comparing the edge devices,
the best time performance is achieved by F7 and H7 (and we used default clock speeds, that can be
significantly increased). Unsurprisingly, given the available hardware, F0 performs worse than all
the others. Considering the score, we managed to train all the edge devices to achieve the same level
of performance as the desktop in each algorithm, with the exception of k-NN in the multiclass tests
(Peugeot), where only H7 is able to perform like a desktop, but with a significant time performance
penalty. On the other hand, F0 performs significantly worse than the other edge devices in the k-NN
Sonar binary classification.

5.2. Scaling

Feature preprocessing is applied to the original features before the training phase, with the goal
of increasing prediction accuracy and speeding up response times [34]. Since the range of values
is typically different from one feature to another, the proper computation of the objective function
requires normalized inputs. For instance, the computation of the Euclidean distance between points is
governed by features with a broader value range. Moreover, gradient descent converges much faster
on normalized values [53].

We considered three cases that we applied on ANN, SVM, and k-NN: no scaling, MinMax Scaler,
and Standard Scaler (Std) [54]. The set of tables below (Tables 14–18) show the accuracy of R2 for all
datasets under various scaling conditions. Most common DT algorithms are invariant to monotonic
transformations [55], so we did not consider DT in this analysis.
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1. ANN:

Table 14. Performance and configuration of ANN with no scaling.

ANN

Dataset None
Configuration

AF LC PCA

Heart 78% ReLU [500] mle
Virus 74% Tanh [100, 100, 100] mle
Sonar 85% ReLU [100, 100, 100] mle

Peugeot_Target 14 95% Tanh [500] mle
Peugeot_Target 15 92% ReLU [100, 100, 100] mle

EnviroCar 0.97 Tanh [50] mle
AQI 0.70 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

Table 15. Performance and configuration of ANN with MinMax scaling.

ANN

Dataset MinMax
Configuration

AF LC PCA

Heart 80% Tanh [300, 200, 100, 50] 30%
Virus 99% ReLU [100, 100, 100] None
Sonar 87% ReLU [300, 200, 100, 50] 30%

Peugeot_Target 14 99% ReLU [100, 100, 100] mle
Peugeot_Target 15 98% Tanh [300, 200, 100, 50] mle

EnviroCar 0.99 ReLU [50] mle
AQI 0.86 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

Table 16. Performance and configuration of ANN with StandardScaler normalization.

ANN

Dataset Std
Configuration

AF LC PCA

Heart 84% Tanh [500] 30%
Virus 99% Tanh [100, 100, 100] None
Sonar 86% ReLU [100, 100, 100] mle

Peugeot_Target 14 99% ReLU [500] None
Peugeot_Target 15 99% Tanh [300, 200, 100, 50] None

EnviroCar 0.99 Tanh [50] mle
AQI 0.84 ReLU [300, 200, 100, 50] None

Activation Function (AF), Layer Configuration (LC), Principal Component Analysis (PCA).

2. SVM:

Table 17. Performance and configuration of SVM for different scaling techniques.

SVM

Dataset None
Configuration

MinMax
Configuration

Std
Configuration

C PCA C PCA C PCA

Heart 78% 0.01 mle 79% 1 mle 84% 0.1 30%
Virus 71% 0.01 mle 94% 100 None 94% 1 None
Sonar 77% 0.1 mle 73% 0.1 None 78% 0.01 None

Peugeot_Target 14 50% 0.1 mle 91% 10 mle 91% 0.1 mle
Peugeot_Target 15 76% 0.01 mle 90% 10 mle 90% 10 mle

EnviroCar 0.97 Slow mle 0.98 0.1 None 0.99 0.1 None
AQI 0.7 100 mle 0.62 100 30% 0.73 1 mle

SVM regularization parameter (C), Principal Component Analysis (PCA).
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3. k-NN:

Table 18. Performance and configuration of k-NN for different scaling techniques.

k-NN

Dataset None
Configuration

MinMax
Configuration

Std
Configuration

K PCA K PCA K PCA

Heart 63% 3 mle 75% 3 None 83% 10 mle
Virus 95% 1 mle 99% 1 None 99% 1 None
Sonar 77% 1 mle 92% 1 None 87% 1 None

Peugeot_Target 14 91% 1 mle 98% 1 mle 97% 1 mle
Peugeot_Target 15 89% 2 mle 97% 1 mle 97% 1 None

EnviroCar 0.98 5 mle 0.99 3 mle 0.99 3 None
AQI 0.73 4 mle 0.7 3 mle 0.73 6 mle

Number of neighbors (K), Principal Component Analysis (PCA).

These results clearly show the importance across all the datasets and algorithms of scaling the
inputs. For instance, MinMax scaling allowed ANNs to reach 99% accuracy in Virus (from a 74%
baseline), and Peugeot 14 (from 95%) and 0.86 R2 (from 0.70) in AQI. The application of MinMax
allowed SVM to achieve 94% accuracy in Virus (form 71%) and 91% accuracy in Peugeot 14 (from 50%).
Standard input scaling improved the k-NN accuracy of Heart from 63% to 83%. For large regression
datasets, especially with SVM (see also research question 9), input scaling avoids large training times.

5.3. Principal Component Analysis (PCA)

Dimensionality reduction allows us to reduce the effects of noise, space and processing
requirements. One well-known method is Principal Component Analysis (PCA), which performs an
orthogonal transformation to convert a set of observations of possibly correlated variables into a set of
values of linearly independent variables, which are called principal components [24]. We tried different
values of PCA dimension reduction: none, 30% (i.e., the algorithm selects a number of components
such that the amount of variance that needs to be explained is greater than 30%), and automatic
maximum likelihood estimation (mle) [56], whose results are shown in Tables 19–26.

1. SVM:

Table 19. SVM performance and configuration for various PCA values.

SVM

Dataset PCA = None PCA = 30% PCA =mle

Score
Configuration

Score
Configuration

Score
Configuration

C Scaling C Scaling C Scaling

Heart 78% 0.01 Std 84% 0.1 Std 79% 0.1 Std
Virus 99% 1 Std 86% 100 MinMax 94% 0.1 Std
Sonar 78% 0.01 Std 75% 100 Std 77% 0.01 Std

Peugeot_Target 14 91% 10 MinMax 83% 0.1 MinMax 91% 0.1 Std
Peugeot_Target 15 90% 10 MinMax 86% 10 MinMax 90% 10 Std

EnviroCar 0.99 0.1 Std 0.94 0.1 MinMax 0.98 0.1 MinMax
AQI 0.73 10 Std 0.71 100 Std 0.73 1 Std

SVM regularization parameter (C).
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2. k-NN:

Table 20. k-NN performance and configuration for various PCA techniques.

k-NN

Dataset PCA = None PCA = 30% PCA =mle

Score
Configuration

Score
Configuration

Score
Configuration

K Scaling K Scaling K Scaling

Heart 77% 3 Std 76% 13 Std 83% 10 Std
Virus 99% 1 Std 99% 1 Std 99% 1 Std
Sonar 92% 1 MinMax 84% 1 MinMax 97% 1 Std

Peugeot Targ 14 98% 1 MinMax 92% 3 MinMax 98% 1 Std
Peugeot Targ 15 97% 1 MinMax 90% 6 MinMax 97% 1 Std

EnviroCar 0.99 3 MinMax 0.99 9 Std 0.99 3 MinMax
AQI 0.73 6 Std 0.57 3 MinMax 0.73 6 Std

Number of neighbors (K).

3. ANN:

Table 21. ANN performance and configuration for PCA = None.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 81% Tanh [100, 100, 100] Std
Virus 99% Tanh [100, 100, 100] Std
Sonar 84% ReLU [50] Std

Peugeot_Target 14 99% ReLU [500] Std
Peugeot_Target 15 99% Tanh [300, 200, 100, 50] Std

EnviroCar 0.99 Tanh [50] MinMax
AQI 0.86 ReLU [300,200,100,50] MinMax

Activation Function (AF), Layer Configuration (LC).

Table 22. ANN performance and configuration for PCA = 30%.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 84% Tanh [500] Std
Virus 98% ReLU [100, 100, 100] Std
Sonar 87% ReLU [300, 200, 100, 50] MinMax

Peugeot_Target 14 92% ReLU [50] MinMax
Peugeot_Target 15 90% ReLU [50] MinMax

EnviroCar 0.98 ReLU [50] MinMax
AQI 0.71 ReLU [100,100,100] MinMax

Activation Function (AF), Layer Configuration (LC).

Table 23. ANN performance and configuration for PCA =mle.

ANN

Dataset Score
Configuration

AF LC Scaling

Heart 83% Tanh [300,200,100,50] Std
Virus 99% Tanh [100,100,100] Std
Sonar 86% ReLU [100,100,100] Std

Peugeot_Target 14 99% Tanh [100,100,100] Std
Peugeot_Target 15 99% Tanh [300,200,100,50] Std

EnviroCar 0.99 Tanh [50] MinMax
AQI 0.82 Tanh [300,200,100,50] MinMax

Activation Function (AF), Layer Configuration (LC).
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4. DT:

Table 24. DT performance and configuration for PCA = None.

DT

Dataset Score

Configuration

Max-Depth
Min_Sample

_Split
Min_Sample

_Leaf
Max_Leaf

_Nodes

Heart 67% 7 2 10 80
Virus 99% None 5 1 80
Sonar 65% 7 2 10 80

Peugeot_Target 14 99% None 2 3 80
Peugeot_Target 15 98% None 2 1 200

EnviroCar 0.99 None 2 1 5000
AQI 0.65 None 10 3 80

Table 25. DT performance and configuration for PCA = 30%.

DT

Dataset Score

Configuration

Max-Depth
Min_Sample

_Split
Min_Sample

_Leaf
Max_Leaf

_Nodes

Heart 62% 3 2 1 80
Virus 96% None 2 1 1000
Sonar 75% 7 2 3 80

Peugeot_Target 14 84% None 2 1 200
Peugeot_Target 15 87% 7 2 10 80

EnviroCar 0.98 None 2 10 1000
AQI 0.62 7 10 1 80

The results reported in the above tables are quite varied. The 30% PCA value is frequently too
low, except for the Sonar dataset, which has 60 features, much more than the others, and thus looks
less sensitive to such a coarse reduction. For SVM, PCA does not perform better than or equal to mle,
while the opposite is true for k-NN. Moreover, in ANNs, mle tends to provide better results, except
AQI. In DT, there is a variance of outcomes. Mle does not perform any better than the other algorithms
in Heart (78% vs. 67% accuracy) and Sonar (76% vs. 65%), while performance decreases for Peugeot 14
(93% vs. 99%) and AQI (0.49 vs. 0.65). For AQI, PCA never improves performance. The opposite is
true for Heart and (except SVM) Sonar.

Table 26. DT performance and configuration for PCA =mle.

DT

Dataset Score

Configuration

Max-Depth
Min_Sample

_Split
Min_Sample

_Leaf
Max_Leaf

_Nodes

Heart 78% 7 2 10 80
Virus 99% None 2 1 200
Sonar 76% 7 2 10 80

Peugeot_Target 14 93% None 5 1 80
Peugeot_Target 15 92% None 10 1 80

EnviroCar 0.98 None 2 10 5000
AQI 0.49 7 5 1 80
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5.4. ANN Layer Configuration

To answer this question, we investigated performance among four ANN hidden-layer
configurations, as follows:

1. One hidden layer of 50 neurons;
2. One hidden layer of 500 neurons;
3. Three hidden layers of 100 neurons each;
4. Four hidden layers with 300, 200, 100, 50 neurons, respectively.

Tables 27–29 indicate the highest performance for each layer shape.

Table 27. Results for layer configuration LC = [50] and LC = [500]. We have omitted columns with all
zero Dropout values.

Dataset LC = [50]
Configuration

LC = [500]
Configuration

AF PCA Scaling AF PCA Scaling

Heart 83% Tanh 30% Std 84% Tanh 30% Std
Virus 98% ReLU None Std 98% ReLU None Std
Sonar 84% ReLU None Std 81% ReLU mle Std

Peugeot_Target 14 98% ReLU mle Std 99% ReLU None Std
Peugeot_Target 15 98% ReLU mle Std 98% ReLU None Std

EnviroCar 0.99 Tanh mle MinMax 0.99 ReLU mle MinMax
AQI 0.76 Tanh mle MinMax 0.78 ReLU mle MinMax

Activation Function (AF), Principal Component Analysis (PCA).

Table 28. Layer configuration LC = [100,100,100] results.

Dataset LC = [100,100,100]
Configuration

AF PCA Scaling Dropout

Heart 84% Tanh 30% Std 0
Virus 99% Tanh None Std 0
Sonar 87% ReLU 30% Std 0

Peugeot Target 14 99% ReLU mle Std 0
Peugeot Target 15 98% Tanh mle Std 0.1

EnviroCar 0.99 Tanh mle MinMax 0
AQI 0.80 ReLU mle MinMax 0

Activation Function (AF), Principal Component Analysis (PCA).

Table 29. Layer Configuration (LC) = [300,200,100,50] results.

Dataset LC = [300,200,100,50]
Configuration

AF PCA Scaling

Heart 84% Tanh 30% Std
Virus 99% ReLU None Std
Sonar 87% ReLU 30% MinMax

Peugeot Target 14 99% ReLU mle MinMax
Peugeot Target 15 99% Tanh None Std

EnviroCar 0.99 Tanh mle MinMax
AQI 0.86 ReLU None MinMax

Activation Function (AF), Principal Component Analysis (PCA).
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By observing the results, we can see that deepening the network tends to improve the results,
but only up to a certain threshold. For the Heart dataset, which has the lowest overall accuracy, we tried
additional, deeper shapes beyond those reported in Tables 27–29, but with no better results. On the
other hand, widening the first layer provides only slightly better results (and in one case worsens them).

5.5. ANN Activation Function

Another relevant design choice concerns the activation function in the hidden layers. Activation
functions are attached to each neuron in the network and define its output. They introduce a non-linear
factor in the processing of a neural network. Two activation functions are typically used: Rectified
Linear Unit (ReLU) and Tangent Activation Function (Tanh). On the other hand, for the output
layer, we used a sigmoid for binary classification models as an activation function, and a softmax for
multiclassification tasks. For regression problems, we created an output layer without any activation
function (i.e., we use the default “linear” activation), as we are interested in predicting numerical
values directly, without transformation. Tables 30 and 31 show the highest accuracy achieved in hidden
layers for each function, alongside its corresponding configuration.

Table 30. ReLU activation function results.

Dataset Score
Best Configuration

LC PCA Scaling

Heart 83% [500] 30% Std
Virus 99% [100,100,100] mle Std
Sonar 87% [300,200,100,50] 30% MinMax

Peugeot_Target 14 99% [500] None Std
Peugeot_Target 15 99% [300,200,100,50] None Std

EnviroCar 0.99 [50] mle MinMax
AQI 0.86 [300,200,100,50] None MinMax

Layer Configuration (LC), Principal Component Analysis (PCA).

Table 31. Tanh activation function results.

Dataset Score
Best Configuration

LC PCA Scaling Dropout

Heart 84% [500] 30% Std 0
Virus 99% [100,100,100] None Std 0
Sonar 81% [50] 30% MinMax 0

Peugeot_Target 14 99% [100,100,100] mle Std 0
Peugeot_Target 15 99% [300,200,100,50] None Std 0

EnviroCar 0.99 [50] mle MinMax 0
AQI 0.82 [300,200,100,50] mle MinMax 0.1

Layer Configuration (LC), Principal Component Analysis (PCA).

The results are similar, with a slight prevalence of ReLU, with a valuable difference for Sonar
(+7% accuracy) and AQI (+5% R2).

5.6. ANN Batch Size

The batch size is the number of training examples processed in one iteration before the model
being trained is updated. To test the effect of this parameter, we considered three values, one, 10,
and 20, keeping the number of epochs fixed to 20. Table 32 shows the accuracy of each dataset for
various batch sizes.
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Table 32. Performance on difference batch size.

Dataset
Epoch = 20

Batch Size = 1 Batch Size = 10 Batch Size = 20

Heart 84% 84% 84%
Virus 99% 99% 99%
Sonar 87% 87% 84%

Peugeot_Target 14 98% 99% 98%
Peugeot_Target 15 97% 99% 99%

EnviroCar 0.99 0.99 0.99
AQI 0.63 0.86 0.76

The results show that the value of 10 provides optimal results in terms of accuracy. Actually,
the difference becomes relevant only for the case of AQI. A batch size equal to one poses an excessive
time overhead (approximately 30% slower than the batch size of 10), while a batch size of 20 achieves a
speedup of about 40%.

5.7. ANN Accuracy vs. Epochs

ANN training goes through several epochs, where an epoch is a learning cycle in which the learner
model sees the whole training data set. Figures 3 and 4 show that the training of ANN on all datasets
converges quickly within 10 epochs.

5.8. ANN Dropout

Dropout is a simple method to prevent overfitting in ANNs. It consists of randomly ignoring a
certain number of neuron outputs in a layer during the training phase.

The results in Table 33 show that this regularization step provides no improvement in the
considered cases, but has a slight negative effect in a couple of datasets (Sonar and AQI).

Table 33. Dropout effect on ANN.

Dataset
Dropout

0 0.1

Heart 84% 84%
Virus 99% 99%
Sonar 87% 83%

Peugeot_Target 14 99% 99%
Peugeot_Target 15 99% 99%

EnviroCar 0.99 0.99
AQI 0.86 0.82

5.9. SVM Regularization Training Time

In SVM, C is a key regularization parameter, that controls the tradeoff between errors of the SVM
on training data and margin maximization [13,57]. The classification rate is highly dependent on this
coefficient, as confirmed by Tables 8 and 9. Desk-LM uses the grid search method to explore the C
values presented by the user, which require long waiting times in some cases. To quantify this, we
measured the training latency time in a set of typical values (C = 0.01, 0.1, 1, 10, and 100), with the
results provided in Table 34.

Different values of the C parameter have an impact on the training time. The table shows that
higher C values require higher training time. We must stress that the above results represent the training
time for the best models. In particular, when no normalization procedure was applied, the training
time using large values of C became huge (also up to one hour), especially for regression datasets.
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Figure 3. Accuracy vs. Epochs for (a) Heart, (b) Virus, (c) Sonar, (d) Peugeot target 14, and (e) Peugeot
target 15.

Table 34. Training time for different values of the C parameter.

Dataset
C Parameter

0.01 0.1 1 10 100

Heart <1 ms <1 ms <1 ms <1 ms <1 ms
Virus 100 ms 300 ms 500 ms 600 ms 600 ms
Sonar <1 ms <1 ms <1 ms <1 ms <1 ms

Peugeot_Target 14 <1 ms 100 ms 200 ms 300 ms 400 ms
Peugeot_Target 15 <1 ms 100 ms 300 ms 300 ms 300 ms

EnviroCar 100 ms 100 ms 100 ms 100 ms 100 ms
AQI <1 ms <1 ms <1 ms <1 ms 300 ms
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Figure 4. Mean Squared Error vs. Epochs for (a) EnviroCar, and (b) air quality index (AQI).

5.10. DT Parameters

Tuning a decision tree requires us to test the effect of various hyperparameters, such as max_depth,
min_simple_split. Figure 5 shows the distribution of the tested parameter values for the best models in
the different datasets (see also Table 13 to see the best results).

 
Figure 5. Number of occurrences of each DT parameter.

In most cases, the whole tree depth is needed, and this does not exceed the memory available in
the microcontrollers. However, Max_Leaf_Nodes values usually need a low threshold (80). EnviroCar
required a high value of 5000, which had to be reduced down to 1000 for F3, F4, L4 and to 200 for F0
because of the limited RAM availability.
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6. Conclusions and Future Work

This paper presented the Edge Learning Machine (ELM), a machine learning platform for edge
devices. ELM performs training on desktop computers, exploiting TensorFlow, Keras, and scikit-learn,
and makes inferences on microcontrollers. It implements, in platform-independent C language,
three supervised machine learning algorithms (Linear SVM, k-NN, and DT), and exploits the STM
X-Cube-AI package for implementing ANNs on STM32 Nucleo boards. The training phase on Desk-LM
searches for the best configuration across a variety of user-defined parameter values. In order to
investigate the performance of these algorithms on the targeted devices, we posed ten research questions
(RQ 1–10, in the following) and analyzed a set of six datasets (four classifications and two regressions).
To the best of our knowledge, this is the first paper presenting such an extensive performance analysis
of edge machine learning in terms of datasets, algorithms, configurations, and types of devices.

Our analysis shows that, on a set of available IoT data, we managed to train all the targeted
devices to achieve, with at least one algorithm, the best score (classification accuracy or regression R2)
obtained through a desktop machine (RQ1). ANN performs better than the other algorithms in most
of the cases, without differences among the target devices (apart from F0, that is not supported by STM
X-Cube-AI). k-NN performs similarly to ANN, and in one case even better, but requires that all the
training sets are kept in the inference phase, posing a significant memory demand, which penalizes
time performance, particularly on low-end devices. The performance of Decision Tree performance
varied widely across datasets. When comparing edge devices, the best time performance is achieved
by F7 and H7. Unsurprisingly, given the available hardware, F0 performs worse than all the others.

The preprocessing phase is extremely important. Results across all the datasets and algorithms
show the importance of scaling the inputs, which lead to improvements of up to 82% in accuracy
(SVM Virus) and 23% in R2 (k-NN Heart) (RQ2). The applications of PCA have various effects across
algorithms and datasets (RQ3).

In terms of the ANN hyperparameters, we observed that increasing the depth of a NN typically
improves its performance, up to a saturation level (RQ4). When comparing the neuron activation
functions, we observed a slight prevalence of ReLU over Tanh (RQ5). The batch size has little influence
on score, but it does have an influence on training time. We established that 10 was the optimal
value for all the examined datasets (RQ6). In all datasets, the ANN training quickly converges within
10 epochs (RQ7). The dropout regularization parameter only led to some slight worsening in a couple
of datasets (RQ8).

In SVM, the C hyperparameter value selection has an impact on training times, but only when
inputs are not scaled (RQ9). In most datasets, the whole tree depth is needed for DT models, and this
does not exceed the memory available in the microcontrollers. However, the values of Max_Leaf_Nodes
usually require a low threshold value (80) (RQ10).

As synthesized above, in general, several factors impact performance in different ways across
datasets. This highlights the importance of a framework like ELM, which is able to test different
algorithms, each one with different configurations. To support the developer community, ELM is
released on an open-source basis.

As a possible direction for future work, we consider that the analysis should be extended to include
different types of NNs (Convolutional Neural Networks, Recurrent Neural Networks) with more
complex datasets (e.g., also including images and audio streams). An extensive analysis should also be
performed on unsupervised algorithms that look particularly suited for immediate field deployment,
especially in low-accessibility areas. As the complexity of IoT applications is likely to increase, we also
expect that distributed ML at the edge will probably be a significant challenge in the coming years.
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Abstract: In the context of growing the adoption of advanced sensors and systems for active vehicle
safety and driver assistance, an increasingly important issue is the security of the information
exchanged between the different sub-systems of the vehicle. Random number generation is crucial
in modern encryption and security applications as it is a critical task from the point of view of
the robustness of the security chain. Random numbers are in fact used to generate the encryption keys
to be used for ciphers. Consequently, any weakness in the key generation process can potentially leak
information that can be used to breach even the strongest cipher. This paper presents the architecture
of a high performance Random Number Generator (RNG) IP-core, in particular a Cryptographically
Secure Pseudo-Random Number Generator (CSPRNG) IP-core, a digital hardware accelerator for
random numbers generation which can be employed for cryptographically secure applications.
The specifications used to develop the proposed project were derived from dedicated literature
and standards. Subsequently, specific architecture optimizations were studied to achieve better timing
performance and very high throughput values. The IP-core has been validated thanks to the official
NIST Statistical Test Suite, in order to evaluate the degree of randomness of the numbers generated
in output. Finally the CSPRNG IP-core has been characterized on relevant Field Programmable Gate
Array (FPGA) and ASIC standard-cell technologies.

Keywords: intelligent sensors; autonomous driving; cyber security; HW accelerator; on-chip random
number generator (RNG); SHA2; FPGA; ASIC standard-cell

1. Introduction

The rapid technology development of intelligent sensors in the automotive field in recent years,
driven by institutions and supported by manufacturers to integrate advanced systems for active safety
and hazard prevention, has generated additional collateral technological needs. All the equipment
distributed on board the vehicle are, in fact, interconnected with real communication networks
and exchange critical data and sensitive information that must be protected from potential attacks
and violations. Cybersecurity thus becomes a central issue and all mechanisms ensuring authentication,
confidentiality and integrity of messages become an enabling technology for the further development
of Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems (AD).
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Sensors 2020, 20, 1869

In particular, projects like the one carried on in the framework of the European Processor Initiative
(EPI) programme [1] anticipate requirements from future scenarios, with very high throughput
hardware accelerators for cybersecurity applications. Highly automated vehicles will be equipped
with advanced sensors (e.g., camera arrays, radar, lidar), capable of generating significant data
flows. Moreover, over-the-air update (OTA) of the software of control units will be implemented,
for which it will be very important to keep the update time as short as possible. In this context, it is
essential to increase information security, and it is therefore necessary to implement encrypted data
transfers (i.e., encryption and decryption) and verified content (i.e., digital signature) with throughput
compatible with the use of buses such as automotive ethernet (i.e., 1–10 Gbps). For this reason,
hardware accelerators with throughput requirements of the order of tens Gbps are necessary, also to
take into considerations the expected lifespan of vehicles.

Random numbers are widely used in encryption and security applications, usually to generate
encryption keys or secret data to be shared between communication entities. Therefore a Random
Number Generator (RNG) is a very important primitive for cryptographically secure applications [2].
In particular, it is used as a fundamental part for the development of several globally distributed
applications related to the field of cyber security such as digital payments, online authentication
and instant messaging [3]. Cryptographic keys are based on random numbers and must be
characterized by a high degree of unpredictability to be considered secure: this is necessary to prevent
an attacker from violating the security chain based on this cryptographic key. Random numbers are
also the starting point for generating nonces within authentication protocols as a countermeasure
against replay attacks, so the higher the degree of randomness, the more robust the countermeasure
will be. Moreover, strong random number generation helps digital signature procedures to prevent
private keys to be disclosed, thus violating the signature itself [4]. Several development techniques for
RNG engines are reported in literature, and many of them exploit physical sources (e.g., analog noise)
as random processes to obtain the randomness characteristic of the generated bit sequences [3–9].

These circuits are identified as True Random Number Generators (TRNG) and their output
sequences are considered high quality random numbers. However, TRNGs have non-negligible
disadvantages that must be considered: the use of physical sources leads to high energy consumption
and insufficient throughput for fast and advanced integrated systems. TRNGs are also sensitive to
changing operating conditions, which means that post-processing must be implemented to ensure
reliable random output data, further reducing the throughput under non-ideal condition.

To overcome these limitations, a powerful Deterministic Random Bit Generator (DRBG) circuit
can be used in addition to a very low-area, low-power and low-throughput TRNG implementation.
This means that the RNG engine would be mainly based on a deterministic algorithm that generates
pseudo-random output sequences. In this case, the required degree of randomness is obtained through
additional mechanisms to increase the level of entropy of the generated sequences, which would
otherwise be deterministic. This operation is called reseed and it consists in providing a trigger to
restart the circuit of the deterministic algorithm from a new high entropy starting point (i.e., the new
seed). DRBG-based solutions use periodic reseed to allow the RNG to generate pseudo-random binary
output sequences that are equivalent and indistinguishable from true random ones. The limitations of
TRNGs for high-speed devices are thus overcome by restricting its use to the periodic seed generation
operation only, which has the characteristic of being a very light task. For this reason the new seed is
usually provided by a very low complexity and target specific TRNG module [10], which also may be
powered down when not necessary.

For the proposed architecture, the DRBG mechanism was chosen from those approved by
National Institute of Standards and Technology (NIST) [6]. The standard provides general information
for PRNGs based on cryptographic primitives, some of which are incontrovertible and proven
(e.g., Hash DRBG and HMAC DRBG). For the proposed Cryptographically Secure Pseudo-Random
Number Generator (CSPRNG) IP-core the algorithm selection was made based on a compromise
between performance, area and security strength. The Hash DRBG with SHA-256 as cryptographic core
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(i.e., based on the SHA2 algorithm) proved to be the most efficient solution between logical complexity
and expected throughput during random bit generation, offering 256 bits of security strength.

The reminder of this paper is organized as it follows: Section 2 presents the trade-off analysis
among the different suitable DRBG algorithms, Section 3 details the implementation of the SHA2
algorithm being chosen to develop the DRBG core, Section 4 describes the Hash DRBG design
architecture as CSPRNG IP-core, Section 5 collects the characterization results. Finally, conclusions are
discussed in Section 6.

2. DRBG Algorithms Trade-Off Analysis

As mentioned in Section 1, the different deterministic algorithms suitable for implementing DRBG
circuits have been evaluated by the NIST and those approved-recommended are collected in the NIST
SP 800-90A Rev.1 pubblication [6]. Such mechanisms present common features and functionalities:

• they rely on a one-way cryptographic function, thus providing backtracking resistance;
• the internal status memories are secret and inaccessible to the user;
• the following essential operations are allowed:

– instance, to acquire a random seed (i.e., concatenation of input entropy content, possibly
input or internal random nonce, and personalization string) and to initialize the internal
state to a random value derived from the seed;

– reseed, to acquire a random seed (i.e., concatenation of internal state, input entropy content,
and personalization string) and update the internal state to a random value derived from
the seed;

– generate, to generate an output bits sequence based on current state and then to update
the state to a random value derived from previous state;

– uninstantiate, to delete the internal state;

• they support a maximum security strength (112, 128, 192 or 256) and all of the lower ones;
• a reseed counter counter, and the corresponding threshold called seed lifetime, is present to signal

the user that the mechanism needs a new seed;
• user is always able to run a command with an associated personalization string, which needs not

to be secret but it contributes to the internal state randomization.

Most of the DRBG engines implementations rely on hash functions and counter mode (CTR)
of symmetric-key encryption processes. Hash functions family includes SHA1 and SHA2 algorithms,
but the former is going to be deprecated because of its low security strength and high vulnerability [11],
therefore only SHA2 cryptographic primitives are taken into exam for Hash DRBG mechanisms.
The main parameters related to DRBG cores based on SHA2 primitive are reported in Table 1.

Table 1. Hash DRBG mechanisms parameters (SHA2 only).

SHA2 Algorithm

SHA-224 SHA-256 SHA-384 SHA-512

Highest Security Strength 192 bits 256 bits 256 bits 256 bits
Output Block Length (outlen) 224 bits 256 bits 384 bits 512 bits
Min. Entropy for instance and reseed 192 bits 256 bits 256 bits 256 bits
Seed Length (seedlen) 440 bits 440 bits 888 bits 888 bits
Max. Num. of Bit per Request 219 219 219 219

Max. Num. of Request between reseeds 248 248 248 248

CTR (CTR is abbreviation for Counter) DRBG mechanisms are based onto block cipher cores used
in counter mode. Different block cipher cores are suitable to develop a DRBG circuit and the main
parameters related to the different implementations are collected in Table 2.
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Table 2. CTR DRBG mechanisms parameters. B = (2ctrl_len − 4) blocklen.

AES Algorithm

3 Key TDEA AES-128 AES-192 AES-256

Highest Security Strength 112 bits 128 bits 192 bits 256 bits
Input/Output Block Length (blocklen) 64 bits 128 bits 128 bits 128 bits
Key Length Length (keylen) 168 bits 128 bits 192 bits 256 bits
Counter Field Length (ctr_len) 4 <ctr_len <blocklen
Min. Enctropy for instance and reseed 112 bits 128 bits 192 bits 256 bits
Seed Length (seedlen) 232 bits 256 bits 320 bits 384 bits
Max. Num. of Bit per Request min(B, 213) min(B, 219) min(B, 219) min(B, 219)
Max. Num. of Request between reseeds 248 248 248 248

Table 3 summarizes area and latency values obtained for our version of SHA2 IP-core,
where complexity values are related to the characterization on 45nm ASIC standard-cell technology.
In the perspective to implement a Hash DRBG circuit, solutions for SHA-224 and SHA-384 are
discarded in favor of SHA-256 and SHA-512 because area and latency values are the same,
but the former couple offers a shorter output block. Concerning SHA-256 and SHA-512 comparison,
the following considerations can be done in order to select the best candidate for Hash DRBG:

• SHA-256 has lower latency per block than SHA-512;
• SHA-512 offers a higher throughput with respect to SHA-256, since it provides 512 bits every

83 clock cycles instead of 256 bits every 67 clock cycles;
• SHA-256 is more compact in terms of area, which reflects also on internal state registers area

footprint. As shown in Table 1, seedlen is 440 for SHA-256 and 888 for SHA-512, meaning that
the internal state requires around 900 registers for the former and 1800 for the latter.

Table 3. SHA2 IP-core specifications.

SHA2 Algorithm Area Latency per Block Output Block Size

SHA-224 15 kGE 67 clock cycles 224 bits
SHA-256 15 kGE 67 clock cycles 256 bits
SHA-384 30 kGE 83 clock cycles 384 bits
SHA-512 30 kGE 83 clock cycles 512 bits

The throughput values of the SHA-256 core and SHA-512 core, when operating in generation
phase for a Hash DRBG implementation, can be obtained through Equations (1) and (2), respectively.

TSHA−256 = 256/67 · fclk · nparallel_core = 3.82 · fclk · nparallel_core bit/s (1)

TSHA−512 = 512/83 · fclk · nparallel_core = 6.17 · fclk · nparallel_core bit/s (2)

Concerning the CTR DRBG circuit, the AES IP-core is proved to be best in class for both area
and throughput. Table 4 collects the area and latency values for our versions of AES-128 and AES-256
IP-cores characterized on 45nm ASIC standard-cell technology.

Table 4. AES IP-core specifications.

AES Algorithm Area Latency per Block Output Block Size

AES-128 11 kGE 11 clock cycles 128 bits
AES-256 12.5 kGE 15 clock cycles 128 bits

Given that the target is to identify the most suitable core for implementation of DRBG circuit
with highest level of security strength possible, the AES-256 algorithm is the only block cipher core
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being considered for the trade-off. As shown in Table 4, its area is lower than the one for SHA-256,
while the throughput value is higher than that reported for SHA-512. In particular, the throughput of
AES-256 to be considered for a CTR DRBG implementation is calculated as below:

TAES−256 = 128/15 · fclk · nparallel_core = 8.53 · fclk · nparallel_core bit/s (3)

Figure 1 shows a comparison of DRBG mechanisms implemented as in [5] and based on Hash
algorithms (i.e., SHA-256 or SHA-512) and block ciphers (i.e., AES-256) used in CTR mode. The logic
throughput and complexity values are obtained with synthesis on 45 nm ASIC standard-cell technology.

Figure 1. Comparison between NIST approved DRBG mechanisms based on logic complexity
in kGE and throughput.

The algorithm chosen for the development of the DRBG circuit inside the CSPRNG IP-core was
SHA-256 (i.e., the primitive SHA2), therefore we decided to use an Hash DRBG despite the better area
and latency values collected for AES cores (i.e., for CTR DRBG circuit). This is because M.Schmid [12]
explained how block cipher-based DRBGs should not be used as they are indeed not able to reach
maximum security strength. The author declares that the pseudo-random permutation inside each
AES round, coupled with counter mode of operation, generates a binary sequence which results to
be distinguishable with respect to what a random source could give, thus being unable to satisfy
the security requirements. This is not the case with Hash-based DBRGs, so the use of SHA-256 cores
offers better robustness to the entire security chain where the CSPRNG is based on this algorithm.
The SHA-256 core ensures a compact implementation for the mechanism and the possibility to extend
the design for supporting multiple cores to increase the throughput. In a context with multiple
cryptographic cores, 2 SHA-256 perform better than a single SHA-512, having a higher throughput
and requiring lower internal state.

3. SHA-256 Core Implementation

As explained in Section 2, the fundamental element of the proposed Hash DRBG circuit is
the SHA-256 core, based on SHA2 cryptographic primitive. In order to achieve high throughput for
the whole CSPRNG IP-core, it is then essential to optimize the SHA-256 implementation performances
to the maximum. To do so, the canonical logic implementation derived from the standard [13]
has been improved through the use of Carry-Save Adder (CSA) units for consecutive additions and by
application of retiming-pipelining to perform delay balancing. To better understand the implemented
optimizations, a brief description of the standard is given.
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The SHA-256 standard may be defined by two separate, ideally consecutive, procedures:

1. the message schedule;
2. the compression function.

The message schedule is in charge of creating a key schedule starting from the 512-bits input
message to be then provided to the compression function. The operation is performed through the σ0, σ1

and modulo 232 adder operations defined in Equations (4)–(6) respectively.

σ0(x) = RotateRight7(x)⊕ RotateRight18(x)⊕ Shi f tRight3(x) (4)

σ1(x) = RotateRight17(x)⊕ RotateRight19(x)⊕ Shi f tRight10(x) (5)

x � y = x + y (mod 232) (6)

Usually the message schedule operation is also called expansion due to the fact that the 512-bits
input message is expanded to 32 · 64 = 2048bits. The canonical serial architecture of the message
schedule block, derived from Equation (7), is depicted in Figure 2.

Wt =

{
Mt 0 < t < 15

σ1(Wt−2)�Wt−7 � σ0(Wt−15)�Wt−16 16 < t < 63
(7)

Figure 2. SHA2 standard message schedule architecture.

The optimization for the message schedule is performed on the adder chain through the use of
CSA, which are essentially Full-Adder Arrays (FAA), producing partial sums (ps) and shift-carries (sc).

psi = ai ⊕ bi ⊕ bi

sci = (ai ∧ bi) ∨ (ai ∧ ci) ∨ (bi ∧ ci)
(8)

CSAs have advantages on both area and critical path. Implementation on 45nm and 7nm ASIC
standard-cell technologies demonstrated that, when compared to Carry-Lookahead Adder (CLA) units,
the delay relationship is TCLA−32 = 1.78 · TCSA−32 and TCLA−32 = 1.87 · TCSA−32 respectively for
the two technologies. The optimized serial implementation is shown in Figure 3, where the high-level
timing block analysis shows that the critical path is reduced from Tσ0 + 3 · T� to Tσ0 + 2 · TCSA + T�.
Further optimizations are possible through the use of retiming, but they are not considered due to
the critical path being mainly located in the compression function architecture.

The SHA-256 compression function is composed of three consecutive steps: initialization, one-way
compression and termination. In the first step, the variables A-H are initialized with the intermediate
Hash value H(t−1) (the first 512-bits message block at t=1 uses a constant H(0) provided by
the standard). The one-way compression then performs 64 loops according to:
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T1 ← H � Σ1(E)� Ch(E, F, G)� Kj �Wj
T2 ← Σ0(A)� Maj(A, B, C)
H ← G
F ← E
E ← D � T1
D ← C
C ← B
B ← A
A ← T1 � T2

Figure 3. SHA2 optimized message schedule architecture.

Finally the intermediate Hash value at time t is calculated by a 232 modulo addition between
the variables A-H at initialization time and the variables A-H after the one way compression.
The functions Maj, Ch, Σ0 and Σ1 are defined as:

Maj(x, y, z) = (x ∧ y)⊕ (x ∧ z)⊕ (y ∧ z)

Ch(x, y, z) = (x ∧ y)⊕ (¬x ∧ z)

Σ0(x) = RotateRight2(x)⊕ RotateRight13(x)⊕ RotateRight22(x)

Σ1(x) = RotateRight6(x)⊕ RotateRight11(x)⊕ RotateRight25(x)

(9)

The canonical scheme corresponding to the described procedure is represented in Figure 4,
where the output stage performing the termination phase is not represented.

Figure 4. SHA2 standard compression function architecture

The high-level block timing analysis showed that the critical path on the non-optimized
architecture is located between register H and register E, involving 5 � operations. Optimization
of the compression function was achieved through the use of CSA, retiming and delay balancing.
In particular, all the adder chains were converted to CSA with the exception of register B and E inputs.
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Moreover, the path going from Kt-Wt was duplicated to allow the value of register D to be added
immediately to H + Kt + Wt. Finally a pipeline stage L1, L2 was added (with the associated C-D
multiplexer to ensure the functionality) and the a register was split to move the CLA position.

Finally, both SHA-2 implementations have been synthesized on 45 nm and 7 nm ASIC
technologies, whose results are represented on Table 5 for canonical and optimized architectures.

Table 5. Canonical and Optimized SHA-256 implementation results.

Canonical Area Max. Frequency Optimized Area Max. Frequency

45 nm ASIC 16.85 kGE 640 MHz 45 nm ASIC 15.38 kGE 1.00 GHz
7 nm ASIC 17.18 kGE 3.15 GHz 7 nm ASIC 15.45 kGE 5.15 GHz

A detail analysis of the critical path on the implemented design shows that the real critical path
on 45 nm ASIC technology is located between register L1 and register E (Figure 5), while for the 7 nm
ASIC technology it is located in the message schedule between the second right register and the left one
(Figure 3). This behavior can easily be attributed to the synthesizer, which is able to use complex ASIC
cells and better merge the 4·CSAs than the 2·SCA+1·CLA. a separate synthesis, to emulate the main
paths of the canonical and optimized architectures on the 45 nm technology, shows the critical path of
these extracted sub-elements. As visible from Table 6 the 2·SCA+1·CLA sub-clock is the slowest path
w.r.t. The optimized implementation, with an equivalent frequency f2·CSA+1·CLA = 1200 MHz.

Figure 5. SHA2 optimized compression function architecture.

Table 6. SHA-256 sub-block implementation results.

Sub-Block T4·CSA T2·CSA+1·CLA T2·CLA T5·CLA

Max. Latency 606.06 ps 833.33 ps 714.29 ps 1111.11 ps

Looking for a comparison between the canonical ASIC implementation and the ASIC
optimized one, the latter results to be about 9% smaller, while providing about a 56% maximum
frequency increase.
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4. CSPRNG Design Architecture

The architecture of the proposed CSPRNG IP-core, meaning of the Hash DRBG with optimized
SHA-256 core, is shown in Figure 6. The proposed design is based on the following building blocks:

• state registers for 440-bits V, 440-bits C and 20-bits reseed counter; in addition to them, a 128-bits
register is available to store optional personalization string (i.e., to randomize the internal state),
while a 512-bits entropy register is used to store the input entropy content for a size larger than
necessary: to ensure the minimum number of entropy bits per bit string, instance requires 394 bits,
while reseed requires 256 bits;

• a SHA-256 core, with 512-bits input and 256-bits output; the core is designed to execute operations
on a 512-bits block of a message in 67 clock cycles; if the message is composed by a single block
(length ≤ 443 bits), the complete Hash is performed in 67 clock cycles, while if the message is
longer, it must be divided in blocks to be processed sequentially;

• a serial adder with 440-bits inputs and modulo 440-bits output; since the adder always runs
in parallel with the SHA-256 core, which at least requires 67 cycles to output data, there were
no need to implement a low latency adder; intermediate results are stored to one of the input
registers to minimize the area occupation;

• multiplexer network to address all data in internal state and from the previous operation to
the inputs of the SHA-256 core and adder; as an example, consider the following configuration,
where the adder calculates at every Hash cycle the incremented value of V and provides this data
to the input of the SHA-256 for it to be hashed:

sha_256_in = adder_out || 1’d1 || 7’d0 || 64’d440

adder_x = adder_out

adder_y = 440’d1

• a Finite State Machine (FSM), which controls the flow of operations: it is articulated in three main
branches (i.e., instance, reseed and generate), and after the completion of a command, it remains
stable in idle mode until another command is issued;

• a DRBG self test module (i.e., not shown in Figure 6), which provides built-in self-test
functionalities to diagnose possible failures; multiplexers are used to feed the procedures with
known values, and compare logic check if outputs match with the expected values.

Figure 6. CSPRNG (Hash DRBG) design architecture developed.

The instance procedure acquires 512 entropy bit from the entropy content input and then hashes
eight blocks to create the internal state. With τ equal to the number of clock cycles necessary to acquire
8 bitt from the entropy content input, total execution time is approximately:

tinstance = (64 · τ + 8 · 67) · Tclk = (64 · τ + 536) · Tclk (10)
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The reseed procedure acquires 384 entropy bit from the entropy content input and then hashes 8
blocks to update the internal state. Execution time is approximately:

treseed = (48 · τ + 8 · 67) · Tclk = (48 · τ + 536) · Tclk (11)

In the generation phase, if a personalization string is inserted by the user, a new value of V is
immediately calculated before generating output bits. This operations requires a sum and two hash
cycles. Since the serial adder latency is 14 clock cycles:

tgen_pers_string = (14 + 2 · 67) · Tclk (12)

After generation a new state is derived within the same time:

tgen_new_state = tgen_pers_string = (14 + 2 · 67) · Tclk (13)

For a clock frequency of 100 MHz and τ = 1, these values result to be:

tinstance = 6.000 μs

treseed = 5.840 μs

tgen_pers_string = 1.480 μs

tgen_new_state = 1.480 μs

For the same clock frequency and τ = 8:

tinstance = 10.480 μs

treseed = 9.200 μs

tgen_pers_string = 1.480 μs

tgen_new_state = 1.480 μs

5. Results

In order to validate the CSPRNG IP-core, evaluation of the randmoness degree of the sequences
generated was obtained by using the NIST Statistical Test Suite [14]. The test suite ran on a sequence
of 128 MB acquired from the CSPRNG with the following strategy:

• every generation command requests four blocks, i.e., 1024 bits;
• during a seed lifetime, 1000 generation commands are issued;
• the reseed operation is commanded 1000 times to reseed the generator.

In this way the total number of acquired bits is nbit = 1024 · 1000 · 1000 = 1,024,000,000.
This sequence has been then converted to a binary file, which is subsequently given as input to
the test suite. The NIST Statistical Test Suite parameters and the corresponding results (using α = 0.01)
on the 128 MB data block are collected on Table 7.

Three technologies were identified as potential targets for characterization of the CSPRNG
hardware accelerator IP-core, one FPGA and two ASIC standard-cell: Intel Stratix IV FPGA,
45 nm Silvaco [15], and 7 nm Artisan TSMC [16]. In all of these cases different implementation effort
corners were tested, in order to evaluate the trade-off between throughput and area. The synthesis
performed on Intel Stratix IV (EP4SGX230KF40C2) FPGA technology with high performance
constraints, configuring a single instance of the SHA-256 core, provides a maximum operating
frequency of 180 MHz; a throughput of 690 Mbps; and an overall resource utilization of 4713 ALMs.
The 45 nm Silvaco ASIC standard-cell implementation increases its throughput to 3.82 Gbps,
since the maximum frequency is 1 GHz (being the critical path in the SHA-2 sub-block), with a logical
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complexity of 49.19 kGE. Finally, the proposed design, with a single SHA-256 core, brought on
the 7 nm Artisan ASIC standard-cell reaches a throughput value of 19.67 Gbps, given a maximum
clock frequency of 5.15 GHz, requiring an overall complexity of 46.56 kGE.

Table 7. NIST Statistical Test Suite parameters and results.

Test Block/Template Length Pass Rate

Frequency (Monobit) - 0.9924
Frequency Within a Block 256 0.9876
Runs - 0.9901
Longest-Run-of-Ones in a Block - 0.9878
Binary Matrix Rank - 0.9901
Discrete Fourier Transform (Spectral) - 0.9874
Non-overlapping Template Matching 10 [0.9801–0.9974]
Overlapping Template Matching 10 0.9848
Maurer’s Universal Statistical - 0.9901
Linear Complexity 1024 0.9900
Serial 16 0.9825, 0.9876
Approximate Entropy 10 0.9901
Cumulative Sums (Cusums) - 0.9901
Random Excursions - [0.9826–0.9947]
Random Excursions Variant - [0.9875–0.9975]

The diagrams in Figures 7 and 8 show the occupation percentage for the different parts of
the architecture proposed respectively for 45nm and 7nm ASIC target technologies.

Figure 7. CSPRNG (Hash DRBG) IP-core occupation diagram on 45 nm ASIC technology (kGE based).
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Figure 8. CSPRNG (Hash DRBG) IP-core occupation diagram on 7 nm ASIC technology (kGE based).

6. Conclusions

This paper presented the architecture and implementation of a high performance digital
Cryptographically Secure Pseudo-Random Number Generator (CSPRNG). Specifically, a Hash-based
Deterministic Random Bit Generator (DRBG) circuit was presented, following recommendation
given by NIST in [6], using SHA256 cryptographic primitive. CSPRNG is a key component to
implement efficient cybersecurity applications for authentication, confidentiality and message integrity.
In addition, the security of critical information exchanged between the different subsystems in modern
vehicles is proving to be a key issue in the automotive sector: more advanced and complex devices
and sensors provide the platform for active assistance and security on which passengers rely, so it
is crucial to ensure that these systems are adequately protected from cyber attacks. Hash algorithm
selection was done according to a trade-off analysis on throughput, area and security strength:
among the solutions able to satisfy the security requirements, the SHA-256 core was proved to
be the most efficient solution in terms of throughput-complexity ratio. The detailed description of
the optimized SHA-256 core architecture being developed for DRBG circuit implementation is also
given. The proposed CSPRNG IP-core was tested by means of NIST Statistical Test Suite, thus stating
that the sequences of bits generated cannot be distinguished from a true random sequence of numbers,
and therefore validating its use for cryptographic applications. It has been also implemented on
FPGA and ASIC standard-cell technologies for characterization: on Intel Stratix IV FPGA it is reported
a throughput of 690 Mbps at 180 MHz with a maximum occupation of 4713 ALMs, on 45 nm ASIC
standard-cell [15] the throughput is equal to 3.82 Gbps at 1 GHz with a logic complexity of 49.19 kGE,
and finally on 7 nm ASIC standard-cell [16] the throughput reaches a value of 19.67 Gbps at 5.15 GHz
with the logic complexity of 46.56 kGE.
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Abstract: To live in the information society means to be surrounded by billions of electronic devices
full of sensors that constantly acquire data. This enormous amount of data must be processed and
classified. A solution commonly adopted is to send these data to server farms to be remotely elaborated.
The drawback is a huge battery drain due to high amount of information that must be exchanged.
To compensate this problem data must be processed locally, near the sensor itself. But this solution
requires huge computational capabilities. While microprocessors, even mobile ones, nowadays have
enough computational power, their performance are severely limited by the Memory Wall problem.
Memories are too slow, so microprocessors cannot fetch enough data from them, greatly limiting their
performance. A solution is the Processing-In-Memory (PIM) approach. New memories are designed
that can elaborate data inside them eliminating the Memory Wall problem. In this work we present an
example of such a system, using as a case of study the Bitmap Indexing algorithm. Such algorithm
is used to classify data coming from many sources in parallel. We propose a hardware accelerator
designed around the Processing-In-Memory approach, that is capable of implementing this algorithm
and that can also be reconfigured to do other tasks or to work as standard memory. The architecture
has been synthesized using CMOS technology. The results that we have obtained highlights that, not
only it is possible to process and classify huge amount of data locally, but also that it is possible to
obtain this result with a very low power consumption.

Keywords: bitmap indexing; processing in memory; memory wall; big data; internet of things

1. Introduction

Nowadays many applications used everyday, defined as data-intensive, require a lot of data to
process. Examples are the databases manipulation and image processing. This requirement is the
effect of the fast improvement of CMOS technology, that has lead to the creation of very powerful and
flexible portable devices. These devices are full of sensors that continuously acquire data. Data can be
elaborated remotely by powerful servers, but sending a lot of information through electromagnetic
waves requires a huge amount of energy, severely impacting the battery life of mobile devices. The only
solution is to elaborate data locally, on the mobile device itself.

Thanks to the scaling of transistors size, mobile microprocessors are now theoretically capable of
such computation. Unfortunately, memory scaling has been following a different path, resulting still
in slow accesses compared to processors computing speed. This discrepancy in performance harms
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the computing abilities of the CPU, since the memory cannot provide data as quickly as required by
the CPU. This problem is called Von Neumann bottleneck or Memory Wall. The idea that took form to
solve this problem is to null the distance between processor and memory, removing the cost of data
transfer and create a unit which is capable of storing information and of performing operation on them.
This idea takes the name of Processing-in-Memory.

Many in literature have approached the “in-memory” idea. Some narrowing the physical distance
between memory and computation unit by creating and stacking different layers together. But even if the
two units are moved very close to each other, they are still distinct components. Others exploited intrinsic
functionality of the memory array or slightly modified peripheral circuitry to perform computation.

Among the many example provided by literature, one of the best fitting representative of the PIM
concept is presented in Reference [1]. In this work the proposed architecture is a memory array in
which the cell itself is capable of performing logical operations aimed at solving Convolutional Neural
Networks (CNN). In this paper, our main goal is to introduce a proper example of Processing-in-Memory,
choosing Bitmap Indexing as an application around which the architecture is shaped. In the design,
it was not used a specific memory technology because the idea is to provide a worst-case estimation and
it was also meant to leave space for future exploration to implement the cell with a custom model of the
memory cell. The Bitmap Indexig algorithm has been chosen because it is used for data classification.
This is one of the most important task that must be performed by such mobile devices. Being able to
classify data allows to understand which data must be sent to remote servers and which not, greatly
reducing the overall power consumption. The presented architecture is a memory array in which
each cell is both capable of storing information and to perform simple logical operation on them.
A characteristic of our architecture is its modularity. The architecture is divided in independent memory
banks. A memory bank can work both on its own or interacting with other banks. Moreover it is
possible to build the array with as many banks as needed. This feature lead to great flexibility and high
degree of parallelism. The structure was eventually synthesized for analysis purposes, in a 8.5 KB square
array, using CMOS 45 nm and 28 nm. The storage segment of the proposed PIM cell was synthesized
as a latch. The evaluation showed great results, achieving a maximum throughput of 2.45 Gop/s
and 9.2 Gop/s respectively for the two technologies used. This paper is the extended version of our
prior work [2]. In the conference paper the general idea was introduced. Here we greatly expand the
architecture, moving from the idea to the real implementation. The novelty of this work, in comparison
with other works presented in the literature, consists in an enhanced architecture characterized by a
high level of granularity and flexibility.

2. Background

The Processing-in-Memory paradigm was born to solve the Von Neumann bottleneck, which is
characterized by the gap in performance between memory and processor. Processing-in-Memory thus
tries to reduce the disparity by merging together storage and processing units. Processing-in-Memory
(PIM) can be approached in different ways, depending on the architecture or the technologies to use.
A lot of examples can be found in literature, some of them will be depicted in the following, grouped
in categories.

2.1. Magnet-Based

Magnetic Random Access Memory (MRAM) is a non-volatile memory that uses Magneto-Tunnel
Junctions as its basic storage element. Thanks to their dual storage-logic properties, MTJs are suitable
to implement hybrid logic circuits with CMOS technology suited to implement the PIM principle.
In Reference [3] is presented a MTJ-CMOS Full Adder, which compared to a standard only-CMOS
solution showed better results. In Reference [4] the authors proposed an MTJ-based TCAM, in which
the logic part and the storage element are merged together, and an MTJ-based Non-Volatile FPGA
exploiting MTJs and combinatorial blocks. Both structures resulted in a more compact solution with
respect to conventional ones.
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In Reference [5] it is proposed a different way to implement Nano Magnetic Logic (NML) exploiting
the MRAM structure. Since the basic concept of the NML technology is the transmission of information
through magnetodynamic interaction between neighbouring magnets, the MRAM structure has been
modified so that MTJs could interact with each other. Another example is represented by PISOTM [6],
an architecture based on SOT-RAM. It is a reconfigurable architecture in which the main advantage is
that the storage and logic element result identical and for this reason technology conflict is avoided.

2.2. 3D-Stacking

According to the 3D-Stacking approach multiple layers of DRAM memory are stacked together
with a logic layer that can be application-specific ([7,8]) or general purpose [9]. In Reference [7] the
XNOR-POP architecture was designed to accelerate CNNs for mobile devices. It is composed of Wide-IO2
DRAM memory with the logic layer modified according to the XNOR-Net requirements. In Reference [8]
it is proposed an architecture for data intensive applications, where a PIM layer made of memory
and application-specific logic is sandwiched between DRAM dies connected together using TSVs. An
example of general purpose 3D-stacking is 3D-MAPS in Reference [9]. A multi-core structure is used,
and every core is composed of a memory layer and a computing layer.

2.3. ReRAM-Based

Resistive RAM is a non-volatile memory that uses a metal-insulator-metal element as storage
component. The information is represented by the resistance of the device that can be either high
(HRS) or low (LRS). To switch between states the appropriate voltage has to be applied to the cell.
The common structure of a ReRAM array is a crossbar, a structure used in matrix-vector multiplication,
commonly found in neural networks applications. PRIME [10], an architecture aimed at accelerating
Artificial Neural Networks is an example of this kind of implementations. PRIME is compliant with
the in-memory principle, since the computation is performed directly into the memory array with
few modifications to the peripheral circuitry. Memory banks are divided intro three sub-arrays each
with a specific role in the architecture. In Reference [11] is proposed a 3D-ReCAM based architecture
to accelerate the BLAST algorithm for DNA sequence alignment. The architecture, named RADAR,
aims to move the operations in memory, this way there is no need to transfer the DNA database.
In Reference [12] is presented a non-volatile intelligent processor built on a 150 nm CMOS process
with HfO RRAM. The structure is capable of both general computing and the acceleration of neural
networks, in fact it is provided with a FCNN Turbo Unit, enhanced with low-power MVM engines to
perform FCNN tasks.

Another application that is limited by the Memory Wall problem is Graph Processing. In Reference [13]
is proposed a ReRAM-based in-memory architecture as a possible solution. The structure is composed
of multiple ReRAM banks, divided into 2 types: graph banks that are used to map the graph and to store
its adjacency list and a master bank which stores metadata of the graph banks. This allows to process
the graphs that are stored inside the memory. In Reference [14] is presented PLiM, a programmable
system composed of a PIM controller and a multi-bank ReRAM which can work both as a standard
memory and as a computational unit, according to the controller signals. PLiM implemented only
serial operation to keep the controller as simple as possible. In Reference [15] the authors presented
ReVAMP, an architecture composed of two ReRAM crossbars, supporting parallel computations and
VLIW-like instructions. To perform logic operations ReVAMP exploits the native properties of ReRAM
cells that implement a majority voting logic function.

2.4. PIM

In Reference [16] the authors presented TOP-PIM, a system composed of an host processor
surrounded by several units characterized by 3D-stacked memories with an in-memory processor
embedded on the logic die. In Reference [17] is proposed DIVA, a system in which multiple PIM chips
serve as smart-memory co-processors to a standard microprocessor aimed at improving bandwidth
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performance for data intensive applications executing computation directly in memory and enabling
a dedicated communication line between the PIM chips. In Reference [18] is presented Terasys,
a massively parallel PIM array. The goal of Terasys was to embed an SIMD PIM array very close
to an host processor in order for it to be seen both as a processor array and conventional memory.
As solution for large-scale graph processing performance bottleneck, in Reference [19] the authors
proposed Tesseract, a PIM architecture used as an accelerator for an host processor. Each element of
Tesseract has a single-issue in-order core to execute operations, moreover, the host processor has access
to the entire Tesseract’s memory whilst each core of Tesseract can interact only with its own. Tesseract
does not depend on a particular memory organization, but it was analyzed exploiting Hybrid Memory
Cube (HMC) as baseline. Such a structure proved to perform better than traditional approaches
thanks to the fact that Tesseract was able to use more of the available bandwidth. In Reference [20] is
presented Prometheus, a PIM-based framework, which proposes the approach of distributing data
across different vaults in HMC-based systems with the purpose of reducing energy consumption,
improving performance and exploiting the high intra-vault memory bandwidth.

In Reference [21] is proposed a solution to accelerate Bulk Bitwise Operations. PINATUBO is
an architecture based on resistive cell memories, such as ReRAMs. The structure is composed of
multiple banks which are also subdivided into mats. Pinatubo is able to eliminate the movement of
data, since computation is performed directly inside memory, executing operations between banks,
mats and subarrays. This way PINATUBO interacts with CPU only for row addresses and control
commands. Another example of PIM architecture to accelerate bulk bitwise operations was conceived
by the authors of Reference [22], who presented Ambit, an in-memory accelerator which exploits
DRAM technology to achieve total usage of the available bandwidth. The DRAM array is slightly
modified to perform AND, OR and NOT operations. Moreover, the CPU can access Ambit directly, this
way it is not necessary to transfer data between CPU memory and the accelerator. In Reference [23] is
proposed APIM, an Approximate Processing-in-Memory architecture which aims to achieve better
performance despite a decrease in accuracy. It is based on emerging non-volatile memories, such as
ReRAM and it is composed of a cross-bar structure grouped in blocks. All the blocks are structurally
identical but divided into data and processing blocks. They are linked together through configurable
interconnections. Furthermore APIM is able to configure computation precision dynamically, so that it
is possible to tune the accuracy runtime.

In Reference [24] is presented ApproxPIM, an HMC-based system in which each vault is independent
from one another and communication with the host processor is based on a parcel transmission protocol.
This results in energy and speedup improvements with respect to the used baselines. In Reference [25]
the authors presented MISK, a proposal to reduce the gap between memory and processor. Since data
movement imply a great energy cost, MISK is intended to reduce it by implementing a monolithic
structure, avoiding physical separation between memory and CPU. In fact, MISK is to be integrated
into the cache and it is not conceived to work on its own, but embedded in the CPU. This way it is
possible to achieve great results in terms of energy-per-cycle and execution time. In Reference [26]
is introduced Gilgamesh, a system based on distributed and shared memory. It is characterized by a
multitude of chips, called MIND chips, which are connected together through a global interconnection
network. Each chip is a general purpose unit equipped with multiple DRAM bank and processing
logic. In Reference [27] Smart Memory Cube is presented, a PIM processor built near the memory,
in particular HMC, which is connected to an host processor. HMC vault controls are modified to
perform atomic operations. The PIM processor interacts with the host processor so that smaller tasks
are executed directly side by side the memory.
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In References [28,29], the authors presented in-memory architectures on which the Advanced
Encryption Standard (AES) algorithm was mapped, showing great result in speed and energy saving
compared to other solutions. In Reference [1], the authors presented an architecture based on the
in-memory paradigm aimed at Convolutional Neural Networks (CNN). The structure is a memory
array in which each cell is provided with both storage and computation properties and with the support
of an additional weight memory which is designed to support CNN data flow and computation inside
the array. This structure showed great result compared with a conventional CNN accelerator in terms
of memory accesses and clock cycles.

3. The Algorithm

The Processing-in-Memory principle requires that the storage and logic components are merged
together. In order to implement an architecture compliant with such a requirement it was necessary
to firstly shape it according to a suitable application. For this purpose Bitmap indexing was selected.
Bitmap indexes are often used in database management systems.

Taking as an example the simple database in Figure 1A, each column of the database represents
a particular characteristic of the profile of the entry described in one row. Suppose a search on the
database is to be performed to create a statistic on how many men possess a sport car or a motorbike.
Such a query would imply looking for all the men and then excluding the ones that do not own the
specified vehicles. If the database is big this operation would require a long response time. Bitmap
indexing was introduced to solve this issue. Bitmap indexing transforms each column of a table in as
many indexes as the number of distinct key-values that particular column can have.

A bitmap index is a bit array in which the i-th bit is set to 1 if the value in the i-th row of the
column is equal to the value represented by the index, otherwise it is set to 0 (Figure 1A). Thus, bitmap
indexing allows to fragment search queries in simple logic bitwise operations (Figure 1B). This way it is
not necessary to analyze the whole database discarding unwanted data, but only to operate on selected
indexes. Bitmap indexing can provide great results in response time and in storage requirements since it
can be compressed. Bitmap indexing is suited for entries with a number of possible values smaller than
the depth of the whole table. This technique is mostly functional for queries regarding the identification
of the position of specific features, for this reason to answer an “how many” query it is necessary to
insert a component that counts the hits obtained. Summing up, a query can be decomposed in simple
logic operations which are performed between indexes, processing bits belonging to the same position
in the array (Figure 1C).

Clearly, Bitmap indexing results compatible with the Processing-in-Memory paradigm, since
it is characterized by simple logic bitwise operations and its data format make it easy to embed in
memory. However, bitmap indexing involves operations between columns of a table. If we consider
memory organization and imagine to maintain the column-row distribution of the table in memory,
this would imply to access multiple rows and then discard all the data that do not belong to the desired
indexes. This approach would be too costly. For this reason for our implementation a column-oriented
was preferred, which means that the entire table is stored transposed, so that now, applying bitmap
indexing, indexes lie on rows (Figure 2).

Thanks to this method, to access an index it is only necessary to access a row and consequently
operations between indexes result in operations between memory rows. In this implementation we
thus consider the indexes distributed on rows in a memory array. We also take into account two types
of query, simple and composed. A simple query is composed of only one operation (e.g., “Who is female
and married?”) whilst a composed one is characterized by intertwined operations (e.g., Figure 1B).
Considering the composed query depicted in Figure 1B the operations to perform would be:

1. Access the first operand;
2. Access the second operand;
3. Execute bitwise operation between the two operands;
4. Read result;
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5. Execute bitwise operation between computed result and third index;
6. Count the hits obtained;
7. Read final result;

While to answer a simple query only steps 1–4 are needed. The goal is then to implement the just
introduced algorithm directly inside a memory array.
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Figure 1. (A) Given a table, bitmap indexing transforms each column in as many bitmap as the number
of possible key-values for that column (B) In order to answer a query logic bitwise operations are to be
performed (C) Practical scheme of the execution of the query.
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Figure 2. Column-oriented memory organization.

4. The Architecture

The architecture proposed in this paper present a possible solution for the Von Neumann bottleneck
implementing a proper in-memory architecture, where logic functions are implemented directly inside each
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memory cell, in contrast with the near-memory approach seen in some state-of-the-art implementations,
where logic operations are performed with logic circuits located on the border of the memory array.
Moreover, this architecture was intended to overcome the limits provided by specific technologies
by keeping the development of the architecture technology-independent, in order to implement a
configurable architecture with the highest degree of parallelism achievable.

A memory array is composed of many storage units, each of which is made of multiple memory
cells. Cells are the basic element of the memory itself. Therefore, in order to implement an entire
memory array aimed at executing the Bitmap indexing algorithm, firstly it is necessary to define the
structure of the memory cell.

According to the specifications required by the Bitmap indexing, the cell has to be able to perform
simple logic operations interacting with other cells in the array. This means that our cell should have
both storage and logic properties. Indeed, the basic cell of the PIM array is provided with an element
that store information and a configurable logic element which performs AND, OR, XOR operations
with all the combinations of input (e.g., A, A), between the stored information and the one coming
from another cell (Figure 3). The system has indeed the granularity of a single bit, meaning that every
memory cell executes a logic operation.
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Figure 3. (A) Overview of the complete architecture. (B) Structure of the duo Bank-Breaker. (C) Insight
of the Processing-In-Memory (PIM) cell.
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Other than standard memory features the PIM cell can interact with other cells, according to its
control input. As every single cell in the array has the ability to perform computation, it is necessary to
choose which cell will be executing the operation and which will be read. In order to implement it, the
designated passive cell is read and the stored data travels to the operative cell. To avoid interference
between inactive cells, the output lines of cells that are not used are interrupted. To implement the
bitwise feature each cell of a row has its input and output line common to any other cell belonging to
the same column of different rows.

In Figure 3, the whole structure is depicted. Noticeably, other than the array, the architecture
is composed of a control unit and some additional components, such as the counter (for counting
ones) and register files. Focusing on the array, like any standard memory, it was divided into multiple
banks. Each bank is associated with a breaker that manages data flow from and to the bank. A bank
represents the smallest degree of parallelism of the architecture. This means that in a bank it is possible
to execute one operation at a time. The system has also a second level of granularity because thanks
to the breakers every bank can work independently. This solution provides at the same time a high
level of granularity and flexibility. Banks can execute operations between its rows or can work with
other banks, making interact rows belonging to different banks, while other banks work on different
operations in parallel. As a consequence, supposing each bank in the array works on a different
operation by itself, the maximum degree of parallelism achievable is equal to the number of banks in
the array. The Bidirectional Breaker is in charge of managing relations between its bank and the rest of
the array. According to the control input, the breaker can be passive, that is, letting data pass through
without disturbing its bank so that the bank can work on its own or be silent. The breaker can also be
active and diverting data to or from its bank.

A bank is composed of multiple PIM rows and one Ghost row which is provided only with
memory properties used to store temporary operation results. The Ghost row has the input line
connected to the logic result output line of the PIM rows, whilst its output line is common with the
PIM rows. This way it is possible to read the Ghost row or use its content for further computation.
As in standard memories, each row is fragmented in multiple words. This means that operations are
actually performed between words belonging to different rows. The result is then temporary saved in
the Ghost word corresponding to the same word address of the word which executed the operation.
This was implemented to avoid the need to manage a third address. To handle all the configuration
signals needed to manage the correct execution, two decoders were needed inside each bank. One
that sets the configuration for the logic operation to execute, sending it to the right row. The second
was implemented to control addresses, data flow inside the bank and to distinguish between standard
memory mode and PIM operation mode. Since a simple AND operation can be performed in one bank
in a single clock cycle, imaging of having multiple banks definitely increase the number of operations
that can be executed in one clock cycle in parallel. The same reasoning goes for a composed operation
which takes two clock cycles. The throughput is directly proportional to the number of banks in the
memory block. So, the larger the number of banks, the larger the memory block and also the larger
the throughput.

In Figure 3, it is highlighted that, other than the array, there are some additional components
which are used to guarantee the correct functioning of the entire structure.

The Instruction Memory is used to collect the queries to execute. It consists in a register file, having
as many registers as the number of banks, with an input parallelism equal to the length of a complete
query (i.e., two complete addresses and a logic operation configuration string). A composed query is
treated as the combination of two distinct queries, which means that a composed query will occupy
two consecutive registers of the Instruction Memory. Clearly, even if the architecture was configured
to exploit its maximum potential by implementing the bitmap indexing algorithm, it can be configured
to perform additional algorithms. For reconfigurability purposes the instruction memory had to be
implemented as wide as possible, but most likely it will not be updated fully each time. In order
to avoid conflicts the Operation Dispatcher is in charge of blocking any old query. Since a query can
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take place between any couple of addresses in the array, it is necessary to sent the addresses to their
respective bank. The Operation Dispatcher thus reorders addresses and sends them to their own
bank. After the correct reordering, to ensure synchronization the addresses are sampled by the Address
Register File which loads the addresses and sends them to the array.

As illustrated previously, results of bitwise logic operations answer to queries in where clause.
To count the number of ones (“1”) in the “how many” clause it was inserted a ones counter of logic “1”
connected with the output of a delay register. The register was added to ensure timing constraints
given by the counter. A simple counter that processes the data input bit-by-bit and increments by one
for each “1” found was too slow. Therefore, a tree-structured counter was implemented. Firstly, the
data array is fragmented into D segments, each of N

D -bits. All segments are then analyzed at the same
time and the ones contained in each segment are counted. Finally, all the factors are added together
to obtain the final sum. Also, all the adders that form the tree-structure are of the same dimension
computed to avoid overflow.

The architecture was conceived to incorporate as many features as possible and at the same time
trying to keep the control circuits as simple as possible. The implemented structure is versatile and
can work in 8 different operation modes, discerned among traditional memory operations and PIM
operations based on the position of the two operands and the desired parallelism: (1) Write; (2) Read;
(3) Save result; (4) PIM simple single bank; (5) PIM simple different banks; (6) PIM multiple banks;
(7) PIM composed; (8) PIM multiple composed. Each operation mode is the starting point of a query,
which is composed as shown in Figure 4A. The FSM chart of all operation modes are reported in
Figure 4B.

A)

B)

Figure 4. (A) Composition of a complete query. (B) Preliminary stages.

The developed architecture is a modular configurable parallel architecture that implements the
concept of Processing-in-Memory to perform bitwise logic operations directly inside the memory,
making it suitable for other applications other than Bitmap indexing, as long as they are based on bitwise.
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5. Results and Conclusions

The architecture was fully developed in VHDL (VHSIC Hardware Description Language). In order
to evaluate its performance a 8.704 KB square memory array was analysed. The array distribution
consisted in 16 banks with 16 bit data size. All the internal structures have been kept para- metric to
give the possibility to implement the architecture composed of how many banks, rows and words
needed according to the target database. From a MATLAB script (or from an external source in the
case of the bitmap) were extracted both the bitmap and the queries to execute. The files were then set
as input for the VHDL Testbench and finally it was run a simulation of the queries to feed the PIM
architecture. When started, the script enters a loop that terminates only when the user decides not
to create any more queries and a file generated as output. The completion of the query is assisted by
two pop-up windows: one shows the internal composition of the memory and the other shows the
available logic operations and their correspondent code.

All eight operation modes were tested with Modelsim to ensure the correct functioning. Two
examples of operation mode are reported in Figure 5, it shows two examples of logic behavior (expected
and simulated) of the proposed architecture.

A)

B)

C)

D)

Figure 5. (A) Expected waveform of a LIM single same bank AND operation. (B) Waveform of a LIM
single same bank AND operation. (C) Expected waveform of a PIM multiple operations. (D) Simulated
waveform of a PIM multiple-bank operation.

132



Sensors 2020, 20, 1681

The architecture was later synthesized with Synopsys Design Compiler using 45 nm BULK and
28 nm FDSOI CMOS technologies (Table 1). By using Synopsys Design Compiler latches and logic
gates are used to implement the memory cell, so the results are not optimized as they will be if a
custom transistor layout was created for the memory cell.

As the fundamental element of the whole structure, the Cell was analyzed and optimized.
The obtained results are reported in Tables 1 and 2.

From, Table 1 it is possible to evince the the area overhead is 55%. The overhead in terms of power
dissipation is similar.

Table 1. Synthesis of the fundamental element.

Memory Logic Cell

Non-Combinational Area [mm2] 9.31 2.12 11.43
Combinational Area [mm2] 5.32 15.43 20.75

Total Area [mm2] 32.18
Delay [ns] 0.45

Table 2. Synthesis results for 45 nm and 28 nm CMOS technologies.

Parameter Value (45 nm) Value (28 nm)

Total area [mm2] 2.33 1.058
fCLK [MHz] 153.4 574.7

Total Power [mW] 49.7 14.07

An interesting point is the relation between the number of the segments and the resulting delay.
An analysis was carried out with 8 bit and 16 bit input data size (Figure 6). As it shows the delay
reduces considerably with a bigger amount of segments. Indeed, the architecture under consideration
was synthesized with a value D of 8 to achieve best speed.

2 3 4 5 6 7 8

D

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D
el

ay
 [n

s]

N = 8 bit
N = 16 bit

Figure 6. Relation between number of segments in the counter and resulting delay.

One of the main goal this paper aimed to fulfill is the high level of concurrency. This was accomplished
thanks to the internal structure of the array, distributed on banks which are capable of working both
independently and with each other, providing flexibility in the position of the operands that are called
to act in the query. To execute a simple query only one cycle is required. Thanks to the modular
structure of the array, the maximum throughput achievable working in parallel in PIM multiple banks
mode is:
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throughputmaxsimple = fCLK · Nops.

As for composed query two cycles are required to complete the operations. The resulting maximum
throughput operating in PIM multiple composed mode is:

throughputmaxcomposed = fCLK
2 · Nops.

So, assuming to execute a different query in each of the 16 available banks, we will reach a
maximum throughput of 2.45 Gop/s and 9.2 Gop/s for 45 nm and 28 nm respectively. The performance
of the proposed PIM architecture was compared with results of other in-memory proposals found in
Reference [29] (Table 3).

Table 3. Clock cycles comparison for a single query execution.

f = A · B f = A · (B · C)

Pinatubo [21] 5 9
RIMPA [28] 3 5
PIMA-Logic [29] 1 3
PIM 1 2

Noticeably, operations in the proposed PIM array take less clock time compared to other solutions.
Moreover, it should be taken into consideration that executing multiple parallel operations would
not change the number of clock cycles required. This shows how the throughput mentioned above
is obtained. Thus, the maximum degree of parallelism achievable is correspondent to the number of
the available banks. Moreover, it is possible to scale the architecture to bigger dimensions as it was
conceived as modular, meaning it can be composed with as many banks as wanted. Another possibility
is to develop a 3D structure in order to enhance performance. Nonetheless, it would be easy to modify
the architecture to make it fit for other types of operations. These results, coupled with the flexibility
of the architecture, highlight the potential of the proposed architecture.
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Abstract: Fine resolution selection of the sample rate is not available in digital storage oscilloscopes
(DSOs), so the user has to rely on offline processing to cope with such need. The paper first discusses
digital signal processing based methods that allow changing the sampling rate by means of digital
resampling approaches. Then, it proposes a digital circuit that, if included in the acquisition channel
of a digital storage oscilloscope, between the internal analog-to-digital converter (ADC) and the
acquisition memory, allows the user to select any sampling rate lower than the maximum one with
fine resolution. The circuit relies both on the use of a short digital filter with dynamically generated
coefficients and on a suitable memory management strategy. The output samples produced by the
digital circuit are characterized by a sampling rate that can be incoherent with the clock frequency
regulating the memory access. Both a field programmable gate array (FPGA) implementation and an
application specific integrated circuit (ASIC) design of the proposed circuit are evaluated.

Keywords: resampling; interpolating polynomial; polyphase filter; digital circuit design; FPGA;
ASIC

1. Introduction

In the majority of digital storage scopes (DSOs) the analog-to-digital converter (ADC) always
works at its maximum sampling rate, imposed by an internal fixed frequency clock [1,2]. The user
can also select lower sampling rates, which are achieved by seamlessly resampling the ADC output
stream. Resampling is performed by means of a digital circuit that interfaces ADC and acquisition
memory, and merely consists in decimating the input stream, which involves grouping the samples
at the maximum sampling rate into consecutive sets, and acquiring, that is, storing in the acquisition
memory, only the first sample of each set. All sets have the same size, which is equal to the required
decimation factor—for instance, grouping samples into sets with size equal to 2 means acquiring one
every other sample, thus halving the input sampling rate [3,4].

Resampling based on decimation is characterized by the following drawbacks: (i) the selection of
the sampling rate is limited to the values that can be obtained dividing the maximum sampling rate by
integer values; (ii) if the selected sampling rate is less than the Nyquist rate of the analog input, the
acquired signal is corrupted by aliasing [5,6].

In general, fine selection of the sample rate improves the performance of the DSO, allowing
more efficient usage of memory resources. In fact, a limited set of sample rates implies a limited set
of time windows for signal observation. Due to these limitations, it is possible that the analysis is
performed observing the signal of interest in a time window where up to almost 50% of the window
contains useless samples. Many DSOs are also complemented with math capabilities like Fast Fourier
Transform (FFT) options that allow frequency domain analyses. In these applications the choice of
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the sample rate determines, in conjunction with the memory size, the frequency span and resolution
settings; the limitations characterizing the sample rate selection lead to sub-optimal settings. Some
DSOs allow the user applying an external clock signal to control the sampling rate. This option is not
very common because of the following drawbacks: (i) the external path has a limited bandwidth, much
inferior to that of the internal path, so that the operative range of the DSO is substantially reduced;
(ii) some functionalities of the instrument, which cannot work with the external clock, are disabled;
(iii) the precision specifications of the DSO, which are related to the operation with the internal clock,
cannot be used to evaluate the accuracy of the measurement results.

In theory, fine control of the sampling rate in real-time DSOs can be obtained by resampling
the ADC output stream by means of more effective methods alternative to hard decimation [7–9].
These methods can be inherited by digital signal processing theory, and rely either on the use of
interpolation algorithms or polyphase filters [10,11]. The first method allows varying the sampling
rate dynamically, and puts no restrictions on the selection of the output sampling rate. The second
method is instead limited to decimation factors that are equal to L

M , where L and M are integers. Both
methods counteract aliasing effects by means of low-pass filtering operations, which are implicit in
the interpolation algorithm, and explicit in the processing scheme of polyphase filters [12–15]. In fact,
the use of an interpolation function is equivalent to filtering the signal with a filter characterized by a
frequency response where the number of taps is equal to the number of points used in interpolation.
Unfortunately, the hardware implementation of both methods is difficult due to the strict requirements
of seamless operation and fine resolution in sampling rate selection [16–18].

A method that shows a viable solution to finely control the sampling rate in DSOs has been
presented in Reference [19], and a digital circuit that implements this method using field programmable
gate array (FPGA) technology has been illustrated at the ApplePies 2019 Conference [20]. In detail, the
digital circuit exploits a resampling method based on linear interpolation, which trades-off between
accuracy and circuit complexity. It is designed to work between the ADC and the acquisition memory,
and allows selecting sampling rates from the highest frequency, fck, down to its half value, fck

2 .
Choosing a sample rate lower than fck

2 is easily obtained by cascading the proposed circuit with a
standard one that performs decimation by an integer value. The acquisition chain is made up of ADC,
proposed digital circuit, and acquisition memory, all operating synchronously at the system clock
rate fck. It provides samples that represent a version of the input signal characterized by a sample
rate fs = C fck, where C is a fractional value in the interval ( 1

2 , 1). The defining resolution of C is only
limited by the number of bits adopted in its binary representation; the reciprocal of C can be regarded
as a non-integer decimation factor.

This work is an extended version of the article published in the Conference Proceedings [20].
It takes into consideration several different methods for DSOs sampling rate control, and, by evaluating
their performance highlights how the proposed digital circuit represents a good compromise between
achievable accuracy and circuit complexity. Starting from the primary version of the circuit, an
improved version characterized by different pipeline levels is developed, and an application specific
integrated circuit (ASIC) design of the proposed solution is also analyzed [21–23].

The paper discusses more about the resampling methods based on interpolation and polyphase
filters in Section 2. The performance of different interpolators, which satisfy the requirements of
effective hardware implementation and high resolution in sampling rate selection, is analyzed in
Section 3 through simulations. Section 4 illustrates the design of the proposed digital circuit, and,
finally, Section 5 gives concluding remarks.

2. Methods

In general, resampling a mono-dimensional signal, defined upon a sampling grid, aims at
producing another representation of the same signal, referred to a different sampling grid. It basically
requires gaining the samples referred to the output grid by processing the available ones. Resamplers
manage a redundant representation of the signal, that includes both the input samples and the
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resampled ones; the second are the only ones returned by the circuit.
In the most common resampling applications both the input and output sampling grid are uniform

and the circuit has to deal with samples that are streamed at regular time instants, such that a sampling
rate is defined. Also, resampling has to be performed real-time seamlessly on the input stream, which
is very challenging, especially in the presence of high-rate data streams [24–27].

Hereinafter, the attention is mainly paid to real-time seamless resampling of signals that are
naturally defined in the time domain, for which the input sampling rate needs to be changed into a
different sampling rate, lower than the input one. The methods that are illustrated can be adapted to
other signals defined in different domains by exploiting the unique correspondence between the points
of the sampling grids and the related time-stamps in their streamed form produced at the processing
stage [28,29].

2.1. Resampling Based on the Use of Approximating Polynomials

The most straightforward resampling approach, capable of granting real-time seamless
performance, exploits the zero-order interpolation process, which assumes the signal constant until
the next sample is available. In other terms, the resampled value, x(n + t), where t is a fraction of the
sampling period, Ts, (reciprocal of the sampling rate, fs) of the input stream, is assumed equal to that
of the most recent sample x(n) [30,31].

Alternatively, the first-order or linear interpolator can be used to improve the accuracy of the
resampling process. Linear interpolators wait for the subsequent sample of the input stream x(n+ 1) to
compute the value of any sample at a time instant in the midst. Specifically, they compute it by adding
to x(n) a term equal to t times the time derivative, which is estimated as first forward difference [32,33].

More generally, resampling can rely on interpolators that use a larger set of samples adjacent
to the resampling instant to determine the resampled value. The samples of the set are processed to
identify a polynomial of the t variable, P(t), that locally approximates the signal behavior. The value
of the polynomial at the resampling instant provides the resampled value. The polynomial is identified
imposing constraints that can involve the values of the signal and/or of its time derivatives. The most
common solutions are:

• the approximating polynomial connects all the samples of the set (Lagrange polynomial) and is
characterized by a degree equal to the number of samples of the set minus 1;

• the approximating polynomial is identified by fitting the samples in order to minimize the mean
square error, and is characterized by a degree less than the number of samples of the set minus 1;

• the approximating polynomial connects a subset of the samples and has the same time derivative
of the signal in those points (Hermite polynomial).

In all the aforementioned approaches the resampled value obtained using an approximating
polynomial can be represented with a matrix formulation. For instance, for a 3-degree approximating
polynomial, one as:

x(n + t) = c1(n) + c2(n)t + c3(n)t2 + c4(n)t3 =

=
[

1 t t2 t3
]
⎡
⎢⎢⎢⎣

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

xn−1
xn

xn+1
xn+2

⎤
⎥⎥⎥⎦

(1)

where x(n + t) is the resampled value at time instant n + t, t is within the interval (0, 1), and
each coefficient, aij, i = 1, . . . , 4, is a linear combination of the values of the 4 consecutive samples
{xn−1, xn, xn+1, xn+2} with constant coefficients, namely:

ci(n) =
4

∑
j=1

aijxn−2+j. (2)
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The constant coefficients aij can be determined imposing the constraints used to define the
approximating polynomial. Hence, for a Lagrange polynomial, one can consider the system
of equations obtained imposing that the polynomial connects the values {xn−1, xn, xn+1, xn+2}
characterized, respectively, by t abscissas {−1, 0, 1, 2}:

⎡
⎢⎢⎢⎣

1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1
c2

c3

c4

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

xn−1
xn

xn+1
xn+2

⎤
⎥⎥⎥⎦ (3)

from which the aij values are determined by inverting the coefficient matrix in (3) as:

{
aij

}
= inv

⎡
⎢⎢⎢⎣

1 −1 1 −1
1 0 0 0
1 1 1 1
1 2 4 8

⎤
⎥⎥⎥⎦ =

1
6

⎡
⎢⎢⎢⎣

0 6 0 0
−2 −3 6 −1

3 −6 3 0
−1 3 −3 1

⎤
⎥⎥⎥⎦ (4)

If an approximating polynomial of second degree is selected, then only three coefficients, ci(n), i =
1, 2, 3, that are still linear combination of the samples {xn−1, xn, xn+1, xn+2} with constant coefficients
are needed. These coefficients can be determined imposing the same constraints adopted to identify
the Lagrange polynomial, i.e: ⎡

⎢⎢⎢⎣
1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎦
⎡
⎢⎣c1

c2

c3

⎤
⎥⎦ =

⎡
⎢⎢⎢⎣

xn−1
xn

xn+1
xn+2

⎤
⎥⎥⎥⎦ (5)

but, since a second degree polynomial cannot in general grant the connection of more than 3 points,
one has to accept an approximate solution that best fits the data according to a given cost function.
The solution that grants the least mean square error, as well known, is obtained solving the system in
(5) using the pseudo-inverse matrix method; in this case the aij values, i = 1, ..., 3, j = 1, . . . , 4, are:

{
aij

}
= inv

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎣ 1 1 1 1

−1 0 1 2
1 0 1 4

⎤
⎥⎦
⎡
⎢⎢⎢⎣

1 −1 1
1 0 0
1 1 1
1 2 4

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

⎡
⎢⎣ 1 1 1 1

−1 0 1 2
1 0 1 4

⎤
⎥⎦ =

= 1
20

⎡
⎢⎣ 3 11 9 −3

−11 3 7 1
5 −5 −5 5

⎤
⎥⎦

(6)

The coefficients of a 3-degree Hermite polynomial are identified using also the time derivative of
the approximating polynomial P(t), namely:

dP
dt

= c2(n) + c3(n)t + c4(n)t2 (7)

to form a system of equations that imposes that the polynomial connects the central samples, referred
to the t abscissas equal to 0 and 1, and has the same derivative of the signal in those points. In matrix
form, these constraints can be expressed by:

⎡
⎢⎢⎢⎣

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

c1
c2

c3

c4

⎤
⎥⎥⎥⎦ =

1
2

⎡
⎢⎢⎢⎣

0 2 0 0
0 0 2 0

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

xn−1
xn

xn+1
xn+2

⎤
⎥⎥⎥⎦ (8)
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where the time derivative of the signal is estimated in terms of finite central difference. The aij values,
i, j = 1, . . . , 4, are obtained solving system (8) as:

{
aij

}
=

1
2

inv

⎡
⎢⎢⎢⎣

1 0 0 0
1 1 1 1
0 1 0 0
0 1 2 3

⎤
⎥⎥⎥⎦
⎡
⎢⎢⎢⎣

0 2 0 0
0 0 2 0

−1 0 1 0
0 −1 0 1

⎤
⎥⎥⎥⎦ =

1
2

⎡
⎢⎢⎢⎣

0 2 0 0
−1 0 1 0

2 −5 4 −1
−1 3 −3 1

⎤
⎥⎥⎥⎦ (9)

The equations that define the interpolation methods discussed above can be summarized as in
Table 1.

Table 1. Lagrange, Hermite and best fitting polynomial (in the sense of least square error) adopted
in resampling.

Samples Interpolation Equation

1 zero order x(n + t) = x(n)

2 linear x(n + t) = x(n) + [x(n + 1)− x(n)]t

3 linear (best fitting) x(n + t) = 1
3 [x(n − 1) + x(n) + x(n + 1)] + 1

2 [x(n + 1)− x(n − 1)]t

3 quadratic (Lagrange) x(n + t) = x(n) + 1
2 [x(n + 1)− x(n − 1)]t+

+ 1
2 [x(n − 1)− 2x(n) + x(n + 1)]t2

4 quadratic (best fitting) x(n + t) = 1
20 [3x(n − 1) + 11x(n) + 9x(n + 1)− 3x(n + 2)]+

+ 1
20 [−11x(n − 1) + 3x(n) + 7x(n + 1) + x(n + 2)]t+

+ 1
4 [x(n − 1)− x(n)− x(n + 1) + x(n + 2)]t2

4 cubic (Lagrange) x(n + t) = x(n) + 1
6 [−2x(n − 1)− 3x(n) + 6x(n + 1)− x(n + 2)]t+

+ 1
2 [x(n − 1)− 2x(n) + x(n + 1)]t2+

+ 1
2 [−x(n − 1) + 3x(n)− 3x(n + 1) + x(n + 2)]t3

4 cubic (Hermite) x(n + t) = x(n) + 1
2 [x(n + 1)− x(n − 1)]t+

+ 1
2 [2x(n − 1)− 52x(n) + 4x(n + 1)− x(n + 2)]t2+

+ 1
2 [−x(n − 1) + 3x(n)− 3x(n + 1) + x(n + 2)]t3

2.2. Resampling Based on Polyphase Filters

Resampling with polyphase filters is commonly performed in a variety of systems, like
multipurpose receivers, where several different sampling rates are supported to process signals
characterized by different bandwidths, as well as in digital audio and video systems, and so
forth [34,35]. In these systems the signal is initially sampled at a high sampling rate, then processed to
modify the sampling rate by a factor L

M . Processing involves interpolation by L, low-pass filtering, and
decimation by M. Low-pass filtering removes the image frequencies due to sampling rate changes; it
is implemented using polyphase decomposition of both the input signal and filter coefficients [36,37].

For the sake of clarity, an example of a 3
4 -resampler that uses a short low pass filter with 9

coefficients, h(n) = {h(0), h(1), . . . h(8)}, is shown in Figure 1. The input signal y(n) is de-multiplexed
in order to retrieve 4 consecutive samples and route them to 4 individual channels with a single
operation. The output of the resampler, z(m), is obtained by multiplexing the outputs produced by 3
filters, each filter defined in terms of 3 coefficients of h(n) according to polyphase decomposition rules.
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Polyphase filters are characterized by low requirements in terms of clock frequency and can be
set to both up-sample and down-sample the input stream, but are not suitable for programmable
resampling factors, because any polyphase structure is defined by the same ratio between the input
and output sampling rate; consequently, any change of the resampling ratio implies modifying their
structure [38].

Figure 1. Schematic of a digital resampler implementation based on polyphase decomposition.
Resampling factor equal to 3/4 low-pass filter with 9 taps.

2.3. Pro and Cons of Approximating Polynomials and Polyphase Filters

Resampling with polyphase filters straightforwardly changes the input sampling rate, fck to the
output one fs =

L
M fck. In fact, thanks to the use of a demultiplexer at the front-end, the polyphase filter

processes any Tck
M seconds (Tck = f−1

ck ) a set of M input samples and returns a set of L output samples,
which are written in the acquisition memory with a single memory access, thus lowering the input
sampling rate by a factor L

M . Unfortunately, any change of the sampling rate requires re-programming
the digital circuit. Although, in theory, re-programming can be done, in case of sampling rates
that involve very large M and L values, one should reserve sufficient hardware resources for huge
polyphase structures, seldom required and largely unused; nonetheless, the responsiveness of the
system would definitely slow-down.

Resamplers based on interpolators are instead less demanding in terms of hardware resources
and allow controlling the sampling rate easily. They also require a suitable strategy for arranging the
lower sampling rate output stream. Specifically, the digital resampler can take as input both a set
of consecutive samples and the t variable, as specified by the interpolation equations summarized
in Table 1. It can run at a clock rate equal to the input sampling rate, quantifying the t variable as
the delay of the resampling instant with respect to the discrete time n. To this end, it can exploit an
accumulator that increments by Ts

Tck
− 1 (Ts = f−1

s ) any Tck seconds. The accumulator represents the
t variable except when it overflows a unitary value. The overflow repeatedly occurs with a cadence
related to the selected sampling rate. Overflow means that the resampling instant does not fall between
the discrete time n − 1 and n, but is in the midst of n and n + 1, such that it should be considered at
the next processing step. At any occurrence of an overflow, the digital circuit skips the calculation of
the resampled value, and performs a unitary decrement of the accumulator at the subsequent clock
cycle, thus restoring t between the expected discrete time instants.

The use of approximating polynomials is preferred in the development of a digital circuit aimed at
granting fine control of DSOs sampling rate, because it has several interesting features. These include
the capability of resampling even if the ratio of sample rates is not rational, as well as of seamlessly
managing real-time streams even in the presence of time-varying sample rates.
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3. Simulation Analyses

As well known, changing the sampling rate produces aliasing, which is usually counteracted by
filtering the digital signal with a low pass filter before resampling. The performance of the resampling
methods is affected by the presence of residual alias, thus the frequency response of the adopted
anti-aliasing filter must be taken into account. The anti-aliasing filter is implicit in the resampling
approach based on the use of an approximating polynomial, and its impulse response is given, in
general, by a set of coefficients that depend on t; for instance, from Equation (1), one can obtain the
coefficients of the 4-tap filter, dj, j = 1, ..., 4 as:

dj =
4

∑
i=1

aijtj−1. (10)

An estimation of the residual alias can be approached taking into account that the spectrum of a
digital signal is periodic with unitary period, and that lowering the sampling rate down to fs = C fck
has the effect of replicating the spectrum at a pace equal to C. Moreover, since the t variable changes
during the resampling process, ranging in the interval (0, 1), the features of the anti-aliasing filters
change as well. Anyway, taking into account that t is within (0, 1) and, on average, t = 1

2 , one
determines the average behavior of the filter. Using the frequency response, H(ν), of the filter that
describes the average behavior, which is gained by taking the Fourier transform of the filter coefficients
estimated with t = 1

2 , allows representing the spectrum of the resampled version as:

Z(ν) =
∞

∑
p,q=−∞

H(
ν

C
)X(

ν − p
C

− q), (11)

where ν is normalized to the sampling rate fck. From Equation (11) the alias-free version of the
resampled signal can be obtained using p = q = 0, whereas all the combinations satisfying |p − Cq| <
C
2 identify the residual aliases that fall in the spectrum of the resampled signal. Figure 2 shows the
frequency response of the anti-alias filters that are implicit in the 7 approaches detailed in Table 1.
The different responses are characterized by specific markers and colors: ’plus’ marker and blue color
is for the linear interpolator, ’circle’ marker and red color for the first-degree polynomial fitting 3
sample points, ’x’ marker and green color for the second-degree Lagrange polynomial, ’star’ marker
and yellow color for the second-degree polynomial fitting 4 sample points, ’square’ marker and
magenta color for the third-degree Lagrange polynomial, and, finally, ’diamond’ marker and cyan
color for the third-degree Hermite polynomial (a suitable legend has been included to highlight these
correspondences). For the sake of completeness also an additional graphic, related to the zero-order
resampling approach, is shown using ’dot’ marker and black color to highlight the all-pass nature of
this approach, which is detrimental because it provides no mitigation of aliasing effects.

The frequency responses given in Figure 2 are obtained by Fourier transforming the impulse
response estimated upon 50 points, and consist of 25 bins, equally spaced at a pace of 0.02; they
show the behavior of the filters up to the normalized frequency 0.5, corresponding to fck

2 hertz. One
can observe that the approximating polynomials with higher degree offer flatter gain and better
selectivity. Also, the mean behavior of the anti-aliasing filters related to the use of the second-degree
polynomial fitting 4 sample points, the third-degree Lagrange polynomial, and the third-degree
Hermite polynomial are identical. The ideal frequency response behavior should exhibit unitary gain
in the interval (0, C

2 ), to avoid undesired attenuation of the signal spectral content, and zero gain in
(C

2 , 1
2 ) to cancel any alias contribution.
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Figure 2. Frequency response of the anti-alias filters implicit in the resampling approaches based on
the use of approximating polynomials.

Although the anti-aliasing filter plays an important role in the resampling process, the analysis
of its mean behavior provides only partial insight, since the time-varying nature can play a role that
cannot be analyzed using Equation (11). A deep insight in the performance of the resampling methods
can instead be gained by using the standard test methods for ADC, detailed in Reference [39], such
as the effective number of bits (ENOB) and the spurious-free dynamic range (SFDR). The first is a
measure of the signal-to-noise and distortion ratio used to compare the actual ADC performance to an
ideal one; the latter considers, in the presence of a pure sine-wave input, the ratio of the amplitude
of the output spectral component at the input frequency, f0, to the amplitude of the largest harmonic
or spurious spectral component. Figure 3 shows the ENOB offered by the considered methods in the
presence of test sine-waves.
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Figure 3. Effective number of bits (ENOB) offered by the resampling approaches based on the use of
approximating polynomials.

The simulations have considered samples quantized by an 8 bit ADC. Quantization has been
applied to a signal corrupted by white Gaussian noise, with rms value equal to 15% of the LSB
of the ADC. The sampling rate of the input stream is fck = 1 GSa/s, that is resampled at fs = 743
MHz, thus C = 0.743. The sine-waves adopted in the tests are characterized by the frequency values
{1, 2, 5, 10, 20, 50, 100, 200} MHz. The results show that ENOB obtained after resampling can even
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improve in the presence of the lower input frequencies of the considered set with respect to the nominal
8 bit. This is due to the anti-aliasing low-pass filter that reduces the acquired bandwidth and thus
also the distortion due to quantization. As the input frequency approaches the upper limit of the
Nyquist bandwidth, the performance of all methods rapidly decreases, and one can observe that the
methods that use approximating polynomials with higher degree can grant ENOB close to the nominal
number of bits on wider ranges. As expected, the effectiveness of interpolation algorithms diminishes
as soon as the input sinusoidal signal is sampled collecting a few points per period, namely 7–8 points.
This happens because the algorithms consider the local behavior of the signal, whereas the uniform
sampling theorem claims for interpolation with sinc functions that consider the behavior on the whole
time axis; unfortunately sinc interpolation is unfeasible and its straightforward approximations, like
those based on the use of truncated sinc functions, are characterized by huge computational burden,
which is not compatible with real-time execution. As a rule of thumb, suggesting some oversampling
in the use of the acquisition mode with fine selection of the sample rate, avoids incurring in poor
results.

The simulations have also estimated for the same test set-up the SFDR in order to highlight if
the time-varying behavior of the anti-alias filters introduce relevant spurious; the obtained results are
shown in Figure 4.
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Figure 4. Spurious-free dynamic range (SFDR) offered by the resampling approaches based on the use
of approximating polynomials.

The performance parameters highlight the convenience of using Lagrange or Hermite polynomials
(the linear interpolation coincides with the adoption of a first-degree Lagrange polynomial) for
interpolation rather then zero-order or fitting polynomials based methods.

Further simulations have been addressed to the analysis of any dependence of the performance
on the output sampling rate. As an example, Figure 5 shows the ENOB obtained in the presence of a
sine-wave input at 20 MHz when the 1 GHz input sampling rate is lowered down to the frequencies of
the set {587, 641, 743, 797, 859, 907, 971} MSa/s.
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Figure 5. ENOB offered by the resampling approaches in the presence of an input sine-wave
at 20 MHz when the 1 GHz input sampling rate is lowered down to frequencies of the set
{587, 641, 743, 797, 859, 907, 971} MSa/s.

The simulations highlight that the performance is unaffected by sampling rate changes; all the
methods offer ENOB constant and above 8 bits, except for the zero-order method, the performance of
which, although independent of the output sampling rate, is largely below the lower axis limit utilized
in Figure 5.

4. Proposed Digital Circuit

4.1. Operation Details

The proposed digital circuit implements the linear interpolation method that represents a good
compromise between accuracy and circuit complexity. It processes in real-time the signal x(n)
streaming out of the ADC, and returns the output, y(n); both are characterized by the clock rate,
fck, but y(n) contains a resampled version of x(n) characterized by a sampling rate fs = C fck.

More specifically, the value y(n) is determined by combining the samples x(n − 1) and x(n)
returned by the ADC according to:

y(n) = a(n)x(n − 1) + (1 − a(n))x(n) =
= a(n)x(n − 1) + b(n)x(n)

(12)

where a(n) is a time-varying coefficient, updated at every clock cycle by subtracting to its current
value a quantity, chosen by the user, and related to the sampling factor as 1−C

C . Notice that the
aforementioned variable t corresponds to the variable b(n) of the Equation (12), and consequently
a(n) = 1 − t. Subtraction is skipped if the current value of the coefficient a(n) is negative, and in its
place an addition by one is performed. Hence, the output of the digital circuit y(n) contains, with
some redundancy, the resampled version of x(n).

The circuit also produces a signal PtrX , that indicates the memory location where y(n) is stored.
The generated sequence y(n) is stored in memory at system frequency, fck but, in order to cope with
the lower sampling rate, PtrX is not incremented when the a(n) coefficient is incremented by one. In
this way, two consecutive outputs share the same value of PtrX, which means that the second one
overwrites the first.

An example will better clarify the meaning of a(n). In Figure 6 a sinusoidal signal at 54 MHz
is shown. It is sampled with the 1 GHz (Tck = 1.0 ns) system clock (sampling shown with circles).
The result obtained resampling at 761 MHz (Ts = 1.314 ns) is shown with red bullets. The resampling
factor is C = 0.761, and the coefficient a(n) is updated subtracting 1−C

C = 0.3141 to the current value.
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Variable b(n) represents the point inside the sampling period where resampling must be performed.
The bottom axis is the time while the top axis shows the increment of the memory pointer. When a(n)
is incremented (time: 6, 10, 14, 18 in Figure 6) the memory pointer is not updated.

Figure 6. Example sequences for a(n) and PtrX .

4.2. Design Details

A digital circuit for the implementation of the proposed resampling algorithm has been designed.
The schematics before and after pipelining are in Figures 7 and 8.

Circuit input data are the signal to be resampled x, and factor d = C−1
C . The output data are the

resampled stream y, and the memory pointer, PtrX . The number of bits for x, d, and y, is 8, while the
memory pointer ,PtrX is represented with 32 bits.

The two complementary coefficients, a and b, are multiplied by the previous value (z signal in
Figure 7) and the current value of the input signal (x signal in Figure 7), respectively. Afterwards, the
two products are summed, in order to produce the output signal, y, as indicated in Equation (12).

The updating of the coefficient a, relies on adding either the quantity d, or in the case of exception,
a unitary value to the current value of a. In the case of exception, a is negative, and the most significant
bit (MSB) of the coefficient, is high, a [9]=1; otherwise, a [9]=0, and d is added to the current value of a.
This distinction is realized with the use of a multiplexer, controlled by the MSB of signal a. After the
correct choice between “1” and “d”, an accumulator is implemented for the updating of a.

A second accumulator is implemented, for the memory management. When a is positive, a [9]=0,
g=1, and PtrX is incremented by a unitary value. In the case of exception, a is negative, a [9]=1, g=0,
and PtrX remains unchanged. The above described memory management strategy allows to store only
the resampled values. The fact that occasionally the memory pointer is not incremented reflects the
fact that after resampling the number of samples is less than that of the input signal.

In Figure 8 the pipelined resampler can be observed. The four vertical dashed lines mark the four
pipeline levels introduced to the circuit in order to isolate the combinational logic, thereby achieving a
lower clock period and a higher throughput. On the other hand, latency and chip area are increased.
The number of flip-flops (registers) used for the pipeline implementation is: (8 + 8) + (10 + 10 + 8) + (12
+ 1 + 12) + (8 + 32) = 109.
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Figure 7. Circuital implementation of the proposed algorithm.

Figure 8. Circuital implementation of the proposed algorithm with pipeline registers (pipeline levels
are highlighted with dashed lines).

4.3. Implementation and Performance

As mentioned earlier, 8 bits are used for the representation of d, where d is within (–1, 0). However,
during the experimental procedure, a 16-bit signal was also tried out in order to test the performance
of the circuit. For an n-bit signal, the resolution obtained for d is constant and is equal to 2−n.
The resolution obtained for C can be derived from:

d(C) =
d(C)
d(d)

d(d) =
d

d(d)
(

1
1 − d

)2−n. (13)

Given the fact that the relationship between C and d is not linear, the resulting resolution of C
(the actual resampling factor) differs for different d values. In Table 2, some information related to the
resolution of the resampling factor are presented. Assuming a 1 GHz clock frequency, using 8-bit for
the d signal allows a frequency resolution that ranges from 390 kHz to 97.5 kHz, while using 16 bit the
frequency resolution can be as low as 4 kHz.

Table 2. Resampling factor resolution.

Name Value

Best C-Step (8 bits) 9.76 · 10−4(C = 0.500976)

Worst C-Step (8 bits) 39 · 10−4(C = 0.996094)

Best C-Step (16 bits) 0.04 · 10−4(C = 0.500004)

Worst C-Step (16 bits) 0.15 · 10−4(C = 0.999985)
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The circuit is described in hardware description language (HDL) and a first assessment of the
performance has been conducted with a high-end FPGA as a target. This aims to demonstrate the
available performances in a reconfigurable environment. In Table 3, some basic features and resources
are presented for the implementation on a StratixIV GX FPGA device by Altera. The implemented
design is the one depicted in Figure 8 with d signal represented by 8 bits.

Table 3. Basic Features of the Resampler and FPGA resources (StratixIV-EP4SGX230KF40 implementation).

Name Value

Maximum Clock Frequency 400 MHz

Combinational ALUTs 532 (<1%)

Dedicated Logic Registers 147 (<1%)

DSP Block 18-bit Elements 3 (<1%)

Tests similar to those considered in the simulation analyses have been repeated on sinusoidal
signals, demonstrating that when the sampling frequency is at least ten times higher than the signal
bandwidth, the results are satisfactory. For instance, in the presence of an input signal corrupted by
white Gaussian noise (rms value equal to 15% the LSB of the ADC) and quantized by an 8 bit ADC,
resampling at 743 MHz a 47.1 MHz signal converted with a 1GSs ADC has lowered the ENOB from
7.8 to 7.5 and left unaltered the SFDR, which is a quite limited degradation. The results do not exhibit
recognizable changes if 50 kHz random deviations of the input frequency are considered.

An ASIC implementation has also been carried out. The circuit is synthesized by targeting a
commercial standard-cell library in 14 nm fin field effect transistor (FinFET), from Global Foundry.
Physical synthesis is performed by using Cadence Genus; no special cells are designed for the
implementation and the circuit is automatically synthesized according to timing constraints. The
considered technology corner is the typical one with 0.8 V of supply voltage and regular threshold
voltage. The simulations, with delay and switching activity annotation, have been conducted with a
suite of tools for the design and verification of ASICs and FPGAs, commonly referred to by the name
NCSIM in reference to the core simulation engine. Power dissipation is computed by simulating
the final netlist with 10,000 input vectors from an asynchronously sampled sinusoid to obtain the
switching activity of each node.

While aiming for the highest frequency possible, several syntheses took place. Firstly, the circuit
in Figure 8 was synthesized. Later the same circuit was synthesized, taking into account a retiming
algorithm that moves the structural location of registers in order to improve the performance, while
preserving the functional behavior at the outputs. Afterwards, two and three extra levels of pipeline
were added to the design of Figure 8, and the synthesis was carried out with the retiming algorithm.
The same syntheses were done for both an 8-bit and a 16-bit d signal and the results are reported in
Table 4, and Table 5, respectively. As expected, the maximum working frequency is largely increased
with respect to the FPGA implementation. Moreover, there is a trade-off between maximum frequency
and chip area as well as power consumption.

Table 4. ASIC implementation results for the resampler in 14 nm FinFET from Global Foundry
technology using 8 bits for d signal.

Clock Frequency Cell Count Total Area Flip Flops Dynamic Power Leakage Power

[GHz] [μm]
[

μW
MHz

]
[μW]

basic 3.03 1052 584 145 1.190 0.707

retimed 3.85 1035 620 239 1.184 0.568

2 extra PL 5.26 1092 683 307 1.392 0.665

3 extra PL 4.55 1066 712 341 1.524 0.693
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Table 5. ASIC implementation results for the resampler in 14 nm FinFET GF technology using 16 bits
for d signal.

Clock Frequency Cell Count Total Area Flip Flops Dynamic Power Leakage Power

[GHz] [μm]
[

μW
MHz

]
[μW]

basic 2.70 1780 916 179 1.349 1.038

retimed 3.57 1636 932 314 1.451 0.846

2 extra PL 5.00 1884 1077 398 1.791 1.082

3 extra PL 4.55 1822 1120 457 1.791 1.059

A comparison between the FPGA implementation (Table 3) and the ASIC design (Tables 4 and 5)
in this particular application allows the following considerations. The FPGA design is composed by
quite large blocks and uses the digital signal processing (DSP) blocks to efficiently perform the binary
multiplication. This is very useful for the FPGA that can reach a remarkable speed for a reconfigurable
target but leaves very little space for the arithmetic optimization and for the introduction of pipeline
levels (e.g., a pipeline is not possible inside the DSP blocks). On the other hand, the ASIC design
exploits a standard cell library with very small granularity and can choose among various design
techniques for the arithmetic blocks. Also, the pipeline level can be moved freely inside the arithmetic
block if needed. As a consequence, retiming and pipelining allow a large leap in circuit clock frequency
(from 3.03 GHz to 5.26 GHz in the d = 8 bit case and from 2.70 GHz to 5.00 GHz in the d = 16 bit case).

Implementation results show that the circuit is able to reach the 5 GHz target in both cases. The
effect of the retiming and the presence of the additional pipeline levels is seen in an increase of both
area (mainly due to the additional Flip Flops) and power dissipation.

5. Conclusions

The paper has reviewed the main digital signal processing based methods for controlling the
sampling rate in DSOs by means of digital resampling approaches. A digital circuit that offers a
promising solution to grant more control of the sampling rate, with respect to the existing approaches,
has then been discussed. The circuit can be deployed in the acquisition channel of any DSO to interface
the internal ADC and the acquisition memory. It has been implemented on FPGA and evaluated. Also,
the performance of an ASIC design of the same circuit has been investigated. The proposed solution
can be exploited to effectively improve the sampling rate selection capability of DSOs, especially when
the instrument does not permit the use of an external clock to drive the internal ADC.
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The following abbreviations are used in this manuscript:

DSO Digital Storage Oscilloscope
ADC Analog to Digital Converter
FPGA Field Programmable Gate Array
ASIC Application Specific Integrated Circuit
ENOB Effective Number Of Bits
SFDR Spurious-Free Dynamic Range
MSB Most Significant Bit
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DSP Digital Signal Processing
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Abstract: The analysis of the surface ElectroMyoGraphic (sEMG) signal for controlling the Functional
Electrical Stimulation (FES) therapy is being widely accepted as an active rehabilitation technique
for the restoration of neuro-muscular disorders. Portability and real-time functionalities are major
concerns, and, among others, two correlated challenges are the development of an embedded system
and the implementation of lightweight signal processing approaches. In this respect, the event-driven
nature of the Average Threshold Crossing (ATC) technique, considering its high correlation with the
muscle force and the sparsity of its representation, could be an optimal solution. In this paper we
present an embedded ATC-FES control system equipped with a multi-platform software featuring an
easy-to-use Graphical User Interface (GUI). The system has been first characterized and validated
by analyzing CPU and memory usage in different operating conditions, as well as measuring the
system latency (fulfilling the real-time requirements with a 140 ms FES definition process). We also
confirmed system effectiveness, testing it on 11 healthy subjects: The similarity between the voluntary
movement and the stimulate one has been evaluated, computing the cross-correlation coefficient
between the angular signals acquired during the limbs motion. We obtained high correlation values
of 0.87 ± 0.07 and 0.93 ± 0.02 for the elbow flexion and knee extension exercises, respectively, proving
good stimulation application in real therapy-scenarios.

Keywords: surface electromyography; event-driven; functional electrical stimulation; embedded system

1. Introduction

Nowadays, an increasing number of active rehabilitation techniques are moving to the bio-mimetic
approach, which relies on the analysis of the surface ElectroMyoGraphy (sEMG) signal for, e.g., the
application of Functional Electrical Stimulation (FES) [1], with the aim of physiologically controlling
the muscle functional restoration as much as possible [2]. In particular, FES employs low energy
current pulses to modulate the muscle contraction [3] where a complex stimulation pattern, useful to
activate the group of muscles involved in a movement, is regulated by sEMG envelope evaluation or
by muscle force indicators (e.g., Root Mean Square (RMS), Absolute Rectified Value (ARV)) [4].

In a practical application, the sEMG processing and FES control is a fundamental task to be carried
out in real-time [5]. Since the run-time performance bottleneck could be easily related to the use of a
general purpose computer for the FES control (often concurrently running, or loaded with, many other
unrelated applications or functionalities, leading to unpredictable performances), here the idea is to
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replace it with a dedicated embedded system. In this regard, major concerns will be the effectiveness
and safety of the stimulation and the resulting performance, i.e., a latency short enough to fulfill the
real-time constraints and the quality of the stimulated movement.

We propose an embedded bio-mimetic FES system based on the Average Threshold Crossing
(ATC) event-driven technique applied to the sEMG signal. The ATC essentially compares the sEMG
signal with a threshold [6]: the Threshold Crossing (TC) events generate the quasi-digital TC signal,
which is characterized by a digital waveform carrying analog (time-based) information. The ATC
parameter is then computed by counting the number of TC events during a time window. In [7],
we have demonstrated the correlation among ATC, ARV and the muscle force: in particular, having
0.95 ± 0.02 ATC-force w.r.t. 0.97 ± 0.02 ARV-force correlation, the ATC parameter can be used as
indicator of muscle activity [8]. In this way, the event-driven approach enables the implementation of
a low-complexity on-board feature extraction process, divided into two steps (TC generation and ATC
computing), which can be directly performed in hardware [9,10], supporting, e.g., the recognition of
different gestures [11–14]. While the theoretical background of ATC is quite similar to others common
sEMG features, e.g., Zero-Crossing (ZC) or Wilson Amplitude (WAMP) [15], our event-based approach
could overcome signal processing limitations for embedded feature extraction [16]. In particular,
ZC and WAMP calculations are achieved by analyzing an already digitized signal, leading to high
time, processing and power consumption, while by implementing in hardware our proposed ATC
approach we are able to relax these issues.

Therefore, the minimal data size of the ATC information [10] and its sparsity (due to its
event-driven nature) perfectly matches the low computational capabilities of an embedded system.
Evolving from the architecture presented in previous works [10,17,18], with the aim of making the
system portable and improving the run-time performance, we replaced the personal laptop, and
the software based on the MATLAB® & SIMULINK® environment, with a Raspberry Pi 3 B+ as the
processing and control core of the system, running a multi-platform software. Its main tasks are the
management of the sEMG multi-channel wireless acquisition, the computation and update of the FES
parameters from the ATC data, and the safe control of the stimulator. The software features a Graphical
User Interface (GUI) as well, to monitor and control every aspect of the system, eventually guiding the
user into setup different and personalized stimulation sessions.

From the application point of view, typical scenario consists in the reproduction of functional
movements between two subjects in the therapist-patient rehabilitation context: The muscular activity
monitored from an healthy subject (therapist), e.g., doctor, physiotherapist, during the execution of a
movement, is processed in order to define the FES pattern to be applied to a second subject (patient) in
order to induce the replication of the same movement.

This manuscript extends what already presented in [19] by discussing the design choices and
details about the system architecture, focusing both on hardware and software aspects, and the related
development approaches; finally, further system characterization and validation results are presented,
as well as in-vivo experiments.

The paper is organized as follows: Section 2 presents the overall system architecture and details
the design and development of both the hardware and software parts; Section 3 presents the results of
the validation and characterization of the developed embedded system, while Section 4 the results
of in-vivo experimental tests are reported; results, with particular emphasis on the feature of the
embedded system, are then discussed and compared with related works in Section 5; in the end
conclusion and future perspectives are outlined in Section 6.

2. System Architecture: Design and Development

2.1. Overview

A description of the proposed system can be conceptually schematized into inputs, control and
output logical macro areas, as represented in Figure 1, according to the actions flow from signal
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acquisition to stimulation application. Data acquired by input devices (i.e., muscular activation and
limbs motion) are processed by the control unit in order to drive the FES application through the
output device.

Processing Unit
Raspberry Pi 3 B+

a)

b)

c)

Current Input Options:
a) 4-Channels sEMG Board
b) Single sEMG Module
c) Articular Electrogoniometer

BLE link
Serial link

FES Stimulator
RehaStim 2

User Support

Inputs Control Output

Figure 1. System hardware and user interface architecture: The Raspberry Pi acts as control logic linking
the input devices (i.e., surface ElectroMyoGraphic (sEMG) acquisition board and electro-goniometer)
with the output (Functional Electrical Stimulation (FES) stimulator).

We designed a flexible enough framework by developing a multi-platform software core,
compatible with widespread Operating Systems (OSs) (such as Microsoft® Windows®, GNU/Linux
and Android), able to run on commonly available devices, i.e., PC, laptop, tablet, smartphone as well
as Raspberry Pi.

Among all the possibilities, we defined our optimized embedded version of the system as
Reference Hardware Setup (RHS), which comprises individual acquisition channels for sEMG and
electro-goniometers as inputs, Raspberry Pi as control logic and the RehaStim 2 FES stimulator as
output. With respect to RHS, other configurations are characterized by changes in the inputs and
control devices (i.e., a Microsoft® Windows® or GNU/Linux PC), which lead to slight variations in the
wireless connectivity management and software structure.

2.2. Hardware Platform

The input devices are the sensors useful to record the signals of interest, i.e., the electrical signals
produced by the muscles contraction (sEMG signal) during the execution of a movement and the
angular signals representing the limbs motion of the human body.

In the first case, the employed device has to amplify and filter the muscular signal in order to
allow its interpretation, since the raw signal amplitude varies between hundreds of μV and tens of
mV [20]. Therefore, referring to the guidelines reported in [21], we developed an analog conditioning
circuit for the bio-signal [9], which, using the three-electrodes differential approach (two as sources,
one for reference), provides 1000 gain factor in the 30 Hz to 400 Hz bandwidth (obtained as a cascade
of a differential first-order high-pass filter [22] and a second-order Sallen-Key low-pass filter [23]) in
order to filter out electrode-skin movement artifact and high-frequency noise. Moreover, since the
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sEMG module has to be coupled with FES stimulator, we added overvoltage protection diodes on the
channels input. As introduced, we carried out the first step of our event-driven signal processing by
extracting the TC signal using an hysteresis voltage comparator (30 mV) so to avoid spurious glitches.
The average counts of events (ATC) is then computed at the digital interface with the microcontroller
(MCU): in [10], we demonstrated how to accomplish this task minimizing the MCU resources to
a GPIO interrupt, which detects the TC digital events, and a timer, which defines the observation
window. The length of the window is set to 130 ms as reported in the tests presented in [9], where this
value has been proved to be an optimal trade-off between the time resolution of the muscle activation
and the discrimination of different levels of generated muscular force.

We propose two solutions based on this acquisition and processing architecture, shown in
Figure 2, depending on the user needs: The first option (a) is a complete four-channels board
suitable for multiple-muscle monitoring on the same limb, e.g., extensor and flexor muscles of human
forearm, while the second one (b) is a stand-alone single-channel module to be used independently
when an individual detection is advantageous, e.g., biceps- and triceps- brachii muscles during the
elbow flexion and extension. We equipped both solutions with wireless connectivity in order to
improve a freedom movement executions, avoiding wiring hindrance, and to make the systems fully
wearable: among the wide list of wireless (standard) option, we chose the Bluetooth Low Energy (BLE)
protocol (stack 4.1 [24]) because of its low-energy features, which perfectly match with battery-device
requirements. In particular, we equipped (a) with the Microchips RN4020 [25] module (with its own
antenna), while in (b) the same MCU used for computing the ATC runs the BLE stack and directly
feeds a PCB antenna, designed referencing to [26].

electrodes
connector

analog
front-end

programming
pins

power supply
connector

MSP430FR5969
microcontroller

(a)

μSD supportPCB
antenna

electrodes
connector

reset
button

power supply
connector

nRF5840
microcontroller

programming
pins

(b)

Figure 2. Custom sEMG acquisition device: (a) Four-channels board for multiple muscles monitoring,
(b) independent single-channel module.

As second input typology, we developed custom electro-goniometers in order to record the
limbs motion in form of electrical signals. Figure 3 shows their structure (very similar to standard
goniometer’s one), which basically consists of two parts fixed by a pivot at one extremity. Employing
an absolute capacitive modular encoder, i.e., the AMT20 [27], and placing its center in correspondence
of the pivot, we were able to detect the goniometer’s angle decoding the encoder shaft position related
to its inner capacitance changes. Angle values are represented on 12 bit, with a 0.2° accuracy and,
since the AMT20 presents an SPI output line, we interfaced it with an Arduino micro MCU [28] in
order to sample the signal at 80 Hz (appropriate w.r.t. human movement velocity [29]) and to transmit
it to an external device (via USB cable) for graphical representation. The goniometer case has been
manufactured by a 3D printing process, employing the Form 2 printer [30] with a bio-compatible
photo-reactive resin, which allowed us to design an anatomical comfortable and lightweight structure.
Four elastic strips secure the electro-goniometer in the proper location on the limb, ensuring its pivot
to be in position with the rotation center of the articulation.
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Arduino micro

Absolute
encoder

α

Figure 3. Wearable electro-goniometer developed to test the system performance and to provide an
angular feedback on the ongoing stimulation.

The control of the induced FES pulses depends on how they are electrically generated and
which pulse parameters can be modified during the stimulation. We decided for the medical-certified
RehaStim 2 [31] because it allowed us to have an advanced control on the pulse definition per channel
and the possibility to be easy interfaced with an external device by means of the ScienceMode2
bidirectional communication protocol [32].

The generated current pulses are characterized by a biphasic rectangular shape, shown in Figure 4,
whose configurable parameters are the pulse amplitude, the stimulation frequency and the phase
width, while the inter-phase interval is fixed to 150 μs guaranteeing a proper stimuli excitability [33].

Positive Phase

Negative Phase

I (mA)

t (ms)

Phase Width

Inter Phase
Interval

Pulse Current
Amplitude FES params Range Control

amplitude 0:1:130 mA ATC

width 20:10:500 μs m.

interval 150 μs (fixed) -

frequency 10:5:50 Hz m.

m.: physiotherapy manual

Figure 4. Rectangular biphasic current pulse generated by RehaStim 2 stimulator and its parameter.

Therefore, considering the ATC dependency on the muscle force (e.g., correlation between ATC
and sEMG amplitude/energy indicators), our idea has been to modulate the FES pulses intensity on
the basis of such parameter, while for the other settings we referred to the physiotherapy manual
provided with the stimulator [34]. In this way, the modulation approach allows us to excite the muscle
fibers with the proper amount of current during all the phases of a movement session (warm up,
increasing force, relaxation as well as resting state) and for a wide list of exercises.

Last part of the system is represented by the Raspberry Pi, model 3 B+ [35], working as control logic
which manages the entire system. Indeed, it runs the main software controlling the data acquisition,
its processing, the stimulation definition and application. Moreover, since this Raspberry Pi is equipped
with four USB ports and a full size HDMI, we improved the system usability developing a complete
GUI and employing some peripherals, as keyboard, monitor and mouse.

As discussed in Section 2.1, different devices can act as control unit appropriately configuring
the hardware: As an example, if a Microsoft® Windows® OS PC is used as control logic, the
CC2540-Dongle [36] module is needed to communicate with the acquisition devices (limiting the
maximum number of simultaneously connections to three) since Windows® machines do not allow an
easy access to the Bluetooth interface.
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2.3. Software Overview

As previously introduced in Section 2.1, although the project is finalized to the development
of an embedded system, we want to provide a modular and flexible software core able to fulfill the
compatibility requirements of different OSs. As previously introduced in Section 2.1, we provided
a modular and flexible software core able to fulfill the compatibility requirements of different OSs.
Consequently, from the development standpoint, we based the software on the Python language,
because of its cross-platform nature, its widespread adoption, and the large availability of third-party
multi-platform libraries (such as standard library for multi-threading features or Kivy library [37] for
the GUI). Moreover, the embedded software has been based on an object-oriented (OO) framework in
order to promote flexibility, modularity and robustness [38] (e.g., leveraging encapsulation, inheritance,
and composition features), allowing a seamless integration and management of several devices
(e.g., different input modules) along with the possibility of future integration of new processing
algorithms. We also implemented a multi-threaded architecture in order to map the functional tasks
onto different running threads [39], so to optimize the use of computational resources and to avoid
complex (run-time) code interdependencies.

2.3.1. Classes Diagram Overview

As shown in the Unified Modeling Language (UML) diagram in Figure 5, the main System object
is composed by four sub-objects: The FES class representing the stimulator, two Goniometer classes for
the developed electro-goniometers and a Bluetooth class, which can have different implementations
depending on the hardware configuration.

Serial Device

- serial port
- structure
- port

- baudrate
- bytesize
- parity

- stopbits
- timeout
t

connect()

settings()

start action()

main thread()

stop action()

disconnect()

transmission()

reception()

structure update()

error check()

packet creation()

System

- BLE system
- goniometer 1
- goniometer 2
- fes
- stimulating

- start action time
- 6 queues
- 6 lists of tuples
- 3 time limits
- saving folder

- ATC max list
- AROM list
- threshold list
- thread
- lock system

connect()

start action()

stop action()

disconnect()

thr calib()

ATC calib()

AROM calib()

current calib()

gon processing()

chs to plot()

gon to plot()

FES

...

...

Goniometer

...

...

Bluetooth*

...

...

1 2 1

*
System

...

...

HW Bluetooth

...

init()

scanning()

connect()

start action()

data acq()

stop action()

disconnect()

thr setting()

Scanner

...

...

BLE
...

...

Delegate

...

notification()

Peripheral

...

...

1

0-4

0-4

1 1
Main

Hardware
Configuration

cc2540 Dongle

Serial Device

...

...

cc2540 Bluetooth

...

as HW Bluetooth methods
+ handle notification()

+ error check()

System

...

...

1

Figure 5. Classes diagram (UML) of our OO software organization. Bluetooth class implementation
depends on system configurations.
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Since both the goniometers and the stimulator are wired connected to the control unit, their classes
inherit from an abstract custom Serial Device class, which provides a standard interface for every
serial device (i.e., serial port, baudrate, stopbits, etc. attributes or connect(), settings(), transmission()
methods and so on). Specific methods of different serial devices have been overwritten in order to
provide the proper interfacing with the control unit.

Regarding the BLE software, it depends by system configurations: if the RHS is used, we combined
the BlueZ [40] Linux Bluetooth stack with the bluepy [41] Python library (specific for low energy
features). In particular, the HW Bluetooth class is composed by a variable number (zero to four) of
BLE connections, which in turns consists of by a Delegate (notification data handling) and a Peripheral
(bluepy instance for encapsulating BLE BlueZ connection) objects, and a Scanner, which seeks for
advertising devices. On the other hand, if a common PC is employed, the CC2540-Dongle module
is needed and, since it communicates through a serial port with the workstation, the Bluetooth class
inherits from the Serial Device one.

2.3.2. Multi-Threading

Figure 6 shows the multi-threading structure of the system and the running state of the involved
threads during a typical stimulation session.

time

#
T

hr
ea

d

User InterfaceMain
Thread

Login

Output Control
Thread

Processing
Thread(s)

Acquisition
Thread(s)

Service
Thread(s)

Init.

ATCth P

ATCacq

Handle BLE
Notification

ATCmax P

ATCacq

Handle BLE
Notification

AROMmax P

Angularacq

Imax P

Angularacq

Idefinition P

ATCacq Angularacq

Handle BLE
Notification

FES Control

QuitCalibration Stimulation

P: Plotting User Actions

Figure 6. Multi-threading structure during a typical stimulation scenario.

The Main Thread starts after the user login and runs all along the session waiting for the user
inputs, at which correspond the creation of child threads, handling the user interface. As primary
sub-thread, the Output Control Thread manages the communication with the stimulator, e.g.,
watchdog timer, packet creation etc., during the calibration and stimulation phases. Moreover, the Main
Thread runs all the calibration-step threads (i.e., ATCth, ATCmax, AROMmax and Imax, details in Section 2.4)
during the settings and the Idefinition threads when the stimulation is applied, globally defined
as Processing Threads. Each of them is also supported by a Plot thread, represented by white
rectangle, which graphically represents the useful signals. Finally, we developed the Acquisition

Threads, divided into ATCacq and Angularacq for the ATC and angular values acquisition, and Service

Thread for BLE notifications managing. Data exchange among threads is organized with queue objects;
therefore, each thread implements a specific method in order to continuously check the queue status.

2.3.3. Graphical User Interface

The GUI has been developed choosing the Kivy Python library [37], due to OS inter-compatibility,
modern layout, open-access feature and optimized performance [42], in order to have an easy, intuitive,
and practical high-level control of the application.

Figure 7 shows the main four screens of the GUI. In the Initialization one, the user inserts
the personal information of therapist and patient, and chooses the system configuration (acquisition
and stimulation channels) along with the movement that will be executed. The Calibration screen
is properly designed to perform the calibration process, whereby the acquisition and stimulation
parameters are optimized for the user-case. Subjects data are used to build up a database, useful to
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fast-configure application settings avoiding the calibration steps. In the Main Stimulation screen,
the stimulation can be started and stopped, and the useful signals are graphically represented
(i.e., pulse amplitude and angular signals) in order to provide a visual feedback for the therapist.
Lastly, the Parameters screen allows the user to modify the parameters or save them if multi-session
scenarios are expected. Transitions among the screens, represented by black arrows in Figure 7,
have been arranged using the Screen Manager object, facilitating user navigation among sections.

From an OO prospective, all the screens directly inherit from the Kivy Screen class, with the
exceptions of the ones containing graphs (i.e., Main Stimulation and Calibration) which are also
defined by the MyPlotScreen class since it possesses Kivy plotting objects. Thus, the System is
aggregated in every main screen where the system actions run through screens widgets.

Lastly, on the Raspberry Pi, we changed the RAM memory assigned to the Graphics
Processing Unit (GPU) from 64 MB to 256 MB in order to execute the GUI without impacting on
the graphical resources.
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Figure 7. Kivy main screens: The Initialization one allows the user to store subjects information
and set up the system; in the Calibration one the calibration process is achieved, and the optimized
parameters can be visualized, saved and modified into the Parameter screen; finally, the Main

Stimulation screen runs the stimulation and graphically represents the signals of interest. Arrows
highlight transitions among screens.

2.4. ATC Dataflow: Processing and Calibration

The definition of the FES pulses amplitude dependent on the ATC values is the core of the
FES control mechanism, linking the data acquisition with the stimulation one. Since embedded
device has extremely low-computational power, we needed to implement this process trying to
maintain the complexity lower as much as possible, also considering fast computing approach to
respect real-time requirements. In this scenario, taking advantage of the sEMG-ATC (pre-)processing,
our idea is to mimic the simplicity of a look-up table structure: Basically, we organized it as two
matrices architecture, one for the ATC values and one for the FES current ones, with one-to-one cell
correspondence between them.

Typical application scenario, considering n active channels, is represented in Figure 8: Every time
a new BLE packet arrives, containing the ATC data of n channels, the received data are appended to an
n×4 matrix (ATC matrix), which also includes the three past ATC-window data. Then, the row-median
operation is computed in order to obtain a robust ATC value without any noise corruptions. Since
the ATC matrix is continuously updated (every ATC window), this operation basically represents a
moving median. In this way, we obtain a n×1 array, whose values are interpreted as indexes pointing
to the FES current values stored into the FES Current Matrix. Once the new stimulation data are
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defined through this algorithm, a FES data packet is built up and the command is transmitted to
the stimulator.
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Figure 8. Average Threshold Crossing (ATC)-FES definition process: Green cells represents the links
between inputs ATC data and outputs pulses current; orange labels identify the FES current Matrix
indexes defined by the Maximal ATC calibration step; blue values correspond to the maximal FES
current calibrated with the Current limitation process.

However, since different subjects could produce different ATC values or be stimulated by a
diverse amount of current, a calibration process for the optimization of the acquisition (therapist) and
stimulation (patient) parameters is fundamental, permitting us to develop a flexible system, able to
suit different users, while maintaining the benefits of a proper and safe per-subject stimulation. Hence,
we defined a four-steps calibration process as follows:

1. Threshold setting: The generation of the TC events strongly depends on the threshold value.
Therefore, we tried to optimized the TCs setting the threshold just above the sEMG signal
baseline in order to maximize the events with the minimal muscle effort. To accomplish this task,
the therapist has to maintain a rest limb condition and, starting from an initial threshold value,
we decrease it step-by-step until we find the baseline. Final threshold is set 30 mV above baseline
reflecting voltage hysteresis comparator behavior.

2. Maximal ATC: The therapist has to repeat the movement to be calibrated at least four times.
The maximal ATC value produced by the subject is calculated as the median value among the
maximum of each repetition. This value limits the index dimension of the array, related to the
calibrated channel, inside the FES Current Matrix, highlighted in orange in Figure 8.

3. AROM evaluation (optional): The maximal Absolute Range of Motion (AROM) of the involved
articulation has been computed by processing the angular data of both therapist and patient.
This measure standardizes the FES application and provides a comparison feedback between the
voluntary movement and the stimulated one. We defined it as an optional step since the use of the
electro-goniometers is not mandatory.

4. Current limitation: We define the maximal current, useful to properly reproduce the movement,
as the 110% of the current able to produce a 30% AROM variation in the stimulated subject.
If the goniometer is not used, this step can be visually performed. Maximal Current values,
represented in blue in Figure 8, related to the indexes defined by the Maximal ATC, define the
proper stimulation values inter-step.
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Following this approach, we are able to set up our structure with a perfect matching between
the muscular activation of the therapist and the pulses amplitude to adequately stimulate the patient
limb. Looking at the example represented in Figure 8, the FES Current Matrix has a different
column-dimension for each channel defined by the Maximum ATC values. In this way, setting
the Maximum current values, we are able to define step and range of pulses amplitude. Concluding,
simply controlling the lower values of the stimulation matrix (FES Current Matrix[(:, 1:2)], grey cells),
combined with the moving median gate operation, we are able to implement a very low complex but
efficient noise-gateway control.

3. System Validation and Characterization

The performances of the control unit have been studied by analyzing the real-time FES control
processing, fundamental to achieve the proper online modulation of pulses amplitude, and examining
how the developed software impacts the workstation resources, so evaluating memory, graphic
and computational cost. Due to the multi-platform nature of our software, we carried out these
tests comparing its behavior running on two different control units: in particular, we employed the
Raspberry Pi 3 B+, equipped with a Cortex-A53 (ARMv8) 64 bit, running at 1 GHz, 1 GB RAM and
Raspbian OS, to evaluate the performance of the embedded version; conversely, a Toshiba Satellite
L830-14J PC, equipped with an Intel Core i3-3227U with 1.9 GHz clock frequency, 4 GB RAM and
Microsoft® Windows® 10 OS, has been used to simulate personal laptop application scenario.

3.1. Latency Measurement

As mentioned in Section 2.1, the system can adopt different architectures depending on which
sEMG acquisition device is used and by the employed processing unit. As a consequence, we defined
five hardware configurations (Cx) to be tested, listed in Table 1. The latency has been evaluated for
two crucial sections of the application: The FES current definition, which concerns the definition
of the new pulses amplitude on the basis of the latest ATC values, and the Plotting, which regards
the representation of both the angular signals and the FES currents over time. The duration of the
test has been set to 3 min in order to obtain sufficient values (180 s/ATCwindow = 180 s/0.13 s � 1385
measures) able to represent the system performance from the stimulation initialization to the stable
working condition.

Table 1. Tested hardware configurations. Main differences concern the acquisition device (single channel
or four-channel board) and the control unit (GNU/Linux Raspberry or Microsoft® Windows® PC).

Acquisition Device Control Unit BLE Module

Config.
Single

Channel
4-Channel

Board
GNU/Linux
Raspberry

Microsoft®

Windows® PC
CC2540 *

C1 � �
C2 � � �
C3 � � �
C4 � � �
C5 � � �

* up to three concomitant connections.

3.1.1. FES Current Definition

This method represents the logical core that links the ATC values, describing the muscular activity,
to the FES current values, which specify the amplitude of the incoming pulses. As described in
Section 2.4, we implemented this functionality using a lookup table structure in order to minimize the
complexity as well as the processing time. Indeed, the real-time FES definition is a fundamental task for
a proper stimulation, avoiding any delay caused by data-queueing; in particular, our time constraint is
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directly related to the ATC window, which defines the time interval between two ATC values, and so
the FES current definition processing time has to be lower than 130 ms. We tested this process studying
how different methods split the workload among them and evaluating the total processing time. As
details of the first test, the FES current definition is divided into five consequential methods: queue
continuously checks the incoming of the new ATC values; when they are available, we append them
to the ATC matrix and the median operation is performed. Then the FES_start method builds the
FES packet to be transmitted to the stimulator, and in the meanwhile the plot thread is called for the
graphical representation of the signals.

Table 2 reports the time profiling of the workload breakdown: As it can be observed, the majority
of the time (around 90% in C1, C2 and C3, and 97% for C4 and C5) is spent inside the queue method
waiting for the arrival of new ATC values, while the other sub-functions runs for a very short time.
Therefore, from a methods breakdown point of view, this behavior confirms that the application works
as expected, avoiding any queue formations caused by low computational processing.

Table 2. Time profiling results for the evaluation of the methods breakdown during the FES current
definition process.

Configuration

Method C1 C2 C3 C4 C5

queue 90.71% 92.78% 88.03% 97.41% 97.25%
append 1.43% 1.03% 2.35% - -
median 1.65% 1.40% 2.24% 0.53% 0.52%
FES_start 5.11% 3.81% 6.04% 1.57% 1.63%
plot 0.68% 0.62% 0.81% - -

100% 100% 100% 100% 100%

On the other hand, the real-time FES definition has been proved by looking at the delay data
represented in the box plots in Figure 9. All the cases largely fulfill our time constraint, also considering
the outliers, since none of the values is greater than 100 ms. In particular, in the Raspberry cases and
PC ones the median values are below of 10 and 5 ms respectively, which avoid any possible delay
between acquisition and stimulation caused by our FES definition processing. However, comparing
the two OSs, laptop performances are considerably superior with respect the Raspberry ones since
both hardware and software resources differ between the two architectures.

C1 C2 C3 C4 C5
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Figure 9. Box plots representing the time delays related to the FES current definition method for the
different system configurations. Real-time constraints are respected, considering our time limitation of
130 ms (dashed black line), both in GNU/Linux Raspberry (C1, C2 and C3) and Microsoft® Windows®

PC (C4 and C5) cases.
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In conclusion, these results prove the low complexity implementation of our event-driven
ATC-FES definition approach: considering the computational lightness of the ATC processing, based
on simple mathematical relations (such as matrix and median operations) applied to a minimal data
size, we were able to reach very fast pulses updates (lower than 10 ms) along with online modulation
of FES parameters.

3.1.2. Plotting

The above measurements are repeated for the Plotting process in order to study if the graphical
representation of the signals of interest can affect the run-time performances. The plotting is based
on a clock object, whose methods are the get_value and the sleep: The former gets the new ATC
and angular data, and represents them on the graphs; the latter puts the object into an idle state until
new data are available. As in the previous test, this analysis allows us to detect the queues formation
during the plotting process, but, looking at the Table 3, we can assume this critical condition has not
been reached since the 99% of the time is spent in the clock sleep state. Moreover, we measured
the time spent by the Plotting thread in order to verify the correctness of the data representation,
discarding the possibility to misinterpret the stimulation visual feedback. This time, we report in
Figure 10 our results only for the embedded configurations as worst case scenario: Again, since the
95% of the values (IQR) are lower than 2 ms for all the cases, we can assume the real-time behavior of
our plotting method.

Table 3. Time profiling results for the Plotting process into its two sub-threads: get_value and sleep

methods represent the active and inactive action, respectively, of the clock object which manages the
plotting of the data.

Configuration

Method C1 C2 C3 C4 C5

get_value 0.94% 0.93% 0.95% 0.45% 0.41%
sleep 99.06% 99.07% 99.05% 99.55% 99.59%

100% 100% 100% 100% 100%
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Figure 10. Plotting delay for the configurations employing the Raspberry Pi (C1, C2 and C3). The very
low plotting-time proves the real-time graphical representation by our application.
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3.2. Computational Performance

The information about the usage of resources at the processing side, such as the Central Processing
Unit (CPU) and the Random Access Memory (RAM), is of crucial importance for the evaluation of
application fluency, performance and usability. From this perspective, we carried out this test using the
RHS (C2), considering it as the worst case scenario in terms of processing power. Hence, we monitored
the system processes through the htop GNU/Linux tool, running the system without the Raspbian
GUI activated in order to take in consideration only the application and all its dependencies (i.e., BLE
and Kivy).

Table 4 reports the results when four channels stimulation mode has been selected: As it can be
observed, the most challenging CPU performance is reached in the main stimulation procedure, where
the highest amount of threads are active. Therefore, focusing on the Stimulation stage, we repeated
the measures studying two different but dependent cases: first, we varied the channels number from
one to four looking at resources usage changes; second, with the same purpose, we analyzed our
ATC-FES current definition process both in the standard situation (i.e., append and median methods),
and when a direct equivalence between ATC and current values is performed (no data processing).
From the results listed in Table 5, we can see that employing one single channel we are able to reduce
the CPU usage of approximately the 20% w.r.t. the complete channels configuration, and it entirely
depends on the fewer or higher number of co-running threads in the two situations. Instead, as it can
be observed by the two main columns, the FES current definition implementation does not affect
the CPU usage, which further proves the lightweight computational cost of our approach.

Table 4. CPU and RAM measurements of the application main stages, which have been evaluated
testing the Reference Hardware Setup (RHS) with four working channels.

Stages CPU (%) RAM (MB)

Login 20 84
Initialization 21 85
Threshold calibration * 24.1 88.9
ATC maximum calibration * 26 87
AROM evaluation * 32 89
Maximum current calibration * 45.7 89
Stimulation 73.2 87.8
Parameters 15 88.3

* four steps of the Calibration process.

Table 5. RHS resources performance during the Stimulation stage depending on the number of
working channels and the FES current definition implementation. The ATC processing has been enabled
(standard flow) or disabled (direct ATC-IFES equivalence) in order to study if whether implementation
affects the run-time system performance.

1 Ch. 4 Ch. 1 Ch. 4 Ch.

Process
I/O operations � � � �
ATC processing � � x x

Resources
CPU (%) 53.8 73.2 53 74.4

RAM (MB) 87.7 87.8 91 92

On the other hand, the dynamic memory suffers just low variations among the application stages
and between one or four channel cases. This behavior is mainly due by the different amount and types
of widgets the GUI owns, which are directly related to the number of active channels. Hence, since
there is not any differences between single or four channels GUIs, the RAM consumption is almost
constant (see Table 5).
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4. In Vivo Experimental Tests and Results

As the system is intended for rehabilitative sessions, some tests have been carried out in order
to prove the correctness and appropriateness of our approach in the control of the FES application.
As introduced, typical scenario considers a first subject which performs an useful movement and
whose muscle activity is monitored (therapist), and a second subject which replicates the movement
as consequence of the stimulation application (patient). We studied the similarity between the two
movements by analyzing the limb motion signals, acquired using the developed electro-goniometers
which are worn from both the therapist and patient. We compared the angular signals calculating the
maximum of the normalized cross-correlation coefficient (σ) as reported in the following formula:

σ = max(σth_pt,coe f f (m)) =
1

σth_th(0) ∗ σpt_pt(0)
∗ σth_pt(m) (1)

where m is the lag between the signals (th, pt), and the autocorrelation product normalization limits σ

values to 1 (perfect match between signals) and –1 (complete opposite signals).
We enrolled 11 healthy subjects, whose have been submitted their informed consent for our

testing protocol (approved by the Bio-ethical Committee of the Università degli Studi di Torino, Italy),
and we divided them into therapist-patient couples. In the next sections, we introduce the adopted
methodologies for choosing electrode type and for preparing the subjects skin, and we report our
complete results for upper limb exercise and the preliminary one for the lower limb exercise.

4.1. Electrodes and Skin Preparation

A proper treatment of the electrode-skin interface is essential in order to enhance the signal
acquisition quality. Therefore, cleaning the skin surface with medical alcohol allows a removal of fat,
dust and dead cell, and an increasing of the conductivity through the electrode [43]. We chose the
Kendall™ Covidien H124G �24 mm [44] for the sEMG signal acquisition due to the Ag/AgCl sensor,
pre-gelled surface and long-term stability. Instead, for the stimulation, we employed the 5 cm × 9 cm
RehaTrode [45] rectangular self-adhesive electrodes produced by the Hasomed®, which are perfectly
designed to be coupled with the RehaStim 2 stimulator. The main difference between these two
types regards the working area, having the acquisition electrodes a higher spatial resolution while the
stimulation ones cover a bigger surface to properly induce the stimulation.

4.2. Upper Limb: Elbow Flexion

As upper limb benchmark exercise, we chose the Elbow Flexion (EF) movement, which consists
in the forearm motion toward the upper arm rotating around the elbow join center. The active muscles
of the arm are the brachialis, which attaches the humerus to the ulna, the brachioradialis, that connects
humerus and radio, and the biceps brachii, which links the shoulder blade to the radius [46]. Since our
idea was to perform this first tests with minimal complexity, we decided to monitor and to stimulate
only the biceps brachii also due to its accessibility by surface electrodes. Therefore, we placed the
couple of acquisition electrodes at 1/3 of the line between the fossa cubit and the medial acromion,
with 20 mm inter-electrode distance, and the reference one on the back of the hand, as electric-neutral
area [43]. In contrast, the FES electrodes position slightly differs from the previous ones, being located
one on muscle belly and the other one closer to the crease of the elbow [47], in order to have a correct
muscle fibers contraction. The experimental setup is shown in Figure 11a,b.
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(a) (b)

Figure 11. Acquisition (a) and stimulation (b) electrodes location, on the biceps femoris muscle, for the
EF exercise.

Ten healthy subjects (five males and five females, 24–27 years old) took part to the testing phase:
We divided them into five therapist-patient couples and, after the calibration of the acquisition and FES
parameters, we asked them to repeat the EF exercise twelve times for each couple. A single repetition
has to follow this flow: The starting position for both the therapist and patient is upright sitting, with
their forearms and hands completely lean against the table, forming a 90° angle with the upper arm;
then, the therapist performs the movement reaching her/him AROM, and finally returns to the starting
position; once also the patient has finished the exercise, a short pause of at least 10 s prevents any
muscle fatigue effects.

ATC, FES current, therapist and patient angular values have been collected during the entire
session. They are successively processed in the MATLAB® environment in order to extract the useful
information for the comparison between the voluntary and stimulated movement. The angular signal
processing consists of the following steps:

1. Segmentation of the complete signals into single epochs representing one repetition.
2. Baseline removal, since it could be different depending on the limb starting position.
3. Signals normalization to the related AROM values.
4. Computing of the maximum of the cross-correlation coefficient for each epoch.

The box plot on the left of Figure 12 represents the entire dataset of σ values (60 measures:
Five couples per 12 repetitions each one) extracted during our test campaign. As it can be observed, the
distribution is Q3-skewered to the unity, which indicates a good reproduction of the movement, further
confirmed by a median value above 0.8. Indeed, looking at the angular signals on the right graph of
Figure 12, representing a single repetition, we can see how much the limb motion is similar between
therapist and patient. Moreover, this graph also shows the on-line modulation of the stimulation
current when the ATC values, directly proportional to the therapist limb angle, trigger the increasing,
decreasing or plateau current phases. It is possible to notice that the total delay between the two
movements is due to a first short processing phase, visible as distance between non-zero therapist angle
and non-zero FES current, and a physiological longer one, distance between non-zero FES current and
non-zero patient angle, which depends on the muscle mass and fibers contractions.
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Figure 12. (left) Example of the stimulation application of a repetition of the Elbow Flexion (EF)
movement: Blue and red are the angular signals of the therapist and patient, respectively; the dashed
black line represents the FES current injected through the electrodes. (right) Similarity analysis using
the maximum of the cross-correlation coefficient to compare the limb motion angular signals of the
therapist and patient for the EF movement.

4.3. Lower Limb: Knee Extension

We also tried to replicate the Knee Extension (KE) movement, due to its largely employment
as physiotherapy exercise. From a sitting initial position, the contraction of the quadriceps femoris
muscle allows the extension of the leg with respect to the knee joint. This muscle is composed by four
separate muscles: The rectus femoris, in the middle of the thigh; the vastus lateralis located on the
lateral side of the femur; the vastus medialis on the medial side; and the vastus intermedius under the
rectus femoris [48].

In our test, we decided to monitor the vastus lateralis and vastus medialis, setting up a
two-channel stimulation layout: in the first case, the sEMG electrodes were placed at the 80% of
the line from the anterior superior iliac spine and the medial side of the platella, while in the second
case, they were put at 2/3 of the line connecting the anterior superior iliac spine with the superior
lateral side of the patella [43], as shown in Figure 13a. Both reference electrodes were located on the
patella. On the other hand, as reported in Figure 13b, the stimulation electrodes were placed along the
muscle bellies in order to cover a surface including both the muscles and the rectus femoris.

Our preliminary results consist in 13 repetitions of the movement, performed by a single female
subject (24 years old). As in the EF case, both the therapist and patient need to start from an initial
position, which we defined as 135° between thigh and calf. Then, the therapist extends its leg
until her/him AROM and, once the stimulation is completed, at least 10 s have to be waited before
next repetition.

The cross-correlation results, calculated with the same method of the EF case, are reported on the
box plot in Figure 14 (top left). However, these values are also represented by a time-graph (bottom left)
in order to avoid any misinterpretations due to the low number of measures. Looking at the graphs,
some considerations can be made: first of all, also for the KE movement, we obtained satisfactory
results in term of similarity between the two signals, proved by the σ values completely equal or
greater to 0.9. Indeed, considering the repetition example on the left graph, we can observe the similar
morphology among the therapist motion and the patient one. Anyway, the maximal angular value
reached by the patient is lower than the therapist one. This behavior is possibly related to the muscle
physiology activation and different fibers recruitment between voluntary and stimulated contraction.
One cause could be associated to the stimulation of a healthy subject, with a normal muscles condition,
that, by applying large values of stimulating current, could lead to sense of pain. Hence, we limited
the current to the values represented by the dashed line in the graph avoiding this situation. A second
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possibility could be related to which muscles have been stimulated: A complete leg extension involves
the total contraction of the quadriceps, while superficial electrodes could not result in the proper
shortening of the deeper fibers, consequently producing a limited movement. Anyway, further studies
will allow us to set up more complex stimulation scenarios, which will induce a better reproduction of
the movement.

(a) (b)

Figure 13. Knee extension exercise. (a) sEMG acquisition electrodes on the vastus lateralis and vastus
medialis muscles. (b) the electrodes are directly placed on the muscle bellies of the vastus lateralis and
vastus medialis. This locations and the electrodes dimension also contract the rectus femoris muscle
improving the stimulation effectiveness.
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Figure 14. (left) Single repetition example showing the similarity between the two angular signals with
respect to the vastus lateralis (VL) and vastus medialis (VM) stimulation currents. (right) Maximum of
the cross-correlation coefficient for the 13 repetitions of the knee extension movement.
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5. Discussion: sEMG-FES Systems Comparison

Table 6 reports a summary of literature works in the field of FES application triggered by sEMG
signal analysis. The classification includes which control feature (e.g., RMS, envelope, ATC) has
been used to online modulate one or more FES parameters, as well as the employed hardware,
which summarizes the processing capability and the possibility to transfer the FES algorithm into
an embedded device. Moreover, these systems could be also analyzed by considering additional
features such as wireless connectivity, modularity and number of active channels which foster system
wearability, future sensors and algorithms integration, and application typology. Lastly, since real-time
behavior remains a major constraint, rightmost column shows the latency (FES pulses update period)
measurements calculated as FES processing delay or (whenever available) the therapist-patient delay.

Table 6. sEMG-trigger-FES systems table comparison.

Work
Control
Feature

FES
Parameter

Processing
HW Embedded Wireless

Modular
System #Ch

Latency
(ms)

[49] RMS intensity MCU � Bluetooth x 8 300

[50] envelope intensity n.a. x x n.a. 4 n.a.

[51] threshold
crossing frequency MCU � 335/433

MHz x 2 142

[52] force
angle intensity PC x x n.a. 4 n.a.

[53] sEMG
IMU

intensity
width MCU � Bluetooth

2.1 x 4 21

[54] envelope on/off
stimuli PC x x x 1 1600

[55] entropy frequency
width MCU � x x 1 300 1

[10,18] ATC intensity PC x Bluetooth
4.2 � 4 774.5 1

932 1

This ATC intensity Raspberry � Bluetooth
4.2 � 4 140

1 measured as therapist-patient delay.

A complete comparison between our system and those reported here is not straightforward
due to the large variety of analyzed features; anyway, some considerations about different methods
and performance can be carried out. In [51] authors used the threshold crossing feature extraction
to modulate the stimulation frequency of the FES pulses, achieving a very promising FES definition
latency of 142 ms, directly comparable to our outcomes. However, since the sEMG processing has
been embedded in the MCU, a standard sampling approach is needed, which includes peripherals
management and relative expensive processing power; on the other hand, with our event-based
approach, MCU resources could be drastically reduced by implementing ATC in hardware. At the
same time, linking the TC events with the stimulation frequency results particularly interesting in
order to reproduce motor fibers firing rate; in our system we preferred, as a first step, to modulate the
intensity, but a frequency-control approach could be easily implemented thanks to the flexible and
modular architecture of our system. Another interesting frequency modulation has been presented
in [54], which evaluates the sEMG entropy on an MCU architecture, but limiting the number of
controlled channels to one.
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With reference to the pulse amplitude control, it could be performed by extracting different
features from the muscle signal (e.g., RMS [49], envelope [50] and force [52]) or using data-fusion
techniques with different type of sensor (as Inertial Measurement Unit, IMU [53]): While the final
latency among these works and our proposed system is quite similar, and respects the real-time
constraints for such type of application, the processing methodology does not always allow to use an
MCU [53] and, where it is possible, raw data acquisition seems to be the common adopted solution.

As another comparison point, to the best of our knowledge for this application, our architecture
is the only one which presents a modular system structure, thanks to the combination of chosen
programming language and strategies.

Lastly, looking at the ATC-FES system evolution from previous versions [10,18], we enhanced the
real-time performance obtaining a total latency of about 140 ms, defined as the sum of the processing
time (10 ms, RHS configuration) and the ATC widow (130 ms). Again, since the relevant upgrade in
our architecture was to move towards an embedded device (i.e., Raspberry Pi), we confirm how the
lightness and low-complexity of the ATC technique perfectly match with the low-processing capability
of an embedded system, while maintaining adequate FES control, usability and power performance.

6. Conclusion and Future Perspectives

In this paper we presented our last prototype of the sEMG(ATC)-controlled-FES system, in which
we have been replaced the previous MATLAB® & SIMULINK® software architecture [10] with the novel
embedded version running on a Raspberry Pi, in order to overcome the performances limitation
due to the use of a general purpose computer. Taking the advantages of the object-oriented and
multi-threaded approach, along with the versatility of Python programming language, we developed
a multi-platform software core able to work onto several devices and with different operating systems,
also enhancing system usability by featuring a graphical user interface.

Since the main tasks of the system application concern the modulation of the FES pattern and its
real-time application, we designed a processing structure able to match with the low computational
power of an embedded device. We implemented a calibrated ATC-FES lookup table structure,
combined with noise-gateway controls, which allows us to obtain a total processing time, defined
as the delay between ATC data and the new FES parameters, below 30 ms (corner cases), obtained
without substantally impact on the CPU and RAM usage, therefore demonstrating the lightness and
responsiveness of the event-driven technique in the control of the stimulation.

We proved system efficiency by studying the similarity between voluntary and stimulated
movements in therapist-patient real FES scenarios (healthy subjects): using the maximum of the
normalized cross correlation coefficient, as comparison measurement between the signals of the
involved limbs, we obtained a mean value of 0.87 ± 0.07 as result of 60 repetitions (5 therapist-patient
couples per 12 repetition each one) during the reproduction of the elbow flexion movement.
These promising outcomes allowed us also to preliminarily evaluate the FES performance for the
knee extension movement: Adopting the same methodologies, we analyzed 13 exercise repetitions
achieving a correlation value of 0.93 ± 0.02.

Future improvements, i.e., full FES parameters modulation, pre-FES movement recognition,
will permit us to further optimize the ATC-based stimulation in order to extend our testing phase
to a wide list of rehabilitation exercises, also performing some clinical trials with the support of
medical staff.
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Abstract: With increasing real-time constraints being put on the use of Deep Neural Networks (DNNs)
by real-time scenarios, there is the need to review information representation. A very challenging
path is to employ an encoding that allows a fast processing and hardware-friendly representation
of information. Among the proposed alternatives to the IEEE 754 standard regarding floating point
representation of real numbers, the recently introduced Posit format has been theoretically proven to
be really promising in satisfying the mentioned requirements. However, with the absence of proper
hardware support for this novel type, this evaluation can be conducted only through a software
emulation. While waiting for the widespread availability of the Posit Processing Units (the equivalent
of the Floating Point Unit (FPU)), we can already exploit the Posit representation and the currently
available Arithmetic-Logic Unit (ALU) to speed up DNNs by manipulating the low-level bit string
representations of Posits. As a first step, in this paper, we present new arithmetic properties of the
Posit number system with a focus on the configuration with 0 exponent bits. In particular, we propose
a new class of Posit operators called L1 operators, which consists of fast and approximated versions
of existing arithmetic operations or functions (e.g., hyperbolic tangent (TANH) and extended linear
unit (ELU)) only using integer arithmetic. These operators introduce very interesting properties
and results: (i) faster evaluation than the exact counterpart with a negligible accuracy degradation;
(ii) an efficient ALU emulation of a number of Posits operations; and (iii) the possibility to vectorize
operations in Posits, using existing ALU vectorized operations (such as the scalable vector extension
of ARM CPUs or advanced vector extensions on Intel CPUs). As a second step, we test the proposed
activation function on Posit-based DNNs, showing how 16-bit down to 10-bit Posits represent an
exact replacement for 32-bit floats while 8-bit Posits could be an interesting alternative to 32-bit floats
since their performances are a bit lower but their high speed and low storage properties are very
appealing (leading to a lower bandwidth demand and more cache-friendly code). Finally, we point
out how small Posits (i.e., up to 14 bits long) are very interesting while PPUs become widespread,
since Posit operations can be tabulated in a very efficient way (see details in the text).

Keywords: alternative representations to float numbers; posit arithmetic; Deep Neural Networks
(DNNs); neural network activation functions

1. Introduction

Due to the pervasivenss of real-time and critical systems like Internet of Things (IoT) platforms,
automotives, and robotics, new types of requirements are being addressed in the use of Deep Neural
Networks (DNNs).

The main challenges when dealing with DNNs are both the ubiquitous multiply-and-accumulate
operations and the massive use of activation functions across the neural network layers. A big speed-up
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to these challenges is surely offered by parallelization of the workloads (e.g., Graphics Processing
Units (GPUs) or Single-Instruction Multiple-Data (SIMD)) processors). However, these solutions are
considerable demanding in terms of resources. Moreover, adding parallelization in critical systems
may reduce the predictability of the said system (see References [1,2]). Furthermore, even the use of
floating point SIMD engines is not always possible in embedded systems (e.g., ARM Cortex-M4 [3]).
This means that we cannot always rely on high-performance processing units in critical and real time
scenarios, thus needing to address new challenges.

Therefore, the challenging topic is to satisfy the real-time requirements while guaranteeing
computational efficiency and lowering the power and the cost of such applications. One of the
main paths to reduce the computational complexity when evaluating DNNs is stepping away from
cumbersome arithmetic such as double-precision floats (represented on 64 bit). The basic idea is to
use compressed formats that may save resources in terms of power consumption and computational
efficiency. Great examples of compact formats are Brain Floats (BFLOAT) and Flexpoint [4,5] that
consist in an optimized version of the 16-bit standard floating point number IEEE 754) used by
Google for their TPU (tensor processing unit) engines. Other formats also come from the concept of
transprecision computing [6,7] (NVIDIA Turing architectures allow computation with 4-, 8-, and 32-bit
integers and with 16- and 32-bit floats). The up-and-coming Posit format has been theoretically [8–10]
and practically [11] proven to be a perfect replacement for IEEE float numbers when applied to DNNs
in terms of efficiency and accuracy.

Due to its novelty, this format lacks proper or standardized hardware support (e.g., a Posit
Processing Unit (PPU)) to accelerate its computation, forcing the use of software implementations.
However, in order to speed up the software emulation of Posits in DNNs, we present two different
techniques. In this paper, we extend the work on deriving a fast and approximate version of the
hyperbolic tangent (TANH) presented in Reference [12]. We introduce novel arithmetic properties
of the Posit number system with a deep focus on the Posits with 0 exponent bits. This special case
allows us to build common functions and arithmetic operators as simple bit manipulations on the
bit-string representing a Posit number. This new class of functions (called L1 functions) has some
interesting properties:

• The operation evaluation is faster than its counterpart with little to no degradation on accuracy.
• Since these operations only need integer arithmetic and logic operations, they are

straightforwardly executed in the already existing ALU, also allowing a faster emulation of Posits
• Being able to write functions as a sequence of arithmetic-logic operations allows us to vectorize

them exploiting already existing SIMD (Single Instruction–Multiple Data) engines.

In particular, in this extension, we also propose a new fast and approximated version of the
Extended Linear Unit (ELU) activation function.

Moreover, if we consider really low-power devices that do not embed a floating point unit but
only an arithmetic logic unit, the approach proposed can become very interesting to enable DNN
processing even in this class of devices (although for inference only, not for training).

Furthermore, we investigate operator tabulation as a different approach to speed up Posit
emulation without constraints on the exponent configuration. This allows us to accelerate basic
arithmetic operators like sum and multiplication that are not suitable for being implemented
as L1 functions. Although very powerful, this approach has clear limitations to its scalability,
having a considerable spatial complexity.

Paper Structure

The paper is organized as follow: Section 2 introduces the Posit format, proposing novel
approaches to approximation and speed-up of Posit arithmetic, exploiting the 0-bit exponent Posit
configuration. Section 3 describes the cppPosit library implemented in Pisa for the computation of
the new numerical format. Section 4 introduces the hyperbolic tangent and ELU activation functions
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along with their approximations. Section 5 shows the results of our approach with DNN and common
benchmarking datasets. Finally, Section 6 provides the conclusions.

2. Posit Arithmetic

The Posit format has been introduced by John L. Gustafson in Reference [8] and was further
investigated in Reference [9,10,12]. The format is a fixed-length one with up to 4 fields as also reported
in Figure 1:

• Sign field: 1-bit
• Regime field: variable length, composed of a string of bits equal to 1 or 0 ended respectively by

a 0 or 1 bit.
• Exponent field: at most es bits
• Fraction field: variable length mantissa

012345678910111213141516171819202122232425262728293031

S Regime(1..rebits) Exponent (0..esbits) Fraction (0...)

Figure 1. Illustration of the of 32-bit Posit data type.

Given a Posit on nbits; esbits, represented by the integer X, and e and f respectively as the
exponent and fraction values, the real number r represented by that encoding is as follows:

r =

⎧⎪⎪⎨
⎪⎪⎩

0, if X = 0

NaN, if X = −2(nbits−1)

sign(X)× useedk · 2e · (1 + f ), otherwise

An example of Posit decoding operation is shown in Figure 2.

0123456789101112131415

1 0 0 1 1 1 0 1 1 1 0 1 1 0 0 1

0123456789101112131415

S R E F

1 11 0 001 000100111

Figure 2. An example of a 16-bit Posit with 3 bits for the exponent (esbits = 3): Given the sequence on
top of the figure, after detecting that it starts with one 1, we have to compute the 2’s complement of
all the remaining bits (passing from 001-110-111011001 to 110-001-000100111). Then, we can proceed
to decode the Posit. The associated real value is therefore −2561 · 21 · (1 + 39/512). The final value is
therefore −512 · (1 + 39/512) = −551 (exact value, i.e., no rounding, for this case).

The design of a hardware Posit Processing Unit (PPU) as a replacement for the FPU has already
started on several universities worldwide, but it will take time for their availability on real platforms.
Fortunately, we can still do many things related to DNNs even in the absence of a hardware PPU.
Furthermore, when DNN weights can be represented with less than 14-bit Posits, we can tabulate some
core operations like sum and multiplication (see Section 3.1) and can use the ALU for other operations
that will be shown hereafter in order to reduce the number of tables.

As reported above, the process of decoding a Posit involves the following steps: obtaining regime
value by reconstructing the bit-string, building exponent, and extracting fraction. We can make use of
C low-level building blocks to speed up the decoding:

• Count leading zeros: using the embedded __builtin_clz C function that several CPU families
provide in hardware [13].
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• Next power of two: used to extract the fraction. An efficient way to obtain the next power of two,
given a representation X on 32 bit, is the following:

next_p2(X) -> Y

Y = X - 1

Y = Y | X >> 1

Y = Y | X >> 2

Y = Y | X >> 4

Y = y | X >> 8

Y = Y | X >> 16

Y = Y + 1

This approach copies the highest set bit to all the lower bits. Adding one to such a string
will result in a sequence of carries that will set all the bits from the highest set to the least
significant one to 0 and the next (in order of significancy) bit of the highest set to 1, thus producing
the next power of two. Let us use an example. Suppose X = (5)10 = (0101)2. At the first
step, Y = (0100)2. At the second step, Y = (0100)2|(0010)2 = (0110)2. At the next step,
Y = (0110)2|(0001)2 = (0111)2. From now on, Y will remain set to Y = (0111)2. At the last step,
Y = (0111)2 + (0001)2 = (1000)2 = (8)10, that is the next power of two starting from 5.

2.1. The Case of No Exponent Bits (esbits = 0)

When using a Posit configuration with zero exponent bits (esbits = 0), some interesting properties
arise. In this case, we can express the real number represented by the Posit as follows:

x = 2k · (1 + φ · 2−F) (1)

where φ is the fraction field and F the fraction length. The value of k depends on the regime length R.
In particular, k = −R for x < 1 (from now on x−) and k = R − 1 for x >= 1 (from now on x+). If we
denote the bit immediately following the regime bit string (stop-bit) as σ, we can express the value
of R as R = N − 2 − σp, where σp is the position of the stop-bit in the Posit bit-string. For x−, we can
note that, substituting the expression for F = N − 2 − R in (1), we get the following expression:

x− = 2−R + φ · 2−(N−2) = 2N−2 · (2−F + φ) (2)

Moreover, we can link x− with its representation X using Equation (3), obtaining:

x− = X · 2−(N−2) (3)

A particular property emerges with 0-bit exponent Posits when considering the [0, 1] range.
In fact, if we plot the resolution (that is the decimal difference between the real numbers represented
by two consecutive bit-strings) of a Posit〈X, 0〉 in [0, 1] we obtain the resolution of a fixed-point format.
This property is visualized in Figure 3. This is a very important property that will be exploited below.

As we will see below, the novel equations introduced above for the first time play an important
role for deriving fast approximation of activation functions in DNNs. Equation (3) says also that a Posit
with zero exponent bits can be interpreted as a fixed point number with a shift of (N − 2) bits. This has
implications on the accuracy and further operations.

An example of how to exploit the expressions discovered in the previous section is building a fast
approximated inversion operator. Given x, we want to find a fast and efficient way to compute y such
that x · y ≈ 1. In the following, we will consider only positive values of x. The simplest case is when
f = 0. Let us consider x > 1; we simply need to apply a reduction of the regime length by 1 as in
Equation (4).

x · y = 2Rx−1−Ry = 1 −→ Ry = Rx − 1 (4)
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A trickier case is when f > 0. Here, we can easily see that kx + 1 = ky, that implies Rx = Ry.
Therefore, we get Equation (5).

x · y = 2−1 ·
(

1 + fx · fy · 2−2Fx + ( fx + fy) · 2−Fx
)
= 1 (5)

Then, discarding the term fx · fy · 2−2Fx , we obtain Equation (6):

1 + ( fx + fy) · 2−Fx = 2 −→ fy = 2Fx − fx (6)

The latter can be obtained by simply bitwising-not fx and by adding 1, thus obtaining Equation (7):

Y = X ⊕ (¬signmask) (7)

where ⊕ is the exclusive or (XOR) operator, ¬ is the bitwise negation operator, and signmask is the
a mask obtained as shown in the following pseudo-code. For example, given a 5-bit Posit, the signmask
is simply (10000)2. The pseudocode also takes into account the holder size; in fact, a 5-bit Posit may
be held by an 8-bit integer. This means that, for this holder type, the signmask produced by the
pseudocode is (11110000)2.

Figure 3. Resolution of a 12-bit Posit when varying the exponent size. With a 0-bit exponent, the Posit
resolution in the [0, 1] range is the one of a 12-bit fixed point format.

A pseudo-code implementation for f > 0 (otherwise, we simply invert the sign) is as follows:

inv(x) -> y

X = x.v // ’v’ field: bit-string representing the Posit

msb = 1 << (N-1)

signmask = ~((msb | msb -1) >> 1)

Y = X ^ (~signmask) // negation operator followed by XOR operator (C-style)

y(Y)

Another useful function to implement as bit manipulation is the one’s complement operator (8)

y = 1 − x (8)
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This is of interest when x ∈ [0, 1]. In this case, y ∈ [0, 1], of course. From Equations (1) and (2),
we can rewrite the operator as in Equation (9).

y = 1 − 2k · (1 + φ · 2−F) = 1 − 2N−2 · (2−F + φ) (9)

Since we can link x to its representation X, we obtain (10).

y = 1 − X · 2−(N−2) (10)

Then, we can also link y to Y, obtaining (11).

Y = 2N−2 ·
[
1 − X · 2−(N−2)

]
= 2N−2 − X (11)

The latter can be obtained easily with an integer subtraction only using the ALU. A pseudo-code
implementation is the following:

comp_one(x) -> y

X = x.v // ’v’ field: bit-string representing the Posit

invert_bit = 1 << (N-2)

Y = invert_bit - X

y(Y)

when esbits = 0, we know that x = 2k · (1 + φ · 2−F). when doubling/halving x, we simply
increment/decrement the exponent k by 1. For 0-bit exponent Posits, this operation corresponds
to one left shift for doubling and one right shift for halving the number. For instance, let us take
a Posit〈5, 0〉 with the value 3/4. The correspondent bit-string will be (00110)2. If we shift it by one
position right, we will get (00011)2, that is the bit-string corresponding to a Posit with value 3/8.

2.2. FastSigmoid

As pointed out in Reference [8], if we plot the 2’s complement value of the signed integer
representing the Posit against the real number obtained from Equation (2), we obtain an S-shaped
function very similar to the sigmoid curve. What we need to do is to rescale it to have the co-domain
∈ [0, 1] and to shift it in order to center it in 0. To bring the Posit in [0, 1], we must notice that the
quadrant is characterized by having the two most significant bits set at 00 (see Figure 4).

Moreover, we can notice that adding the invert bit seen in previous sections to the Posit
representation means moving it a quarter of the quadrant. In fact with esbits = 0, when adding
the invert bit, we are adding 2N−2, that is equal to L = 1

minpos , which is the number of Posits that fit in
a single quarter of a ring. This means moving L times along the Posit ring, thus skipping a quarter of
it. A pseudo-code implementation of this transformation is the following:

fastSigmoid(x) -> y

X = x.v // ’v’ field: bit-string representing the Posit

Y = (invert_bit + (X >> 1)) >> 1

y(Y)

In order to understand how this code works, we need to separate the analysis for x− and x+,
considering only positive values, since the reasoning is symmetric for negative ones. Figure 5 shows
the behaviour of the two sigmoid versions.

180



Sensors 2020, 20, 1515

Figure 4. The [0, 1] quadrant in the Posit ring.

Figure 5. Accuracy comparison between the exact and approximated versions of the Sigmoid function.

We know that, for values of x ∈ [0, 1], the behaviour of x is like the one of a fixed point
representation, so the first right shift is simply a division by two. When we add the invert bit, we move
the Posit in the northeast ring quarter ([1,+NaR)). After this addition, the last shift can be considered
as a division by two as well, thus obtaining the following:

y =
x
4
+

1
2

(12)

Equation (12) is also the first-order Taylor expansion of the Sigmoid function in x0 = 0.
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With x represented as the bit-string X = (0, 1[Rx], 0, φx), the right shift will produce X′ =

(0, 0, 1[Rx − 1], 0, φ′
x). Now, with some computation, we can express x′ as a function of x and Rx,

obtaining (13).
x

22·Rx
+

22·Rx − 3 · 2Rx−1

22·Rx
(13)

when adding the invert bit, we obtain X′′ = (0, 1[Rx + 1], 0, φx). Finally, with the last right shift,
we obtain (14).

x
22·Rx+1 + 3 · 22·Rx − 2Rx

4 · 22·Rx
(14)

We know that we can approximate Rx ∼ log2(x) −→ x ∼ 2Rx . If we substitute it back in
Equation (14), we obtain Equation (15), close to sigmoid(Rx):

3 · 2Rx − 1
4 · 2Rx

(15)

3. CppPosit Library

For this paper, we employ our software implementation of Posit numbers developed at the
University of Pisa, called cppPosit. As already described in References [9,12], the library classifies
Posit operations into four different classes (from L1 to L4), with increasing computational complexity.

Among the others, L1 operations are the ones we want to focus on, since they can be fully emulated
with an ALU. For this reason, they provide means to produce very efficient operators, as reported in
Table 1.

This level supports Posit reciprocation and sign-negation as well as one’s complement.
Furthermore, when dealing with 0 exponent-bit configuration, they provide the fast and approximated
sigmoid function (FastSigmoid) as described in Reference [8] and the fast approximation of the
hyperbolic tangent (FastTanh) investigated in Reference [12]. Other interesting operators that require
0 exponent bits are the double and half functions. It is clear that, given these requirements, it is not
always easy to derive a simple expression for a particular function that can be implemented in an L1
way. However, the effort put in this step is completely rewarded since it brings both faster execution
both in a emulated and hardware Posit Processing Unit (PPU) and reduction of transistor occupation
when dealing with hardware implementation of the unit.

Table 1. Most interesting L1 operators implemented in cppPosit and their requirements to be applied
on the argument x.

Operation Approximated Requirements

2 · x no esbits = 0
x/2 no esbits = 0
1/x yes esbits = 0

1 − x no esbits = 0, x ∈ [0, 1]
FastSigmoid(x) yes esbits = 0

FastTanh(x) yes esbits = 0
FastELU(x) yes esbits = 0

3.1. Tabulated Posits

In the absence of proper hardware support of a Posit Processing Unit (PPU), there still is the need
for speeding up the computation. An interesting mean to cope with this problem is the pre-computation
of some useful Posit operators in look-up tables. These lookup tables (LUTs) become useful when
the number of bits is low (e.g., nbits < 12). The core idea is to generate tables for the most important
arithmetic operations (addition/subtraction and multiplication/division) for all combinations of
a given Posit configuration nbits, esbits. Moreover, some interesting functions can be tabulated in order
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to speed up their computation, like logarithm or exponentiation. Given an nbits bit Posit with a naive
approach, a table will be T ∈ PR×C where R = C = 2nbits − 1.

Depending on the underlying storage type T, each table entry will occupy b=sizeof(T) bits.
Typically, there will be between N = 8 and N = 10 tables for a Posit configuration. This means that
the overall space occupation will be S = N · (R · C) · b.

Table 2 shows different per-table occupations of different Posit configurations. As reported,
only Posits with 8 and 10 bits have reasonable occupation, considering current generation of CPUs.
In fact, we can obtain a considerable speed-up when one or more tables can be entirely contained
inside the cache.

Table 2. Table occupation for various configurations.

Total Bits (X) Storage Type Bits (b) Per-Table Occupation

8 8 64 KB
10 16 2 MB
12 16 32 MB
14 16 512 MB
16 16 8 GB

In order to reduce both LUT size and their number, we can exploit some arithmetic properties:

• Addition and subtraction are respectively symmetric and antisymmetric. The two tables can be
merged into one, and only one half of it is required (above or below the main diagonal).

• Multiplication and division can be simplified through logarithm properties. Given p = x · y,
we can apply log operator on both sides (see Reference [14]), thus obtaining log(p) = log(x · y).
From logarithm properties, this results in log(p) = log(x) + log(y) Finally, going back with
exponentiation, we get p = elog(x)+log(y). Since tabulation of single operators scales linearly
with the Posit size, it is feasible only to store exp, log instead of multiplication and division,
thus exploiting addition/subtraction LUT for the computation.

• We can compact multiplication tables even more by exploiting the fast inversion (L1) shown in
Section 2. Suppose to have two Posit numbers x, y and their reciprocates, if we want to provide
every multiplication or division combination, we would build a LUT like in Table 3. This table
would result in 16 entries for only 4 numbers, hence not manageably growing with Posit size. If we
apply the L1 inversion and symmetry of negative values, we only need to store the operations for
x · y and x/y, thus resulting in a LUT size of only 2 elements for the same amount of numbers,
as shown in Table 4.

Table 3. All the possible combinations for multiplying and dividing two Posit numbers.

1/x x −1/x −x

1/y 1/xy x/y −1/xy −x/y
y y/x xy −y/x −xy

−1/y −1/xy −x/y 1/xy −x/y
−y −y/x −xy −y/x xy

Table 4. All the possible combinations for multiplying and dividing two Posit numbers: all the cells in
italics correspond to the same LUT entry, and all the remaining ones correspond to another LUT entry.

1/x x −1/x −x

1/y 1/xy x/y −1/xy −x/y
y y/x xy −y/x −xy

−1/y −1/xy −x/y 1/xy −x/y
−y −y/x −xy −y/x xy
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3.2. Type Proxying

When dealing with Posit configuration with esbits �= 0 it is not possible to exploit fast
approximation of operators that relies on this property. A possible solution is to switch to a different
Posit configuration with 0 exponent bits and higher total number of bits to exploit a fast approximation
and to then switch back to the original one.

Increasing the number of bits is also useful when the starting Posit configuration has already
0 exponent bits. In fact, increasing nbits for the operator computation increases the accuracy of the
computation, avoiding type overflows.

Given a Posit configuration P1 〈X, Y〉, the basic idea is to proxy through a configuration P2 〈Z, 0〉
with Z � X. The core step in the approach is the Posit conversion between different configurations.
The base case is converting P1 〈X, 0, T1〉 −→ P2 〈Z, 0, T2〉, with Z � X and sizeof(T2)�sizeof(T1).
In this case, the conversion operation is the following:

convert0(p1) -> p2

v1 = p1.v // ’v’ field: bit-string representing the Posit

v2 = cast<T2>(v1) << (Z - X)

p2.v2 = v2

3.3. Brain Posits

The idea behind Brain Floats is to define a Float16 with the same number of bits for the exponents
of an IEEE 754 Float32. BFloat16 is thus different from IEEE 754 Float16, and the rationale of its
introduction is that, when we have a DNN already trained with IEEE Float32, we can perform the
inference with a BFloat16 and we can expect a reduced impact on the accuracy due to the fact that the
dynamic range of a BFloat16 is the same as that of IEEE Float32. Following the very same approach,
we can define Brain Posits to be associated to the Posit16 and Posit32 that will be standardized soon.
In particular, BPosit16 can be designed in such a way that it has the same dynamic range of a standard
Posit32, which will be the one with 2 bits of exponent. Since we are using the Posit format, we can
define the BPosit16 as the 16-bit Posit having a number of bits for the exponent such that its dynamic
range is similar to the one of Posit<32,2>. Using the same approach, we will define BPosit8, where the
number of bits for the exponent, in this case, must be the one that allows the BPosit8 to cover most
of the dynamic range of the standard 16-bit Posit, which is the Posit<16,1>. In the following, we will
perform some computations to derive the two number of exponents. Indeed, another interesting aspect
of type proxying is that we can also reduce the total number of bits while increasing the exponent
ones and still being able to accommodate the entire dynamic range. In doing so, we need to know the
minimum number of exponent bits of the destination type. Suppose we are converting from Posit
P1 〈X1, Y1〉 to Posit P2 〈X2, Y2〉, with X1 > X2. We know that the maximum value for P1 (similarly,

it holds for P2 as well) is max1 =
[
22Y1

]X1−2
If we set the inequality max2 ≥ max1 and we apply

logarithms to both sides, we get (X2 − 2) · 2Y2 ≥ (X1 − 2) · 2Y1 From this, we obtain the rule for
determining the exponent bits of the destination type:

Y2 ≥ log2(
X1 − 2
X2 − 2

) + Y1 (16)

From Equation (16), we can derive some interesting cases. A Posit P1 〈16, 1〉 can be transformed
into a Posit P2 〈8, 2〉 without a significant loss in the dynamic range. Furthermore, the same holds for
a Posit P1 〈32, 2〉, which can be approximated using Posit P1 〈16, 3〉.

For all this reasons, the Brain Posits proposed in Table 5 might deserve a hardware
implementation too.
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Table 5. Brain Posits.

Standard Posits Brain Posits

Posit<16,1> Posit<8,2>
Posit<32,2> Posit<16,3>
Posit<64,3> Posit<32,4>

4. Hyperbolic Tangent, Extended Linear Unit, and their Approximations

The hyperbolic tangent (tanh from now on) is a commonly used activation function. Its use
over the sigmoid function is interesting since it extends the sigmoid codomain to the interval [−1, 1].
This allows both the dynamic range of the sigmoid in the output to be exploited twice and the negative
values in classification layers during training to be given meaning. The first advantage is particularly
important when applied to Posit, especially to small-sized ones. In fact, when considering the sigmoid
function, if we apply it to a Posit〈X, Z〉, we practically obtain in the output the dynamic range of
a Posit〈X/2, Z〉, that is, for instance, quite limiting for Posits with 8 to 14 number of bits. Figure 6
stresses this point, highlighting how the tanh function insists on the two most dense quarters of the
Posit circle (the interval [−1, 1] occupies half of the Posit circle).

Figure 6. Five-bit Posit mapping to the Posit circle: As reported, the tanh function manages to cover
the lower half of the circle while the sigmoid one covers only the quarter [0, 1].

However, the sigmoid function has an important property, as shown in Table 1 and in Reference [8]:
it can be implemented as L1 function, thus having a fast and efficient approximation only using integer
arithmetics. The idea is to use the sigmoid function as a building block for other activation functions,
only using a combination of L1 operators. We know that the sigmoid function is:

sigmoid(x) =
1

e−x + 1
(17)
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Now, we can scale and translate (17) to cover the desired range [−1, 1] on the output obtaining
the scaled sigmoid:

sSigmoidk(x) = k · sigmoid(k · x)− k/2 (18)

Equation (18) is useful when setting k = 2, thus obtaining the tanh expression in (19):

sSigmoid2(x) = (e2x − 1)/(e2x + 1) = tanh(x) = 2 · sigmoid(2 · x)− 1 (19)

From this formulation, we want to build an equivalent one that only uses L1 operators to build
the approximated hyperbolic tangent, switching from sigmoid to the fast approximated version called
FastSigmoid. Since we are dealing with 0 exponent bit Posits, the operations of doubling the Posit
argument, computing the FastSigmoid, and doubling again is just a matter of bit manipulations,
thus efficiently computed. However, the last step of subtracting 1 to the previous result is not an L1
operator out-of-the-box; thus, we reformulate the initial expression obtaining (20):

tanh(x) = − (1 − 2 · sigmoid(2 · x)) (20)

If we consider only negative arguments x, we know that the result of the expression 2 · sigmoid(2 ·
x)) is always in the unitary region. This, combining with the 0 exponent bit hypothesis allows us to
implement the inner expression with the 1’s complement L1 operator seen in Table 1. The last negation
is obviously an L1 operator; thus, we have the L1 fast approximation of the hyperbolic tangent in (21):

FastTanh(x) = −(1 − 2 · FastSigmoid(2 · x)) (21)

Finally thanks to the antisymmetry of the tanh function, we can extend what we have done before
to positive values. The following is a pseudo-code implementation:

FastTanh(x) -> y

x_n = x > 0 ? -x:x

s = x > 0

y_n = neg(compl1(twice(FastSigmoid(twice(x_n)))))

y = s > 0 ? -y_n:y_n

As already described, tanh and sigmoid functions can be implemented in their fast approximated
version. However, the use of such kinds of shapes presents the well-known behaviour of vanishing
gradients [15]; for this reason, ReLU -like functions (e.g., ELU, Leaky-ReLU, and others) are preferable
when dealing with a large number of layers in neural networks. As in Reference [15], the ReLU
activation function is defined as in (22):

ReLU(x) =

{
0, if x ≤ 0

x otherwhise
(22)

Its use is important in solving the vanishing gradient problem, having a non-flat shape towards
positive infinity. However, when used with Posit numbers, this function can only cover [0, inf),
ignoring the very dense region [−1, 0].

In order to provide a more covering function with similar properties, we switch to the Extended
Linear Unit (ELU) (23):

ELU(x) =

{
α · (ex − 1) , if x ≤ 0

x otherwhise
(23)
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This function is particularly interesting when α = 1 (24), covering the missing dense region from
the ReLU one:

ELU(x) =

{
ex − 1, if x ≤ 0

x otherwhise
(24)

Figure 7 shows the difference in Posit ring region usage of ELU and ReLU functions. It is
remarkable how the ELU function manages to cover all the high density regions of the Posit ring.
Moreover, the ELU function brings interesting normalization properties across the neural network
layers as proven in Reference [16]. This helps in keeping stable the range of variation of the weights of
the DNN.

Figure 7. The Posit circle when the total number of bits is 5: The extended linear unit uses all the
numbers in [−1, inf), while the ReLU function uses only the ones in [0, inf).

From Equation (24), we can build a L1 approximation exploiting operators in Table 1. The ELU(x)
behaviour for x > 0 is the identity function, that is L1 for sure. The first step for negative x values
is seeing that the ELU expression is similar to the reciprocate of Sigmoid function (17). We can
manipulate (17) as follows:

Sigmoid(−x) =
1

1 + ex (25)

1/Sigmoid(−x) = 1 + ex (26)

1/(2 · Sigmoid(−x)) =
1 + ex

2
(27)

1/(2 · Sigmoid(−x))− 1 =
1 + ex

2
− 1 =

ex − 1
2

(28)

2 · [1/(2 · Sigmoid(−x))− 1] = ex − 1 (29)

We need to prove that the steps involved are L1 operations. The step in Equation (25) is always L1
for esbits = 0 thanks to fast Sigmoid approximation. The result of this step is always on [1, 2]. The step
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in Equation (26) is always L1, and the output is on [1/2, 1] ∈ [0, 1]. The step in Equation (27) is always
L1 for esbits = 0, and the output is on [0, 1/2]. The step in Equation (28) is L1 since the previous step
output is in the unitary range [0, 1]. The output of this step is in [0, 1] as well. Finally, the last step is L1
for esbits = 0. Expression (29) is exactly the ELU expression for negative values of the argument.

A pseudo-code implementation of the FastELU using only L1 operations is shown below:

FastELU(x) -> y

y_n = neg(twice(compl1(half(reciprocate(FastSigmoid(neg(x)))))))

y = x > 0 ? x:y_n

Figure 8 shows the behaviour of the two functions when approximated with our approach.

Figure 8. Comparison between the exact and approximated versions of hyperbolic tangent (TANH)
and extended linear unit (ELU).

5. Implementation Results

In this section, the different proposed activation function performances are analyzed in both the
exact and approximated fashions when used as activation function in the LeNet-5 neural network
model [17]. As shown in Figure 9, the neural network is trained with the MNIST digit recognition
benchmark (GTRSB) [17] and the German Traffic Road Sign Benchmark [18] datasets using the Float32
type. The performance metrics involved are the testing accuracy on said datasets and the mean sample
inference time. Testing phase is executed converting the model to Posit 〈X, Y〉 type and to SoftFloat32
(a software implementation of floats). We used SoftFloats in order to ensure a fair comparison between
the two software implementations due to the absence of proper hardware support for Posit type.

Network training using 
high number of bit 

formats (e.g. Float32 or 
Posit 16,0 )

Conversion of the model 
to lower number of bit 

formats (e.g. Posit 10,0
or Posit 8,0 )

Evaluation of accuracy 
and timing performance 

changes

Figure 9. Flowchart for the proposed method: models are trained using formats with high bit count
like Float32 or, in the future, Posit〈16, 0〉. The models obtained this way are then converted to formats
with lower bit count (e.g., Posit〈8, 0〉) to increase space efficiency and bandwidth.
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Benchmarks are executed on a 7th generation Intel i7-7560U processor, running Ubuntu Linux
18.04, equipped with GCC 8.3. Benchmark data is publicly available in References [17]. The C++
source code can be downloaded from Reference [19].

As reported in Tables 6 and 7, the approximated hyperbolic tangent can replace the exact one,
with a small degradation in accuracy but improving the inference time of about 2 ms in each Posit
configuration. Moreover, the performance of FastTanh also overcome FastSigmoid in terms of accuracy.
Furthermore, as reported in Tables 8 and 9, the approximated ELU function can replace the exact
one, with little-to-no accuracy degradation, improving the inference time of about 1 ms in each Posit
configuration. Moreover, performance of FastELU also overcomes the ReLU in terms of accuracy,
showing the benefits of covering the additional region in [−1, 0]. At the same time, the FastELU is not
much slower than ReLU, thus being an interesting replacement to increase accuracy of Posits with few
bits (e.g., Posit〈8, 0〉) without losing too much in time complexity.

Table 6. Comparison using Posits for the MNIST dataset for three different activation functions: fast
approximated version of Tanh (FastTanh), exact Tanh, and FastSigmoid. Accuracy of the neural network
and mean sample inference time are reported.

Activation FastTanh (This Paper) Tanh FastSigmoid

Acc. (%) Time (ms) % ms % ms

SoftFloat32 - - 99.4 8.3 97.1 -
Posit〈16, 0〉 99.1 3.2 99.4 5.28 97.1 3.31
Posit〈14, 0〉 99.1 2.9 99.4 4.64 97.1 3.09
Posit〈12, 0〉 99.1 2.9 99.4 4.66 97.1 3.04
Posit〈10, 0〉 99.1 2.9 99.3 4.62 96.9 3.08

bottomrule Posit〈8, 0〉 98.6 2.9 98.5 4.84 94.2 3.01

Table 7. Comparison using Posits for the GTRSB dataset (see Table 6).

Activation FastTanh (This Paper) Tanh FastSigmoid

Acc. (%) Time (ms) % ms % ms

SoftFloat32 - - 94.2 15.2 82.0 -
Posit〈16, 0〉 93.5 5.3 93.5 6.2 81.9 5.0
Posit〈14, 0〉 93.4 4.2 93.5 5.1 81.9 4.3
Posit〈12, 0〉 93.4 4.2 93.4 5.1 81.9 4.3
Posit〈10, 0〉 93.4 4.2 93.3 5.1 81.0 4.2
Posit〈8, 0〉 93.0 4.0 92.3 5.0 72.1 4.0

Table 8. Comparison using Posits for the MNIST dataset for three different activation functions: fast
approximated version of ELU (FastELU), exact ELU, and ReLU. Accuracy of the neural network and
mean sample inference time are reported.

Activation FastELU (This Paper) ELU ReLU

Acc. (%) Time (ms) % ms % ms

SoftFloat32 - - 98.6 8.8 89.1 6.3
Posit〈16, 0〉 98.5 3.2 98.6 3.9 89.1 2.0
Posit〈14, 0〉 98.5 2.4 98.6 3.1 89.05 2.0
Posit〈12, 0〉 98.5 2.3 98.6 3.1 89.0 2.0
Posit〈10, 0〉 98.3 2.3 98.5 3.0 89.0 1.9
Posit〈8, 0〉 91.1 2.2 90.1 3.0 88.4 1.9
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Table 9. Comparison using Posits for the GTRSB dataset (see Table 8).

Activation FastELU (This Paper) ELU ReLU

Acc. (%) Time (ms) % ms % ms

SoftFloat32 - - 94.2 15.86 92.0 8.2
Posit〈16, 0〉 94.0 5.8 94.2 6.37 92.0 5.0
Posit〈14, 0〉 94.0 4.6 94.2 5.21 92.0 4.3
Posit〈12, 0〉 94.0 4.6 94.2 5.08 92.0 4.3
Posit〈10, 0〉 94.0 4.6 94.2 5.0 92.0 4.2
Posit〈8, 0〉 92.0 4.6 91.8 5.0 86.8 4.0

If we compare FastELU and FastTanh, their performance are quite similar in the benchmarks
provided. However as already said in Section 4, increasing the number of layers in the neural
network model can lead to the so called “vanishing gradient” problem; s-shaped functions like
sigmoid and hyperbolic tangent are prone to this phenomenon. This has been proven not to hold for
ReLU-like functions.

The results highlight how Posits from Posit 〈16, 0〉 to Posit 〈10, 0〉 are a perfect replacement for
float numbers; Posit 〈10, 0〉 is a particularly interesting format since it offers the best data compression
without any drop in accuracy. This reasonably makes Posit 〈10, 0〉 the configuration of choice for
low-precision inference when using Posits.

6. Conclusions and Future Work

In this work, we have introduced some interesting properties of Posit format for the specific
configuration having zero exponent bits (esbit = 0), that allows building fast arithmetic operators that
only requires ALU support. In particular, we have derived two novel fast approximated versions of
two important activation functions in neural networks: the hyperbolic tangent and the extended linear
unit. These approximations are fast since they involve only bit manipulations (at the so-called “L1
level”). This means that such functions do not need to be implemented in hardware within the so-called
Posit processing unit. Instead, they can be efficiently computed using the ALUs of most of the current
CPUs. We have used this approximation to speed up the inference phase of deep neural networks.
The proposed approximations have been tested on common deep neural network benchmarks. The use
of this approximations resulted in a slightly less accurate neural network with respect to the use
of the (slower) exact version but with better performance in terms of mean sample inference time
of the network. In our experiment, the FastTanh and FastELU functions also outperform both the
ReLu and the FastSigmoid (a well-known approximation of the sigmoid function), a de facto standard
activation function in neural networks. Future developments of the work will include porting the
Posit format inside the Apollo Autonomous Driving Framework to test it on the assisted/autonomous
driving scenario; this will allow us to test our approach in object detection and semantic segmentation
tasks. We plan to implement a Field Programmable Gate Array (FPGA) based Posit Processing Unit
(PPU) in order to evaluate real-world hardware performance of our library. Furthermore, we are
actively working to port the cppPosit library for the new RISC-V processor architecture; we plan to
develop both a software-accelerated version using the vector extension of the RISC-V Instruction Set
Architecture (ISA) and an intellectual property (IP) core for the RISC-V hardware architecture.
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Abstract: In the last years, the need for new efficient video compression methods grown rapidly as
frame resolution has increased dramatically. The Joint Collaborative Team on Video Coding (JCT-VC)
effort produced in 2013 the H.265/High Efficiency Video Coding (HEVC) standard, which represents
the state of the art in video coding standards. Nevertheless, in the last years, new algorithms and
techniques to improve coding efficiency have been proposed. One promising approach relies on
embedding direction capabilities into the transform stage. Recently, the Steerable Discrete Cosine
Transform (SDCT) has been proposed to exploit directional DCT using a basis having different
orientation angles. The SDCT leads to a sparser representation, which translates to improved coding
efficiency. Preliminary results show that the SDCT can be embedded into the HEVC standard,
providing better compression ratios. This paper presents a hardware architecture for the SDCT, which
is able to work at a frequency of 188 MHz, reaching a throughput of 3.00 GSample/s. In particular,
this architecture supports 8k UltraHigh Definition (UHD) (7680 × 4320) with a frame rate of 60 Hz,
which is one of the best resolutions supported by HEVC.

Keywords: video coding; discrete cosine transform; directional transform; VLSI

1. Introduction

In recent years, high-resolution multimedia content has fostered research in the field of video
compression. Indeed, in 2013 the Joint Collaborative Team on Video Coding (JCT-VC) released the
High-Efficiency Video Coding (HEVC) standard, also referred to as H.265 [1].

Interestingly, the HEVC standard improved the coding efficiency gain by reaching 50% of
bit-rate reduction (for the same quality level) with respect to the previous Advanced Video Coding
(AVC)/H.264 standard. Noticeably, HEVC not only improved the compression capability, but it
effectivelyh andles high-quality video resolutions, enhanced frame rates, and increased dynamic range.
In particular, the HEVC standard relies on coding tree units (CTUs) to improve transform coding and
prediction. Each CTU contains two coding tree blocks (CTBs), one for the luma component and one for
the chroma components. CTBs are partitioned into smaller blocks called coding units (CUs) along with
a tree-based coding structure that includes prediction units (PUs). PUs exploit the temporal and spatial
redundancies present in video streams leading to inter-frame and intra-frame prediction. The sizes of
PUs vary from 8 × 4 and 4 × 8, to 64 × 64 pixels for inter-frame, while for intra-predicted PUs size
goes from 4 × 4 to 32 × 32 pixels. As PUs are coded without including neighboring blocks, blocking

Sensors 2020, 20, 1405; doi:10.3390/s20051405 www.mdpi.com/journal/sensors193



Sensors 2020, 20, 1405

artifacts due to discontinuous block boundaries can occur. To reduce these artifacts and to improve the
quality of the decoded frames, the HEVC standard includes two in-loop filters: the deblocking filter
(DBF) and the sample adaptive offset (SAO), as depicted in Figure 1.

Transform Quantization Entropy
coding

Reverse
quantization

Reverse
transform

SAO Frame
memory

Deblocking
lter

Intra/Inter
prediction

Input Bit stream

Prediction residual signal

Decoded signal

Predicted signal

Prediction residual
signal

Noise removal lter

Figure 1. HEVC basic structure.

During the prediction, for each PU, the difference between the predicted block and the current
block (residual) is lossly coded by the means of transform and quantization. The transform stage can
be either the Discrete Sine Transform (DST) or Discrete Cosine Transform (DCT). While the DST is
used only for the smallest block size, namely 4 × 4 pixels, the DCT is used for all the other sizes, up to
32 × 32. For this reason, some works pointed out that the complexity of the transform stage in the
HEVC context is particularly relevant [2,3]. This motivated several researchers to propose dedicated
architectures for variable size DCTs, such as [4–6]. Recently, G. Fracastoro et al. [7] proposed the
Steerable DCT (SDCT) and showed that it can give some coding advantages when embedded in the
HEVC standard [8]. Such a directional transform is not tailored to any specific one, but it can be
potentially applied to any two-dimensional separable transform. Moreover, it can be oriented in any
selected direction, providing a more scattered representation depending on the chosen orientation.
Unfortunately, such enhancements in HEVC lead to further complexity increases. These features
interfere with battery-powered platforms and real-time applications, since the higher the complexity,
the higher the power consumption. This current paper details the hardware accelerator for the SDCT
described in [9,10]. Such an accelerator is able to support the ultimate video coding resolutions like
the 8k UltraHigh Definition (7680 × 4320 pixels). After a brief introduction on the SDCT in Section 2,
Section 3 analyses the proposed architecture and finally Section 4 presents the implementation results
discussing possible trade-offs. Lastly, Section 5 offers an overview of the entire work by providing
some results about the effectiveness of the SDCT in comparison to other canonical solutions.

2. Background

HEVC is a block-based video compression algorithm and, like similar compression schemes, it
employs spatial transforms. In particular, the 2-D DCT is the main one, which acts along the horizontal
and vertical directions. The 2-D DCT is defined as
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which is, by definition, a separable transform. The DCT deals better than the DFT (Discrete Fourier
Transform) with the borders of the coding blocks. This allows higher energy compaction with reduced
sensitivity to quantization. It is also a real transform, thus, computations on complex numbers
are not required. The operation can be stated as a convolution, leading to a compact and efficient
implementation.

It is possible to demonstrate that for blocks that include diagonal edges, a directional transform
will be better suited, leading to a higher compression ratio. The work of B. Zeng et J. Fu [11]
presents a mathematical framework about directional DCT (DDCT). This transform is difficult to
handle as it requires non-canonical DCT lengths and complex reshaping of the blocks. Recently,
G. Fracastoro et al. [7] proposed the Steerable DCT (SDCT). It employs the graph Fourier transform
from [12] to obtain an easier-to-handle directional DCT. The SDCT kernels still retain a square shape so
that computation remains easy to perform, even though this 2-D transform is not separable in two 1-D
operations as for the classic 2-D DCT. Lately, the work in [8] demonstrated that it is possible to split
the steerable cosine transform into a traditional DCT followed by a geometrical rotation. The resulting
kernels are the same as the SDCT but the computation workload is reduced by exploiting the 2-D DCT
separability. Section 3 will better deal with this issue. Figure 2 shows different kernels obtained by the
SDCT, the DCT being a special case of the SDCT with a rotation by zero degrees.

(a) DCT kernels (b) π
4 SDCT kernels

Figure 2. Example of Discrete Cosine Transform (DCT) and Steerable Discrete Cosine Transform
(SDCT) kernels.

3. Architectural Implementation

3.1. Datapath

While the 2D-DCT employed in HEVC is an inherently separable operation, the SDCT must be
computed all at once. The complexity of a transform that is not separable is far greater than a separable
one, so this may be a big drawback for the implementation. However, the complexity can be decreased
drastically by splitting the SDCT into two parts, namely, a separable 2D DCT followed by some
rotations, and then by computing the separable transform before applying rotations, as reported in [8]:

x̃ = T(θ)x = R(θ)Tx = R(θ)x̂ (2)

where x are the input samples, x̂ are the results obtained by applying the T transform matrix, R(θ) is
the rotation matrix, while x̃ is the result of the SDCT. Thus, the SDCT can be decomposed in a DCT
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followed by a steering transformation. The DCT part can be implemented as suggested in the literature
using a folded architecture [13]. When all the samples returned by the 2D-DCT are available, the
rotations must be applied to obtain a steering transform. Since the DCT works exploiting a sliding
window approach on the data, the process takes several steps to complete. However, the results will
be provided all at once. This means that the steering part of the architecture has to work faster than
the DCT. This issue has been tackled in this work by defining two clock regimes, one for the 2D-DCT
and one, four times faster, for the steering part, to comply with the throughput offered by the 2D-DCT
transform block. A FIFO memory between the two parts acts as a buffer memory. The whole structure
is depicted in Figure 3.

CU-1
done_1

2D-DCT

CU-2 CU-3

SteerableFIFO

done_2 done_3

data_in data_out

clk
rst_n

data_in_valid

start

sel_dct_in

z_in

data_out-valid

done

sel_dct_out

z_out

32 32

Figure 3. Whole SDCT structure.

The 2D-DCT block is based on the architecture proposed in [13] by Meher et al., which is
very flexible and efficient, especially when dealing with folded transforms of size 4, 8, 16 and 32.
The steerable part is shown in Figure 4. It is composed of an input memory (IM), an output memory
(OM) and the lifting blocks that perform the rotation [14]. Some multiplexers are used to bypass the
lifting blocks for the case of no rotation, returning directly the result given by the DCT. Despite the
possiblity to bypass the IM and OM blocks when no rotation has to be applied, such an alternative
leads to different latency of the architecture as a function of the rotation angle. Thus, in order to
simplify the interface of the architecture, we decided to only bypass the lifting blocks. The IM is
required also to reorder the samples as the steering process is computed on the custom zig-zag order
given in Figure 5; this is different from the classic zig-zag ordering, as the vectors are rotated in pairs
with respect to the diagonal elements. Rotation by lifting scheme:

(
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)
=
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)(
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0 1
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The rotation matrix is decomposed in the multiplication of three other rotation matrices, in
such a way that the resulting structure shown in Figure 6, presents a lower complexity. Indeed, this
implementation requires only three multipliers, one less concerning the original implementation,
leading to a reduction of the 25% of the computational area, shorter latency and less power
consumption. To further simplify the architecture, the multiplication for P and U coefficients from
Equation (3)

P =
1 − cos θ

sin θ
(4)

U = − sin θ (5)

in Figure 6 are implemented as shift and add, as the number of possible rotation angles has been fixed
to 8 (from 0, no rotation, to 7), as reported as optimum in [8] by M. Masera et al. The steerable block
thus introduces 2 × N clock cycles of latency for the reordering stage plus 4 clock cycles due to the
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internal pipeline. Therefore, in the event that all the SDCTs have a length N = 32, the latency is equal
to 68 clock cycles, which corresponds to the worst case.

IM OM
LIFTING

LIFTING

LIFTING

LIFTING

start

d_in[0to31] d_out[0to31]

angle

sel_dct

w_r_n1 add_w1 add_r1 w_r_n2 add_w2 add_r2

sel_dct_out

angle_out

data_out_valid

done

mux_sel

Figure 4. Steerable block structure.

Figure 5. Zig-zag scanning order.

>>8

x1 y1

y2x2

P

U

>>8

>>8

Figure 6. Lifting-based rotation.

3.2. Control Unit

The design requires two Control Units (CUs), one for the DCT part and one for the steering part.
The 2D-DCT block is managed by its control unit, which generates all the control signals and the

197



Sensors 2020, 20, 1405

required memory addresses. It is composed of a Finite State Machine (FSM) and a counter. The FSM is
composed of two states (FWR1 and FWC1), plus an IDLE state. When the external starting input signal
is received, the FSM switches from IDLE to FWR1. The counter starts to increase its value and the
write_enable signal is raised so that the partial 1D-DCT results are stored in the transposition buffer at
the position indicated by the counter address value. The input signal itself encapsulates the length
of the current DCT and consequently the value to be reached by the counter. Once the maximum
counter value (cnt_max) is reached, the FSM switches from FWR1 to FWC1. In this state, the FSM is
responsible for the read memory address generation and the assertion of the data_out_valid signal.
The maximum counter value in this state remains the same as the previous one. Once cnt_max is
reached, the two-dimensional transformation is completed, and the FSM evolves to a new FWR1 state
if the start signal is asserted again, otherwise, it returns to the IDLE state.

For what concerns the steerable block, its control unit generates all the signals needed to manage
the datapath and to address the two buffers. This unit is made up of an FSM and four counters.
The FSM is composed of 14 states and an IDLE state, divided into 5 functional groups. Table 1 reports
all groups functionalities. All the states belonging to the same group are similar, they are distinguished
only by the different behavior of the output signals and the counter threshold.

State A coincides with the start of the steering process. Here, the 2D-DCT results are written into
the input buffer. After that, the FSM switches to the B state, where the data is read from the input
buffer and is written to the output one after being rotated. Then the results must be removed from the
output buffer. However, as the video coding application requires to process a continuous stream of
data, every time the previous results are completely written in the output buffer, new values need to
be fetched and stored in the input one. State C handles such a situation, allowing the architecture to
provide uninterrupted input/output data flow.

Table 1. Steerable Control Unit FSM states.

write input buffer A START
read input & write output buffer B WAIT
write input & read output buffer C, F, I, L WB

read input & write output & read output buffer D, G, H, M RWB
read output buffer E, E1, E2, E3 RB

In principle, these three states plus E are enough to execute the steerable operation but the
execution of multiple steerable with different lengths must be considered. The FSM complexity grows
with the number of different supported SDCT lengths. As stated before, this unit supports lengths
of N = 4, 8, 16 and 32. Consequently, many different states are required. For instance, Table 2 shows
one simple FSM execution, in which a steerable operation with length N = 16 is followed by a new
operation with a length of N = 8. In this case, after the eight columns of new data are written in the
input buffer, it is necessary to read and rotate them. The first N = 16 columns of the output buffer are
filled with previous data, but not all of them have been read. Thus, the FSM introduces an offset in the
writing address to avoid the overwrite of previous results. At this point, new data can be stored in
the output buffer, while the old ones are read at the same time. In the opposite situation there are no
problems: the new execution is longer than the previous one, so temporary storage is not needed.
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Table 2. Example of FSM state evolution.

Memory Operation Number of Cycles

Write 16 X 16 X 8 X 4 X 4 12 X X

Read & Write X 16 X 16 X 8 X 4 X X 16 X

Read X X 16 X 8 8 4 4 4 X X 16

State A B C B C D C D C A B E

16 16 8 4 16

The four counters are responsible for the generation of the double buffer addresses and to control
the FSM evolution from state to state. Two counters are necessary to decide the next state: while the
first one takes into account the previous SDCT length, the second one deals with the current SDCT
length. A third counter generates the addresses for the input buffer and the coefficients Read-Only
Memory (ROM). Finally, the last counter is used to point to the SDCT results in the output memory.
Figure 7 visually represents the simplified evolution of states in the control unit. The states are grouped
as in Table 1:

• START: write input buffer
• WAIT: read input & write output buffer
• WB (Write Buffer): write input & read output buffer
• RWB (Read and Write Buffer): read input & write output & read output buffer
• RB (Read Buffer): read output buffer

The decision about which will be the next state depends on the the current SDCT computation
phase and the size of the next SDCT to be computed, this is why the states RB, RWB and RB are so
thightly interconnected.

IDLE

START

WAIT

WB RB

RWB

RST

Figure 7. Simplified FSM diagram.

3.3. Reduced SDCT Architectures

The unit presented so far can compute SDCT of lengths 4, 8, 16 and 32. This type of structure has
been designed to be implemented inside the HEVC standard while providing maximum flexibility.
This algorithm could be also used for video compression standards with lower constraints and image
compression algorithms, such as JPEG. As these cases do not require the whole range of SDCT lengths,
two reduced SDCT units have also been developed. The first can compute SDCT of length 4, 8
and 16 (called SDCT-16), while the second is capable of computing SDCT of length 4 and 8 (called
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SDCT-8). These two units have a reduced throughput of 50% and 75%, respectively, with a parallelism
of 16 or 8 data samples instead of 32. This leads to a consistent reduction of the memory sizes. In
particular, the length of both rows and columns of all memories is halved in the SDCT-16 unit, while
it is four times lower in the SDCT-8 unit with respect to SDCT-32. As a result, the area occupation
of these units is much lower than the SDCT-32 one, providing suitable solutions tailored to the final
application. Moreover, since the throughput is reduced, just one clock domain has been used for both
DCT and steerable block. In this way it is possible to remove the FIFO memory interface and lower the
design complexity.

4. Results

In order to satisfy the HEVC stream requirements for a video resolution of 7680 × 4320, frame
rate of 60 fps, with the YUV 4:2:0 image coding, the proposed structure needs a throughput of almost
3 GSample/s. As discussed in Section 3, the folded version presented in [13] has been chosen since this
approach guarantees the required throughput. This structure has a processing rate of 16 pixels per cycle,
therefore the architecture needs a frequency of at least 187 MHz (2.99 × 109/16 MHz). Furthermore,
clock gating has been included during the synthesis process, leading to a power consumption reduction
of about 58% as shown in Table 3. The technology employed for the synthesis is the UMC 65 nm.
The following architectures have been considered and synthesized:

• two-dimensional DCT
• SDCT
• reduced SDCT-16
• reduced SDCT-8

Concerning the steering part, several clocks have been tested, namely 1×, 2×, 4× and 8× (with
respect to the DCT clock frequency). By increasing the Steerable unit frequency it is possible to decrease
the parallelism and consequently the number of input/output ports of the buffers.

Table 3. Estimated power consumption at 188 MHz.

Power Internal Switching Total Dynamic Leakage

basic DCT 36.55 mW 17.72 mW 54.47 mW 33 μW
clock gated DCT 21 mW 12.52 mW 33.52 mW 30 μW

basic SDCT 290.47 mW 60.33 mW 350.88 mW 106 μW
clock gated SDCT 88.71 mW 59.85 mW 148.67 mW 94 μW

clock gated SDCT-16 27.86 mW 28.97 mW 56.85 mW 27 μW
clock gated SDCT-8 6.56 mW 7.20 mW 14.17 mW 7 μW

It can be noticed in Table 4 that by reducing the data parallelism of the Steerable unit, the size
of the input memory (IM) and output memory (OM) decreases considerably, while the size of all the
other sub-blocks slightly increases, due to the synthesizer constraints with different clock regimes.

Table 4. SDCT area occupation for different clock regimes.

Cell 1× Total Area 2× Total Area 4× Total Area 8× Total Area

SDCT 4, 337, 744 μm2 3, 042, 226 μm2 1, 608, 759 μm2 1, 301, 522 μm2

2D-DCT 438, 866 μm2 601, 970 μm2 455, 150 μm2 474, 167 μm2

IM 1, 401, 523 μm2 820, 032 μm2 495, 856 μm2 335, 932 μm2

OM 2, 377, 837 μm2 1, 418, 162 μm2 482, 048 μm2 319, 037 μm2

FIFO 86, 542 μm2 110, 594 μm2 113, 008 μm2 110, 604 μm2

ROM 5895 μm2 22, 228 μm2 13, 227 μm2 33, 223 μm2
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Table 5 presents an overview of the obtained results, comparing the DCT baseline with the
SDCT proposed.

Table 5. Overview of the obtained architectures.

Architecture DCT SDCT SDCT-16 SDCT-8

Technology (nm) 65 65 65 65
Frequency (MHz) 188 188 188 188

Power (mW) 33.52 148.67 56.85 14.17
Throughput 2.992 G 2.992 G 1.496 G 0.748 G
Area (mm2) 0.321 1.427 0.444 0.110

As it can be noticed, the area and power results of the SDCT-16 are around 60% smaller than the
complete SDCT. On the other hand, the SDCT-8 area is around 75% smaller than the SDCT-16 and
90% smaller than the complete SDCT while the throughputs are reduced respectively by 50% and 75%.
Finally, comparing the DCT and the SDCT architecture we can observe that the hardware overhead to
support up to N = 32 is very large. However, removing the hardware support for the steering part
with N = 32 (SDCT-16), the area becomes comparable with the one of the DCT. As a consequence, this
solution can be of interest to increase the rate-distortion performance [8].

4.1. Reduced SDCT Compression Savings

The performance of the proposed encoder with a DCT directional transform is analyzed using the
metric gauge Bjk, ntegaard Delta Bit-Rate (BDBR) [15], using the original HEVC encoder HEVC test
Mode (HM-16.6) as the reference method. The full SDCT requires on average 22% more time to be
executed with respect to plain DCT on an modified HM version, while SDCT-16 took on average 18%
more time and SDCT-8 only 15% more time. By further optimization this overhead could be reduced
to make the execution times closer to the DCT case. On one hand, negative values of BDBR stand for
bit-rate savings, thus improved coding efficiency, while, on the other hand, positive values denote loss
of rate-distortion.

Kimono, ParkScene, Cactus, BQTerrace and BasketballDrive are standard sequences employed
to assess the encoder performances. The BDBR has been measured and the compression results are
presented in Table 6 and Figure 8. As expected, the full SDCT presents a BDBR reduction but with
a high computational cost. Reduced SDCTs are still able to maintain an average reduction, superior
with respect to plain DCT compression. All the sequences have been compressed as all intra with
default settings with Constant QP (Quantization Parameter) of values 22, 27, 32 and 37 for BDRD
computation. Even when using only small SDCT transforms, the quality of the output is still better
than the plain DCT. This is to be expected as the DCT can be seen as a special case of SDCT with
steering angles of integer multiples of π

4 .

Table 6. BDBR [%] for implemented reduced SDCT sizes versus DCT-only.

Sequence SDCT [8] SDCT-16 SDCT-8

Kimono −0.795 −0.144 −0.020
ParkScene −0.617 −0.500 −0.128

Cactus −0.485 −0.392 −0.209
BQTerrace −0.265 −0.267 −0.193

BasketballDrive −0.199 −0.174 −0.112

Average −0.472 −0.295 −0.132
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Figure 8. Histogram of obtained BDBR saving with respect to DCT.

4.2. Comparison with Previous Works

Since the Steerable-DCT is a new approach, it is not easy to make a fair comparison with other
architectures found in the literature. However, for the sake of completeness, Table 7 proposes
a comparison between the proposed SDCT architecture and some state of the art DCT ones.
Zhao et al. [16] proposed an architecture able to support transform sizes from 4 × 4 to 32 × 32 with
an implementation policy that reuses structure parts in order to contain the final dimension. Moreover,
multiplications are substituted by shift and sum operations. Even though it uses a smaller technology
compared to SDCT (45 nm vs. 65 nm) that grants a faster clock frequency (1.7×), the SDCT presents
4.7× higher throughput. Ahmed et al. [17] designed a folded structure that decomposes the DCT
matrices into sparse submatrices to reduce the multiplications. Moreover, these last are eliminated
thanks to a lifting scheme. Albeit such scheme supports 1080P HD video codec, its throughput is
more than 12 times lower than the SDCT as well as the worst of those presented in Table 7 in terms of
samples per second. Meher et al. [13] describe two versions of a pruned design: folded and full-parallel.
Both present a working frequency equal to the SDCT, however, while the folded has also the same
throughput, the full-parallel outperforms the rest since the hardware is replicated many times. Despite
the SDCT follows a low-power paradigm with its folded-based structure, the hardware overhead
needed to decompose the 2D-DCT transform results in superior power consumption. As a consequence,
the pruned approach used in [13] grants a higher energy efficiency. Finally, Masera et al. [18] outline
a folded approximated architecture with a just 7% higher throughput than SDCT, but with an energy
per sample (EPS) comparable to the SDCT Folded-8 version.

Table 7. Comparison of 2D-DCT and SDCT Architectures.

Design
Technology Frequency Throughput Power EPS

[nm] [MHz] [Gsps] [mW] [pJ]

Zhao et al. [16] 45 333 0.634 - -

Ahmed et al. [17] 90 150 0.246 - -

Meher et al. [13] Folded 90 187 2.992 40.04 13.38
Full-parallel 90 187 5.984 67.57 11.29

Masera et al. [18] Architecture 1 90 250 3.212 51.72 16.10

SDCT
Folded 65 188 2.992 148.67 49.69

Folded-16 65 188 1.496 56.85 38
Folded-8 65 188 0.748 14.17 18.94
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5. Conclusions

The most recent state-of-the-art compression technique is the HEVC, which almost doubles the
performance in terms of rate-distortion compared to the H.264/AVC. Nevertheless, the continuous
development of new High Definition (HD) or Ultra-HD (UHD) techniques introduces high
requirements concerning the storing and the transmission of such sequences of frames. Thus,
researchers and companies are trying to push further the HEVC boundaries.

This paper provides an efficient and compact hardware architecture accelerator for the SDCT
algorithm to be used in the HEVC algorithm. Many of the design choices explained above present
an optimized approach, such as the lifting-based approach, in which the hardware resources are
reduced to a minimum. Moreover, the flexibility showed by this architecture makes it appealing for
a wide range of applications, being able to work with different coding formats. The proposed SDCT
framework is able to cope with 8k UltraHigh Definition (UHD) (7680 × 4320 pixels) with a frame
rate of 60 Hz for the 4:2:0 YUV format, which is one of the highest resolution supported by HEVC.
The steerable DCT is a viable solution to improve compression efficiency, as reported in [8]. Further
work will cover the integration of the proposed accelerator in a complete HEVC framework to validate
the performances in a real case scenario.
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Abstract: Face recognition functions are today exploited through biometric sensors in many
applications, from extended security systems to inclusion devices; deep neural network methods
are reaching in this field stunning performances. The main limitation of the deep learning approach
is an inconvenient relation between the accuracy of the results and the needed computing power.
When a personal device is employed, in particular, many algorithms require a cloud computing
approach to achieve the expected performances; other algorithms adopt models that are simple by
design. A third viable option consists of model (oracle) distillation. This is the most intriguing among
the compression techniques since it permits to devise of the minimal structure that will enforce
the same I/O relation as the original model. In this paper, a distillation technique is applied to a
complex model, enabling the introduction of fast state-of-the-art recognition capabilities on a low-end
hardware face recognition sensor module. Two distilled models are presented in this contribution:
the former can be directly used in place of the original oracle, while the latter incarnates better
the end-to-end approach, removing the need for a separate alignment procedure. The presented
biometric systems are examined on the two problems of face verification and face recognition in an
open set by using well-agreed training/testing methodologies and datasets.

Keywords: face recognition; face verification; biometric sensors; deep learning; distillation;
convolutional neural networks; spatial transformer network

1. Introduction

1.1. Face Recognition Sensors

Face recognition systems represent now a pervasive reality. Smartphones, computers and social
networks provide verification, similarity and recognition functions for both security and entertainment
purposes. The basic hardware setup exploits a webcam and a single-board PC, that are already used
in the device; a separate ‘face sensor module’ may be included to perform face recognition functions.
Especially due to the latter class of sensors, many small devices emerged whose output is an identity
or a biometric signature. Indeed, they are sold as biometric sensors on distributors’ websites.

Sensors 2020, 20, 1369; doi:10.3390/s20051369 www.mdpi.com/journal/sensors205
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Face recognition has pushed more than any other research topic on Convolutional Neural
Networks (CNNs) because the impact of human-like performances in this type of Artificial Intelligence
is huge [1]. Making a self-learning system understand where and what to observe for reliable
identification and the use of biomimicry for the design of the trainable structures provided the
biggest performance boost with respect to the results of the previous hand-crafted algorithm.

Neural networks for face recognition are typically trained by the use of a supervised training
procedure, in which the right answer to the problem is provided for each input; during the training,
the model learns to give the correct answer analyzing the distribution of each input (the pixels) and
then, through error back-propagation, enforcing a set of parameters (the weights of convolutional and
fully-connected layers). Even if the aforementioned biomimicry has inspired a particular structure and
hierarchy for signal processing, presently it is impossible to determine detailed reasons why a certain
weight takes a certain value. The same happens for the meaning of each axis in the multi-dimensional
output space in which a particular identity is defined. The main point of the current deep learning
methods is to avoid defining handcrafted methods that are fully understood, but provide inevitably
lower performances. That is why the term “oracle” is used in the literature. In this paper, we use oracle
as a synonym of “trained model”.

The common thinking is that the problem of face recognition is completely solved, but in fact, it
is not. Present-day systems can be used in consumer products and for a small database of users, but
they are unable to provide the high accuracy desired e.g., for a banking system. Until recently, ‘the
complex-the better’ paradigm has been the only viable solution, leading to complex and very deep
oracles that can operate on a High-Performance Computing (HPC) platform only. For example in [2]
a multi-feature fusion algorithm is proposed, but its applicability is constrained to CUDA capable
devices. The trend of the latest research [3] follows a complete end-to-end approach (fully neural
detection and classification in the same structure), including accurate but complex object detectors
(RCNN [4], FCN [5], MMod [6], MTCNN [7]), but unfortunately leading to slow models, even on
high-end GPU [8]. For personal devices, instead, two options are available: to accept an inevitable
performance loss (in terms of speed or accuracy) or to use a cloud computing infrastructure with an
online API. The situation is a bit different when active-sensor designs are exploited: in that case, the
identity of an individual is evaluated using not only the 2D image grabbed by a webcam but also
analyzing a 3D map of the face. Such a system is more robust but way more expensive, and its distance
range is limited by the projector power. In this paper, only monocular passive face sensor systems will
be taken into account.

1.2. Framework

In a previous work [9] an open-source framework (Dlib [10]) for face-recognition has been
identified and exhaustively tested. The framework, presented in Figure 1, consists of a selection of a
face detector, an alignment procedure, an embedding oracle (feature extractor) and an identity classifier.
The latter component can be implemented from scratch in the form of a shallow multi-layer perceptron
(MLP) neural network (highest accuracy, short mandatory training phase) or with a simple distance
metric (lower accuracy, insertion of identities in the database at runtime). Each classification algorithm
is run on the features provided by a features extractor CNN (dlib-resnet-v1) [11] that is released as
a part of the Dlib library in the form of a pre-trained model; in conjunction with the subsequent
classifiers, this embedding network proved to be sufficiently discriminative.

Figure 1. View of the former Dlib face recognition framework signal chain.

Besides this, while on a PC the presence of a CUDA-compatible GPU permits a reasonable
processing rate of 5–10 fps, on mobile hardware with an ARM CPU the average speed is in the order
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of roughly 0.5 fps (with Dlib compiled using ARM NEON [12] instructions), making mobile use
impractical. Another macroscopic problem of this pre-trained model is that it has been created within
the Dlib framework. As a consequence, further modifications, fine-tuning and research, as well as a
simple conversion of the model represent an unnecessarily difficult burden [1].

1.3. Paper Outcome

In a previous work, we shared our findings on the distillation of dlib-resnet-v1 into a smaller
model that could be implemented on mobile hardware for the recognition of tens of identities. Previous
results were encouraging but were trained using a private dataset, composed of a mixture of the ones
available online. The crucial point lies in the fact that we wanted to make a dataset as much as
possible similar to the one used for the training of the teacher network. The present contribution,
on the contrary, describes two feature extractors (the distilled models) obtained by distilling with a
standard dataset only (CASIA): the first one can be directly inserted in the place of dlib-resnet-v1,
while the second one provides a novel distilled network obtained including a spatial transformer
component [13] in the structure; this not only removes the landmark detector and the face aligner
(moving towards an end-to-end neural approach), but also allows to obtain a higher accuracy in the
case of non-perfectly-frontal faces. Commonly used face detectors (Viola–Jones [14] and HOG [15]) are
sensitive to pose and fail to detect most non-frontal faces. The use of newer face detection algorithms,
typically CNN-based (SSD [16] and MMOD [6]), solves the aforementioned problem; however, the
subsequent phase of landmark detection may provide wrong results, reducing the accuracy of the
entire system. The described the Spatial Transformer Network (STN) boosted model correctly gives
attention to the face part in a wide ROI and produces an aligned and tight crop of the face for the
subsequent feature extractor, also for difficult poses. As far as we know, the distillation of an STN
model is a novel procedure, fighting the idea that STN are difficult to train.

Differently from the previous work, this paper includes the LFW face verification test, which is a
standard test procedure composed of a dataset and a testing protocol. This test is crucial to estimate
the embedding skill of a neural model. In most research, the final model is trained on face recognition
tasks that involve a closed set of individuals, just like any classification, neglecting the fact that in order
to actually use this model it is necessary to expand the set. If a classifier is completely embedded into
the model, the entire procedure is cumbersome. In this work, we emphasize the need for a modular
procedure with a clear distinction of a feature extractor and a classifier, where the latter is a simple
customizable structure. Furthermore, as far as we know, in this paper, a face recognition test procedure
on an open set is formalized and described for the first time. We hope this will fill an empty spot in the
field of the evaluation of the face recognition ability of the model.

This paper is organized as follows: the first section describes the framework, the distillation
technique and the network design; the second section describes the testing methodologies, while the
last one provides a discussion of the results.

2. Materials and Methods

2.1. Transfer Learning and Model Compression

When a model is trained to accomplish a task, it is convenient not to start from scratch (e.g.,
Gaussian or Xavier initialization) but to apply ‘transfer learning’, that is to copy as much as possible the
weights of a previous well-trained network to the one that has to be trained. It has been demonstrated
that starting in this way is generally more effective (not in any case, e.g., [17]) than starting with
no description of knowledge at all (random initialization), even if the tasks of the two networks are
different. One of the best starting points for computer vision tasks is the set of pre-trained weights
obtained for the classification of the Imagenet dataset. It is important to note that in order to take
advance of this sweet spot in the Loss-Parameters space the network configuration and structure have
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to be kept equal, possibly also wasting resources (e.g., replicating the number of channels of a grayscale
image, or scaling the input image to fit the size of the first layer).

As reported in [18], applying concepts from the vast topic of model compression is the first step
for reducing model complexity, and this result is obtained just by reducing the computational cost of
each operation, without changing the structure of the model. The reduction of the time and memory
complexity is instead a process that involves both structure simplification and a reduction in the
number of parameters; the sweet spot is given by a reduced set of parameters and a smart choice for
the data processing flow that maintains the same level of accuracy as the original network [1].

2.2. Model Distillation and Teacher–Student Approach

The first section highlighted the need for a complex structure to achieve the complex goal of
face recognition. In fact, what requires complexity is the extraction of general characteristics from the
provided samples (during the supervised learning process), rather than their actual representation.
This means that when this knowledge has been inferred, it can be eventually represented by a simpler
structure that can, in turn, be deployed to mobile hardware [18].

A recent and detailed survey on the general principles of distillation and model compression is
presented in [19].

The form of compression [18,20–22] used in this work decorrelates the accuracy that a model
achieves when performing a task from its learned weights: what is important to transfer (to distill)
into a new model is the I/O relationship of the model itself, or the capacity to reveal the latent
conditional distribution p(T|X) that relates the inputs X and the outputs T. This capacity is called
‘dark knowledge’ [21] and the act of transferring it from a slow but well-trained model (the teacher) to
a student model is called ‘knowledge distillation’ [22].

The training set for the distillation process carried out as supervised learning is composed of the
tuple (X, T), i.e., the input and the corresponding target. The distillation is carried out as a regression
process, forcing the student network to provide the same descriptor generated by the teacher; in the
case of an embedding network, this can be directly described in a distance metric framework, where
a distance larger than the hypersphere radius of each cluster automatically flags bad learning. This
motivates to choose as a loss metric the Euclidean Distance Ld [18] calculated between the target
feature vector T and the corresponding predicted descriptor Y.

The recent paper [23] proposes a peculiar knowledge distillation method composed of two
different phases that explicitly takes into account smaller size and low-quality faces. In a complex
training procedure, firstly the teacher network is frozen and a trainable structure of fully connected
layers is attached to it. This model is then trained using a classification loss. The student model is
distilled in a similar fashion of the previous “annealing based distillation” of Hinton. Unfortunately,
this complex procedure leads to poor results in terms of the LFW face verification test.

The paper [24] presents a model for person re-identification, distilled from an ensemble of teacher
models. Again a complex framework is exploited, in which a log-Euclidean distance is used as a loss
function over sample similarity matrices. The framework automatically decides the reliability of each
teacher in an adaptive fashion.

The paper [25] explores different techniques for using pre-digested information or in the paper
called “privileged information”. In the paper, the term distillation is again used to denote the student
training of output probability vectors, while the term “knowledge transfer” is used to denote a
procedure that only slightly resembles our method: a mapping function is estimated that manipulates
the features of the teacher adapting them for the student network.

Summarizing, the majority of the knowledge transfer methods based on distillation supervise the
learning of intermediate features, or of output probability distribution (classification, soft-classification),
eventually with the help of samples similarity-like matrixes. The only cases in which an output
descriptor is somehow distilled [20,25] take into account just the adapted version of these features.
In our work we designed a simple procedure for distillation in the metric framework that results
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in the training of a model completely different (and smaller) from the teacher, exploiting a different
and smaller dataset composed of samples of low-quality images (image are reduced to a fourth).
The testing of the distilled models is carried out on completely different identities (not only different
images of the same id) unseen during the distillation, so the real generalization power of the model
is tested. Making this entire training framework straightforward allows us to use distillation as an
effective technique also for the initialization of a newer model, where training from scratch would
require weeks of training.

2.3. Alignment Procedure and Spatial Transformer Network

Conventional network models, in general, do not have a high degree of spatial invariance.
This makes the ROI cropped by a face detector not usable directly without a huge classification
accuracy drop. If correctly realized, a face alignment procedure solves this problem by applying
a spatial transform that brings face parts (eyes, mouth, nose, chin) on fixed points in the frame;
the aforementioned procedure relies on a landmark detector (LD) in charge of searching for those
landmarks within the frame. In the Dlib framework, the LD used is an implementation of the
Kazemi-Sullivan algorithm [26] based on regression trees. Other approaches use local binary
patterns [27] or a joint face detector/aligner structure based on SVM [28]. MTCNN [7] is one of
the most effective CNN-based face-detector/landmark detectors and its recent implementation in
Keras [29] increased its popularity. Research on multi-pose LD opened the way to 3D alignment:
however, even if the most powerful methods (GAN [30] and symmetrization [31]) are optimal for
restoration or entertainment purposes, 3D alignment did not show to provide significant advantages
in terms of recognition accuracy over its 2D version [32].

A Spatial Transform layer [13] is a clever solution that has been introduced to provide spatial
invariance to feature maps by applying a predefined spatial transformation on it; while stride and pool
are fixed hyperparameters, STN transformation has parameters that are learned during the training
of the entire model. The component that is responsible for the generation of suitable parameters is
the so-called localizer, a shallow CNN which is responsible for the efficiency of the entire structure.
A sampling grid is generated on-the-fly starting from the inferred transformation parameters and the
gradients are calculated for the sampled points. When an STN is used as the input layer, an interesting
effect happens: the network focuses on the portion of the input frame that it deems relevant for the
task at hand. This is recognizable by observing the output image generated after the STN sampler.
This fact can be used to localize a single object or a ROI within the frame or, like in this work, to
localize a face in wide a crop (e.g., as provided by an uncertain face detector). In [33] an STN is used
as well as the base of a neural face-detector STN, but with an important difference: the first stage is
composed of a multi-task Region Proposal Network, which produces candidate ROI within the frame.
Only in second place, the STN is used for the alignment of this candidate regions onto a canvas of
predefined landmarks, whose positions represent some of the parameters to be learned. If the exploited
transformation in an STN has at least four degrees of freedom (DoF) (e.g., it is a similarity transform),
the byproduct of this method is a simple yet effective alignment of the face. In the influential [34]
a shallow input STN (exploiting affine transform) is used as the input structure, and the following
recognition model is simultaneously trained from scratch using a combination of loss functions.

In our work, we cascade an STN similar to the one above, with a different recognition model
(the topic of the next section). The entire structure is then trained using distillation, following the
teacher-student approach.

2.4. Contribution

2.4.1. Network Architecture

The teacher Dlib network ’dlib-resnet-v1’ is based on a ResNet-34 structure [35] with few layers
removed and the number of filters per layer reduced by half [10]: It has a 150 x 150-pixel input size,
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29 convolutional layers and one fully-connected output layer for a total of roughly 6 M parameters.
The network is provided pre-trained (for two weeks) on a dataset composed of roughly 3 M images.
Due to its training procedure design, it is referred to as an embedding network because, for any given
input image (an aligned face), the model provides a 128-dimensional features vector which virtually
belongs to the embedding of that particular identity. During the training, a fixed distance margin is
imposed between different identities meaning that all the possible images of a defined person would
lie in a hyper-sphere of radius lower than the margin (0.6).

The student network design is crucial because, in principle, the computationally lightest model
that allows us to obtain the performances of the teacher has to be defined. We can state the problem
similar to the search for an ad-hoc optimal lossy compression for an average input distribution,
evaluating a similarity metric.

Different CNNs based on the Densenet121 model [36] were designed searching for a structure
with fewer weights than the original dlib model. This network design uses a combination of dense
blocks, where features at different convolutional layers are concatenated, and transition blocks, where
the features are processed and reduced to limit the pyramidal growth. Compared to Resnet [35] or
Unet [37], this structure produces a stronger gradient flow and is computationally more efficient.

After training and testing four different variants [1,18], obtained cutting the Densenet at a different
number of dense-transition blocks (also in the middle), we decided to choose the second biggest
network (Net 2.0) as our base for the evolution of the network with the STN. Net 2.0 yields a reduction
by a factor of 3.7 in size and by one order of magnitude in processing time (with HW accelerator),
which is considered acceptable. The performance gain This can be seen in detail in Figures 2 and 3.

Figure 2. Schematic representation of the original Densenet121 model (first column) and our four
different variants. In this work, Net 2.0 (3rd column) is chosen as our base recognition network.
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Figure 3. Performance evaluation of the different variants of the base distilled network [Net 0.5, Net 1.0,
Net 2.0, Net 2.5] for the face recognition task in the case of 10 (A), 20 (B), 50 (C) classes. The procedure
used was similar to the one described in section 2.4.2. The performance over # parameters ratio is
extremely competitive for Net 2.0 (1.48 Mparameters), while Net 2.5 (3.94 Mparameters) provides only
a limited amount of performance gain for its number of parameters with respect to Net 2.0.

A strong reduction in computational complexity is achieved also by limiting the image input size
at 80 × 80 pixels, thus forcing smaller faces (trough distillation) to be described by the same point
computed with a frame four times larger (Figure 4).

Figure 4. Signal chain of the hybrid framework composed by keeping the former face detector
and alignment process; our distilled Convolutional Neural Networks (CNNs) block substitutes
‘dlib-resnet-v1’.

In order to cope with difficult poses and to enforce a better distillation, we modified the previously
described network, adding an STN structure that acts as a neural face aligner, as shown in Figure 5.

Figure 5. Signal chain of the novel hybrid framework composed by removing from the former the
alignment procedure, which is substituted by the Spatial Transformer Network (STN) component in
our ‘distilled stn+net’; the end-to-end structure encloses also our feature extractor network, in place of
‘dlib-resnet-v1’.

Like in [13], for the localization network we experimented with a shallow cascade of convolutional
layers followed by a sequence of two fully connected layers whose output provides the six parameters
of an affine transform. Differently from the previous case, the input size of the STN component is set to
120 × 120 pixels to help the localization network and provide a stronger free-data augmentation, but
the final size of the transformed image is still 80 × 80; no modifications are needed in the recognition
network. The structure detail is presented in Figure 6.

As far as we know, distillation on an STN based structure has never been attempted in
the literature.
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Figure 6. Structure of the STN component: an input image is processed by a shallow CNN-based
localization network. The convolutional feature maps are then processed trough two fully connected
layers that generate the six parameters of the affine transform. A grid generator (not represented)
generates the corresponding sampling grid, that will be actually sampled by the sampler, producing an
automatically aligned and cropped version of the input.

2.4.2. Multiclass Open Set Problem

Intuitively, the problem that a face recognition network will solve is to correctly classify identities.
In an example access control system, subjects belonging to the group of “friends” have to be recognized
not only as members of that group, but in their specific identity too, in order to avoid authentication
errors. Concurrently, for “unknowns” the access must not be granted.

To emulate this problem (and evaluate our models), a multi-class classifier has been designed
starting from the features generated from each image: the training process consumes the features of
friends only, resulting in an n-classifier for ”n-friends”, with n-outputs. During a test procedure, the
classifier decides and we keep track of its decision, counting how many times a correct or a wrong
choice has been made. In a closed set, the procedure is limited since all the possible cases, as well
as all the possible individuals, can be evaluated. An example of this kind of classification is object
recognition, in which a trainable oracle has to decide among a limited number of objects.

In the case of an open set, on the contrary, the cases to be considered are non-numerable.
A common-sense way to tackle this problem is to estimate a confidence index related to the classifier
decision. By adopting such an index it is possible to discriminate unknown subjects (for whom a
classifier has not been trained), basing on the probably lower confidence of their identification. Since
in most applications, a false-positive error is more dangerous than a false negative, the identification
accuracy of known subjects can be increased granting access only to those with a high confidence index.

Defining the performance of a multiclass classifier depends on the scenario in which the classifier
operates. In fact, some indexes or parameters which are usually adopted for a binary classifier can
hardly be fostered in the case of a multi-class classifier.

More formally, we define a set of positive examples (Ni) belonging to the group of known
identity (“friends”) that must be correctly classified (n-classes) and a set of negative samples (F),
belonging to unknown individuals, that are used only to test the classifier, as no sample of this set
have been seen during the classifier training. These latter samples, if correctly classified, represent the
true-negative (TN), in respect of each class of known people and therefore they should not contribute
in the evaluation of the global true-positive rate (TPR) like in the binary case. On the other hand, if
they were incorrectly classified, they would represent false-positives (FP) for our system. Moreover, if
a sample of a “friend” is erroneously classified as an ‘unknown’, this does not lead to an increase in
the FP, but rather represents a false-negative (FN), whose impact on the evaluation of the classifier
performance acts in a different way. Thus, we propose the following formulas for the calculation of
the TPR and FPR in the case of multi-classification in an open-set scenario. A demonstration of these
formulas is provided in Appendix A.

TPR =
∑K

i=1 TPi

N
(1)
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FPR =
∑K

i=1 FPi

K ∗ F + (K − 1)N
(2)

where K is the number of classes used, F represents the total number of the negative samples (‘unknown’
or ‘others’ ID) and N is the total number of the positive sample (known ID or ‘friends’).

3. Distillation Experiments

3.1. Distillation Process

In this section, it will be described how the distillation takes place. Compared to the Dlib network,
the two design choices that allowed for an extensive parameter reduction (5.58 M vs. 1.48 M) in the
distilled network are the use of modern network design and the reduction of the image input size from
150 × 150 × 3 to 80 × 80 × 3 pixels. The computational complexity has been reduced maintaining a
comparable recognition accuracy. In the following text, we will refer to this realization as ‘distilled
net’. Besides the differences, this first distilled oracle can be used as a direct substitution in the former
framework (Figure 7).

Figure 7. Proposed system with Dlib Resnet as teacher and Distilled network as student.

Furthermore, in our second realization, which can be seen in Figure 8, an input STN structure is
added to the model: the net effect of this change is in an improved recognition accuracy especially in a
less constrained scenario. An STN with 120 × 120 × 3 pixel input and 0.93 M parameters is proposed;
the overall network, which we will call ‘distilled stn+net’, uses 2.41 M parameters.

Figure 8. Proposed system with Dlib Resnet as teacher and Distilled network with STN as student.

To train the two distilled networks we adopt the CASIA Web Face [38] dataset, composed
of approximately 500 k images for 10.6 k identities, while the LFW [39] dataset is used for the
subsequent tests; these two datasets have an overlap of 16 identities, which have been removed
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from the training dataset, in order to test the generalization capacity of the distilled model. Each
dataset was “filtered" with Dlib’s HoG face detector: in this way, images with multiple faces were
discarded. In the end, for each image, we have collected the corresponding features vector generated
by the ‘dlib-resnet-v1’ model.

A set of (image, target) tuples is consumed during the training procedure, carried out forcing
the student network to regress the target features vector for each image. For each RGB sample, the
preprocessing step involves just a [0, 1] normalization and a per-channel shifting, while for each target
vector the dataset average feature vector is subtracted. This procedure will simply change the origin of
the 128-dimensional feature space.

In the case of the ‘distilled net’, all the color images have been aligned following the Dlib
framework procedure and have been resized to 80 × 80 pixels. In contrast, for the ‘distilled stn+net’
no landmark detection and alignment was needed, and the dataset images have been only resized to
120 × 120 pixels.

For each distillation, we decided not to use any data-augmentation procedure because, in the
described regression teacher-student approach, for each augmented sample we would have to generate
the corresponding descriptor, inflating enormously the dataset dimension. In the case of ‘distilled
stn+net’, again no data augmentation is enforced. During the training, the small fluctuations in the
STN parameters (due to infinitesimal but nonzero gradient components) lead to a different image at
the input of the recognition network, providing an effective data augmentation. At the same time, we
have seen no signs of overfitting for the STN (that undergoes no augmentation).

The training of the nets continued for 100 epochs on batches of 128 images using Adam as
the optimizer of choice. The supervised learning procedure evaluates the target error in terms of
the Euclidean distance. The validation set consists of 1% of the train tuples, isolated at the start of
each training.

3.2. Model Testing

The comparison and evaluation of the two distilled network, with respect to the former
‘dlib-resnet-v1’ is carried out using the LFW [39] dataset on two computer vision problems: face
verification and multi-class face recognition in an open set. In order to make decisions, a form of
classification has to be inevitably introduced. In this section, we are not only testing the models, but
also the entire procedure that a potential user of the network has to fulfill (train of the ad-hoc classifier)
in order to actually use the network itself. In fact, the features are just a mere representation of the
identity, made invariant to lighting, pose and system conditions (within the input image). Training
with the CASIA dataset and testing with LFW is a pretty well-standardized procedure and permits
a robust and immediate comparison among methods; results on other datasets (e.g., Megaface [40])
are less widespread. In this work, we tested our solutions against 30 IDs, because the number of
images available for each subject (in the testing dataset) was limited. In a previous work [1] however,
we successfully tested our teacher network with a larger number of individuals, observing a limited
performance drop.

3.2.1. LFW Face Verification Test

The first problem is tackled by the use of the standard LFW test, consisting of a binary verification
between pairs of images. The test represents a standard because in [39] the entire procedure to follow
is described in [41] and then it is widely used in the Computer Vision community. A face verification
procedure is the one used for automated airport check-in, where the same identity in the image
grabbed by a camera has to appear also in the passport picture. In order to pass the face verification
test, the algorithm under test has to correctly provide the answer to the question: “does the same
identity appear in the two images provided?”. To do so, the LFW test provides 10 lists of 600 pairs
of images (300 same ID, 300 different IDs). This is a binary test (2 classes: same ID, different ID),
and a binary classifier has thus to be designed, since the output of our models is a feature vector,
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not a class. A classifier will produce a class response starting from the features. In this work, for the
verification test, we opted for a Rocchio classifier, that exploits a simple distance metric; in such a
classifier, only one trainable parameter is present, in the form of a distance threshold calculated ad-hoc
on the validation dataset.

The procedure is split into two phases, called “View1” and “View2”: in the first phase the
classification algorithm has to be designed (the design phase includes a testing of the classifier too)
using a provided list of 3200 pairs, while in the second (10 × 600 pairs), the system is tested; the output
of this second test, the real test, is processed to produce the accuracy value that can be communicated
and compared to other solutions within the computer vision community. The purpose of the ten lists
is to average these results. It has to be noted that the accuracy value estimated from the results does
not depend only on the face recognition oracle itself, but on the entire framework used to process
the images (e.g., the alignment procedure): in the case of ‘dlib-resnet-v1’ and ‘distilled net’, the
aforementioned preprocessing procedure is the same and model-only performance differences emerge;
for ‘distilled stn+net’, instead, changes in the figures involve also the alignment protocol.

Another proposed indicator consists of setting the maximum acceptable value of FPR and then
evaluating the resulting TPR over the ROC curve, obtained by varying the threshold. Running the
same test utilizing the ten lists provided by the protocol, it is possible to calculate the average and the
standard deviation for each point.

3.2.2. Multi Class Face Recognition in an Open Set

The objective of the second test is to evaluate the clustering ability of the embedding models,
crucial for reliable recognition. During this test, the system has to recognize people that it knows
(labeling the correct name) against images of not only the known ID (the so-called “friends") but
also taken from random identities (the “unknowns”). In order to simulate the scenario of open-set
in the standard LFW dataset an amount of identity is taken to form the group of “friends” and the
remaining IDs compose the unknown set. Note that LFW has no overlap with the CASIA dataset that
is used for the distillation of our features extractor model. As described in Section 2.4.2, a multiclass
classifier is needed for face recognition on an open set. Following the work presented in [9,18], we
adopted a shallow Multi-Layer Perceptron (MLP) formed by three fully connected layers: the first
two consists in 100 neurons, while the number of outputs in the last one is the number of classes to
recognize. The intermediate nonlinearity used is a ReLU, while for the final nonlinearity we opted
for the Softmax activation function. In order to distinguish a subject that does not belong to known
classes (’unknown’), we used the normalized distance as confidence index, for which the logit values
are compared, according to Equation (3).

C =
d1 − d2

d1 − dn
, (3)

where d1, d2 and dn are respectively the largest, the second-largest and the smallest value of the
output layers.

The final decision is taken not only by observing the class of highest probability, but also the
confidence value, calculated with Equation (3). For each classifier, we studied the effect of both a
different number of classes and a variable number of samples provided to the model during the
training. Table 1 summarizes the testing conditions. We set the number of classes (the output of the
classifier) and we trained the model using 2, 5, or 15 samples for each identity to recognize. Only these
samples are seen during the learning. During the testing, the number of images for each known ID is
kept constant to 10. To test how well the classifier rejects unknown subjects, other samples have to be
added (open-set problem).

To do so, a number of images of unknown identities equal to the number of image friends are
used, randomly choosing from all LFW IDs who are not used as a friends. Working in this way no bias
is triggered during the procedure. Details for all the explored cases are given in Table 1.
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Table 1. Performances in face recognition are evaluated for different classifiers trained with a different
amount of outputs (classes). This table summarize the number of samples used in each case. A limited
number of individuals (5, 15 or 30) is extracted from the dataset: these are the identities we want to
recognize. During the training (and the validation), only known IDs samples are provided. Note that
the desired number of training samples (2, 5 or 15) is kept constant for each class. This choice allows
for a perfect balance between each class, giving no a priori information through sample distribution.
During the testing, all the other identities outside of the closed set of known IDs can potentially provide
unknown samples. The classifier is tested against the unknown IDs rejection providing a fixed number
of images that is equal between the known and unknown individuals. Again, no predilection on a
particular class or on the “unknown” is inferred.

CLASSES
# TRAIN Imgs

(Known IDs Only)
# VALIDATION Imgs

(Known IDs Only)
# TESTING Imgs

(Known IDs)
# TESTING Imgs

Unknown IDs

5 5 × (2 or 5 or 15) 5 × 5 5 × 10 = 50 50
15 15 × (2 or 5 or 15) 15 × 5 15 × 10 = 150 150
30 30 × (2 or 5 or 15) 30 × 5 30 × 10 = 300 300

Following the procedure described in Section 2.4.2, we calculated the TPR and the FPR as a
function of the estimated confidence C for a multi-class problem and we plotted the ROC curve of the
classifier using Equations (4) and (5):

TPR =
∑K

i=1 TPi

N
(4)

FPR =
∑K

i=1 FPi

K ∗ F + (K − 1)N
, (5)

where TP is the number of correctly classified samples (with C above the selected threshold of
confIDence) and N is the number of known samples provIDed during the test; FP is the number of
misclassified samples (the number of known people whose identity has been misclassified plus the
number of the unknown people which are classified with a confidence index above the threshold,
i.e., faces that have been erroneously classified as a known person) and F is the number of all the
unknown samples.

Using the LFW dataset, only 30 identities have at least 30 images each: according to this limit, the
training of MLP was carried out using only 2, 5 or 15 images for each subject, reserving five images
to the verification (early stopping in training) and 10 for the test. The remaining 10 samples of each
known face are used for the test, while 10 × Nc images of other identities are enrolled to form the
unknown people corpus. The number of unknown samples is chosen in order to balance the testing
set: the entire procedure is repeated ten times for different individuals, in a cross-validation approach.
The results of the various tests, at different thresholds of confidence, were represented in the ROC plane
highlighting the area that contains 99% of the results and tracing the average ROC curve described by
these values.

3.3. Hardware Implementation

The distilled network has been tested on a Single Board Computer (Odroid XU-4); the inference
time of ‘dlib-resnet-v1’ (using the CPU, compiling Dlib with the Arm-Neon [12] flag) was compared
with the distilled network using TensorFlow Lite [42] (CPU approach) and a hardware accelerator
such as the Intel Movidius Neural Compute Stick (NCS) [43]. The mean inference time for Dlib is
816 ms, while for the ‘distilled net’ 195 ms are needed for its TensorFlowLite porting and only 67 ms
are needed if the hardware accelerator is used, providing a speed gain of one order of magnitude,
keeping the same accuracy.

TensorFlowLite and the Intel embedded converter are able to synthesize standard layers only,
such as dense, convolutional, activation and so on. Unfortunately, the conversion of the STN boosted
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network (‘distilled stn+net’) is currently impossible due to the presence of the unconventional sampling
layer. We hope that in a future version of the tools this conversion can be done.

4. Results and Discussion

4.1. LFW Verification Test

The first test was conducted on the original Dlib network and on the two proposed distilled
networks using LFW dataset in order to evaluate their verification ability.

Table 2 summarizes the average results obtained from the 10 tests proposed by the LFW test: the
accuracy was calculated following the protocol defined by LFW, while TPR value with desired FPR
constrain was calculated as explained in Section 3.2.

Table 2. Comparative results of the LFW identity verification test. Each row provides the figure for each
model, the former ‘dlib resnet-v1’ and our two distilled model, ‘distilled net’ and ‘distilled net+stn’.
The first column shows the resulting accuracy, while the last two columns provide the TPR value on
the ROC curve (Figure 9) corresponding to an imposed FPR value of choice.

Network Accuracy TPR @ FPR=1% TPR @ FPR=0.1%

dlib-resnet-v1 0.9918 ± 0.0033 0.9923 ± 0.0049 0.9344 ± 0.1365
Distilled net 0.9852 ± 0.0050 0.9819 ± 0.0106 0.8931 ± 0.1051

Distilled stn+net 0.9852 ± 0.0058 0.9908 ± 0.0137 0.9067 ± 0.1241

The table shows that the distillation of the dark knowledge was successful: The accuracy of
the two distilled models is comparable to the one of the teacher. Another interesting view on the
verification test result is obtained choosing a threshold on the maximum acceptable FPR and reading
on the ROC curve the corresponding value of TPR.The solution ‘distilled stn+net’ provides a TPR
value even higher than the one of ‘distilled net’.

Figure 9. ROC curve for the LFW face verification test. Note that the graphs are highly zoomed
portions of the entire curve.

4.2. Recognition Test

The second test aims to compare the performance of the networks considering the problem of
face recognition in an open set. In the following Figures 10–12 the shadowed regions represent the
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areas that cover 99% of the results of the 10 tests, while the bold line represents the mean ROC curve
for the former and the two ’distilled net’ and ’distilled stn+net’.

In Figure 10 many different ROC curves (the result of different classifiers), are produced imposing
a varying limit on the number of samples used during the training. As described in the previous
section, this test has been performed fixing the number of classes and then using the 30-class classifier
only. It should be noted that even with the training of only two images per ID, it is possible to
recognize a person in the wild with acceptable accuracy. This setup is particularly interesting e.g., for
the automatic checking of suspect subjects of whom only a few photos are available.

Figure 10. Average ROC curves estimated from a ten-fold cross-validation procedure on multiclass
classifier. Each classifier is trained using a fixed amount of classes (30) and a varying number of training
sample, using the features generated by ’dlib-resnet-v1’, ‘distilled-net’, ‘distilled stn+net’. Note that the
graphs are highly zoomed portions of the entire curve.

In Figure 11, similar tests were proposed by fixing instead of the number of training samples to
15 and varying the number of classes (of known subjects) among 5, 15 and 30. Up to a certain limit,
the entire framework is invariant to the class number, allowing for the best performances when the
‘known person’ database is composed of a few dozen identities.

Figure 11. Average ROC curves estimated from a ten-fold cross-validation procedure on multiclass
classifier. Each classifier is trained using a fixed amount of samples (15) and a varying number of
classes, using the features generated by ’dlib-resnet-v1’, ’distilled-net’, ’distilled stn+net’. Note that the
graphs are highly zoomed portions of the entire curve.

For clarity, we have summarized the two results in Figure 12, comparing the ROC of the networks
under test with the teacher network in the case of optimal parameters (30-class classifier trained with
15 samples per ID).
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Figure 12. ROC curve comparison for the best case (30-class classifier trained with 15 samples per ID).
Note that the graphs are highly zoomed portions of the entire curve.

4.3. STN Analysis: Co-Adaptation and Difficult Poses

The STN and the face recognition network are used in tandem after a common training phase.
The only feature maps shared between the two is the STN output image which lies in the standard
RGB image space. Analyzing this output image provides insight into the training of the entire model.
At the end of each epoch, a callback launches the test, and for nine test samples, the output of the
STN component is extracted and saved. Since this image is a mere feature map, we can analyze the
co-adaptation between the STN and the recognition components and evaluate how the alignment skills
are learned after each epoch. In Figure 13 the output of the STN aligner is reported for nine people
after 4, 16, 64 and 128 training epochs.

We can observe that typically in ten epochs the STN component learned to isolate a face within
the frame and found the best way to minimize the Euclidean distance loss function. Interestingly,
the network automatically decided that the best possible alignment procedure (which minimize at
most the loss function) consists of rotating the face by a few tens of degrees, in order to occupy the
largest possible area, thus removing part of the background remaining around the hair and chin. It is
reasonable that this behavior is forced also by the downsampling of the input image operated by the
sampler in the STN.

In Figure 14 a similar experiment has been carried out using a pre-trained and frozen distilled net,
in which the STN was the only trainable component: in the processed face the eyes are aligned to the
horizon; the STN learned in just one epoch to emulate the Dlib alignment procedure, localizing and
aligning the face.
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Figure 13. This figure shows the evolution of the STN output during the training of ‘distilled net+stn’.
In less than 10 epochs, the STN correctly localizes the faces, while in 30 epochs the STN correctly learns
to localize and align images for the recognition network.

Figure 14. Differently from the previous case, this figure shows the evolution of the STN output for the
training of the STN component only, providing a pre-trained ‘distilled net’ as the embedding model. In
just one epoch, the STN learns to align each face putting the eyes horizontally, and emulating the crop
factor of the former Dlib face aligner.
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The results presented till now take into account only the samples that can be actually analyzed
by the Dlib framework, e.g., the ones that have been selected as faces by the face detector. The real
advantage of using the STN distilled network emerges when difficult poses are recorded in the frame.
In order to evaluate this aspect, we selected the samples from the LFW dataset where no faces are
found (for a deficiency of the face detector). If a landmark detection is carried out on these frames,
the subsequent alignment will produce images for which dlib-resnet-v1 cannot produce meaningful
features. In Figure 15 we compare the alignment of the Dlib algorithm with the alignment obtained
with our proposed model: the STN is, in any case, able to give attention to the face and to align it in
a manner that makes the subsequent model able to verify the identity (the points in the hyperspace
are closer than the threshold used for the binary ‘same–different’ verification test). We point out
that the shown results are carried out on test samples, which the network had never seen during the
training phase.

Figure 15. In this figure different alignments are compared for difficult face poses. In the first
column, the landmark found with the dlib shape predictor are shown; in all the samples the error is
heavily present. Only the face alignment procedure carried out on the first sample generates a correct
recognition (a descriptor in the Euclidean space close to the centroid of its identity). The ‘distilled
stn+net’ model is capable of correctly localizing and aligning the face, just like in any other pose.
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4.4. Distillation Strategy as a “Transfer Learning” for the New Model

Two different distillation training strategies have been followed: the first one enrolls the entire
Casia dataset blindly, while the second exploits a predefined sample presentation structure in each
training batch; in the second case, we fixed the number of different IDs for each batch to 64 with two
samples for each ID. In this manner, even if the number of samples per batch remained constant in
the two cases (128), each epoch lasted more than 10 times less, allowing to train in half the time, for
1000 epochs. In Figure 16 the two-loss evolutions are compared: The resulting accuracy is highly
comparable, highlighting that for a correct distillation it is crucial to have different cluster centroids in
the sample space.

Figure 16. Two distillation trainings are compared: in panel (A), the ’full’ learning is exploited,
providing the best results. In panel (B), a different strategy is used: for each training batch a different
identity is extracted and only two random images are given to the network. This procedure is way
faster than the previous one (1000 epochs in 6–8 hours vs 100 epochs in 15 hours) but obviously a bit
less performing. During the distillation, what counts is the number of identities (cluster centroid),
rather than the number of samples for each centroid.

From the graphs a second observation can be drawn: distillation can be enforced as a fast initial
training technique for the training of the new network, as a “transfer learning methodology” for newer
networks, if the newer model under investigation has to answer to the same type of question.

5. Conclusions

In this work, we described two face recognition models that can be implemented on low-cost
hardware, in the form of a face recognition sensor module. The key procedure exploited in this
work is knowledge distillation, used to extract the dark knowledge of a dlib-resnet-v1 network in a
teacher-student framework. Each distillation has been obtained in a simple metric framework, essential
if distillation is used as an initialization technique. In this sense, a relatively fast distillation can be used
as a “transfer learning” phase between different models. One model is a direct substitute of the original
network, that can be then used without adaption layers; our second realization embraces instead
of an end-to-end approach that permits to remove the separate alignment procedure. The second
model proved to be definitely more robust in the case of difficult poses. To the best of our knowledge,
a distillation of such a structure for face recognition has never been attempted. A well-acknowledged
training and testing protocol has been exploited to evaluate the performances of each realization,
in the form of the LFW face verification test and a novel face recognition in an open scenario test
description. The outcome of this problem description is a procedure for unknown ID rejection that
exploits a confidence measure and thus minimizes the false-positive error rate.
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Appendix A

Appendix A.1

Defining the performance of a multiclass classifier is not trivial and essentially depends on the
scenario in which the classifier operates. In fact, some indexes or parameters which are usually
adopted to define the performances of a binary classifier are not adequately suited to the case of a
multiclass classifier.

One performance representation commonly used in binary classifiers is the ROC (receiver
operating characteristic) curve. This curve represents the True Positive Rate (TPR) vs. the False
Positive Rate (FPR), as achieved by the classifier at various threshold settings.

Such parameters in a binary classifier are defined as follows in Equations (A1) and (A2):

TPR =
TP
N

(A1)

FPR =
FP
F

(A2)

where N is the number of positive samples and F is the number of negative samples used to test
the classifier. TP (True positive) is the number of positive samples correctly classified and FP (False
Positive) is the number of negative samples erroneously classified as true. For completeness we usually
define False Negative (FN = N − TP) the number of positive cases erroneously classified as negative
and True Negative (TN = F − FP) the number of negative cases correctly classified.

The application of similar parameters in a multiclass classifier depends on the correct identification
of the scenario. Suppose that the task is to classify an individual among a finite number K of classes
knowing that the individual belongs to one and just one of these classes. It is possible to define the
true positive rate for each class i, TPRi, as:

TPRi =
TPi
Ni

(A3)

where Ni is the number of samples, belonging to class i, submitted to the classifier, during the test, and
TPi is the number of these samples correctly classified.

Now it is possible to extend the concept of True Positive Rate to the entire classifier, simply by
averaging all the values of TPRi on all the classes, better if using a weighted average based on the
number of samples submitted to the classifier for each class:

TPR =
K

∑
i=1

αi ∗ TPRi (A4)

where αi must be constrained: it must be proportional to the number of samples Ni and ∑ αi = 1, thus:

αi =
Ni

∑K
i=1 Ni

(A5)

223



Sensors 2020, 20, 1369

Substituting Equations (A3) and (A5) in Equation (A4) and simplifying we obtain:

TPR =
∑K

i=1 TPi

∑K
i=1 Ni

=
∑K

i=1 TPi

N
(A6)

where N = ∑ Ni is the number of samples provided to the classifier during the test.
Operating in the same way it is possible to evaluate the FPR:

FPRi =
FPi

N − Ni
(A7)

where N − Ni is the number of samples belonging to classes other than i and FPi is the number of
these samples erroneously classified. To define a global FPR value it is possible to proceed, like before
adopting a weighted average:

FPR =
K

∑
i=1

βi ∗ FPRi (A8)

The constraints to the weights βi are βi ∝ (N − Ni) and ∑ βi = 1 thus:

βi =
N − Ni

∑K
i=1(N − Ni)

(A9)

Substituting Equations (A7) and (A9) in Equation (A8):

FPR =
∑K

i=1 FPi

∑K
i=1(N − Ni)

=
∑K

i=1 FPi

(K − 1)N
(A10)

However, the scenario we want to take into consideration in this article is slightly different from
the one just mentioned. In our case there are both a number of positive examples (Ni) relating to the
known subjects that must be correctly classified into a proper class, and a set of negative samples (F),
belonging to unknown individuals, that have never been seen before by the classifier. These latter
samples, if correctly classified, are TN (True Negative) with respect to each class of known people
and therefore they should not contribute to the computation of the global TPR as in the previous case.
On the other hand, if they are incorrectly classified, they represent false positives for our system.

On the other hand, an individual belonging to the positive samples who is erroneously classified
as an unknown subject does not lead to an increase in the FP; rather, it represents a FN, whose impact
on the evaluation of the classifier performance is very different.

Thus, while Equation (A6) for the calculation of the TPR can remain unchanged, the calculation
of the FPR must be applied to all the cases in which an individual is attributed to the wrong
class, considering as target all possible class but the one composed by unknown individuals. Thus
Equation (A7) should be reviewed considering that for each class the negative samples come both
from samples of the other classes (N − Ni) and from the ones which belong to unknown subjects (F).

FPRi =
FPi

F + N − Ni
(A11)

Thus the weights adopted in Equation A8 to evaluate the weighted average should be revised
as follows:

βi =
F + N − Ni

∑K
i=1(F + N − Ni)

=
F + N − Ni

K(F + N)− N
(A12)

Thus:

FPR =
∑K

i=1 FPi

K ∗ F + (K − 1)N
(A13)
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Abstract: Recent research in wearable sensors have led to the development of an advanced platform
capable of embedding complex algorithms such as machine learning algorithms, which are known to
usually be resource-demanding. To address the need for high computational power, one solution is
to design custom hardware platforms dedicated to the specific application by exploiting, for example,
Field Programmable Gate Array (FPGA). Recently, model-based techniques and automatic code
generation have been introduced in FPGA design. In this paper, a new model-based floating-point
accumulation circuit is presented. The architecture is based on the state-of-the-art delayed buffering
algorithm. This circuit was conceived to be exploited in order to compute the kernel function of
a support vector machine. The implementation of the proposed model was carried out in Simulink,
and simulation results showed that it had better performance in terms of speed and occupied area
when compared to other solutions. To better evaluate its figure, a practical case of a polynomial
kernel function was considered. Simulink and VHDL post-implementation timing simulations and
measurements on FPGA confirmed the good results of the stand-alone accumulator.

Keywords: model-based design; FPGA; HDL code generation; wearable sensors; embedded devices

1. Introduction

In recent years, the concept of a smart home has been extended from the simple automation and
automatic control of the home appliances to a more complex management of the user interaction
with several sensors and actuators deployed in the home environment in order to pursue the users’
wellbeing and energy sustainability [1–9]. The development of wearable sensors has expanded the
possibilities available in this context, pushing research towards new solutions based on behavioral
monitoring [10–13]. The role of wearable sensors in this framework is very wide, but recent research
has focused on human activity recognition (HAR) as a new service to monitor the amount of activity
for health purposes; this can be assessed and considered in order to early detect anomalies possibly
relevant to users’ wellbeing [14–17].

The most advanced HAR algorithms are based on machine learning (ML) techniques, which are
usually very computationally demanding [14]. The development of wearable devices leads to
implementation of ML algorithms directly on board [18,19], allowing for the reduction of the amount
of data to be transmitted, and with consistent advantages in terms of power consumption and system
usability [14]. To address the issues related to the need for platforms with good computing capacity,
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instead of general-purpose processors, dedicated hardware architectures such as field programmable
gate arrays (FPGAs) can be selected for the implementation of the algorithms [20–23]. This allows for
the control of the resources needed for the task and to optimize the system for performance or physical
size, depending on the use case. Recent advantages in FPGA technologies allow these platforms to
also be used in applications with low cost [24] and/or low power consumption requirements [23].

The design of dedicated hardware architectures is traditionally done by using hardware description
languages (HDL). However, as proven by different works [25–27], higher abstraction level frameworks
can support the designer in helping to focus the attention on system functionalities and in reducing
time-to-market. This is possible, for example, by using MATLAB/Simulink software [28]. A high-level
approach can be developed, and the benefits of a model-based design can be exploited [29,30].
Moreover, with the dedicated HDL Coder tool, a HDL code can be automatically generated from the
system block diagram and hence used to program the selected platform.

In this paper, we present the development of a model-based floating-point accumulator. To better
study the performance of the designed model with respect to available solutions, it was applied to
a practical case—a Simulink model-based kernel function conceived as the core of a support vector
machine (SVM) classifier to be embedded in an FPGA-based wearable device. The SVM is a widely used
algorithm for solving classification problems, also utilized in the field of HAR. The classification work
consists in finding a line or a hyperplane that allows data to be divided into different regions. In the
case of non-separable sample sets, the kernel function has to be introduced into the SVM algorithm [31].
Different approaches can be found in the literature—the linear, the polynomial, the Gauss radial basis,
and others. A combination of them is often also proposed [32]. In the present work, the polynomial
solution was adopted to evaluate the proposed accumulator because it has been recognized as the one
with strong generalization capability [32]. The polynomial kernel function, as well as other kernels,
involves the dot product of the input vectors, resulting in a sum of products to be implemented in
arithmetic blocks. Among these, the accumulator has an important role.

The simplest accumulator architecture can be designed by using an adder in which the first input
receives the operand element and the second input is the feedback of the output [33]. It is worth noting
that general FPGA-based SVM architectures deal with data with high dynamic range; thus, they are
based on floating-point arithmetic, as this is the best solution with data with this requirement [34].
A typical approach when dealing with hardware floating-point arithmetic is to introduce pipelined
architectures to reduce the critical path timing, potentially increasing the system clock frequency [35].
When used in the simple accumulator architecture described before, pipelined floating-point adders
become critical. In fact, new input should be presented only when the output of the last addition can
be fed back to ensure correct operation and avoid data hazards independently on the number and
the length of the input vectors [33]. This would limit the applicability of the system, and different
accumulator architectures should be individuated. However, when the boundary conditions allow
this solution to be exploited, the latency of the whole accumulator for an input vector of n elements is
T = np, where p is the length of the adder pipeline.

Considering model-based designs and, in particular, the Simulink environment,
several accumulator blocks are already available. However, some of them are not suitable for the
specific application due to incompatibility with the HDL Coder workflow (such as the Cumulative Sum
block) or with the Floating-Point HDL library (as for the Multiply-Accumulate block). Some others (Sum
of Elements and Matrix Sum) implement the HDL code as a binary tree or a linear chain of floating-point
adders presenting all the input elements in parallel—since the complexity of these solutions grows with
the number of inputs to accumulate, the amount of resources used when these blocks are exploited
in this field should be evaluated [36]. Hence, in this paper, a possible alternative Simulink model
for an accumulation circuit based on a floating-point pipelined adder and fully compatible with the
HDL Coder workflow is presented. The paper is organized as follows: in Section 2 a review of the
state-of-the-art accumulation circuits is presented. The architecture of the developed accumulator and
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kernel are introduced in Section 3, whereas in Section 4, tests are described and results are discussed.
In Section 5, conclusions are drawn.

2. Related Works

To select the architecture to be implemented, a review of the state-of-the-art accumulation circuits
was carried out. In reference [37], Luo and Martonosi present an architecture of an accumulator in
which a floating-point pipelined adder is broken down into its mathematical operations (i.e., the ones
involving the sign, mantissa, and exponent) and an internal feedback loop is introduced to embed
the accumulation feature. This solution is reported as providing a minimal accumulation latency of
T = p + (n− 1) + tnorm, where tnorm is the combinational logic delay of the last accumulation part of
the architecture. However, the exact latency value cannot be determined a priori because it is strongly
dependent on the target hardware architecture [37].

A similar approach is used by Nagar and Bakos in reference [38], in which the accumulation
latency is independent from the hardware implementation, and tnorm can be considered as a one clock
cycle. However, as for reference [37], the model-based implementation of this solution implies the
additional development of a new adder architecture in order to consider the required modification.

In reference [36], Zhuo et al. present two main architectures based on standard floating-point
adders: the fully compacted binary tree (FCBT) and the single strided adder (SSA). FCBT is
an accumulator derived from a binary adder tree in which the first level is replaced by one buffer and
a single adder, and the rest of the levels are replaced by an additional adder shared by

⌈
log n

⌉− 1 buffers.
With the proper control logic, the system can perform the accumulation in T ≤ 3n + (p− 1)

⌈
log n

⌉− 3
for n < nmax, where nmax is the maximum input vector length that the system has been designed to
work with. Because two different floating-point adders were deployed, this solution turned out to be
undesirable, as it requires large area resources [36].

To overcome this issue and to remove the nmax limitation, the SSA architecture has been introduced.
This architecture is based on a single adder, two buffers, and a control logic. With this system,
the latency has proven to be T ≤ n + 2p2.

A different set of architectures are based on the work presented in [39]. Here, an implementation
of an accumulator based on a standard pipelined floating-point adder is described. The input data
vector is split in two different buffers and, at each clock cycle, one element from each buffer is given
to the adder operands. Then, after p cycles, the vector of adder results are split in two halves again,
which serve as the new input elements. This procedure is repeated until no other couples of operands
are present in the buffers, meaning the accumulation has ended and the result is ready. This architecture
was found to produce the accumulation result in T = (p− 1)

⌈
log n

⌉
+ 3(n− 1). The main limitation of

this system is that only one input vector can be accumulated at a time, resulting in the fact that the
subsequent vectors must wait for the current result to be produced before they can be processed.

The time and the resources needed to perform the accumulation are reduced in [40]. Compared to
the work presented in [39], the input buffers are substituted by two multiplexers at the input of the
adder. One multiplexer can switch between the input vector and a register holding the adder output,
and the other can switch between a constant value and the direct adder output. With the proper control
of the multiplexers and the register, the time needed to compute the accumulation is improved for
n > p. Then, the resulted latency is

T =

{
(p− 1)

⌈
log n

⌉
+ 3(n− 1) , n ≤ p

n + (p− 1)
⌈
log p

⌉
+ 4(p− 1) , n > p

. (1)

From this work, the total accumulation time of this circuits is found to be

T = T f + Tm + Td , (2)
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where T f is the time needed for all the input elements to get inside the accumulator (feed phase), Tm is
the time needed to process all the partial results given by the couples of adder input operands (merging
phase), and Td is the time needed for the last result to exit the adder pipeline (drain phase). It can be
shown that this formula is applicable to every accumulator based on the architecture presented in [40].
Moreover, it can be easily observed that T f = n and Td = p− 1.

In reference [41], an improved control algorithm (i.e., asymmetric method (AM)) for the merging
time is presented. In this case, the merging time was found as

TAM
m =

{
n
⌈
log n

⌉− 2�log n + n + (k− n)
⌈
log n

⌉
, n < p

p
⌈
log p

⌉− 2�log p + p , n ≥ p
, (3)

which shortened the total accumulation time by 3(p− 1).
In reference [42], a modified AM is proposed, with an improvement for every n < 2p:

TAM
m (n) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

TAM
m (n) − p , n ≤ p

TAM
m (n) − p + 1 , n = p + 1

TAM
m (�n/2�) −D(�n/2�) , p + 1 < n < 2p

TAM
m (n) , n ≥ 2p

(4)

where D is a displacement function that compensates the irregular merging pattern that characterizes
the control logic.

In reference [43], Tai et al. propose a modified version of [42], introducing the delayed buffering
(DB) algorithm, in which the control logic can further reduce the merging time TDB

m in respect to TMA
m

for certain input set lengths:

TDB
m =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p
⌈
log n

⌉
+ 2�log n + n− p , n ≤ p

p
⌈
log p

⌉
+ 2�log p + n− p , n = p + 1

pL− 2L + �G� −D + 1 , n > p + 1
, (5)

where L and G are functions of n and p, which, as the D function, compensate the irregular
merging pattern.

In reference [44], a solution requiring variable number of adders is presented—this increased
the reuse and portability of the accumulator, but with higher occupied area. For example, for the
area-efficient modular fully pipelined architecture (AeMFPA), two adders are required. More recently,
reference [45] presents an accumulator circuit that can simultaneously add multiple independent
vectors; however, the input buffer size is dependent on the number of the inputs, limiting the portability
over different applications. Finally, in reference [46], a more flexible solution is reported—the core of
the idea is a new state-based method (SBM) algorithm, a scheduling strategy for buffer management
aiming at a lower latency and smaller area.

In Table 1, a summary of the performance of the mentioned architectures is reported, along with
some practical examples that were computed considering an adder latency of p = 11, as the latency
of Simulink floating point adder intellectual property (IP), and an input length of n = 15, as well as
an adder latency of p = 14 and n = 16 for comparison with the solution reported in [46].
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Table 1. State-of-the-art hardware accumulator architectures.

Method
Accumulator Latency

Generic p=11, n=15 p = 14, n = 16

SSA [36] ≤ n + 2p2 257 408
FCBT [36] ≤ 3n + (p− 1)

⌈
log n

⌉
85 100

AM [41] n + p− 1 + TAM
m 64 83

MA [42] n + p− 1 + TMA
m 58 71

A2eMFPA [44] n + p
⌈
log p + 2

⌉
81 100

[45] n + TAM
m +

⌈
p/2

⌉
60 104

SBM [46] not available - 75
DB [43] n + p− 1 + TDB

m 57 71

As can be seen the system presented in [43], it offers the lowest latency for the accumulation of
an input set of data. In this case, the total accumulation time depends on the input vector length with
respect to the pipelined adder latency as expressed in Equation (6).

T = T f + TDB
m + Td =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
n + p− 1 + p

⌈
log n

⌉
+ 2�log n + n− p , n ≤ p

n + p− 1 + p
⌈
log p

⌉
+ 2�log p + n− p , n = p + 1

n + p− 1 + pL− 2L + �G� −D + 1 , n > p + 1
(6)

This model was exploited in the proposed model-based implementation and in the SVM kernel.
It was fully tested in an FPGA implementation and, to validate the results, it was compared with
the simple iterative accumulator solution [33], SBM [46], and the built-it Sum of Elements Simulink
block. Then, the proposed accumulator was used in a model-based implementation of the SVM
kernel function.

3. Materials and Methods

3.1. Accumulator Architecture

In reference [43], two versions of the DB algorithm with different input processing properties are
described. The first one, the single-set DB, is able to process one input vector at a time. If more than one
vector has to be accumulated, each vector has to wait for the result of the previous one to be processed.
The second algorithm is the multi-set DB, which is able to process a continuous stream of input vectors
without the need to wait for the output results to be produced. An implementation of the single-set DB
is presented in [28]. Because the data is processed in a streaming fashion in the SVM context, in this
paper we focused on the multi-set DB version, although it required a more complex design with respect
to the single-set design. In Figure 1, the proposed Simulink model-based accumulator is shown.

To design the proposed model, basic Simulink blocks were used. The core of the architecture
is the adder that must handle floating point inputs. When dealing with floating point arithmetic,
pipelined structures were introduced to ease the timing closure and achieve the desired operating
frequency. In fact, a reduction in the total propagation delay, and then a higher clock frequency, can
be obtained at the expense of an increase in the occupied area and in data path latency, due to the
introduction of registers to segment the combinational logic. Pipelined adders can be modeled in
Simulink as a cascade of an adder and a delay block; for this purpose, an Adder With Latency block
was introduced. This configuration also allows for the configuration of the latency p of the adder with
a customizable value. Moreover, in this implementation, the adder was set to manage input data with
32 bit length compatible with the IEEE 754 single format; however, if higher precision is requested,
the adder can be set accordingly and the whole architecture automatically scales consequently. The
remainder of the architecture features two multiplexers (modeled with Simulink Switch blocks A_Switch
and B_Switch); two multiple-word registers (Input Buffer (IBUF) and Result Buffer (RBUF)); and a control
logic that is composed of three blocks: Set IDentification (SID) Generator, Adder Supervisor Logic, and
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Main Control Logic. The SID Generator takes care of the tagging of the input elements to track each
element of different sets. Each time the data_last flag is asserted together with the data_valid flag, the
SID value is increased by one and it is merged into the internal bus together with the data value. Thus,
all the data in the operands path are a pair of input data and a SID. The size of the counter (i.e., the
maximum value of the SID) can be precisely set by knowing that, as found in [43], there cannot be
more than

⌈
5p/3

⌉
sets at the same time inside the architecture. The Adder Supervisor Logic, instead,

tracks all the SIDs to notify whether the current adder output is of the same set of any other set inside
the adder pipeline (sum_internal_compare) or the current adder output is of the same set of the input
(sum_input_compare) or, finally, a new adder output is produced (sum_valid). To achieve this result, the
internal architecture exploits comparators and simple logic functions. The Main Control Logic is the
core control unit of the system. The model-based implementation relies on the pseudocode presented
in [43] and exploits full combinational logic. The inputs of the logic function are flags indicating
relevant events (if new data are available, if a new sum is ready, etc.) and, at the output, produce the
configuration setups for all the involved elements (i.e., IBUF, RBUF, A and B working modes, and
when the output accumulation is ready). No sequential logic was used for this block, resulting in
an output update rate independent from the system clock.

 

Figure 1. Simulink multi-set delayed buffering (DB) accumulator implementation.

As mentioned, in a multi-set DB version, two different buffers are needed. The IBUF buffer
stores all the input elements that cannot enter the adder immediately because a couple of the same
set (i.e., with the same SID) is not yet available. It is composed of an array of memory cells and two
controllers, one for read and one for write operations. The model-based architecture is shown in
Figure 2.
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Figure 2. Architecture of the Input Buffer (IBUF) block.

The memory cells array can store the data values along with their SIDs. The model-based
implementation of this part exploits the For Each Simulink subsystem, which can scale and replicate its
internal architecture (i.e., the single memory cell, in this case) based on a parameter N. According to the
work presented in [43], N was set to

⌈
p/2

⌉
to guarantee no storage overflow. When a write operation

is issued, the write controller drives the input data to the first empty cell of the array by setting the
proper IBUF_write array value to 1.

The read controller takes as input the content of all the cells, the SIDs of the input and of the sum,
the mode of operation, and the read flag. When a read operation is requested by setting the read bit,
the content of one or two cells are presented at the A_data and B_data ports depending on the mode
input signal. When mode is equal to 1, one value is read and is assigned to A_data, which is managed by
the A-Switch (Figure 1) accordingly to the main control logic combinational function, and eventually
set as input of the adder. In this case B_data value is kept un-set, leaving the other input of the internal
accumulator adder decided by the main control logic through the B_Switch (Figure 1). If mode is equal
to 2, a pair of data of the same set has to be read. The controller logic automatically selects the pair
having the same and oldest SID, giving priority to the oldest accumulation result production. The read
data are assigned to A_data and B_data. When mode is equal to 3, the behavior is specular to mode 1:
the single read value is assigned to B_data and A_data is not used.

The remainder of the output signals serve as inputs for the Main Control Logic and are produced by
combinational logic. In particular, the sum_compare and input_compare signals are produced by looking
for the cells with the same SID_sum and the SID_input. The internal_compare signal is computed by
comparing the internal content of the memory cells and it is used to notify if two or more memory cells
hold data of the same set.

The purpose of the RBUF is quite similar, except that it holds all the adder outputs that cannot be
re-introduced yet as inputs, as there are not a couple of operands with the same tag to be processed
already. The implementation results in a subset of the architecture of IBUF. In fact, its input signals are
only the read, write, and data_in values and its output signals are the sum_compare and A_data values.
For this architecture, the value of N was set to

⌈
2p/3

⌉
.

3.2. Kernel Architecture

In order evaluate the accumulation circuits described thus far, they were exploited in the
development of a model-based design of a polynomial kernel. As defined in [47], the kernel equation is

k(x, x′) = (
〈
x, x′〉+ c)n , (7)
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where 〈x, x′〉 is the dot product between the input vector x′ (also called the features vector) and the
training input matrix (also called support vectors) x. As can be seen by Equation (7), the process
involves a dot product, and hence an accumulation stage that directly affects the performance of the
system.

To evaluate the optimal values for the parameters c and n in Equation (7), an offline training process
was performed on the training set employed in [14], which contains the acquisitions of an inertial
measurement unit (IMU) sampled at 50 Hz. From this training phase, the n and c parameters were
found to be equal to 3 and 1, respectively, according to works dealing with similar problems [48,49].
Then, the resulting function can be expressed as

kj(x, x′) = (
〈
x, x′〉+ 1)3 =

⎛⎜⎜⎜⎜⎜⎝
N∑

i=1

(
xi·x′i j

)
+ 1

⎞⎟⎟⎟⎟⎟⎠
3

, (8)

where N is the length of the features vector x.
In Figure 3, a model-based implementation of the cubic kernel is shown. It embeds a multiplier,

an accumulator, and a cubic power block. It was tested with different architectures for the accumulator,
as explained in the following sections.

 

Figure 3. Simulink cubic kernel implementation.

All the data flowing inside the kernel are in floating-point 32 bit format. As for the adder block
described earlier, the multiplier block was also modeled with a Simulink floating point IP cascaded
with a delay block in order to take into account the introduced latency (q). To synchronize all the data
paths, several delay lines were introduced to compensate the latency of the mathematical operations.
For example, as the cubic power block is implemented as a cascade of two multipliers, the required
synchronizing delay on the result_rdy signal is two times the delay of a single multiplier (2q). The input
scheduling should be tailored according to the selected accumulator architecture.

4. Results and Discussion

4.1. Stand-Alone Model-Based Accumulator

To assess the performance of the proposed accumulator, Simulink simulations were carried out.
The standard Simulink IP adder was exploited in the accumulator architecture. This block featured
an internal latency of p = 11 cycles. Two mathematical series were exploited as input and the latency,
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and the correct accumulation results were evaluated. In particular, the inputs were the Euler’s number
e and the Leibniz πmathematical approximation series, defined as

e =
∞∑

k=0

1
k!

, (9)

π =
∞∑

k=0

4·(−1)k

2k + 1
. (10)

The series was generated in MATLAB environment as a 50 element vector for the Euler’s number
series and as a 200 element vector for the Leibniz π series, in to obtain an approximation error lower
than 0.5%. Then, the two vectors were imported in Simulink with the From Workspace block and
presented as input to the accumulator.

In Figure 4, the results of the accumulation of two input vectors are shown.
The two vector series were presented to the input of the accumulator as a data stream, Euler’s series

first (at t = 0μs), and then the Leibniz series (at t = 0.5 μs) (Figure 4a). The last element of a single vector
was highlighted by the data_last signal (Figure 4b). The data_valid signal was high until a valid data
is given to the accumulator input (Figure 4c). The accumulation outputs (Figure 4d) were evaluated
when the result_ready signal was asserted (Figure 4e). From this simulation, the correctness of the
results can be assessed. From Equation (6), considering a latency of p = 11 cycles and a simulation step
of 10 ns, the first result was produced 99 cycles after the first input element. Then, the second result
was produced 200 cycles after the first result. These time intervals can be verified from Figure 4.

Once the functionality of the accumulator architecture was verified, VHDL code was automatically
generated from the Simulink model and used to synthetize the circuits in Xilinx Vivado software.
Here, results were evaluated in terms of FPGA look-up tables (LUTs), flip-flops (FFs), and (Digital
Signal Processor) DSP usage, and maximum achievable clock frequency. For this purpose and to
show portability, two different platforms were considered: a Xilinx Artix-7 XC7A100T FPGA device
along with Xilinx Vivado 2019.1 software and an Altera Cyclone 10 LP 10CL010 with Quartus 19.1.
All the simulations and timing results were carried out considering a clock frequency of 100 MHz.
In these experiments, a stream of 200 vectors, each one of 100 elements, was considered to highlight
the capability of the models to process subsequent vectors in a short timeframe, without the need of
complex input synchronization logic.

The performance of the proposed accumulator model was compared to that of the available
Simulink solution. The Simulink IP block takes as input a set of data in parallel to perform the sum.
If the input values are fed serially, an input buffer is needed to host all the elements. The time needed
for this buffering stage is equal to the length of the input stream, and the length of the buffer represents
the maximum vector length the system can accumulate. This, in a VHDL implementation, limits the
input streaming vector length. During the VHDL generation process, the accumulator architecture
is designed as a binary tree adder or a linear adder chain. For this comparison, the input buffer
was set to 100 samples and the architecture to the one offering the lowest implementation resource
usage, i.e., the linear adder chain. In Table 2, the post-implementation results for Xilinx are reported,
whereas data for Altera are shown in Table 3.
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 

Figure 4. Input and output signals of the multi-set DB accumulator in Simulink simulation:
(a) Input vector values, (b) Data_last signal, (c) Data_valid signal, (d) Accumulator output value,
and (e) Result_ready signal.

238



Sensors 2020, 20, 1362

Table 2. Simulink accumulator resource usage, maximum frequency, and latency on Xilinx Artix 7.

Proposed Model Simulink IP

Slice LUTs 1643 40198
Slice registers 1239 33450

DSPs 0 0
BRAM 0 0

Fmax (MHz) 105 109
Latency (cycles) 49 989

Table 3. Simulink accumulator resource usage, maximum frequency, and latency on Altera Cyclone
10 LP.

Proposed Model Simulink IP

Logic Elements 2483 47430
DSPs 0 0

Memory (bits) 154 436648
Fmax (MHz) 108 N.A.

Latency (cycles) 49 989

As can be seen from Tables 2 and 3, the proposed accumulator outperformed Simulink IP in both
area and time. In particular, from the area point of view, in Xilinx implementation, the proposed model
used 2.6% of available LUTs and 0.97% of slice registers, whereas Simulink IP used 63.4% and 26.4%,
respectively. Moreover, in the Altera implementation, although the quantity of logic elements (LEs) of
the proposed accumulator corresponded to 24%, the Simulink IP could not be implemented; in fact,
the occupied area saturated the resources, resulting in a 460% quantity of logic elements. For this
reason, the achievable maximum frequency was not reported in this case. The advantage of the new
model over the available IP appears evident. It is worth noting that, despite the low area occupied,
the proposed solution does not require DSP slices, resulting in independence from the presence of
these blocks in the selected platform, enhancing portability.

To evaluate the performance of the proposed model-based accumulator, once generated,
in respect to other solutions, some comparisons were made with other accumulator architectures and
available IPs: iterative accumulator, single-set DB, SBM, and Vivado floating-point accumulator IP.
These architectures, Vivado IP in particular, are not suitable for automatic code generation; however,
these data can give some information about the applicability of the whole process and can confirm the
choice of the architecture. In Table 4, the Xilinx Artix 7 post-implementation results of the compared
accumulator architectures are reported.

Table 4. Post implementation accumulator resource usage, maximum frequency, and latency on Xilinx
Artix 7 FPGA.

Proposed
Accumulator

Single-Set DB
[28]

Iterative [33] SBM [46] Vivado IP

Slice LUTs 1643 749 658 1411 3245
Slice registers 1239 811 534 1027 3120

DSPs 0 0 0 0 0
BRAM 0 8.5 8.5 0 0

Fmax (MHz) 105 112 126 102 134
Latency (cycles) 49 9800 200,200 54 23

The Xilinx Floating-Point IP is made of a fixed-point accumulator wrapped by floating-point
conversions at the input and the output stages. To support the full precision and range of
the 32 bits floating-point format, the internal fixed-point accumulator register must be correctly
configured. The DSP slice usage was disabled to make a fair comparison with the proposed
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model. Moreover, the architecture optimization was set to produce the lowest latency—with this
configuration, the internal fixed-point adder latency value resulted in 23 cycles. As can be seen from
Table 4, the proposed model occupied less than a half in the area, without a significant difference
in maximum frequency. Furthermore, the achievable frequency of the proposed accumulator is
compatible with the maximum frequency allowed by the target FPGA.

Regarding the comparison with other architectures presented in the literature, the proposed
accumulator outperforms the iterative and the single-set DB architectures in terms of latency needed
to produce the result. It is important to note that this difference arises from the fact that the selected
architecture is designed to process a stream of consecutive vectors, whereas both the iterative and
the single-set DB solutions do not have this capability. The greater the number of vectors to be
processed, the greater the latency associated with the latter two architectures. Furthermore, the
buffers used for the management of the inputs synchronization must be carefully designed by
considering the size of the vectors stream. SBM architecture performs well in terms of the occupied
area. As a percentage, it occupies the 2.3% of the available LUTs and the 0.8% of the available slice
registers. However, these numbers are close enough to that observed for the proposed model. The
same goes for the maximum frequency, with a slight advantage for the selected accumulator. The
new model also presents good results in latency, confirming the correct choice of the architecture also
compared to the newer solutions presented in the literature.

4.2. Evaluation of the Proposed Model in a Practical Context: The Case of SVM Kernel Function

To frame the accumulator performance in a practical context, we evaluated it in the design
of a cubic kernel function architecture conceived for an SVM applied to HAR. The inputs for the
kernel were computed from datasets described in [14], where nine different daily activities have to be
recognized. Data from a 9 degree of freedom (DoF) inertial measurement unit (IMU) were collected
and processed, resulting in a dataset of 15,616 instances. This dataset was divided into a training set,
used to train the SVM algorithm, and a test set, used in the inference phase. The support vectors x′,
described in Equation (8), were computed during the training phase. In particular, each instance was
labelled as belonging to an activity and was processed to extract a vector of nine features representing
statistical values (mean, standard deviation, etc.) of the nine DoF data, resulting in a vector of 81
elements. The support vector in Equation (8) refers to a binary problem—as this dataset refers to
a multidimensional problem, 36 support vectors are need to resolve the whole classification. In this
experiment, a single support vector of 207 × 81 elements related to a single binary problem was selected
and used as support_vectors input of the presented kernel architecture. The same statistical elaboration
was applied to data in the test set—one vector of 81 elements, representing one instance of the test set,
was exploited as the data input of the kernel architecture.

The kernel function was designed as a model-based block in Simulink. For the accumulation
process, we compared our solution with the Simulink IP. An HDL code was generated and implemented
on the same Xilinx Artix-7 FPGA exploited for the stand-alone accumulators, with a clock frequency of
100 MHz.

In this practical evaluation, other than Simulink and VHDL post-implementation simulations,
measurements on hardware implementation were performed.

Simulink simulations were performed to compare the proposed model latency with the ones of the
kernel implementation with Simulink IP. In both the implementations, standard Simulink floating-point
adder and multiplier IP were exploited. Similar to the adder IP, which had an already mentioned
latency of p = 11, the internal latency of the multiplier IP was found as q = 6.

In Figure 5, Simulink simulations are shown, in which the result ready signals are plotted.
The dashed line refers to the time taken to complete the processing of the dot product of the whole 207
× 81 support vectors and the 1 × 81 data vector. In the case of the proposed model (Figure 5a), the time
needed to accumulate the first vector at the input was equal to 161 cycles. Then, 206 × 81 cycles were
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needed for the remaining vectors. Considering a clock frequency of 100 MHz, this corresponded to
168.5 μs.

 

Figure 5. Kernel performance in Simulink simulations: (a) Kernel with proposed accumulator, (b) Kernel
with Simulink IP accumulator.

In the case of Simulink IP (Figure 5b), with an input stream of 81 elements and p = 11, a total time
of 891 cycles were required to obtain the correct accumulation, along with 111 cycles for the remainder of
the kernel operations, starting from when the first element was available. Hence, the kernel processing
for the first vector took 1002 cycles, and then 206 × 81 cycles were needed to complete the processing,
corresponding to 176.9 μs.

The kernel models’ VHDL codes were automatically generated, and performance was
evaluated in Vivado environment in terms of resources usage and maximum achievable frequency.
Moreover, the latencies resulting from Simulink were verified in the Vivado post-implementation
timing simulations. A busy signal was configured in order to be high from the first element presented
at the input to the last kernel output produced. Examples are shown in Figure 6.

 

(a) 

(b) 

Figure 6. Xilinx Vivado post-implementation results of the kernel with (a) Kernel with proposed
accumulator, (b) Kernel with Simulink IP accumulator.

Performance in terms of resources usage, maximum achievable frequency, and latency are
summarized in Table 5.
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Table 5. Post implementation kernel resource usage and maximum frequency on Xilinx Artix 7 FPGA.

Proposed Accumulator Simulink IP

Slice LUTs 3266 41,354
Slice registers 2791 34,700

DSPs 3 3
BRAM 0 0

Fmax (MHz) 106 106
Latency (clock cycles) 161 1002

The resulted latencies confirmed the Simulink simulations and the results on the stand-alone
accumulators. The proposed model definitely performed better in terms of occupied area—it
used only 5.2% of the available LUTs and 2.2% of the available registers for the whole kernel.
Contrarily, the Simulink IP appeared critical in this context, with 65% and 27% of the LUTs and
registers, respectively. Considering that many other logic blocks need to be instantiated together with
the kernel in a complete SVM implementation, our solution appears a possible valid approach in this
context. Moreover, it is worth noting that in wearable sensors, low power consumption has particular
relevance. With the technology advancement in the FPGA field, as already mentioned, many low
power models have been made available and can be exploited in this context, even considering floating
point arithmetic [23]. The lowest power platforms have generally a low number of resources available;
for this reason, the occupied area aspect is of utmost importance in these kinds of applications.

Although the maximum operating frequency was the same for both solutions, the resulting latency
for our model was definitely lower.

To further confirm the simulation values, the FPGA was configured with the generated code
and the performance was measured directly on hardware. The busy signals were measured using
a Tektronix MSO 2024 oscilloscope. In Figure 7 the experimental setup is shown.

 

Figure 7. Experimental setup for the hardware measurement.

Results are reported in Figures 8 and 9, which are related to the proposed architecture and the
Simulink IP, respectively.
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Figure 8. Measurement of the processing time of the kernel with the proposed accumulator implemented
on the FPGA.

 

Figure 9. Measurement of the processing time of the kernel with Simulink IP implemented on the FPGA.

Measurements confirm the latencies of the simulations and the correctness of the result—the
difference between the two processing times was of about 8.4 μs, which corresponds to 840 clock cycles.
As can be seen from Table 5, this result corresponds with the difference in latency of the two solutions.

5. Conclusions

In this paper, a floating-point Simulink model-based accumulator architecture was presented.
The functionality of the proposed accumulator was first tested with behavioral simulation in the
Simulink environment. The tests were carried out using two mathematical series vectors as inputs.
Results show the correct output accumulation values for both the series. Then, VDHL code was
automatically generated and performance was assessed with post-implementation timing simulations
on two different target FPGAs, a Xilinx Artix 7 and an Altera Cyclone 10 LP, in order to demonstrate
portability. Results were compared with available Simulink IP supporting HDL code generation,
demonstrating a significant reduction of about 95% in both area and time. Other solutions presented in
the literature [28,33,46] and Vivado IP were compared, as well as demonstrating the applicability of
the HDL code generation process and to confirm the choice of architecture. To frame the accumulator
performance in a practical context, we evaluated it in the design of a polynomial cubic kernel function
architecture conceived for an SVM applied to HAR. Additionally in this context, better performance
was confirmed, greatly reducing the occupied area and making the solution particularly attractive
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for implementation in the context of wearable sensors, in which low resource platforms are usually
exploited. The simulation results were also validated with hardware measurements on the target FPGA.
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