8,361 research outputs found

    An Integrated Research Infrastructure for Validating Cyber-Physical Energy Systems

    Get PDF
    Renewables are key enablers in the plight to reduce greenhouse gas emissions and cope with anthropogenic global warming. The intermittent nature and limited storage capabilities of renewables culminate in new challenges that power system operators have to deal with in order to regulate power quality and ensure security of supply. At the same time, the increased availability of advanced automation and communication technologies provides new opportunities for the derivation of intelligent solutions to tackle the challenges. Previous work has shown various new methods of operating highly interconnected power grids, and their corresponding components, in a more effective way. As a consequence of these developments, the traditional power system is being transformed into a cyber-physical energy system, a smart grid. Previous and ongoing research have tended to mainly focus on how specific aspects of smart grids can be validated, but until there exists no integrated approach for the analysis and evaluation of complex cyber-physical systems configurations. This paper introduces integrated research infrastructure that provides methods and tools for validating smart grid systems in a holistic, cyber-physical manner. The corresponding concepts are currently being developed further in the European project ERIGrid.Comment: 8th International Conference on Industrial Applications of Holonic and Multi-Agent Systems (HoloMAS 2017

    Advanced Testing Chain Supporting the Validation of Smart Grid Systems and Technologies

    Full text link
    New testing and development procedures and methods are needed to address topics like power system stability, operation and control in the context of grid integration of rapidly developing smart grid technologies. In this context, individual testing of units and components has to be reconsidered and appropriate testing procedures and methods need to be described and implemented. This paper addresses these needs by proposing a holistic and enhanced testing methodology that integrates simulation/software- and hardware-based testing infrastructure. This approach presents the advantage of a testing environment, which is very close to f i eld testing, includes the grid dynamic behavior feedback and is risks-free for the power system, for the equipment under test and for the personnel executing the tests. Furthermore, this paper gives an overview of successful implementation of the proposed testing approach within different testing infrastructure available at the premises of different research institutes in Europe.Comment: 2018 IEEE Workshop on Complexity in Engineering (COMPENG

    ERIGrid Holistic Test Description for Validating Cyber-Physical Energy Systems

    Get PDF
    Smart energy solutions aim to modify and optimise the operation of existing energy infrastructure. Such cyber-physical technology must be mature before deployment to the actual infrastructure, and competitive solutions will have to be compliant to standards still under development. Achieving this technology readiness and harmonisation requires reproducible experiments and appropriately realistic testing environments. Such testbeds for multi-domain cyber-physical experiments are complex in and of themselves. This work addresses a method for the scoping and design of experiments where both testbed and solution each require detailed expertise. This empirical work first revisited present test description approaches, developed a newdescription method for cyber-physical energy systems testing, and matured it by means of user involvement. The new Holistic Test Description (HTD) method facilitates the conception, deconstruction and reproduction of complex experimental designs in the domains of cyber-physical energy systems. This work develops the background and motivation, offers a guideline and examples to the proposed approach, and summarises experience from three years of its application.This work received funding in the European Community’s Horizon 2020 Program (H2020/2014–2020) under project “ERIGrid” (Grant Agreement No. 654113)

    Assessing and augmenting SCADA cyber security: a survey of techniques

    Get PDF
    SCADA systems monitor and control critical infrastructures of national importance such as power generation and distribution, water supply, transportation networks, and manufacturing facilities. The pervasiveness, miniaturisations and declining costs of internet connectivity have transformed these systems from strictly isolated to highly interconnected networks. The connectivity provides immense benefits such as reliability, scalability and remote connectivity, but at the same time exposes an otherwise isolated and secure system, to global cyber security threats. This inevitable transformation to highly connected systems thus necessitates effective security safeguards to be in place as any compromise or downtime of SCADA systems can have severe economic, safety and security ramifications. One way to ensure vital asset protection is to adopt a viewpoint similar to an attacker to determine weaknesses and loopholes in defences. Such mind sets help to identify and fix potential breaches before their exploitation. This paper surveys tools and techniques to uncover SCADA system vulnerabilities. A comprehensive review of the selected approaches is provided along with their applicability

    Risks associated with Logistics 4.0 and their minimization using Blockchain

    Get PDF
    Currently we are saying that we are at the dawn of the fourth revolution, which is marked by using cyber-physical systems and the Internet of Things. This is marked as Industry 4.0 (I4.0). With Industry 4.0 is also closely linked concept Logistics 4.0. The highly dynamic and uncertain logistic markets and huge logistic networks require new methods, products and services. The concept of the Internet of Things and Services (IoT&S), Big Data/Data Mining (DM), cloud computing, 3D printing, Blockchain and cyber physical system (CPS) etc. seem to be the probable technical solution for that. However, associated risks hamper its implementation and lack a comprehensive overview. In response, the paper proposes a framework of risks in the context of Logistics 4.0. They are here economic risks, that are associated e.g. with high or false investments. From a social perspective, risks the job losses, are considered too. Additionally, risks can be associated with technical risks, e.g. technical integration, information technology (IT)-related risks such as data security, and legal and political risks, such as for instance unsolved legal clarity in terms of data possession. It is therefore necessary to know the potential risks in the implementation process.Web of Science101857
    corecore