453 research outputs found

    Atténuation des interactions électromagnétiques entre le module de détection LabPET II et l’IRM

    Get PDF
    Les scanners TEP/IRM simultanés offrent une occassion unique d'examiner en même temps les propriétés anatomiques et fonctionnelles des tissus malins, tout en évitant l'incertitude des systèmes séquentiels de TEP/IRM. Cependant, le couplage électromagnétique entre les deux modalités constitue un défi important à relever. Ces interférences électromagnétiques entravent les performances du scanner et altèrent la qualité d'image de chaque modalité. Bien que les métaux possèdent d'excellentes propriétés de blindage contre les fréquences radioélectriques, ils ne constituent pas nécessairement une option de blindage appropriée pour modifier les champs magnétiques induisant des courants de Foucault dans les couches métalliques. En conséquence, il existe une demande considérable pour un nouveau matériau de protection et une approche originale pour retirer les pièces métalliques du champ de vision IRM. L’objectif de ce projet était d’initier les études en vue de la réalisation d’un scanner TEP/IRM simultané basé sur des modules de détection LabPET II hautement pixélisés afin d’obtenir une résolution spatiale millimétrique pour le cerveau humain et le chien. L'électronique LabPET II comprend des circuits intégrés à application spécifique dans lesquels le signal est numérisé à proximité de la photodiode à avalanche et offre un environnement moins sensible aux interférences électromagnétiques. Pour atteindre l'objectif principal, premièrement, l'effet du matériau métallique des modules de détection LabPET II sur les performances de la TEP et de l'IRM est examiné théoriquement. Les résultats confirment que les composants métalliques du module de détection LabPET II altèrent le champ magnétique, génèrent des courants de Foucault ce qui augmente leur température. Ensuite, les performances électroniques des modules de détection LabPET II sous l’influence de bobines d’IRM faites sur mesure sont examinées. La résolution en énergie et la résolution temporelle se détériorent en présence de bobines RF et de bobines à gradient en raison des perturbations électromagnétiques. Subséquemment, un module de détection LabPET II blindé par une fine couche de composite cuivre-argent est étudié, prouvant que le blindage contre les interférences électromagnétiques avec le composite rétablit les performances en TEP, fournissant moins d'induction par courants de Foucault. En outre, une nouvelle configuration de blindage basée sur un composite de couche flexible de nanotubes de carbone a été fabriquée pour limiter les interférences électromagnétiques. Les composites de nanotubes de carbone créent une couche hautement conductrice avec des chemins conducteurs minimaux, ce qui permet de réduire les courants de Foucault. Le principal résultat scientifique de ce projet est que le blindage composite empêche les interférences de basses et hautes fréquences et réduit l'induction de courants de Foucault, offrant ainsi la flexibilité nécessaire pour acquérir une séquence rapide de commutation de gradients. D'un point de vue technique, le module de détection LabPET II ainsi blindé présente une excellente performance dans un environnement de type IRM, ce qui permet de concevoir un insert TEP basé sur la technologie LabPET II.Abstract: Simultaneous PET/ MRI scanners provide a unique opportunity to investigate anatomical and functional properties of malignant tissues at the same time while avoiding the uncertainty of a sequential PET/MRI systems. However, electromagnetic coupling between the two modalities is a significant challenge that needs to be addressed. These electromagnetic interferences (EMI) hinder the performance of both scanners and distort the image quality of each modality. Although metals have excellent radio-frequency shielding properties, they are not necessarily an appropriate shielding option for altering magnetic fields that induce eddy currents in any metallic layer. Thus, there is a considerable demand for a new shielding material and an original approach to remove metallic parts from the MRI field of view. The objective of this project was to initiate the realization of a simultaneous PET/MRI scanner based on highly pixelated LabPET II detection modules to achieve millimeter spatial resolution for the human brain and dogs. The LabPET II electronics include application specific integrated circuits where the signal is digitized near the avalanche photodiode and offers an environment less susceptible to EMI. To fulfill the main aim, for the first time, the effect of the metallic material of LabPET II on PET and MRI performance was theoretically examined. Results confirm that metallic components of the LabPET II detection modules distort the magnetic field, generate eddy currents, and increase temperature. Then, the LabPET II electronics performance under the influence of custom-made MRI coils was investigated. Its energy and timing resolutions deteriorate in the presence of both RF and gradient signals because of EMIs. Thus, a LabPET II detection module shielded by a thin layer of the copper-silver composite was investigated, proving that shielding EMIs with the composite restores the PET performance, with less eddy current induction. Besides, a new shielding configuration based on a flexible layer of carbon nanotube (CNT) composite was fabricated to limit the EMIs. The CNT composite creates a highly conductive layer with minimal conductive paths that allows eddy currents to be decreased. The primary scientific outcome of this project is that the novel composite shielding rejects both low and high-frequency interferences and reduces eddy current induction, offering the flexibility to acquire a fast gradient switching sequence. From a technical point of view, the shielded LabPET II detection module demonstrates an excellent performance in an MRI-like environment supporting the feasibility of designing a PET-insert based on LabPET II technology

    Accurate magnetic sensor system integrated design

    Get PDF
    Inductive measurement of magnetic fields is a diagnostic technique widely used in several scientific fields, such as magnetically confined fusion, plasma thrusters and particle accelerators, where real time control and detailed characterization of physics phenomena are required. The accuracy of the measured data strongly influences the machine controllability and the scientific results. In the framework of the assembly modifications of the RFX-mod experiment, a complete renew and improvement of the magnetic diagnostic system, from the probes moved inside the vacuum vessel to the integrator modules, has been carried out. In this paper, the whole system making up the magnetic diagnostics is described, following the acquisition chain from the probe to the streamed data and illustrating the requirements and conflicting limitations which affect the different components, in order to provide a comprehensive overview useful for an integrated design of any new systems. The characterization of a prototypical implementation of the whole acquisition chain is presented, focusing on the flexible ADC architecture adopted for providing a purely numerical signal integration, highlighting the advantages that this technology offers in terms of flexibility, compactness and cost effectiveness, along with the limitations found in existing implementation in terms of ADC noise characteristics and their possible solutions

    Double volumetric navigators for real-time simultaneous shim and motion measurement and correction in Glycogen Chemical Exchange Saturation Transfer (GlycoCEST) MRI

    Get PDF
    Glycogen is the primary glucose storage mechanism in in living systems and plays a central role in systemic glucose homeostasis. The study of muscle glycogen concentrations in vivo still largely relies on tissue sampling methods via needle biopsy. However, muscle biopsies are invasive and limit the frequency of measurements and the number of sites that can be assessed. Non-invasive methods for quantifying glycogen in vivo are therefore desirable in order to understand the pathophysiology of common diseases with dysregulated glycogen metabolism such as obesity, insulin resistance, and diabetes, as well as glycogen metabolism in sports physiology. Chemical Exchange Saturation Transfer (CEST) MRI has emerged as a non-invasive contrast enhancement technique that enables detection of molecules, like glycogen, whose concentrations are too low to impact the contrast of standard MR imaging. CEST imaging is performed by selectively saturating hydrogen nuclei of the metabolites that are in chemical exchange with those of water molecules and detecting a reduction in MRI signal in the water pool resulting from continuous chemical exchange. However, CEST signal can easily be compromised by artifacts. Since CEST is based on chemical shift, it is very sensitive to field inhomogeneity which may arise from poor initial shimming, subject respiration, heating of shim iron, mechanical vibrations or subject motion. This is a particular problem for molecules that resonate close to water, such as - OH protons in glycogen, where small variations in chemical shift cause misinterpretation of CEST data. The purpose of this thesis was to optimize the CEST MRI sequence for glycogen detection and implement a real-time simultaneous motion and shim correction and measurement method. First, analytical solution of the Bloch-McConnell equations was used to find optimal continuous wave RF pulse parameters for glycogen detection, and results were validated on a phantom with varying glycogen concentrations and in vivo on human calf muscle. Next, the CEST sequence was modified with double volumetric navigators (DvNavs) to measure pose changes and update field of view and zero- and first-order shim parameters. Finally, the impact of B0 field fluctuations on the scan-rescan reproducibility of CEST was evaluated in vivo in 9 volunteers across 10 different scans. Simulation results showed an optimal RF saturation power of 1.5µT and duration of 1s for glycoCEST. These parameters were validated experimentally in vivo and the ability to detect varying glycogen concentrations was demonstrated in a phantom. Phantom data showed that the DvNav-CEST sequence accurately estimates system frequency and linear shim gradient changes due to motion and corrects resulting image distortions. In addition, DvNav-CEST was shown to yield improved CEST quantification in vivo in the presence of motion and motion-induced field inhomogeneity. B0 field fluctuations were found to lower the reproducibility of CEST measures: the mean coefficient of variation (CoV) for repeated scans was 83.70 ± 70.79 % without shim correction. However, the DvNav-CEST sequence was able to measure and correct B0 variations, reducing the CoV to 2.6 ± 1.37 %. The study confirms the possibility of detecting glycogen using CEST MRI at 3 T and shows the potential of the real-time shim and motion navigated CEST sequence for producing repeatable results in vivo by reducing the effect of B0 field fluctuations

    Dielectric shimming : exploiting dielectric interactions in High Field MRI

    Get PDF
    This thesis reports on the utility of high permittivity dielectric materials for adjusting the radiofrequency (RF) field in high field MR. The performance-driven trend towards higher static magnetic field strengths drives MR operation into the regime where the dimensions of the body section being imaged are comparable to the RF wavelength. This results in areas of RF interference within the body, and associated variations in signal intensity and tissue contrast, which can severely reduce the diagnostic image quality. However, the underlying electromagnetic interactions raise the question of whether these mechanisms may also be exploited to establish a remediation. This approach is termed "dielectric shimming," and is the subject of this thesis. The main conclusions from this thesis are that dielectric shimming presents a very simple and effective method for improving MR operation at high field strength. The high permittivity materials allow for tailoring the B1 field without increasing SAR. The technique improves body applications at 3T as well as neuro applications at 7T, and theoretical foundations are presented to harness and exploit this approach. The obtained solutions are low-cost, vendor-independent, do not require any major hardware or software modifications and can therefore be very easily implemented in clinical protocols.UBL - phd migration 201

    Non-Destructive Techniques Based on Eddy Current Testing

    Get PDF
    Non-destructive techniques are used widely in the metal industry in order to control the quality of materials. Eddy current testing is one of the most extensively used non-destructive techniques for inspecting electrically conductive materials at very high speeds that does not require any contact between the test piece and the sensor. This paper includes an overview of the fundamentals and main variables of eddy current testing. It also describes the state-of-the-art sensors and modern techniques such as multi-frequency and pulsed systems. Recent advances in complex models towards solving crack-sensor interaction, developments in instrumentation due to advances in electronic devices, and the evolution of data processing suggest that eddy current testing systems will be increasingly used in the future
    • …
    corecore