115 research outputs found

    Soft Error Analysis and Mitigation at High Abstraction Levels

    Get PDF
    Radiation-induced soft errors, as one of the major reliability challenges in future technology nodes, have to be carefully taken into consideration in the design space exploration. This thesis presents several novel and efficient techniques for soft error evaluation and mitigation at high abstract levels, i.e. from register transfer level up to behavioral algorithmic level. The effectiveness of proposed techniques is demonstrated with extensive synthesis experiments

    Resilient scalable internet routing and embedding algorithms

    Get PDF

    A survey of strategies for communication networks to protect against large-scale natural disasters

    Get PDF
    Recent natural disasters have revealed that emergency networks presently cannot disseminate the necessary disaster information, making it difficult to deploy and coordinate relief operations. These disasters have reinforced the knowledge that telecommunication networks constitute a critical infrastructure of our society, and the urgency in establishing protection mechanisms against disaster-based disruptions

    Flexible and intelligent network programming for cloud networks

    Get PDF
    As modern online services are evolving promptly and involving larger amount of data and computation than ever, the demand for cloud networks keeps growing rapidly, which also brings new challenges to network programming. Network programming is a complicated and crucial task for building high-performance cloud networks. Current network programming mainly presents two shortcomings: (1) it is inflexible as adding new data-plane features usually takes several years; (2) it is unintelligent as it heavily depends on human-designed heuristic algorithms to solve production-scale problems. To overcome these shortcomings, this dissertation realizes flexible and intelligent network programming by leveraging the recent development of new technologies both in hardware and software. Specifically, it presents four systems with new performance features that cannot be achieved by conventional network programming: (i) Harmonia: A new replicated storage architecture that provides near-linear scalability without sacrificing consistency. By exploiting the programming flexibility of new-generation programmable switches, Harmonia checks read-write conflicts in network for guaranteeing consistency, and enables any replica to serve reads for objects with no pending writes for near-linear scalability. (ii) RackSched: A microsecond-scale scheduler for rack-scale computers. It proposes a two-layer scheduling framework that integrates the inter-server scheduler in the top-of-rack (ToR) switch with intra-server schedulers on each server. The in-network inter-server scheduler is programmed to realize power-of-k-choices, ensure request affinity, and track server loads accurately and efficiently. (iii) NetVRM: A network management system that supports dynamic register memory sharing in the network. It orchestrates the register memory allocation between multiple concurrent network applications to optimize the multiplexing benefits. This goal is achieved with three major features: a virtual register memory abstraction, a dynamic memory allocation algorithm, and a domain-specific programming language extension. (iv) NeuroPlan: Automated and efficient network planning with deep reinforcement learning (RL). It leverages a two-stage hybrid approach that first uses deep RL to prune a large and complex search space and then uses an Integer Linear Programming (ILP) solver to find the final solution. Such an automated approach avoids human efforts to design heuristic algorithms manually and reduces network plan cost efficiently. We have done theoretical analysis, built testbeds, and evaluated these systems with prototype experiments and simulations under realistic setups from production networks

    Code Generation and Global Optimization Techniques for a Reconfigurable PRAM-NUMA Multicore Architecture

    Full text link

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Embedded System Design

    Get PDF
    A unique feature of this open access textbook is to provide a comprehensive introduction to the fundamental knowledge in embedded systems, with applications in cyber-physical systems and the Internet of things. It starts with an introduction to the field and a survey of specification models and languages for embedded and cyber-physical systems. It provides a brief overview of hardware devices used for such systems and presents the essentials of system software for embedded systems, including real-time operating systems. The author also discusses evaluation and validation techniques for embedded systems and provides an overview of techniques for mapping applications to execution platforms, including multi-core platforms. Embedded systems have to operate under tight constraints and, hence, the book also contains a selected set of optimization techniques, including software optimization techniques. The book closes with a brief survey on testing. This fourth edition has been updated and revised to reflect new trends and technologies, such as the importance of cyber-physical systems (CPS) and the Internet of things (IoT), the evolution of single-core processors to multi-core processors, and the increased importance of energy efficiency and thermal issues

    Accelerating orchestration with in-network offloading

    Get PDF
    The demand for low-latency Internet applications has pushed functionality that was originally placed in commodity hardware into the network. Either in the form of binaries for the programmable data plane or virtualised network functions, services are implemented within the network fabric with the aim of improving their performance and placing them close to the end user. Training of machine learning algorithms, aggregation of networking traffic, virtualised radio access components, are just some of the functions that have been deployed within the network. Therefore, as the network fabric becomes the accelerator for various applications, it is imperative that the orchestration of their components is also adapted to the constraints and capabilities of the deployment environment. This work identifies performance limitations of in-network compute use cases for both cloud and edge environments and makes suitable adaptations. Within cloud infrastructure, this thesis proposes a platform that relies on programmable switches to accelerate the performance of data replication. It then proceeds to discuss design adaptations of an orchestrator that will allow in-network data offloading and enable accelerated service deployment. At the edge, the topic of inefficient orchestration of virtualised network functions is explored, mainly with respect to energy usage and resource contention. An orchestrator is adapted to schedule requests by taking into account edge constraints in order to minimise resource contention and accelerate service processing times. With data transfers consuming valuable resources at the edge, an efficient data representation mechanism is implemented to provide statistical insight on the provenance of data at the edge and enable smart query allocation to nodes with relevant data. Taking into account the previous state of the art, the proposed data plane replication method appears to be the most computationally efficient and scalable in-network data replication platform available, with significant improvements in throughput and up to an order of magnitude decrease in latency. The orchestrator of virtual network functions at the edge was shown to reduce event rejections, total processing time, and energy consumption imbalances over the default orchestrator, thus proving more efficient use of the infrastructure. Lastly, computational cost at the edge was further reduced with the use of the proposed query allocation mechanism which minimised redundant engagement of nodes

    Dependable Embedded Systems

    Get PDF
    This Open Access book introduces readers to many new techniques for enhancing and optimizing reliability in embedded systems, which have emerged particularly within the last five years. This book introduces the most prominent reliability concerns from today’s points of view and roughly recapitulates the progress in the community so far. Unlike other books that focus on a single abstraction level such circuit level or system level alone, the focus of this book is to deal with the different reliability challenges across different levels starting from the physical level all the way to the system level (cross-layer approaches). The book aims at demonstrating how new hardware/software co-design solution can be proposed to ef-fectively mitigate reliability degradation such as transistor aging, processor variation, temperature effects, soft errors, etc. Provides readers with latest insights into novel, cross-layer methods and models with respect to dependability of embedded systems; Describes cross-layer approaches that can leverage reliability through techniques that are pro-actively designed with respect to techniques at other layers; Explains run-time adaptation and concepts/means of self-organization, in order to achieve error resiliency in complex, future many core systems

    Aggressive and reliable high-performance architectures - techniques for thermal control, energy efficiency, and performance augmentation

    Get PDF
    As more and more transistors fit in a single chip, consumers of the electronics industry continue to expect decline in cost-per-function. Advancements in process technology offer steady improvements in system performance. The improvements manifest themselves as shrinking area, faster circuits and improved battery life. However, this migration toward sub-micro/nano-meter technologies presents a new set of challenges as the system becomes extremely sensitive to any voltage, temperature or process variations. One approach to immunize the system from the adverse effects of these variations is to add sufficient safety margins to the operating clock frequency of the system. Clearly, this approach is overly conservative because these worst case scenarios rarely occur. But, process technology in nanoscale era has already hit the power and frequency walls. Regardless of any of these challenges, the present processors not only need to run faster, but also cooler and use lesser energy. At a juncture where there is no further improvement in clock frequency is possible, data dependent latching through Timing Speculation (TS) provides a silver lining. Timing speculation is a widely known method for realizing better-than-worst-case systems. TS is aggressive in nature, where the mechanism is to dynamically tune the system frequency beyond the worst-case limits obtained from application characteristics to enhance the performance of system-on-chips (SoCs). However, such aggressive tuning has adverse consequences that need to be overcome. Power dissipation, on-chip temperature and reliability are key issues that cannot be ignored. A carefully designed power management technique combined with a reliable, controlled, aggressive clocking not only attempts to constrain power dissipation within a limit, but also improves performance whenever possible. In this dissertation, we present a novel power level switching mechanism by redefining the existing voltage-frequency pairs. We introduce an aggressive yet reliable framework for energy efficient thermal control. We were able to achieve up to 40% speed-up compared to a base scheme without overclocking. We compare our method against different schemes. We observe that up to 75% Energy-Delay squared product (ED2) savings relative to base architecture is possible. We showcase the loss of efficiency in present chip multiprocessor systems due to excess power supplied, and propose Utilization-aware Task Scheduling (UTS) - a power management scheme that increases energy efficiency of chip multiprocessors. Our experiments demonstrate that UTS along with aggressive timing speculation squeezes out maximum performance from the system without loss of efficiency, and breaching power & thermal constraints. From our evaluation we infer that UTS improves performance by up to 12% due to aggressive power level switching and over 50% in ED2 savings compared to traditional power management techniques. Aggressive clocking systems having TS as their central theme operate at a clock frequency range beyond specified safe limits, exploiting the data dependence on circuit critical paths. However, the margin for performance enhancement is restricted due to extreme difference between short paths and critical paths. In this thesis, we show that increasing the lengths of short paths of the circuit increases the margin of TS, leading to performance improvement in aggressively designed systems. We develop Min-arc algorithm to efficiently add delay buffers to selected short paths while keeping down the area penalty. We show that by using our algorithm, it is possible to increase the circuit contamination delay by up to 30% without affecting the propagation delay, with moderate area overhead. We also explore the possibility of increasing short path delays further by relaxing the constraint on propagation delay, and achieve even higher performance. Overall, we bring out the inter-relationship between power, temperature and reliability of aggressively clocked systems. Our main objective is to achieve maximal performance benefits and improved energy efficiency within thermal constraints by effectively combining dynamic frequency scaling, dynamic voltage scaling and reliable overclocking. We provide solutions to improve the existing power management in chip multiprocessors to dynamically maximize system utilization and satisfy the power constraints within safe thermal limits
    corecore