

Resilient Scalable Internet Routing and Embedding Algorithms

Foutbestendige schaalbare internetrouting en plaatsingsalgoritmen

Seyedeh Sahel Sahhaf

Promotoren: prof. dr. ir. D. Colle, dr. W. Tavernier
Proefschrift ingediend tot het behalen van de graad van

Doctor in de ingenieurswetenschappen: computerwetenschappen

Vakgroep Informatietechnologie
Voorzitter: prof. dr. ir. D. De Zutter

Faculteit Ingenieurswetenschappen en Architectuur
Academiejaar 2016 - 2017

ISBN 978-90-8578-948-2
NUR 986, 988
Wettelijk depot: D/2016/10.500/80

Ghent University
Faculty of Engineering and Architecture
Department of Information Technology

Promoters: prof. dr. ir. Didier Colle
dr. Wouter Tavernier

Jury Members: prof. dr. ir. Patrick De Baets, Ghent University (Chairman)
prof. dr. ir. Didier Colle, Ghent University (Supervisor)
dr. Wouter Tavernier, Ghent University (Supervisor)
prof. dr. ir. Mario Pickavet, Ghent University (Secretary)
prof. dr. Deep Medhi, University of Missouri-Kansas City
prof. dr. ir. Davide Careglio, Universitat Politécnica de Catalunya
prof. dr. Veerle Fack, Ghent University
dr. ir. Bruno Volckaert, Ghent University

Ghent University
Faculty of Engineering and Architecture

Department of Information technology
Technologiepark-Zwijnaarde 15, 9052 Ghent, Belgium

Tel.: +32-9-331.49.00
Fax.: +32-9-331.48.99

Dissertation to obtain the degree of
Doctor of Computer Science Engineering

Academic year 2016-2017

Acknowledgments

This journey would have not been possible without the support of my family, pro-
moters, mentors, colleagues and friends.

Firstly, I would like to express my sincere gratitude to my promoters Prof.
Didier Colle and Dr. Wouter Tavernier for the continuous support of my Ph.D
study and related research, for their patience, motivation, and immense know-
ledge. Their guidance helped me in all the time of the research and writing of this
thesis. I am also thankful to Prof. Mario Pickavet for all the constructive feedback,
suggestions and research ideas.

Besides my promoters, I would like to thank the rest of my PhD jury: Prof.
Patrick De Baets, Prof. Davide Careglio, Prof. Deep Medhi, Prof. Veerle Fack,
Prof. Mario Pickavet, and Dr. Bruno Volckaert, for their insightful comments,
questions and encouragement which helped me to improve the quality of my PhD
dissertation.

I am grateful to Prof. Piet Demeester for providing me the opportunity to join
the IBCN research group and carry out my Ph.D research at Ghent University.
I would like to thank all the staff members at IBCN and special thank to Mike
Van Puyenbroeck for his guidance during the initial admission phase even before
I arrive in Belgium. Also grateful to Martine Buysse and Davinia Stevens for their
constant support.

I also take this opportunity to thank all the members of projects: EULER,
UNIFY, MECANO and EMD, in which I was involved during my Ph.D. Thank
you for the interesting research discussions which were really helpful in achieving
my Ph.D thesis.

I am thankful to my colleagues in the office: Sachin, Sander, Sofie, Steven,
Thomas, Ratul, Pieter, Maarten, Thijs, Dimitri, Wouter, Ward, Abhishek, Ludwig,
Willem and Sofie. Thank you all for your kind and friendly behavior which made
these 6 years a pleasant experience for me. Also I thank my other colleagues and
friends I met in IBCN during these few years: Maryam, Bahareh, Nasrin, Elnaz,
Marlies, Ankita, Mahdi, Bram, Frederic, Domenico, Rodrigo, Wei, Merima, Joke
and Andy. A special thank to Thomas who encouraged me to take Dutch courses
and who was so kind and patient to plan some ‘Dutch lunches’ so that we could
practice it.

I am grateful to my college/high-school friends: Milad, Sepideh, Andisheh
and Shohreh who supported me during the rough times even though they were far
away.

I would like to thank my family: my parents and my sister for supporting me

ii

spiritually throughout my Ph.D and my life in general.
Last but not the least, many thanks to Kavoos, for all his love and support. I

thank him for being patient and supportive from the beginning of this Ph.D until
the final defense. I am grateful to him for always being there for me through all
the ups and downs and for being in my life.

Ghent, Nov 2016
Seyedeh Sahel Sahhaf

Table of Contents

Acknowledgments i

Samenvatting xxv

Summary xxxi

1 Introduction 1
1.1 Background on communication network 2

1.1.1 Internet network infrastructure 2
1.1.2 Network layering and technology overview 4

1.1.2.1 IP routing . 6
1.1.3 Network recovery . 12

1.1.3.1 Recovery scope 14
1.1.3.2 Restoration . 14
1.1.3.3 Protection . 14

1.2 The challenge of Internet routing 15
1.2.1 Geometric routing . 16

1.2.1.1 Addressing and forwarding 17
1.2.2 Research challenges in geometric routing 19

1.3 The challenge of telecom virtualization 20
1.3.1 Network function virtualization 20
1.3.2 Network service chaining 21
1.3.3 Research challenges in service orchestration 22

1.4 Outline and research contributions 23
1.4.1 Geometric routing . 23
1.4.2 Service orchestration . 25

1.5 Publications . 26
1.5.1 Publications in international journals

(listed in the Science Citation Index) 26
1.5.2 Publications in international conferences

(listed in the Science Citation Index) 27
1.5.3 Publications in other international conferences 28
1.5.4 Publications in national conferences 30

References . 31

iv

2 Link failure recovery technique for greedy routing in the hyperbolic
plane 35
2.1 Introduction . 36
2.2 Existing work . 37
2.3 Greedy embedding in the hyperbolic plane 39
2.4 Recovery method in greedy routing 40

2.4.1 Single link failure . 41
2.4.1.1 Upstream/downstream failure recovery 42
2.4.1.2 Subtree determination 43
2.4.1.3 Exchanged packets 46
2.4.1.4 Correctness of the method 46

2.4.2 Multiple link failures . 47
2.4.2.1 Multiple link failure recovery 48
2.4.2.2 Finding hub nodes in a backup path 50

2.4.3 Comparison with tree-oriented routing algorithms 51
2.5 Evaluation of the recovery method 52

2.5.1 Experimental results for single link failure recovery method 52
2.5.1.1 Stretch evaluation 52
2.5.1.2 Overhead evaluation 54

2.5.2 Experimental results for multiple link failure recovery
method . 56
2.5.2.1 Stretch evaluation 56
2.5.2.2 Overhead evaluation 58

2.6 Conclusion . 59
References . 61

3 Experimental validation of resilient tree-based greedy geometric rout-
ing 63
3.1 Introduction . 64

3.1.1 Our contribution . 65
3.2 Related work . 66
3.3 Greedy Tree-based geometric Routing (GTR) 68

3.3.1 Tree-based greedy embedding 69
3.3.2 Single link failure protection technique 70
3.3.3 Proposed distributed algorithm 71

3.3.3.1 Tree construction 72
3.3.3.2 Coordinate calculation 73
3.3.3.3 Algorithm complexity 73
3.3.3.4 Algorithm states 73
3.3.3.5 Network failures 74
3.3.3.6 Network additions 77
3.3.3.7 Protection . 77

3.4 Routing platform . 78
3.4.1 GTR implementation in Quagga routing suite 78
3.4.2 Greedy forwarder implementation in Click modular router 79

v

3.5 Experimentation and discussion of the results 80
3.5.1 iLab.t virtual wall platform 80
3.5.2 Emulation vs. simulation 80
3.5.3 Experimentation setup and objectives 81

3.5.3.1 Stretch evaluation of GTR 81
3.5.3.2 Recovery capabilities of GTR 82
3.5.3.3 Impact of topology dynamics on GTR 84

3.5.4 Lessons and discussions 87
3.6 Conclusions . 88
References . 90

4 Efficient geometric routing in large-scale complex networks with low-
cost node design 93
4.1 Introduction . 94
4.2 Related work . 97
4.3 Greedy Tree-based geometric Routing (GTR) 98

4.3.1 Tree-based greedy embedding 98
4.3.2 Greedy forwarding based on coordinate sets (CS) 100
4.3.3 Delivery guarantee . 101

4.4 Hardware design of a greedy forwarder 102
4.5 Performance evaluation and analysis 105

4.5.1 Routing stretch evaluation 105
4.5.2 Coordinate size evaluation 106
4.5.3 Area complexity evaluation 107

4.6 Challenges and future work . 108
4.7 Conclusion . 109
References . 111

5 Routing at large scale: advances and challenges for complex networks115
5.1 Introduction . 116
5.2 Routing design problem . 117

5.2.1 The routing function . 117
5.2.2 Trade-offs in routing . 119
5.2.3 Challenges in the Internet routing system 120

5.3 Routing schemes . 121
5.3.1 Path-vector schemes improvements 121
5.3.2 Routing schemes in complex networks 121

5.3.2.1 Compact routing 123
5.3.2.2 Geometric routing 125
5.3.2.3 Route Discovery with network’s structural prop-

erties (RD) . 127
5.3.3 Routing schemes for DTN and P2P networks 128

5.3.3.1 Delay Tolerant Network (DTN) 128
5.3.3.2 Peer-to-Peer (P2P) overlay network 129

5.4 Comparative analysis and identified trade-offs 129

vi

5.5 Conclusion and future directions 132
References . 135

6 Network service chaining with optimized network function embedding
supporting service decompositions 137
6.1 Introduction . 138
6.2 Related work . 141
6.3 Service decomposition . 143
6.4 Problem description . 144
6.5 Integer Linear Programming formulation 146

6.5.1 Physical network . 146
6.5.2 Service request . 147
6.5.3 Decision variables . 147
6.5.4 Objective function . 148
6.5.5 Constraints . 149

6.5.5.1 Decomposition mapping constraints 149
6.5.5.2 Physical node constraints 149
6.5.5.3 Link to path mapping 150
6.5.5.4 Quality of service requirements 150

6.5.6 ILP-based algorithm . 151
6.6 Decomposition selection-backtracking mapping algorithm: DSBM 151
6.7 Performance evaluation . 154

6.7.1 Simulation environment 156
6.7.2 Performance metrics . 157
6.7.3 Evaluation results . 158

6.8 Conclusion . 161
References . 163

7 Scalable architecture for service function chain orchestration 165
7.1 Introduction . 166
7.2 Related work . 167
7.3 Service function chaining . 168
7.4 Service chain orchestration . 170

7.4.1 ESCAPE framework . 172
7.4.2 Network Function-Information Base (NF-IB) 174

7.5 Embedding algorithm . 174
7.6 Performance evaluation . 175
7.7 Discussion: Towards a scalable orchestration

framework . 177
7.8 Conclusion . 178
References . 180

vii

8 Conclusions and future work 181
8.1 Resilient scalable routing in Internet 182

8.1.1 Future directions and trends 184
8.2 Service orchestration in virtualized telecom networks 187

8.2.1 Future directions and trends 188
References . 191

A Availability analysis of resilient geometric routing on Internet topology193
A.1 Introduction . 194
A.2 Related work . 195
A.3 Greedy geometric routing . 197

A.3.1 Tree-based greedy embedding 197
A.3.2 Single failure protection techniques 198

A.4 Performance parameters . 199
A.4.1 Component availability 199
A.4.2 Protected/Unprotected connection availability 200
A.4.3 Network availability model 200

A.5 Reliability performance evaluation of connections 202
A.5.1 Methodology for simulation approach 202
A.5.2 Internet topology . 203
A.5.3 Numerical results . 206

A.6 Summary and future work . 209
A.7 Conclusion . 210
References . 211

List of Figures

1.1 Overview of Internet infrastructure segments 3
1.2 Layered models of the Internet and example protocols 5
1.3 Example of an IP network. Different network segments are inter-

connected by IP routers. 7
1.4 Example of IP forwarding table 8
1.5 Hierarchical classification of routing protocols 9
1.6 Inter-AS and intra-AS routing 10
1.7 Routing information process in BGP routing engine 11
1.8 Example of end-to-end, link and node failure recovery 13
1.9 Number of active BGP entries in FIB in different years up to 2016,

[17] . 15
1.10 Example of geometric routing 17
1.11 Example of greedy forwarding in Euclidean space. (x,y) are the

virtual coordinates of the nodes. 18
1.12 Example of local minimum . 19
1.13 Software Defined Networking 21
1.14 Example of Network Service Chaining with Network Functions

located at different segments of the network 22
1.15 General idea of service chain embedding 23
1.16 Overview of the research contribution. In this diagram, the related

Chapters (Ch.) and Appendix (A.) to different research contribu-
tions are depicted. 24

2.1 Steps for embedding a graph into the hyperbolic plane using Klein-
berg’s greedy embedding . 40

2.2 Example for a single link failure which affects the greedy embedding. 41
2.3 Example for failure in shortcut links. The left figure depicts the

route before failure. On the right the route after failure is depicted. 42
2.4 Diagram of recovery methods for single and multiple link failures

(control procedure) . 44
2.5 Example for upstream failure. On the left the intermediate node is

determined. On the right the path after recovery is depicted by the
dot line. 45

x

2.6 Example for downstream failure. On the left the intermediate node
is determined. On the right the path after recovery is depicted by
the dot line. 46

2.7 Problem with multiple link failures using single link failure recov-
ery method. 48

2.8 Example for multiple link failures. On the right the path after re-
covery is depicted by the dot line. 50

2.9 Stretch evaluation for single link failure recovery method 53
2.10 Overhead evaluation for single link failure recovery method. . . . 55
2.11 Stretch evaluation for multiple link failure recovery method. . . . 57
2.12 Overhead evaluation for multiple link failure recovery method. . . 58

3.1 The steps of: i) tree generation ii) children numbering and iii) co-
ordinates calculation are depicted in (a). The dashed lines repre-
sent the links which are not in the tree. An example of greedy
forwarding (from S to D) based on the calculated CVs is depicted
in (b). 69

3.2 (a) and (b) depict a downward and an upward failure scenario re-
spectively. The primary path is depicted in the graph at left and the
recovery path is depicted on the right graph with dashed arrows.
The selected intermediate nodes are colored gray. 71

3.3 Example of tree construction process. (i) and (iv) depict the initial
and the final states of the tree construction process respectively.
(ii) and (iii) depict two possible intermediate stages with partial
trees. 72

3.4 State diagram of the tree generation algorithm is depicted in (a).
The root failure and corresponding converged tree is depicted in
(b).i and (b).ii, and edge failure is depicted in (b).iii and (b).iv. . . 74

3.5 Pseudo code of the distributed algorithm for CV calculation/pro-
tection in node i . 76

3.6 Architecture of GTR implementation and a GTR-enabled node . . 78
3.7 Connecting LXCs using bridges 80
3.8 Distribution of convergence time in single failure scenario 83
3.9 Distribution of number of exchanged messages in single failure

scenario . 83
3.10 Average convergence time in multiple failures scenario 84
3.11 Average number of exchanged messages in multiple failures scenario 84
3.12 Distribution of the convergence time in 10% topology change sce-

nario . 85
3.13 Evolution of the convergence time in 10% topology change scenario 86
3.14 Distribution of number of exchanged messages in 10% topology

change . 86
3.15 Average stretch and reachability using protection scheme 87

xi

4.1 Example of greedy forwarding in Euclidean space is given in (a)
and (b) depicts an example of local minimum in greedy forwarding 95

4.2 The tree-based embedding is depicted in (a) and (b) illustrates an
example of greedy forwarding 99

4.3 The tree-distance calculator circuit 103
4.4 The 3-bit counter circuit . 104
4.5 Average stretch in B-A networks 106
4.6 Stretch percentile of GTR in B-A networks 106
4.7 Required number of bits in coordinates in B-A networks 107

5.1 Fundamental trade-offs in routing schemes 120
5.2 Variants of compact routing. (a) depicts different steps in DCR,

(b) illustrates an example of GCMR. 124
5.3 Variants of geometric routing. (a) depicts an example of GTR em-

bedding and forwarding, and (b) indicates the principles of GCLS. 126
5.4 Example of route discovery mechanism. This mechanism first

finds a path s−a−b−c−d−e−f−g− t. The path optimization
mechanism attempts to reduce the length of this path at each node.
This mechanism produces a shorter path, s−a−h−d−e−f−g−t.
The 2-hop neighbor information of d contains a. As a conse-
quence, b and c are replaced by h. The loop avoidance mechanism
prevents retracing the already visited node e, once f is reached.
This enables the selection of g as the next node, which has the
same preference as e. Since b has an option to choose the next
neighbor among c and j, a random selection is applied to pick c. . 128

6.1 Network Function Embedding concept 140
6.2 Example of service decomposition 143
6.3 Example of Clustering and CF in service decompositions 145
6.4 Execution time of ILP and DSBM for SGs with 5 and 10 NFs. The

95% confidence interval of the reported average values is depicted. 157
6.5 Service request acceptance ratio over time. The shaded back-

ground behind each curve represents the 95% confidence interval
on the reported average values. 158

6.6 Average cost of accepting requests over time. The shaded back-
ground behind each curve represents the 95% confidence interval
on the reported average values. 159

6.7 The ratio between average cost and average revenue over time.
The shaded background behind each curve represents the 95%
confidence interval on the reported average values. 159

6.8 Service request acceptance ratio over time in DSBM. The shaded
background behind each curve represents the 95% confidence in-
terval on the reported average values. 160

xii

6.9 Average cost of accepting requests over time in DSBM. The shaded
background behind each curve represents the 95% confidence in-
terval on the reported average values. 161

6.10 The ratio between average cost and average revenue over time in
DSBM. The shaded background behind each curve represents the
95% confidence interval on the reported average values. 161

7.1 Example of SG, NF-FG and Network Function decomposition . . 169
7.2 System architecture of ESCAPE 173
7.3 Embedding execution time for SGs with one decomposition 176
7.4 Embedding execution time for SGs with 5 NFs 177

A.1 Steps for tree-based greedy embedding. 197
A.2 Example for upward failure scenario. 198
A.3 Example for downward failure scenario. 199
A.4 Example of a bidirectional line [20]. 200
A.5 Example for evaluation of connection availability. 201
A.6 CAIDA’s AS-level Internet graph. http://www.caida.org 203
A.7 Histogram of the distances of the adjacent nodes in the CAIDA

topology. For better visualization, the inset illustrates the his-
togram of the range 0-5000 Km. 205

A.8 Histogram of the line/link availability in the CAIDA topology. The
inset illustrates the histogram of the range 0.98-1. 205

A.9 Histogram of the connection availability of geometric routing on
CAIDA topology without protection. 207

A.10 Histogram of the connection availability of geometric routing on
CAIDA topology with protection. 208

A.11 Histogram of the connection availability of shortest cycle scheme
on CAIDA topology. 209

List of Tables

3.1 The average stretch of GTR and tree routing on different size GLP
networks . 81

4.1 Logic modules normalized area 108
4.2 Normalized area(µm2) of the tree (T) and hyperbolic (H) distance

calculator for different scale B-A networks 108

5.1 Position of different routing schemes with respect to the capability
to adapt to dynamics and distribution. Static schemes have fixed
routes which do not adjust in case of a change in the network.
Fault-tolerant/adaptive refers to the capability to react to changes
in the network and adjust the routes. 122

5.2 Comparison stretch - memory - communication cost. In this table,
m stands for the number of links, n is the number of nodes and
D(G) is the diameter of graph G. ∆(G) represents the maximum
nodes degree and h is the size of MDT in multicast routing. δ is
the Gromov delta which measures the deviation of the graph from
tree-likeness. 130

6.1 List of compared algorithms . 155

A.1 MTTR and MTBF values for OAs and WDM Line systems. 206
A.2 Cable Cut and MTBF values for Fiberoptic Cable. 206
A.3 Percentile and average values for line availability (A) in the CAIDA

topology and the availability of the protected links (A-P). (A-L)
represents the availability for links attached to the leaf nodes. . . . 206

A.4 Percentile and average values for connection availability in 3 schemes
:i) geometric routing without protection (G) ii) geometric routing
with protection (G-P) and iii) shortest cycle (SH) 209

List of Acronyms

A

AH Acceleration Hardware

API Application Programming Interface

ARP Address Resolution Protocol

AS Autonomous System

ASN Autonomous System Number

B

B-A Barabasi-Albert

BFD Bidirectional Forwarding Detection

BFS Breadth First Search

BGP Border Gateway Protocol

C

CA Controller Adapter

CAPEX Capital Expenditure

CCN Content-Centric Networking

CF Cluster Factor

CIDR Classless Inter-Domain Routing

CNF Compound Network Function

xvi

CPE Customer-Premises Equipment

CPU Central Processing Unit

CS Coordinate Set

CV Coordinate Vector

D

DARPA Defense Advanced Research Projects Agency

DB Database

DC Data Center

DCR Distributed Compact Routing

DHCP Dynamic Host Configuration Protocol

DHT Distributed Hash Table

DNS Domain Name Server

DoV Domain Virtualizer

DPDK Data Plane Development Kit

DPI Deep Packet Inspection

DSBM Decomposition Selection-Backtracking Mapping

DSL Digital Subscriber Line

DTN Delay/Disruption-Tolerant Network

E

EGP Exterior Gateway Protocol

EIGRP Enhanced Interior Gateway Routing Protocol

ENF Elementary Network Function

ESCAPE Extensible Service ChAin Prototyping Environment

ETSI European Telecommunications Standards Institute

xvii

F

FE Forwarding Element

F.F Flip Flop

FIB Forwarding Information Base

FPGA Field-Programmable Gate Array

FW Firewall

G

GB Gigabyte

GCLS Geometric Coordinate-Labeling Scheme

GCMR Greedy Compact Multicast Routing

GHz Gigahertz

GLP Generalized Linear Preference

GML Geography Markup Language

GMPLS Generalized Multiprotocol Label Switching

GPS Global Positioning System

GPU Graphics Processing Unit

GTR Greedy Tree-based geometric Routing/Geometric Tree-based greedy
Routing

GUI Graphical User Interface

GW Gateway

H

HA High-Availability

HIP Host Identity Protocol

HTTP Hypertext Transfer Protocol

xviii

I

ICMP Internet Control Message Protocol

ID Identifier

IDS Intrusion Detection System

IEEE Institute of Electrical and Electronics Engineers

IETF Internet Engineering Task Force

IGMP Internet Group Management Protocol

IGP Interior Gateway Protocol

IGRP Interior Gateway Routing Protocol

IL Infrastructure Layer

ILP Integer Linear Programming

InP Infrastructure Provider

I/O Input/Output

IoT Internet of Things

IP Internet Protocol

IPv4 Internet Protocol version 4

IPv6 Internet Protocol version 6

IRTF Internet Research Task Force

IS-IS Intermediate System to Intermediate System

ISG Industry Specifications Group

IXP Internet Exchange Points

K

KQI Key Quality Indicators

L

LAN Local Area Network

xix

LISP Locator/Identifier Separation Protocol

LPM Longest Prefix Match

LSA Link-State Advertisement

LTE Long-Term Evolution

LXC Linux Container

M

MANO Management and Orchestration

MCN Mobile Cloud Networking

MDT Multicast Distribution Tree

MRAI Minimum Route Advertisement Interval

MTBF Mean Time Between Failures

MTTR Mean Time To Repair

N

NAT Network Address Translation

NF Network Function

NFEP Network Function Embedding Problem

NF-FG Network Function Forwarding Graph

NFG Network Function Graph

NF-IB Network Function Information Base

NFV Network Function Virtualization

NFVRG Network Function Virtualization Research Group

NSC Network Service Chaining

NTP Network Time Protocol

O

OA Optical Amplifier

xx

O/E/O Optical/Electrical/Optical

OL Orchestration Layer

OPEX Operational Expenditure

OSI Open Systems Interconnection

OSPF Open Shortest Path First

OXC Optical Cross Connect

P

P2P Peer-to-Peer

PC Personal Computer

PD Poincare Disk

PIM Protocol Independent Multicast

PoC Proof of Concept

PoP Point of Presence

PPP Point to Point Protocol

Q

QoS Quality of Service

R

RAM Random Access Memory

RD Route Discovery

RG Resource Graph

RIB Routing Information Base

RIP Routing Information Protocol

RO Resource Orchestrator

RSTP Rapid Spanning Tree Protocol

xxi

RT Routing Table

S

SAP Service Access Point

SDN Software Defined Networking

SDNRG Software Defined Networking Research Group

SFC Service Function Chain

SG Service Graph

SID Subgraph Isomorphism Detection

SL Service Layer

SLA Service Level Agreement

SMTP Simple Mail Transfer Protocol

SPEC Standard Performance Evaluation Corporation

STP Spanning Tree Protocol

T

TAU Tuning and Analysis Utilities

TCP Transmission Control Protocol

U

UDP User Datagram Protocol

V

VIM Virtualized Infrastructure Manager

xxii

VLAN Virtual Local Area Network

VNEP Virtual Network Embedding Problem

VNF Virtual Network Function

VM Virtual Machine

VPN Virtual Private Network

W

WDM Wavelength Division Multiplexing

WMGR Word-Metric-based Greedy Routing

WMS Word-Metric Space

WSN Wireless Sensor Network

Samenvatting
– Summary in Dutch –

Het Internet is het fundamentele communicatiemedium dat mensen, bedrijven en
organisaties met elkaar in contact brengt. Gegevens, nieuws en opinies worden
momenteel uit meer dan 190 landen via het Internet uitgewisseld. Ieder aspect
van onze leven, van sociale tot economische aard, wordt hierdoor beı̈nvloed. We
ontvangen iedere dag nieuws via het Internet en delen informatie en bestanden via
‘the cloud’. Daarenboven delen multinationals continue informatie via ‘stream-
ing’ (bijvoorbeeld radio- en televisieprogramma’s van grootschalige sport- of life-
evenementen). Dergelijke toepassingen stellen strikte voorwaarden in termen van
kwaliteit en capaciteit van het onderliggende medium.

Nochtans was het Internet oorspronkelijk niet ontwikkeld voor dergelijke hoge
eisen. Het initiële idee van het Internet begon met een poging om de topuniversi-
teiten uit de Verenigde Staten met elkaar te verbinden. Hiermee konden ze al hun
onderzoeksgegevens en -infrastructuur delen zonder daarbij tijd of andere mid-
delen te verspillen. Daarom was ARPANET als eerst pakketgeschakeld netwerk
gecreëerd. Het netwerk conecteerde vier knooppunten in Universiteit van Cali-
fornië, Los Angeles, onderzoek center in Stanford, Universiteit van Californië in
Santa Barbara en Universiteit van Utah. Na deze succesvolle onderneming in 1969,
werd het ware potentieel van dit medium steeds duidelijker voor experts. Sindsdien
heeft het zich steeds verder ontwikkeld en uitgebreid, leidend tot het grootschalige
en heterogene netwerk van vandaag. In de toekomst wordt er nog verder inge-
zet op het steeds efficiënter maken van het netwerk, meer automatisering, grotere
schaalbaarheid en robuustheid van het netwerk. Optimale (gedistribueerde) rou-
ting in het Internet en schaalbare virtualisatie zijn twee belangrijke middelen om
dit mogelijk te maken. Deze vormen dan ook de speerpunten van het onderzoek
van deze thesis naar het toekomstige Internet.

Schaalbare en dynamische routing worden bemoeilijkt door het steeds toene-
mende internetverkeer en de exponentiele groei van het netwerk. Er worden dan
ook grote onderzoeksinspanningen gedaan om te kunnen voldoen aan deze hoge
verwachten. Desalniettemin hebben vele van deze inspanningen geleid tot teleur-
stellende, incrementele oplossingen en voornamelijk opsmukwerk. Als tegenreac-
tie, werden recentelijk een aantal volledige vernieuwende aanpakken voorgesteld.
Geometrische routing is een van deze voorstellen die zich toespitst op het schaal-
baar maken van de routing. Hierbij worden coördinaten toegekend aan netwerk-
knopen in een geometrische ruimte. Bij gulzige routering, gaat een netwerkknoop

xxvi SAMENVATTING

dat de cordinaten van zijn buren weet, netwerkverkeer doorsturen naar de dichtst-
bijzijnde buur. Schaalbare en dynamische routing worden bemoeilijkt door het
steeds toenemende internetverkeer en de exponentiele groei van het netwerk. Er
worden dan ook grote onderzoeksinspanningen gedaan om te kunnen voldoen aan
deze hoge verwachten. Desalniettemin hebben vele van deze inspanningen ge-
leid tot teleurstellende, incrementele oplossingen en voornamelijk opsmukwerk.
Als tegenreactie, werden recentelijk een aantal volledige vernieuwende aanpakken
voorgesteld. Geometrische routing is een van deze voorstellen die zich toespitst
op het schaalbaar maken van de routing. Hierbij worden coördinaten toegekend
aan netwerkknopen in een geometrische ruimte. Bij gulzige routering, gaat een
netwerkknoop dat de coördinaten van zijn buren weet, netwerkverkeer doorsturen
naar de dichtstbijzijnde buur.

In het eerste deel van deze dissertatie wordt de complexe netwerkstructuur van
het Internet onderzocht, en wordt geometrische routering geëvalueerd in de context
van het inter-domein Internet. Omwille van de grootschalige en dynamische aard
van het Internet, zijn schaalbare en dynamische routingmechanismen broodnodig.
Daarom heeft dit onderzoek getracht om schaalbare en foutbestendige geometri-
sche routing te onderzoeken voor inter-domein routebepaling.

In dit onderzoek wordt foutbestendigheid tegen enkel- en meervoudige fouten
van netwerklinks onderzocht bij geometrische routering. Er worden verschillende
herstelmethoden voorgesteld die zowel als protectiemechanisme of als restoratie-
mechanisme kunnen ingezet worden. Bij protectie worden de herstelpaden bere-
kend en opgezet alvorens de fout optreedt. Bij restoratie worden de herstelpaden
pas opgezet nadat de fout is gedetecteerd. Beide technieken hebben voor- en nade-
len. Waar protectietechnieken heel snel herstel toelaten, is de kost qua herstelcapa-
citeit, die op voorhand gereserveerd moet worden, heel hoog. Anderzijds bieden
restoratietechnieken meer flexibiliteit in het omgaan met netwerkfouten met als
nadeel een trager herstel. Enkelvoudige fouten worden in ons onderzoek afgehan-
deld door in het netwerk eerst in de breedte door te zoeken, zoekend naar tus-
senliggende knopen welke een gulzig pad naar de eindbestemming toelaten. De
geschikte tussenliggende knoop wordt bevraagd voor z’n coördinaat. Deze knoop
wordt vervolgens gebruikt in het verder gulzig gerouteerde pad om de foutieve link
te omzeilen. Om met meervoudige fouten van netwerklinks om te gaan, worden
disjuncte netwerkpaden gezocht voor elke individuele link. Aan de hand van ex-
perimenten, werd de schaalbaarheid en hun beperkte infrastructuurbenodigdheden
van de voorgestelde mechanismen gevalideerd. De mechanismen schalen met het
aantal links uit de opspannende boom van het netwerk en de geheugenvereisten in
elke knoop zijn proportioneel met de graad van de boom. Bovendien is de stretch
(i.e., de deviatie t.o.v. het kortste pad) beter dan die van mogelijke alternatieve
routingtechnieken.

In de eerste studies steunen we op een bestaande methode om coördinaten
toe te kennen aan netwerkknopen in het hyperbolisch vlak. Omdat deze methode
behoorlijk complex is, stellen we een eenvoudige maar alternatieve aanpak voor
welke steunt op een opspannende boom van het netwerk. In deze aanpak be-
paalt de locatie van de knoop in de boom de coördinaat. We stellen vervolgens

SUMMARY IN DUTCH xxvii

een gedistribueerd algoritme voor om deze locatie te berekenen. Steunend op de
voorgestelde protectiemechanismen, worden voorberekende herstelpaden gebruikt
wanneer een foutieve netwerklink wordt gedetecteerd. Ondanks het snelle fout-
herstel dat dit toelaat, wordt kwaliteit van de route in de zin van stretch hierdoor
negatief beı̈nvloed. Om hieraan tegemoet te komen en om te kunnen omgaan met
verschillende vormen van netwerkdynamiek (bv., nieuwe knoop/link, of verwijde-
ring van knoop/link), wordt het algoritme uitgebreid met een mechanisme om de
boom opnieuw te berekenen bij netwerkveranderingen. Op deze manier past de
routing zich aan aan de nieuwe toestand van het netwerk. Dit heeft tot gevolg dat
de toename in stretch beperkt wordt.

Ondanks de verbeterde schaalbaarheid van geometrische routing, brengt het
ook nieuwe uitdagingen qua herstel van netwerkfouten. Dynamiek in het netwerk
kan de opspannende boom veranderen die gebruikt wordt voor de coördinaten,
met globale veranderingen tot mogelijks gevolg. Hoe dichter de fout zich bij de
wortel van de boom bevindt, hoe meer knopen beı̈nvloed worden en een nieuwe
coördinaatberekening vereisen. Daartegenover is de invloed van netwerkfouten
bij de bladeren van de boom beperkt tot lokale wijzingen. Zelfs bij netwerkfouten
waarbij veel knopen betrokken zijn, blijft de hersteltijd vrij laag. Een prototype
van het voorgestelde algoritme werd geı̈mplementeerd en werd succesvol gede-
monstreerd op het IETF 90 Bits-N-Bites evenement.

Naast de studie van het foutherstel van geometrische routing, is er ook onder-
zoek uitgevoerd naar de schaalbaarheid en efficiëntie van geometrische routing.
Dit werd onderzocht door geometrische routing toe te passen op grootschalige
netwerken met een gelijkaardige structuur als het Internet. De resultaten werden
vergeleken met technieken die steunen op coördinaten in het hyperbolisch vlak.
De efficiëntie en schaalbaarheid van de voorgestelde aanpak karakteriseren zich
door hun lage stretch, een beperkte nood aan netwerkvoorzieningen, en weinig
geheugenvereisten in de voorstelling van de coördinaten.

In het vervolg van de thesis, wordt er op basis van de gedane experimenten
en analytische studies, een overzicht van de bestaande routingtechnieken gegeven.
Dit overzicht geeft een evenwichtiger beeld over de toepasbaarheid van geometri-
sche boetebepaling in de context van grootschalige inter-domeinnetwerken. Hierin
wordt duidelijk dat de geheugen- en schalingskarakteristieken van de voorgestelde
geometrische routing moeten afgewogen worden tegen het convergentiegedrag en
routekwaliteit bij foutherstel. Een andere waargenomen fenomeen is dat geometri-
sche routebepaling en andere radicaal nieuwe aanpakken vaak de performantie van
de routing sterk verbeteren ten koste van minder functionaliteit. In het geval van
geometrische routing bijvoorbeeld, wordt de geheugenschaalbaarheid verbeterd
maar zijn routeringsvoorkeuren (‘policies’, zoals die mogelijk zijn in de huidige
internetrouting) niet toegelaten.

Op basis van de gevonden open uitdagingen, geven we enkele mogelijke richt-
lijnen voor toekomstig onderzoek. Deze mogelijke pistes omvatten: i) ondersteu-
ning voor routevoorkeuren bij routing in het kader van geometrische routering,
ii) het voorzien van een afbeeldingssysteem tussen de identiteiten en coördinaten
van knopen, iii) de studie van beveiligingsaspecten en iv) de omschakeling van

xxviii SAMENVATTING

bestaande routingsystemen naar geometrische routing.
Als tweede onderdeel van het toekomstige Internet, onderzoekt deze thesis de

bevoorrading van infrastructuur voor services in gevirtualizeerde telecomnetwer-
ken. In de gangbare werkwijze worden telecomservices gecreëerd aan de hand
van netwerkfuncties geı̈mplementeerd in hardware die enkel en alleen geschikt en
gereserveerd zijn voor deze services. Voorbeelden van netwerkfuncties zijn bij-
voorbeeld een firewall, een netwerkadresvertaler (NAT) of een functie om binnen-
dringers in het netwerk te detecteren. Wanneer men gebruik maakt van virtualisa-
tietechnieken, kan benodigde functionaliteiten uitgevoerd worden als software op
generieke server-hardware die zich eender waar in het netwerk kan bevinden. Dit
concept wordt de virtualisatie van netwerkfuncties (Network Function Virtualiza-
tion) genoemd. Dit biedt nieuwe opportuniteiten voor telecomoperatoren, omdat
nieuwe services snel en efficiënt kunnen opgestart worden aan lage kost. Aan de
andere kant brengt dit ook nieuwe uitdagingen met zich mee, omdat nu moet be-
paald worden waar bepaalde netwerkfuncties zullen uitgevoerd worden (op welke
servers, gebruikmakend van welke netwerkonderdelen). Dit laatste wordt bemoei-
lijkt doordat enkelvoudige complexe netwerkfuncties op hun beurt weer kunnen
opgesplitst worden, op verschillende wijzen, in meerdere eenvoudigere netwerk-
functies waarvan hun plaats ook weer in het netwerk moet bepaald worden. Een
‘parental control’ netwerkfunctie, die er bijvoorbeeld voor moet zorgen dat jonge
kinderen geen 18+ internettoepassingen of websites kunnen bezichtigen, kan bij-
voorbeeld n drie eenvoudiger functies worden opgesplitst: i) een netwerkverkeers-
classificatie functie, ii) een web proxy, en iii) een firewall. Dit proces wordt servi-
cedecompositie genoemd.

In dit onderzoek brengen we servicedecompositie in rekening tijdens het plaat-
singsproces van netwerkfuncties en onderzoeken de gecombineerde optimalisa-
tie van servicedecomposite en plaatsing. Twee nieuwe technieken worden voor-
gesteld. De eerste spitst zich toe op een Integer Linear Programming (ILP) -
optimalisatie. De andere techniek biedt een heuristiek die schaalbaarder is dan
de ILP-gebaseerde oplossing. De heuristiek bevat twee fasen: i) selectie van de-
compositie, ii) backtracking-gebaseerde plaatsing. Deze voorstellen beogen de
minimalisatie van de gebruikte netwerkinfrastructuur. Een geoptimaliseerde, fijn-
mazige decompositie in combinatie met een efficiënte plaatsing wordt door de
voorgestelde mechanismen mogelijk gemaakt. De efficiëntie van de technieken
wordt gekarakteriseerd door een hoge acceptatiegraad (de verhouding van het aan-
tal services die succesvol geplaatst worden tot het totale aantal services) en een
lage plaatsingskost.

In realistische telecomnetwerkscenario’s loopt het aantal netwerkcomponenten
dat moet behandeld worden al snel op tot tienduizenden. Bij dergelijk hoog cijfer,
tot duizenden services per dag en meerdere realisatie-opties per services, is een
schaalbare controlearchitectuur nodig om deze services te voorzien. Aan de hand
van een ‘proof of concept’-prototype worden de belangrijkste tijdscomponenten
in de architectuur geı̈dentificeerd. Deze blokken zijn gerelateerd aan: i) het op-
vragen van alle decomposities van een service uit een database, ii) selectie van de
geschikte decompositie, iii) plaatsing van de geselecteerde decompositie. Op ba-

SUMMARY IN DUTCH xxix

sis van deze basiscomponenten worden verschillende architecturale verbeteringen
voorgesteld om een schaalbaarder raamwerk voor servicevoorziening te bekomen.
Het plaatsingsalgoritme kan bijvoorbeeld aangepast worden naar een gedistribu-
eerd of hiërarchisch mechanisme, om het raamwerk schaalbaarder te maken. Deze
voorstellen vormen mogelijke toekomstige pistes voor verder onderzoek.

Summary

The Internet is the fundamental communication medium, connecting people, busi-
nesses and organizations. More than 190 countries are interconnected via the In-
ternet to exchange data, news and opinions. Every aspect of human lives, from
social to economical characteristics, is impacted by this communication network.
Every day, we receive news via the Internet and share different information and
files through cloud. Additionally, most enterprises want to stream on the Internet
(e.g., radio and television broadcast, sport/live events with global audience and
multimedia conferencing). As a result, high demands in terms of quality and ca-
pacity are imposed. However, the Internet was not initially designed for such high
demands.

The idea of the Internet started with the requirement to connect the top univer-
sities of the United States. This was to share all the research data without wasting
too much time and to share computing resources. Therefore, ARPANET was cre-
ated as the first wide area packet switching network, connecting four nodes at:
University of California, Los Angeles (UCLA), Augmentation Research Center
at Stanford Research Institute, University of California, Santa Barbara (UCSB)
and University of Utah. After this attempt succeeded in 1969, experts realized
how much potential this interconnection medium can have. Therefore researchers
started to extend this medium, leading to the extensive heterogeneous intercon-
nected networks of these days. The main evolutions in the Internet involve in-
creased efficiency, automated control, scaling and resiliency. Improved Internet
routing and scalable virtualization of Internet services enable such evolutions.
These are two aspects of the future Internet which are investigated in this thesis.

With the ever-increasing bandwidth demands and the exponential growth of the
network, providing scalable and dynamic routing in the Internet becomes signif-
icantly challenging. Prominent research efforts have been made to find solutions
to meet the high expectation of today’s demands. However, these efforts mainly
led to incremental and patch solutions which were proved to be insufficient. As
a result, new clean-slate approaches have been emerging in the recent years. Ge-
ometric routing is one of these approaches, which intends to solve the scalability
limitation of routing in the Internet. In this routing network nodes are assigned
coordinates in a metric space. Knowing the coordinates of the neighbors, a node
forwards the incoming traffic to the neighbor which decreases the distance towards
the intended destination. This is referred to as greedy forwarding.

In this dissertation, first the complex network structure of the Internet is exam-
ined and the applicability of geometric routing to the inter-domain setting in the

xxxii SUMMARY

Internet is investigated. Since the Internet is large and dynamic in nature, scala-
bility and dynamicity/adaptivity of the corresponding routing mechanisms are in-
dispensable. Therefore, in evolving towards a future Internet, this research aims at
providing a scalable resilient geometric routing scheme for inter-domain routing.

In this research, resiliency against single and multiple link failures in geomet-
ric routing is investigated. Different recovery methods are proposed which can be
used as both protection and restoration mechanisms. In protection, the recovery
paths are calculated and signaled pro-actively before any failure in the network.
In restoration, recovery paths are established after the detection of a failure. Both
techniques have advantages and negative points. While protection techniques en-
able fast failure recovery, the backup capacity, which should be reserved in ad-
vance, is quite high. On the other hand, restoration techniques provide more flexi-
bility in dealing with network failures at the cost of slower failure recovery. Single
failures are handled by applying a breadth-first search, looking for intermediate
nodes which enable greedy forwarding towards the destination. The suitable in-
termediate node is queried for its coordinate. This is then used by the packets to
bypass the failing link. In order to deal with multiple failures, disjoint backup
paths are found for each link individually. Through experiments, the scalability of
the proposed mechanisms and their limited resource requirements are confirmed.
The schemes scale with the number of edges in the spanning tree of the network
and the memory requirement in each node is proportional to its degree. Moreover,
the performance of the routing in terms of stretch (i.e. deviation from the shortest
path length) is improved compared to the existing alternatives.

In the first studies, we rely on an existing method to assign coordinates to net-
work nodes in the hyperbolic plane. Since this method is quite complex, we pro-
pose a simple but efficient approach which relies on a spanning tree of the network.
In this scheme, the location of the nodes in the tree determines their coordinate.
We then propose a distributed algorithm to calculate these coordinates. Relying on
the proposed protection mechanisms, pre-calculated backup paths are used upon
failure occurrence. Although these mechanisms lead to a very fast failure recovery,
the routing quality in terms of stretch is negatively impacted. To address this issue
and in order to cope with different types of network dynamics, including node/link
addition/removal, the algorithm is extended with a mechanism which triggers tree
re-calculation upon network changes. This way the routing adapts to the new state
of the network. As a result, the performance loss in routing stretch diminishes.

While geometric routing improves the scalability in terms of memory require-
ment in the routers, it introduces new challenges in the recovery domain. Network
dynamics/failures, impacting the spanning tree used for coordinate calculation,
may lead to global changes in the network. This is significantly dependent on
the location of the failure. The closer the failure to the root of the tree, the more
nodes are impacted and require coordinate re-calculation. However, tree leaves
failure result in very limited local changes. In spite of the large number of affected
nodes, the recovery time is quite low. A prototype implementation of the proposed
algorithm is provided which has been successfully demonstrated in the Internet
Engineering Task Force (IETF) 90 Bits-N-Bites event.

SUMMARY xxxiii

In addition to resiliency, the research investigates the scalability and efficiency
aspects of geometric routing. This is examined by applying the proposed geo-
metric routing scheme on very large-scale network topologies with characteristics
similar to the Internet. The outcomes are compared with another scheme which
relies on coordinates in the hyperbolic plane. The efficiency and scalability of the
scheme is indicated by the low routing stretch, the very limited required resources
for implementing the network component and the low memory requirement for
coordinate presentation.

As previous parts relate to the Internet routing, based on the experiments and
analytical studies performed so far, we give an overview of the existing routing
schemes (both traditional and clean-slate approaches). This overview enables a
more careful conclusion regarding applicability of geometric routing to large-scale
inter-domain settings. While the documented research illustrates the memory-
advantage/scalability of the proposed geometric routing scheme, it indicates new
trade-offs between the convergence trend and routing quality in the recovery do-
main. Another main outcome is that geometric routing and most of the clean-slate
approaches improve performance at the cost of decreasing functionality. For ex-
ample in geometric routing, the memory scalability is improved but routing policy,
as in the current Internet routing, is not supported.

Based on the discovered open challenges, we provide a guideline for future
research directions. These future directions include: i) support for routing policy
in geometric routing, ii) providing a mapping system to bind nodes identifier to
coordinates, iii) security concerns and iv) transition to geometric routing.

As a second aspect of future Internet, this thesis investigates the problem of
service provisioning in virtualized telecom networks. Traditionally, a service com-
posed of several network functions is implemented by middleboxes and dedicated
hardware. Examples of network functions include firewall, network address trans-
lator and intrusion detection system. Exploiting network virtualization, these net-
work functions can now be implemented in software and be deployed anywhere in
the network on general purpose hardware. This is referred to as Network Function
Virtualization (NFV). NFV has provided new opportunities for telecom operators,
as novel services can be deployed rapidly with a very low cost. However, new chal-
lenges are also introduced on where to place the virtualized network functions of
a service. The latter may become quite complex since a large monolithic network
function may be decomposed into smaller network function blocks or it can be
realized in multiple ways with different implementations. For instance, a ‘parental
control’ network function can be decomposed to 3 less complex network func-
tions: i) traffic classifier, ii) web proxy and iii) firewall. This process is referred to
as service decomposition.

In this research, we take service decomposition into account at the time of ser-
vice placement/embedding and thus, joint optimization of service decomposition
and embedding is investigated. Two novel approaches are proposed. One finds the
optimal solution relying on Integer Linear Programming (ILP) formulation. The
other one provides a heuristic approach to solve scalability limitation of ILP. The
latter is composed of two phases: i) decomposition selection and ii) backtracking-

xxxiv SUMMARY

based mapping/embedding. These approaches target minimizing the mapping cost
by reducing the consumed resources. Relying on the proposed schemes, an opti-
mized fine-granular decomposition of network functions in a service and related
embedding in the network are achieved. The efficiency of the schemes is iden-
tified by high acceptance ratio (the ratio between the number of services which
are successfully mapped to the network and the total number of services) and low
embedding cost.

In realistic telecom network scenarios, the number of network components
which should be considered in the embedding problem simply goes beyond ten
thousands. Having such a large number of resource elements, order of thousands
of services on a daily basis and multiple realization options for each service, a
scalable architecture for service provisioning is essential. Relying on a proof of
concept prototype which implements the proposed embedding algorithm, we iden-
tify the major time consuming blocks. These blocks are related to: i) retrieving all
decompositions for a service from a database, ii) selecting a suitable decomposi-
tion and iii) embedding the selected decomposition. Based on these blocks, several
architectural enhancements are proposed to achieve a more scalable service provi-
sioning framework. Changing the embedding algorithm to a distributed or hierar-
chical approach are two solutions which can provide a more scalable framework.
These are interesting research directions which require further investigation.

1
Introduction

The Internet is a massive dynamic collection of interconnected heterogeneous net-
works. It is used as the fundamental medium to connect different interested parties
enabling them to communicate. Although the current Internet works and success-
fully meets its responsibilities, it was not initially designed for the high demands of
these days. Consequently, it is being more and more challenged by the exponential
expansion of the network, the ever-increasing communication demands with high
expectation in terms of performance and capacity. Therefore, Internet has been
the subject of research for decades to fulfill the ever-increasing future demands.
The main evolutions in the Internet are related to resiliency, scaling and automated
control. An improved Internet routing and scalable virtualization of Internet ser-
vices enable such evolutions and increase efficiency for the future Internet. These
are two aspects which are investigated in this PhD research.

First, we focus on future network architectures and novel routing algorithms1.
We perform research on how they can be adapted to satisfy the future communica-
tion requirements. Particularly we aim at scalable routing algorithms with recovery
techniques to provide resiliency against failures in the network.

Next, we focus on service provisioning in virtualized telecom networks. The
rise of network virtualization has introduced new opportunities for telecom opera-
tors. It enables rapid and dynamic service provisioning at a low cost. Services are
conventionally provided through dedicated hardware and middleboxes. Exploit-
ing different virtualization techniques, these services can be deployed on general

1Routing refers to the process of finding a path from one point in the network to another.

2 CHAPTER 1

purpose hardware in different parts of the network. This reduces the cost and com-
plexity of network design, while increasing flexibility and scalability of service
provisioning. In this doctoral dissertation, we explore service orchestration2 in
virtualized telecom networks. Scalable service orchestration frameworks are in-
vestigated and optimized placement algorithms for virtualized network functions
composing a service are designed.

This chapter presents the required background concepts related to the research
topics explored in this thesis (Section 1.1). It indicates the major challenges corre-
sponding to each topic (Section 1.2 and Section 1.3) and provides an overview of
the performed research contributions (Section 1.4). The chapter is concluded with
the list of publications which resulted from this PhD Research (Section 1.5).

1.1 Background on communication network
This section presents the background to the concepts which are important for de-
signing network architecture and routing algorithms for future Internet. First we
present an overview of the current Internet infrastructure. The network layering
model is described next and then the addressing schemes and routing protocols
used in the Internet are detailed. We then present a formal terminology regarding
recovery and introduce reliability performance concepts.

1.1.1 Internet network infrastructure

The Internet network infrastructure can be divided into several network segments
as depicted in Fig. 1.1. These segments are as follows:

• Home/enterprise networks
Home (or small enterprise) networks are networks of a limited number of
end-users, personal computers or other devices which are connected via a
wired or a wireless Local Area Network (LAN). The speed of these small-
scale networks can be up to 100 Gb/s [1] while a higher speed is expected
to be achieved in the future.

• Access networks
These networks connect up to thousand(s) of home/enterprise networks to
the Internet. They typically have a tree-like structure or sometimes a ring
structure when redundancy is required (e.g. for business users). The scale
of these networks is quite larger than home networks, as they usually span a
village or city. The typical speed that can be achieved in these networks is
between 100 Mb/s and 1 Gb/s per end user.

2Service orchestration refers to the process of deploying a set of virtual or physical network func-
tions composing a service.

INTRODUCTION 3

R
es

id
en

tia
l

M
ob

ile

B
us

in
es

s
C

or
po

ra
tio

n

R
es

id
en

tia
l

H
om

e/
En

te
rp

ris
e

N
et

w
or

k
A

cc
es

s N
et

w
or

k

A
gg
re
ga
tio
n

N
et
w
or
k

B
us

in
es

s
C

or
po

ra
tio

n

C
am

pu
s N

et
w

or
k

(o
r D

at
a

C
en

te
r)

C
or
e

N
et
w
or
k

B
as

e
St

at
io

n

Fi
be

r

D
SL

/C
ab

le
A

cc
es

s

Figure 1.1: Overview of Internet infrastructure segments

4 CHAPTER 1

• Aggregation or metro networks
These networks connect cities or larger areas within a city in a slightly
meshed network and normally span up to 50 km. They typically rely on
a ring or star structure to interconnect access networks. Their role is to ag-
gregate the traffic of access networks towards the core network. The speed
in these networks is up to 10 Gb/s.

• Core or backbone network
The aggregation networks are interconnected to form the core of the Inter-
net. The core network creates a large meshed topology of around 60 K
Autonomous Systems (AS), which connects countries and continents at far
distance (i.e., hundreds of kilometers). The ASes form the main structure of
the Internet. Each AS is controlled by a common administrator (or group of
administrators) on behalf of a single party (e.g., a university or a business
enterprise). ASes are also known as routing domains. The size of each AS
can range between ten to thousands of nodes. The high speeds of 100 Gb/s
is achieved in these networks [2]. The focus of this research is mainly on
the core network, related challenges and advances.

• Campus networks/ data centers
Large campus networks are generally managed by some universities or en-
terprises which are composed of up to thousands of nodes [3]. Both campus
networks and data centers [4] are connected directly to the core network or
aggregation networks.

1.1.2 Network layering and technology overview

In a communication network generally a layered model is used. This allows to
describe how the different software and hardware components, involved in the
network, should divide the work and interact with each other. In this model, each
layer provides services to the higher layer. There exist two models for describing
the Internet structure: i) Open Systems Interconnection (OSI) and ii) Transmis-
sion Control Protocol/Internet Protocol (TCP/IP). OSI is a reference model created
by the International Organization for Standardization (ISO) to develop network-
ing protocol standards. TCP/IP was developed earlier as the outcome of research
and development conducted by the Defense Advanced Research Projects Agency
(DARPA). There is not a 1-to-1 mapping between the layers of the two models.
However, there is no conflict between them either (see Fig. 1.2). As depicted in
Fig. 1.2, the presentation and session layers of the OSI model are absent in the
TCP/IP model. The functionality of these two layers are mainly performed by
the application layer of the TCP/IP model. Additionally the functionality of the
data link and physical layers of OSI model are merged into one layer i.e., host-to-

INTRODUCTION 5

Application

Presentation

Session

Transport

Network

Data Link

Physical

Transport

Application

Network

Host-to-Network

TCP, UDP

HTTP, SMTP,
Telnet, NTP,
DHCP, PING

IP, ARP, ICMP, IGMP

Ethernet

OSITCP/IP

Figure 1.2: Layered models of the Internet and example protocols

network layer in TCP/IP. Below, we explain the main layers of these models with
their related technologies.

• The application layer defines different services which are required to run the
users applications. Examples include Hypertext Transfer Protocol (HTTP)
and Simple Mail Transfer Protocol (SMTP) protocols which allow web-
browsing and e-mail.

• The transport layer is responsible for reliable end-to-end communication be-
tween the end-hosts. The two known protocols for this layer are Transmis-
sion Control Protocol (TCP) and User Datagram Protocol (UDP). TCP pro-
vides a reliable connection-oriented service with congestion control while
UDP services are connection-less without congestion control and guaran-
teed delivery. In connection-oriented networks, first a connection is es-
tablished between the source and the destination node. This can be done
by manual configuration or through a handshaking process. All the data
which goes through this connection is treated the same way. In contrast,
connection-less networks do not create any connection in advance. Each in-
termediate node handles the receiving data based on local decisions. In this
case, the source does not monitor the data delivery to the destination.

• The network layer includes the Internet Protocol (IP) [5]. The main respon-
sibility of this layer is to: i) provide connection-less connectivity between
end-hosts, ii) provide addressing of the nodes in the network and iii) find a

6 CHAPTER 1

path between source and destination nodes (routing) and forward messages
efficiently.

• The data link layer ensures reliable connectivity (enable error control) be-
tween a limited number of network nodes within a same segment. Example
protocols for this layer are Ethernet IEEE 802.2 framing and Point to Point
Protocol (PPP) framing.

• Finally the physical transmission of the data over a given medium such as
twisted pair cable, coaxial cable or optical fiber is managed by the physical
layer.

Example protocols of each layer are depicted in Fig. 1.2. The focus of this
research is mainly on the network layer and related protocols. Therefore in the
following subsection, IP [5] as the fundamental protocol in this layer is detailed.

Data plane vs. control plane. These planes of operation are the building
blocks of today’s network layered architecture. The data plane is responsible
for transporting the end-user data in the network. All the functionality of packet
header parsing, packet queuing, scheduling, filtering, encapsulations and forward-
ing are abstracted into the data or forwarding plane. In addition to the end-user
data, control-related data should be exchanged in the network. Functionality such
as system configuration, exchange of routing table information and creating for-
warding tables for the data plane is handled by the control plane.

1.1.2.1 IP routing

Routing is the process of finding paths between connected networks and is the pri-
mary function of the Internet Protocol (IP)3. In IP-based networks the end-users
data traffic is split into packets which are called IP datagrams. Each IP datagram
contains a source and a destination IP address, which indicate the address of send-
ing host and receiving host, respectively. These addresses are used to route the
data through the network. In IP-based networks, different network segments are
interconnected by IP routers. These routers process incoming datagrams and pass
them from one network segment to another based on the destination IP address
(see Fig. 1.3). The connectivity achieved by IP-based networks is known to be
one of the most scalable network layer technologies available today. It is used to
interconnect enterprise networks, and also the Internet backbone.

Addressing and forwarding. IP-based networks rely on IP addresses to route
datagrams across the network. The functionality of an IP address is twofold. It
is used for both identification and location of network nodes. In the IPv4 [5]
addressing scheme, each interface in the network which interconnects end users to

3IPv4 [5] or IPv6 [6]

INTRODUCTION 7

IP router

IP router
Other

networks

Other
networksNetwork 1

Network 2

Network 3

Figure 1.3: Example of an IP network. Different network segments are interconnected by
IP routers.

routers is assigned a 32-bit binary identifier. To represent these addresses, typically
a dot-notation is used. It splits the address into four numbers between 0 and 255,
each separated by a dot (e.g., 192.168.56.2).

The total number of IPv4 addresses ranges between 0.0.0.0 and 255.255.255.255
which leads to 28×4 possible addresses. While this seems a large number, it is no
longer enough to address all the devices connected to the Internet. Therefore an-
other type of address format, i.e., IPv6, is proposed to solve this limitation. IPv6
address format is quite different from IPv4. It consists of 128 bits instead of 32.
It is represented by 8 sets of 4 hexadecimal digits which are separated by colons
(e.g., 2001:0000:9d38:6ab8:2047:1a74:53ed:977b). It is assumed that IPv6 ad-
dresses will be sufficient for a long time in the future. In this thesis, we mainly
focus on IPv4.

There are two schemes in IPv4 addressing: i) classful and ii) classless address-
ing. Originally all IP addresses were classful. This means that they belonged to
Class A, B, C, D or E. Class D is used for multicast and class E contains the
reserved addresses mainly for experimental and future use. IP addresses can be
clustered into subnets. This is indicated by the network (prefix) part of the ad-
dress which is a fixed number of leftmost bits. The rest of the bits in the address
identify the host (or node) within that subnet. In classful addressing, the network
size and the host size are fixed. These fixed boundaries greatly limit the flexibility
and number of addresses that can be assigned. As a result, Classless Inter-Domain
Routing (CIDR) [7] was introduced. In CIDR the prefix can have any arbitrary
length and it is denoted with a slash (/) followed by the length in bits. For in-
stance, 192.168.56.2/24 means that the leftmost 24 bits are used to indicate the
prefix and the remaining 8 bits are used for host identification.

8 CHAPTER 1

In IP routers, incoming datagrams are forwarded based on their destination IP
address. To enable this each router stores a forwarding table,4 indicating where to
send each packet. The concept of prefixes in the IP addresses enables routers to
reduce the number of forwarding entries. This is possible because IP addresses are
assigned in continuous blocks and a router can typically reach a whole subnet via a
single interface. Therefore, instead of storing an individual IP address per destina-
tion in the forwarding table, it is enough to store only the corresponding prefix to
reach the whole network segment covered by that prefix. In this case, forwarding
is based on prefix matching of the destination address’s IP prefix in the incoming
packet and forwarding table entries. In practice it is possible that in the Internet
the prefixes overlap (because CIDR is used everywhere in the network). Therefore
for an incoming packet, the destination address’s IP prefix may match multiple
prefix entries in the Forwarding Information Base (FIB). For example, consider
the forwarding table in Fig. 1.4. In this table, IP addresses from 192.24.12.0 to
192.24.15.255 overlap which means that they are matched with both prefixes in
the table.

Prefix Next hop

192.24.0.0/18 D

192.24.12.0/22 B

Figure 1.4: Example of IP forwarding table

In order to forward packets efficiently in the above situation, the routers use
Longest Prefix Match (LPM) algorithm. This algorithm finds the entry in ta-
ble which has the longest prefix, matching with the destination IP address of
the incoming packet. The packet is then forwarded to the corresponding next
hop. In this example, all the packets in the overlapping range (i.e., 192.24.12.0
to 192.24.15.255) are forwarded to the next hop B, since the entry 192.24.12.0/22
has a longer prefix match (22 bits). Although LPM enables efficient handling of
the above situation, the existence of such additional routes increases the number
of entries in the router’s forwarding table. There are several reasons for the ex-
istence of these longer prefixes in the network. An organization may advertise
more-specific routes (i.e., longer prefixes) in addition to less-specific ones for the
sake of traffic engineering or other specific routing policy. Besides, large organi-
zations may be given large blocks of IP prefixes. The organizations may split the
large prefix block into smaller ranges to assign to their different sites around the
world. As a result, there is no relation/pattern between the assigned IP prefixes and
their location in the network topology. This is referred to as route disaggregation
or de-aggregation. The selective advertisement of a few more-specific routes may

4Also known as Forwarding Information Base (FIB)

INTRODUCTION 9

Routing Protocols

Interior Gateway Protocols
(IGPs)

Exterior Gateway Protocols
(EGPs)

Link-State
Routing Protocols

Distance Vector
Routing Protocols

Path-Vector
Routing Protocols

RIPv1 IGRP

RIPv2 EIGRP OSPF IS-IS BGP

Figure 1.5: Hierarchical classification of routing protocols

be required for some network architectures and can be tolerated. However, exces-
sive disaggregation by organizations is discouraged as it leads to serious scalability
issues in the forwarding tables of the backbone routers.

IP routing protocols. IP routing protocols enable routers to build up their for-
warding tables that relate final destinations with next hop addresses. These proto-
cols enable exchanging topology or routing information with immediate neighbors
and over the network. This is used by the routers to derive paths or next hops to-
wards destinations in different segments of the network. Routing protocols can be
classified into several groups depending on their characteristics and scope. Fig. 1.5
illustrates a hierarchical view of routing protocols classification with example pro-
tocols.

Due to the large scale of the Internet, routing protocols are only responsible for
certain parts of the network. Based on the scope of the protocols they are catego-
rized as: i) Interior Gateway Protocols (IGPs) and ii) Exterior Gateway Protocols
(EGPs). IGP is used for routing within a single domain (intra-AS routing) while
EGP is used for routing between ASes (inter-AS routing). After this categoriza-
tion, routing protocols can be classified based on their operation. There are three
major classes which are widely used in IP networks.

• Link-state routing protocols

10 CHAPTER 1

AS-1
(EIGRP)

AS-2
(IS-IS)

AS-3
(OSPF)

AS-4
(OSPF)

AS-5
(RIP)

BGP

BGP BGP

BGP

BGP

BGP

BGP

Figure 1.6: Inter-AS and intra-AS routing

In these protocols, each router distributes information about the router, its
directly connected links and their state to all the routers in the network.
Routers receiving this information can obtain the full picture of network
topology. Therefore, each router can calculate the best path to the des-
tination. These protocols rely on a Shortest Path First algorithm such as
Dijkstra or Bellman-Ford. In case of a change in a link’s state, a routing up-
date referred to as Link-State Advertisement (LSA) is exchanged between
routers. Upon arrival of a LSA, the router re-calculates the shortest path
to the destinations which are affected. Example protocols include Open-
shortest Path First (OSPF [8]) and Intermediate System to Intermediate Sys-
tem (IS-IS [9]).

• Distance-vector routing protocols
In contrast to link-state routing protocols, a router running a distance-vector
routing protocol does not have a full view of the network topology. These
protocols base their decisions on two characteristics, distance and vector.
Distance indicates how far the destination network is and the metric can be
hop count, cost, bandwidth, delay, etc. Vector identifies the direction of the
next-hop to reach the destination. In these protocols each router sends its en-
tire routing table to its directly connected neighbors. Based on this received
information, the route with the minimum distance to a given destination net-

INTRODUCTION 11

Peer 1

Peer n

Inbound filter
peer 1

Inbound filter
peer n

RIB

Decision process

FIB

Outbound filter
peer 1

Outbound filter
peer 2

Peer 1

Peer n

Inbound reception
and filtering

Outbound reception
and filtering

Figure 1.7: Routing information process in BGP routing engine

work is selected. Routing Information Protocol (RIP [10], [11], [12]), Inte-
rior Gateway Routing Protocol (IGRP [13]) and Enhanced Interior Gateway
Routing Protocol (EIGRP [14]) are protocols in this category.

• Path-vector routing protocols
These protocols can be considered as the extension of distance-vector rout-
ing protocols. Instead of distributing only distance metric per destination
network, the entire path to the destination is advertised. This way each
router can simply detect a loop and avoid long convergences. Similar to
distance-vector protocols, the routers do not have the full view of the net-
work. Additionally these protocols enable routers to apply their local poli-
cies in selection of the paths and advertising them. Border Gateway Protocol
(BGP) [15] is a routing protocol in this category.

As depicted in Fig. 1.5 both link-state and distance-vector routing protocols
are considered as IGPs while path-vector routing is an EGP. Fig. 1.6 illustrates a
simple scenario highlighting the deployment of IGPs and EGPs. Note that there is
only one protocol available for EGP which is BGP [15]. The focus of this thesis is
on inter-domain routing in the core of the Internet. Therefore, we explain BGP in
more detail.

Border Gateway Protocol (BGP). Each AS owns one or more border gate-
ways that are connected in a peering relationship with other gateways. BGP is
the protocol driving the routing between these routers. In order to discover neigh-
boring ASes, a router running BGP receives routing information (aka BGP up-
dates) from its neighbors. Update messages include Autonomous System Num-
bers (ASNs) and network prefixes reachable through those ASes. These updates
are filtered in the router (e.g., to avoid loops) and stored in the Routing Infor-
mation Base (RIB). RIB can be considered as the BGP update cache. The latter
means that the routing information is stored but not necessarily used. As a result, it
is possible that RIB contains multiple paths towards a destination. Next, the router
should decide on the best route. This is performed by the BGP decision process.
The selected route is added to the routers forwarding table (FIB). The entries in

12 CHAPTER 1

FIB are used for actual forwarding of the incoming traffic. The BGP decision pro-
cess enables applying a local policy in each router by giving different priorities to
different paths, received for a single destination, and selecting the most preferred
one. Similarly a router can decide which routes to advertise to other neighboring
routers. Fig. 1.7 provides the explained routing information process flow in a BGP
routing engine.

Being the only routing protocol used for inter-AS routing, BGP faces several
issues including the scalability of backbone routing tables, path instability and
slow convergence [16]. These challenges are further detailed in Section 1.2.

1.1.3 Network recovery

Communication networks can be affected by a wide range of unintentional fail-
ures such as natural disasters (e.g., earthquakes and floods), human errors, soft-
ware/hardware bugs or intentional failures due to maintenance actions or sabotage.
Since these networks have an essential role in our social and economical activities,
their interruption can cause severe damages. Network recovery refers to any action
which brings a network to an operational state after failure.

In this context, reliability of a network element (e.g., a node or link) is de-
fined as the probability of that element to be operational for a certain time frame.
Availability refers to the probability that the element is in a functional state at any
arbitrary time. Knowing the availability of network elements and assuming that
these probabilities are mutually independent, the availability of a network path
can simply be calculated by the product of the availability of the elements along
the path. The availability of an element can be calculated based on mean time
between failures (MTBF) and the mean time to repair (MTTR) of that element.
MTBF refers to the average time between two consecutive failures of the element.
MTTR is defined as the average time needed to restore the failing element. Using
these parameters the availability of an element is defined as:

A = 1− MTTR

MTBF

Five nine availability is the gold standard for telecommunication network com-
ponents. This is typically used as a benchmark which means that only 5 minutes
of network interruption is acceptable in a year.

In carrier-grade5 networks, it is expected that the failure recovery time is ap-
proximately 50 ms. This means that the network should recover from a failure
within this time.

5This term is used to refer to an extremely reliable and well-tested system or component.

INTRODUCTION 13

a d

f

b c

g e

End-to-end recovery

a d

f

b c

g e

Link recovery

a d

f

b c

g e

Node recovery

Secondary path

Primary path

Figure 1.8: Example of end-to-end, link and node failure recovery

14 CHAPTER 1

1.1.3.1 Recovery scope

The scope of the recovery can be global or local. Global refers to an end-to-end
recovery in which a disjoint path is required for recovery provisioning. Local refers
to both segment and link/node recovery in which the failing element/segment is
bypassed by a local alternative path. The end-to-end and link/node recovery are
depicted in Fig. 1.8. In the first figure on top, an end-to-end recovery is provided by
an alternate disjoint path from ‘a’ to ‘d’. In the other two figures, the link and node
failure are recovered by a local path from ‘a’ to ‘g’ and ‘g’ to ‘e’ respectively. A
recovery scheme provides two types of paths: i) working (primary) and ii) backup
(secondary). Working path is used in case of normal operation when there is no
failure in the network. Backup path is used upon occurrence of a failure in the
working path.

1.1.3.2 Restoration

Restoration refers to a reactive strategy in which a backup path is finalized after the
occurrence of a failure. Restoration techniques can be quite flexible with regard
to failure scenarios while less backup capacity needs to be reserved in advance.
However, the downside of these techniques is that it may take quite some time
(i.e., order of seconds) to finalize the backup paths upon failure occurrence.

1.1.3.3 Protection

In contrast to restoration, protection is a proactive strategy in which backup paths
are pre-planned and fully signaled before any failure in the network. Therefore
upon occurrence of a failure, the backup paths can immediately be used without
any additional signaling to establish them. This leads to a quite fast recovery
while more resources should be reserved in advance. The recovery time in case of
protection is in the order of milliseconds.

There are different variants of protection mechanism depending on the number
of backup paths protecting a certain number of working ones.

• 1+1 protection
This refers to a dedicated protection mechanism in which one backup path
protects exactly one working path and traffic is duplicated on both paths. In
this case no extra traffic is transmitted over the backup path.

• 1:1 protection
This is also a dedicated backup path per working path. However, in case
there is no failure in the network only the working path is used to send the
traffic. Therefore, extra traffic can be sent over the backup path. In case of a
failure, the traffic in the affected path is switched to the backup path.

INTRODUCTION 15

700000

600000

500000

400000

300000

200000

100000

0

A
ct

iv
e

BG
P

en
tr

ie
s

(F
IB

)

89 959493929190 96 020100999897 03 090807060504 10 161514131211

Date

Figure 1.9: Number of active BGP entries in FIB in different years up to 2016, [17]

• 1:N protection
In this case one backup path is used for protection of N working paths and
the backup path can carry extra traffic in case of no failure.

• M : N protection
This refers to mechanisms in which M backup paths protect N working paths
and extra traffic is transmitted in the backup paths in failure-free scenarios.

1.2 The challenge of Internet routing

BGP as the fundamental inter-domain routing protocol in the Internet is signif-
icantly challenged by the increasing number of routers, ASes and routes. The
linear increase of the number of ASes leads to enormous increase of BGP routing
table entries. The reason is that each node should store so many routes in the net-
work (e.g. due to the existence of shorter paths to smaller subnets as explained in
Section 1.1). Fig. 1.9 depicts the number of active BGP entries in different years
for an AS [17]. This extensive growth in the number of entries raises a severe
scalability issue in terms of memory requirements of BGP routers.

The next issue is that BGP is subject to the path exploration phenomenon. This
means that BGP routers may announce a route as valid although it is affected by
a failure. The root cause of this is the dependency between routes propagated
through the network. When a previously announced route is withdrawn, the other
dependent routes may still be chosen and announced. These routes are withdrawn

16 CHAPTER 1

later with the subsequent update messages. However, such a phenomenon leads
to a significant increase in the number of update messages received by the routers.
Path instability is another issue which is challenging the BGP routing. The issue
is that routing tables should be frequently updated to adapt to network dynam-
ics including link failures, new nodes joining or routers rebooting. This causes
route flapping which means that the route to a destination in the network changes
rapidly. This leads to continuous route addition (removal) to (from) the routing
table. Route dampening is a mechanism to suppress flapping routes instead of
advertising them. However, such mechanisms negatively impact the BGP con-
vergence behavior. Both path exploration and route dampening lead to very high
convergence time in BGP which has been shown to be in the order of minutes [18].

Several improvements to BGP have been proposed over the last twenty years.
Enhanced path vector routing protocol (EPIC) annotates the AS paths with ad-
ditional ‘path dependency’ information to reduce convergence time [19]. BGP
with Root Cause Notification reduces the convergence time by announcing the
root cause of a link failure location [20]. Path Exploration Damping augments
BGP for selectively damping the propagation of path exploration updates [21].
New route selection schemes are proposed to improve route stability in BGP [22].
Most of these improvements relate to BGP dynamic properties and do not address
scalability issue in BGP.

In spite of these prominent research efforts for improving/extending BGP, a
suitable alternative is still missing. The reason is that the design of these rout-
ing systems tends to follow the exact same approach as the one pursued by BGP.
Therefore, it is important to consider clean-slate approaches for designing new
routing paradigms. Geometric routing is an alternative paradigm to solve the scal-
ability limitation caused by IP routing. This routing is explained in the following
subsection.

1.2.1 Geometric routing

Geometric routing has been proposed as an alternative to conventional LPM-based
IP routing. It is used to address the scalability limitation in terms of memory re-
quirement of forwarding tables. In geometric routing, every node in the network
is assigned a specific coordinate in a metric space. These coordinates will be used
as basis for making routing decisions. They are used by the routers to choose the
next hop for sending the incoming packets. To do this, they rely on a distance
metric present in the space. Every router, knowing the coordinates of its neigh-
bors, forwards the incoming packets to a neighbor which is closer to the intended
destination in terms of distance in the metric space. In this routing, the forwarding
decision is only based on local information (i.e., coordinates of neighbors). An
example of geometric routing is illustrated in Fig. 1.10.

INTRODUCTION 17

Destination

S’’

S’
Neighbor of source closest to the destination

Path generated by
geometric routing

Figure 1.10: Example of geometric routing

Geometric routing was initially proposed for ad-hoc wireless networks and
Wireless Sensor Networks (WSNs). In such environments routers have limited
battery power and storage. Therefore, the forwarding decision should be inexpen-
sive in terms of computation with low state requirements. Although geometric
routing was investigated intensively in wireless networks, its application to wired
networks and inter-domain settings, which have very different characteristics com-
pared to wireless networks, remained mainly unexplored. This is the focus of this
thesis.

1.2.1.1 Addressing and forwarding

Forwarding in geometric routing relies on network node coordinates. Coordinates
are different from IP addresses since they only serve as locators. IP addresses
fulfill both roles of identification and location. The impact of separation of these
two roles on different aspects of routing (e.g. scalability) is an interesting research
topic. This has been investigated vastly in researches related to Locator/Identifier
Separation Protocol (LISP) [23] and Host Identity Protocol (HIP) [24].

There are two types of coordinates used in geometric routing:

• Physical coordinates
Physical location of the nodes can be used as their coordinates. Thus an
obvious and straightforward choice is to attach Global Positioning Systems
(GPS) coordinates to each node [25].

• Virtual coordinates
Since physical locations may be unavailable and also it is not guaranteed that
every node has a GPS-like system, virtual coordinates have been introduced
[26]. This way nodes are assigned virtual coordinates in a metric space (e.g.,

18 CHAPTER 1

d

c

e

b f

a

(0.5, 0.4)

(0.4, 1.1)

(1.3, 1.8) (2.1, 1.8)

(1.8, 0.8)

(0.8, 2.4)

X

Y

Figure 1.11: Example of greedy forwarding in Euclidean space. (x,y) are the virtual
coordinates of the nodes.

Euclidean or Hyperbolic space). This can be considered as a generalization
of the physical ones.

Through exchanging messages, nodes inform their neighbors about their coor-
dinates. Upon arrival of such messages, each node can deduce a table referred to
as neighbor table which contains the neighbors’ coordinates. Since the number of
neighbors is limited, the memory requirements of the routers are limited as well.

In geometric routing, forwarding is based on a distance-decreasing policy. In
order to forward a packet towards its intended destination, the packet should con-
tain the coordinate of the destination. Knowing the coordinates of the neighbors,
upon arrival of a packet, the distance between every neighbor and the packet’s
destination is calculated. The neighbor which decreases the distance the most is
selected as the next hop. This is referred to as greedy routing or forwarding. An
example of greedy forwarding in Euclidean space is given in Fig. 1.11. Starting
from node ‘d’ towards ‘a’, first the Euclidean distance between the neighbors of
‘d’ and ‘a’ is calculated. In this example, node ‘c’ is closer to ‘a’ compared to ‘e’.
Therefore, node ‘c’ is selected as the next hop. The same calculation is performed
in nodes ‘c’ and ‘b’ until node ‘a’ is reached.

A major limitation in greedy forwarding is that following the distance-decreasing
policy, the packets may get stuck in a local minimum (or void). This means that
the current node is the closest node to the destination among its neighbors. This
is illustrated in Fig. 1.12 where ‘S’ is the closest node to ‘D’ compared to the two
neighbors. In this example, forwarding the packets to any neighbors of node ‘S’
does not decrease the distance towards node ‘D’. Therefore, greedy forwarding is
not feasible.

INTRODUCTION 19

S

D

Local minimum

Figure 1.12: Example of local minimum

This has led to the introduction of greedy embeddings [27]. In a formal way
a greedy embedding for a given graph G(V,E) into a metric space X , is a func-
tion from V (G) to X in such a way that for every graph node s 6= t, s has a
neighbor u which decreases the distance towards t in metric space X . The em-
bedding is called greedy because greedy routing based on the coordinates, derived
from such an embedding, successfully reaches the intended destination. In this
embedding, coordinates are assigned in such a way that for every node there is al-
ways a distance-decreasing neighbor towards any destination in the network. This
way, in every step, a packet gets closer to its intended destination. Therefore, the
destination can always be reached, as no local minimum exists. This is a signif-
icant concept as successful packet delivery is one of the essentials of the Internet
backbone.

1.2.2 Research challenges in geometric routing

Most of the existing research on geometric routing focuses on WSNs, as geometric
routing was initially proposed for such networks. The first part of this dissertation
investigates the application of this routing on network topologies resembling the
Internet backbone. Although introducing this routing in the Internet backbone may
solve scalability in terms of memory requirements, it introduces new challenges in
coping with dynamics such as network failures and coordinate changes. There-
fore, the main contribution of this dissertation is to design a scalable and resilient
geometric routing scheme. Different recovery mechanisms (i.e., protection and
restoration) for geometric routing are proposed and a scalable greedy embedding
with the related greedy forwarder are designed in this work.

20 CHAPTER 1

1.3 The challenge of telecom virtualization

In recent years, cloud services and cloud networking have been an active research
field, gaining massive attention from both providers and customers. From a cus-
tomer perspective, cloud services reduce the cost while more flexible control of
resources is achieved. Such flexibility and better control of resources is enabled
by virtualizing the provider’s resources. Virtualization is one of the main innova-
tions of these days. It has been used for node processing and storage resources
over the last years and it is now extending into the network. Virtualization de-
couples the services from the limitations of the underlying physical infrastructure.
This provides more flexibility for deploying various services while simplifying the
network management. This flexibility enables steering traffic where it needs to
go (through certain network functions). Therefore, network resources which do
not add value to certain traffic are released. These resources are used exclusively
for traffics which do need them. From a provider perspective, this enables offer-
ing new services and efficient utilization of the hardware. Data centers (DCs) are
the enablers of the cloud services. They are mainly composed of generic purpose
hardware.

1.3.1 Network function virtualization

In the context of network virtualization, an industrial forum has been established
by major service providers within the European Telecommunications Standards
Institute (ETSI) referred to as Network Function Virtualization (NFV) [28]. The
idea of NFV is to virtualize the network functions such as firewall, network ad-
dress translation, intrusion detection, deep packet inspection and virtual private
network. These are traditionally implemented by dedicated hardware and mid-
dleboxes. NFV decouples network functions from the dedicated hardware and
enables deploying them in generic purpose hardware in a virtualized environment
(e.g., in a virtual machine).

Initially it was assumed that the virtualized capability should only be imple-
mented in DCs. However, the ideal situation is that virtualized network functions
can be deployed anywhere in the network. This can be in DCs, network nodes or
customer premises. This approach has been the target of many research projects
such as UNIFY [29].

A concept closely related to NFV is Software Defined Networking (SDN) [30].
SDN decouples the control plane and data plane of networking equipment. In SDN
the control plane is centralized, while data planes (forwarding components) are
still distributed. The concept of SDN is depicted in Fig. 1.13. SDN provides a
programmability environment in which the control plane programs the behavior of
the forwarding components. Although these two concepts are independent, NFV
can benefit from the SDN concept in implementation and management. SDN pro-

INTRODUCTION 21

Figure 1.13: Software Defined Networking

vides a new control architecture enabling fine granular control over services. This
architecture together with NFV enables service providers to offer various value
added functions in addition to connectivity services.

1.3.2 Network service chaining

Network Service Chaining (NSC) is a service concept which has attracted inter-
est and has been the focus of many researchers recently. NSC is enabled by the
combination of cloud virtualization techniques, NFV and flexibility provided by
SDN. Using these concepts, basic service building blocks (i.e., Network Functions
(NFs)) can be chained across the network infrastructure. A service chain actually
determines the order of different actions that should be applied to a data stream as
it goes through the network. Relying on SDN principles, a controller dynamically
creates and re-configures service chains across the network. The NFs within the
service may lie in devices in different parts of the network. An example of NSC is
illustrated in Fig. 1.14. As we see in this figure different NFs, i.e., gateway (GW),
firewall (FW) and deep packet inspection (DPI), are located at different parts of
the network (aggregation and core network). Traffic flows through these NFs in a
specific order.

In the context of NSC, the control of resources, management and configuration
of service chains become quite challenging. The only constraint on where/when
to allocate resources to a service is the specification of the service itself. Based

22 CHAPTER 1

Residential

Residential

Home/Enterprise
Network Access Network

Aggregation
Network

Business
Corporation

Data Centers

Core
NetworkGW

DPI
FW

Figure 1.14: Example of Network Service Chaining with Network Functions located at
different segments of the network

on the service requirements, the mapping or placement of NFs can be optimized.
Sometimes the objective is to reduce the cost of the consumed resources. Other ob-
jectives can be to minimize the load, network congestion or energy consumption.
Finding an optimal placement of the NFs within the service to the components of
the network infrastructure is referred to as the embedding problem. Generally in
this problem, the network infrastructure and the service chain is represented by
graphs. Given several service graphs composed of multiple NFs and a common
infrastructure (physical network), a mapping of the NFs and their logical links to
the nodes and links of the physical network needs to be performed. Fig. 1.15 illus-
trates the general idea of the embedding problem with a simple example. In this
figure, the two service graphs on the left should be mapped to the common phys-
ical network in the middle. On the right, the final placement of the NFs and their
logical links to the physical nodes and links are depicted. The challenges related
to this problem are further discussed in the following subsection.

1.3.3 Research challenges in service orchestration

The rise of SDN and NFV introduce opportunities for service providers to quickly
deploy novel services with a reduced cost. NFV provides freedom in where to
place an NF in a network. This creates new challenges in service orchestration.
Existing solutions consider services as large monolithic blocks (e.g., network ad-
dress translation or intrusion detection). Such monolithic service chains provide
limited flexibility for dynamic scaling, demanded by user or caused by infras-
tructure policies. Relying on service chains, composed of micro functional NFs,
enables dynamic orchestration of the NFs. Optimization algorithms can adapt the
service chain according to different user demands or business policy changes. In
practice, it is possible that a large monolithic service block can be decomposed into

INTRODUCTION 23

Physical network EmbeddingService Graphs (SG)

Figure 1.15: General idea of service chain embedding

inter-connected atomic NFs in multiple ways. This concept is referred to as service
decomposition and is further detailed in Chapter 6. Having multiple realization op-
tions, the placement of NFs (embedding), control of resources, management and
configuration of NSCs become quite challenging. The second part of this disser-
tation mainly focuses on the joint optimization of the service decomposition and
embedding of NSCs.

The service orchestration process is significantly impacted by the scale of the
telecom operator network and the number of service requests. Realistic service
and infrastructure provider scenarios quickly involve ten thousands of resource el-
ements and multiple services to be orchestrated. Such a large number of elements
with multiple realization options for a service (service decompositions) challenges
the scalability of service orchestration. This is another point which is further in-
vestigated in this dissertation.

1.4 Outline and research contributions

In this dissertation we mainly focus on the two research topic of scalable resilient
geometric routing and network service chaining with optimized network function
embedding. A number of publications were realized within the scope of this PhD
some of which are selected to provide a thorough and consistent overview of the
conducted work. The different research contributions and related chapters are de-
tailed in this section and illustrated in Fig. 1.16. Each chapter is a journal article (or
conference paper) which is already published or is in a submitted state. Section 1.5
provides a complete list of publications resulting from this work.

1.4.1 Geometric routing

In Chapter 2, resiliency against link failure in geometric routing is investigated. In
order to forward the packets, network nodes are assigned coordinates in the hy-

24 CHAPTER 1

Research overview

Geometric routing Service orchestration

Resiliency
(Ch. 2, 3), (A. A)

Scalability
(Ch. 4, 5)

Embedding
(Ch. 6)

Scalability
(Ch.7)

Figure 1.16: Overview of the research contribution. In this diagram, the related Chapters
(Ch.) and Appendix (A.) to different research contributions are depicted.

perbolic plane 6, based on the scheme proposed in [31]. Using this scheme, it is
guaranteed that a greedy embedding for any connected finite graph can be found.
In order to cope with link failures, local recovery techniques for single and multiple
failures are proposed. The schemes can be activated proactively or can be executed
upon failure detection. They are evaluated on topologies with similar characteris-
tics as the Internet. The proposed schemes require quite limited resources, enable
fast switch-over and scale with the number of links in the spanning tree of the
network.

In order to avoid complex coordinate calculation in metric spaces such as the
hyperbolic plane, we proposed a simple scheme relying on a spanning tree of the
network [32]. Network nodes are assigned coordinates based on their location in
the tree. In Chapter 3, a distributed algorithm for calculation of this tree-based
embedding is proposed and experimentally validated. This algorithm is extended
to generate backups according to the scheme explained in Chapter 2. Although
this extension provides a fault-tolerant routing scheme, a mechanism for dealing
with various types of network dynamics such as node (or link) addition (or re-
moval) is required. Having such a mechanism, the impact of topology changes
on routing quality is reduced. To address this, the distributed algorithm is aug-
mented with a mechanism to trigger nodes to re-calculate their coordinates in case
of a change in the underlying structure (e.g. failure in the spanning tree). To
evaluate the proposed scheme, the relative prototype implementation is provided
in Quagga routing software7 and Click modular router8. Quagga is used for the

6The hyperbolic plane H is a highly symmetric geometry in which the parallel postulate does not
hold any longer. The latter implies that for a given line L inH and a point p not on L, there are at least
two lines through p, which do not intersect L. In the Poincare Disk (PD) model of H , all points are
represented by the set of points in R2 within the unit circle, that is x2 + y2 < 1. Points on the unit
circle are ideal points (at infinity) in the resulting hyperbolic plane.

7http://www.nongnu.org/quagga/
8http://read.cs.ucla.edu/click/click

INTRODUCTION 25

control plane while Click is used for the data plane implementation (i.e. greedy
forwarding). Different metrics such as convergence time, protection time and com-
munication cost are evaluated through emulation experiments. Since no abstrac-
tion is involved, realistic results with high accuracy can be achieved. The results
indicate interesting convergence behavior in which convergence time/communica-
tion cost is quite low. The experiments are performed on large topologies of 1000
nodes which is a factor 10 improvement over the scale of state-of-the-art emula-
tion experiments. The implemented prototype has been successfully demonstrated
at IETF 90 Bits-N-Bites event9.

Appendix A provides an insight on the availability performance of the pro-
posed resilient geometric routing scheme on the actual Internet graph. The re-
silient scheme performs reasonably well compared to the shortest cycle scheme
and improves availability significantly compared to the un-protected scheme.

Targeting large-scale networks, in Chapter 4 the scalability of the tree-based
geometric routing is studied in more detail. The efficiency of this routing is identi-
fied through routing quality (deviation from the shortest path length, aka stretch10)
and size of the coordinates. A related low-cost circuit, enabling greedy forwarding,
is designed. The simulation results assess the proposal in large synthetic topologies
of o(100K) nodes, resembling Internet topology. Comparison with the hyperbolic-
based geometric routing indicates the superiority of the tree-based scheme in terms
of coordinate memory scaling and complexity of hardware design. Similar perfor-
mance in terms of stretch is achieved. Successful operation of the proposed greedy
forwarder in the optical domain is verified in [33] and [34].

Since Internet is one among many networks including social, technological
and communication systems described as complex networks, Chapter 5 provides
an overview on advances and remaining challenges of routing in such large-scale
networks. Both traditional as well as novel routing schemes are studied among
which special attention is given to the variants of geometric routing. Analyzing the
experimental results and analytical studies performed so far, the main trends and
trade-offs are identified and the main conclusions are drawn. This overview better
positions geometric routing among different routing schemes, enabling more care-
ful conclusions regarding (in)suitability of these schemes to large-scale complex
settings. It also provides open challenges and guidelines for future research.

1.4.2 Service orchestration

For the remainder of the dissertation, we focus on service orchestration in telecom
networks. The problem of service chain embedding and service decomposition are

9https://www.ietf.org/meeting/90/ietf-90-bits-n-bites.html
10Stretch (S) is the ratio between the length of the path generated by a routing scheme (Lgp) and

the corresponding shortest path length (Lsp): S =
Lgp

Lsp

26 CHAPTER 1

studied in detail. Chapter 6 investigates the joint optimization of network function
embedding and service decomposition in the concept of network service chain-
ing. First an algorithm based on Integer Linear Programming (ILP) is proposed
to find the exact solution. The target is to minimize the cost of the mapping/em-
bedding, taking into account the service chain requirements and capabilities of
the infrastructure. Since the complexity of the exact solution is high, its scalabil-
ity is quite limited. Therefore, it may not always be feasible to find the optimal
solution in large-scale scenarios in a reasonable time. In order to solve this scala-
bility limitation of the ILP, a heuristic solution is provided. The heuristic approach
is composed of two phases: i) decomposition selection and ii) mapping. Given
a service chain, this approach first selects a suitable service decomposition, tak-
ing several parameters (e.g., number of NFs in the decomposition and number of
candidate physical nodes which can potentially host the NFs) into account. Then
relying on a backtracking mechanism, a mapping of the selected decomposition
to the infrastructure is performed. Simulation results indicate the benefits of joint
embedding and service decomposition in terms of service acceptance rate and the
related mapping cost.

The studies reported in Chapter 7 intend to highlight the role of involved in-
terfaces (for enabling NSC with virtual NFs) in a scalable service orchestrator and
identify the major contributors in orchestration time in a proof of concept proto-
type. This prototype relies on the embedding algorithm proposed in Chapter 6.
Based on the identified major contributors, several architectural enhancements are
proposed to move towards a more scalable orchestrator. The related challenges are
discussed as well. This will provide several guidelines for future work.

Finally, Chapter 8 concludes this dissertation with the main outcomes and
presents the future research directions.

1.5 Publications
The research results obtained during this PhD research have been published in
scientific journals and presented at a series of international conferences. The fol-
lowing list provides an overview of the publications during my PhD research.

1.5.1 Publications in international journals
(listed in the Science Citation Index 11)

1. Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet and Piet De-
meester, Link failure recovery technique for greedy routing in the hyperbolic

11The publications listed are recognized as ‘A1 publications’, according to the following definition
used by Ghent University: A1 publications are articles listed in the Science Citation Index Expanded,
the Social Science Citation Index or the Arts and Humanities Citation Index of the ISI Web of Science,
restricted to contributions listed as article, review, letter, note or proceedings paper.

INTRODUCTION 27

plane, Computer Communications, Vol. 36(6), 2013, pp. 698-707.

2. Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet and Piet De-
meester, Experimental validation of resilient tree-based greedy geometric
routing, Computer Networks, Vol. 82, 2015, pp. 156-171.

3. Sahel Sahhaf, Wouter Tavernier, Mattias Rost, Stefan Schmid, Didier Colle,
Mario Pickavet and Piet Demeester, Network service chaining with op-
timized network function embedding supporting service decompositions,
Computer Networks, Vol. 93, 2015, pp. 492-505.

4. Rein Houthooft, Sahel Sahhaf, Wouter Tavernier, Filip De Turck, Didier
Colle and Mario Pickavet, Optimizing robustness in geometric routing via
embedding redundancy and regeneration, Networks, Vol. 66(4), 2015, pp.
320-334.

5. Sachin Sharma, Wouter Tavernier, Sahel Sahhaf, Didier Colle, Mario Pick-
avet and Piet Demeester, Verification of flow matching functionality in the
forwarding plane of openflow networks, IEICE Transactions on Communi-
cations, Vol. 98(11), 2015, pp. 2190-2201.

6. Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet and Piet De-
meester, Efficient geometric routing in large-scale complex networks with
low-cost node design, IEICE Transactions on Communications, Vol. 99(3),
2016, pp. 666-674.

7. Sahel Sahhaf, Wouter Tavernier, Dimitri Papadimitriou, Davide Careglio,
Alok Kumar, Christian Glacet, David Coudert, Nicolas Nisse, Lluı́s Fab-
rega, Miguel Camelo, Pere Vila, Pieter Audenaert, Didier Colle and Piet
Demeester, Routing at large scale: advances and challenges for complex
networks, IEEE Network (submitted).

8. Sahel Sahhaf, Wouter Tavernier, Didier Colle and Mario Pickavet, Adaptive
availability and bandwidth-aware multipath provisioning for media transfer
in SDN-based overlay network, Computer Communications (submitted).

1.5.2 Publications in international conferences
(listed in the Science Citation Index 12)

1. Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet and Piet De-
meester, Single failure resiliency in greedy routing, 9th International Confer-

12The publications listed are recognized as ‘P1 publications’, according to the following definition
used by Ghent University: P1 publications are proceedings listed in the Conference Proceedings Ci-
tation Index - Science or Conference Proceedings Citation Index - Social Science and Humanities of
the ISI Web of Science, restricted to contributions listed as article, review, letter, note or proceedings
paper, except for publications that are classified as A1.

28 CHAPTER 1

ence on Design of Reliable Communication Networks (DRCN), 2013, pp.
306-313, Budapest, Hungary.

2. Sahel Sahhaf, Abhishek Dixit, Wouter Tavernier, Didier Colle, Mario Pick-
avet and Piet Demeester, Scalable and energy-efficient optical tree-based
greedy router, 15th International Conference on Transparent Optical Net-
works (ICTON), 2013, pp.1-4, Cartagena, Spain.

3. Sahel Sahhaf, Wouter Tavernier, Didier Colle, Mario Pickavet and Piet
Demeester, Availability analysis of resilient geometric routing on Internet
topology, 10th International Conference on Design of Reliable Communi-
cation Networks (DRCN), 2014, pp. 1-8, Ghent, Belgium.

4. Sahel Sahhaf, Maryam Barshan, Wouter Tavernier, Hendrik Moens, Di-
dier Colle and Mario Pickavet, Resilient algorithms for advance bandwidth
reservation in media production networks, 12th International Conference on
Design of Reliable Communication Networks (DRCN), 2016, pp. 130-137,
Paris, France.

1.5.3 Publications in other international conferences

1. Sahel Sahhaf, Abhishek Dixit, Wouter Tavernier, Didier Colle, Mario Pick-
avet and Piet Demeester, All-optical tree-based greedy router, Conference
on Optical Fiber Communication (OFC), 2014, pp. W2A-7, San Francisco,
USA.

2. Sahel Sahhaf, Dimitri Papadimitriou, Wouter Tavernier, Didier Colle and
Mario Pickavet, Experimentation of geometric information routing on con-
tent locators, IEEE 22nd International Conference on Network Protocols
(ICNP), 2014, pp. 518-524, Raleigh, USA.

3. Rein Houthooft, Sahel Sahhaf, Wouter Tavernier, Filip De Turck, Didier
Colle and Mario Pickavet, Fault-tolerant greedy forest routing for complex
networks, 6th International Workshop on Reliable Networks Design and
Modeling (RNDM), 2014, pp. 1-8, Barcelona, Spain.

4. Davide Careglio, Dimitri Papadimitriou, Fernando Agraz, Sahel Sahhaf,
Jordi Perello, Wouter Tavernier, Salvatore Spadaro and Didier Colle, Devel-
opment and experimentation towards a multi-cast-enabled Internet, IEEE
Conference on Computer Communications Workshops (INFOCOM WK-
SHPS), 2014, pp. 79-84, Toronto, Canada.

5. Davide Careglio, Dimitri Papadimitriou, Fernando Agraz, Sahel Sahhaf,
Jordi Perello and Wouter Tavernier, On the experimentation of the novel

INTRODUCTION 29

GCMR multicast routing in a large-scale testbed, IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), 2014, pp. 105-
106, Toronto, Canada.

6. Wouter Tavernier, Sahel Sahhaf, Didier Colle and Mario Pickavet, Towards
content-centric geometric routing, IEEE 21st Symposium on Communica-
tions and Vehicular Technology in the Benelux (SCVT), 2014, pp. 133-138,
Mons, Belgium.

7. Attila Csoma, Balazs Sonkoly, Levente Csikor, Felician Nemeth, Andras
Gulyas, David Jocha, Janos Elek, Wouter Tavernier and Sahel Sahhaf, Multi-
layered service orchestration in a multi-domain network environment, 3rd
European Workshop on Software Defined Networks (EWSDN), 2014, pp.
141-142, Budapest, Hungary.

8. Attila Csoma, Balazs Sonkoly, Levente Csikor, Felician Nemeth, Andras
Gulyas, Wouter Tavernier and Sahel Sahhaf, ESCAPE: Extensible Service
ChAin Prototyping Environment using Mininet, Click, NETCONF and POX,
ACM SIGCOMM Computer Communication Review, 2014, pp. 125-126,
Chicago, USA.

9. Sahel Sahhaf, Wouter Tavernier, Didier Colle and Mario Pickavet, Network
service chaining with efficient network function mapping based on service
decompositions, 1st IEEE Conference on Network Softwarization (NetSoft),
2015, pp. 1-5, London, UK.

10. Sahel Sahhaf, Wouter Tavernier, Janos Czentye, Balazs Sonkoly, Pontus
Skoldstrom, David Jocha and Jokin Garay, Scalable architecture for service
function chain orchestration, 4th European Workshop on Software Defined
Networks (EWSDN), 2015, pp. 19-24, Bilbao, Spain.

11. Balazs Sonkoly, Janos Czentye, Robert Szabo, David Jocha, Janos Elek,
Sahel Sahhaf, Wouter Tavernier and Fulvio Risso, Multi-domain service
orchestration over networks and clouds: a unified approach, ACM SIG-
COMM Computer Communication Review, 2015, pp. 377-378, London,
UK.

12. Rein Houthooft, Sahel Sahhaf, Wouter Tavernier, Filip De Turck, Didier
Colle and Mario Pickavet, Robust geometric forest routing with tunable load
balancing, IEEE Conference on Computer Communications (INFOCOM),
2015, pp. 1382-1390, Hong Kong, China.

13. Sahel Sahhaf, Wouter Tavernier, Didier Colle and Mario Pickavet, Resilient
availability and sandwidth-aware multipath provisioning for media transfer

30 CHAPTER 1

over the Internet, 8th International Workshop on Resilient Networks Design
and Modeling (RNDM), 2016, Halmstad, Sweden.

14. Thomas Soenen, Sahel Sahhaf, Wouter Tavernier, Pontus Skoldstrom, Di-
dier Colle and Mario Pickavet, A model to select the right infrastructure ab-
straction for service function chaining, IEEE Conference on Network Func-
tion Virtualization and Software Defined Networks, 2016, Palo Alto, USA
.

1.5.4 Publications in national conferences

1. Sahel Sahhaf, Wouter Tavernier, Didier Colle and Mario Pickavet, Greedy
routing in future internet, 9th FEA PhD Symposium, 2012, Ghent, Belgium.

2. Sahel Sahhaf, Wouter Tavernier, Didier Colle and Mario Pickavet, Experi-
mentation of geometric information routing on content locators, 11th FEA
PhD Symposium, 2014, Ghent, Belgium.

INTRODUCTION 31

References
[1] P. J. Winzer. Beyond 100G ethernet. IEEE Communications Magazine,

48(7):26–30, 2010.

[2] M. Tahon, M. Van der Wee, S. Verbrugge, D. Colle, and M. Pickavet. The
impact of inter-platform competition on the economic viability of municipal
fiber networks. In Optical Fiber Communication Conference, pages Th1G–3.
Optical Society of America, 2014.

[3] D. A. Maltz, G. Xie, J. Zhan, H. Zhang, G. Hjálmtỳsson, and A. Green-
berg. Routing design in operational networks: A look from the inside. In
ACM SIGCOMM Computer Communication Review, volume 34, pages 27–
40. ACM, 2004.

[4] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity data cen-
ter network architecture. In ACM SIGCOMM Computer Communication
Review, volume 38, pages 63–74. ACM, 2008.

[5] J. Postel et al. IETF RFC 791: Internet protocol. 1981. Available from:
https://tools.ietf.org/html/rfc791.

[6] S. E. Deering. Internet protocol, version 6 (IPv6) specification. 1998. Avail-
able from: https://www.ietf.org/rfc/rfc2460.txt.

[7] V. Fuller and T. Li. Classless inter-domain routing (CIDR): The Internet
address assignment and aggregation plan. 2006. Available from: https:
//tools.ietf.org/html/rfc4632.

[8] J. Moy. IETF RFC 2328: OSPF Version 2, 1998. Available from: https:
//www.ietf.org/rfc/rfc2328.txt.

[9] D. Oran. IETF RFC 1142: OSI IS-IS intra-domain routing protocol, 1990.
Available from: https://tools.ietf.org/html/rfc1142.

[10] C. Hendrik. IETF RFC 1058, Routing Information Protocol. 1988. Available
from: https://tools.ietf.org/html/rfc1058.

[11] G. Malkin. IETF RFC 2453: RIP version 2, 1998. Available from: https:
//tools.ietf.org/html/rfc2453.

[12] G. Malkin and R. Minnear. IETF RFC 2080: Ripng for ipv6, 1997. Available
from: https://tools.ietf.org/html/rfc2080.

[13] C. Hedrick and L. Bosack. An introduction to IGRP. Rutgers-The State
University of New Jersey Technical Publication, Laboratory for Computer
Science, 1991.

https://tools.ietf.org/html/rfc791
https://www.ietf.org/rfc/rfc2460.txt
https://tools.ietf.org/html/rfc4632
https://tools.ietf.org/html/rfc4632
https://www.ietf.org/rfc/rfc2328.txt
https://www.ietf.org/rfc/rfc2328.txt
https://tools.ietf.org/html/rfc1142
https://tools.ietf.org/html/rfc1058
https://tools.ietf.org/html/rfc2453
https://tools.ietf.org/html/rfc2453
https://tools.ietf.org/html/rfc2080

32 CHAPTER 1

[14] D. Farinachi. Introduction to enhanced IGRP (EIGRP). Cisco Systems Inc,
1993.

[15] Y. Rekhter, T. Li, and S. Hares. IETF RFC 4271: a border gateway protocol
4 (bgp-4). 12, 2006. Available from: https://tools.ietf.org/html/rfc4271.

[16] A. Narayanan. A survey on BGP issues and solutions. arXiv preprint
arXiv:0907.4815, 2009.

[17] G. Huston. BGP Routing Table Reports, 2016. Available from: http://bgp.
potaroo.net/.

[18] R. Oliveira, B. Zhang, D. Pei, and L. Zhang. Quantifying path exploration in
the internet. IEEE/ACM Transactions on Networking, 17(2):445–458, 2009.

[19] J. Chandrashekar, Z. Duan, Z.-L. Zhang, and J. Krasky. Limiting path ex-
ploration in BGP. In Proceedings IEEE 24th Annual Joint Conference of
the IEEE Computer and Communications Societies., volume 4, pages 2337–
2348. IEEE, 2005.

[20] D. Pei, M. Azuma, D. Massey, and L. Zhang. BGP-RCN: Improving
BGP convergence through root cause notification. Computer Networks,
48(2):175–194, 2005.

[21] G. Huston, M. Rossi, and G. Armitage. A technique for reducing BGP update
announcements through path exploration damping. IEEE Journal on Selected
Areas in Communications, 28(8):1271–1286, 2010.

[22] P. B. Godfrey, M. Caesar, I. Haken, Y. Singer, S. Shenker, and I. Stoica.
Stabilizing route selection in bgp. IEEE/ACM Transactions on Networking,
23(1):282–299, 2015.

[23] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. IETF RFC 6830: The
locator/id separation protocol (lisp), 2013. Available from: https://tools.ietf.
org/html/rfc6830.

[24] R. Moskowitz, P. Nikander, P. Jokela, and T. Henderson. IETF RFC 5201
Host Identity Protocol, 2008. Available from: https://tools.ietf.org/html/
rfc5201.

[25] B. Karp and H.-T. Kung. GPSR: Greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 243–254. ACM, 2000.

[26] R. Fonseca, S. Ratnasamy, J. Zhao, C. T. Ee, D. Culler, S. Shenker, and
I. Stoica. Beacon vector routing: Scalable point-to-point routing in wire-
less sensornets. In Proceedings of the 2nd conference on Symposium on

https://tools.ietf.org/html/rfc4271
http://bgp.potaroo.net/
http://bgp.potaroo.net/
https://tools.ietf.org/html/rfc6830
https://tools.ietf.org/html/rfc6830
https://tools.ietf.org/html/rfc5201
https://tools.ietf.org/html/rfc5201

INTRODUCTION 33

Networked Systems Design & Implementation-Volume 2, pages 329–342.
USENIX Association, 2005.

[27] C. H. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theoretical Computer Science, 344(1):3–14, 2005.

[28] ETSI. White Paper: Network Functions Virtualisation (NFV), 2013. Avail-
able from: http://portal.etsi.org/NFV/NFV White Paper2.pdf.

[29] The UNIFY project. Available from: http://fp7-unify.eu/.

[30] ONF. Open Networking Foundation, 2014. Available from: https://www.
opennetworking.org/.

[31] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[32] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Single
failure resiliency in greedy routing. In Proceedings of the 9th international
conference on Design of Reliable Communication Networks, pages 312–319,
2013.

[33] S. Sahhaf, A. Dixit, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester.
Scalable and energy-efficient optical tree-based greedy router. In 2013 15th
International Conference on Transparent Optical Networks (ICTON), pages
1–4. IEEE, 2013.

[34] S. Sahhaf, A. Dixit, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester.
All-optical tree-based greedy router. In Optical Fiber Communication Con-
ference, pages W2A–7. Optical Society of America, 2014.

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
http://fp7-unify.eu/
https://www.opennetworking.org/
https://www.opennetworking.org/

2
Link failure recovery technique for

greedy routing in the hyperbolic plane

This chapter proposes recovery mechanisms for single and multiple link failures
in geometric routing. In order to perform greedy routing, network nodes are as-
signed coordinates in the hyperbolic plane. The memory requirement and packet
overhead imposed by the schemes are quite limited. Additionally, the proposed
schemes scale with the number of edges in the spanning tree of the network. These
make them promising solutions for large-scale networks.

? ? ?

S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, P. Demeester

Published in Computer Communications, 2013.

Abstract The scalability of current routing protocols is limited by the linearly
increasing size of the corresponding routing tables. Greedy routing has been pro-
posed as a solution to this scalability problem. In greedy routing, every node is
assigned a coordinate. These coordinates are used in order to forward a packet
to a neighbor which is closer to the destination. Current greedy methods cannot
efficiently cope with failures in topology. Using methods which require large re-
sources and have significant loss in the quality of the routing (stretch loss) makes
greedy routing useless in large-scale networks. In this paper, local techniques for

36 CHAPTER 2

single and multiple link failure recovery are proposed. The methods require very
limited resources and result into limited loss in routing quality. The proposed
schemes allow fast switch-over and scale with the number of links in the spanning
tree of the network. Scalability, simplicity and low overhead of the methods make
them suitable for large networks. The proposed techniques are evaluated in an
experimental environment.

2.1 Introduction

In traditional IP routing, forwarding decisions are based on longest-prefix match-
ing in a routing table. Routing protocols scale corresponding to the topology size.
The more IP addresses/prefixes assigned, the larger the routing tables have to be-
come ([1] reports more than 367 K FIB entries in current BGP routers). Geo-
graphic routing schemes have been proposed as a solution to this problem [2].

Greedy routing stems from the idea of geographic routing where every node
in a network receives a GPS coordinate [2]. Network nodes knowing the coor-
dinates of their neighbors could then route greedy, by relaying incoming packets
to the neighbors which are closer to the packet’s intended destination such that
the distance towards the packet’s destination decreases. Repeatedly applying this
distance-decreasing policy will eventually lead to the destination. The same idea
could be reused by assigning virtual coordinates in a given geometric space. A
drawback of the mentioned techniques is that packets might get stuck into a local
minimum (lakes or voids). Greedy embeddings, as proposed by Papadimitriou and
Ratajczak [3], avoid this situation by ensuring that coordinates are mapped to the
network nodes in such a way that local minima can never happen. More formally,
a greedy embedding for a given graphG(V,E) into a metric spaceX , is a function
from V to X such that for all the graph nodes s 6= t, s has a neighbor u which
decreases the distance toward t in metric spaceX . This implies that using a greedy
routing algorithm, packets will eventually reach the destination in any case.

Kleinberg proved in [4] that it is possible to find such a greedy embedding
in the hyperbolic plane for any connected finite graph. We will base our work
on this seminal work. As will be described in more detail in the next section,
the paper allows network nodes to derive their coordinates in the Poincare Disk
in a distributed way, based on a spanning tree of the original network topology.
The latter paper however did not investigate the effect of link/node failures in the
network. In Section 2.4, it will be explained that even a single link/node failure
might affect the greedy embedding in such a way that greedy routing is no longer
possible. As will be described in next section, the reason is that greedy embedding
is based on the connectivity of the graph’s spanning tree. Therefore, a change in
this connectivity might result in recalculation of coordinates in order to have a
successful packet delivery to a specified destination. As possibly too many nodes

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 37

require changing their coordinates, the resulting disruptions would be very long.
Our goal is to avoid coordinate recalculation upon link failures. Therefore,

in this paper, we propose recovery methods for single and multiple link failures.
Using these methods, we are able to bypass failing links without the requirement of
recalculating the coordinates. While greedy routing is proceeding, upon a failure
detection an alternative path is selected which recovers the faulty link. Unlike
many previous studies, our approach avoids the lakes or voids from the beginning
and therefore, there is no requirement to keep track of local minima or the visited
nodes along the path. This makes the overhead added to the header of a packet
very limited. The proposed schemes can be used in a pro-active mode, enabling
fast switch-over. The methods are scaling well which makes them suitable for
large-scale networks. As we will see later, the techniques scale with the number
of links in the spanning tree of the network. This is equivalent to scaling linearly
with the number of nodes in the network.

The rest of the paper is structured as follows. Section 2.2 briefly describes
some of the greedy embedding related works and the works focusing on dynamics
of the network in greedy routing. Greedy embedding of Kleinberg which we base
our work on is explained in Section 2.3. The next section describes the proposed
recovery methods for single and multiple link failures in greedy routing. Experi-
mental evaluation of the proposed algorithms are described in Section 2.5. Finally,
the last section concludes the paper.

2.2 Existing work

Studies on geographic routing by Karp and Kung [2] are one of the primary steps
towards greedy routing. In their work, every node is assigned a coordinate which
reflects the physical location of that node. In this routing, every node has knowl-
edge about the coordinates of all of its neighbors. Using this information a node
forwards an incoming packet to a neighbor which decreases the distance towards
the destination the most. In [5], the same idea was reused but instead of applying
the physical location of nodes to the coordinates a virtual coordinate in some other
metric space was assigned to each node of the network, leading to the introduction
of geometric routing.

The problem of greedy routing (both geographic and geometric routing) is that
the packets might get stuck in a local minimum (also called void or lake), which
means that there is no other neighbor which decreases the distance towards the
destination more than the current node. In order to overcome this problem two
groups of techniques were proposed. In the first group, the void or lake is passed
by routing around this area and greedy routing is resumed from the point that
we reach a node which is closer to the destination than the local minimum. This
technique is referred as face routing. The two problems of this group are: (i) local

38 CHAPTER 2

parts of the graph must be planar (or planarized) and (ii) the latter might not be
possible for all kind of graphs. A survey on different techniques to handle voids in
geographic routing is available in [6].

The second group tries to find a greedy embedding of the nodes in a metric
space in which no voids exist any more. As was mentioned in the introduction,
using these embedded coordinates guarantees that greedy routing is always suc-
cessful in delivering the packets to every destination. Groundbreaking work of
Kleinberg [4] proved the existence of a greedy embedding for every connected
finite graph, in the hyperbolic plane.

As [4] did not explicitly discuss the worst-case required coordinate precision,
the authors of [7] proposed a greedy embedding in the hyperbolic plane using only
O(logn) bits for coordinate representation, where n is the number of nodes in
the network. However, they did not evaluate the resulting stretch of the proposed
scheme.

The two works [8, 9] propose methods to embed graphs in Euclidean space.
In [8], the embedding is into a EuclideanO(log2n)-dimensional space and authors
in [9] propose an embedding into Euclidean space of poly-logarithmic dimension.

Boguna et al. [10] showed that statistical structure of Internet graph1 follows a
similar statistical structure of a hyperbolic geometry. They proposed that Internet
inherently follows a hidden hyperbolic structure. Papadopoulos et. al. [11] also
proposed a mechanism of network growth in a hyperbolic hidden metric space in
which greedy forwarding is always successful even in dynamic network topolo-
gies.

The issue of network dynamics such as link/node failures or node additions in
greedy routing (based on greedy embeddings) has not been studied significantly.
However, the authors of [12] proposed an alternative embedding in the hyperbolic
plane, which enables incremental embedding of network nodes, without disturb-
ing the global embedding. Nevertheless, the resulting embedding cannot easily be
adapted to cope with the removal of a network node/link. In the latter situation,
the authors suggest not to change the embedding, but to use an adapted routing
algorithm in case a packet gets stuck in a local minimum. The resulting routing is
referred as Gravity-Pressure routing. The technique is different from face routing
as it keeps forwarding via neighbors which decrease the distance towards the des-
tination as much as possible. However, in order to avoid that the packet gets stuck
into a loop, a path trace needs to be maintained in each packet from the moment a
local minimum is detected, which puts large overhead to the header of the packets.

In this paper, we base our work on greedy embedding of Kleinberg [4] and
try to handle the network dynamics (link failures) by two recovery methods. The
proposed schemes do not need a re-embedding, guarantee a given link failure cov-
erage, and can be used as a protection scheme, enabling faster switch-over than

1Scale-free graph with power law degree distribution.

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 39

existing alternatives. The used recovery paths demonstrate interesting stretch char-
acteristics compared to existing dynamic alternatives (Gravity-Pressure routing).
Unlike [12], our approach does not need to maintain the list of the nodes visited
by a packet therefore, the overhead added to the header of a packet is not sig-
nificant. The proposed methods can also be applied to large-scale networks due
to their scalability, simplicity and low overhead which is suitable for distributed
implementations.

2.3 Greedy embedding in the hyperbolic plane
The hyperbolic plane H is a highly symmetric geometry in which the parallel
postulate does not hold any longer. The latter implies that for a given line L in H
and a point p not on L, there are at least two lines through p, which do not intersect
L. In the Poincare Disk (PD) model of H , all points are represented by the set of
points in R2 within the unit circle, that is x2 +y2 < 1. Points on the unit circle are
ideal points (at infinity) in the resulting hyperbolic plane. The distance between
points u and v in the PD is defined as d(u, v) = arccosh(1 + δ(u, v)), where

δ(u, v) = 2
||u− v||2

(1− ||u||2)(1− ||v||2)

||.|| denotes the usual Euclidean norm.
A crucial characteristic of the hyperbolic plane is that because of its high sym-

metry, it allows infinitely many uniform tilings using d-regular polygons. Dual to
these tilings is the d-regular tree formed by the midpoints of the polygons produc-
ing the tiling. Therefore, any spanning tree of a given network topology can be
mapped to a subtree of a sufficiently large d-regular tree dual to a corresponding
tiling. This is the core property which is used by Kleinberg [4] to construct an
embedding of any graph. A tiling of d-regular polygons of the PD can be deduced
using Möbius transformations which are chosen with respect to d. We briefly ex-
plain the required subtasks in order to embed a graph into the hyperbolic plane and
for theoretical explanations and mathematical proofs, we refer interested readers
to [4]. The required subtasks for computing virtual coordinates of network nodes
(embedding) are as follows:

1. Construct a spanning tree of the network.

2. Determine the maximum degree of this tree, d.

3. Generate infinite d-regular tree in the hyperbolic plane and name each node
of the spanning tree with a node of this infinite d-regular tree.

These steps are clearly depicted in Fig. 2.1. In the first step, a spanning tree
of the graph is constructed, the maximum degree of this tree is 3 therefore, the

40 CHAPTER 2

l

pq

n

o

m

l

pq

n

o

m

I

mn q o

p

Figure 2.1: Steps for embedding a graph into the hyperbolic plane using Kleinberg’s
greedy embedding

infinite 3-regular tree in the hyperbolic plane is generated. Kleinberg [4] proposes
a distributed algorithm to assign the coordinates of the d-regular tree in the PD to
the network nodes. In the final step in the figure, we observe the embedded graph
in the hyperbolic plane.

The spanning tree used for determining the greedy embedding (coordinates)
ensures that there is always a distance-decreasing path (via the tree). However,
greedy routing based on this embedding is not the same as routing on the resulting
tree, because shortcuts (the edges which are not in the spanning tree) will be taken
as well.

2.4 Recovery method in greedy routing

We apply the greedy embedding as was explained in Section 2.3 to assign coor-
dinates to the network nodes in the hyperbolic plane. We assume that the greedy
routing always uses these virtual coordinates in order to proceed.

Using this embedding, a single link failure might invalidate the greedy embed-
ding. In Section 2.3, we observed that greedy embedding is based on the spanning
tree of the network and this spanning tree ensures that there is always a distance-
decreasing path (via the tree). However, if a link/node failure affects the connec-
tivity of the spanning tree, it might also affect the greedy embedding and therefore
the greedy routing. A simple example in Fig. 2.2 depicts this problem. In the
figure, edges of the spanning tree are represented by solid lines and shortcuts in
the network are represented by dashed lines. The integer IDs are used only to rep-
resent the network nodes. Note that these IDs are not equal to the nodes’ virtual
coordinates in the hyperbolic plane which are used for the greedy routing. In this
example, the greedy path from node 1 to node 7 is on the tree (1 → 3 → 7). The
failure in link (1-3) makes node 1 a local minimum (based on the embedding in

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 41

1

32

5 6 74

S

D

Figure 2.2: Example for a single link failure which affects the greedy embedding.

the hyperbolic plane node 2 is not closer to 7 than node 1). Therefore, the packets
get stuck in this node.

A solution to this problem can be to find another embedding which makes
greedy routing possible again. However, this solution might cause frequent recal-
culation of the coordinates, which is not realistic in large-scale networks. Coordi-
nate recalculation of too many nodes results into too long disruptions which is not
desired. Our goal is to overcome the issue of link failure in an efficient way with-
out any changes in the coordinates. Therefore, we propose recovery methods for
single and multiple link failures in greedy routing. As we know, recovery methods
can be protection schemes or restoration schemes or a combination of both. In
protection methods, a backup path is determined before any failure in the network.
These methods enable very fast recovery. However, in the restoration methods the
backup path can be installed on-demand dynamically [13]. Our proposed methods
are in pro-active mode (protection) however, the method for single failure is also
suitable for reactive mode (restoration). The methods assume that the network is
biconnected.2

2.4.1 Single link failure

In this section, we propose a recovery method to be used in case of a single link
failure. There are some methods and protocols available in order to detect a failure
in the network. An example protocol could be Bidirectional Forwarding Detection
(BFD) [14]. Our proposed method is applicable only if there is a single link failure
in the network and the failed link belongs to the spanning tree of the network. The
reason for applying the method only for tree edges is that, using Kleinberg’s greedy
embedding if the faulty link is a shortcut (a link which is not in the spanning tree)
greedy routing can still be continued on the tree edges. The problem of getting

2A biconnected graph is a connected graph that cannot be broken into disconnected pieces by delet-
ing any single vertex.

42 CHAPTER 2

1

32

5 6 74

S D

1

32

5 6 74

DS

Figure 2.3: Example for failure in shortcut links. The left figure depicts the route before
failure. On the right the route after failure is depicted.

stuck in a local minimum will only occur when a tree edge is faulty. Fig. 2.3
depicts a scenario in which a shortcut is faulty but as we see, greedy routing is
possible using the tree edges. On the left, we observe that greedy route between
node 4 and 7 is 4 → 2 → 7. When the shortcut 2 − 7 is faulty, the greedy route
on the tree can be used (4 → 2 → 1 → 3 → 7) instead. So the recovery method
is used only when greedy routing is no longer possible and that is when the faulty
edge is in the spanning tree of the network.

The basic idea of the proposed method is that upon a tree link failure, we
will tunnel to a node which greedy routing from that node to the destination will
certainly work. In the following sub-sections, we describe the method in detail.

2.4.1.1 Upstream/downstream failure recovery

Upon a tree-edge failure, an alternate path is required. Finding such a path, we
need to distinguish between upstream and downstream failures. Upstream failure
refers to a situation when the faulty tree edge is needed to be passed upward (get-
ting closer to the root). In downstream failure the faulty edge is required to be
passed downward.3

The idea is that upon a failure detection, a search is performed in order to
find an intermediate node from which greedy routing to the destination is possible.
Distinguishing between upstream and downstream failure is required due to this
intermediate node.

First, we consider a downstream failure scenario. We need to find a node which
has a shortcut to the subtree4 below the faulty link. This subtree is rooted at the
higher level node attached to the faulty link. In an upstream failure scenario, it
is enough that the node has a shortcut which can be used to go out of the subtree

3As we pass a link upward, we reach to a lower level node in the tree. When we pass a link
downward, a higher level node is reached. The level of a node is defined as the distance from the root
node in the tree. Root has level zero.

4A subset of nodes in the tree along with the corresponding edges. A subtree is a tree itself.

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 43

below the faulty link. Knowing these conditions for upstream and downstream
intermediate nodes, the required steps in order to recover from the faulty link are
as follows:

1. Initiate from the failure detecting node a Breadth First Search (BFS) polling
for the closest potential intermediate node (with the aforementioned condi-
tions for upstream/downstream failure).

2. When the potential intermediate node is found, the node sends an acknowl-
edgment back to the failure detecting node indicating its coordinate.

There are a significant number of distributed algorithms in the literature to
perform a BFS which directly or with a little change can be applied to our scenario
[15, 16].

Once the intermediate node is found, the forwarding procedure is as follows:

1. From the failure detecting node greedy route to the intermediate node.

2. Use the shortcut of the intermediate node to go to the desired subtree.

3. Continue greedy routing to the destination on the spanning tree (disabling
shortcuts).

Using this method, there is no need to set any entries in the nodes which are
along the alternate path because we first tunnel to the intermediate node and then
continue greedy routing to the destination. The only overhead added to the header
of the packet is the coordinate of the intermediate node and a flag. This flag in-
dicates that the packet should be first greedy routed to the intermediate node and
then continue routing on the tree.

The explained method can be used to find an alternate path on-demand upon
detection of a failure or as a protection method (pro-active) in which the interme-
diate node is pre-computed.

Considering the pro-active mode, the intermediate nodes corresponding to ev-
ery tree edge are pre-computed in network nodes. Therefore, upon a failure de-
tection packets towards a given destination can locally install the pre-computed
backup entry. This enables very fast switch-over. As this recovery method is re-
quired only for the edges in the spanning tree of the network, it is scaling with
the number of edges in the tree. Therefore, in the pro-active mode, every node in
the network only needs to calculate the intermediate node corresponding to every
tree edge which is attached to that node. Fig. 2.4a is the diagram for the control
procedure, performed by a node for a tree edge attached to that node.

2.4.1.2 Subtree determination

In this section, we explain how to determine that a shortcut goes to a certain sub-
tree.

44 CHAPTER 2

Received an

Ack?

Store the

intermediate node

Send probe to the

closest neighbor,

polling for potential

intermediate node

Yes

No

(a) Diagram of recovery method for single link failure

Find K disjoint

paths

Find the hubs for

every path/use

probes

Store the hubs for

every path

(b) Diagram of recovery method for multiple link failures

Figure 2.4: Diagram of recovery methods for single and multiple link failures (control
procedure)

In order to find the intermediate node to bypass the faulty link, it is required to
know: (i) the level of a node in the tree (distance from the root node in the tree) and
(ii) the subtree it belongs to. The level of nodes are first used for determination of
upstream and downstream failures in order to figure out what kind of intermediate
node should be looked for. The second use of node levels is for subtree determina-
tion (to which subtree a node belongs). Unfortunately, extracting this information
from the virtual coordinates of nodes is not easy. Therefore, another numbering
system is required for the network nodes. For this purpose, any numbering which
determines the location of a node in the spanning tree can be used. We use a very
simple numbering method in which an integer number is assigned to each node.
The assignment can be done in a distributed way (parallel to the hyperbolic coor-
dinate assignment). Knowing the degree of the tree, each node is able to determine
the integer ID of its parent, its children and its level in the tree. A two-pass algo-
rithm can be used to determine the degree of the tree. Every node reports to its
parent the maximum degree of the subtree rooted at itself and then root calculates
the maximum degree of the tree and broadcasts it to every node [4]. A very simple
formula for calculation of integer IDs and the level of a node are as follows. In a
k-ary tree (the maximum degree of each node is k+1):

parent(i) =

⌊
(k + i− 2)

k

⌋
jthchild(i) = (k × i)− (k − 2) + j

S(h) denotes the number of nodes in a perfect k-ary tree of height h, which can be

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 45

1

32

5 6 74

D

S

1

32

5 6 74

D

S

A
c
k

Figure 2.5: Example for upstream failure. On the left the intermediate node is determined.
On the right the path after recovery is depicted by the dot line.

formulated as follows:

S(h) =
kh+1 − 1

k − 1

The tree-level of a node can be determined using S(h) . For a node with integer
ID of i, we need to find the h in the following inequality:

kh − 1

k − 1
< i ≤ kh+1 − 1

k − 1

The first two formulas help us to find the immediate parent and children IDs of
a node. However, in order to find out that a node is below a certain subtree (a
subtree which is rooted at a certain node) the level of nodes should be calculated.
As was explained earlier, the level of a node in the tree determines the distance of
that node to the root of the tree. For example, we want to know if node A is in
the subtree rooted at node B. First the levels of both nodes should be calculated
(using S(h)). Assume that node A is in level 4 and node B is in level 1. In order
to find out that node A is in the subtree of node B, we need to check if node B
is a parent/ancestor of node A. This is performed by repetitively (level (A)-level
(B) times) checking if the ID of the next parent of node A is equal to the ID of B.
Therefore, in our example we need to apply the parent formula on the ID of node
A for 3 (4− 1) times.

In Figs. 2.5 and 2.6 two simple examples for upstream and downstream failures
are depicted. As we see in Fig. 2.5, node 3 upon failure detection, starts BFS
polling for potential intermediate node. Node 6 has a shortcut which takes us out
of the subtree below the faulty link (the subtree rooted at node 3, in this example
it consists of nodes 3, 6 and 7). Therefore, node 6 sends an acknowledgment
to the failure detecting node. In the right part of the figure, the alternative path
using intermediate node is depicted. The packets are first greedy routed to the
intermediate node (node 6), then the shortcut to the desired subtree is taken (link
6 − 5), the rest of the routing should be continued on the tree (5 → 2 → 1). The

46 CHAPTER 2

1

32

5 6 74

S

D

1

32

5 6 74

S

D

A
ck

Figure 2.6: Example for downstream failure. On the left the intermediate node is
determined. On the right the path after recovery is depicted by the dot line.

assigned integer IDs to the network nodes is based on a 2-ary tree (k=2). These
IDs are only used to determine the location of nodes in the tree and the greedy
routing is still based on the virtual coordinates in the hyperbolic plane. In Fig. 2.6,
in the same way the intermediate node is determined (node 2) and the alternative
path is depicted in the right part of the figure (1→ 2→ 7).

2.4.1.3 Exchanged packets

In order to have an overview on the number of packets that are exchanged in order
to find the intermediate node and the complexity of these packets and the algo-
rithms used, we explain the method from packet exchange perspective here. The
failure detecting/protecting node starts a BFS search by sending a packet (probe)
with the integer ID of the node attached to the other side of the faulty tree edge
and the direction of the failure (upstream or downstream) to its first neighbor (il-
lustrated in Figs. 2.5 and 2.6). Upon receiving such a packet, a node can check
whether it has a suitable shortcut or not. If not, the next node in a BFS manner
is checked. When the intermediate node is found, the node sends an acknowledg-
ment to the failure detecting/protecting node. This acknowledgment contains the
hyperbolic coordinate of the intermediate node. In the experimental evaluation,
we observe the required number of communication messages in order to find the
intermediate node corresponding to tree edges in the network.

2.4.1.4 Correctness of the method

The proof presented in this section is applied to the embedded graph in the hyper-
bolic plane. The integer IDs in the examples/figures are the numbering explained
in Section 2.4.1.2 and are not used for greedy routing.

Using this method, the alternative path does not consist of the faulty link and
it reaches the destination.

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 47

Proof. Let G(V,E) be a biconnected graph which is embedded in the hyper-
bolic plane H using the greedy embedding f : V (G) → H described in Section
2.3. T is the spanning tree of G. s and d are two nodes in G which are joined by
a path s = s0, s1, ...si, si+1, ..., sk = d using greedy routing. Let si, si+1 be the
faulty link which is also a tree edge. Based on the assumptions, the removal of
si, si+1 link should not cause the network to be disconnected. Therefore, a node
with a shortcut to the desired subtree (intermediate node) will definitely be found.
In upstream failure scenario, this node is located in the subtree below the faulty
link and in downstream failure scenario, it is located out of the subtree below the
faulty link. In both cases, the path on the tree (T) connects the failure detecting
node to the intermediate node. This means that there exists at least one distance-
decreasing path via the tree and therefore, the greedy routing between these two
nodes is guaranteed.

In a downstream failure scenario, the packets that need to pass the faulty link
are definitely destined to the nodes which are located in the subtree below the
faulty link. Otherwise, the greedy routing would not lead the packets to go into
that subtree. Knowing this, when the packets arrive at the intermediate node and
then take the shortcut, they end up in the subtree below the faulty link. This subtree
does not consist of the faulty link therefore, there is at least one path between every
two nodes of the subtree via that subtree. As the packets’ destinations are located
in this subtree, greedy routing on the tree will definitely leads to them. In this part
of the routing, the shortcuts are disabled due to the fact that they might lead the
packet to a node which is out of the desired subtree, causing the packet to get stuck
in a loop.

The same can be explained for an upstream failure scenario. The packets are
destined to the nodes which are located out of the subtree below the faulty link.
Therefore, upon arrival to the intermediate node and taking the shortcut, they end
up out of the subtree below the faulty link. Routing first to the intermediate node
and then to the destination is exactly the same as the downstream failure scenario.

The path after recovery will be s = s0, s1, ..., si, s
′
1, s
′
2, ..., t1, t2, ..., tk =

sk = d. sis are the nodes on the path before reaching the faulty link. s′is are
the nodes which are passed to reach the intermediate node and tis are representing
the path on the tree. We can observe this in the previous examples. Consider Fig.
2.5. The final path is 7→ 3→ 6→ 5→ 2→ 1. As we see, some nodes are si (7
and 3), some are s′i (6) and some are ti (5, 2 and 1).

2.4.2 Multiple link failures

The recovery method used for a single link failure cannot be applied to the multiple
failure scenarios. The reason is that the information about all faulty links in the
network might be required in every node. This information is used in order to find

48 CHAPTER 2

1

32

5 6 74

S

D

Figure 2.7: Problem with multiple link failures using single link failure recovery method.

a potential intermediate node which does not lead to a subtree with a faulty link.
Considering large-scale networks, providing such information in all the network
nodes is not feasible and realistic. The problem of not having such information is
illustrated in Fig. 2.7. Based on the method for single link failure, node 2 starts
searching for the potential intermediate node and node 4 is a suitable choice (has
a shortcut out of the subtree below the faulty link). But if the shortcut 4 − 6 is
taken, routing cannot be continued on the tree. Therefore, the list of faulty links
was required in node 4 in order to avoid considering shortcut 4 − 6 as a suitable
one and node 5 was chosen as the potential intermediate node.

In this section, we propose another method in order to recover multiple link
failures in the network.

2.4.2.1 Multiple link failure recovery

Similar to the previous explanations, only the tree-edge failures require recovery.
In scenarios with multiple link failures, the proposed scheme recovers every

faulty edge locally. This means that if the next hop of a packet is a faulty tree
edge, a backup path to the node attached to the other side of the faulty link is
used. In the failure detecting node, packets use the backup path to reach the node
on the other side of the faulty link and then from that node greedy routing to the
destination is resumed. Upon facing another faulty tree edge along the path to the
destination, the same procedure can be repeated. Using this method, the faulty
edges are recovered locally and unlike the previous scheme, there is no need to
distinguish between upstream and downstream failures.

The proposed scheme is a recovery method in the pro-active mode. There is
always a trade-off of speed and resources between the methods in pro-active and
re-active mode. Using this scheme, we could have a fast recovery in the cost of
more resources.

As the recovery is only required for the tree edges in the network, every node

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 49

should find the backup path only for the tree edges which are connected to that
node. In the pro-active mode, backup paths are pre-computed before a failure.
Therefore, in order to recover multiple failures, multiple disjoint paths are calcu-
lated. The maximum available disjoint paths between two nodes determines the
maximum number of simultaneous failures that is guaranteed to be recovered.

In the proposed method, every node should find the maximum disjoint paths
between itself and its neighbor if the link between them is in the spanning tree of
the network. These disjoint paths should be found for every tree edge which is
connected to that node. However, based on the topology, the number of possible
disjoint paths might be different for every tree edge. Therefore, the minimum
number among all possible disjoint paths for all the tree edges (minimum cut of
the network) is the maximum number of simultaneous failures that is guaranteed
to be recovered using this method. Studies have been performed to find all the
disjoint paths between two nodes in a network. [17] has proposed a distributed
algorithm to find k node-disjoint paths between two nodes in a network which can
be adapted to find all link-disjoint paths as well. Their algorithm runs in O(kn)

time using O(km) messages where n is the number of nodes and m is the number
of links in the network.

A problem that might appear when considering multiple disjoint paths, is that
storing an entry in the intermediate nodes along every disjoint path causes a large
memory overhead in those nodes. In order to avoid such memory overhead in
the nodes, we take benefit of greedy routing. Instead of setting an entry in every
node along the backup paths, we check if we can go through the backup paths
using greedy routing. This means that once the disjoint paths are found, we start
checking each of them to see up to which node in the path, greedy routing path is
equal to the backup path. We consider that node as a hub node. This procedure is
repeated from the hub node for the rest of the nodes along the backup path. At the
end of this checking, we find some hub nodes which greedy routing between them
is equal to the backup path. In Section 2.4.2.2, we explain how these hub nodes
can be found using some probe messages. Every protecting node only needs to
store these hub nodes for the different disjoint paths it calculated for every tree
edge. None of the nodes along the backup paths require storing any entry for the
paths that go through them. Fig. 2.4b depicts the steps of the control procedure in
a network node considering one tree edge.

If there exists at maximum K disjoint paths in every node towards the next
hop and every disjoint path maximally has L hubs and the maximum degree in
every node isM then, the resulting memory required in every node is at maximum
M×K×L. Therefore, the required memory in nodes is dependent on the number
of failures that is guaranteed to be recovered and also the degree of nodes in the
spanning tree of the network. We will see the experimental results for the required
memory and the degree distribution of nodes in the spanning tree of a network in

50 CHAPTER 2

1

3

7

DS

2

654

1

3

7

DS

2

654

Figure 2.8: Example for multiple link failures. On the right the path after recovery is
depicted by the dot line.

Section 2.5.2.2.
Finding the backup paths for every tree edge and the hub nodes corresponding

to them and storing in the protecting node are the steps of control procedures. In
the next paragraph, the forwarding procedure is explained.

Protocols similar to BFD [14] can be used in order to test the liveness of the
backup paths of a tree edge. As this is a K : 1 protection, there is no need to have
all the K backups active. Once the next hop of a packet is a faulty tree edge, the
hub nodes corresponding to one of the disjoint paths for that edge is added to the
header of the packet. The packet is first greedy routed to the first hub then to the
second hub and so on until it reaches to the node on the other side of the faulty
edge. From there, greedy routing to the destination can be continued. The results
in Section 2.5.2.2 show that this method has a very low overhead to the header
of the packets. Fig. 2.8 depicts an example for multiple tree-edge failures and
the path after recovery (using backup path corresponding to a faulty edge). The
correctness of the scheme can be proved by considering that the scheme actually
follows the greedy route to the destination. Although, in case of facing a faulty
tree edge a backup path corresponding to that edge is used instead. The scheme is
successful as long as there exist at least one backup path for every tree edge in the
network.

2.4.2.2 Finding hub nodes in a backup path

In this section, the required steps in order to find the hub nodes in a path are
explained in detail.

We refer to a node attached to a link under protection as a protecting node.
The hub nodes corresponding to a backup path are stored in this node. These hubs
can be found using probe messages. The protecting node starts the probing. Every
node along the path has an entry to the next hop. However, once the hub nodes
are found there is no need to keep these entries. Two types of probe messages are

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 51

used. The first type is used to check if greedy routing to a node along the path
gives the same path as the backup path (Grdy-Chk message). The second type is
used to inform a node along the path to start the same procedure for the rest of the
nodes (Start-Chk message).

The procedure starts by the protecting node which sends a Grdy-Chk message
to the first node along the path to see if greedy routing is equal to the backup
path. Every time the Grdy-Chk reaches the specified node in the destination field
of the message, that node sends back an acknowledgment to the protecting node.
This acknowledgment contains the next hop along the path. The protecting node
always stores the last node which sent back an acknowledgment and sends another
Grdy-Chk with the next node along the path as the destination of the message. The
procedure continues up to the point that greedy routing and the backup path are
not the same. The first node that detects this issue sends back a NotAck to the
protecting node. Upon arrival of such a message, the protecting node keeps the
previously stored node as the first hub and sends a Start-Chk message to that hub
node. Upon arrival of such message in the hub node, it starts sending Grdy-Chk
messages to the rest of the nodes along the path. The hub node continues checking,
up to the point that it receives a NotAck. In this case, it sends back the last stored
node to the protecting node. Protecting node stores the second hub and continues
the procedure up to the point that all the hub nodes are found.

2.4.3 Comparison with tree-oriented routing algorithms

In this section, we explain the major differences between the proposed schemes
and the well-known tree-oriented algorithms such as Ethernet Spanning Tree Pro-
tocol (STP), IEEE 802.1D standard and its variant Rapid Spanning Tree Proto-
col (RSTP), IEEE 802.1w. These protocols ensure a loop-free topology in a net-
work. RSTP provides significantly faster spanning tree convergence after a topol-
ogy change.

STP and RSTP algorithms dynamically calculate a tree in a distributed way.
Upon every topology change, protocol messages are exchanged between network
nodes and the tree is re-converged. However, the proposed schemes in this paper
calculate only one spanning tree and install backups on demand or by protection.
As the methods recover failures locally, there is no need to inform all the network
nodes about the changes.

The other difference is the routing itself. STP and RSTP route only on the
spanning tree of the network (tree routing). However, as explained in this paper,
greedy routing using virtual coordinates is not equal to tree routing. The shortcuts
are also used which makes the routing much more efficient than routing only on the
tree. [4] compares the performance of greedy routing and routing on the spanning
tree in terms of stretch.

52 CHAPTER 2

2.5 Evaluation of the recovery method

Our simulation environment for the evaluation of the proposed algorithms is based
on Python/C++. The Networkx-library is used for the implementation of Graph-
based algorithms, and Numpy and Scipy packages are used for numerical algo-
rithms. Some parts of the code were optimized in C++ to allow for large scale
network simulations.

The proposed schemes were evaluated on representative network topologies
similar to the Internet. These graphs were evaluated at different scales up to the
networks with 1000 nodes. This class of network topologies is based on Barabasi-
Albert (B-A) model [18]. The authors of the latter have defined a method of ran-
domly generating scale-free5 networks using a preferential attachment mechanism.
The latter results into the fact that the more connected a node is, the more likely
it is to receive new links, resulting into a power-law degree distribution with γ
equal to 3. We repeated every experiment over 20 different generated B-A graphs
although, all of the graphs have very similar characteristics (degree distribution,
number of edges, ...). Therefore, every value on the result graphs is the average
value over these different networks.

Our experimental evaluation consists of two sets of results. One set is related to
the single link failure recovery method and the other set is related to the multiple
link failure recovery method. The proposed schemes are evaluated in terms of
routing quality (stretch) and overhead.

2.5.1 Experimental results for single link failure recovery method

2.5.1.1 Stretch evaluation

In this section, we evaluate the routing quality (i.e. stretch) of the proposed
scheme. The stretch is defined as the ratio of the length of the path as produced
by the greedy routing scheme, to the shortest path length for the same source-
destination pair. We compare the stretch for two scenarios. In one case, there is
no faulty link in the network and the stretch represents the ratio of greedy routing
path length to the shortest path length. In the second scenario, there is one faulty
tree-edge in the network. Therefore, the stretch represents the ratio between the
path length generated by greedy routing with the recovery method to the shortest
path length after removing the faulty edge from the graph.

Every graph is embedded in the hyperbolic plane using the method in Section
2.3. Therefore, these virtual coordinates are used in order to perform the greedy
routing. For the scenario with one single failure in the network, we evaluate the

5A scale-free network is a network whose degree distribution follows a power law, at least asymp-
totically. That is, the fraction P (k) of nodes in the network having k connections to other nodes goes
for large values of k as P (k) ≈ c.k−γ . The value of γ is typically in the range 2 < γ < 3.

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 53

(a) Stretch distribution for single link failure scenario. Network size=1000 nodes.

(b) Average stretch for single link failure scenario for different network sizes.

Figure 2.9: Stretch evaluation for single link failure recovery method

54 CHAPTER 2

stretch considering every tree-edge, one at a time as a failing edge and take the
average over all of the results. As was mentioned, this procedure is repeated for
different B-A networks and the values in the graphs are averaged over all of the
samples.

In Fig. 2.9a, the stretch distribution for graphs with 1000 nodes is illustrated
and we observe that the stretch distribution upon a single link failure is almost the
same as the stretch distribution without any link failure and the recovery method
would not change the stretch significantly. In Fig. 2.9b, the average stretch for the
two scenarios over networks with different sizes is depicted. For this experiment,
the stretch of all possible source-destination pairs in a network is calculated and
then averaged. In both Fig. 2.9a and Fig. 2.9b, 95% confidence intervals are de-
picted. We see that the scheme scales very well with the increase in the number of
nodes as the change in the average stretch for B-A graphs is insignificant. Observ-
ing this trend enables us to extrapolate the resulting performance up to large-scale
topologies.

2.5.1.2 Overhead evaluation

The overhead of the proposed scheme in terms of required memory in the network
nodes and the number of communication messages were evaluated.

As explained in previous sections, the proposed methods are only required for
the failures in the tree edges. Therefore, they scale with the number of edges in the
spanning tree of the network. In the single failure recovery method, every node
A needs to store an intermediate node B for every tree link attached to node A.
Therefore, the degree of each node in the spanning tree of the network is equal to
the required memory in that node. We calculated the degree of each node in the
spanning tree and depicted the percentile using box-plot chart to have an overview
of the distribution of degree/required memory in network nodes. Fig. 2.10a illus-
trates the results for networks with different sizes. The boxplot was used in order
to depict the minimum value, lower quartile, median, upper quartile and the maxi-
mum value. However, we only see two values in the resulting graphs. The reason
for this representation is that up to 75% of the nodes have the degree of one in the
tree, but there exists some nodes with a very high degree. This can be explained
from the properties of B-A graphs. In the generation of these graphs the more con-
nected a node is, the more likely it is to receive new links which results into some
nodes having very high degrees. As we used BFS to generate the spanning tree
and chose the node with maximum degree as the root of the tree therefore, there
exists a few nodes with very high degree and lots of other nodes with degree one.
The values on top of the graph are the average required memory in the network
nodes.

Our next experiment evaluates the required number of communication mes-
sages in order to find the potential intermediate node corresponding to a tree edge.

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 55

(a) Percentile of the required memory in network nodes

200 400 600 800 1000
Number of nodes

0

100

200

300

400

500

600

700

800

N
u
m

b
e
r

o
f

m
e
ss

a
g
e
s

24.51 46.89 73.09 100.55 127.05
Percentile of the number of communication messages

(b) Percentile of the number of communication messages for all the tree edges in
the network

Figure 2.10: Overhead evaluation for single link failure recovery method.

These messages include the probes and the acknowledgment. As explained in
Section 2.4.1.3, a node starts a BFS using probe messages and when the interme-
diate node is found it receives an acknowledgment. We calculated the number of
these messages for every tree edge in the network and depicted the percentile of
them in Fig. 2.10b. The results are for networks with different sizes up to 1000

nodes. The values on top represent the average number of required messages. In
the networks of 1000 nodes, for up to 75% of tree edges, less than 200 messages
were exchanged. The maximum number of exchanged messages was 732 and on
average 127 messages were required.

In order to have an overview of the distance between the intermediate node
and the failure detecting/protecting node, we calculated this distance (in hops) for
every tree edge in the network. We only report the results for the networks with
1000 nodes. Considering all the tree edges in the network, the intermediate node
for 75% of links located only two hops away from the failure detecting node and

56 CHAPTER 2

the maximum distance was 4. The distance on average was 2 for all the tree edges.

2.5.2 Experimental results for multiple link failure recovery
method

2.5.2.1 Stretch evaluation

The quality of the proposed scheme for multiple failure scenarios was evaluated. In
this section, we present similar graphs as in Section 2.5.1.1 for stretch distribution
and average stretch in networks with different number of nodes. The proposed
method guarantees the recovery of a given number of failures (at most equal to
the minimum cut of the network) however, the method is successful as long as the
protection mechanism is not broken. This means that there is at least one backup
path for every tree edge in the network.

For this experiment, we generated B-A graphs with minimum degree of 10 and
we could consider 9 disjoint paths for every tree edge in the network. Therefore,
the maximum number of failures that the method could guarantee to recover was
9. However, we evaluated our method for scenarios with more number of failures
than only 9 to have an overview of the performance of the method in occurrence
of more failures. In Fig. 2.11a, the stretch distribution for networks of 1000 nodes
in 4 different scenarios is depicted. In every scenario, different percentages of
failures in tree edges were examined. The faulty tree edges were chosen randomly
(uniform distribution). As expected, with more failures in the network the pairs of
nodes with higher stretch increased. However, looking at the results in Fig. 2.11b
the average stretch does not exceed 1.4. In order to compare the performance of
the proposed scheme with the existing methods, we implemented Gravity Pressure
algorithm [12] based on the pseudocode available in the paper. We chose this
algorithm due to the fact that it can be applied to the greedy embedding in the
hyperbolic plane and unlike other methods it can be applied to every topology
without any restriction (like planarization for using face routing). The average
stretch for networks of 1000 nodes with different percentages of tree-edge failures
using this algorithm is depicted in Fig. 2.11b. As the authors explain in [12], using
this method, the average stretch increases with more failures in the network up to
the point that the network is sparse. Therefore, after certain amount of failures
the average stretch decreases. As failure of 10% of tree-edges does not make
the network sparse, Gravity Pressure might not always find the most efficient path.
Therefore, as we see in the results, with more failures, the average stretch increases
up to 2.6. In the graphs of Fig. 2.11, the 95% confidence interval of the values are
depicted. In Fig. 2.11b, the width of the confidence intervals of the values for the
proposed scheme is not more than 0.02.

As mentioned earlier, our recovery method is successful up to the point that
the recovery mechanism breaks. This means that for some of the tree-edges all

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 57

faulty link
faulty links
faulty links

faulty links

(a) Stretch distribution for multiple link failure scenario. Network size=1000
nodes.

Percentage of link failure

(b) Average stretch for multiple link failure scenario for different network sizes.

Figure 2.11: Stretch evaluation for multiple link failure recovery method.

58 CHAPTER 2

Percentile of required memory in nodes

Re
qu

ir
ed

 m
em

or
y

Number of nodes

(a) Percentile of the required memory in network nodes

Percentile of number of hubs for disjoint paths

N
um

be
r o

f h
ub

s

Number of nodes

(b) Percentile of number of hubs in the disjoint paths of all the tree edge

Figure 2.12: Overhead evaluation for multiple link failure recovery method.

the backup paths are broken. We evaluated different scenarios with different per-
centages of failures in the tree-edges and checked how many pairs of source and
destination are disconnected. Different scenarios of random failures up to 50% of
faults in tree-edges in networks of 1000 nodes were considered. In all the scenarios
up to 30% of failures, the method was successful. However, in some scenarios of
40% and 50% of failures, around 2600 pairs were disconnected on average which
is less than one percent of all possible pairs in the network.

2.5.2.2 Overhead evaluation

As this method is applied only for the tree edges in the network therefore, the
required memory in every node is proportional to the degree of that node in the
tree. As explained in Section 2.4.2.1, every node requires to store the hub nodes

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 59

for every disjoint path corresponding to the tree edge that is attached to that node.
In our experiment, the number of disjoint paths for every tree edge is 9. Based on
the degree distribution in the spanning tree of the B-A networks, there are a few
nodes with very high degree and also lots of nodes with degree one. Having this
in mind, the required memory in network nodes is depicted in Fig. 2.12a. The
minimum value is 9 and in almost all the networks, 75% of the values is 16. The
maximum value reaches up to 1470 for networks of 1000 nodes and that is due to
the existence of those few nodes with very high degree. The maximum degree of
a node in the spanning tree is depicted on top of the graph.

The last experiment evaluates the number of hubs for disjoint paths corre-
sponding to every tree edge. We found 9 disjoint paths for every tree edge in
the network. For each of them the number of hubs was calculated. Fig. 2.12b il-
lustrates the percentile of the number of hubs for all the disjoint paths in networks
with different sizes. As we observe, 75% of paths have only 2 hubs and the maxi-
mum number of hubs is 4 in networks of 1000 nodes. The hubs for a backup path
are added to the header of a packet. As Gravity Pressure also uses a path trace
in each packet, we calculated the size of the table stored in every packet which
is in the Pressure mode of the algorithm in order to have a comparison with the
proposed scheme. The percentile of the size of the table in the packets in Pressure
mode is as follows, 25% of the packets have the table of size 3, the median is 9

while 75% of packets have the table of size 28 and the maximum value is 290 for
networks with 1000 nodes and 10% of faulty tree-edges. On average the size of
this table is 24.

2.6 Conclusion

In this paper recovery techniques for single and multiple link failures in greedy
routing were proposed. Both techniques avoid the lakes or voids in the first place.
It is not required to maintain the list of local minima in the network in order to
have a successful delivery to a destination. The proposed schemes do not need
coordinate re-calculation, guarantee a given link failure coverage, and can be used
as a protection scheme, enabling faster switch-over than existing alternatives. Our
methods only require local communications. Both recovery methods scale with
the number of edges in the spanning tree of the network. These methods were
evaluated in an experimental environment on graphs with properties similar to the
Internet. The used recovery paths demonstrated interesting stretch characteristics
compared to existing dynamic alternatives. Other experiments gave an overview
on the overhead of the methods. Based on the results, the required memory in ev-
ery node was proportional to the degree of the node and the number of failures that
were guaranteed to be recovered. The overhead added to the header of the packet
was very low. Scalability, simplicity and limited resources make the schemes suit-

60 CHAPTER 2

able for large-scale networks. Locality, limited loss of routing quality, and low
overhead make the proposed schemes as promising recovery techniques.

Acknowledgment
This work is partly funded by the European Commission through the EULER
project (Grant 258307), part of the Future Internet Research and Experimentation
(FIRE) objective of the Seventh Framework Programme (FP7).

FAILURE RECOVERY FOR HYPERBOLIC-BASED GREEDY ROUTING 61

References

[1] G. Huston. BGP Routing Table Reports, 2011. http://bgp.potaroo.net/.

[2] B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 243–254. ACM, 2000.

[3] C. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theoretical Computer Science, 344(1):3–14, 2005.

[4] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[5] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and I. Sto-
ica. Beacon vector routing: Scalable point-to-point routing in wireless sen-
sornets. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 329–342. USENIX As-
sociation, 2005.

[6] D. Chen and P. Varshney. A survey of void handling techniques for geo-
graphic routing in wireless networks. IEEE Communications Surveys and
Tutorials, 9(1):50–67, 2007.

[7] D. Eppstein and M. Goodrich. Succinct Greedy Geometric Routing Using
Hyperbolic Geometry. IEEE Transactions on Computers, 60(11):1571–1580,
2011.

[8] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In INFOCOM 2009, IEEE, pages 1737–1745, 2009.

[9] C. Westphal and G. Pei. Scalable routing via greedy embedding. In INFO-
COM 2009, IEEE, pages 2826–2830, 2009.

[10] M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the Internet with
hyperbolic mapping. Nature Communications, 1(6):1–8, 2010.

[11] F. Papadopoulos, D. Krioukov, M. Bogua, and A. Vahdat. Greedy forwarding
in dynamic scale-free networks embedded in hyperbolic metric spaces. In
INFOCOM 2010, IEEE, pages 1–9, 2010.

[12] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dy-
namic graphs. In INFOCOM 2009, IEEE, pages 1647–1655, 2009.

http://bgp.potaroo.net/

62 CHAPTER 2

[13] J. Vasseur, M. Pickavet, and P. Demeester. Network recovery: Protection
and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann
Publishers, 2004.

[14] D. Katz and D. Ward. Bidirectional forwarding detection (BFD). RFC5880,
2010.

[15] S. Makki. Efficient distributed breadth-first search algorithm. Computer
Communications, 19(8):628–636, 1996.

[16] B. Awerbuch and R. Gallager. A new distributed algorithm to find breadth
first search trees. IEEE Transactions on Information Theory, 33(3):315–322,
1987.

[17] S. Arora, H. Lee, and R. Thurimella. Algorithms for finding disjoint paths in
mobile networks, 2003.

[18] A. Barabási and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–511, 1999.

3
Experimental validation of resilient

tree-based greedy geometric routing

In the previous chapter, different mechanisms were proposed to provide failure re-
covery in geometric routing. Hyperbolic coordinates were used to perform greedy
routing in the network. Instead of exploiting such complex coordinates, we propose
a simple mechanism to assign coordinates based on a spanning tree of the network.
This chapter proposes a distributed algorithm to calculate these coordinates. The
proposed recovery mechanisms in the previous chapter provide a fault-tolerant ge-
ometric routing scheme. However, they rely on fixed pre-defined recovery paths
which makes them quite static approaches. As a result, these schemes may lead to
performance loss in very dynamic networks. Therefore, an adaptive and a more dy-
namic mechanism to deal with different types of network changes (e.g., link/node
failure/addition) is necessary. To this end, the distributed algorithm is extended
with a mechanism to trigger coordinate re-calculation upon network changes. A
software prototype of the proposed scheme is developed and its performance is
evaluated on a testbed on the iLab.t virtual wall1 at iMinds. Different trends and
trade-offs in the recovery domain of geometric routing are identified.

? ? ?

S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, P. Demeester
1http://ilabt.iminds.be/iminds-virtualwall-overview

64 CHAPTER 3

Published in Computer Networks, 2015.

Abstract Geometric routing is an alternative for IP routing based on longest prefix
matching. Using this routing paradigm, every node in the network is assigned a
coordinate and packets are forwarded towards their intended destination follow-
ing a distance-decreasing policy (greedy forwarding). This approach makes the
routers significantly more memory-efficient compared to the current IP routers. In
this routing, greedy embeddings are used to guarantee a 100% successful delivery
to every destination in the network. Most of the existing proposals lack resiliency
mechanisms to react efficiently to network changes. We propose a distributed algo-
rithm to calculate a greedy embedding based on a spanning tree of the network. In
this algorithm, nodes are triggered to re-calculate their coordinates upon a change
in the topology such as link or node failures. The advantage of this approach is that
it recovers from topology failures within a very short period of time. We further
extend the algorithm to generate backups to apply protection in distributed setups.
Different trade-offs and trends of re-convergence for geometric routing have been
evaluated in an emulation environment. Realistic results are achieved through em-
ulation as no model or abstraction is involved. The proposed routing scheme is
implemented in Quagga routing software and new elements are developed in Click
modular router to enable greedy forwarding. For the first time, the performance
of this scheme is evaluated through emulation on a large topology of 1000 nodes
and the results are compared with BGP. The experimental results indicate that the
proposed scheme has interesting characteristics in terms of convergence time upon
a change in the network topology.

3.1 Introduction

Increasing numbers of components are interconnected via communication net-
works such as the Internet. In such large networks, efficient routing becomes more
and more important. Efficient routing schemes require low memory in network
nodes and act rapidly upon network failures with minimal global impact and short
convergence time.

Geometric routing is a more recent paradigm which has been proposed as an
alternative to IP routing [1]. Scalability of routing tables in conventional IP routers
based on longest prefix matching is becoming an issue in the near future ([2] re-
ports more than 500 K FIB entries in current BGP routers). In geometric routing,
network nodes are assigned (virtual) coordinates in a metric space. Upon arrival of
a packet, the distance between every neighboring node and the packet’s destination
is calculated based on the coordinates. The neighbor with the maximal decrease in
the distance is selected as the next hop. Following this distance-decreasing policy
can lead the packets to their intended destination. As only local information is

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 65

required in every node, it is considered to be significantly more memory-efficient
compared to the conventional IP routing. This scheme is referred to as greedy
routing/forwarding because in each step, the neighboring node with maximum de-
crease in the distance is selected.

A known issue in greedy routing is that packets might get stuck in local minima
(void) meaning that the current location is the closest to the destination among all
the neighboring nodes. A possible solution which is also considered in this work
is to use greedy embeddings [3]. Greedy embeddings find mapping between nodes
and coordinates in such a way that there is always a distance-decreasing neighbor
towards any destination in the network topology. Greedy routing based on these
embeddings never gives rise to local minima. In [4], we proposed a simple greedy
embedding based on a spanning tree of the network.

3.1.1 Our contribution

In this paper, a distributed algorithm for calculation of the embedding in [4] is pro-
posed and experimentally validated. We extend this algorithm to generate back-
ups according to one of the protection techniques we proposed in [5]. Although,
this technique provides a fault-tolerant routing scheme, a mechanism for full con-
vergence from different types of network dynamics such as failure and addition
is required to minimize the impact of topology changes on routing quality (e.g.
stretch2). Therefore, in the proposed distributed algorithm, nodes are triggered to
re-calculate their coordinates in case the structure on which the greedy embedding
is built (a spanning tree in our case) is broken. Any type of failure (link/node) can
be recovered as long as the network remains connected and hence a spanning tree
can be re-constructed.

Importantly, this paper is different from the previous works in the sense that: (i)
a distributed algorithm and relative prototype implementation are provided and (ii)
all the evaluations are through emulation and different metrics such as convergence
time, protection time and communication cost are evaluated while in [4, 5] we only
evaluated the stretch and memory overhead of the schemes.

Although geometric routing is very memory scalable, up to now, it was never
considered as a realistic option for large-scale networks due to the lack of good
recovery mechanisms and it was only evaluated in simulation environments. This
paper builds further on the recent developments in making geometric routing more
robust, extends the state-of-the-art design, and implements a prototype in an emu-
lation environment in order to validate feasibility of the resulting scheme for larger
networks. Although it is too early to propose the resulting geometric routing as a
BGP alternative, we compared a prototype of geometric routing with BGP (as it is
the only routing protocol which has been actually applied in large-scale networks)

2The ratio between the length of the greedy path and the shortest path.

66 CHAPTER 3

to identify routing performance trends and comparisons in terms of convergence
time, stretch and adaptability.

We implemented the control plane of geometric routing i.e. the proposed dis-
tributed algorithm in Quagga routing software.3 The forwarding plane was imple-
mented as new elements in Click modular router4 to enable greedy forwarding of
the packets. The experimentation covers the evaluation of both protection scheme
and the full convergence (coordinate re-calculation). The iLab.t virtual wall fa-
cility is used as the test environment.5 To the best of our knowledge this is one
of the first works to perform emulation experiments on large topologies of 1000

nodes. This scale is a factor 10 improvement over state-of-the-art emulation exper-
iments. As no abstraction is involved in emulation, high accuracy and sensitivity
is achieved in the results. Experimental results in this paper show that the conver-
gence time/communication cost of the proposed scheme upon different types of
dynamics in the topology is very low.

The rest of the paper is structured as follows: Section 3.2 explains the related
work. The tree-based greedy embedding and the protection technique together
with the proposed distributed algorithm are described in Section 3.3. Section 3.4
includes the routing platform description and the implementation of the proposed
scheme in Quagga and Click software. The experimental scenarios, results and
their analysis are reported in Section 3.5. Finally, Section 3.6 concludes the paper.

3.2 Related work

Steps towards greedy routing start with the idea of geographic routing proposed by
Karp and Kung [6] in which network nodes receive their GPS coordinates. Fonseca
et al. used the same idea but instead of physical location of the nodes, a virtual
coordinate in a metric space was assigned to each node in the network leading to
the term geometric routing [1].

Two groups of techniques were proposed to solve the issue of the local mini-
mum in greedy routing. In the first group which is referred to as face routing, the
void is passed by routing around this area and greedy routing is resumed from the
node which is closer to the destination than the local minimum [7]. This type of
technique suffers from two limitations: (i) local parts of the graph must be planar
(planarized), (ii) the latter might not be possible for all types of graphs. In the
second group, greedy embeddings are used to avoid local minima. Using these
embeddings, 100% successful delivery to every destination is guaranteed. Klein-
berg proved that it is possible to find such an embedding in a two dimensional
hyperbolic plane for any connected finite graph using a spanning tree of the net-

3http://www.nongnu.org/quagga/
4http://read.cs.ucla.edu/click/click
5http://www.iminds.be/en/succeed-with-digital-research/technical-testing

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 67

work [8]. Authors of [9] proposed another greedy embedding in the hyperbolic
plane which requires O(logn) bits to represent the coordinates (n is the number
of the network nodes). In [10], graphs are embedded into a O(log2n)-dimension
Euclidean space while in [11], it is a poly-logarithmic dimension Euclidean space.

In [12, 13] and references therein Delaunay triangulations are used to en-
able greedy forwarding focusing on 3-dimensional wireless networks in Euclidean
space. In particular, it has been shown in [14] that Euclidean spaces are not well
suited to represent Internet nodes.

Using greedy embeddings based on multiple trees to improve the performance
of geometric routing was proposed in [15, 16]. Authors in [16] focus on the Inter-
net topology and assuming a logarithmic depth of the spanning tree, the memory
complexity of the embedding is poly-logarithmic. In a recent work [17], enabling
load balancing in geometric routing using multiple trees was proposed. Indeed us-
ing several trees improves the routing performance but increases the overall over-
head of the approach.

In greedy routing, network changes such as link or node failures might af-
fect the greedy embedding and lead the packets to local minima. Besides face
routing very few studies investigated the network dynamics (failure/addition) in
greedy routing. In [18], authors proposed a dynamic embedding to cope with node
addition. However, network failures are handled by an adapted routing referred
to as gravity-pressure. In this routing, packets that reach a dead end (void) are
forwarded to the neighbors which are closer to the destination and a path trace is
maintained in the packets in order to avoid loops. This imposes a large overhead to
the packets header especially in large-scale topologies. In [4, 5], we proposed dif-
ferent recovery techniques for link/node failures in greedy routing. As the schemes
were for protection, backup paths were used upon facing failures. In a more re-
cent work, the effect of using multiple spanning trees on network resiliency was
investigated [19]. However, similar to other approaches based on multiple trees,
the good performance in the latter was at the cost of: (i) increased overall overhead
due to construction of multiple trees, (ii) relative increased storage requirements of
the packet headers and (iii) increased computational complexity of the forwarding
plane.

Although, the aforementioned techniques provide fault-tolerant greedy rout-
ing, they mostly lack a general mechanism to react efficiently to topological changes.
Therefore, in this work we propose a distributed algorithm for greedy embedding
which deals with any type of network changes (failure/addition) in a short period
of time. Instead of relying on complex geometry (e.g. hyperbolic), the algorithm
constructs a spanning tree and calculates the coordinates based on that. Differ-
ent types of dynamics in the network are handled by re-construction of the tree
and re-calculation of the coordinates. In order to identify and quantify trends and
trade-offs of re-convergence behavior of greedy routing, we extend the proposed

68 CHAPTER 3

algorithm to generate backups to apply the protection scheme proposed in [5] in
distributed setups.

The proposed scheme is most comparable with the PIE protocol [16] as both
target large-scale networks and use tree structure to guarantee packet delivery.
However, as PIE uses multiple trees to improve the performance in terms of stretch,
it increases the overall overhead of the scheme. Assuming a single spanning tree
in PIE, in general we expect similar performance in terms of stretch with higher
number of exchanged messages and longer convergence times in PIE because: (i)
it uses separate modules for tree generation and coordinate calculation while we
combine them in a single module, (ii) in PIE, the two modules act on a periodic
basis in order to accommodate possible changes in the tree, while in our scheme
the module runs upon tree changes and (iii) PIE uses the STP protocol known for
long convergence times.

In comparison to link state routing protocols such as OSPF (Open Shortest
Path First), the proposed scheme is only based on local information6 in the net-
work nodes while in OSPF, every node constructs a graph of network topology and
calculates the shortest path to every destination in the network. Indeed having a
global view is not problematic in small/medium size topologies. But in large-scale
topologies where memory scalability is an issue, the added value of the proposed
scheme is apparent. However, better memory scalability in this scheme is at the
cost of a possible deviation from shortest paths.

3.3 Greedy Tree-based geometric Routing (GTR)
GTR primarily comprises two components: (i) tree-based embedding and (ii)
greedy forwarding. In the embedding scheme, network nodes are assigned virtual
coordinates based on a spanning tree which are then used by the greedy forwarding
component to forward the packets towards the intended destinations.

In the concept of geometric routing (or any locator based routing scheme), to
send a packet to a destination t, a node v needs to know the locator/coordinates
of the node t. Therefore, a scalable mapping system to bind node identifiers (e.g.
existing IP addresses in the context of a migration scenario) to node locators (e.g.,
coordinates) is required. A possible option is to use a DNS-like mechanism for
the aforementioned name-to-locator resolutions. There exist several proposals in
the literature considering the Locator/Identifier split principle in the routing archi-
tecture for a scalable future Internet [20]. These proposed mapping systems focus
on different aspects such as scalability, resiliency, security and end-host mobility.
However, the focus of this work is not on such a mapping system and its detail is
out of the scope of the paper. We therefore assume that this mapping system exists
in the network.

6The forwarding decisions are only based on neighbors’ coordinates.

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 69

1,1

(a) Tree-based greedy embedding (b) Greedy forwarding

1 2

1

2

1

0,0

1,0

2,0

1,1

1,2

2,1

Tree

generation

Children

numbering
Coordinate

calculation

0,0

1,0

2,01,2

2,1

S

D

Figure 3.1: The steps of: i) tree generation ii) children numbering and iii) coordinates
calculation are depicted in (a). The dashed lines represent the links which are not in the

tree. An example of greedy forwarding (from S to D) based on the calculated CVs is
depicted in (b).

In the rest of this section we describe (i) the tree-based greedy embedding and
corresponding greedy forwarding, (ii) the protection scheme for single link failure
in geometric routing and (iii) the distributed algorithm for these schemes.

3.3.1 Tree-based greedy embedding

In [4], instead of relying on a complex geometry (e.g. hyperbolic) we used a
simple embedding based on a spanning tree of the network which decreases the
complexity and overhead of the scheme. The steps for calculating this embedding
are: (i) a rooted spanning tree is generated, (ii) the root node sets its coordinate
vector (CV) to zero, (iii) each node numbers its children from 1 to d (d is the
number of children of the node in the tree), (iv) a node calculates the CV of its
children by putting the number assigned to each child in place of the first zero
coordinate in its own CV. Each coordinate in a CV should have enough bits to
be able to show a value equal to the maximum degree of the tree and the number
of coordinates in a CV is equal to the depth of the tree. Therefore, the required
memory to represent the CVs is determined by the depth and the maximum degree
of the tree. Fig. 3.1a depicts an example for this embedding. In this context, tree-
distance which is the hop count on the tree between two nodes is considered as
metric and is calculated easily using the assigned CVs.

Given the CVs of two nodes e.g. nodes (1,1) and (1,2) in Fig. 3.1a, in order
to calculate the tree-distance between them the largest common prefix of the two
CVs is determined which is (1). In each CV, the number of non-zero coordinates
after the common prefix is counted (it is one in both CVs). In case of no common
prefix, all the non-zero coordinates of each CV are counted. The sum of these two
numbers indicates the tree-distance between the two nodes. In the rest of the paper
the term ‘CV’ and ‘coordinates’ are used interchangeably.

70 CHAPTER 3

Note that a distance-decreasing path is guaranteed via the spanning tree of
the network. However, greedy forwarding based on the explained embedding is
different from tree routing7 because the shortcut links8 can also be used. An
example of greedy forwarding (from S=(1,1) to D=(2,1)) is given in Fig. 3.1b.
Each node is aware of its neighbors CVs. In every node the tree-distance be-
tween each neighbor and node D is calculated and the one with the minimum
distance is selected as the next hop. In node S, the tree-distances (td) are as fol-
lows: td((0,0),(2,1))=2, td((1,0),(2,1))=3, td((1,2),(2,1))=4. Therefore, the neigh-
bor (0,0) is selected as the next hop. Repeating the same procedure in every node
results in the path depicted by arrows ((1,1)→(0,0)→(2,0)→(2,1)). This is not
equal to the shortest path ((1,1)→(1,2)→(2,1)), but it is more efficient than tree
routing ((1,1)→(1,0)→(0,0)→(2,0)→(2,1)).

Below, we provide an overview on the process sequence of GTR:

1. Routers start exchanging messages to create a spanning tree.

2. They calculate the coordinates based on the constructed spanning tree.

3. They register their CV to the mapping system.

4. Each router stores the CVs of its neighbors to enable greedy forwarding.

In GTR in order to send a packet from node v to node t, the mapping system is
queried by v to get the CV of t. The packet is then forwarded towards t following
distance-decreasing policy. The above processes are detailed in Section 3.3.3.

3.3.2 Single link failure protection technique

In [5], we proposed recovery techniques for link failures in geometric routing. The
protection is used only for tree link failures, as shortcut failures do not affect the
greedy embedding. For every tree edge e attached to a node, we look for an inter-
mediate node from which greedy routing to the destination is possible (assuming e
is failing). We need to distinguish between upward and downward failures. An up-
ward failure refers to a scenario where the failing link was supposed to be passed
in the direction towards the root of the tree. In case of a downward failure, the
link was supposed to be passed towards leaves of the tree. In a downward failure
scenario, we search to find a node which has a shortcut to the subtree below the
failing link. In an upward failure scenario a node with a shortcut to another node
out of the subtree below the failing link is found. As the tree-based embedding
determines the location of nodes in the tree, it can be used to find the suitable in-
termediate nodes. The forwarding upon failure detection is as follows: (i) greedy

7In tree routing, a spanning tree of the network is constructed and packets are forwarded towards
their destination using only tree links.

8Links which are not in the spanning tree of the network.

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 71

(a) Downward failure (b) Upward failure

0,0

1,0

2,0

1,1

1,2

2,1

0,0

1,0

2,01,2

2,1

1,1

D

S S

D

0,0

1,0

2,0

1,1

1,2

2,1

0,0

1,0

2,01,2

2,1

1,1

S

D D

S

Figure 3.2: (a) and (b) depict a downward and an upward failure scenario respectively.
The primary path is depicted in the graph at left and the recovery path is depicted on the

right graph with dashed arrows. The selected intermediate nodes are colored gray.

forward to the intermediate node, (ii) take the shortcut to the corresponding sub-
tree, (iii) resume greedy forwarding on the tree. Fig. 3.2 depicts examples of
upward and downward failures. The primary and recovery paths are depicted by
solid and dashed arrows respectively. For detailed explanation of the scheme, we
refer the interested readers to [5].

3.3.3 Proposed distributed algorithm

As evaluated in [21], the choice of the spanning tree may impact the resulting
performance of the system. Finding the optimal spanning tree which minimizes the
path stretch is a hard problem, as the number of spanning trees for a given graph
grows rapidly by increasing the number of nodes and edges in the graph [22].
Based on our experiments, trees with low depth and high degree result in low
average stretch and reduce coordinate memory. For this reason, our goal is to
formulate a spanning tree construction method which targets the minimization of
the resulting depth, while maximizing the used degree. Constructing such a tree
can be done by generating a Breadth-First-Search (BFS) spanning tree which is
rooted at a node with maximum degree in the network. In this way, the generated
tree has the maximum possible degree and a very low depth.

The distributed implementation of the BFS tree construction has been investi-
gated abundantly in the literature. However, most of these studies assume a pre-
defined root node. Therefore, they cannot be used directly in our case.

In our proposed algorithm, each node of the network should have a unique
identifier (ID). This ID is composed of two parts: (i) the degree of the node and
(ii) a unique number. These two parts are concatenated in such a way that a node
with higher degree has a higher ID as well (ID = degree:number). An example
of these IDs is given in Fig. 3.3. The algorithm generates a BFS spanning tree
which is rooted at the node with the highest ID. Once the tree is generated and
the coordinates are assigned, the search for finding the suitable intermediate nodes

72 CHAPTER 3

2:6 5:7 2:6 5:7

(i) (ii) (iii) (iv)

3:1 2:2 3:3
3:4

2:8

2:5

3:1 2:2 3:3
3:4

2:5

2:8

3:1 2:2 3:3
3:4

2:5

2:6 5:7
2:8

2:2 3:3
3:4

2:5

2:6 5:7
2:8

3:1

Figure 3.3: Example of tree construction process. (i) and (iv) depict the initial and the
final states of the tree construction process respectively. (ii) and (iii) depict two possible

intermediate stages with partial trees.

required for the link failure protection is started.

3.3.3.1 Tree construction

Each node in the network initiates spanning tree generation considering itself as
the root of the tree. As the objective is to generate a single spanning tree, all except
one tree should be suppressed based on a rule. We use the nodes IDs as tie-breaker
allowing only the tree initiated by the root with the higher ID to continue. Addi-
tionally, the level9 of the nodes in the selected tree should be taken into account
to enable minimal depth tree construction. This is done by sending ANNOUNCE-
MENT messages which include two parameters to indicate: (i) the ID of the root
node initiating the tree and (ii) the level of the node receiving the message upon
joining the tree.

When an ANNOUNCEMENT(newroot,newlevel) from j arrives at i:

• if (newroot > myroot) or (newroot = myroot and newlevel < mylevel):
node i should suppress its current tree/current location in the tree due to its
lower priority. It updates its data structures and joins j’s subtree with new-
root as the root and newlevel as the location in the tree. It then announces
the new states to its neighbors except j.

Eventually all nodes receive the ANNOUNCEMENT message indicating the
root node with the highest ID and abandon the lower priority trees.

Fig. 3.3 illustrates an example for this tree construction process. Fig. 3.3(i)
depicts the initial state when no link belongs to any tree yet (represented by dashed
lines). Before convergence to a single tree, it is possible to have partial trees in the
intermediate stages. Fig. 3.3(ii) and (iii) depict two possible intermediate stages.
Finally a single spanning tree rooted at the highest ID node with minimum depth
is constructed which is illustrated in 3.3(iv).

9The hop count of a node to the root in the tree.

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 73

3.3.3.2 Coordinate calculation

CV calculation and spanning tree generation can be performed simultaneously.
The exchanged messages between network nodes to construct the spanning tree
can include the calculated CVs and thus there is no overhead in terms of number
of messages imposed by the coordinate calculation process. This means that once
node i sends an ANNOUNCEMENT message to its neighbor j, it can calculate
the corresponding CV (see Section 3.3.1) for j and add it to the same message.
Therefore, the ANNOUNCEMENT message of i includes: (i) the ID of the root
node initiating the tree, (ii) the level of node j if it joins the tree and (iii) the CV
of node j if it joins the tree. Upon arrival of this message, if node j abandons its
current tree, it should update its CV to the one announced in the message.

Each node announces its CV and ID to its neighbors (using ADVERTISE-
MENT messages) and nodes store the neighbors information in a table to enable
greedy forwarding. Additionally, each node registers its CV in the mapping sys-
tem. Upon a change in a node’s CV, the new CV is announced to all the neighbors
and the mapping system is updated.

3.3.3.3 Algorithm complexity

The algorithm follows a mechanism similar to a distributed variant of the Bellman-
Ford algorithm. Assuming a single initiator, the complexity of number of ex-
changed messages is O(nm), with n being the number of network nodes and m,
the number of network edges. The reason is that a node can maximally change its
level n times and each time it sends d (degree of the node) notifications. In our
case as there are n initiators, a node can change its level n × n times in the worst
case. If we take the sum over all the network nodes, the number of messages is
in the order of O(n2m). Note that this scheme is more scalable compared to path
vector routing protocols such as BGP because: (i) the worst case of O(n2m) can
only happen when a tree is constructed for the first time and unlike BGP sending
messages is not a continuous process. The message complexity of BGP is depen-
dent on the value of a timer and might vary between O(n!m) and O(nm) [23] and
(ii) the scheme provides better scalability in terms of memory in the forwarding as
the next hop of a packet can be determined relying on local information (neighbors
CVs).

3.3.3.4 Algorithm states

Fig. 3.4a illustrates the different states of the algorithm. All nodes start from
the IDLE state. They move to ONGOING-CHANGE state when they start send-
ing ANNOUNCEMENT messages. Eventually when all nodes receive the AN-
NOUNCEMENT message indicating the highest ID root node and when the lowest

74 CHAPTER 3

IDLE

ONGOING

CHANGEROOT

NOT-ROOT

(a) Algorithm states

3:1 2:2 3:3
3:4

2:5

2:6 5:7
2:8

2:1 2:2 2:3
2:4

2:5

1:6 5:7
1:8

3:1 2:2 3:3
3:4

2:5

2:6 5:7

2:8

2:2 3:3
2:4

1:5

2:6 5:7

2:8

3:1

(i) (ii)

(iii) (iv)

(b) Examples for two types of failures in the tree

Figure 3.4: State diagram of the tree generation algorithm is depicted in (a). The root
failure and corresponding converged tree is depicted in (b).i and (b).ii, and edge failure is

depicted in (b).iii and (b).iv.

level in that tree is found, the nodes reach stability and no more messages are ex-
changed. The highest ID node is selected as the root and moves to the ROOT state
and all the others have found their location in the tree and move to NOT-ROOT
state. Thus the last two states are the stable states for the nodes. Any change in
the tree (failure/addition) might bring back the nodes to the ONGOING-CHANGE
state.

3.3.3.5 Network failures

As the proposed greedy embedding is based on a spanning tree, a change in this
structure such as link/node failure might impact the embedding. Therefore, the
tree and the CV of the affected nodes should be re-calculated. We categorize the
failures in three groups:

• Failures in the root node or attached to it. If the root node is the failing
component, a new spanning tree rooted at another node in the network is
constructed. Additionally, a failure attached to the root node causes the tree
to be re-constructed. If there is a node with higher degree compared to the
previous root node in the network, the converged tree will be rooted at that.
The reason for adding such a mechanism is to keep the tree structure close
to the proposed maximal degree-minimal depth tree which enables a good
performance in geometric routing. If no proper reaction occurs in case of
such failures (because the root node is up and running), the resulting tree
could have very high depth and the routing performance could be degraded
drastically over time. However, as the overhead of a new tree construction
can be high (see message complexity), it should be avoided as much as pos-
sible. We make sure that a mechanism to deal with such failures exits but
different policies on when to use it can be considered. For example the

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 75

mechanism could be run only if a certain threshold is reached. Another pos-
sible policy is to have a clever combination of protection (see [4, 5]) and tree
re-construction mechanisms. The experiments in Section 3.5.3.3 identify the
trade-off between the communication overhead and routing performance if
the protection mechanism is used.

• Failures unrelated to the root in the tree. In case of these failures, the tree is
partially re-constructed. This means that the root node does not change and
only the nodes in the disconnected subtree should rewire to the rest of the
tree and re-calculate their CVs accordingly. Considering the simple scenario
of a leaf node upon a link failure, the leaf is disconnected from the tree and
it should reconnect to the rest of the tree. However, in this case no other
node in the tree is affected. Fig. 3.4b depicts examples for the two types of
failures in the tree and the corresponding converged trees.

• Shortcut failures. These failures do not affect the tree structure and the
greedy embedding therefore, no action is required.

In order to enable the re-convergence mechanism in the algorithm, the AN-
NOUNCEMENT message is extended with a new parameter called failed node. In
the proposed algorithm, link and node failures are treated as node failures. This
means that the failure detecting node assumes that the node attached to the other
side of the link is failing. Assuming that nodes were in a stable state before the
failure, the failure detecting node should trigger (neighboring) nodes to start ex-
changing messages again if: (i) it is in the disconnected subtree and should rewire
to the rest of the tree, or (ii) the tree should be globally re-constructed depending
on the type of the failure. This triggering is simply done by restarting the algorithm
in the node which means initializing the states and sending ANNOUNCEMENT
messages to the neighbors. This initialization is required as it provides a mecha-
nism to avoid loops. This is explained later in this section.

Additionally, the ID of the failing node is set in the failed node field of the
message. Because, in case of failures in the first group, all nodes should be trig-
gered to restart the algorithm to construct a new tree. Using the failed node field,
all nodes are informed about this failure and act accordingly. In case of failures
in the second group, only the nodes in the disconnected subtree are triggered to
restart the algorithm to rewire to the rest of the tree. A simple improvement in
case of a link failure attached to the root is that both nodes announce the ID of the
root in the failed node field. This enables faster informing of all nodes about the
change in the root.

The pseudo code of this algorithm is depicted in Fig. 3.5. Lines (2a) and (2d)
are handling the two types of failures in the tree. (2a) restarts the algorithm in case
of the root failure and (2d) restarts the algorithm if the node is in the disconnected

76 CHAPTER 3

subtree. This is indicated by receiving a lower ID root/higher level than the current
root/level from the parent node.

int parent, myroot, mylevel, myCV ← Ø, set of int children ← Ø, unrelated ← Ø

(1) When the node initiates the algorithm as a root:

(1a) parent ← Ø; myroot ← i; mylevel ← 0; myCV← 0

(1b) for all the neighbors:

(1c) send ANNOUNCEMENT(root = i, level = 1, CV = calculated CV for the neighbor)

(2) When ANNOUNCEMENT(newroot, newlevel, newCV, failed node) arrives from j:

(2a) if (failed node = myroot) then //root node is failing – restart algorithm

(2b) for all the neighbors:

(2c) send ANNOUNCEMENT(root = i, level = 1, CV = calculated CV for the neighbor, failed node)

(2d) if (newroot < myroot) or (newroot = myroot and newlevel > mylevel) and (j=parent) then //failure in upper level- restart algorithm

(2e) for all the neighbors:

(2f) send ANNOUNCEMENT(root = i, level = 1, CV = calculated CV for the neighbor, failed node)

(2g) if (newroot > myroot) or (newroot = myroot and newlevel < mylevel) then

(2h) parent ← j; myroot ← newroot; mylevel ← newlevel; myCV ← newCV

(2i) for all the neighbors except j:

(2j) send ANNOUNCEMENT(root = myroot, level = mylevel+1, CV = calculated CV for the neighbor)

(2k) else if (newroot < myroot) or (newroot = myroot and newlevel−1> mylevel+1) then

(2l) send ANNOUNCEMENT(root = myroot, level = mylevel+1, CV = calculated CV for j) and send REJECT(root=newroot) to j

(2m) else send REJECT(root=newroot) to j

(3) When ACCEPT(newroot) arrives from j:

(3a) if (newroot=myroot) then children ← children U {j}

(3b) if (children U unrelated) = (neighbors/{parent}) then

(3c) if (i = myroot) then

(3d) send START to all children and send PROBE (direction=down, CV=CV of each child) for every tree edge

(3e) else send ACCEPT(root=myroot) to parent.

(4) When REJECT(newroot) arrives from j:

(4a) if (newroot=myroot) then unrelated ← unrelated U {j}

(4b) if (children U unrelated)= (neighbors/{parent}) then

(4c) if (i!=myroot) then send ACCEPT(root=myroot) to parent

(5) When START arrives from j:

(5a) send START to all the children and send PROBE (direction=up/down, CV of the neighbor) for every tree edge

(6) When PROBE (newdirection, newCV) arrives from j:

(6a) Look for the desired shortcut based on the newdirection and newCV

(6b) if the shortcut is found then send ACKP (myCV, newCV) to j

(6c) else send PROBE(newdirection, newCV) to neighbors except j

(7) When ACKP (newCV, CV) arrives from j:

(7a) if destined for this node then store the newCV

(7b) else forward ACKP in the correct direction (greedy forwarding)

Figure 3.5: Pseudo code of the distributed algorithm for CV calculation/protection in node
i

This algorithm is similar to distance-vector algorithms in the sense that: (i)
every node calculates the distance (in terms of hop counts) to the root node, (ii)
it announces this hop count to its neighbors and (iii) nodes update their distance
to the root based on the announcements received from the neighbors. Therefore,

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 77

strategies such as split horizon (poison reverse)10 are required to avoid loops. As
explained above, once a node detects a failure it restarts the algorithm and an-
nounces itself as the new root to its neighbors. Note that its ID is lower than the
current root node ID and this is used to provide a loop avoidance mechanism in the
algorithm. In node i, receiving a lower ID root/higher level in an ANNOUNCE-
MENT message from the parent is the indication of a failure in an upper level in
the tree. Knowing this, node i avoids sending back its current root ID/level to its
parent and instead it restarts the algorithm to find a new location in the tree (see
line (2d) in the pseudo code). This way all the nodes in the disconnected subtree
are informed about the failure (by receiving lower root ID/higher level from the
parent) and loops are avoided as well.

Another mechanism which avoids invalid tree constructions/loops caused by
the root node failure is to put the ID of the failing node in the ANNOUNCEMENT
messages. If the root node crashes, all other nodes are informed about it and before
announcing stale information about the crashed root they are forced to restart the
algorithm to find a new root (see line (2a) in the pseudo code).

3.3.3.6 Network additions

Node and link addition scenarios are also treated the same. The new node (or
nodes with new edges) restarts the algorithm by announcing itself as the root node
to its neighbors. Messages are exchanged until the new node finds its location in
the tree. If the ID of the new node is higher than the current root node, all the
nodes in the network change their states and select the new node as their root.

3.3.3.7 Protection

In order to add the functionality for finding the intermediate nodes with suitable
shortcuts corresponding to the tree edges (required for the protection scheme),
other types of messages are defined in the algorithm:

• ACCEPT: sent to the parent if the node has received a reply from all of its
neighbors.

• REJECT: sent to the neighbor if it does not offer a better state (higher root
ID, lower level in the tree) in the ANNOUNCEMENT.

• START: used to inform nodes to start looking for the intermediate nodes.

• PROBE: sent to search for the desired intermediate nodes.

• ACKP: sent to the protecting node once an intermediate node with the de-
sired shortcut is found.

10A method of preventing routing loops in distance-vector routing protocols by prohibiting a router
from advertising a route back onto the interface from which it was learned.

78 CHAPTER 3

(a) Architecture of GTR implementation (b) Node architecture

Figure 3.6: Architecture of GTR implementation and a GTR-enabled node

The first two types are used to determine the relation of nodes and their neighbors
in the tree (child, parent). The root node uses these messages to know when the
tree is generated. Once it receives ACCEPT from all of its neighbors, it informs
network nodes by START messages to start looking for intermediate nodes by
sending PROBE messages. In Fig. 3.5, the sets ‘children’ and ‘unrelated’ are used
to store the children of a node and the node’s neighbors in the network which are
not connected via a link in the tree respectively.

3.4 Routing platform

In order to experimentally evaluate GTR, it has been implemented as a prototype.
This prototype runs on top of an existing Quagga routing platform in the iLab.t
virtual wall emulation testbed platform.

3.4.1 GTR implementation in Quagga routing suite

Quagga is an open source software routing suite which provides different routing
protocols for UNIX based platforms and is written in C. Quagga is composed of
several daemons, each for a routing protocol. Some of the available implemen-
tations are RIP, OSPF and BGP. All of these daemons interact with the kernel
routing table through zebra daemon. Daemons can be controlled by a virtual ter-
minal access provided by a telnet-based interface. Quagga architecture has a very
rich library which facilitates the development of new daemons.

Fig. 3.6a depicts the architecture of the GTR implementation. The main mod-
ules in this architecture are as follows:

• GTR daemon in Quagga (control plane).

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 79

• Forwarding module in Click (forwarding plane).

• Mapping module.

The implemented GTR daemon consists of 3 major modules:

• greedyd-main.c: This is the main function and the main entry of the GTR
daemon. It also includes the thread management.

• greedy-zebra.c: This module consists of the communication functions with
zebra daemon.

• greedyd.c: This module is composed of GTR daemon initialization and all
of the logic for tree generation, coordinate calculation and intermediate node
determination for link failure protection.

In the GTR daemon, it is possible to select between protection and coordinate
re-calculation mechanisms. This can be set in the daemon configuration file in
Quagga.

As the GTR daemon is only the routing engine, the forwarding plane is im-
plemented in Click modular router to enable greedy forwarding of packets. As
mentioned before, a mapping module is required to bind names to locators. This
module interacts with GTR daemon to get the mapping between a node’s name
and its CV which is then queried by the Click module to forward packets. For sim-
plicity, we considered a centralized mapping base reachable by all nodes, because
this mapping system is out of the scope of this paper.

3.4.2 Greedy forwarder implementation in Click modular router

The Click modular router is an open source platform made in C++ that allows a
Linux PC to act as a router/switch. Click has a modular architecture which means
that the configuration of a router/switch boils down to the interconnection of a
chain of modules/elements which process packets or frames.

In order to greedy forward the packets, we developed Greedy-forward element
in Click. The packets consist of: (i) header which is composed of source and
destination CVs of the packet and (ii) data. The major functionality of the Greedy-
forward element is to extract the CV of the destination from the incoming packets
and calculate the distance between every neighbor and the destination. In case of
protection, the header of the packet is augmented with the CV of the intermediate
node and a flag which indicates the routing mode: greedy/protection (see [5]).
The neighbors’ information (such as CV, ID and the port they are connected to) is
stored in the neighbor table of this element. All the routing information such as
node’s CV and the neighbors’ information are calculated by the GTR daemon in
Quagga and set through Unix control socket to the Click element. The architecture

80 CHAPTER 3

Figure 3.7: Connecting LXCs using bridges

of a GTR-enabled node is depicted in Fig. 3.6b. The main methods in this element
are as follows:

• Tree-distance: calculates tree-distance between two nodes.

• Push: greedy forwards the packet or calls the protection-forward method.

• Protection-forward: forwards the packet based on the protection scheme.

3.5 Experimentation and discussion of the results

3.5.1 iLab.t virtual wall platform

We perform our experimentation on iLab.t testbed of iMinds. The iLab.t virtual
wall is a generic test environment which provides computing hardware and dif-
ferent software tools to evaluate the performance of the novel solutions. There
exist two virtual wall setups: wall1 consists of 200 servers and wall2 has 100

servers. The servers in each wall are interconnected by a nonblocking 1.5 Tb/s
VLAN Ethernet switch. The servers are equipped with 4-6 Ethernet interfaces.
The Emulab software of the University of Utah is run on this testbed. As the goal
of our experimentation is to evaluate the proposed scheme in large-scale topolo-
gies, virtualization techniques were considered to allow for physical nodes to host
multiple virtual nodes. We re-compiled a recent Debian 3.* kernel to support LXC
container-based virtualization, and transparent VLAN bridging between LXCs to
support more number of interfaces. Fig. 3.7 depicts how bridges are used to con-
nect virtual nodes (LXCs) in different physical nodes.

3.5.2 Emulation vs. simulation

Simulation experiments focus on the evaluation of spatial metrics while emulation
experiments concentrate on time-sensitive and resource-sensitive metrics. Simula-
tion and emulation are complementary and some experiments are suited for sim-
ulation while others are better placed for emulation. In simulation, abstractions

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 81

are made to model node and network while in emulation no model or abstraction
is involved but a prototype implementation is made. Emulation entities can inter-
act with real hardware implementations. Therefore, more realistic results can be
achieved through the emulation experiments.

3.5.3 Experimentation setup and objectives

We perform different experiments to evaluate the convergence behavior of GTR
and its recovery capabilities upon occurrence of network failures and compare the
experimental results with BGP. We selected BGP for comparison because it is the
only routing protocol which has been implemented and actually applied in large-
scale (inter-domain) networks. It is well-understood and its pros and cons are
known.

This experimental evaluation should enable more careful conclusions regard-
ing GTR applicability to inter-domain settings. For these experiments, a topol-
ogy based on the GLP model [24] with 1 K nodes, and parameters: m = 1.13,
m0 = 10, p = .5972, beta = .1004 is considered. These parameters have been
corroborated by the extensive study of [25].

3.5.3.1 Stretch evaluation of GTR

Before starting the GTR evaluation in scenarios with different network dynamics,
we evaluated its performance in terms of stretch to determine how the path length
is affected using this scheme. Routing stretch is defined as the ratio between the
length of the path produced by greedy forwarding and the length of the shortest
path for the same source-destination pair. We report the average stretch for topolo-
gies based on the GLP model ranging from 200 to 1000 nodes with parameters
mentioned earlier. Note that all the other experiments in the following subsections
are on a GLP topology with 1000 nodes and the aforementioned parameters unless
stated otherwise. We compared the stretch results of GTR with tree routing.

For this experiment, we calculated the stretch for every pair of nodes in the
network. The average stretch for each topology is calculated and this is repeated
for 10 different GLP topologies and the average over all of them is reported in
Table 3.1. As we see, the average stretch of GTR scales very well with the increase
in the number of nodes and it outperforms tree routing significantly.

Table 3.1: The average stretch of GTR and tree routing on different size GLP networks

Network size 200 400 600 800 1000
GTR avg stretch 1.095 1.094 1.096 1.099 1.101

Tree-routing avg stretch 1.347 1.346 1.354 1.366 1.372

82 CHAPTER 3

In the following subsections, the GTR stretch is evaluated in different dynamic
scenarios. This gives an overview on how the routing quality is affected by network
changes.

3.5.3.2 Recovery capabilities of GTR

In routing schemes such as GTR with embedding based on a tree structure, a single
failure in the topology might affect the tree connectivity and break the embedding.
In order to re-calculate the embedding the tree structure should be re-constructed.
Based on the location of the failure, local or global changes in the coordinates of
the nodes are possible. The closer the failure to the root of the tree, the higher the
number of affected nodes. While in case of a failure attached to a leaf node, only
the leaf node updates its location in the tree.

In the experiments of this section, we evaluate the performance of GTR in
terms of convergence time, communication cost and routing quality (stretch) con-
sidering different failure scenarios (single and multiple failures). We emulate the
failures by disabling the interfaces in a node. We select random links in the net-
work to be failing. As explained in Section 3.3.3, once a node detects the failure
(this is done through a zebra daemon), it re-starts the algorithm by announcing
itself as the root to its neighbors. The message exchanges continue until new lo-
cations in the tree and thus new coordinates are found for the node and all of its
descendants. The network reaches stability once no more messages are exchanged
between nodes. We capture all the exchanged messages (control traffic and up-
dates in the mapping component) and the time between occurrence of a failure and
the last sent message is considered as the convergence time. Note that in this set
of experiments no protection scheme is used and coordinates of the affected nodes
are re-calculated.

The same experiment is repeated on BGP components and the control traffic
is captured in the network. The convergence time is calculated from the moment
a failure occurs until the last UPDATE message sent in the network. BGP keeps
on sending KEEPALIVE messages after convergence (this is different from GTR
in which no more messages are exchanged after convergence). Indeed, there are
several ways to reduce BGP convergence time such as tuning the MRAI (Mini-
mum Route Advertisement Interval) timer or using BGP Fast-reroute or add-path
technique. We use an optimal value for MRAI for baseline comparison.

In order to evaluate the re-convergence trend for single link failure scenario, we
started GTR components on the network nodes and waited for some time that the
routing components converge globally (this time is obtained experimentally and is
in the order of few minutes). Then 100 links were selected randomly and disabled
one at a time, convergence time was measured and links were enabled again. The
first, 25th, 50th, 75th and 99th percentile values for convergence time of GTR are:
0, 0, 0.16, 0.29 and 4.8 s respectively. As not all link failures leads to changes of

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 83

Histogram of convergence time

Convergence time (second)
0.00.51.0 1.52.0 4.54.03.53.02.5

20

15

10

5

30

25

0

Fr
eq
ue
nc
y

(a) Single tree link failure - GTR

Histogram of convergence time

Convergence time (second)
5 10 15 20 25 30 35 40

4
3
2
1

8
7
6
5

0

Fr
eq
ue
nc
y

(b) Single link failure - BGP

Figure 3.8: Distribution of convergence time in single failure scenario

Histogram of number of messages

Number of messages
0 50 100 150 200 250 300 350
0
2
4
6
8
10
12
14
16
18

Fr
eq
ue
nc
y

(a) Single tree link failure - GTR

Histogram of number of messages

Number of messages
0 10000200003000040000500006000070000

10

14
12

8
6
4
2
0

Fr
eq
ue
nc
y

(b) Single link failure - BGP

Figure 3.9: Distribution of number of exchanged messages in single failure scenario

coordinates, the convergence time for some of the failures is zero. Therefore, we
repeated the experiment considering only single tree link failures (50 random tree
links). Fig. 3.8a depicts the distribution of the convergence time for the single tree
link failures. The first, 25th, 50th, 75th and 99th percentile values of the measured
convergence times are: 0.0169, 0.0226, 0.0315, 1.0398 and 4.003 s. Some of the
tree link failures affect very few nodes (e.g. only a leaf node) and therefore, the
corresponding convergence times are low (tens of milliseconds). The closer the
failure to the root of the spanning tree, the higher the number of affected nodes
and therefore, the higher the convergence time and the communication cost.

We repeated the same experiment on BGP routing components. For a fair
comparison with GTR (as it uses no timer), we tuned the MRAI timer to 5 s which
seems to be close to optimal value for eBGP [26]. Fig. 3.8b depicts the distribution
of the convergence time for 100 link failures and Fig. 3.9 illustrates the distribu-
tion of the number of exchanged messages during the convergence of both GTR
and BGP. Indeed, BGP with default MRAI value equal to 30 s, showed higher
convergence time of 57.46 s on average.

In the next experiments, we evaluated the behavior of GTR in case of multiple
simultaneous failures (up to 10 link failures) and compared it with BGP. Links
were selected randomly. Figs. 3.10 and 3.11 report the average convergence time

84 CHAPTER 3

Average convergence time

Number of link failures
2 3 4 5 6 107 8 9

2.5
2.0
1.5
1.0

3.0
3.5
4.0
4.5

0.5C
on
ve
rg
en
ce
 ti
m
e
(s
ec
on
d)

(a) Multiple link failures - GTR

Average convergence time

Number of link failures
2 3 4 5 6 7 8 9 10

26

24

22

20

18

16C
on
ve
rg
en
ce
 ti
m
e
(s
ec
on
d)

(b) Multiple link failures - BGP

Figure 3.10: Average convergence time in multiple failures scenario

Average number of messages

Number of link failures
2 3 4 5 6 107 8 9

60

50

40

30

70

80

20

N
um
be
r o
f m
es
sa
ge
s

(a) Multiple link failures - GTR

Average number of messages

Number of link failures
2 3 4 5 6 7 8 9 10

40000

35000

30000

25000

20000

15000

10000

N
um
be
r o
f m
es
sa
ge
s

(b) Multiple link failures - BGP

Figure 3.11: Average number of exchanged messages in multiple failures scenario

and number of exchanged messages over 100 repetitions of the experiments. In
both scenarios we observe an increase trend and in GTR, the average convergence
time in 10 simultaneous failures does not exceed 4.5 s while in BGP, the average
convergence time for 10 link failures is almost 26 s.

In order to have a view on the routing quality of GTR, we evaluated the average
stretch in the scenario of multiple link failures. The average stretch remained
almost the same for different number of failures and was equal to 1.0176. Although
10 link failures are less than 1 percent of the links in the topology, this result
shows that re-calculation of the coordinates results in good performance in terms
of stretch with low convergence time.

3.5.3.3 Impact of topology dynamics on GTR

Topology changes such as link/node failures/additions may change the structure
on which the coordinates in the geometric routing system is built (spanning tree in
case of GTR). The resulting changes may affect even non-local parts (with respect
to failure/addition) of the network for a certain period of time. A clever combina-
tion of protection and coordinate re-calculation techniques may render geometric
routing schemes more or less prone to these events. The goal of this experiment is
to evaluate how much a topology may change before it has a strong impact on the

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 85

Histogram of convergence time

Convergence time (second)
0 2 4 6 8 10 12 14

25

30

20

15

10

5

0

Fr
eq
ue
nc
y

(a) Topology change - GTR

Histogram of convergence time

Convergence time (second)
0 20 40 60 80 120100

4
3
2
1

6
5

7

9
8

0

Fr
eq
ue
nc
y

(b) Topology change - BGP

Figure 3.12: Distribution of the convergence time in 10% topology change scenario

performance of geometric routing systems in terms of stretch, convergence time
and communication cost.

In this experiment, we assume that 10% of the topology changes. To this end,
400 random links (≈ 10% of links) were selected to be failing and they were dis-
abled one at a time and were added to different nodes (selected randomly) one by
one. Thus in every step of the experiment, a single link is removed and a new link
is added between two other nodes in the topology and we wait long enough (order
of few minutes) that the GTR component converges. The convergence behavior is
measured similar to previous experiment based on the control messages. Fig. 3.12
illustrates the distribution of the convergence time for both GTR and BGP and the
evolution trend of the convergence time is depicted in Fig. 3.13. The distribution
of the number of exchanged messages is reported in Fig. 3.14. As we observe in
both schemes no special trend is visible which can be explained by the random-
ness of the changes. In GTR, based on the location of the changes the convergence
time differs. However, it does not exceed 14 s for a link failure and addition. Note
that in general a link addition leads to higher convergence time than a failure in
GTR. The reason is that (i) a shortcut failure does not impact the structure of the
greedy embedding and thus no updates are exchanged and (ii) in case of a tree link
failure, only the child node and the nodes in the disconnected subtree re-calculate
their CVs while the parent node does not look for new CV. In case of link addi-
tions, both nodes attached to the link re-calculate their CVs and might affect more
nodes.

As evaluating stretch for every single link addition/failure was time consum-
ing, we measured the average stretch 20 times during the 10% topology change
scenario. This means that the average stretch was evaluated after every 20 link
additions/failures. Similar to previous experiment, the re-calculation of the coor-
dinates resulted in good performance in terms of stretch and the average stretch
remained almost 1.11 in all steps.

Now that we have evaluated the topology change scenario with coordinate re-
calculation scheme in GTR, we consider the protection scheme to find out how

86 CHAPTER 3

Evolution of convergence time

Experiment
0 50 100150200 250300350400

10

14
12

8
6
4
2
0C

on
ve
rg
en
ce
 ti
m
e
(s
ec
on
d)

(a) Topology change - GTR (b) Topology change - BGP

Figure 3.13: Evolution of the convergence time in 10% topology change scenario

Histogram of number of messages

Number of messages
0 2000 4000 6000 8000 1000012000

20

15

10

5

0

Fr
eq
ue
nc
y

(a) Topology change - GTR

Histogram of number of messages

Number of messages
0 50000 100000150000200000250000300000350000

25

35
30

20
15
10
5
0

Fr
eq
ue
nc
y

(b) Topology change - BGP

Figure 3.14: Distribution of number of exchanged messages in 10% topology change

much a topology can change without having a strong impact on the performance
of the routing in terms of stretch and nodes reachability. In the proposed protection
scheme, the alternative paths are pre-calculated and thus, no updates are exchanged
between nodes upon any change in the topology. As there is no communication
cost/convergence time, only the switch-over time is important and also the over-
head on memory consumption of network nodes should be considered which was
evaluated in [5]. However, as the topology changes, the pre-calculated paths might
be far from optimal resulting in bad performance of the routing in terms of stretch.
In Fig. 3.15a, we report the average stretch upon 10% topology change consid-
ering the protection technique. Similar to the previous experiment, the average
stretch was measured 20 times during the 10% topology change scenario. This
means that we evaluated the average stretch after every 20 link additions/failures
in the network. Note that the protection scheme for single link failure was imple-
mented (due to its low overhead/memory consumption). Therefore, depending on
the changes, some of the nodes might not be reachable anymore. The reported val-
ues in Fig. 3.15a were measured only for the reachable source-destination pairs.
The number of disconnected pairs in every 20 steps is depicted in Fig. 3.15b. Al-
though, the average stretch increases, it does not exceed 1.28 and only less than
2% of the pairs are unreachable after 10% topology change. This study identifies

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 87

Evolution of stretch

Experiment
2 4 6 8 10121416 1820

1.10

1.18

1.22

1.14
1.12

1.20

1.24

1.16

1.26
1.28

Av
er
ag
e
st
re
tc
h

(a) Average stretch - GTR

Unreachability of source-destination pairs

Experiment
2 4 6 8 10121416 1820

1.0

1.5

0.5

2.0

0.0Pe
rc
en
ta
ge
 o
f u
nr
ea
ch
ab
le
 p
ai
rs

(b) Disconnected pairs - GTR

Figure 3.15: Average stretch and reachability using protection scheme

the trade-off between communication cost/convergence time and routing quality in
terms of stretch and nodes reachability.

In the last experiment, we evaluated the protection time of the implemented
scheme in GTR which was measured at the forwarding plane. As it is not affected
significantly by the size of the topology, we evaluated it in a GLP topology with
100 nodes. We selected a pair of nodes randomly and sent traffic (generated in
Click) from source to the destination every 1 ms. It was ensured that the greedy
path between source and destination went through at least one tree link. A fail-
ure was emulated by disabling a tree link along the path between the two nodes.
We monitored the traffic in the destination, and the protection time was calculated
by measuring the gap in the received traffic. We repeated this experiment 20 times
and the average protection time is 20.4 ms. The first, 25th, 50th, 75th and 99th per-
centile values are 5, 12, 19.5, 28.5 and 38 ms respectively. Although the protection
time is not evaluated for all possible source-destination pairs, the reported values
give an idea on how the convergence time can be improved using the protection
scheme compared to the tree re-construction approach.

3.5.4 Lessons and discussions

Greedy geometric routing based on a spanning tree has desirable properties in
terms of memory and computational resources resulting from its relative simplic-
ity. However, network failures which affect the spanning tree connectivity might
cause local or global changes to nodes depending on their location. The closer
the failure to the root of the tree, the larger the number of affected nodes and the
higher the convergence time/communication cost. However, the experimental re-
sults showed that these values are a lot less compared to the results of BGP with
MRAI timer set to 5 s. As expected, the re-calculation of coordinates resulted in
good performance of the routing in terms of stretch and the average stretch re-
mained almost unchanged for different failure scenarios in the network. Generally
in GTR, the network failures result in potentially high number of affected nodes/-

88 CHAPTER 3

paths, while the convergence time for their recovery is relatively low.
With regard to BGP, MRAI timer tuning, using Fast-reroute or add-path tech-

nique affect the convergence behavior and can reduce the convergence time signif-
icantly. For a baseline comparison we only considered MRAI tuning and used a
close to optimal value (5 s) for MRAI timer.

The experimental evaluation identified another trade-off between convergence
time/communication cost and stretch/reachability in GTR using protection and
coordinate re-calculation mechanisms. In case of using the protection scheme,
backup paths are used and coordinate re-calculation is avoided (no communica-
tion cost in case of failures) but the stretch and node reachability are negatively
affected. However, the low performance loss in the routing quality in case of using
the protection scheme suggests that with clever combination of protection (espe-
cially in the levels of the tree close to the root node) and coordinate re-calculation
schemes, good performance in terms of stretch and convergence time/communica-
tion cost can be achieved and global re-embeddings can be avoided.

3.6 Conclusions

Due to lack of resiliency mechanisms, geometric routing has not been considered
as a valid option for routing in large-scale networks and never been thoroughly
evaluated in realistic emulation settings. In this paper we showed that geometric
routing can be made robust to network failures relying on distributed algorithms. A
prototype was made and performance trends were compared to BGP which is the
only routing scheme currently active in large-scale network settings. The experi-
ments were performed on a large topology of 1000 nodes on a emulation testbed.
A geometric routing such as the one proposed will not replace BGP in coming
years, however, the paper showed that in this routing scheme, network failures
can be recovered rapidly and the convergence time and communication cost are
much lower than BGP even with the MRAI timer set to 5 s. In addition, using a
protection scheme in combination with the proposed distributed algorithm, good
performance in terms of stretch can be achieved while the convergence time/com-
munication cost remains low and global re-embedding is avoided. Open points
and further work related to applicability of geometric routing in large networks are
designing a scalable mapping system which binds the names (e.g. IP addresses) to
locators (coordinates) and enabling routing policy.

Acknowledgment

This work is partly funded by the European Commission through the EULER
project (Grant 258307), part of the Future Internet Research and Experimentation

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 89

(FIRE) objective of the Seventh Framework Programme (FP7).

90 CHAPTER 3

References
[1] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and I. Sto-

ica. Beacon vector routing: Scalable point-to-point routing in wireless sen-
sornets. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 329–342. USENIX As-
sociation, 2005.

[2] G. Huston. BGP Routing Table Reports, 2014. http://bgp.potaroo.net/.

[3] C. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theoretical Computer Science, 344(1):3–14, 2005.

[4] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Single
failure resiliency in greedy routing. In Proceedings of the 9th international
conference on Design of Reliable Communication Networks, pages 312–319,
2013.

[5] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Link failure
recovery technique for greedy routing in the hyperbolic plane. Computer
Communications, 36(6):698–707, 2013.

[6] B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 243–254. ACM, 2000.

[7] A. Maghsoudlou, M. St-Hilaire, and T. Kunz. A Survey on Geographic Rout-
ing Protocols for Mobile Ad hoc Networks. Systems and Computer Engineer-
ing, Technical Report SCE-11-03.–Carleton University.–2011.–49 p, 2011.

[8] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[9] D. Eppstein and M. Goodrich. Succinct Greedy Geometric Routing Using
Hyperbolic Geometry. IEEE Transactions on Computers, 60(11):1571–1580,
2011.

[10] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In INFOCOM 2009, IEEE, pages 1737–1745, 2009.

[11] C. Westphal and G. Pei. Scalable routing via greedy embedding. In INFO-
COM 2009, IEEE, pages 2826–2830, 2009.

[12] Y. Wang, C.-W. Yi, M. Huang, and F. Li. Three-dimensional greedy rout-
ing in large-scale random wireless sensor networks. Ad Hoc Networks,
11(4):1331–1344, 2013.

http://bgp.potaroo.net/

EXPERIMENTAL VALIDATION OF RESILIENT GEOMETRIC ROUTING 91

[13] S. S. Lam and C. Qian. Geographic routing in-dimensional spaces with guar-
anteed delivery and low stretch. Networking, IEEE/ACM Transactions on,
21(2):663–677, 2013.

[14] S. Lee, Z.-L. Zhang, S. Sahu, and D. Saha. On suitability of Eu-
clidean embedding for host-based network coordinate systems. Networking,
IEEE/ACM Transactions on, 18(1):27–40, 2010.

[15] M. Tang, H. Chen, G. Zhang, and J. Yang. Tree Cover Based Geographic
Routing with Guaranteed Delivery. In Communications (ICC), 2010 IEEE
International Conference on, pages 1–5. IEEE, 2010.

[16] J. Herzen, C. Westphal, and P. Thiran. Scalable routing easy as PIE: A prac-
tical isometric embedding protocol. In Network Protocols (ICNP), 2011 19th
IEEE International Conference on, pages 49–58. IEEE, 2011.

[17] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Robust Geometric Forest Routing with Tunable Load Balancing. In
Proceedings of INFOCOM 2015, 2015.

[18] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dy-
namic graphs. In INFOCOM 2009, IEEE, pages 1647–1655, 2009.

[19] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Fault-tolerant Greedy Forest Routing for Complex Networks. In Pro-
ceedings of 6th International Workshop on Reliable Networks Design and
Modeling (RNDM), 2014.

[20] M. Hoefling, M. Menth, and M. Hartmann. A Survey of Mapping Systems
for Locator/Identifier Split Internet Routing. IEEE Communications Surveys
and Tutorials, 15:1842–1858, 2013.

[21] A. Cvetkovski and M. Crovella. On the choice of a spanning tree for greedy
embedding of network graphs. Networking Science, 3(1-4):2–12, 2013.

[22] G. Kirchhoff. Ueber die Auflösung der Gleichungen, auf welche man bei der
Untersuchung der linearen Vertheilung galvanischer Ströme geführt wird.
Annalen der Physik, 148(12):497–508, 1847.

[23] A. Bremler-Barr, Y. Afek, and S. Schwarz. Improved BGP convergence via
ghost flushing. In INFOCOM 2003. Twenty-Second Annual Joint Confer-
ence of the IEEE Computer and Communications. IEEE Societies, volume 2,
pages 927–937. IEEE, 2003.

[24] T. Bu and D. Towsley. On distinguishing between Internet power law topol-
ogy generators. In INFOCOM 2002. Twenty-First Annual Joint Conference

92 CHAPTER 3

of the IEEE Computer and Communications Societies. Proceedings. IEEE,
volume 2, pages 638–647. IEEE, 2002.

[25] H. Haddadi, D. Fay, S. Uhlig, A. Moore, R. Mortier, A. Jamakovic, and
M. Rio. Tuning topology generators using spectral distributions. In Per-
formance Evaluation: Metrics, Models and Benchmarks, pages 154–173.
Springer, 2008.

[26] Q. Jian, H. Ruibing, and L. Xing. The optimal rate-limiting timer of BGP for
routing convergence. IEICE transactions on communications, 88(4):1338–
1346, 2005.

4
Efficient geometric routing in

large-scale complex networks with
low-cost node design

While the previous two chapters focused on resiliency in geometric routing, this
chapter investigates the scalability and efficiency of the proposed tree-based geo-
metric routing scheme. The objective is to indicate that the simplicity of the scheme
does not negatively impact the routing performance. Furthermore, the proposed
scheme enables implementing a greedy router at a very low cost. This cost is
measured in terms of required silicon area for implementing the hardware. Sim-
ulation experiments on large-scale networks resembling the Internet topology are
conducted. The proposed scheme is compared to geometric routing based on hy-
perbolic coordinates. The superiority of our scheme is confirmed with the lower
memory requirements for coordinate representation and limited resources for the
greedy router implementation, while similar routing stretch is achieved.

? ? ?

S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, P. Demeester

Published in IEICE Transactions on Communications, 2016.

Abstract The growth of the size of the routing tables limits the scalability of the
conventional IP routing. As scalable routing schemes for large-scale networks are

94 CHAPTER 4

highly demanded, this paper proposes and evaluates an efficient geometric rout-
ing scheme and related low-cost node design applicable to large-scale networks.
The approach guarantees that greedy forwarding on derived coordinates will re-
sult in successful packet delivery to every destination in the network by relying on
coordinates deduced from a spanning tree of the network. The efficiency of the
proposed scheme is measured in terms of routing quality (stretch) and size of the
coordinates. The cost of the proposed router is quantified in terms of area com-
plexity of the hardware design and all the evaluations involve comparison with a
state-of-the-art approach with virtual coordinates in the hyperbolic plane. Exten-
sive simulations assess the proposal in large topologies consisting of up to 100K
nodes. Experiments show that the scheme has stretch properties comparable to
geometric routing in the hyperbolic plane, while enabling a more efficient hard-
ware design, and scaling considerably better in terms of storage requirements for
coordinate representation. These attractive properties make the scheme promising
for routing in large networks.

4.1 Introduction

Geometric routing has been proposed in the literature as an alternative to tradi-
tional lookup-based routing schemes to solve their scalability issue in terms of
memory consumption. In this routing, only local information is required to find
the next hop of a packet. Although geometric routing was initially designed for
ad hoc and wireless sensor networks (WSNs) [1], the applicability of this routing
paradigm to wired networks has gained increasing interest and has been investi-
gated as well [2]. However, the latter require different design approaches because
unlike WSNs, many of the inhomogeneously wired networks are modeled as scale-
free networks1. Geometric routing is being applied in different areas. Concretely,
Content-Centric Networking (CCN) is one example which can benefit significantly
from geometric routing. CCN is known to work in many environments from high-
speed data centers to resource constrained sensors. It is also used in Internet of
Things (IoT) scenarios as was investigated in [3]. Using this routing, efficient and
scalable content-based forwarding is possible as was successfully demonstrated in
our previous works [4, 5].

The idea of geometric routing is to attach coordinates to nodes in a network.
An obvious choice is to attach GPS coordinates to the routers of a communi-
cation network [1]. Every node in the network is aware of its own coordinate
and the coordinates of its neighbors. Upon arrival of a packet, the distance be-
tween every neighbor and the packet’s destination is calculated and the neighbor

1A scale-free network is a network whose degree distribution follows a power law, at least asymp-
totically. That is, the fraction P (k) of nodes in the network having k connections to other nodes goes
for large values of k as P (k) ≈ c.k−γ . Wikipedia, https://en.wikipedia.org/wiki/Scale-free network

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 95

d

c

e

b f

a

(0.8,2.4)

(2.1,1.8)(1.3,1.8)

(0.4,1.1)
(1.8,0.8)

(0.5,0.4)

X

Y

S

D

(b) Example of local minimum(a) Example of greedy forwarding

Figure 4.1: Example of greedy forwarding in Euclidean space is given in (a) and (b)
depicts an example of local minimum in greedy forwarding

with maximal decrease in the distance is selected as the next hop. Following this
distance-decreasing policy, the packet can eventually reach the intended destina-
tion. This scheme is referred to as greedy forwarding/routing because in every
step, the neighbor which maximally decreases the distance towards the destina-
tion is selected. In [6] authors used the same idea but instead of physical location
of the nodes, virtual coordinates are assigned to them. In this routing, each node
stores only the coordinates of its neighbors which is more memory-efficient than
lookup-based routing. The cost of this efficiency is more computation complexity
in determining the next hop (distance calculation instead of a lookup). Therefore,
this routing replaces the lookups with more computation in forwarding. Figure
4.1(a) depicts an example of greedy forwarding (from ‘d’ to ‘a’) in a Euclidean
space.

In greedy forwarding, packets might get stuck in a local minimum (void). This
means that the current node is the closest node to the destination among all of its
neighbors. Figure 4.1(b) depicts an example of a local minimum. Greedy em-
beddings have been proposed to solve this issue [7]. A greedy embedding for a
given graph G(V,E) into a metric space X , is a function from V (G) to X such
that for all graph nodes s 6= t, s has a neighbor u which decreases the distance
toward t in metric space X . Several works proposed greedy embeddings in differ-
ent metric spaces such as hyperbolic plane [8, 9] and multidimensional Euclidean
spaces [10, 11]. Greedy forwarding based on these embeddings never gives rise
to local minima and thus 100% successful delivery of the packets is guaranteed.
Therefore, in geometric routing, a structured address space is required to guaran-
tee successful packet delivery. However, such dependency on a structured space
results in: i) possible deviation from shortest paths and ii) non-local changes with
regard to the location of topological changes.

An efficient geometric routing is required especially in large networks where

96 CHAPTER 4

scalability is the main concern. Such an efficient routing scheme should facilitate
computation in forwarding plane to enable low-cost design while minimizing re-
quired memory in network nodes and act rapidly upon network changes with short
convergence time.

Our contribution. In this paper, we investigate a simple and powerful greedy
embedding. In this embedding, instead of relying on complex geometry, network
nodes coordinates are derived from a spanning tree of the network. This decreases
the overall overhead/complexity of the scheme compared to approaches based on
hyperbolic [8, 9] or high-dimensional Euclidean spaces [10, 11]. The less complex
the approach, the more likely it would be used in practice. The main goal of this
paper is to illustrate that a geometric router can be implemented in a very low-cost
way without sacrificing efficiency of the routing. We propose an efficient low-
cost circuit to greedy forward the packets based on the calculated tree-coordinates.
The cost of the proposed forwarder is measured in terms of area complexity of
the hardware design. Routing efficiency is measured in terms of routing quality
(deviation from the shortest path length) and the required storage for coordinate
representation. The efficiency of the routing is compared with a state-of-the-art
embedding in the hyperbolic plane proposed in [8]. Evaluation results indicate
that the proposed scheme can be implemented through a very efficient low-cost
design without degrading the routing performance in terms of stretch2 while scal-
ing significantly better in terms of coordinate precision compared to the hyperbolic
embedding. Additionally, in [12], we have evaluated the convergence behavior of
this scheme which shows good performance in terms of convergence time upon
changes in the network topology. These make the scheme very suitable candidate
for routing in large-scale networks.

Importantly, this paper is different from the existing work in the sense that it ex-
plores: i) the experimental execution of the mentioned embeddings on large-scale
networks with respect to the resulting stretch and required coordinate precision,
and ii) a novel low-cost hardware design of a greedy forwarder. To the best of
our knowledge, no research has been conducted so far focusing on such design.
We evaluate these topics and show that our scheme outperforms the hyperbolic-
embedding in several aspects. The advantage of using the proposed embedding
is apparent in the hardware implementation. The proposed scheme in this paper
is applicable to a wide range of topologies, however this paper targets scale-free
complex networks in general. A wide range of social, biological, technological
and communication systems can be described as complex networks. Scale-free
networks are one of the well-known and much studied classes of complex net-
works in which the nodes connectivities (nodes degrees) follow a power-law dis-
tribution. Such networks expand continuously by the addition of new nodes and
new nodes attach preferentially to already well-connected nodes. Technological

2The ratio between the length of the path produced by greedy forwarding and shortest path length.

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 97

networks such as the router-level graphs and domain-level graphs in the Internet,
peer-to-peer networks and the World Wide Web belong to this category of the net-
works. Graphs that represent such networks typically have thousands to millions of
nodes and links. Therefore, all our evaluations are performed on large-scale scale-
free topologies. This should enable better conclusions regarding the applicability
of the proposed scheme on a wide range of real systems.

The rest of the paper is organized as follows. Section 4.2 explains the related
work. In Sect. 4.3, the tree-based embedding is explained in detail. Section 4.4
describes the hardware design of a greedy forwarder based on the embedding.
Section 4.5 includes the experimental results and Sect. 4.6 discusses existing chal-
lenges and future plans. Finally Sect. 4.7 concludes the paper.

4.2 Related work

Although many proposed approaches for geometric routing target different types
of networks (e.g. unit-disk graph3) rather than scale-free topologies, it is beneficial
to investigate the existing approaches used to avoid local minima to guarantee
packet delivery. In the following we explain the existing techniques however, not
all of them are applicable to scale-free topologies as they do not posses the desired
graph properties.

Two groups of techniques have been proposed to solve the local minimum is-
sue in geometric routing: i) face routing techniques and ii) greedy embeddings.
In face routing techniques, the void is bypassed by routing around this area and
greedy forwarding is resumed from the moment a closer node than the local min-
imum is reached [13]. However, such techniques suffer from several issues: i)
the graph should be planar/planarized and ii) planarizing might not be feasible in
every graph.

In greedy embeddings, nodes are embedded in a metric space in such a way
that for every node there is always a distance decreasing neighbor toward every
destination in the network. There are several works which propose greedy embed-
dings in different metric spaces. Works such as [8] and [9] proposed embeddings
in hyperbolic space. In [14] authors proposed another embedding in the hyperbolic
plane which requires O(log n) bits (with n being the network size). [10] proposed
an embedding in a Euclidean O(log2n)-dimensional space and a poly-logarithmic
dimension embedding into Euclidean space was proposed in [11].

There are several proposed embeddings based on one or multiple spanning
trees of the network [8, 15–17]. These works are interesting in the sense that they
guarantee the packet delivery using a simple structure such as a tree. Some of them
consider simple labeling/numbering of nodes instead of coordinates in a complex

3A graph G = (V,E) is a unit-disk graph when ∀u, v ∈ V : v ∈ N(u) ⇔ δ(u, v) ≤ 1 in case
G is embedded into a Euclidean space, with δ the Euclidean distance.

98 CHAPTER 4

geometry. While [8] embeds a network spanning tree in the hyperbolic plane, [15]
and [16] use a labeling of the nodes with the path from the tree root to each node.
In [17] a different embedding compared to [15, 16] with poly-logarithmic memory
complexity was proposed. In their work, the good performance in terms of stretch
is achieved at the cost of higher complexity in the forwarding process and relying
on multiple trees. In a recent work [18], enabling load balancing in geometric
routing using multiple trees was proposed. The effect of using multiple spanning
trees on network resiliency was investigated in [19]. In general, using multiple
trees improves the geometric routing performance. This good performance is at
the cost of: i) construction of multiple trees ii) increased storage requirements of
the packet headers (as a node location is represented by multiple coordinates) and
iii) increased computational complexity of the forwarding plane (as the next hop
is determined considering multiple coordinates).

Through experimental results we show that despite the simplicity of the em-
bedding based on a single tree, a good performance in terms of stretch and co-
ordinates bit precision can be achieved. We then propose a circuit to implement
a greedy forwarder based on this embedding. The simplicity of the embedding
and forwarding result in a low-cost hardware design. Such an embedding with the
low-cost hardware and stretch close to 1 is a very promising scheme for large-scale
networks.

4.3 Greedy Tree-based geometric Routing (GTR)

GTR is composed of two components: i) tree-based greedy embedding and ii)
greedy forwarding. In the embedding scheme, a spanning tree of the network is
constructed and nodes coordinates are derived from this tree. These coordinates
are then used by the forwarding component to forward the packets to the intended
destinations. In the concept of geometric routing, to send a packet from node s to
d, s should know the coordinate of d. Therefore, a mapping system to bind node
identifiers to node coordinates is required. Such a mapping system can be based
on a DNS-like mechanism. There are several proposals in the literature for the
mapping systems [20] focusing on different aspects such as scalability, resiliency,
security and end-host mobility. However, the detail of such mapping system is
out of the scope of the paper and we assume there exists a mapping system in the
network.

4.3.1 Tree-based greedy embedding

Instead of embedding network nodes to a complex metric space (e.g. hyperbolic),
this paper evaluates the use of tree-coordinates. This will reduce the computational
overhead and complexity of the overall scheme. As we will see in Sect. 4.5, this

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 99

Spanning tree

generation

Numbering

of the children

(a) Tree-based greedy embedding (b) Greedy forwarding

1 2

2

1

1

0,0

2,0 2,2

1,0
2,1

1,1

Coordinate

calculation

S

D

0,0

2,0 2,2

1,0
2,1

1,1

Figure 4.2: The tree-based embedding is depicted in (a) and (b) illustrates an example of
greedy forwarding

will not penalize the resulting performance. The approach relies on construction
of a spanning tree of the network.

Given a spanning tree (see Fig. 4.2(a)), every node can be assigned a Coordi-
nate Set (CS). The number of coordinates in the sets is determined by the depth of
the tree. These sets can be derived using the following steps:

1. The root node sets all of its coordinates to zero: (0,...0), and each node
numbers its children from 1 to d (d is the number of the node’s children in
the tree).

2. A node calculates the CSs of its children by putting the number assigned to
each child in place of the first zero coordinate in its own CS, e.g. (1,0,...0)
for the first child of the root node, and (d,0,...0) for the last.

In [15] and [16] similar coordinates in ad hoc and sensor networks were used.
However, the routing in [15] only used the tree edges and is referred to as tree rout-
ing. They discussed several possibilities such as using multiple trees and shortcuts4

to further improve the efficiency of their routing.
These coordinates reflect the location of the nodes in the tree. Therefore, the

depth and the maximum degree of the tree determine the size of the CSs. Each
coordinate in a CS should have enough bits to be able to show a value equal to the
maximum degree of the tree. Experimental results in Sect. 4.5 confirm that given
a suitable tree, the coordinate size differs significantly from the characterization of
O(n) bit required, made in [16] (n is the network size).

As investigated in [21], the choice of the spanning tree may impact the per-
formance of the geometric routing. For this reason, we focus on a tree which has
minimal depth with a root node which has large(st) degree in order to minimize
memory requirements for coordinate representation and enable shorter paths. This
can be done by selecting the node with maximum degree as the root of the tree

4Links which are not in the spanning tree.

100 CHAPTER 4

and constructing a Breadth-First-Search (BFS) tree from that node. As our focus
is on scale-free networks, such a tree construction method does not generate very
deep branches because the average distance between nodes in scale-free networks
is very short. In [12], we proposed a distributed algorithm to implement such a
tree. In this algorithm, each node of the network has a unique identifier (ID) which
is composed of two parts: i) the degree of the node and ii) a unique number to be
used as tie breaker. These two parts are concatenated in such a way that a node
with higher degree has a higher ID as well. Each node in the network initiates
spanning tree generation considering itself as the root of the tree. As we need to
generate a single spanning tree, all except one tree is suppressed based on a rule.
Using the nodes IDs, the tree initiated by the root with the highest ID remains. Ad-
ditionally, the level of the nodes in the selected tree is taken into account to enable
BFS tree construction. This is done by sending ANNOUNCEMENT messages
which include two parameters to indicate: (i) the ID of the root node initiating
the tree and (ii) the level of the node receiving the message upon joining the tree.
When an ANNOUNCEMENT(newroot,newlevel) from j arrives at i:

• if (newroot>myroot) or (newroot = myroot and newlevel<mylevel): node
i should suppress its current tree/location in the tree due to its lower priority.
It updates its data structures and joins js subtree with newroot as the root
and newlevel as the location in the tree. It then announces the new states to
its neighbors except j.

Eventually all nodes receive the ANNOUNCEMENT message indicating the
root node with the highest ID and abandon the lower priority trees. Note that
the tree-based embedding and the spanning tree generation can be performed si-
multaneously [12]. The messages that are exchanged between network nodes to
generate the spanning tree can include the calculated CSs. This means that once
node i sends an ANNOUNCEMENT message to its neighbor j, it can calculate
the corresponding CS (see Sect. 4.3.1) for j and add it to the same message. Upon
arrival of this message, if j decides to change its parent to i, it should also update
its CS to the one announced in the message. This way, once the tree is generated
the coordinates are also calculated.

Each node announces its CS and ID to its neighbors (using ADVERTISE-
MENT messages) and nodes store the neighbors CS in a table to enable greedy
forwarding.

4.3.2 Greedy forwarding based on coordinate sets (CS)

Once every node has its deduced CS using the above procedure, packets can be
forwarded towards neighbors which (maximally) reduce the distance towards the
CS of the destination node mentioned in a received packet. This process is different

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 101

from tree routing because the shortcut links can also be used. In this context, we
propose to use tree-distance as metric. This refers to the hop count on the tree
between two nodes and can be calculated as follows:

1. The closest common ancestor to both nodes is found.

2. The hop count of each node to the ancestor is counted.

3. The sum of these two hop counts determines the tree-distance between them.

This distance can be calculated easily using the assigned CSs to the network
nodes. Consider CSs (2,1) and (2,2) in Fig. 4.2(a). Their longest common prefix
(2) determines the CS of the closest common ancestor which is (2,0). The number
of non-zero coordinates after the common prefix in each CS determines the hop
count of each node to the common ancestor. Both CSs have only one non-zero
coordinate after the common (2). Thus, the tree-distance between them is 2. Note
that in case of no common prefix, the closest common ancestor is the root (0,0)
and all non-zero coordinates of each CS should be counted.

Figure 4.2(b) depicts an example of greedy forwarding (from S = (2,2) to D =
(1,1)) based on the derived CSs. Each node is aware of the CSs of its neighbors.
In each node the tree-distance between every neighbor and D is calculated and the
one with maximum decrease in the distance is selected as the next hop. In node
S, the tree-distances (td) are as follows: td((0,0),(1,1))=2, td((2,0),(1,1))=3 and
td((2,1),(1,1))=4. Therefore, (0,0) is selected as next hop. Following this greedy
forwarding leads to the path depicted by arrows. This path is 1 hop longer than the
shortest path ((2,2)→(2,1)→(1,1)) and one hop shorter than the path produced by
tree routing ((2,2)→(2,0)→(0,0)→(1,0)→(1,1)).

4.3.3 Delivery guarantee

In this section, we explain that the tree-based embedding is a greedy embedding.
Based on [8], if H ⊆ G is a subgraph containing all vertices of G, then every
greedy embedding of H is also a greedy embedding of G. In order to verify that
the tree-based embedding is a greedy embedding, it suffices to show that for every
path s = s0, s1, ..., sk = t in the tree, the inequality td(s0, t) > td(s1, t) is
satisfied (with td(i, j) being the tree-distance between i and j). This is always
satisfied, because there is exactly one path between every two nodes in a spanning
tree of a network. Therefore, the hop count of the second node along the path (s1)
to the destination (t) is exactly one hop less than the hop count between the first
node (s0) and the destination (t). Thus distance can always be decreased by 1 by
following the tree. Whether shortcuts exist or not does not change this fact, they
only help getting closer to the destination ”faster”.

102 CHAPTER 4

4.4 Hardware design of a greedy forwarder

As geometric routing is a recent paradigm, emerging in the last decade, no research
has focused on the design of a circuit in hardware supporting greedy forwarding of
the packets yet. In order to close the gap between geometric routing in theory and
its applicability in practice, we propose a hardware design of a greedy forwarder.

The simple structure of the proposed coordinates and the distance function
in the forwarding process (explained in Sect. 4.3) enables designing of a low-
cost greedy forwarder. The cost of this design was quantified in terms of area
complexity of the hardware and was compared to a state-of-the-art approach with
virtual coordinates in the hyperbolic plane which is reported in Sect. 4.5. The
main objective of these evaluations is to illustrate that a geometric router can be
implemented in a very low-cost way without sacrificing efficiency of the routing.

A greedy forwarder, independent of the type of coordinates and the distance
function, is composed of two major components: i) a distance calculator and ii) a
comparator. The distance calculator calculates the distance between every neigh-
bor and the destination of a packet and the comparator selects the minimum value
among them. We propose a circuit for the tree-distance calculator. For the sake of
clarity, the circuit for only one neighbor is explained which can be easily extended
for more neighbors. In this circuit, given two CSs (the CS of the destination ‘D’
and a neighbor ‘N’) the tree-distance between them is calculated.

Figure 4.3 depicts the proposed design for a tree-distance calculator. The idea
in this circuit is to find the first uncommon coordinate in the two CSs and start
counting the non-zero coordinates from that location in each CS. As illustrated in
this figure, the input CSs are serial. The reason is twofold: i) the packets arrive
sequentially and thus the destination CS included in the packet arrives sequentially
as well (one bit after the other) and ii) compared to parallel designs, bit-serial de-
signs result in a huge reduction in the required hardware. To serialize the neighbor
CS, it is stored in a shift register. In Fig. 4.3 the values at different stages of the
architecture are marked for sample CSs including 3 coordinates each composed of
3 bits.

We first explain the upper part of the circuit. The inputs are fed into a XOR
gate which detects the different bits in the two CSs. By feeding the output of the
XOR to an OR gate together with a feedback from a flip flop (F.F), we get a signal
in the output of the F.F.1 which is set to ‘1’ when the first uncommon bit in the two
CSs is detected and it remains ‘1’ until the last bit of the CS. As the coordinates
should be counted and not the bits in each CS, the output of the F.F.1 is fed to an
AND gate together with a pattern which determines the end of each coordinate by
a ‘1’ bit. This pattern can simply be generated by a conventional modulo-K up
counter (K is the number of bits in a coordinate). Such a counter starts counting
from 0 and is reset when it reaches K. The outputs of F.Fs producing a logic ‘1’

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 103

D
Q

F
.F
.4

D
Q

F
.F
.5

O
R
4

0
0

 0
0

1
 0

1
0

 0
0

0

0
 0

0
0

 1
0

1
 0

0
0

0
0

0
 0

1
0

 1
0

0

O
R
5

D
Q

F
.F
.2

D
Q

F
.F
.3

O
R
2

1
0

 0
1

0
 0

1
0

 0
0

0

1
 0

0
1

 0
0

1
 0

0
0

1
0

0
 1

0
0

 1
0

0

O
R
3

C
lo

c
k

D
Q

F
.F
.1

N
=

1
0

0
 1

0
0

 1
0

0

D
=

0
0

0
 0

1
0

 1
0

0

O
R
1

X
O
R
1

1
0

0
 1

1
0

 0
0

0

P
A
T
T
E
R
N

A
N
D
1

1
0

0
 1

0
0

 1
0

0
1

0
0

 1
0

0
 0

0
0

1
1

1
 1

1
0

 0
0

0

in
1

O
u

t
 0

O
u

t
 m

. . .

C
O
U
N
T
E
R

A
N
D
4

A
N
D
2

A
N
D
3

X
O
R
2

in
2

1
0

0
 1

0
0

 0
0

0

0
0

0
 1

0
0

 0
0

0

1
0

0
 0

0
0

 0
0

0

0
0

0
 1

0
0

 0
0

0

0
0

1
 1

1
1

 1
0

0

1
1

1
 1

1
1

 1
0

0

N
=

1
0

0
 1

0
0

 1
0

0

D
=

0
0

0
 0

1
0

 1
0

0

Figure 4.3: The tree-distance calculator circuit

104 CHAPTER 4

when the number in the counter is K are fed to an AND gate whose output is tied
to the reset pins of the F.Fs in the counter. Using another AND gate with its inputs
tied to the outputs of F.Fs producing a logic ‘1’ when the number in the counter is
K − 1, the desired pattern is generated as this AND’s output.

The lower part of the circuit guarantees that only non-zero coordinates in each
CS are counted. Note that in the tree-based embedding, as each node numbers its
children starting from 1, it is impossible to have a zero coordinate between non-
zero ones in a CS. Therefore, including such a logic is sufficient to count the hop
counts correctly. The design of this part is dependent on the number of bits in a
coordinate. Consider CS of the neighbor ‘N’ in Fig. 4.3. This CS should be de-
layed K−1 times using K−1 F.Fs (K is the number of bits in a coordinate). The
output of each F.F is the input of the next one (see F.F.2 and F.F.3). The outputs of
F.Fs and the original CS ‘N’ are combined. This can be done by a K-way OR gate
or (K − 1) 2-input OR gates (see OR2 and OR3). If there is at least one bit equal
to ‘1’ in each coordinate of ‘N’, the output of OR3 is ‘1’ at the location of the
last bit of that coordinate. These locations are highlighted in the inputs of the OR
gates (OR2 and OR3). The same logic is repeated for CS of the destination ‘D’.
Applying the output of OR3 (OR5) and the output of AND1 to AND2 (AND3) re-
sults in a signal which is ‘1’ only at the end of each non-zero coordinate and only
if the first uncommon coordinate is detected. We refer to the outputs of AND2
and AND3 as count-pulse1 and count-pulse2 respectively. Counting the number
of ‘1’s in each count-pulse and calculating the sum of these two numbers deter-
mine the tree-distance between the two CSs. Instead of using two counters and
an adder, we propose a counter which is capable of parallel counting. Given the
two count-pulses if both are ‘0’ no counting should take place, if only one of them
is ‘1’ the counter should count 1 and if both are ‘1’, the counter should count 2.
Using AND4, we determine where both count-pulses are ‘1’ and using XOR2, we
determine where only one of them is ‘1’. Feeding the outputs of AND4 and XOR2
to the inputs of the proposed counter, the hop counts of both CSs are counted.

Figure 4.4 depicts the circuit of a 3-bit counter which is a modification of a
conventional counter based on D-flip flops. Although asynchronous counters are
less complex and require fewer components, we selected the synchronous design

OR

D Q

F.F.

XOR

AND

D Q

F.F.

XOR

AND

D Q

F.F.

XOR

AND
in1

in2

Clock

out0 out1 out2

Figure 4.4: The 3-bit counter circuit

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 105

as it is faster and more reliable. In this counter an OR gate is added to the second
stage of the counter. In case ‘in1’ is ‘1’ the counter counts 1 and if ‘in2’ is ‘1’, it
counts 2. In our design ‘in1’ and ‘in2’ of the counter are not ‘1’ at the same time.

4.5 Performance evaluation and analysis

GTR was evaluated in a custom simulation environment developed in Python/C++
on a set of network topologies defined by the Barabasi-Albert (B-A) model [22]
which generates random scale-free networks. These topologies were evaluated in
different scales.

We evaluated GTR in terms of stretch, coordinate size and area complexity of
the proposed hardware design. In the experiments, the selected spanning tree for
embedding is a BFS tree rooted at the maximum degree node.

In order to avoid that we compare GTR only to ‘legacy’ routing mechanisms
(i.e. shortest path routing), we compare it to a state-of-the-art geometric routing
scheme in order to make fair comparisons and be able to estimate performance dif-
ference of routing schemes of the same class. We selected hyperbolic-embedding
of [8] for comparison for several reasons: i) it is based on a single spanning tree
(other works such as [16, 17] benefit from multiple trees in the network) ii) it is
applicable to any connected topology and provides 100% successful delivery (no
need for planarization and face routing techniques) and iii) it results in good per-
formance in terms of stretch (given a suitable tree). We want to explore if the per-
formance is the result of complicated hyperbolic structure/computations or a sim-
ple tree labeling with simple distance calculation/forwarding can be equally(more)
efficient.

4.5.1 Routing stretch evaluation

Routing stretch is defined as the ratio between the length of the path produced
by greedy forwarding and the length of the shortest path for the same source-
destination pair. We evaluated GTR performance in terms of stretch to determine
how the path length is affected using this scheme. We compared the stretch of GTR
with: i) the stretch of greedy forwarding based on the hyperbolic-coordinates [8]
and ii) the stretch of tree routing [15] when shortcuts were not used.

In this experiment, we calculated the stretch for every pair of nodes in the
network. The average stretch for each topology is calculated and this is repeated
for 10 B-A topologies and the average over all of them is reported. As we see in
Fig. 4.5, the stretch of GTR is very similar to the routing based on hyperbolic-
embedding and also outperforms tree routing. In Fig. 4.6, we report the stretch
percentile of GTR on large-scale B-A topologies using Boxplot. Boxplots are used
to represent the stretch values through their quartiles. The values on top of the

106 CHAPTER 4

tree-coordinates

hyperbolic-coordinates

tree routing

Figure 4.5: Average stretch in B-A networks

Figure 4.6: Stretch percentile of GTR in B-A networks

graph are average stretch. The results show that the tree-based embedding scales
very well with the increase in the number of nodes and the average stretch remains
close to 1. In almost all topologies, up to 75 percentile of the stretch is 1.25 and
the maximum stretch is 4.

4.5.2 Coordinate size evaluation

We calculated the required number of bits for tree-based coordinate representa-
tion and compared it with the minimal floating point bit precision for hyperbolic-
coordinate which results in a valid greedy embedding. As a hyperbolic-coordinate
consists of 2 floating points, the total size of a coordinate is twice the minimal bit
precision.

Figure 4.7 depicts the obtained results for B-A networks of varying scale be-
tween 50 nodes and 20K nodes, and the required number of bits for representing
the coordinates, for both tree and hyperbolic coordinates. The difference in the bit

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 107

tree-coordinates

hyperbolic-coordinates

Figure 4.7: Required number of bits in coordinates in B-A networks

requirement in the two embeddings is significant and the tree-based coordinates
use the address space more efficiently. The results show that given a suitable span-
ning tree as basis for the embedding, that in scale-free topologies, the required
space-complexity for storing tree-based coordinates is significantly more scalable
than the hyperbolic-coordinates.

4.5.3 Area complexity evaluation

We evaluated the performance of the proposed circuit in terms of required silicon
area and compared it with a hyperbolic-distance calculator. With this comparison,
we determine how much chip area is saved in our design.

The hyperbolic distance function in the Poincare Disk (a model in the hyper-
bolic geometry used in [8]) is defined by d(u, v) = arccosh(1 + δ(u, v)) with
δ(u, v) = 2 ‖u−v‖2

(1−‖u‖2)(1−‖v‖2) , in which ‖.‖ refers to the Euclidean norm. This
function is composed of arccosh, multiplications/divisions and additions/subtrac-
tions. As in greedy forwarding, we do not need to find the exact distance between
points, we can simplify the distance function. Also implementing complex mathe-
matical functions such as arccosh and division consumes a large silicon area. Be-
cause arccosh is a monotonic function, we can avoid this calculation as it would
not change the resulting comparison. The divisions can be removed for the same
reason. As the coordinate of the destination is the common factor in every dis-
tance calculation, the division to this coordinate can be removed. The division to
the second factor can be replaced by a multiplication to the inverse of that fac-
tor, but this value should be stored for every neighbor. With these simplifications,
there are still 3 multiplications and 3 additions required for distance calculation.
We consider these modules in the calculation of the silicon area of the hyperbolic-
distance calculator. Note that for comparison, we considered a sequential design
for this calculator.

108 CHAPTER 4

Table 4.1: Logic modules normalized area

Element AND OR XOR D-FF Full adder
Area 1 1 1.99 4.24 5.24

Table 4.2: Normalized area(µm2) of the tree (T) and hyperbolic (H) distance calculator
for different scale B-A networks

1K 5K 10K 15K 20K
T 128.97 144.35 155.83 155.83 155.83
H 18773.6 21517.6 21517.6 21517.6 21517.6

The required silicon areas of the designs are derived from their basic logic
modules. To evaluate the area complexity of our design against the hyperbolic-
distance calculator, the area of the logic cells are normalized with an AND gate
from the same standard cell library. This benchmarking method has been widely
adopted in the literature. The normalized areas of different logic cells are reported
in Table 4.1 based on [23]. The required area of both designs in different scales
from 1K to 20K nodes are reported in Table 4.2. For the adders in the hyperbolic-
based design, we used the area of a full adder and a flip flop (i.e., a sequential
full adder), and the area of the multipliers are calculated based on [24]. The for-
warder based on the tree-based embedding is significantly more area-efficient than
hyperbolic-based design. The evaluations in this section indicate that a geometric
router can be implemented in a very low-cost way without sacrificing efficiency of
the routing.

4.6 Challenges and future work

One of the challenging tasks in geometric routing is dealing with dynamics in the
topology. In [12] we observed the convergence behavior of the geometric routing
scheme in case of topology changes which was dependent on the location of the
changes in the topology. As the embeddings are based on the connectivity of a
spanning tree, a single failure in the tree might change the coordinates of many
nodes. However, the results in [12] indicated that although the number of affected
nodes might be high, the corresponding convergence is quite fast in networks with
1000 nodes. The number of affected nodes in very large networks (o(100K) nodes)
could be quite high and thus, the convergence time might be very large as well.
As a solution, protection techniques can be used to avoid changes in the coordi-
nates as we successfully demonstrated in [25] and [26]. A clever combination of
the protection schemes and coordinate re-calculation technique can lead to good
performance in terms of stretch and convergence time [12]. Another solution to
improve the convergence behavior of geometric routing in large-scale networks

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 109

involves using multiple trees as we proposed in [19]. Minimizing the overlap of
the constructed trees, there is a high chance that at least one tree remains un-
affected upon failures in the network and greedy forwarding remains successful
without any coordinate re-calculation. However, the complexity of the scheme
may slightly increase.

Another challenge is to provide a scalable mapping system to bind node iden-
tifiers (e.g. existing IP addresses) to node locators (e.g., coordinates). Although
there exist several proposals in the literature, there are still some open issues to-
wards a scalable mapping system with fast convergence [20].

In the proposed scheme, although shortcut links are used to forward the packets
to their intended destination, it is still possible that some traffic is routed towards
the root of the tree in order to reach the destination. This might lead to congestion
in the root node or the links/nodes close to that. In order to avoid such an issue,
we investigated the usage of multiple trees to enable load balancing in geometric
routing [18]. Using multiple trees, in every step, the neighbor with less loaded
link is selected as the next hop. This way the congestion in different parts of the
network is avoided.

Finally, the scheme should be investigated thoroughly in terms of security vul-
nerability and possible solutions. One of the main vulnerability in the proposed
scheme is that nodes might claim false degrees and the frequent appearance/dis-
appearance of such nodes leads to frequent global coordinate re-calculation if the
announced degree is higher than the degree of the current root node. Using pro-
tection mechanisms [25, 26] is one way to avoid global coordinate re-calculations.
However, as explained in [12], there is a trade-off between communication cost and
stretch/node reachability when protection is used. This means that when there is a
change in the network, the pre-determined backup paths are used which causes no
communication cost but the stretch and node reachability are negatively affected.
A possible solution to improve this performance is to have (partial/global) co-
ordinate re-calculation periodically, upon reaching a certain threshold or based on
some condition in the network. The second approach involves using authentication
mechanisms. This way we avoid that any malicious node becomes the root of the
tree and triggers the global coordinate re-calculation and only authenticated nodes
can be the root node. As future work, we will investigate possible approaches to
solve the security vulnerability of the scheme.

4.7 Conclusion

We investigated a simple but powerful approach to calculate virtual coordinates
for network nodes in geometric routing. Greedy forwarding based on these coordi-
nates guarantees 100% successful delivery of the packets to their destination. The
coordinates are based on a spanning tree of the network. We proposed a novel low-

110 CHAPTER 4

cost circuit to greedy forward the packets based on the deduced tree-coordinates.
We evaluated the tree-based embedding thoroughly in terms of stretch, coordi-
nates bit requirement, and silicon area complexity of the proposed hardware de-
sign and compared it with an existing hyperbolic-embedding. The results showed
that good routing performance can be achieved without complex coordinate and
distance calculations, with an efficient hardware node design and more scalable
memory requirements for coordinate representation. To validate the feasibility of
the scheme on large networks, some of the simulation experiments were performed
on topologies of up to o(100K) nodes. These results bring geometric routing based
on tree-coordinates to the pole position as a memory-scalable scheme for routing
in large-scale complex networks with low stretch and low (hardware) complexity.

Acknowledgment
This work is partly funded by the European Commission through the EULER
project (grant 258307), part of the Future Internet Research and Experimentation
(FIRE) objective of the Seventh Framework Programme (FP7).

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 111

References

[1] B. Karp and H. Kung. GPSR: greedy perimeter stateless routing for wire-
less networks. In Proceedings of the 6th annual international conference on
Mobile computing and networking, pages 243–254. ACM, 2000.

[2] M. Boguna, F. Papadopoulos, and D. Krioukov. Sustaining the Internet with
hyperbolic mapping. Nature Communications, 1(6):1–8, 2010.

[3] E. Baccelli, C. Mehlis, O. Hahm, T. C. Schmidt, and M. Wählisch. Informa-
tion centric networking in the IoT: experiments with NDN in the wild. arXiv
preprint arXiv:1406.6608, 2014.

[4] W. Tavernier, S. Sahhaf, D. Colle, M. Pickavet, and P. Demeester. To-
wards Content-Centric Geometric Routing. In Communications and Vehic-
ular Technology in the Benelux (SCVT), 2014 IEEE 21st Symposium on,
pages 133–138. IEEE, 2014.

[5] S. Sahhaf, D. Papadimitriou, W. Tavernier, D. Colle, and M. Pickavet. Exper-
imentation of geometric information routing on content locators. In Network
Protocols (ICNP), 2014 IEEE 22nd International Conference on, pages 518–
524. IEEE, 2014.

[6] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and I. Sto-
ica. Beacon vector routing: Scalable point-to-point routing in wireless sen-
sornets. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 329–342. USENIX As-
sociation, 2005.

[7] C. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theoretical Computer Science, 344(1):3–14, 2005.

[8] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[9] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dy-
namic graphs. In INFOCOM 2009, IEEE, pages 1647–1655, 2009.

[10] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In INFOCOM 2009, IEEE, pages 1737–1745, 2009.

[11] C. Westphal and G. Pei. Scalable routing via greedy embedding. In INFO-
COM 2009, IEEE, pages 2826–2830, 2009.

112 CHAPTER 4

[12] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Experi-
mental validation of resilient tree-based greedy geometric routing. Computer
Networks, 2015.

[13] A. Maghsoudlou, M. St-Hilaire, and T. Kunz. A Survey on Geographic Rout-
ing Protocols for Mobile Ad hoc Networks. Systems and Computer Engineer-
ing, Technical Report SCE-11-03.–Carleton University.–2011.–49 p, 2011.

[14] D. Eppstein and M. Goodrich. Succinct Greedy Geometric Routing Using
Hyperbolic Geometry. IEEE Transactions on Computers, 60(11):1571–1580,
2011.

[15] E. Chávez, N. Mitton, and H. Tejeda. Routing in wireless networks with
position trees. In Ad-Hoc, Mobile, and Wireless Networks, pages 32–45.
Springer, 2007.

[16] M. Tang, H. Chen, G. Zhang, and J. Yang. Tree Cover Based Geographic
Routing with Guaranteed Delivery. In Communications (ICC), 2010 IEEE
International Conference on, pages 1–5. IEEE, 2010.

[17] J. Herzen, C. Westphal, and P. Thiran. Scalable routing easy as PIE: A prac-
tical isometric embedding protocol. In Network Protocols (ICNP), 2011 19th
IEEE International Conference on, pages 49–58. IEEE, 2011.

[18] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Robust Geometric Forest Routing with Tunable Load Balancing. In
Proceedings of INFOCOM 2015, 2015.

[19] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Fault-tolerant Greedy Forest Routing for Complex Networks. In Pro-
ceedings of 6th International Workshop on Reliable Networks Design and
Modeling (RNDM), 2014.

[20] M. Hoefling, M. Menth, and M. Hartmann. A Survey of Mapping Systems
for Locator/Identifier Split Internet Routing. IEEE Communications Surveys
and Tutorials, 15:1842–1858, 2013.

[21] A. Cvetkovski and M. Crovella. On the choice of a spanning tree for greedy
embedding of network graphs. Networking Science, 3(1-4):2–12, 2013.

[22] A. Barabási and R. Albert. Emergence of scaling in random networks. Sci-
ence, 286(5439):509–511, 1999.

[23] Standard cell library. www.zhuhai.gov.cn/image20010518/6428.pdf.

EFFICIENT GEOMETRIC ROUTING IN LARGE-SCALE COMPLEX NETWORKS 113

[24] M. R. Meher, C. C. Jong, and C.-H. Chang. A High Bit Rate Serial-
Serial Multiplier With On-the-Fly Accumulation by Asynchronous Coun-
ters. Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,
19(10):1733–1745, 2011.

[25] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Link failure
recovery technique for greedy routing in the hyperbolic plane. Computer
Communications, 36(6):698–707, 2013.

[26] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Single
failure resiliency in greedy routing. In Design of Reliable Communication
Networks (DRCN), 2013 9th International Conference on the, pages 306–
313. IEEE, 2013.

5
Routing at large scale: advances and

challenges for complex networks

This chapter presents an overview of the existing routing schemes. Different ex-
perimental results and analytical studies, performed so far, are analyzed to enable
better and more careful conclusions regarding the applicability of these schemes to
large-scale settings. The identified trends and trade-offs better positions the pro-
posed geometric routing scheme among other alternatives. In this study, several
open problems are identified which provide guidelines for future research direc-
tions.

? ? ?

S. Sahhaf, W. Tavernier, D. Papadimitriou, D. Careglio, A. Ku-
mar, C. Glacet, D. Coudert, N. Nisse, L. Fábrega, M. Camelo, P.
Vilá, P. Audenaert, D. Colle, P. Demeester

Submitted to IEEE Network, Aug. 2016.

Abstract A wide range of social, technological and communication systems can
be described as complex networks. Scale-free networks are one of the well-known
classes of complex networks in which nodes degree follow a power-law distri-
bution. The design of scalable, adaptive and resilient routing schemes in such
networks is very challenging. In this article we present an overview of required

116 CHAPTER 5

routing functionality, categorize the potential design dimensions of routing proto-
cols among existing routing schemes and analyze experimental results and analyt-
ical studies performed so far to identify the main trends/trade-offs and draw main
conclusions. Besides traditional schemes such as path-vector routing, the article
pays attention to advances in compact routing and geometric routing since they
are known to significantly improve the scalability in terms of memory space. The
identified trade-offs and the outcomes of this overview enable more careful con-
clusions regarding the (in-)suitability of different routing schemes to large-scale
complex networks and provide a guideline for future routing research.

5.1 Introduction

Complex networks refer to large, dynamic networks consisting of potentially bil-
lions of nodes and links which are used to describe a wide range of social, bi-
ological, technological and communication systems. Scale-free networks as one
well-known/much studied class of complex networks have degree distribution1 that
follows a power-law function. In such networks, new nodes attach preferentially
to already well-connected nodes. The network of Autonomous Systems2 (ASes)
forming the core of the Internet graph, is an example of such networks. Routing3

in these networks is challenging because of (i) the size of the network, and (ii) the
properties and performance expected from these networks, particularly, any-to-any
connectivity, availability, and reliability.

Routing research has evolved very pragmatically in communication networks
from small scale to larger scale in technologies including wireless, ad-hoc/sensor
networks, the Internet, etc. Since new networks of increasing scale are popping up
every day (e.g., IoT), it is important to consider clean-slate approaches considering
the entire design space of routing paradigms to avoid getting ‘trapped’ again in
legacy protocols/paradigms.

In this paper we try to open this design question by clearly and cautiously
categorizing/grouping the potential design dimensions of routing protocols among
existing routing schemes (traditional ones as well as novel ones), analyzing exper-
imental results performed so far, and drawing some main conclusions, guidelines
and open challenges for routing schemes in future settings.

This article synthesizes the fundamental aspects of routing schemes for com-
plex networks, as well as lessons learned from experimental routing research stem-
ming from the EULER project4. Particular attention will be given to (i) new classes

1The probability that a node selected uniformly at random has a certain number of links.
2In the Internet, an autonomous system is a single network or a group of networks which is managed

and supervised by a single administrative entity or organization.
3The process of finding/selecting paths between given nodes of a communication network.
4http://www.euler-fire-project.eu/

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 117

of path-based routing schemes,5 (ii) new routing paradigms subdivided into lo-
cator space dependent6 and locator space independent and (iii) a new route dis-
covery scheme in which networks’ structural properties are used. Additionally,
a brief overview of path-vector schemes improvements and routing advances in
delay/disruption-tolerant networks (DTN) and peer-to-peer overlays is provided.

This work presents an overview of the design dimensions of routing protocols,
challenges, and a perspective/guideline for future routing research in complex net-
works.

5.2 Routing design problem
Routing is the process of finding/selecting paths between given nodes of a com-
munication network. A path is a finite sequence of nodes from a source towards
a destination node. The distance between two nodes is the sum of the cost of
the links used along its shortest interconnecting path. The diameter of a network
(D(G)) is the maximum distance of any two nodes.

5.2.1 The routing function

Routing is decomposed into the following functionalities:

• Identification and location. In order to derive paths between nodes of a
topology, nodes should be identified. A node identifier might be a num-
ber/label. Identification functionality does not necessarily imply a location
within the topology7. Thus the routing should focus on (i) structuring the
topological space into addresses/locators, (ii) mapping the identifier to the
network nodes locator when needed.

• Discovery/distribution. This is required to discover/distribute information
related to (i) routes or (ii) topology characteristics. It can be push-based (lo-
cal changes are distributed towards remote nodes) or pull-based (on demand
search) or a combination.

• Route determination/calculation. This functionality determines routes to-
wards a given destination. This operation can involve routing path calcula-
tions superimposed by policies and/or route selection/filtering functionality,
or can be guided by a substructure of the discovered topology (e.g., network
spanning tree).

5Schemes which maintain the path information to reach a destination.
6Routing paradigms which derive paths based on locators/coordinates assigned to network nodes in

a metric space.
7Note that traditional IP addresses fulfill both roles, leading to significant issues regarding node

mobility, multi-homing, etc., as confirmed by the invention of, e.g., LISP and HIP protocols. The
impact of Locator/Id separation is detailed in [1].

118 CHAPTER 5

• Routing entry determination. This determines routing entries based on the
outcome of route determination functionality. The outcome can be a selected
set of potential next hops for given network locations, or a procedure to
decide how such a routing entry can be determined on the fly.

• Multicast. Multicast routing is a distributed algorithm that allows any node
to route multicast traffic to a group of destination nodes, called multicast
group. To enable point-to-multipoint traffic distribution, the multicast rout-
ing protocol builds a tree between the source and the multicast group called
Multicast Distribution Tree (MDT). Multicast routing is (re-)gaining inter-
est given the increasing popularity of multimedia streaming/content traffic,
since it yields bandwidth savings competing with/complementing cached
content distribution techniques. Multicast tree membership management
handles the multicast membership, which involves the join/subscription and
leave/un-subscription actions.

• Policy. Policing routing including routing-engineering, traffic-engineering
and administrative policies affects both local processing performance and
the overall performance resulting from local decisions. Limiting policing
capabilities leads to local performance increase but may decrease global
performance, while increasing flexibility may increase global performance.
From the routing design perspective, this leads to a major consequence:
starting from a relatively simple routing procedure and requiring homoge-
neous policy strategy (which is unlikely in organically controlled organiza-
tions such as the Internet) may lead to detrimental effects in terms of perfor-
mance.

A routing function determines the next-hop along a path from a source towards
a destination. This path is determined by the routing schemes which are described
according to the following key-properties:

• uncoordinated vs. coordinated routing decision: In an uncoordinated
routing each node takes its routing decision independently of others though
each participating entity collaborate to global shared objectives, such as con-
nectivity and availability.

• distributed vs. centralized: Unlike a centralized algorithm, a distributed
algorithm is executed locally at each node and independently of other nodes.
They are different from uncoordinated algorithms as distribution is about
computation while the latter refers to routing decision.

• control vs. data-driven: Control-driven algorithms are triggered by inde-
pendent processes exchanging control information, while data-driven algo-
rithms only trigger routing algorithms when data packets travel through the
network.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 119

• deterministic vs. statistic: In deterministic routing the path determination
between a set of nodes are fixed and independent of time or particular data
within control/data traffic between nodes. Statistical algorithms introduce a
degree of randomness within the generated routes.

• stateful vs. stateless: Unlike stateless algorithms, stateful algorithms re-
quire the maintenance of states to operate, e.g., for storing information re-
lated to the interaction with other nodes.

We mainly focus on the advances to control-driven, stateful distributed routing
(meaning routing information is exchanged via dedicated messages, nodes store
routing table (RT) entries and their computation are distributed), the other dimen-
sions being dependent on the schemes.

5.2.2 Trade-offs in routing

When routing at large-scale (above 10000 nodes), three cost dimensions can be
identified:

1. Memory cost. The memory space in a node required to store the routing
information used by the routing algorithm (input) and to store the RTs (out-
put).

2. Stretch cost. Stretch is the ratio between the length of a path generated by
the scheme and the corresponding shortest paths. The stretch of a routing
scheme is the highest stretch among all source-destination pairs.

3. Adaptation cost. Communication complexity which refers to (i) the number
of exchanged messages between nodes for the computation of the RT entries
and (ii) convergence time as the difference in time between the sending of
the first message and the reception of the last message during the execution
of the routing algorithm.

Upon designing a routing scheme, a trade-off should be taken into account
between different criteria depicted in Fig. 5.1. When designing a ‘static’ scheme,
there is a trade-off between memory space and stretch. When distributing such a
scheme, communication cost becomes an additional criteria impacting the previous
trade-off; and moving to an adaptive scheme, computational complexity adds to it.
Fig. 5.1 also shows that when designing a ‘dynamic’ scheme, both distribution
and adaptation should be considered. Computational complexity is not the main
criteria when moving to a distributed scheme (indicated with gray color).

120 CHAPTER 5

Memory space

(routing table

size)

Stretch

(path length)

Communication

cost

Computational

complexity

Computational

complexity

Static Dynamic

Distribution Adaptation

Figure 5.1: Fundamental trade-offs in routing schemes

5.2.3 Challenges in the Internet routing system

Since we target large-scale complex networks, in this section we explain the main
open challenges in the Internet routing as it is one known large-scale scale-free
network in nature/technical domain.

The current Internet routing follows a 2-level hierarchy: routing between al-
most 60 K ASes in the core (forming a scale-free network), and routing within
the ASes. The true challenge is in the inter-AS routing, driven by the Border
Gateway Protocol (BGP) which is a path-vector routing protocol8, exchanging
network reachability information with peering BGP routers. Reachability infor-
mation includes an AS path listing the sequence of AS numbers traversed by the
BGP route advertisement comprising reachability information from the originat-
ing AS. Discovered path information is used by BGP routers for constructing the
AS connectivity graph for this reachability, and to detect/avoid routing loops by
performing a route selection process combined with shortest path routing. Policies
are determined to maintain business relationships between peering ASes or by load
balancing strategies during high-traffic periods. BGP is subject to the Path Explo-
ration phenomenon: BGP routers may announce as valid, routes that are affected
by a failure which are withdrawn later during subsequent routing updates. This
is (one of) the main reasons for the large number of update messages received by
inter-domain routers.

Internet routing is significantly challenged by the increasing number of routers,
ASes, and routes. This situation is exacerbated due to site multi-homing, AS multi-
homing, traffic engineering and the increasing need for connectivity availability
from the increasing number of connected hosts.

8A routing protocol which maintains path information to reach the destinations. This information
is updated dynamically. Using this scheme, the routing tables include the destination network, the next
router and the path to the destination. It is easy to detect routing loops and discard the update messages
which are looping in the network.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 121

The main issues in the Internet architecture are the scalability, convergence,
and stability properties of its inter-domain routing. Solving them requires address-
ing multiple dimensions altogether, e.g. the RT size growth resulting from a large
number of message exchanges induced by topological/policy changes. Both di-
mensions increase memory and processing requirements of routing engines. Solv-
ing the scalability of the Internet routing, considering its dynamics, is challeng-
ing. Convergence time should not be delayed whereas scalability improvement
minimizes the number of exchanged messages preventing routers overload. Also,
addressing routing stability consistently with planned BGP routing policy implies
eliminating ‘wedgies’, i.e., non-deterministic/unintended but stable routing states,
and ‘dispute wheels’, i.e., non-deterministic/unintended but unstable states. How-
ever, when considering the existing Internet routing and the considerable research
efforts made to improve it, one might wonder when considering a complex net-
work with similar conditions/constraints as the Internet, whether the only feasible
solution is a local policy-based path-vector routing system or would there be a
more promising model beyond routing IP packets?

5.3 Routing schemes

We consider the following classification: (i) path-vector schemes improvements,
(ii) routing schemes (clean-slate approaches) in complex networks, and (iii) rout-
ing schemes in DTN and P2P networks.

5.3.1 Path-vector schemes improvements

Numerous enhancements to path-vector schemes have been proposed over the last
twenty years. BGP is an example of a path-vector protocol driving the inter-AS
routing in the Internet. Many of the enhancements relate to BGP dynamic prop-
erties. Examples include (i) enhanced path vector routing protocol (EPIC) which
annotates the AS paths with additional ‘path dependency’ information to reduce
convergence time, (ii) BGP with Root Cause Notification reduces the convergence
time by announcing the root cause of a link failure location, (iii) Path Exploration
Damping augments BGP for selectively damping the propagation of path explo-
ration updates. Recently, new route selection schemes are proposed to improve
route stability in BGP [2].

5.3.2 Routing schemes in complex networks

Table 5.1 positions our proposed routing schemes9 (clean-slate approaches) with
respect to their adaptation capability to topology/policy dynamics and the dis-

9Routing schemes proposed within the FP7 EULER project.

122 CHAPTER 5

Table 5.1: Position of different routing schemes with respect to the capability to adapt to
dynamics and distribution. Static schemes have fixed routes which do not adjust in case of

a change in the network. Fault-tolerant/adaptive refers to the capability to react to
changes in the network and adjust the routes.

C
en

tr
al

iz
ed

D
is

tr
ib

ut
ed

St
at

ic
Fa

ul
t-

to
le

ra
nt

/
ad

ap
tiv

e
C

en
tr

al
iz

ed
C

om
pa

ct
ro

ut
in

g
(A

G
M

aN
T

)
X

-
X

-
D

is
tr

ib
ut

ed
C

om
pa

ct
R

ou
tin

g
(D

C
R

)[
3]

-
X

X
-

G
re

ed
y

C
om

pa
ct

M
ul

tic
as

tR
ou

tin
g

(G
C

M
R

)[
4]

-
X

-
X

G
eo

m
et

ri
c

Tr
ee

-b
as

ed
gr

ee
dy

R
ou

tin
g

(G
T

R
)[

5]
-

X
-

X
W

or
d-

M
et

ri
c-

ba
se

d
G

re
ed

y
R

ou
tin

g
(W

M
G

R
)[

6]
-

X
-

X
G

eo
m

et
ri

c
C

oo
rd

in
at

e-
L

ab
el

in
g

Sc
he

m
e

(G
C

L
S)

[7
]

-
X

-
X

R
ou

te
D

is
co

ve
ry

(R
D

)
-

X
-

X
B

or
de

r
G

at
ew

ay
Pr

ot
oc

ol
(B

G
P)

-
X

-
X

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 123

tribution of the computation/decision process. BGP is reported for comparison.
As mentioned earlier, these are control-driven, stateful and distributed routing
schemes.

5.3.2.1 Compact routing

The goal of compact routing is to reduce the amount of storage space in each
node. It is challenging to design algorithms with a good trade-off between the
memory space and the resulting stretch. The theoretical bounds concern worst-
case analysis, and one of the contribution of EULER is to show that much better
trade-offs are achieved in actual networks. We have investigated two research
directions: unicast and multicast compact routing.

Distributed Compact Routing (DCR). We proposed an asynchronous dis-
tributed compact routing scheme, DCR [3], based on the centralized scheme, AG-
MaNT.

In this scheme, each node in the network picks a color from a small set of
colors at the same time. All nodes share a hash function that maps identity/address
to an element of the color set.

Vicinity of a node is the minimal set of close nodes that contains at least one
node of each color. The size of this set can be proven to be proportional to the
number of colors. Each node stores a direct route to the nodes in its vicinity.
Moreover, for all other nodes having a hash value equal to its color it stores the
address of/route to a landmark that has that node in its vicinity. When a node has
to forward a packet, it first checks whether it has a route based on its identifier. If
not, the hash is determined and the packet is forwarded to a node in the vicinity
with the same color. The routing path via a landmark has to be encoded in the
header to allow routing which imposes storing a compressed path. To this end, we
use a compact routing scheme dedicated to trees. Fig. 5.2a visualizes the steps of
DCR.

Greedy Compact Multicast Routing (GCMR). GCMR [4] is a multicast scheme
which minimizes the RT size of each node at the expense of (i) paths with rela-
tive small deviation from the optimal stretch and (ii) higher communication cost
compared to shortest path tree. GCMR minimizes the storage of routing informa-
tion by requiring only neighbor-related information. Thus, it does not rely on the
construction of global structures such as sparse covers or trees. To limit the com-
munication cost, the routing information needed to reach a given multicast source
is acquired by means of an incremental two-stage search process: firstly the join-
ing node searches nodes belonging to the multicast tree in its neighborhood (local
search), in case of unsuccessfulness, the search is then continued over the remain-
ing unexplored topology (global search). The request message comprises a path
budget which is used to limit the distance traveled by requests in the local search.
Starting from the joining node, this value is decremented in every intermediate

124 CHAPTER 5

Routing from s to tNodes pick random color from {1,2,. . . ,k}
nodes with color 1 are called landmarks:

Every node u builds its vicinity ball B(u)

(example for landmark lv)
for every landmark l, a shortest path tree rooted at l is built (considering that h(t) =

su

B(u)

lv
lt

t

B(s)

(a) Node s does not know about node t. It forwards the packet to w, the closest node of color h(t) it
knows. From w routing is done via a shortest path in the tree rooted in lt using compact routing

techniques for trees.

u

t 1

t 2

t 4

t 3
s

B(u)

MDT

u

t 1

t 2

t 4

t 3
s

MDT

u

t 1

t 2

s

B(u)

MDT

Node u wants to join the MDT
sourced in s and launches the local
search in its neighbourhood B(u)

Different answers are received
from different branch path, node u
joins the MDT using the least cost

branch path

If all nodes of the MDT are outside the
neighbourhood B(u), edge nodes of B(u) launches

the global search only outside the B(u)

Messages
searching the
MDT in B(u)

Join message along the
least cost branch path

Edge node of
B(u) where

global search
starts

Messages
searching MDT

outside B(u)

(b) Two scenarios of local search and global search for joining the MDT is depicted.

Figure 5.2: Variants of compact routing. (a) depicts different steps in DCR, (b) illustrates
an example of GCMR.

node.
The joining node sends a request to its neighbors and starts a timer. The neigh-

bors propagate the message following a split horizon10 until it reaches a node
which is in the MDT or it is an edge node of the neighborhood (i.e., path budget
reaches 0). The receiving node sends back a reply indicating whether it belongs
to MDT or not. Based on this information all the nodes along the path to the join-
ing node compute their path cost. At the joining node, if the timer expires and no
reply message is received, it triggers the global search. The joining node sends a
request message directly to each edge node. This is possible because during the
local search, the received reply messages include the identifier of the edge nodes
which initiated them. Additionally each intermediate node keeps an active inter-
face towards each edge node. In the global search the path budget is set to the
graph diameter and the waiting timer to a value that prevents waiting indefinitely.

10Split horizon is a method to prevent a routing loop in a network. The principle of this method is to
never send back the routing information of a packet in the direction from which it was received.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 125

Fig. 5.2b illustrates an example of GCMR.
GCMR is adaptive and the adaptability mechanism, which is based on a modi-

fied two-stage search process, is initiated by the upstream node with respect to the
point of change.

5.3.2.2 Geometric routing

Geometric routing provides an alternative mechanism trading-off dynamics with
increased memory efficiency. We have investigated three classes: (i) Geometric
Tree-based greedy Routing, (ii) Word-Metric-based Greedy Routing and (iii) Ge-
ometric Coordinate-Labeling Scheme. The first two schemes are based on a tree
structure and follow similar procedures. All 3 schemes rely on embeddings into
metric spaces to assign coordinates to nodes which are used as locators to perform
point-to-point routing decisions in this space.

Geometric Tree-based greedy Routing (GTR) and Word-Metric-based Greedy
Routing (WMGR). GTR [5] and WMGR [6] comprise two components: (i) greedy
embedding and (ii) greedy routing/forwarding. The greedy embedding scheme
finds mapping between nodes and coordinates in a metric space in such a way
that there is always a distance-decreasing neighbor towards any destination in the
network. These coordinates are then used by the forwarding component to for-
ward the packets towards the intended destinations. Knowing the coordinates of
the neighbors, in order to forward an incoming packet, the distance between every
neighbor and the packet’s destination is calculated. The neighbor with the maximal
decrease in the distance is selected as the next hop. This scheme is referred to as
greedy routing/forwarding because in each step, the node with maximum decrease
in the distance is selected.

In GTR and WMGR, coordinates are determined based on a network spanning
tree. While GTR calculates coordinates based on the path from the tree root to
each node, WMGR relies on a Word-Metric Space (WMS) which is generated
by an algebraic group, where the distance function between two elements is the
shortest path length of the corresponding vertices in the Cayley Graph of the group.
Considering the free group11 with a generating set S, the embedding in WMGR
involves mapping the network spanning tree into the Cayley Graph of the free
group. The required steps for calculating the embedding in both schemes are: (i) a
rooted spanning tree of the network is generated, (ii) in GTR, the root node sets its
coordinates to zero while in WMGR, knowing that S is an alphabet of symbols si
and a word is a sequence of these symbols, the root is assigned a label that is empty
word of the group (identity), (iii) in GTR, each node numbers its children from 1 to
d and calculates their Coordinate Sets (CS) by putting the child’s assigned number

11In mathematics, the free group over a given set S comprises all expressions (words or terms) that
can be generated from the members of S.

126 CHAPTER 5

1 2

1

2

1

0,0

1,0

2,0

1,1

1,2

2,1

1,1

0,0

1,0

2,01,2

2,1

Tree
generation

Childeren
numbering

Coordinate
calculation

Tree-based greedy embedding Greedy forwarding

s

t

(a) A spanning tree of the network is generated and children of each node are numbered from 1 to d.
The root node coordinate is set to zero. The coordinate set of each node is calculated by its parent. In

greedy forwarding, the neighbor with minimum tree-distance towards t is selected as the next hop.
The greedy forwarding is not necessarily on the tree.

Learning k-hop vicinity at nodes
u and v for k = 2

u
w

v

s
t

u
w

v

s
t

Neighbor v | dH (v,t) = min x dH (v,t)

u vu v

Upon arrival of a packet at node u,
as destination t is not in the 2-hop

vicinity of u, the neighbor with minimum
hyperbolic distance towards t is selected

At node v an exact match is
found in the RT of v as t is
in the 2-hop vicinity of v

(b) Learning the k-hop vicinity for k = 2 is depicted in nodes u and v. Both routing in a vicinity and
between vicinities are illustrated.

Figure 5.3: Variants of geometric routing. (a) depicts an example of GTR embedding and
forwarding, and (b) indicates the principles of GCLS.

in place of the first zero coordinate in its own CS. Similarly, in WMGR, every node
v assigns to its i-th child, a label that is the concatenation of its label and si.

For GTR, we propose to use tree-distance as metric which is the hop-count on
the tree between two nodes and is calculated as follows:

1. The closest common ancestor to both nodes is found.

2. The hop-count of each node to the ancestor is counted.

3. The sum of these hop-counts determines the tree-distance between them.

Fig. 5.3a depicts the greedy embedding and greedy forwarding in GTR.
In WMGR, given the labels of two vertices u and v, we distinguish between a

common prefix (the set of first symbols that are equal) and the suffixes (the rest of
symbols). The distance between u and v is the length (number of symbols) of the
word composed by the concatenation of these two suffixes.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 127

Simulation experiments proved that both schemes perform equally well as
other greedy embedding-based schemes in terms of stretch but better in terms of
coordinate memory scaling.

In these schemes, adaptivity with respect to changing topology is achieved via
an on-demand discovery component to bypass failing elements. The latter can be
proactively activated, or can be executed upon failure detection. If these techniques
are not applied, re-convergence of the supporting spanning tree is needed, resulting
in coordinates re-calculation for a (sub-)tree of the topology.

Geometric Coordinate-Labeling Scheme (GCLS). GCLS [7] is the extension
of the previously explained geometric routing schemes. It uses k-hop neighbor-
hood information instead of the default 1-hop neighborhood. GCLS relies on hy-
perbolic geometry in which coordinate calculation is based on a distributed process
where all nodes send information to their neighbors. Coordinates are then derived
from round-trip times [8] transformed into hyperbolic distances.

In order to dynamically populate the routing tables with entries pointing to
the calculated coordinates, this scheme follows a modified distance-vector algo-
rithm. Each node maintains a vector of distance from itself to all nodes within k
hops. Note that the calculated distances in this modified version are based on the
hyperbolic distance.

The nodes within maximally k-hop distance form a k-hop vicinity. In the RT
of each node in a vicinity, there is an exact match for each destination node which
belongs to the same vicinity.

The scheme combines exact match lookup (locally reachable vicinities) and
greedy forwarding (remotely accessible vicinities). Upon receiving a packet, first
it is checked if an exact match is found in the local RT. In case of a miss, the
hyperbolic distance between every neighbor and the destination is calculated and
the neighbor with minimum distance is selected as the next hop. Fig. 5.3b depicts
the principles of GCLS.

5.3.2.3 Route Discovery with network’s structural properties (RD)

We designed a route discovery scheme for an inter-AS network where each net-
work is a member of a specific group. The country code (ISO 3166) is used for
defining groups in the Internet and assumed that at least one path exists between
each pair of nodes. This scheme is based on limited network information, i.e.,
2-hop neighborhood information, and membership of nodes to groups, whose ef-
ficiency is based on the existence of highly popular nodes and the similarity of
adjacent nodes.

The route discovery scheme is initiated by the source node that issues a dis-
covery packet, which is forwarded to a neighbor with the optimal decision rule
exploiting the local information. Similarly, the discovery packet is forwarded to
the subsequent nodes, until it reaches the destination, hopefully with the smallest

128 CHAPTER 5

Figure 5.4: Example of route discovery mechanism. This mechanism first finds a path
s− a− b− c− d− e− f − g − t. The path optimization mechanism attempts to reduce

the length of this path at each node. This mechanism produces a shorter path,
s− a− h− d− e− f − g − t. The 2-hop neighbor information of d contains a. As a

consequence, b and c are replaced by h. The loop avoidance mechanism prevents retracing
the already visited node e, once f is reached. This enables the selection of g as the next

node, which has the same preference as e. Since b has an option to choose the next
neighbor among c and j, a random selection is applied to pick c.

number of hops. In this scheme every condition, which is used for finding the next
hop, is first checked for the immediate neighbors and if no neighbor satisfies it the
2-hop neighbors are checked. The next hop is selected based on the similarity of
the immediate/2-hop neighbor to the destination. The similarity means that either
the node has the same AS Number (ASN) as the destination or it shares the country
code with the destination. Otherwise, the more connected immediate/2-hop neigh-
bor determines the next hop. The connectivity is expressed by the node degree.
Once the discovery packet reaches a node sharing the country code with the des-
tination, the destination’s ASN is sought within the particular country. During the
discovery process, an online path optimization mechanism is employed to reduce
the path length of the searched path by utilizing 2-hop neighborhood information.
The discovery mechanism does not consider an already visited neighbor as a next
node to avoid loops in the final path. An example of this mechanism is provided
in Fig. 5.4.

5.3.3 Routing schemes for DTN and P2P networks
5.3.3.1 Delay Tolerant Network (DTN)

The concept of DTN was introduced initially in the research efforts made for In-
terplanetary Internet. However, today it is known that similar concepts can be

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 129

applied to many other networks called ‘challenged networks’. The main charac-
teristics of such networks are frequent disruption, sparse network density, high
error rate, delay and mobility. Routing in such networks is quite challenging. [9]
surveys many of the recent routing schemes for DTNs. A known scheme in such
networks is epidemic routing in which a message is replicated to all neighbors ex-
cept the one on which the message arrived. Different improvements to this routing
and hybrid schemes such as epidemic routing combined with network coding are
described in [9]. Similar to DTNs, wireless mobile ad hoc networks are considered
infrastructureless and dynamic in nature. Stochastic routing is considered to be a
promising paradigm in such networks. In this routing the next hop in a path is se-
lected according to a probability distribution. Many factors such as load, residual
energy and forwarding cost can be used to influence this distribution.

5.3.3.2 Peer-to-Peer (P2P) overlay network

P2P networks, initially introduced as a simple music sharing application, are today
responsible for a significant share of the Internet traffic. P2P overlays are logical
topologies on top of the physical networks which can be built dynamically. These
networks are highly scalable, resilient and self configurable which motivate their
widespread use. [10] surveys several algorithms and mechanisms considered in
P2P overlay networks. One interesting concept considered in P2P is applying a
DHT structure on top of the overlay. Using this structure (key, value) pairs are
stored in a DHT and all participating nodes can retrieve the value associated with
a key efficiently.

5.4 Comparative analysis and identified trade-offs

Within EULER we performed in-depth evaluations of the schemes explained in
Section 5.3.2 on large-scale scale-free networks and compared the results/identi-
fied trade-offs with BGP since it is the only routing protocol which has been really
applied in a large-scale scale-free network.

Table 5.2 compares the upper bounds of the performance metrics characteriz-
ing routing algorithms. These complexities correspond to the case of scale-free
networks. Then, we detail the trends/trade-offs in different routing components,
identified through excessive simulation/emulation experiments, which should en-
able more careful conclusions regarding the applicability of the schemes to large-
scale/complex networks.

DCR. Simulation results indicate that the actual stretch and the RT size of
DCR are far better than the theoretical ones [3]. Comparative evaluations of dif-
ferent algorithms indicate that exploiting topological properties helps improving
the performance in some approaches [11]. For instance, CLUSTER using power-

130 CHAPTER 5

Table 5.2: Comparison stretch - memory - communication cost. In this table, m stands for
the number of links, n is the number of nodes and D(G) is the diameter of graph G. ∆(G)

represents the maximum nodes degree and h is the size of MDT in multicast routing. δ is
the Gromov delta which measures the deviation of the graph from tree-likeness.

St
re

tc
h

M
em

or
y

co
m

pl
ex

ity
-i

np
ut

M
em

or
y

co
m

pl
ex

ity
-

ou
tp

ut
C

om
m

un
ic

at
io

n
co

m
pl

ex
ity

D
C

R
5

Õ
(√
n

)
Õ

(√
n

)
O

(n
3
/
2
)

G
C

M
R

O
(
D
(G

)+
1

2
)

O
(∆

(G
)
·l

og
(n

))
O

(h
·l

o
g
(n

))
2m

G
T

R
O

(l
og

(n
))

O
(∆

(G
))

O
(∆

(G
)
·l

o
g
2
(n

))
O

(n
+

lo
g
(n

)
·m

)

W
M

G
R

O
(l

og
(n

))
O

(∆
(G

))
O

(∆
(G

)
·l

o
g
2
(n

))
O

(n
+

lo
g
(n

)
·m

)

G
C

L
S

2δ
O

((
n

(n
−

1)
)1

/
2
·l

og
(n

))
O

(n
1
/
2
·l

o
g
(n

))
O

(m
.n

1
/
2
)

B
G

P
1

O
(D

(G
)
·n
·(
n
−

1
)
·l

o
g
(n

))
O

(D
(G

)
·n
·l

o
g
(n

))
Õ

(n
2
·(
n
−

1
)
·p
ol
y
lo
g
(n

))

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 131

law graphs properties, is efficient on every criteria if the network has small-world
properties12. However, the performance of this algorithm degrades drastically in
other networks (e.g. Unit Disk Graph13) [11]. On the contrary DCR has a trade-
off between communication cost/stretch independent of the considered graph. In
different topologies, DCR achieves a communication cost almost 10 times smaller
than BGP with an average stretch of less than 2 and a maximum number of entries
10 times smaller than BGP.

GCMR. Simulation/emulation results confirm that GCMR, compared to state-
of-the-art such as PIM, SPT and ACMR [12], achieves the lowest memory space
for storing the routing information, a minimum stretch factor increase (w.r.t. the
optimal one), and the lowest recovery/convergence time in case of failure while
further improvements in terms of communication cost are required [4]. Regarding
identified trade-offs, additional information in the RTs (i) allows large reduction in
the communication cost, (ii) decreases the stretch and (iii) allows a low reduction
in the convergence time.

GTR-WMGR. Simulation/emulation outcomes support the memory-advantage
of both GTR and WMGR, but clearly indicate the resulting cost in the recovery
domain [5], [6]. Similar to other greedy routing schemes the RT size is bounded
by the maximum vertex degree. On scale-free graphs, these schemes achieve good
trade-offs among different metrics: they are scalable in storage space, they are suc-
cinct (labels are of size O(polylog(n)) bits), and they have a bounded low-stretch.
The identified trade-offs in case of failures are:

• potentially high number of affected paths, with a generally low convergence
time

• protection: fast recovery with no communication overhead, but high stretch

• restoration: high convergence-time/communication-cost with potentially low
stretch

Route Discovery (RD). This scheme could discover near-optimal paths in
most cases, even when a significant number of links/nodes are suppressed. In-
corporating a moderate global knowledge about the network structure group mem-
bership induces a steep improvement in performances. The identified trade-offs
are:

• group information in the packet and at each node decreases the search area

12In a network with small-world properties, the typical hop-count between two randomly chosen
nodes grows proportionally to the logarithm of the number of nodes in the network.

13A Unit Disk Graph is the intersection graph of circles of unit radius in the Euclidean plane. In this
graph, each vertex corresponds to a circle and two vertices are connected by an edge if and only if the
corresponding circles intersect.

132 CHAPTER 5

• online path optimization mechanism significantly reduces the discovered
path length

• topological information needed at each node depends on the node degree of
its neighbors

Schemes such as GCLS, GCMR and RD show adaptability to failures by only
requiring re-computation of the routes affected by the failure. The number of
affected routes is proportional to the centrality of the failing entity. GTR and
WMGR provide protection capability to overcome pre-determined failure patterns
and if no protection exists, they re-calculate the coordinates of the affected nodes.
DCR on the other hand does not provide dedicated processing for information state
changes and require the full re-computation of the routing tables.

Exploiting the topological properties of scale-free networks can improve the
performance of several compact routing schemes [11]. This was also confirmed
in GTR and WMGR schemes as the tree construction method (i.e., selection of
maximum degree node as root and construction of Breadth-First-Search tree) does
not generate deep branches due to the short average distance between nodes in
scale-free networks. This minimizes the memory requirements for coordinate rep-
resentation and enables shorter paths [13].

In all schemes, a scalable mapping system to bind node identifiers to node
locators is required. An option is to use DNS-like servers for these name-to-
address/address-to-address resolutions. The main identified trade-off is between
communication-cost and convergence-time. The slower the polling scheme rela-
tive to the mapping service, the smaller the communication-cost but the longer the
convergence time.

The proposed schemes have different packet forwarding process. While GTR,
WMGR and RD replace the look up with more computation in the forwarding
plane, GCLS and DCR look up the next hop of a packet from the RTs.

5.5 Conclusion and future directions

We presented an overview of potential design dimensions of routing protocols, the
routing functionality and existing routing schemes. The focus of the article was
mainly on advances in compact routing, algebraic routing and geometric routing.
Through analyzing experimental/analytical results performed so far, we identified
the main open challenges:

• One cause of absence of an alternative to BGP is that the design of many
routing systems (mainly path-vector schemes enhancements) tends to follow
the same approach as the one pursued by BGP. To overcome this, clean-slate
approaches should be investigated.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 133

• Most investigated schemes increase performance by decreasing functional-
ity e.g., all the schemes in Section 5.3.2 improve the scalability in terms of
memory however the same level of policy as in BGP is not supported in any
of them.

• The main difference in the schemes discovery process results from the ex-
change of routing information: pull vs. push. All alternatives use a distance
metric/spatial routing metric which subdivide between local and global met-
rics and between metrics derived from the topology properties (e.g. node de-
gree) and universal metrics. These dimensions are tightly related and our re-
sults corroborate that schemes such as BGP, which is independent of global
or link metrics and is driven by local policy decisions, will be challenging
to replace as long as the Internet domains are operated organically.

• From the experimental perspective, due to the increasing level of path pro-
cessing granularity combined with a larger parameter space, deriving com-
mon path characteristics to obtain a representative policy model together
with the AS relationships remains challenging.

The experiments performed so far indicated that the proposed schemes have
interesting characteristics in terms of memory usage, stretch and convergence be-
havior which make them promising schemes for large-scale complex networks.
Indeed, there are some open problems which require further research:

• Many of the schemes rely on a tree construction. It is thus appropriate to fur-
ther investigate multi-path routing via independent trees in order to extend
these schemes with fault-tolerance and load balancing [14]. Additionally,
using multiple trees is a starting point for enabling routing policy in these
schemes.

• Many of the schemes require a mapping system. Despite the research efforts
(mainly in LISP [15]) a scalable, secure and highly reliable mapping system
with fast convergence is still missing.

• The proposed schemes find applicability in upper layers (IT/computing sys-
tems, information/file systems) when the number of entities reaches at least
1010. Concretely, Content-Centric Networking (CCN) is one paradigm which
can benefit from the proposed geometric routing schemes. Using these
schemes, an efficient and scalable content-based forwarding is possible which
was demonstrated in [7]. If capacity saving remains a key objective, inte-
grating multicast benefits with CCN should be further investigated.

• Although, the routing schemes in Section 5.3.3 are proposed for networks
far from complex networks, it is an interesting research direction to investi-

134 CHAPTER 5

gate the applicability of such routing schemes in large-scale scale-free net-
works. Particularly, schemes such as stochastic routing may be a promising
alternative if parameters such as network load is used in calculation of prob-
ability distribution. This way an adaptive load balancing mechanism can be
achieved. P2P networks, as potential data distribution paradigm of future
Internet, require further investigation to improve aspects such as security,
dynamicity, redundancy and load balancing [10].

• Finally, it is challenging to translate schemes/algorithms into protocols and
it is a research topic on its own.

Acknowledgment
This work is partly funded by the European Commission through the EULER
project (Grant 258307), part of the Future Internet Research and Experimenta-
tion (FIRE) objective of the Seventh Framework Programme (FP7) and the UGent
BOF/GOA project ‘Autonomic Networked Multimedia Systems’.

ROUTING AT LARGE SCALE: ADVANCES AND CHALLENGES 135

References

[1] F. Coras, D. Saucez, L. Iannone, and A. Cabellos-Aparicio. Locator/ID Sep-
aration Protocol (LISP) Impact. 2016.

[2] P. Godfrey, M. Caesar, I. Haken, Y. Singer, S. Shenker, and I. Stoica. Sta-
bilizing route selection in BGP. Networking, IEEE/ACM Transactions on,
23(1):282–299, 2015.

[3] C. Gavoille, C. Glacet, N. Hanusse, and D. Ilcinkas. On the communica-
tion complexity of distributed name-independent routing schemes. In Inter-
national Symposium on Distributed Computing, pages 418–432. Springer,
2013.

[4] D. Careglio, D. Papadimitriou, F. Agraz Bujan, S. Sahhaf, J. Perelló Muntan,
W. Tavernier, S. Spadaro, and D. Colle. Development and experimentation
towards a multicast-enabled Internet. In 2014 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), pages 79–84. In-
stitute of Electrical and Electronics Engineers (IEEE), 2014.

[5] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Experi-
mental validation of resilient tree-based greedy geometric routing. Computer
Networks, 82:156–171, 2015.

[6] M. Camelo, D. Papadimitriou, L. Fàbrega, and P. Vilà. Geometric Rout-
ing With Word-Metric Spaces. IEEE Communications Letters, 18(12):2125–
2128, 2014.

[7] S. Sahhaf, D. Papadimitriou, W. Tavernier, D. Colle, and M. Pickavet. Exper-
imentation of geometric information routing on content locators. In Network
Protocols (ICNP), 2014 IEEE 22nd International Conference on, pages 518–
524. IEEE, 2014.

[8] T. E. Ng and H. Zhang. Predicting Internet network distance with
coordinates-based approaches. In INFOCOM 2002. Twenty-First Annual
Joint Conference of the IEEE Computer and Communications Societies. Pro-
ceedings. IEEE, volume 1, pages 170–179. IEEE, 2002.

[9] Y. Cao and Z. Sun. Routing in delay/disruption tolerant networks: A taxon-
omy, survey and challenges. Communications Surveys & Tutorials, IEEE,
15(2):654–677, 2013.

[10] A. Malatras. State-of-the-art survey on P2P overlay networks in pervasive
computing environments. Journal of Network and Computer Applications,
55:1–23, 2015.

136 CHAPTER 5

[11] C. Gavoille, C. Glacet, N. Hanusse, and D. Ilcinkas. Brief Announcement:
Routing the Internet with Very Few Entries. In Proceedings of the 2015 ACM
Symposium on Principles of Distributed Computing, pages 33–35. ACM,
2015.

[12] I. Abraham, D. Malkhi, and D. Ratajczak. Compact multicast routing. In
Distributed Computing, pages 364–378. Springer, 2009.

[13] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Efficient
Geometric Routing in Large-Scale Complex Networks with Low-Cost Node
Design. IEICE Transactions on Communications, 99(3):666–674, 2016.

[14] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pick-
avet. Robust geometric forest routing with tunable load balancing. In
Computer Communications (INFOCOM), 2015 IEEE Conference on, pages
1382–1390. IEEE, 2015.

[15] A. Anisul and H. Flinck. A Compact Routing based Mapping System for the
Locator/ID Separation Protocol (LISP). International Journal of Computer
Applications, 127(5):1–8, 2015.

6
Network service chaining with

optimized network function embedding
supporting service decompositions

The rise of NFV and SDN introduce opportunities for service providers to quickly
deploy novel services with a reduced cost. In this context, Network Service Chain-
ing (NSC) indicates how basic service building blocks (i.e. Network Functions
(NFs) such as firewall, network address translation and deep packet inspection)
are chained across the network infrastructure. Since NFV provides freedom in
where to place the NFs of NSCs in a network, new challenges are introduced in
service orchestration. This chapter and the next one focus on the service orches-
tration research topic and its related challenges. In the context of NSC, a large
monolithic service block can be decomposed into inter-connected atomic NFs in
several ways. This is referred to as service decomposition. Having multiple re-
alization options, the placement of NFs (embedding) becomes quite challenging.
This chapter proposes solutions for joint optimization of NFs embedding and ser-
vice decompositions to be used in virtualized telecom networks. An ILP-based
algorithm and a heuristic approach are proposed to minimize the mapping cost
while taking service requirements and network capabilities into account. The ad-
vantages of the proposed schemes are identified through high service acceptance
rate and the related low mapping cost.

? ? ?

138 CHAPTER 6

S. Sahhaf, W. Tavernier, M. Rost, S. Schmid, D. Colle, M. Pick-
avet, P. Demeester

Published in Computer Networks, 2015.

Abstract The rise of Software-Defined Networking (SDN) and Network Func-
tion Virtualization (NFV) introduce opportunities for service providers to reduce
CAPEX/OPEX and to offer and quickly deploy novel network services. In particu-
lar, SDN and NFV enable the flexible composition of network functions, a generic
service concept known as network service chaining (NSC).

However, the control of resources, management and configuration of network
service chains are challenging. In particular, there typically exist multiple options
on how an abstract network service can be decomposed into more refined, inter-
connected network functions. Moreover, efficient algorithms have to be devised to
allocate the network functions. The underlying algorithmic problem can be seen as
a novel generalization of the Virtual Network Embedding Problem (VNEP), where
there exist multiple realization options. The joint optimization of decomposition
and embedding has not been studied in the literature before.

This paper studies the problem of how to optimally decompose and embed
network services. In particular, we propose two novel algorithms to map NSCs
to the network infrastructure while allowing possible decompositions of network
functions. The first algorithm is based on Integer Linear Programming (ILP) which
minimizes the cost of the mapping based on the NSCs requirements and infrastruc-
ture capabilities. The second one is a heuristic algorithm to solve the scalability
issue of the ILP formulation. It targets to minimize the mapping cost by making
a reasonable selection of the network function decompositions. The experimental
results indicate that considering network function decompositions at the time of
the embedding significantly improves the embedding performance in terms of ac-
ceptance ratio while decreasing the mapping cost in the long run in both optimal
and heuristic solutions.

6.1 Introduction

Network service chaining (NSC) is a service concept which has gained much inter-
est from both practitioners and researchers. NSC promises increased flexibility and
cost-efficiency for future carrier networks. NSC is enabled by Software-Defined
Networking (SDN) and Network Function Virtualization (NFV). Employing SDN
and NFV developments simplifies the service chain provisioning significantly and
enables the introduction of new services. Traditionally, a service composed of
several functions is implemented by middleboxes and traffic should flow through
these middleboxes in a given order. A service chain is an abstraction to define

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 139

high-level services in a more generic way. The service is composed of a chain
of high-level Network Functions (NFs) with pre-defined parameters referred to as
Service Graph (SG). Different aspects of service chaining, its limitations and ex-
isting challenges are investigated by different activities and research projects such
as: (i) a dedicated working group (Service Function Chaining Working Group) in
IETF which focuses on the service chaining architecture, (ii) the Network Func-
tions Virtualization (NFV) group within ETSI which investigates software-based
telecommunications services to be run in virtualized environment instead of spe-
cial purpose appliances, (iii) UNIFY, a EU-funded FP7 project, which focuses on
developing an automated, dynamic service creation architecture based on a dy-
namic fine-granular service chaining model leveraging Cloud virtualization tech-
niques and SDN.

An NF can be decomposed in multiple ways to several less abstract, more re-
fined NFs, and thus an SG composed of several high-level NFs can be realized
through multiple options referred to as service decompositions. To be more pre-
cise, NF decomposition refers to (i) translation of a high-level/abstract NF (e.g.,
Firewall) to more refined NFs (e.g. an OpenFlow- or an iptables-based Firewall)
or (ii) decomposing a compound NF into multiple NFs which can potentially be
abstract and are interconnected in a graph (e.g. a load-balanced Firewall can be de-
composed into any number of Firewalls preceded by a number of load balancers).

To give an example, consider that a user requests a service including a parental
control NF. The functionality of this NF can be decomposed to (i) Traffic Classifier,
(ii) Web Proxy and (iii) Firewall NFs. Each of these NFs can be realized through
more refined NFs, e.g. a Firewall can be implemented as (i) iptables-based Fire-
wall or (ii) OpenFlow-based Firewall. These NFs should be traversed in a given
order and the logical connectivity between them is as follows: Traffic Classifier→
Web Proxy→ Firewall. This connectivity can be represented by a graph which is
referred to as a Network Function Graph (NFG). Service decomposition is defined
as a mapping of each NF into a set of NFGs: NFi → {NFGi

1, NFG
i
2, ...}.

Having multiple decomposition options for service realization, a challenging
task is to find an optimal placement of the NFs within the service to the com-
ponents of an infrastructure. We refer to this problem as the Network Function
Embedding Problem (NFEP) and Fig. 6.1 illustrates its general idea. As we see in
this figure, given multiple SGs composed of NFs and a common physical network,
we look for a placement of NFs/logical links to the nodes/links of the physical
network. In this figure, only one decomposition is depicted for each SG. However,
as explained earlier, an SG can be realized through multiple decompositions. This
problem can be seen as a generalization of the Virtual Network Embedding Prob-
lem (VNEP) in which virtual networks are mapped to a common infrastructure
without having multiple realization options.

The literature is rich on algorithmic proposals to solve the VNEP [1]. However,

140 CHAPTER 6

Figure 6.1: Network Function Embedding concept

no work considered to decompose and embed an SG at the same time.
Our contribution. The decompositions of an SG need to reflect required hard-

ware resources and capabilities (e.g. requirement for iptables-based Firewall). Se-
lecting a decomposition independently of available resources in the infrastructure
may yield mapping solutions far from optimal. We accordingly present algorithms
(optimal and heuristic) for the NFEP which take the SG decomposition opportuni-
ties into account. This would certainly improve the performance of the embedding
as a reasonable decomposition is selected which corresponds to the existing re-
sources and thus leads to a better placement of the NFs.

To the best of our knowledge, the joint optimization of SG decomposing and
its embedding has not been investigated in prior work.

We first propose an Integer Linear Programming (ILP) model to solve the
NFEP. This model considers SG decomposition options as the input of the em-
bedding problem. The objective is to minimize the cost of the mapping based on
the SG requirements and infrastructure capabilities. We define the cost of map-
ping an SG as the cost of the total substrate resources allocated to that SG which
is calculated based on: (i) the cost of each unit of CPU, memory and storage in a
physical node (ii) the cost of each unit of bandwidth in a physical link and (iii) the
resource usage of the given SG. The cost per unit of capacity (i,ii) is determined
by the infrastructure provider (InP). The algorithm maps the NFs within an SG
to the components of the physical network in such a way that the resource con-
sumption is minimized and the QoS requirements of the SG are satisfied. This is
equivalent to maximizing the number of service requests which are accepted and
thus the acceptance ratio in the long run is increased. One of the main constraints
in this mapping is that NFs in an SG can be of different types (e.g. a VM image,
a process in a container or a hardware appliance). However, not all types, e.g.,
iptables-based and OpenFlow-based Firewalls, are supported by all infrastructure
nodes.

Solving the VNEP is NP-hard in most of the cases [2] and allowing for all
possible SG decompositions generally increases the complexity drastically. As a

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 141

result, finding the optimal solution might not be feasible in large-scale scenarios.
We therefore propose a heuristic algorithm to overcome the scalability limitation
of the ILP solution. In this scheme, first a reasonable decomposition is selected
for the SG and then NFs of the selected decomposition are placed on physical
network components based on a backtracking mechanism. This algorithm was
briefly presented in [3] as a short paper, without any thorough evaluation. We use
the proposed ILP-based approach to benchmark the heuristic algorithm. Therefore,
this paper extends the work in [3] by providing an ILP model and a thorough
evaluation of the proposed scheme. These evaluations should enable more accurate
conclusions regarding the performance of the heuristic-based approach compared
to the optimal solution.

The proposed approaches are evaluated thoroughly and compared in an exten-
sive computational evaluation. The experimental results indicate that employing
SG decomposition options at the time of the embedding improves the performance
of the embedding significantly in terms of acceptance ratio while decreasing the
cost compared to scenarios in which a decomposition is selected independent of
the available resources and NFs requirements.

The rest of the paper is organized as follows. Section 6.2 explains the related
work. Service decomposition is described in detail in Section 6.3. Section 6.4 de-
scribes the problem, and Section 6.5 details the proposed ILP model together with
the ILP-based algorithm. The heuristic-based algorithm is explained in Section
6.6. Section 6.7 reports the performance evaluation results. Finally Section 6.8
concludes the paper.

6.2 Related work

The VNEP is known to be NP-hard [2] and therefore finding the optimal solution
might not be affordable in large-scale scenarios (within reasonable time). As a
result two different types of approaches are considered: (i) Exact solutions which
provide optimal solutions but are generally only applicable on small-scale prob-
lems, (ii) Heuristic-based approaches which trade off optimality with runtime.
Many of the algorithmic approaches to solve the VNEP have been detailed in the
survey [1]. There are several proposals in the literature which formulate the VNEP
as Integer Linear Programming (ILP) and find the optimal solution. In [4], the au-
thors used ILP formulation to find a solution which minimizes the embedding cost
and maximizes the acceptance ratio. Another ILP-based approach was introduced
in [5] which focuses on minimizing the consumed resources in physical network
to switch off the remaining resources of the network and save energy. Zhang et
al. proposed an ILP model to achieve optimal resilient solution while satisfying
the requested QoS requirements [6]. Dynamic reconfiguration of mappings and
migrations were studied in [7] and Mixed Integer Programming was used to solve

142 CHAPTER 6

the problem.
The literature on heuristic algorithms is much more diverse and ideas from

very different fields have been considered. In [8] two heuristic-based approaches
were presented. One focuses on minimization of resource consumption and the
second one aims at load balancing. The same work proposed an ILP approach to
benchmark the heuristic-based algorithms. In [9] VNEP is solved by a heuristic
approach based on Subgraph Isomorphism Detection (SID) which maps nodes and
links during same stage. Several heuristics focus on resiliency in the embedding
which try to recover physical network failures [10–12]. Meta-heuristics such as
ant colony optimization, simulated annealing, genetic algorithms or tabu search
are used to find a close to optimal solutions. An example is the Max-Min Ant
Colony meta-heuristic proposed in [13] to solve the VNEP.

While the literature on the VNEP is very rich, the specific problem we attend
to – namely of how to decompose and map an SG at the same time – was not
considered before. Hence, we cannot use any previous work as a baseline, but use
our ILP to obtain one.

Apart from the VNEP, the most closely related works are the following. In the
work of Basta et al. [14] the function placement problem for LTE mobile core gate-
ways is considered under different decompositions based on NFV and SDN. The
function placement problem, which maps each of the (potentially decomposed)
functions onto datacenters and establishes paths between the components is then
solved according to the different decompositions. As shown in [14], depending on
the chosen decomposition, the bandwidth usage and path latencies may vary to a
great extent. This not only shows the benefits of combining NFV and SDN, but
particularly, that it may be beneficial to decompose common complex functions.

Mehraghdam et al. [15] consider the problem of embedding service chains
under the relaxation that the order of NFs may be underspecified and NF A may
be used before B or vice versa. Assuming that no restriction on the order of the
NFs is given, this leads to n! many possible orderings for n NFs. The authors
shortly discuss the computational complexity of finding the optimal ordering and
argue for using a heuristic for choosing a good ordering.

In [16], authors focus on NF placement for NFV chaining in packet/optical
datacenters with the objective of minimizing the expensive optical/electrical/opti-
cal (O/E/O) conversions. These conversions are needed because chaining within
a ‘performance optimized datacenter’ (pod) is based on packet switching while
between pods optical technologies are used. They try to minimize the O/E/O con-
versions by placing the NFs of the same chain in the same pod. They propose
both a Binary Integer Programming formulation of the NF placement problem and
an alternative heuristic algorithm. However, no notion of NF decomposition is
considered in this paper.

Ahmed and Papadimitriou [17] proposed solutions for the discovery and se-

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 143

Figure 6.2: Example of service decomposition

lection of middleboxes along the traffic path. NFs composing a service chain are
assigned to middleboxes, while preserving the order of the NFs as specified in
the service chain. In their work, they address the challenge of flow processing
establishment across multiple NF providers.

6.3 Service decomposition

The SG initially requested by a user is described by NFs and their logical connec-
tivity. At this level the NFs might be either Elementary Network Functions (ENF)
which means that their low-level implementation and resource requirements are
available or abstract/Compound Network Functions (CNF) which means that they
can be implemented through more refined NFs or they are composed of several
ENFs.

Service decomposition is the process of transforming an SG containing ab-
stract NFs to SGs containing less abstract, more implementation-close NFs. Ad-
ditionally, it refers to decomposing the functionality of a CNF into multiple less
complex (potentially abstract) NFs interconnected in form of a graph with the same
external interfaces as the abstract NF (see Fig. 6.2). The main advantages of ser-

144 CHAPTER 6

vice decomposition are: (i) re-usability of elementary blocks, (ii) the possibility to
generate new and more complex services and iii) the possibility to request services
without any concern about the detailed implementation. These advantages sim-
plify the network service chaining and provide opportunities for service providers
to reduce the cost in CAPEX and OPEX.

An example service decomposition is illustrated in Fig. 6.2. The high-level
compound NF2 is decomposed to NF4 and NF5. Each of them can be decomposed
to more elementary NFs (e.g., NF6, NF7, etc.). These decompositions can be
stored in a tree-like data structure in a database which is used by the embedding
algorithms. Note that the leaves of this tree are elementary NFs for which all the
resource demands and required low-level implementation are available.

6.4 Problem description

Service requests arrive over time and the embedding algorithm should decide
whether the NFs within the requested SG and their corresponding connections can
be mapped to the components of the physical network or not. Once requests are
accepted, the required resources (physical links and nodes) are assigned and they
are released once the requests expire.

Elementary NFs within an SG can be of different types which means that they
can be implemented in different ways using different techniques such as: (i) Vir-
tual Machine (VM) images using different virtualization techniques: VMware,
VirtualBox, Xen, (ii) hardware appliances, (iii) process in a container or iv) packet
I/O drivers, as e.g. Intel’s Data Plane Development Kit (DPDK)1 which is a set of
libraries and drivers for fast packet processing.

Having several types of NFs imposes additional constraints on the embedding
problem because not all physical components of the network support all types.
Additionally, interconnecting NFs of different types is more complex compared to
interconnection of the NFs with the same type. For example it is more complicated
to connect an NF which is a process in a container to a DPDK-based NF com-
pared to the case in which both NFs are DPDK-based or both are the same-type
processes in containers. To reduce this complexity, we prioritize an SG decom-
position in which the number of same-type NFs which are directly interconnected
is higher. In addition, such a prioritization (i) reduces the amount of required re-
sources, and (ii) improves NF performance by reducing the communication over-
head and latency. Prioritizing NFs of the same type enables mapping of more NFs
to the same physical node; this leads to less network resource consumption as no
physical links are used for the mapping. Interconnecting NFs over physical links
implies additional communication and/or computational overhead due to e.g. addi-

1http://dpdk.org/

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 145

NF1

(click)

NF2

(click)

NF3

(click)

NF4

(DPDK)

NF1

(DPDK)

NF2

(click)

NF3

(VM)

NF4

(click)

CF=2 CF=4

Figure 6.3: Example of Clustering and CF in service decompositions

tional tunneling requirements, which is not as high if NFs are located in the same
physical node.

In order to enable this prioritization, we define a parameter referred to as
Cluster-Factor (CF) which is calculated as follows for each decomposition: given
a service decomposition, the NFs with similar types which are connected directly
(i.e., without intermediate nodes with other types) are grouped in the same cluster.
The number of clusters in the decomposition determines the CF of that decom-
position. Fig. 6.3 illustrates two service decompositions with different CFs. As
we see, in the decomposition at left, the Click-based NFs (NF1, NF2 and NF3)
are connected directly and thus are grouped in one cluster while NF4 which is a
DPDK-based NF is placed in another cluster. Therefore, the CF of this decom-
position is equal to 2. In the decomposition at right, although there are NFs with
the same type (2 Click-based NFs: NF2 and NF4), they cannot be grouped in the
same cluster because of the intermediate NFs (NF1 and NF3) which have different
types. As a result each of the NFs is grouped in a different cluster and the CF of
this decomposition is 4.

Our objective is to minimize the mapping cost of a given SG. This cost refers
to the cost of the total substrate resources allocated to the SG which is calculated
based on: (i) the cost of each unit of CPU, memory and storage in a physical node
(ii) the cost of each unit of bandwidth in a physical link and (iii) the resource usage
of the given SG. The cost per unit of capacity (i,ii) is determined by the InP. Min-
imizing the mapping cost allows accepting more requests over time and increases
the acceptance ratio. Acceptance ratio is a metric that measures the ratio of the ac-
cepted service requests which refer to services that are successfully mapped to the
physical network. As service decompositions are known from the design time, we
can make a resource-aware decomposition selection taking decompositions CF
into account at the time of the embedding.

146 CHAPTER 6

6.5 Integer Linear Programming formulation

In this section, we introduce notations, variables, objective function and con-
straints which are used in the Integer Linear Programming formulation of the prob-
lem.

6.5.1 Physical network

In the model, the physical infrastructure is represented as an undirected graph.
The infrastructure consists of nodes (N) connected via links (L). Each node has a
certain capacity in terms of computation, memory and disk/storage, and links have
delay and capacity in terms of bandwidth. These resources are actually the residual
capacities based on previous mappings. Below we describe the parameters of the
physical network infrastructure.

Gp = (Np, Lp)

Computation capacity (C), storage capacity (S) and memory capacity (M) with
their corresponding unit cost are defined as follows:

∀u ∈ Np : Cu, Su,Mu ∈ N+

∀u ∈ Np : Ccostu , Scostu ,Mcostu ∈ N+

Each physical node can support different implementation types of NFs including:
(i) Virtual Machine (VM) images (ii) process in a container (iii) packet I/O drivers
and (iv) hardware appliances. Note that the model can simply be extended if other
types of NF implementation are supported by the infrastructure nodes:

∀u ∈ Np : u ∈ VM, iff. umay host a VM

∀u ∈ Np : u ∈ process, iff. umay host a process

∀u ∈ Np : u ∈ I/O, iff. umay host packet I/O drivers

∀u ∈ Np : u ∈ hardware, iff. u has hardware appliances

Propagation delay (D) and bandwidth capacity (BW) for physical links are de-
scribed as follows:

∀euv ∈ Lp : Deuv , BWeuv , BWcosteuv
∈ N+

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 147

6.5.2 Service request

As explained in Section 6.3, an SG can be realized through multiple decomposi-
tions. Therefore, for each SG there exists a decomposition set DecompSG. Note
that this set contains all possible decompositions such that hierarchical decompo-
sitions are already ‘fully’ resolved.

∀SG : DecompSG = {dc1, dc2, ..., dcn}

Each decomposition is represented as a directed graph to support the dependency
between different NFs. Therefore, the NFs in the decomposition are represented
as nodes connected via the directed links in the graph. Each NF, has some require-
ments in terms of computation, memory and storage and links connecting different
NFs have requirements in terms of delay and bandwidth.

Gdc = (Ndc, Ldc)

The computation (c), memory (m) and storage (s) requirements of each NF (node)
in the decomposition is defined as:

∀i ∈ Ndc : ci, si,mi ∈ N+

Each NF can be implemented differently and thus can be of different type:

∀i ∈ Ndc : i ∈ {VM,process, I/O,hardware}

The maximum allowed delay (d) and bandwidth (bw) requirements of links in the
decomposition are defined as:

∀eij ∈ Ldc : deij , bweij ∈ N+

Finally each decomposition is assigned a Cluster Factor (CF) which is the number
of clusters in the decomposition. The clusters in a decomposition include same-
type NFs which are directly interconnected and can probably be mapped on the
same physical node.

∀dc ∈ DecompSG : CFdc ∈ N+

6.5.3 Decision variables

In our ILP model, different decision variables are required. The xiu is used to
indicate if NF i independent of its type is mapped on physical node u.

xiu ∈ {0, 1} ∀dc ∈ DecompSG,∀u ∈ Np,∀i ∈ Ndc

148 CHAPTER 6

The next variable is 1 if virtual link eij is mapped to physical link euv , and 0 if
not.

feijeuv
∈ {0, 1} ∀dc ∈ DecompSG,∀eij ∈ Ldc,∀euv ∈ Lp

The zdc variable is used to indicate if decomposition dc is selected for the mapping
or not.

zdc ∈ {0, 1} ∀dc ∈ DecompSG

6.5.4 Objective function

As explained in Section 6.4, the objective is to minimize the total cost of the map-
ping (i.e., the cost of the total substrate resources allocated to the given SG) while
prioritizing the decompositions with lower CF and the advantages of this prior-
itization are: (i) lower complexity in interconnection of NFs, (ii) improving NF
performance by reducing communication overhead and latency, and (iii) reducing
the compute and network resources.

Minimize:∑
dc∈DecompSG

∑
u∈Np

∑
i∈Ndc

cost(i, u)+
∑

dc∈DecompSG

∑
euv∈Lp

∑
eij∈Ldc

cost(eij , euv)

(6.1)

Below, we detail this objective function. In the rest of this paper, the notations
‘VM’, ‘PRC’, ‘I/O’ and ‘HW’ refer to different types of NFs (VM, process, I/O,
hardware) explained earlier.

∑
dc∈DecompSG

∑
u∈Np(V M)

∑
i∈Ndc(V M)

(ci×Ccostu + si×Scostu +mi×Mcostu)×

CFdc × xiu+∑
dc∈DecompSG

∑
u∈Np(PRC)

∑
i∈Ndc(PRC)

(ci ×Ccostu + si × Scostu +mi ×Mcostu)×

CFdc × xiu+∑
dc∈DecompSG

∑
u∈Np(I/O)

∑
i∈Ndc(I/O)

(ci × Ccostu + si × Scostu +mi ×Mcostu)×

CFdc × xiu+∑
dc∈DecompSG

∑
u∈Np(HW)

∑
i∈Nd(HW)

(ci × Ccostu + si × Scostu +mi ×Mcostu)×

CFdc × xiu+∑
dc∈DecompSG

∑
euv∈Lp

∑
eij∈Ldc

(bweij ×BWcosteuv
× feijeuv

) (6.2)

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 149

Note that in this objective function, we multiplied the cost of the mapping by
the CF . Through this multiplication, it is ensured that the decompositions with
lower CF are preferred over the decompositions with higher CF .

As we see in the objective function, the sum over all the decompositions of the
given SG is minimized. The reason is that all of these decompositions should be
checked and the one which leads to minimum cost should be selected and mapped.
In order to guarantee that only one decomposition is selected, we add several con-
straints which are detailed in Section 6.5.5.1.

6.5.5 Constraints

There are different types of constraints which should be considered in the ILP
formulation. We categorize them in 4 groups: (i) decomposition constraints, (ii)
physical nodes, (iii) link to path mapping and (iv) QoS requirements.

6.5.5.1 Decomposition mapping constraints

These constraints guarantee that only one of the decompositions of an SG is se-
lected and all the NFs of the selected decomposition are mapped only once.∑

dc∈DecompSG

zdc = 1 (6.3)

∑
u∈Np(type)

xiu = zdc (6.4)

∀dc ∈ DecompSG,∀i ∈ Ndc(type),∀type ∈ {VM,PRC, I/O,HW}

6.5.5.2 Physical node constraints

For each physical node, the sum of the requirements of all the mapped NFs should
not exceed the capacity of that node. Therefore, we should add a constraint for
each of the compute, memory and storage capacities while considering different
types (constraints 6.5-6.7).

∑
i∈Ndc(type)

ci x
i
u ≤ Cu (6.5)

∀dc ∈ DecompSG, ∀u ∈ Np(type),∀type ∈ {VM,PRC, I/O,HW}

∑
i∈Ndc(type)

mi x
i
u ≤Mu (6.6)

∀dc ∈ DecompSG, ∀u ∈ Np(type),∀type ∈ {VM,PRC, I/O,HW}

150 CHAPTER 6

∑
i∈Ndc(type)

si x
i
u ≤ Su (6.7)

∀dc ∈ DecompSG, ∀u ∈ Np(type),∀type ∈ {VM,PRC, I/O,HW}

6.5.5.3 Link to path mapping

When a link in the SG cannot be mapped to a single physical link, it should be
mapped to a single path. In case of the latter, the link (or corresponding flow) in
the SG cannot be split into several paths and thus no multipath is considered in the
model. The next constraint makes sure that a simple unsplittable/single path for
such a mapping is used.∑

euv∈Lp,u=src

feijeuv
−

∑
euv∈Lp,u=dst

feijeuv
= xju − xiu (6.8)

∀dc ∈ DecompSG,∀eij ∈ Ldc,∀u ∈ Np

6.5.5.4 Quality of service requirements

For each physical link, the sum of the required bandwidth of all the links in each
decomposition should not exceed the bandwidth capacity of the link.

∑
eij∈Ldc

bweij · feijeuv
≤ BWeuv

∀dc ∈ DecompSG,∀euv ∈ Lp (6.9)

The next constraint guarantees that the sum of all physical link delays used for
mapping a single virtual link in the service request does not exceed the maximum
allowed delay in the request.

∑
euv∈Lp

Deuv
· feijeuv

≤ deij ∀dc ∈ DecompSG,∀eij ∈ Ldc (6.10)

As we used an Integer Linear Programming formulation to solve the embed-
ding problem, the model is limited to linear parameters. It can be extended with
other parameters as long as they are linear. Note that parameters such as delay
jitter and loss cannot be modeled through linear constraints and thus, they are not
considered in this model. It is worth mentioning that modeling such optimization
problems as nonlinear programs to account for jitter and loss is hard but leads to
high accuracy. However, such an accurate model requires very large computation
which makes it impossible to solve the optimization problem in a reasonable time.

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 151

6.5.6 ILP-based algorithm

This algorithm implements the optimal ILP-based model which was detailed ex-
tensively in this section. The requests arrive over time and given all possible de-
compositions of an SG, the algorithm selects the decomposition which leads to
minimum cost and embeds the corresponding NFs and logical links to physical
network in such a way that the resource consumption is minimized. As a result,
more requests can be embedded into the physical network and therefore, the ac-
ceptance ratio will increase in the long run [1]. The achieved embedding is based
on the service requests constraints and the physical network limitations. The im-
pact of considering service decompositions on different metrics such as acceptance
ratio and mapping cost is evaluated in Section 6.7.

6.6 Decomposition selection-backtracking mapping
algorithm: DSBM

As the ILP-based algorithm has scalability limitations, we propose a heuristic-
based approach which is referred to as DSBM [3]. Similar to any heuristic ap-
proach, the proposed scheme compromises optimality for short execution time.
This algorithm comprises two phases: (i) decomposition selection and (ii) map-
ping. Given an SG and all possible decompositions in the first phase, we measure
a cost corresponding to each decomposition and the one with minimum cost is se-
lected. This decomposition is given as the input of the mapping phase and based
on a backtracking mechanism a placement of the corresponding NFs and logical
interconnections on the physical network are determined. These two phases are
further detailed in this section.

Decomposition selection. Given the physical networkGp, the service SG and
all of its decompositionsDecomp, theCF of each decomposition dc is calculated.
As mentioned in Section 6.4, the objective is to prioritize a decomposition with
lower CF and the advantage of this prioritization is twofold: (i) the number of
same-type NFs which are directly connected is more and thus their interconnection
is less complex and (ii) the more the number of NFs with the same type, the more
NFs might be mapped to a same physical node and if they are directly connected,
this leads to less network resource consumption as no physical links are used for
the mapping.

In addition, for each NF in a decomposition dc, the candidate physical nodes
which can potentially host that NF are determined. A candidate physical node
should support the NF type (VM, process, I/O or hardware appliance) and should
have enough capacity to meet the requirements of the NF. We define parameter
p to be the minimum number of candidate physical nodes for NFs of a dc. To
have a concrete example, consider a service decomposition composed of NF1 and

152 CHAPTER 6

NF2 which can be hosted potentially by 2 and 4 physical nodes respectively. Then
p = min{2, 4} = 2. This parameter is defined to enable selection of a decomposi-
tion which is less restricting. It enables a resource-aware decomposition selection
which means that a decomposition with NFs which can potentially be mapped to
more physical nodes is selected. Such a decomposition enables embedding more
service requests over time. We define a cost function which combines CF , p and
n (with n being the number of NFs in a decomposition).

C(dc) = a · 1/pdc + b · CFdc + g · ndc

In the decomposition selection phase of the algorithm, a decomposition with
minimum cost C(dc) is selected. The parameters a, b and g are defined to tune the
impact of different factors in the cost function. The pseudo code of this phase is
illustrated in Algorithm 1.

Mapping. The selected decomposition dc in the first phase is given as the
input of the mapping phase. In this phase, first the NFs of dc are clustered based
on their types and their interconnection (this was explained for CF calculation).
Then the clusters and the corresponding NFs are sorted based on their requirements
in descending order. We start mapping the NFs of the cluster with maximum
requirement.

For each unmapped NF in the sorted list, all of its candidate physical nodes are
sorted based on their distance (in terms of hop count) to the already used physical
nodes in ascending order. This way we first check the physical nodes which are
closer to the rest of the used nodes and thus, a lower number of physical links
might be used for mapping of the logical interconnections. We select a physical
node from the sorted list by which the logical links connected to the NF can also
be mapped in the physical network. If none of the candidate physical nodes can
provide such a mapping, the algorithm backtracks to the previous mapped NF
and checks the next candidate. The pseudo codes for this phase are reported in

algorithm 1: DecompositionSelection pseudo code

DecompositionSelection(Decomp)
Data: service decompositions Decomp
Result: minimum cost decomposition
Cost=[];
for dc ∈ Decomp do

CFdc= number of clusters;
pdc= minimum (number of candidate physical nodes for NFs in dc);
ndc= number of NFs;
Cost(dc) = a.1/pdc + b.CFdc + g.ndc

end
select dc with minimum Cost(dc);

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 153

algorithm 2: ServiceMapping pseudo code

ServiceMapping (dc)
Data: selected decomposition dc
cluster dc;
sortedNF =sort clusters and their NFs based on their requirements in descending
order;
for NF ∈ sortedNF do

candidate= sort the candidate nodes for NF based on their distance to the
used physical nodes;
i = 0;
while MapNF(NF,candidate[i])==false do

i+ = 1;
if i ≥ length(candidate) then

backtrack to previous mapped NF and select the next candidate in its
sorted list;

end
end

end

algorithm 3: MapNF pseudo code

MapNF(NF , pnode)
if not enough capacity in pnode to map NF then

return false;
end
success = CheckLinks(NF, pnode,mappedNodes);
if success == true then

mappedNodes+ = (NF, pnode);
CPUpnode− = CPUNF ;
Memorypnode− = MemoryNF ;
Storagepnode− = StorageNF ;
return true;

end

Algorithms 2-5 which are detailed in the rest of this section.

Given the selected dc, the ServiceMapping function clusters and sorts the NFs
and the candidate nodes as explained above. It then tries to map the NFs of the
dc one by one by invoking MapNF function. If all the candidate physical nodes
are checked and the mapping of an NF is unsuccessful, it backtracks to previous
mapped NF.

The MapNF function, shown in Algorithm 3, checks that available resources
such as CPU, memory and disk in the physical node are sufficient for hosting the
NF. It then checks that all the connected links to the NF can be mapped to the

154 CHAPTER 6

algorithm 4: CheckLinks pseudo code

CheckLinks(NF , pnode, mappedNodes)
for l ∈ links attached to NF do

if neighbor attached to l ∈ mappedNodes then
n= the physical node that the neighbor is mapped to;
while true do

path=shortest path between n and pnode;
if path == Null then

return false;
end
success = CheckQoS(path);
if success == true then

for link ∈ path do
BWlink− = BWl

end
end

end
end

end
return true;

physical network by invoking CheckLinks function. If it is successful in finding
a mapping for all the links, the NF demands are reduced from the resources.

In the CheckLinks function, represented in Algorithm 4, it is checked whether
all the links connected to an NF can be mapped in the physical network. This
function iterates over all the links adjacent to the NF and if the NF attached to the
other side of the link was mapped, it checks if there is a path between the physical
nodes used for the mapping of the NFs. The shortest path between the two physical
node is considered. If such a path exists, it is checked for the QoS requirements.

The CheckQoS function, shown in Algorithm 5, checks whether the QoS re-
quirement of the logical link is satisfied by the given path. This function deter-
mines whether the bandwidth and delay requirements of the path are fulfilled. If
all the above functions are successful a mapping for the requested service is found.

6.7 Performance evaluation
In this section we first describe the simulation environment and then the evaluation
results are presented. The goal of the evaluations is to show the impact of the
service decomposition choices on the resource footprint.

The focus of the experiments is on quantifying the added value of considering
service decompositions at the time of the embedding in terms of cost, acceptance
ratio and cost/revenue ratio. In the simulations, we compare the heuristic-based

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 155

algorithm 5: CheckQoS pseudo code

CheckQoS(path)
for link ∈ path do

EndtoEndDelay+ = delaylink;
if EndtoEndDelay exceeds the constraint then

remove the link from the network graph;
return false;

end
if BWvirtuallink > BWlink then

remove the link from the network graph;
return false;

end
end
return true;

Table 6.1: List of compared algorithms

Notation Algorithm description
ILP Proposed ILP-based algorithm

DSBM Proposed heuristic-based algorithm
ILP-5 ILP on SGs with 5 NFs

ILP-10 ILP on SGs with 10 NFs
DSBM-5 DSBM on SGs with 5 NFs

DSBM-10 DSBM on SGs with 10 NFs
ILP-random ILP with random decomposition

DSBM-random DSBM with random decomposition

approach with the ILP-based algorithm in network scenarios where ILP can be
executed in reasonable time scale. We evaluate the effect of employing service
decompositions in both schemes. The following approaches are compared in the
evaluations: (i) ILP-based algorithm, (ii) DSBM algorithm, (iii) ILP-based algo-
rithm given one decomposition (random selection) and (iv) DSBM given one de-
composition (random selection). As there is no other approach which considers
service decompositions in the embedding problem, we compared both DSBM and
ILP-based algorithms with approaches in which decomposition is selected ran-
domly. The latter refer to approaches in which one decomposition is selected ran-
domly and it is mapped using DSBM or ILP respectively. With such a comparison,
we can clearly see the effect of a wise decomposition selection on the performance
of the embedding. Table 6.1 presents the notations used for the compared ap-
proaches. In DSBM, we also evaluate the effect of different factors in C(dc) on
the performance of the embedding by tuning a,b and g parameters. Furthermore,

156 CHAPTER 6

we report the execution time of both ILP-based and DSBM algorithms in different
size physical networks to have an overview on the scalability of both approaches.

6.7.1 Simulation environment

The simulation environment is based on Python code. Libraries such as Networkx
and Numpy are used for graph-based and numerical implementations. PuLP is an
LP modeler in Python which is used to generate the LP files and the ILP model is
solved using the included Cbc solver (from COIN-OR2).

For the physical network we considered two scenarios: (i) small network sce-
nario and (ii) large network scenario. We used topologies from the Internet Topol-
ogy Zoo, 3 which model real world ISP and backbone networks. These topologies
are available in GML format. We have parsed these files and converted them to
graphs in Networkx library in Python. For the small network, we considered the
‘BT Europe’ topology with 24 nodes and 37 edges. In the large network scenario,
the ‘Interoute’ topology is used which is an international telecommunications ser-
vice provider with the Europe’s largest cloud services platform. This network is
composed of 110 nodes and 148 edges. For both scenarios, it is assumed that some
of the nodes have general purpose servers supporting different virtualization tech-
nologies, and some of them have specific hardware appliances such as a Firewall.
This is selected randomly for the nodes. The CPU, memory and storage capacity
of the nodes and bandwidth of the links are numbers uniformly distributed be-
tween 100 and 150 in both network scenarios. The cost of each unit of capacity is
1. As only propagation delay is considered in this paper, the delay of each phys-
ical link is selected proportional to the distance between the two attached nodes.
In the selected topologies, nodes are annotated with their geographic coordinates
(latitude and longitude). We used these coordinates to calculate the geographical
distance between every two adjacent nodes and set the delay of the corresponding
link accordingly. The resulting delays range between 1 and 30 time units.

The parameters reflect the commonly chosen simulation setup in the VNEP
literature (see e.g. [18]).

The service requests arrive over time in a Poisson process with an average rate
of four requests per 100 time units, each of which has a lifetime, exponentially
distributed with an average of µ = 1000 time units. Each request can be real-
ized with a few decompositions which is a number between 2 and 5 with uniform
distribution. The number of NFs within each of the decompositions is a number
uniformly distributed between 2 and 10. The CPU, memory and storage demands
of each NF is a number with uniform distribution between 1 and 20. The NF types
are assigned randomly. The bandwidth requirement of each link is a number be-

2https://projects.coin-or.org/Cbc
3http://www.topology-zoo.org/

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 157

Figure 6.4: Execution time of ILP and DSBM for SGs with 5 and 10 NFs. The 95%
confidence interval of the reported average values is depicted.

tween 1 and 50, uniformly distributed. The maximum allowed delay of each link
is set to 1000 time units. Each pair of NFs within a decomposition is connected
with probability 0.5. As a service graph is typically formed as a Directed Acyclic
Graph with topologies such as a simple path or a forking path (see IETF drafts [19]
on use cases for Service Function Chain), it is checked that: (i) the generated de-
composition graph is connected and (ii) there is no cycle in the graph.

The hardware used to run the simulation is Intel Xeon quad-core CPU at 2.40
GHz with 12 GB RAM. Each simulation scenario is iterated 10 times and the
average over all the iterations is reported.

6.7.2 Performance metrics

We measure the following performance metrics to evaluate and compare the pro-
posed schemes:

• Execution time: this metric measures the time used by an scheme to find an
embedding for a service request.

• Acceptance ratio: it measures the ratio of the accepted service requests
which refer to services that are successfully mapped to the physical network.

• Embedding cost: the embedding cost or mapping cost is equivalent to the
cost of the total substrate resources used for mapping a service request. In
our evaluations, as the cost of each unit of capacity is set to 1, the embed-
ding cost is equal to the total CPU, memory, storage capacity of nodes and
bandwidth capacity of the links which are reserved for a service request.

• Embedding cost/revenue: this is the ratio between the embedding cost and
the revenue of a service request. We define the revenue of a service request
as the sum of the total resource demands of that request. In our evaluations,
these demands are in terms of CPU, memory, storage requirements of the
NFs and the required bandwidth in links.

158 CHAPTER 6

ILP
ILP-random
DSBM
DSBM-random

0 10000 15000 200005000
Time

1.0

0.8

0.6

0.4

0.2

0.0

A
cc
ep
ta
nc
e
ra
tio

(a) BT Europe network (24 nodes)

DSBM
DSBM-random

0 10000 15000 200005000
Time

1.0

0.8

0.6

0.4

0.2

0.0

A
cc
ep
ta
nc
e
ra
tio

(b) Interoute network (110 nodes)

Figure 6.5: Service request acceptance ratio over time. The shaded background behind
each curve represents the 95% confidence interval on the reported average values.

6.7.3 Evaluation results

Before detailing the evaluation results on the two network scenarios explained ear-
lier, we report the results related to the execution time of the proposed algorithms
on different size physical networks ranging from 10 to 50 nodes to observe the
scalability behavior of the schemes. The topologies were randomly generated and
the service requests of two sizes, 5 and 10 were considered. Fig. 6.4 depicts
the execution time of different schemes. As expected, execution time of the ILP-
based algorithm increases almost exponentially with the increase in the network
size. This increase is more if the number of NFs in the service requests increases
as well (see ILP-5 compared to ILP-10 in Fig. 6.4). The heuristic-based approach
scales significantly better and the execution time in DSBM-10 does not exceed a
few 100 ms.

In the rest of this section, the simulation results for small network and large
network scenarios are presented. The heuristic-based algorithm was scalable to
large network scenario and lead to similar conclusions in both scenarios. Due to
scalability issues, the ILP-based approach was only evaluated in the small network
scenario.

We measured the average acceptance ratio, the corresponding embedding cost
and the average cost/average revenue ratio for service requests over time. We
report these performance metrics against time to indicate how different schemes
perform in the long run.

Fig. 6.5 depicts the service acceptance ratio for 4 different approaches in the
two network scenarios: (i) ILP, (ii) DSBM, (iii) ILP-random and (iv) DSBM-
random. In both network scenarios, the results indicate significant improvements
in terms of acceptance ratio in the proposed ILP-based and heuristic-based algo-
rithms compared to approaches in which a random decomposition is selected. The
acceptance ratio of DSBM is higher in the Interoute network compared to the re-
sults in BT Europe which is the result of having more resources in the network. In

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 159

0 10000 15000 200005000
Time

300
250
200
150

500
450 ILP

ILP-random
DSBM
DSBM-random

400
350

100
50

Av
er
ag
e
co
st

(a) BT Europe network (24 nodes)

0 10000 15000 200005000
Time

300
250
200
150

500
450 DSBM

DSBM-random
400
350

100
50

Av
er
ag
e
co
st

(b) Interoute network (110 nodes)

Figure 6.6: Average cost of accepting requests over time. The shaded background behind
each curve represents the 95% confidence interval on the reported average values.

ILP
ILP-random
DSBM
DSBM-random

0 10000 15000 200005000
Time

0.95
1.00
1.05
1.10

0.90
0.85
0.80
0.75
0.70

Av
er
ag
e
co
st
/A
ve
ra
ge
 R
ev
en
ue

(a) BT Europe network (24 nodes)

DSBM
DSBM-random

0 10000 15000 200005000
Time

0.95
1.00
1.05
1.10

0.90
0.85
0.80
0.75
0.70

Av
er
ag
e
co
st
/A
ve
ra
ge
 R
ev
en
ue

(b) Interoute network (110 nodes)

Figure 6.7: The ratio between average cost and average revenue over time. The shaded
background behind each curve represents the 95% confidence interval on the reported

average values.

DSBM the parameters in theC(dc) function are set as follows: a = 0.25, b = 0.25

and g = 0.5. These parameters are tuned experimentally to achieve a reasonable
performance. The effect of each factor in C(dc) function on the embedding per-
formance is evaluated and reported later in this section.

The average embedding cost in the four explained approaches are presented
in Fig. 6.6. Comparing the proposed schemes and the ones with random decom-
position selection, we observe a significant difference in the average cost of the
embedding. Both ILP-random and DSBM-random consume more resources com-
pared to ILP and DSBM respectively. Additionally, the results indicate that the
ILP-based solutions lead to almost constant average costs while the heuristic solu-
tions result in decrease of the embedding cost in the long run. The reason for such a
behavior is explained by the optimality of the embedding solution. In DSBM, due
to sub-optimal placement of the service requests, less requests can be accepted
in the long run (presented in Fig. 6.5). Furthermore, as there are less available
resources in the network compared to when an optimal placement is found, the

160 CHAPTER 6

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

1.0

0.8

0.6

0.4

0.2

0.0

A
cc
ep
ta
nc
e
ra
tio

(a) BT Europe network (24 nodes)

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

1.0

0.8

0.6

0.4

0.2

0.0

A
cc
ep
ta
nc
e
ra
tio

(b) Interoute network (110 nodes)

Figure 6.8: Service request acceptance ratio over time in DSBM. The shaded background
behind each curve represents the 95% confidence interval on the reported average values.

service requests with less NFs can be accepted. This leads to a decrease in the
average embedding cost over time. This behavior is also visible in the Interoute
network for DSBM-random approach which is less efficient than DSBM.

Revenue gives an insight into how much an infrastructure provider (InP) will
gain by accepting a service request however, it is not useful without considering
the cost the InP will incur for mapping that request. Therefore, in the next figure,
we report the ratio between average cost and average revenue in different schemes.
Fig. 6.7 depicts the results for different approaches in the two network scenarios.
Note that the smaller this ratio, the more efficient the scheme is. This means that
for mapping a request, fewer resources are used compared to the gained revenue.
However, this metric should be considered together with the acceptance ratio to
enable a better conclusion regarding the efficiency of the schemes. An efficient
scheme should have high acceptance ratio with low cost/revenue ratio. In Fig. 6.7,
ILP leads to the lowest ratio while ILP-random has the highest one. Both DSBM
and DSBM-random lead to very similar ratios. DSBM performs slightly better
compared to DSBM-random which is more noticeable in the Interoute network. As
we see, this ratio is even higher than 1 for DSBM-random at the beginning which is
the indication of the poor performance considering the very low acceptance ratio.

Next, we report the effect of different factors in the C(dc) function of DSBM
on the embedding performance. Fig. 6.8 illustrates the service request acceptance
ratio when only one of the three factors in C(dc) is considered for decomposition
selection. Such an evaluation gives an idea on how to tune the parameters (a, b and
g) in C(dc) to have a more efficient embedding. Based on the results, considering
the number of NFs in a request leads to higher acceptance ratio compared to cases
when only CF (b = 1) or p (a = 1) are considered. The last two cases result in
very similar performance. The related average embedding cost is presented in Fig.
6.9 and as expected, selection of decompositions with less number of NFs leads to
lower cost compared to the other two cases.

Fig. 6.10 illustrates the ratio between average cost and average revenue in

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 161

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

350

300

250

200

150

100

Av
er
ag
e
co
st

(a) BT Europe network (24 nodes)

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

350

300

250

200

150

100

Av
er
ag
e
co
st

(b) Interoute network (110 nodes)

Figure 6.9: Average cost of accepting requests over time in DSBM. The shaded background
behind each curve represents the 95% confidence interval on the reported average values.

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

1.1

1.0

0.9

0.8

0.7

0.6

Av
er
ag
e
co
st
/A
ve
ra
ge
 R
ev
en
ue

(a) BT Europe network (24 nodes)

a 1, b 0, g 0
a 0, b 1, g 0
a 0, b 0, g 1

= = =
= = =
= = =

0 10000 15000 200005000
Time

1.1

1.0

0.9

0.8

0.7

0.6

Av
er
ag
e
co
st
/A
ve
ra
ge
 R
ev
en
ue

(b) Interoute network (110 nodes)

Figure 6.10: The ratio between average cost and average revenue over time in DSBM. The
shaded background behind each curve represents the 95% confidence interval on the

reported average values.

DSBM when only one of the factors in C(dc) function is considered. In both
networks, when only number of NFs in a request is considered in the C(dc) cal-
culation (i.e., g = 1), a higher ratio is achieved. This was expected as this factor is
used to select the smaller service decompositions which lead to decreased revenue.
Looking at both acceptance ratio and the ratio between average cost and average
revenue, considering one single factor is not efficient enough and thus a combi-
nation of these factors is required in the decomposition selection phase to have a
low-cost embedding with high revenue and high acceptance ratio.

6.8 Conclusion

A network service chain consisting of several network functions can often be real-
ized in multiple ways, as there are multiple options on how to decompose a high-
level network function into several less abstract network functions. The process of
converting a service chain with abstract network functions to service chains with

162 CHAPTER 6

more refined network functions is referred to as service decomposition. In this pa-
per, we proposed two novel approaches to use service decompositions at the time
of service embedding: (i) an ILP-based algorithm and (ii) a heuristic-based algo-
rithm composed of two phases: decomposition selection and backtracking-based
mapping. The heuristic-based approach solves the scalability limitation of the ILP-
based algorithm at the cost of less efficient embeddings. The algorithms minimize
the resources consumed to map a service request on a physical network while ful-
filling service QoS requirements. As a result, more services can be mapped over
time and the service acceptance ratio increases in the long run. Importantly this
work is different from other existing works in the sense that both service decom-
position selection and the embedding are solved at the same time. The proposed
approaches were evaluated thoroughly in a simulation environment and were com-
pared with approaches in which decompositions were selected independent of their
demands and available resources in the network. The experimental results indicate
that significant improvements in terms of acceptance ratio and mapping cost can be
achieved if service decompositions are employed at the time of the embedding and
a reasonable selection is made. Additionally, simulation results have shown that
unlike the ILP-based algorithm, the heuristic-based approach DSBM is scalable
and can be used in large-scale networks, where waiting for the optimal solution is
prohibitive.

Acknowledgment
This work was conducted within the framework of the FP7 UNIFY project: Grant
Agreement No. 619609 and is partially funded by the Commission of the Eu-
ropean Union and partly funded by the UGent BOF/GOA project: B/13343/01
‘Autonomic Networked Multimedia Systems’.

NETWORK SERVICE CHAINING WITH NETWORK FUNCTION EMBEDDING 163

References

[1] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach. Virtual
network embedding: A survey. Communications Surveys & Tutorials, IEEE,
15(4):1888–1906, 2013.

[2] R. McGeer, D. G. Andersen, and S. Schwab. The network testbed mapping
problem. In Testbeds and Research Infrastructures. Development of Net-
works and Communities, pages 383–398. Springer, 2011.

[3] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet. Network service chaining
with efficient network function mapping based on service decompositions. In
1st IEEE Conference on Network Softwarization, NetSoft 2015, 2015.

[4] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache. Virtual net-
work provisioning across multiple substrate networks. Computer Networks,
55(4):1011–1023, 2011.

[5] J. F. Botero, X. Hesselbach, M. Duelli, D. Schlosser, A. Fischer, and
H. De Meer. Energy efficient virtual network embedding. Communications
Letters, IEEE, 16(5):756–759, 2012.

[6] X. Zhang, C. Phillips, and X. Chen. An overlay mapping model for achieving
enhanced qos and resilience performance. In Ultra Modern Telecommunica-
tions and Control Systems and Workshops (ICUMT), 2011 3rd International
Congress on, pages 1–7. IEEE, 2011.

[7] G. Schaffrath, S. Schmid, and A. Feldmann. Optimizing long-lived cloudnets
with migrations. In Proceedings of the 2012 IEEE/ACM Fifth International
Conference on Utility and Cloud Computing, pages 99–106. IEEE Computer
Society, 2012.

[8] A. Hammad, R. Nejabati, and D. Simeonidou. Novel methods for virtual
network composition. Computer Networks, 67:14–25, 2014.

[9] J. Lischka and H. Karl. A virtual network mapping algorithm based on sub-
graph isomorphism detection. In Proceedings of the 1st ACM workshop
on Virtualized infrastructure systems and architectures, pages 81–88. ACM,
2009.

[10] H. Yu, C. Qiao, V. Anand, X. Liu, H. Di, and G. Sun. Survivable vir-
tual infrastructure mapping in a federated computing and networking system
under single regional failures. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–6. IEEE, 2010.

164 CHAPTER 6

[11] W.-L. Yeow, C. Westphal, and U. C. Kozat. Designing and embedding re-
liable virtual infrastructures. ACM SIGCOMM Computer Communication
Review, 41(2):57–64, 2011.

[12] G. Sun, H. Yu, L. Li, V. Anand, and H. Di. The framework and algorithms for
the survivable mapping of virtual network onto a substrate network. IETE
Technical Review, 28(5):381–391, 2011.

[13] I. Fajjari, N. Aitsaadi, G. Pujolle, and H. Zimmermann. VNE-AC: Virtual net-
work embedding algorithm based on ant colony metaheuristic. In Commu-
nications (ICC), 2011 IEEE International Conference on, pages 1–6. IEEE,
2011.

[14] A. Basta, W. Kellerer, M. Hoffmann, H. J. Morper, and K. Hoffmann. Ap-
plying NFV and SDN to LTE mobile core gateways, the functions placement
problem. In Proceedings of the 4th workshop on All things cellular: opera-
tions, applications, & challenges - AllThingsCellular ’14, pages 33–38, New
York, New York, USA, 2014. ACM Press. Available from: http://dl.acm.org/
citation.cfm?doid=2627585.2627592, doi:10.1145/2627585.2627592.

[15] S. Mehraghdam, M. Keller, and H. Karl. Specifying and placing chains of
virtual network functions. In Cloud Networking (CloudNet), 2014 IEEE 3rd
International Conference on, pages 7–13. IEEE, 2014.

[16] M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs. Network Func-
tion Placement for NFV Chaining in Packet/Optical Datacenters. Journal of
Lightwave Technology, 33(8):1565–1570, 2014.

[17] A. A. P. Papadimitriou. MIDAS: Middlebox Discovery and Selection for On-
Path Flow Processing. In 7th International Conference on COMmunication
Systems and NETworkS, COMSNETS 2015, 2015.

[18] N. M. K. Chowdhury, M. R. Rahman, and R. Boutaba. Virtual network em-
bedding with coordinated node and link mapping. In INFOCOM 2009, IEEE,
pages 783–791. IEEE, 2009.

[19] W. Liu, H. Li, O. Huang, M. Boucadair, N. Leymann, Z. Cao, Q. Sun, and
C. Pham. Service Function Chaining (SFC) General Use Cases. Technical
report, Internet-Draft draft-liu-sfc-use-cases-08, 2014.

http://dl.acm.org/citation.cfm?doid=2627585.2627592
http://dl.acm.org/citation.cfm?doid=2627585.2627592

7
Scalable architecture for service

function chain orchestration

In this chapter, we identify the major time consuming blocks in the service pro-
visioning process. To this end, we implement the proposed embedding algorithm
of the previous chapter in a proof of concept prototype. Based on the discovered
blocks, different architectural improvements are proposed to enable a more scal-
able service provisioning framework.

? ? ?

S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly, P. Sköldström,
D. Jocha, J. Garay

Published and presented at Fourth European Workshop on Software Defined
Networks, 2015.

Abstract Network Function Virtualization (NFV) enables to implement network
functions in software-based, high-speed packet processing functions which tradi-
tionally are dominated by hardware implementations. Virtualized Network Func-
tions (NFs) may be deployed on generic-purpose servers, e.g., in datacenters. The
latter enables flexibility and scalability which previously were only possible for
web services deployed on cloud platforms. The merit of NFV is challenged by
control challenges related to the selection of NF implementations, discovery and

166 CHAPTER 7

reservation of sufficient network and server resources, and interconnecting both
in a way which fulfills SLAs related to reliability and scalability. This paper de-
tails the role of a scalable orchestrator in charge of finding and reserving adequate
resources. The latter will steer network and cloud control and management plat-
forms to actually reserve and deploy requested services. We highlight the role of
involved interfaces, propose elements of algorithmic components, and will iden-
tify major blocks in orchestration time in a proof of concept prototype which ac-
counts for most functional parts in the considered architecture. Based on these
evaluations, we propose several architectural enhancements in order to implement
a highly scalable network orchestrator for carrier and cloud networks.

7.1 Introduction

Network Function Virtualization (NFV) [1] enables to implement Network Func-
tions (NFs) such as firewalls or NATs, high-speed packet-processing functions in
software which traditionally are dominated by hardware implementations or ded-
icated middleboxes. NF software may be deployed on generic-purpose servers,
e.g., in datacenters. Telecom services (e.g., an Intrusion Detection) which can be
decomposed into a Service Graph (SG) of NFs, might now benefit from flexibil-
ity and scalability-levels which previously were only possible for web services
deployed on cloud platforms such as Amazon EC or Google Compute. Mod-
ern control paradigms such as Software Defined Networking (SDN) [2] have the
merit of simplifying the service chain provisioning process and reducing the cost
in CAPEX and OPEX.

The mapping of NFs of services to infrastructure is one of the core tasks of
the orchestrator. This requires that the orchestrator has a view of what are the
individual resource requirements of NFs, or even if given NFs might be decom-
posed to smaller NFs (Service Decomposition). However, as indicated in Section
7.4, orchestration in realistic service and infrastructure provider contexts quickly
involves ten thousands of resource elements, and a multiple of services to be or-
chestrated.

Existing research related to service orchestration has largely focused on: i)
embedding algorithms in small-scale, idealized settings, i.e., limited number of
infrastructure nodes, pre-determined SG decomposition, or on ii) NFV architec-
tures, e.g., [1], providing high-level functionality and interfaces for enabling Ser-
vice Function Chaining with virtual NFs.

Our contribution. In this paper we identify the context and requirements of
NFV orchestration over Telecom and datacenter networks. We intend to bridge the
gap between abstract embedding algorithms and NFV architectures, by proposing
elements of a realistic and scalable resource orchestrator which is able to optimize
placement of networking and computing components across infrastructure. Within

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 167

this state-of-the-art emulation NFV framework [3] we implement an orchestrator
supporting decomposition, and identify most significant factors contributing to or-
chestration time. The latter serves the identification of elements for an improved
resource orchestrator framework which is truly scalable, as well as the identifica-
tion of a set of technologies which are able to implement such design.

The rest of the paper is as follows. Section 7.2 describes related work. In
Section 7.3 we detail the concepts of Service Function Chaining (SFC). Section
7.4 details the problem and context of orchestration of services in a realistic setting
and the relation of the orchestration functionality within NFV architectures. An
overview of most important orchestration algorithm component is given in Section
7.5, while Section 7.6 identifies experimental performance results and Section 7.7
proposes architecture improvements. Section 7.8 concludes the paper.

7.2 Related work

Existing research on NFV orchestration focuses on two aspects: i) design and
evaluation of embedding algorithms, and ii) design and implementation of con-
trol architectures for production environments. The first relates to the problem
of mapping a set of service-related (virtualized) resources to physical infrastruc-
ture (e.g., servers and switches). Requested resources might involve networking
(bandwidth), as well as node-level resources (computing or memory). The latter
is referred to as the Virtual Network Embedding Problem (VNEP), for which a
survey can be found in [4]. Recent approaches build on this state of the art, for
example by integrating the concept of service decomposition [5].

The second category of research is driven by Telecom research and industry.
The NFV Industry Specifications Group (NFV ISG) of European Telecommuni-
cations Standards Institute (ETSI), is driven by Telecom operators to strategically
steer NFV-related activities. The ISG produced and publicly released documents
on NFV terminology, use cases, requirements and architectures. NFV Manage-
ment and Orchestration (MANO) is the ETSI-defined framework for the manage-
ment and orchestration of computing, networking, storage and virtual machine
resources in cloud and carrier networks. Multiple community-driven and pri-
vate software initiatives, such as OpenMANO (https://github.com/nfvlabs/ open-
mano) or vConductor [6], are developing proof of concepts of proposed ETSI
specs. These recent efforts involve single domain designs, architectures and pro-
totypes where scalable orchestration is not the first focus. OpenStack is a cloud
infrastructure management framework in which Heat is the component respon-
sible for orchestration. Network connectivity orchestration here relies on Neu-
tron and is heavily focusing on L3 and above, lacking fine-grained forwarding
(L2) flexibility required for NFV orchestration. Larger frameworks such as OP-
NFV (http://www.opnfv.org/) intend to combine existing cloud and network con-

168 CHAPTER 7

trol frameworks (e.g., OpenStack, OpenDayLight) to build a reference implemen-
tation for NFV management/control.

EU-funded projects such as FP7 T-NOVA or Mobile Cloud Networking (MCN)
also investigate the merits of NFV in Telecom. T-NOVA focuses on an ‘NFV Mar-
ketplace’ composed of: i) a ‘Network Function Store’ including NFs by several
3rd-party developers and ii) a Brokerage platform enabling customers to trade
with the T-NOVA service provider and 3rd-party function developers. MCN in-
vestigates NFV as an enabler for increased flexibility in the backhaul of mobile
networks. Both projects define some kind of orchestrator for mapping virtual re-
sources to physical infrastructure and managing the life-cycle of virtualized re-
sources. These are ongoing, and do not directly focus on the design and implemen-
tation of a scalable, potentially multi-domain orchestrator, involving recursivity in
the control and orchestration layers as the proposed approach.

7.3 Service function chaining

In order to easily introduce joint programmatic interfaces for controlling differ-
ent types of resources, such as compute, storage and networking ones, we have
defined a common model to be used at different reference points called Network
Function Forwarding Graph (NF-FG) [7]. It provides support for functionalities
such as resource orchestration or service decomposition, on the one hand, and fea-
tures such as scalability, dynamicity or support for DevOps in Service Provider
environments, on the other. The model is capable of storing service description
as SG, resource information as Resource Graph (RG) and mapping of requests to
resources as NF-FG (see Fig. 7.1, at left the SG is shown on top and NF-FG with
mapping is shown at bottom).

The SG defines the service functions and their logical connectivity, the Service
Access Points (SAPs) to the service and the Service Level Specification to meet
the Service Level Agreement. It is only used as a standalone element when there
are no resources involved yet.

The RG describes the (virtual) resources that will be used to deploy the re-
quested services. It provides a homogeneous representation of the (virtualized)
infrastructure, in terms of both capacities and capabilities, at the defined abstrac-
tion level. For example, in domains with hierarchical orchestration processes, the
RG in the higher level orchestrators has a wider scope and abstracts away the finer
grain details of the underlying resources, whereas the RG in the lower level or-
chestrators has a fine grain detail of the resources.

The NF-FG contains the assignment of NFs to the virtualized software re-
sources; the definition of the forwarding behavior in the virtualized network re-
sources and the service requirements which can be evaluated at the network and
software abstraction layers.

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 169

S
G

N
F

1
S

A
P

0
N

F
3

N
F

2

1
2

1
2

1
2

1
S

A
P

1
1

g
e
n
e
ri
c
 I

D
S

 s
e
rv

ic
e

ID
S

 N
F

in
o
u
t

M
o
n
o
lit

h
ic

 V
ir
tu

a
l
M

a
c
h
in

e

ID
S

 V
M

in
o
u
t

H
a
rd

w
a
re

 a
p
p
lia

n
c
e

H
W

 I
D

S
in

o
u
t

S
p
lit

 I
D

S

ID
S

 D
P

in
o
u
t

ID
S

 C
P

A
B

ID
S

 D
P

F
W

in

o
u
t

B

D
P

I

A

C

ID
S

 C
P

ID
S

 C
tr

l
V

M

A
B

F
ir
e
w

a
ll

O
F

S
in

o
u
t

A
C

*

D
P

I

D
P

I
V

M
C

B

E
la

s
ti
c
 I

D
S

ID
S

 D
P

in
o
u
t

E
-I

D
S

 C
tr

l

A
B

*

C
fO

r

E
la

s
ti
c
 I

D
S

 C
o
n
tr

o
lle

r

E
-I

D
S

 C
tr

l
V

M

A
B

*

C
fO

r

ID
S

 D
P

F
W

in

o
u
t

B
*

D
P

I
#
1

A

C
*

D
P

I
#
2

N
F

-F
G

n
o
d

e
0

N
F

3
N

F
2

N
F

1

0

2
3

4
6

5
7

1
S

A
P

1
S

A
P

0

1
2

1
2

1
2

1
1

Figure 7.1: Example of SG, NF-FG and Network Function decomposition

170 CHAPTER 7

The NF-FG evolves from its original definition as SG to RG mapping. On
the one hand, while the NF-FG progresses down through the architecture it will
be further characterized, the service decomposition process will also decompose
the components (e.g. NFs) and it will be split into smaller subgraphs if deployed
in different infrastructure domains. On the other hand, during the service lifecy-
cle the NF-FG will also evolve from the initial deployment as a consequence of
internal re-optimization processes, modifications to the service requested to the
orchestrator or external changes (e.g. infrastructure updates, auto-scaling).

Service decomposition is the process of transforming an NF-FG containing
abstract NF(s) to NF-FG(s) containing less abstract, more implementation-close
NF(s). This can also include dividing the functionality of a complex NF to several,
less complex NFs. This allows for a step-wise translation of high-level (com-
pound) NFs into more elementary NFs, which can eventually be mapped onto the
infrastructure. During the decomposition of an NF, the external interfaces remain
unchanged. Formally, a decomposition rule can be seen as a NF→NF-FG map-
ping. There can be multiple decompositions for an NF.

A sample NF decomposition for an Intrusion Detection System (IDS) service
is shown at the right of Fig.7.1. It can be implemented with a hardware appliance
or a monolithic Virtual Machine (VM). The IDS control logic is decomposed into
an IDS Control VM, a Firewall (FW) component to block the identified malicious
traffic and a traffic analyzer. The FW may be mapped to a Forwarding Element
(FE) and the traffic analysis is realized by a generic Deep Packet Inspection (DPI)
VM component.

7.4 Service chain orchestration

An orchestrator is responsible for the service management and orchestration. The
main functionalities of an orchestrator are: i) optimal mapping of Virtualized Net-
work Functions (VNFs) across infrastructure, ii) instantiating VNFs at reasonable
locations, iii) keeping track of VNFs location, iv) assigning and scaling resources
to the VNFs and v) service VNFs monitoring.

Requirements. Orchestration process is impacted by scale of Telecom oper-
ator network and the number of service requests. Based on the discussions with
network operators and information available on Telecom operator networks such as
BT1 and datacenters info in UK2, some parameters and requirements for network
topology, customers and their requests were identified. A typical Telecom opera-
tor network has a hierarchical structure with a dense core router meshed network
consisting of inner and outer core Points of Presence (PoPs). The end customers
are interconnected to this core network via a hierarchy of tree-structured access-

1http://www.kitz.co.uk/adsl/21cn network.htm
2http://www.datacentermap.com/united-kingdom/

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 171

and metro aggregation networks. Considering BT, such an infrastructure consists
of almost 50K devices at different parts in the network and datacenters excluding
CPEs. In case of including CPEs, almost 10M devices are needed to be orches-
trated. The number of new customers per day is equal to almost 2.5K and the
number of service requests is estimated around 5−10K per day. There are several
IETF drafts on use cases for Service Function Chain (SFC). Based on these drafts,
a service chain request is typically a Directed Acyclic Graph with topologies such
as a simple path or a forking path.

Capability. In order for the orchestrator to fully exploit the capabilities of
the servers, all the features/capabilities available in the infrastructure should be
identified. Devices such as Acceleration Hardware (AH) (e.g., FPGAs, GPUs and
MICs) and advanced network interfaces cards can improve the performance of
many NFs by offloading several performance-critical tasks in an NF to these de-
vices. The challenges occur when the complexity of NFs increases which makes
the implementation of NFs infeasible due to resource limitation in AH. A solution
to this issue is the support of service decomposition in the orchestration process
(see Section 7.3). Complex NFs can be decomposed to more elementary NFs and
there should exist the hardware description of performance-critical NFs to be in-
stalled on AH. An important task is to design the NFs in such a way that efficient
usage of specific capabilities is ensured. Note that for the mapping of NFs to the
infrastructure, both hardware static metrics (e.g., location and supported features)
and dynamic metrics (e.g., CPU utilization and current available memory) should
be known to the orchestrator. Besides, values of resource demands should be co-
herent with node specification constraints. Depending on the form of the exposed
resources, comparison of demands and available resources can be a challenging
task. To address this issue, different profiling tools (e.g., GNU gprof or Tuning and
Analysis Utilities (TAU)) can be used to measure the application’s performance.
Benchmarks such as the one provided by Standard Performance Evaluation Cor-
poration (SPEC) enables direct comparison of processors’ performance. Addition-
ally, analytical techniques (e.g., Amdahl’s law and Gustafson’s law) can be used
to model the performance of multi-core CPUs. In spite of existence of several
profiling tools, it is challenging to have a benchmarking with high-accuracy.

Interface. A generic API for an orchestrator has to support the following op-
erations: i) instantiate/tear down/change NF-FG: once an NF-FG arrives at the
orchestrator, it tries to execute it based on its global resource view. Changing a
request includes operations such as modifying the NF demands and inserting/re-
moving NFs in the NF-FG ii) get/send virtual resource info: the orchestrator pro-
vides resources, capabilities and topology information iii) notification/alarm: any
failure or unexpected event can be reported by the orchestrator iv) get/send ob-
servability info: measurement reports on Key Quality Indicators (KQIs) related to
NFs can be provided by the orchestrator v) start/stop/restart NFs and switches vi)

172 CHAPTER 7

connect/disconnect NFs to switches and vii) configure switches. Possible option
for addressing the last operations is using different protocols at the southbound
interface of the controllers such as OpenFlow, NETCONF and OFconfig.

7.4.1 ESCAPE framework

We have established a prototyping framework called ESCAPE3 including 3 layers
of Infrastructure Layer (IL), Orchestration Layer (OL), Service Layer (SL) and
demonstrated the first version in [3]. The main goal of ESCAPE is to support the
development of several parts of the service chaining architecture including VNF
implementation, traffic steering, virtual network embedding, etc. However, here
we focus on the orchestration part. ESCAPE is (mainly) implemented in Python on
top of POX (OpenFlow controller) platform and Mininet. The modular approach
and loosely coupled components make it easy to change several parts and evaluate
own algorithms. The system architecture of the next version of ESCAPE (without
the Mininet based IL) is shown in Fig. 7.2.

SL contains an API and a GUI at the top level where users can request and
manage services and NFs. The API is capable of formulating SG from the request
and passes that to a dedicated service orchestrator which is responsible for gather-
ing resource information (RG) from Virtual resource manager. This is the virtual
view provided by the Virtualizer of the lower layer. Mapping of SG to RG is del-
egated to the SG mapper module which constructs an NF-FG storing the request,
the virtual resources and the mapping between NFs and infrastructure nodes.

OL encompasses the most important components of the resource orchestration
process which replaces the ETSI’s Virtualized Infrastructure Managers (VIMs).
An API is set up on the top centralizing the interaction with the upper layer. On
the one hand, the request coming as an NF-FG is forwarded to the Resource Or-
chestrator (RO) via the corresponding Virtualizer (which is responsible for policy
enforcement as well). On the other hand, the virtual view created and managed by
the Virtualizer is provided as an RG to the upper layer. RO is the key entity man-
aging the components involved in the orchestration. The input is an NF-FG which
should be mapped to the abstract domain view provided by the Domain Virtual-
izer. RO collects and forwards all required data to RO mapper. More specifically,
the NF-FG, the domain view (as an RG) and the Network Function Information
Base (NF-IB) are passed to the RO mapper which invokes the configured mapping
strategy and interacts with the Neo4j graph database containing information on
NFs and decomposition rules4 (see Section 7.4.2). The outcome is a new NF-FG
which is sent to the Controller Adaptation part. The role of Controller Adapter

3Extensible Service ChAin Prototyping Environment using Mininet, Click, NETCONF and POX
(ESCAPE)

4NF-IB corresponds to ”VNF Catalogue” in NFV MANO with the difference of supporting service
decomposition.

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 173

Figure 7.2: System architecture of ESCAPE

(CA) is twofold. First, it gathers technology specific information on resources of
different domains then builds an abstract domain view. The interaction with differ-
ent types of technology domains are handled by adapters (e.g., OpenStack adapter
for clouds managed by OpenStack). Second, the incoming NF-FG request is de-
composed according to the low-level domains and delegated to the corresponding
adapters.

174 CHAPTER 7

7.4.2 Network Function-Information Base (NF-IB)

The NF-IB is the entity responsible for storing the NF models/abstractions, NF re-
lationships, NF implementation image(s) and NF resource requirements (see Fig.
7.2). The NF-IB supports the definition of abstract NFs such as a FireWall, re-
ferring to a type, a potential number of ports/interfaces, as well as dependencies
to other NFs. As explained in Section 7.3, abstract NFs might be implemented
through more refined NFs or might be decomposed themselves into multiple NFs
interconnected into an NF-FG with the same external interfaces as the higher-level
NF. The NF-IB is capable of storing these relationships into a tree-like data struc-
ture in support of the decomposition process (cfr. Fig. 7.1). The leaves of the
decomposition tree are NFs for which low-level implementation and deployment
information is available such as images, provisioning scripts, resource require-
ments in terms of CPU, memory and storage.

We have implemented the NF-IB in Neo4j database. As this database is ca-
pable of storing key-value pairs for nodes and edges, for each NF we have stored
the explained tree-like structure with all the corresponding information of nodes
and links. Several modules have been implemented to enable i) updating of the
database and ii) retrieval of all possible decompositions of a given SG.

7.5 Embedding algorithm

We have implemented a proof of concept embedding algorithm which supports
service decomposition using the Neo4j-based NF-IB explained in Section 7.4.2. It
is implemented in Python in compliance with the ESCAPE framework. Given an
NF-FG to this module, it retrieves all possible decompositions from the NF-IB and
selects a suitable decomposition which is mapped to the network infrastructure. In
order to connect to the Neo4j-based NF-IB from Python, we have used Py2neo
library. The embedding algorithm was proposed in [5] but was only evaluated in
terms of service acceptance ratio. As detailed in [4], there exist several algorithmic
approaches in the literature to solve the embedding problem. Importantly, the
implemented embedding algorithm is different from the existing approaches in the
sense that service decompositions are taken into account at the time of embedding
and a resource-aware selection is made. We briefly explain this algorithm in this
section.

The objective of the algorithm is to minimize the embedding cost which is
achieved by minimizing the resources consumed in the infrastructure to map a re-
quest. This allows accepting more requests over time and increases the acceptance
ratio. As service decompositions are known from the design time, we can make
a resource-aware decomposition selection which would certainly improve the per-
formance of the embedding as a reasonable decomposition is selected which cor-

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 175

responds to the existing resources and thus leads to better placement of the NFs.
The algorithm is based on a backtracking mechanism and is composed of two

phases: i) Decomposition selection and ii) Mapping.
In the first phase, given an NF-FG all of its possible decompositions are re-

trieved from the Neo4j-based NF-IB. For each decomposition a cost is calculated
based on: i) number of NFs in the decomposition, ii) number of candidate physical
nodes with sufficient capacities which can potentially host the NFs in the decom-
position and iii) Cluster Factor (CF) which is calculated as follows: the NFs with
similar types which are directly connected (without intermediate NFs with other
types) are grouped in a same cluster. The number of clusters in the decomposition
is the CF of that decomposition.

NFs types refer to the implementation of the NFs as they can be implemented
through different techniques such as: Virtual Machine (VM) images in different
virtualization techniques (e.g. Xen, Vmware), process in a container, packet I/O
drivers (e.g. DPDK), or hardware appliances. It is of great importance to take NFs
types into account at the time of the embedding because not all physical nodes of
the infrastructure support all types.

CF is taken into account in the cost function to enable more efficient resource
consumption. The more the number of NFs with the same type, the more NFs
might be mapped into a same physical node. This leads to less resource consump-
tion, if the similar-type NFs are interconnected directly.

The minimum cost decomposition is selected in the first phase of the algo-
rithm. The mapping phase is based on a backtracking mechanism which tries to
minimize the resource consumption of the mapping. The NFs of each cluster (see
explanation for CF calculation) are sorted based on their requirements in descend-
ing order and the mapping of the NFs of the cluster with maximum requirement
starts first. For each of the unmapped NFs, we sort its corresponding candidate
physical nodes based on their distance (hop count) to the used physical nodes in
ascending order. Every time a physical node is selected to host an NF it is checked
if all connected links to the NF can be mapped as well. If not, another candidate
physical node is investigated. If none of the nodes can host the NF the algorithm
backtracks to the previous mapped NF and selects another candidate node. For
more detailed explanation of the algorithm, we refer the interested readers to [5].

7.6 Performance evaluation

The goal of experiments in this paper is to identify the major blocks in orchestra-
tion time in the implemented proof of concept prototype. Additionally, we see the
effect of increase in the topology size, SG size and number of service decomposi-
tions on the performance of the embedding.

In our recent work [5], we have evaluated the proposed embedding algorithm in

176 CHAPTER 7

Figure 7.3: Embedding execution time for SGs with one decomposition

terms of cost and acceptance ratio. We refer the interested readers to [5] to see the
added value of considering service decompositions at the time of the embedding
and the impact of the service decomposition choices on the resource footprint.

As our intention is to evaluate the embedding execution time on physical topolo-
gies with different sizes, we have generated random regular networks with 100-
1000 nodes with degree 3. For each of the generated topologies, the resources
of nodes such as memory, storage and CPU and the links bandwidth and delay
are numbers uniformly distributed between 100-300. The SGs are also generated
randomly and each pair of nodes is connected with probability 0.5. The resource
demands of NFs and links within an SG are numbers uniformly distributed be-
tween 1-20. Each scenario is iterated 50 times and the average value is reported.

In the first experiment, we have evaluated the execution time of the embedding
of an SG into physical networks of different sizes for two scenarios: i) SGs with
5 NFs and ii) SGs with 10 NFs. Each SG has only one decomposition. Fig. 7.3
reports the execution time of different blocks in the embedding algorithm. These
blocks include: i) retrieving/reading of all decompositions from the NF-IB (read
dcmp), ii) decomposition selection (select dcmp) and iii) mapping of the selected
decomposition (map). Based on the results, the mapping is the dominant block
and it increases significantly with the increase in the number of NFs, when only
one decomposition exists for an SG.

The next experiment evaluates the effect of increase in the number of decom-
positions for an SG. Fig. 7.4 reports the execution times for 3 scenarios in which
the number of decompositions per NF in an SG changes from 2 to 4. As there are
5 NFs in each SG, the number of decompositions in each scenario is: 52, 53 and
54. As we see ‘map’ and ‘read dcmp’ blocks seem to scale quite well, whereas
‘select dcmp’ is the block which scales poorly with increasing number of nodes
in the network. For small topologies with few nodes, ‘read dcmp’ is the dominant

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 177

Figure 7.4: Embedding execution time for SGs with 5 NFs

block while for larger topologies (1000 nodes and more) ‘select dcmp’ seems to
be the main concern. It is worth mentioning that the ‘read dcmp’ block includes
the time for reading NFs decomposition from the NF-IB and the time needed for
calculating the service decompositions. This is because only NFs decompositions
are stored in the NF-IB and possible service decompositions should be calculated
upon request.

The experiments in this section clearly identified the major blocks in the or-
chestration time in the proposed embedding approach. Knowing these blocks,
in the next section, we propose several architectural enhancement to improve the
scalability of the orchestrator.

7.7 Discussion: Towards a scalable orchestration
framework

In this section, we propose several architectural enhancements and explain exist-
ing challenges in order to implement a highly scalable orchestrator and meet the
requirements mentioned in Section 7.4.

Parallel/distributed embedding. Based on the results, we identified the ‘read
dcmp’ block to be the most time consuming block in the embedding in smaller
topologies while ‘select dcmp’ block seems to be a major issue in larger topolo-
gies. Changing the embedding algorithm to a distributed approach in which costly
calculations are done in parallel can improve the performance of the embedding
significantly. A possibility to parallelize the ‘read dcmp’ block of the algorithm
is to use Neo4j which supports High-Availability (HA) by distributing the full
database onto multiple nodes, resulting in database read performance that scales
near linearly with the number of nodes in the cluster. Using the Neo4j HA the ‘se-
lect dcmp’ block can simply be computed in parallel as the cost calculation of each
decomposition is independent of others. However, parallelizing the ‘map’ block is

178 CHAPTER 7

a challenging task. This phase is equivalent to the typical VNEP as SGs composed
of atomic NFs are similar to virtual networks which should be mapped to a phys-
ical infrastructure and thus similar solutions to VNEP can be considered for the
mapping phase (e.g. [8]). The options for mapping parallelization are: i) consid-
ering all possible combination of NFs mapping to the physical nodes and selecting
the minimum cost mapping. The feasibility/cost of each mapping can be checked
in parallel. This approach is feasible only in small topologies (o(100) nodes) as the
number of combination increases drastically with a small increase in the topology
size, ii) selecting the first-fit physical node for mapping of NFs and finding the
shortest path between nodes. NFs mapping/path calculation can be done in paral-
lel. If the first-fit mapping is not successful, the next one is selected. A challenge
is to avoid different threads reserving the same resource. Batch scheduling is a
solution in which each job gets dedicated access to the resources.

Hierarchical embedding. The other alternative to achieve a scalable orches-
tration process is to have a hierarchical embedding process. In this process, SG
can be divided into different subgraphs using service decompositions available in
the NF-IB and each subgraph can be given to a different domain to be orchestrated
locally. The main challenge in such distributed embedding relates to the amount
of resource and infrastructure information that needs to be advertised to the upper
layer orchestrators to facilitate an efficient embedding process. Each domain may
expose to upper layers only high-level and aggregated information such as total
available capacities and capabilities or aggregated PoP-level information instead of
detailed router-level topologies. Such incomplete information in the higher layer
orchestrator might lead to inefficient embeddings with performance far from the
optimal solution. It is a challenging task to identify the trade-off between the effi-
ciency of the embedding and the amount of infrastructure information exposed by
each domain.

Pre-defined service chains. Another enhancement option, independent of the
embedding approach, is to have pre-defined service chains with pre-defined de-
composition templates. With such templates different parts of the embedding can
be done proactively.

7.8 Conclusion

In Service Function Chaining (SFC), virtualized Network Functions (NFs) are
chained to compose a network service. This paper has focused on the design of an
adequate resource orchestrator to steer the control of SFCs. The main goal of an
orchestrator is to map network functions of a requested service (i.e., service func-
tion chain) to infrastructure network and compute resources. Orchestration might
involve thousands of requests in the period of one business day to be mapped on
one or more infrastructure provider networks involving ten thousands of network

SCALABLE ARCHITECTURE FOR SERVICE FUNCTION CHAIN ORCHESTRATION 179

elements. Scalability is therefore an important characteristic of an orchestrator
component. The system architecture, related components and a new service rep-
resentation model were explained in detail. Important elements of mapping algo-
rithms were characterized and an algorithm supporting service decomposition was
implemented as a proof of concept. The key time consumers within the imple-
mented PoC were identified, and a scalable distributed orchestrator architecture,
as well as related technologies were proposed based on these findings.

Acknowledgment
This work was conducted within the framework of the FP7 UNIFY project, which
is partially funded by the Commission of the European Union.

180 CHAPTER 7

References
[1] ETSI. White Paper: Network Functions Virtualisation (NFV), 2013. Available

from: http://portal.etsi.org/NFV/NFV White Paper2.pdf.

[2] ONF. Open Networking Foundation, 2014. Available from: https://www.
opennetworking.org/.

[3] A. Csoma, B. Sonkoly, L. Csikor, F. Nemeth, A. Gulyas, W. Tavernier, and
S. Sahhaf. ESCAPE: Extensible Service ChAin Prototyping Environment using
Mininet, Click, NETCONF and POX. Demonstation. In ACM SIGCOMM
2014, 2014.

[4] A. Fischer, J. F. Botero, M. Till Beck, H. De Meer, and X. Hesselbach. Virtual
network embedding: A survey. Communications Surveys & Tutorials, IEEE,
15(4):1888–1906, 2013.

[5] S. Sahhaf, W. Tavernier, D. Colle, and M. Pickavet. Network service chaining
with efficient network function mapping based on service decompositions. In
1st IEEE Conference on Network Softwarization, NetSoft 2015, 2015.

[6] W. Shen, M. Yoshida, K. Minato, and W. Imajuku. vConductor: An enabler
for achieving virtual network integration as a service. Communications Mag-
azine, IEEE, 53(2):116–124, 2015.

[7] W. Tavernier, S. Sharmaa, S. Sahhaf, R. Szabó, D. Jocha, P. Sköld-
ström, J. Matias, J. Garay, G. Agapiou, B. Sonkoly, M. Rost,
T. Jungel, A. Rostami, and X. Cai. D3.1 Programmability frame-
work. Deliverable 3.1, UNIFY Project, October 2014. Available
from: https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/
UNIFY D3.1%20Programmability%20framework.pdf.

[8] Q. Yin and T. Roscoe. VF2x: fast, efficient virtual network mapping for real
testbed workloads. In Testbeds and Research Infrastructure. Development of
Networks and Communities, pages 271–286. Springer, 2012.

http://portal.etsi.org/NFV/NFV_White_Paper2.pdf
https://www.opennetworking.org/
https://www.opennetworking.org/
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY_D3.1%20Programmability%20framework.pdf
https://www.fp7-unify.eu/files/fp7-unify-eu-docs/Results/Deliverables/UNIFY_D3.1%20Programmability%20framework.pdf

8
Conclusions and future work

The Internet is the most crucial communication medium for people, businesses
and organizations. It is significantly challenged by ever-increasing throughput de-
mands, highly expected performance, capacity and forwarding rates. The exponen-
tial growth of routing table size limits the scalability of current routing protocols
in the Internet. The other major issue is the slow convergence of these protocols.

The main evolutions in the Internet infrastructure include automated control,
scaling, resiliency and increased efficiency which are achieved through an im-
proved routing in the Internet and by providing scalable virtualization of Internet
services. These are two aspects of future Internet which were explored in this
thesis.

In this dissertation, first the topic of resilient scalable routing for the Inter-
net was investigated. Novel routing algorithms and recovery techniques were de-
signed, implemented and evaluated on large-scale networks resembling Internet
topology.

As a second aspect of future Internet, this dissertation targeted service orches-
tration in virtualized telecom networks. Telecom virtualization is a recent topic,
reducing the complexity in network design and requirement of proprietary hard-
ware. Relying on virtualization techniques, the goal is to achieve rapid deploy-
ment of novel services and enable scalable and flexible service orchestration. In
this context, optimized embedding algorithms for virtualized network functions
were proposed. Potential architectural enhancements were suggested to enable a
scalable orchestration. In the following subsections, we summarize the performed
contributions and present the main conclusions and directions for future work.

182 CHAPTER 8

8.1 Resilient scalable routing in Internet

The main challenges in the Internet inter-domain routing (i.e. BGP) are limited
scalability of the routing tables, slow convergence and instability of the routes.
BGP extensions and patch solutions have been the subject of intensive research
during the last 40 years. In spite of the numerous research efforts, a realistic alter-
native is still missing. The main reason is that these alternatives follow a similar
approach as the one pursued by BGP. Therefore, in order to overcome BGP limi-
tations, clean-slate approaches should be considered.

Geometric routing is an alternative which relies on local information for mak-
ing forwarding decisions. It is considered as a promising solution to solve the
scalability limitations of routing tables. Therefore in this dissertation, the applica-
tion of geometric routing to inter-domain settings was studied.

Most of the existing geometric routing schemes lack mechanisms to cope with
network dynamics efficiently. Since the Internet is dynamic in nature, local recov-
ery techniques for single and multiple link failures were proposed and evaluated
in Chapter 2. The proposed techniques can be executed upon failure detection
(restoration) or can be activated pro-actively (protection) to enable fast switch-
over. We relied on a graph embedding into the hyperbolic plane proposed in [1].
These recovery techniques rely on local communication, avoid local minima in
the process of greedy forwarding, and scale with the number of edges in the span-
ning tree of the network. The packet overhead caused by these techniques is very
limited. The latter refers to the maximum 4 extra fields in the packet header, in net-
works with 1000 nodes, compared to the average 24 extra fields in case of using
another existing scheme, i.e., [2]. In the proposed schemes, the memory require-
ment in the nodes is proportional to the nodes degree. This makes the schemes
quite scalable. Additionally, the quality of the routing in terms of stretch1 is sig-
nificantly improved compared to other alternatives. In the proposed schemes, the
average stretch upon 10% tree link failures in large networks with 1000 nodes, did
not exceed 1.4. However it increased up to 2.6 in case of using the scheme in [2].

To simplify the process of graph embedding in geometric routing, we proposed
a scheme deducing the nodes coordinates from a spanning tree of the network. In
order to calculate these coordinates, a distributed algorithm was presented in Chap-
ter 3. This algorithm provides a mechanism to deal with different types of network
dynamics such as nodes/links addition/removal. It triggers nodes to re-calculate
their coordinate upon a change in the network. The work in Chapter 3 imple-
mented and evaluated this algorithm in a realistic emulation environment. The
experimental results indicated that the convergence behavior of geometric routing
varied with the location of the changes in the network. The closer these changes

1Stretch indicates the ratio between the length of the path generated by geometric routing and short-
est path length.

CONCLUSIONS AND FUTURE WORK 183

to the root of the tree, the more nodes in the network were impacted. Despite this
dependence on the location, the convergence behavior of geometric routing was
more desirable than BGP behavior. In geometric routing, the average convergence
time upon 10 link failures in networks with 1000 nodes did not exceed 4.5 s, while
in BGP it reached up to 26 s. Although the number of affected nodes/paths are
potentially high in geometric routing, the convergence is relatively fast. Addi-
tionally, the results indicated that the average stretch remained almost unchanged,
upon different number of failures in the network. One main outcome of this study
is that coordinate re-calculation, upon network failures, can lead to a good perfor-
mance in terms of stretch with very low convergence time. Next, we extended the
algorithm with the recovery mechanism presented in Chapter 2. The experimental
results identified the trade-off between convergence time and stretch in geometric
routing. The protection mechanism enabled quite fast failure recovery (i.e., 20.4
ms on average, upon a tree link failure) while avoiding coordinate re-calculation.
However, it impacted the routing quality in terms of stretch negatively. The aver-
age stretch increased from 1.12 to 1.28 after 10% of network changes. This limited
loss in performance suggests that a clever combination of protection (particularly
in levels close to the root of the tree) and coordinate re-calculation mechanism can
lead to a promising performance in terms of convergence and routing quality.

The scalability of the proposed tree-based geometric routing was thoroughly
studied in Chapter 4 and compared with the hyperbolic-based approach in [1].
Additionally, an efficient circuit to greedy forward the packets was proposed. The
evaluations confirmed that a geometric router can be implemented in a very low-
cost way without sacrificing efficiency of the routing. In comparison with the hy-
perbolic geometric routing, the tree-based approach achieved similar performance
in terms of stretch while improving the scalability of the coordinate memory re-
quirement significantly. In large-scale networks of 20000 nodes, the proposed ap-
proach required 30 bits for coordinate representation while the hyperbolic-based
approach required 100 bits. This study indicates how coordinate complexity is
reflected in the complexity of geometric routing and the related forwarding. The
more complex the coordinates, the more sophisticated their calculation process
and thus the more computation resources are required. Moreover, such coordi-
nates may be quite large in size which in turn leads to large space-complexity for
storing, many resources in hardware and also high complexity in the forwarding
process.

Finally, we concluded this work with an overview of the existing routing schemes
(traditional and clean-slate approaches) and their (in-)suitability to large-scale com-
plex networks. Relying on the experimental results and analytical studies per-
formed so far, the main trade-offs and trends in different schemes were identified.
With regard to the proposed geometric routing, both simulation and emulation
outcomes confirmed the memory-advantage of this scheme compared to IP-based

184 CHAPTER 8

routing. In this scheme, the size of the routing table is bounded by the maxi-
mum degree of the nodes in the network. The cost of this scalability is in the
recovery domain. The latter refers to the potential high number of affected nodes/-
paths in case of a failure. One main outcome of this overview is that most of the
existing schemes, including geometric routing, increase performance by decreas-
ing functionality. For instance, different alternatives improve the memory scala-
bility but can not support the same level of policy as in BGP. This study better
placed geometric routing scheme among other alternatives as potential candidates
for large-scale routing. Additionally, the identified remaining challenges provided
a guideline for future research which are detailed in the following subsection.

8.1.1 Future directions and trends

There are several open problems which require further investigation. We explain
them in 4 different groups.

The first group is related to performance concerns. Since the proposed scheme
relies on a spanning tree structure, supporting multipath routing via independent
trees is an interesting research direction. Using multiple trees, better fault toler-
ance and balanced load can be achieved, as was shown in [3, 4]. If the overlap
of the constructed trees is minimized, there is a good chance that at least one tree
is not impacted upon a failure in the network. As a result greedy forwarding is
unaffected and no recovery mechanism needs to be triggered. Regarding load bal-
ancing, since there exist multiple trees and thus multiple options as next hop, the
neighbor with less load can be selected. This way we can avoid congestion in
the network. However as these schemes rely on multiple trees instead of a single
one, the challenge is to provide scalable solutions in terms of coordinate memory
requirement and also to simplify the forwarding process. The complexity of co-
ordinates, their size and the impact on geometric routing and greedy forwarding
were discussed earlier. To reduce this complexity, novel coding schemes should
be explored to assign succinct coordinates to network nodes. Another approach is
to use compression mechanisms on coordinates. These mechanisms accept plain
information (i.e., coordinates) and encode it to use fewer bits. There also exist
other mechanisms to accept the encoded form and extract the information. The
compressed coordinates can save time (in transmission) and space. The impact
of exploiting such mechanisms on computation and memory/storage complexity
needs further investigation.

The second group includes business-motivated aspects such as policy, security
concerns and migration which are detailed in the following.

One of the main limitations in geometric routing is the lack of support for
routing policy including routing engineering, traffic engineering and administra-
tive policies. Such policies affect the performance of the routing. For instance,

CONCLUSIONS AND FUTURE WORK 185

traffic engineering enables different QoS guarantees. Exploiting multiple trees in
geometric routing provides the freedom to choose between different alternatives
as next hop. Therefore, it can be the starting point for supporting policy in this
routing.

Another aspect which requires further investigation is security vulnerabilities
of geometric routing. Malicious nodes in the network may announce false degrees
and may frequently (dis)appear in the network. This leads to frequent coordinate
calculation in the network. This becomes problematic if the claimed degree of the
malicious node is larger than the degree of the current root. As a result, the node
with false degree becomes the new root. Changing the root node leads to coor-
dinate re-calculation of all nodes in the network. Protection mechanisms, used in
the levels close to the root node (as suggested in Chapter 3), may provide a tempo-
rary solution to avoid global coordinate re-calculations. However, authentication
mechanisms should be investigated to avoid such malicious nodes become the root
of the tree and trigger such global changes.

Migration from BGP to the proposed geometric routing is another research
direction which can be very useful for telecom providers, considering new alter-
natives to improve the routing performance. In order to avoid the sudden switch
to a novel routing system, solutions to enable coexistence of BGP and geomet-
ric routing on the same router should be investigated. In case there are network
segments capable of geometric routing without any support for conventional IP
routing, ingress/egress nodes of these segments should provide packet encapsu-
lation/decapsulation to enable greedy forwarding across them. This means that
upon arrival of an IP packet in an ingress node, the coordinate corresponding to
the packet destination is added to the header of the packet (encapsulation). Using
this coordinate, the packet is then greedy forwarded towards the destination. In the
egress node, this coordinate is removed from the packet header (decapsulation)
and IP routing can be resumed.

The third group relates to handling negative side-effects of the introduced ge-
ometric routing. In this routing since the role of locator and identifier is separated
(as opposed to IP addresses), a mapping system to bind node identifiers to node
coordinates is required. Such a mapping system should be scalable and enable fast
convergence upon changes in the network nodes coordinates. In spite of the ex-
istence of several proposals in the literature, a scalable secure and highly reliable
mapping which provides fast convergence is still missing [5].

Finally, if the business-motivated aspects and negative side-effects of geomet-
ric routing cannot be solved, it is an interesting research to investigate application
of other routing schemes, proposed for networks with characteristics far from the
Internet, in large-scale inter-domain settings. Examples include routing schemes
proposed for Delay Tolerant Networks (DTN) or opportunistic networks. These
networks are known for their frequent disruption, sparse network density and high

186 CHAPTER 8

bit error rate which are very different from the characteristics of inter-domain net-
work in the Internet. Similar to these networks wireless mobile ad-hoc networks
are also considered infrastructureless and dynamic in nature. Accordingly, the
routing schemes proposed for these networks target adaptivity to such environ-
ments. However they may show interesting/promising behavior once used in other
settings. This was the case with geometric routing, as it was initially proposed
for ad-hoc and Wireless Sensor Networks (WSNs). Stochastic routing is one ex-
ample which can be a potential alternative, initially proposed for wireless mobile
ad-hoc networks. This routing relies on a probability distribution to select the next
hop of an incoming packet. This distribution can be affected by different met-
rics. Therefore, it is possible to influence this routing by metrics such as load,
residual energy, forwarding cost, etc. Another example is routing schemes pro-
posed for opportunistic mobile networks, exploiting human social characteristics
such as social interaction patterns, mobility patterns and routines. Based on these
patterns/characteristics, efficient routing models are proposed. Applying similar
approaches in the Internet could be quite interesting. The studies performed so far
indicate that over a period of time, a significant part of the nodes are never used as
destinations. Traffic mainly flows to the most popular networks and only 15% of
the nodes are responsible for 95% of the entire traffic [6]2. These numbers suggest
that recognizing traffic patterns, influenced by human behavior and daily routines,
and exploiting them may lead to efficient routing models.

With the discussed remaining challenges, it is still early to introduce geomet-
ric routing as a BGP replacement. However, the documented research illustrated
the applicability of this routing in the large-scale inter-domain setting of the Inter-
net. The memory-advantage, good performance in terms of stretch and interesting
convergence behavior made this routing a potential alternative for future Internet
routing. Moreover, the design of the circuit for greedy forwarding was one step
closer to exploit this routing in practice. However, assuming that solutions to the
open problems such as support of routing policy, scalable mapping system and
security concerns are proposed in the next 5 years, the process of migration from
BGP to geometric routing is extremely difficult to estimate. This was confirmed in
transition from IPv4 to IPv6. Although it is approximately 20 years since the intro-
duction of IPv6, a complete transition to this addressing format is still not feasible.
In this context, the Locator/Identifier Separation Protocol (LISP)3 incremental de-
ployment scenarios can be exploited [7]. LISP routing architecture separates the
device identity from its location into two different numbering space. It is a Cisco
innovation and different standardization activities are ongoing at the IETF LISP
Working Group to develop this architecture. There are several LISP sites deployed

2The study has been on GEANT network which is a European academic network and may not be
representative for the entire Internet backbone. However it provides useful perception.

3http://www.cisco.com/c/en/us/products/ios-nx-os-software/locator-id-separation-protocol-
lisp/index.html

CONCLUSIONS AND FUTURE WORK 187

around the world, enabling gradual introduction of LISP into the existing IP net-
work. It also provides efficient strategies for IPv6 transition4. Similarly LISP can
be exploited to gradually deploy geometric routing. Since LISP allows using dif-
ferent address families for the identities and the locators, it is possible to use the
coordinates in geometric routing as locators and perform greedy forwarding within
LISP sites. This is a promising strategy for transition from BGP in a short time
frame.

8.2 Service orchestration in virtualized telecom net-
works

The rise of network virtualization and software defined networking have intro-
duced new challenges in service orchestration in telecom networks. In spite of
the flexibility in service provisioning, enabled by network function virtualization,
the freedom where to provision each network function causes new challenges and
complexities. This complexity is exacerbated with the fact that a large monolithic
network function block may be decomposed into smaller functional blocks or can
be realized in multiple ways through different implementations.

Existing works consider that services are large monolithic blocks and thus pro-
vide solutions with very limited flexibility, not being able to cope with dynamic
scaling demands efficiently. Therefore in Chapter 6, we investigated the joint op-
timization of service decomposition5 and service chain embedding. First we pro-
posed an approach to find the exact solution. However since the complexity of this
scheme was quite high, a heuristic approach was proposed to solve the scalability
limitation of the optimal solution. The superiority of the joint decomposition and
embedding was confirmed by higher acceptance ratio and lower embedding cost
compared to the approach in which decompositions were selected independent of
their resource demands and available resources in the infrastructure network. Tak-
ing service decompositions into account at the time of embedding enables better
adaptivity to network conditions. This means that a decomposition which better
matches the network state (e.g. with regard to available resources) can be selected.
This results in an efficient utilization of network resources leading to higher service
acceptance rate. In a network with 110 nodes, the proposed approach resulted in
acceptance of approximately 90% of service requests while the scenario in which
decompositions were selected randomly led to 40% acceptance over time.

Scalability of service orchestration is a significant characteristic, since the
number of components in a realistic telecom network infrastructure quickly ex-

4http://www.cisco.com/c/dam/en/us/products/collateral/ios-nx-os-software/locator-id-separation-
protocol-lisp/white paper c11-629044.pdf

5The process of decomposing the high-level complex network functions in a service chain into more
refined atomic function blocks.

188 CHAPTER 8

ceeds ten thousands. Having such a large number of components, thousands of
service requests in one day and the possibility of realizing each service in multiple
ways intensify the need for a scalable service orchestration architecture. This was
studied in Chapter 7 and we identified the major blocks in orchestration time in a
proof of concept prototype. This prototype relied on the embedding scheme ex-
plained in Chapter 6. The three identified blocks were: i) retrieval of all decompo-
sitions for a given service from a database (read dcmp), ii) selection of a desirable
decomposition (select dcmp) and iii) embedding/mapping of the selected decom-
position. The experimental results indicated that in small networks ‘read dcmp’ is
the most time consuming block while in large networks (more than 1000 nodes)
‘select dcmp’ is the dominant block. Based on this outcome, we proposed several
architectural enhancements to move towards a more scalable service orchestrator.
These are interesting future research directions and are detailed in the following
subsection.

8.2.1 Future directions and trends

While the proposed approach provides joint optimization of the service decompo-
sition and embedding, it mainly focuses on mapping cost of the network functions.
Therefore, there are several ways to extend this approach which are discussed be-
low.

Depending on the user’s or provider’s requirements different objective func-
tions for the embedding problem can be defined. For instance balancing the load
in the network can be considered instead of mapping cost.

In the proposed approach in order to find a suitable service decomposition, a
cost function based on several metrics was defined. These metrics were selected
according to the objective function considered in the embedding problem. If other
objective functions are used, different metrics which are more useful for achieving
the goal should be looked for.

Next, in addition to the QoS parameters such as bandwidth and delay, other
constraints can be taken into account. Location of a network function may be
critical depending on its role. For instance network functions related to security
(encryption/decryption, etc) should be placed very close (if not at the same place)
to the end users. Taking these additional constraints into account increases the
complexity of the embedding problem. Therefore, scalable solutions should be
investigated.

The next set of future directions focuses on the scalability of the service or-
chestration framework.

Our studies indicated that certain blocks of the embedding, as the main func-
tion of the service orchestration, do not scale as desired. A solution is to change
the embedding algorithm to a distributed approach in which costly calculations are

CONCLUSIONS AND FUTURE WORK 189

given to different computation resources. This way, these tasks can be executed in
parallel. Although certain blocks in the embedding process are quite straight for-
ward to parallelize, parallelizing the mapping functionality is quite challenging.
Solutions should be found to avoid that the same resource is reserved for different
network functions at the same time.

Another way to make an embedding approach more scalable is to have a hierar-
chical embedding process. Assuming that the infrastructure is divided into several
domains, the given service chain can be split into sub-chains accordingly. Based
on a hierarchical embedding approach, first the service sub-chains are mapped to
different domains. Then the local orchestrator at each domain performs the next
level of embedding. The main challenge in this case is related to the amount of
resources and infrastructure information which is announced by each domain to
the upper layer orchestrator. The (in)completeness of this information can sig-
nificantly impact the performance and efficiency of the embedding process. An
interesting research direction is to identify the trade-offs between the efficiency of
the embedding and the amount of exposed information about the infrastructure.

The scalability limitation of an orchestration process is partially caused by the
multiple realization options enabled by service decomposition. This limitation is
exacerbated by the fact that decompositions for each network function are stored
individually in the database. Upon arrival of a service request composed of sev-
eral high-level network functions, different combinations of the network function
decompositions should be constructed. The process of retrieving/constructing all
possible combination of the decomposed network functions in the requested ser-
vice is time consuming (as discussed in Chapter 7). To diminish this scalability
issue, an option is to pre-define service decompositions. This avoids constructing
all possible combination of network function decompositions. Also some parts of
the embedding (mainly the parts related to the decomposition selection) can be
performed proactively, before the arrival of the service request. This way the re-
quired time for embedding a service request upon its arrival is reduced. However
such an approach may negatively impact the flexibility and dynamicity of service
chaining. Moreover, with pre-defined service decompositions, less adaptivity to
network conditions is possible. Therefore, a future research direction could be to
identify the potential trade-offs.

Telecom service virtualization and -chaining relying on NFV are rapidly get-
ting traction. The large number of ongoing research projects focusing on these
topics, and the involvement of different telecom operators in these projects under-
line the immediate value of NFV-based solutions. The close and active collab-
oration of the telecom industry in the context of standardization bodies such as
the NFV industry group of ETSI or the Software-Defined Networking Research
Group (SDNRG) and Network Function Virtualization Research Group (NFVRG)
at IETF/IRTF is progressing quickly in formulating solution architectures, refining

190 CHAPTER 8

research challenges and potential solutions for NF orchestration and service chain-
ing. Therefore, scalable solutions, as the ones documented in this research, have
the potential to be instantly exploited in the process of service provisioning.

CONCLUSIONS AND FUTURE WORK 191

References
[1] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM

2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[2] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dy-
namic graphs. In INFOCOM 2009, IEEE, pages 1647–1655, 2009.

[3] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pickavet.
Fault-tolerant Greedy Forest Routing for Complex Networks. In Proceedings
of 6th International Workshop on Reliable Networks Design and Modeling
(RNDM), 2014.

[4] R. Houthooft, S. Sahhaf, W. Tavernier, F. De Turck, D. Colle, and M. Pickavet.
Robust Geometric Forest Routing with Tunable Load Balancing. In Proceed-
ings of INFOCOM 2015, 2015.

[5] M. Hoefling, M. Menth, and M. Hartmann. A survey of mapping systems
for locator/identifier split Internet routing. IEEE Communications Surveys &
Tutorials, 15(4):1842–1858, 2013.

[6] J. Mikians, A. Dhamdhere, C. Dovrolis, P. Barlet-Ros, and J. Solé-Pareta.
Towards a statistical characterization of the interdomain traffic matrix. In In-
ternational Conference on Research in Networking, pages 111–123. Springer,
2012.

[7] F. Coras, L. Jakab, D. Lewis, A. Cabellos-Aparicio, and J. Domingo-Pascual.
Locator/Identifier Separation Protocol (LISP) Network Element Deployment
Considerations. 2014.

A
Availability analysis of resilient

geometric routing on Internet topology

In this appendix, we evaluate the availability of the proposed tree-based geometric
routing scheme, relying on the protection mechanism of Chapter 2 for link failure
recovery.

? ? ?

S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, P. Demeester

Presented at 10th International Conference on the Design of Reliable Com-
munication Networks (DRCN), 2014.

Abstract Scalable routing schemes for large-scale networks, especially future In-
ternet, are required. Geometric routing scheme is a promising candidate to solve
the scalability issue of routing tables in conventional IP routing based on longest
prefix matching. In this scheme, network nodes are assigned virtual coordinates
and packets are forwarded towards their intended destination following a distance-
decreasing policy. Dynamics in the network such as node/link failures might affect
this forwarding and lead packets to a dead end. We proposed recovery techniques
in geometric routing to deliver packets to the destination in case of failures. In this
paper, we perform an analysis on the availability of the proposed protection tech-
niques on the Internet graph. The routing scheme over optical transport network is

194 APPENDIX A

considered and the reliability data of physical components and a known network
availability model are used. This evaluation is compared with the shortest cycle
scheme which finds two node disjoint paths between every source and destination
in the topology and also with geometric routing with no protection. The results
show that the proposed scheme performs reasonably well compared to the shortest
cycle scheme and significantly enhances the availability compared to geometric
routing without any protection.

A.1 Introduction

Due to ever increasing throughput demands, IP prefix lookup is becoming a bot-
tleneck in future Internet. Higher performance, capacity and forwarding rates are
required in order to meet the future demands. The growth of the size of the routing
tables is another issue which limits the scalability of the current IP-based routing
protocols. BGP is the protocol used to exchange routing and reachability infor-
mation between Autonomous Systems (AS) in the Internet ([1] reports more than
400K FIB entries in current BGP routers). Geometric routing has been proposed
to solve the issue of scalability in routing tables and can be considered as an alter-
native to BGP to route between ASes (Inter-AS).

In geometric routing, nodes are assigned virtual coordinates and the forwarding
is based on a distance-decreasing policy [2]. This means that upon arrival of a
packet in a node, the distance of every neighboring node to the destination of the
packet is calculated and the one which decreases this distance the most is selected
as the next hop. Repeatedly applying this policy will lead the packets to their
intended destination. As in every step, the neighbor with the most decreasing
distance is selected, the routing/forwarding is referred as greedy.

A problem with greedy forwarding is that packets might reach a local minimum
(dead end, void). This means that the current node is closer to the destination
than any of its neighbors. Greedy embeddings are proposed to solve this issue [3].
Greedy embeddings map network nodes to coordinates in such a way that for every
node there is always a distance decreasing neighbor towards any other node in the
network. Greedy routing based on these embeddings guarantees the delivery of the
packets to every destination. In [4], we proposed a simple but promising greedy
embedding based on a spanning tree of the network. In this scheme, every node
is assigned a label (coordinate) indicating the path from the root of the tree to the
node.

As the embedding is derived from a spanning tree of the network, a change
in the connectivity of the tree (component failures) might affect the embedding
and might lead the packets to local minima. Therefore, recovery techniques are
required to provide resiliency against failures in the network. In [4] and [5], we
proposed protection techniques in geometric routing for link/node failures in the

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 195

network. These works showed the scalability of the proposed schemes in terms of
resources. As availability is an important performance assessment factor for recov-
ery schemes, the goal of this paper is to evaluate the connection availability of the
proposed single-failure resilient geometric routing on a large graph such as the AS-
level topology of the existing Internet (CAIDA [6]). In this evaluation, geometric
routing over optical transport network is considered and the reliability character-
istics of physical components and a well-known availability model are used. In
order to have a realistic evaluation, a multi-layer model is used in which recovery
in different layers is considered. Therefore, we evaluate the connection availability
of geometric routing as a network layer scheme with the assumption that links are
protected in lower layers. Having a fair comparison with BGP is challenging be-
cause different factors such as routing policies and AS business relationships affect
the selection of the paths. Therefore, we compare the availability of the proposed
scheme with shortest cycle scheme in which two node disjoint paths between every
source and destination in the network are constructed. In this scheme, in case the
working path between two nodes is not available, the second node disjoint shortest
path is used as the protection path. To the best of our knowledge, this is one of the
first studies related to connection availability of geometric routing on the Internet
topology.

This evaluation gives an overview on: i) how well the proposed recovery
scheme performs compared to the node disjoint shortest path alternative and ii)
what is the maximum and minimum connection availability that can be obtained
using the model proposed on the Internet topology. These studies are essential
especially for services with high availability demands.

The rest of the paper is organized as follows. In the next section, work related
to availability analysis in network, geometric routing and recovery techniques are
described. A short description of the used greedy embedding and the protection
techniques is provided in Section A.3. Section A.4 explains basic concepts related
to reliability assessment. Section A.5 presents the evaluation of connection avail-
ability for different schemes of single-failure resilient geometric routing, shortest
cycle and geometric routing with no protection. Future work is discussed in Sec-
tion A.6 and finally Section A.7 concludes the paper.

A.2 Related work

Availability analysis especially in wavelength division multiplexing (WDM) op-
tical networks has received great attention in recent years. Many works have
proposed analytical models for evaluating the connection availability in these net-
works for single link failure scenarios [7], [8]. The main observation in [7] was that
a mesh network with single link failure restorability is robust under dual-failure
events. The authors defined equivalent unavailability for a link which means that

196 APPENDIX A

the link is considered available if it is physically working or it is physically down
but transparently replaced by a restoration path between its end nodes. This is
similar to the multi-layer model we consider in the connection availability evalua-
tion in this paper. While evaluating the availability of routing scheme in network
layer, we assume that links are protected in lower layers. In [8], different pro-
tection schemes, 1:1, 1:N and M:N are considered. The focus of the paper is on
path protection strategy in which a backup path for each working path on an end-
to-end basis is provided. This is different from our work as nodes are recovered
locally and failing links are bypassed by routing towards a hub node. In [9], the
reliability analysis on two link-disjoint paths in mesh network is studied. Using
two disjoint paths, 100% protection against a single failure is provided and authors
try to maximize the reliability regardless of the number of link failures occurring
on the network. It is proved that this problem is NP-complete and heuristic algo-
rithms are proposed to find two link-disjoint paths with maximum reliability. In
this paper, we compare the connection availability of the proposed schemes for ge-
ometric routing with such an scheme in which two disjoint paths for every source
and destination in the topology are calculated.

In other works such as [10] analytical model for dual link failure is proposed.
In [11], authors proposed a hybrid scheme to achieve high connection availability
with low backup resources in double link failure scenario. The hybrid scheme is
based on backup re-provisioning, path restoration and 1:1 dedicated path protec-
tion. They use ILP models in their proposed scheme. In [12], a model for avail-
ability evaluation of protected optical connections in WDM networks employing
M:N dedicated protection is proposed. The same authors proposed an analytical
model for availability evaluation of WDM network with shared-link connections
under multiple link failures in [13]. The effect of topology properties on con-
nection availability in Generalized Multiprotocol Label Switching (GMPLS) over
optical transport networks is studied in [14].

As geometric routing scheme suffers from packets reaching local minima,
many works have proposed greedy embeddings in different metric spaces to avoid
this issue. In [15] and [16], authors proposed greedy embeddings in the hyper-
bolic plane. Flury et al. proposed greedy embedding in Euclidean space [17].
We proposed a greedy embedding based on a spanning tree of the network in [4].
Dynamics in the topology such as link/node failure might affect the greedy embed-
dings causing the packets reaching local minima. Face routing techniques pass the
void by routing around this area and greedy routing is resumed from the moment
that a closer node to the destination is reached [18]. The issue with these type of
techniques is that the graph should be planar/planarized which might not be fea-
sible for every graph. Authors in [19] proposed a dynamic greedy embedding to
deal with node additions to the network topology. However, in order to deal with
network failures a path trace is maintained in packets in order to avoid loops which

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 197

Spanning tree

generation

Numbering

of the children

Coordinate

calculation

1 2

2

1

1

Figure A.1: Steps for tree-based greedy embedding.

imposes a large overhead to packets headers [4]. We proposed different protection
techniques for link/node failures which avoid coordinate re-calculations and are
based on greedy forwarding [4], [5]. The proposed schemes are scalable with low
overhead to the network nodes and packets headers.

In this paper, we consider the tree-based greedy embedding as proposed in
[4] and evaluate connection availability of geometric routing with the proposed
protection schemes in [4] and [5] over optical transport network in the Internet
topology.

A.3 Greedy geometric routing

In this section, we briefly explain the tree-based greedy embedding and the protec-
tion techniques on which the availability analysis is performed. For more details
on the schemes, we refer the interested readers to [4] and [5].

A.3.1 Tree-based greedy embedding

Rather than relying on complex (e.g. hyperbolic) geometry, in [4] we used tree-
based coordinates for greedy forwarding. This will reduce the computational over-
head and complexity of the overall scheme. Steps for calculating the labeling based
on a spanning tree of the network are as follows:

1. First a rooted spanning tree of the network is generated.

2. The root node sets its coordinate vector (CV) to zero.

3. Each node numbers its children from 1 to d (d is the number of children).

4. A node can calculate the coordinates of its children by adding the number
assigned to each child after the last non-zero coordinate in its own CV.

198 APPENDIX A

1

32

5 6 74

D

S

1

32

5 6 74

D

S

A
c
k

Figure A.2: Example for upward failure scenario.

Figure A.1 depicts an example for this embedding. Once every node has its
deduced CV using the above procedure, packets can be forwarded towards neigh-
boring nodes which (maximally) reduce the distance towards the CV of the desti-
nation node mentioned in the received packet. In this context, tree-distance is used
as the metric which is the hop count on the tree between two nodes.

A.3.2 Single failure protection techniques

In [5], we proposed protection techniques for geometric routing which are only
used for tree edge failures. The reason is that in greedy routing based on a span-
ning tree, in case of a shortcut1 failure, there is still a distance-decreasing path
available via the tree. However, a tree edge failure might affect the greedy embed-
ding causing the packets to reach a local minimum.

In this scheme, we distinguish between upward and downward failures. In
upward failures, packets should have passed the failing link to get closer to the
root of the tree while in downward failures, packets go deeper in the tree.

For every tree edge attached to a node, a search is performed in order to find
an intermediate node (hub node) from which greedy routing to the destination is
possible (considering that edge to be failing). In a downward failure scenario, we
look for a hub node which has a shortcut to the subtree below the failing link. In an
upward failure scenario, it is enough that the hub node has a shortcut to a node out
of the subtree below the failing link. The forwarding process in case of a failure is
as follows:

1. Greedy route from failure detecting node to hub node.

2. Take the shortcut to go to the desired subtree.

3. Continue greedy routing to the destination on the tree.

1A link which is not in the spanning tree of the network.

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 199

1

32

5 6 74

S

D

1

32

5 6 74

S

D

A
ck

Figure A.3: Example for downward failure scenario.

Figures A.2 and A.3 depict examples for the two explained failure scenarios.
The primary greedy path is depicted with solid line on the left and the secondary
path after recovery is depicted with dot line on the right. The corresponding hub
node for the depicted failing tree edge is colored grey.

We proposed a protection technique for node failure in [4]. In this scheme,
every node finds disjoint backup paths to the nodes two hops away. In case of a
node failure, a disjoint backup path is used to bypass the failing node and greedy
routing is resumed once the two-hops away node is reached.

We refer the interested readers to [4] and [5] for more details on the exchanged
messages, augmentation to the packet headers and the overhead added to the net-
work nodes.

A.4 Performance parameters

In this section, we explain the reliability performance parameters which are used
for the evaluation of the protection techniques for single failure in geometric rout-
ing.

A.4.1 Component availability

Availability of a component is defined as the probability that the component is
functional at any arbitrary moment. It can be expressed by the components mean
time to repair (MTTR) and the mean time between failures (MTBF). MTTR is
defined as the required time for the restoration of the component and MTBF is the
time between two consecutive failures of the component [20]. The availability A
is:

A = 1− MTTR

MTBF
(A.1)

200 APPENDIX A

W
D

M

L
in

e
 S

ys
te

m

W
D

M

L
in

e
 S

yste
m

OA OA

80km 100km 80km

Figure A.4: Example of a bidirectional line [20].

A.4.2 Protected/Unprotected connection availability

The availability of a connection in a network is calculated using the availability of
the components (nodes/links) in the network. In an unprotected connection, all the
nodes and links/lines along the path of the connection should be available in order
to have availability for the connection. Therefore, the availability is defined as:

Aunprotected =
∏

Ai (A.2)

Ai is the availability of the ith component (node or link) along the path.
As mentioned earlier, recovery schemes enhance the availability of the con-

nection. A protected connection is available if the working path or the protection
path of the connection is available.

Aprotected = Aw +A
′

wAp (A.3)

Aw andA
′

w are the availability and unavailability of the working path respectively.
Ap is the availability of the protection path. This formula can be extended for the
availability of a system, Asystem, with more than one connection and considering
single failure:

Asystem =

M∏
i=1

Awi +

M∑
j=1

 M∏
k=1;k 6=j

Awk

A′

wj
Apj (A.4)

M is the number of working connections in the system.

A.4.3 Network availability model

In the network availability model considered in this paper, a node is composed of
one Optical cross connect (OXC). A bidirectional line which connects two optical
nodes is composed of a series of components such as pieces of physical cable, a
number of optical amplifiers (OA) and a line system at each side of the line (Figure

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 201

1

32

5 6 74

D

S

1

32

5 6 74

D

S

Figure A.5: Example for evaluation of connection availability.

A.4). This line is available only if all the components are available. Assuming
statistically independent failures, the availability of a bidirectional line is defined
as:

Aline = Acable ×AN
OA ×A2

line−system (A.5)

N is the number of OAs which is dependent on the length of the line (assuming an
OA every 100 Km) [20].

The MTTR and MTBF of physical components reported in [20] are used in
formula (A.1) to obtain the availability of single components in the network.

We evaluate the connection availability of geometric routing over optical trans-
port network for every possible source-destination pair in the topology based on
the reliability characteristics of the physical components and the connection model
in formula (A.3). In order to obtain a more realistic evaluation, we consider a
multi-layer model. This means that although the proposed protection scheme is
provided for network layer (L3), in the availability evaluation of the connections,
links in the topology are considered to be protected in lower layers (L2/L1).

Note that in the proposed protection scheme, in a connection, depending on
the link/node which is failing, different backup paths might be used. Therefore,
in order to evaluate the availability of a connection, every possible single failure
along the connection path is considered and the availability of the corresponding
backup path is evaluated and the sum of all represents the protected connection
availability. Consider Figure A.5 as a case study. In this example, only link failure
is considered. Each of the graphs in this figure depicts a single link failure scenario
along the connection 7-3-1 and the corresponding protection path is illustrated by
a dot arrow. The availability of the connection 7-1 is calculated as follows:

Aconnection7−1 = A7−3A3−1 +A
′

7−3A7−2A2−1+

A
′

3−1A7−3A3−6A6−5A5−2A2−1
(A.6)

202 APPENDIX A

A.5 Reliability performance evaluation of connections

In this section, we evaluate the connection availability of the Internet topology for
different schemes: i) tree-based geometric routing with no protection and ii) tree-
based geometric routing with single link/node failure protection technique. In all
schemes, we assume that links are protected in lower layers (L2/L1). Having a fair
comparison with BGP is a challenging task because in BGP different factors such
as AS relationships and routing policies affect the path selection. Therefore, we
compare the schemes with another alternative in which the shortest cycle between
every source and destination is calculated. In this scheme, in case of the unavail-
ability of the working path, the second node disjoint shortest path is used as the
protection path.

First, we explain our simulation methodology and how we modeled the Internet
topology and then we report the numerical results.

A.5.1 Methodology for simulation approach

The general steps in our simulation are as follows:

1. Given a topology, the tree-based coordinates as explained in Section A.3 are
assigned to the network nodes.

2. The hub node corresponding to every tree edge and the disjoint backup paths
for nodes are calculated as explained in Section A.3.

For every possible connection in the network (every possible source-destination
pair):

1. The path produced by greedy geometric routing is determined.

2. The availability of the unprotected connection is calculated based on for-
mula (A.2).

3. Components (link/node) along the path are considered failing, one at a time,
the protecting path corresponding to that failure is calculated based on the
proposed protection technique and the availability of the connection is cal-
culated as explained in Section A.4.

In the availability evaluation of the scheme based on shortest cycle, as for
any failure in the working path, the same backup path is used, we directly apply
formula (A.3).

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 203

Figure A.6: CAIDA’s AS-level Internet graph. http://www.caida.org

A.5.2 Internet topology

As mentioned earlier, geometric routing is considered as an alternative to BGP
to route between ASes in the Internet (inter-AS routing). Therefore, we perform
our availability analysis on an AS-level graph of CAIDA which represents the
topology of the Internet at the level of ASes. Figure A.6 visualizes CAIDA’s AS-
level Internet graph in January 2013. Due to resource limitation in the simulation
environment, we select the CAIDA network which consists out of 16301 ASes and
27646 links [6]. For this network, the average shortest path is 3.77, the minimum
node degree is 1 and the maximum node degree is 2331.

One of the major challenges in this analysis is to achieve a network model
based on the existing data for the Internet topology. In the following, we explain
how these challenges are tackled and what assumptions are made.

In CAIDA AS-level graph, nodes represent ASes and links represent peering
relationships. No more data regarding the geolocations and the distances between
different ASes is provided. In order to evaluate the connection availability on the
CAIDA topology, we require some estimation on the physical distance between
adjacent nodes in the network (required for line availability evaluation in formula
(A.5)). To this end, we used two different data bases2: i) GeoLite ASN which
provides the IP addresses to AS numbers mapping and ii) GeoLite City which pro-
vides IP addresses to geolocations mapping. Using these databases, we extract
the approximate location of each node in CAIDA topology. Assuming that each
AS consists of one border router (due to lack of more information), the extracted

2http://dev.maxmind.com/geoip/legacy/geolite/

204 APPENDIX A

locations represent the geolocation of such routers. The border router of an AS is
assumed to be directly connected to the border routers of adjacent ASes. There-
fore, the physical distance between connected routers is calculated based on their
geolocations. These border routers perform geometric routing to route between
ASes.

The first challenge was that the databases could not provide geographic loca-
tion for almost 10% of the nodes in the network. Therefore, in order to estimate
the location of them we used the locations of the adjacent nodes. Based on the lo-
cations of the neighboring nodes, the geolocation of the center point is calculated
and is assigned to the node without any location. This way, we could estimate the
locations of the majority of the nodes with missing locations.

The next challenge was that this process could not be used for the leaf nodes
(nodes with only one neighbor). Therefore, in such scenarios we used another
process to complete our model.

Consider a leaf node with missing location which has a parent with known
location. First we calculate the surface that can be covered by the parent node.
This can be calculated based on the locations of other adjacent nodes to the par-
ent. We only consider adjacent nodes with the distance between 50 and 1000 Km.
We assume that nodes within the range of 50 Km cover the same area and above
1000 Km are probably not connected directly. Having this in mind, the radius of
the surface that the parent node can cover is calculated as half of the average dis-
tance of the considered neighbors. If we assume that the leaf nodes are distributed
uniformly in the covered area by the parent, half of the calculated radius can be
considered as the upper bound for the distance of a leaf node to the parent.

Note that in practice, ASes might be connected to each other through Internet
Exchange Points (IXP), however, in an AS-level topology such as CAIDA, these
ASes are considered to be adjacent (an edge in the graph). This is a limitation
of the model, as it considers a direct physical link between adjacent nodes in the
AS-level topology.

Figure A.7 depicts the distribution of the distances calculated for the adjacent
nodes in the CAIDA network. As we see, a large percentage of distances are in
the range of 10 to 5000 Km. Due to the incompleteness of the databases and
the limitation of the model, a few distances reach 20K Km. The average of the
calculated distances is 2461.23 Km.

Using the calculated distances and formula (A.5) in Section A.4, we evaluated
the availability of the links/lines in the CAIDA network and Figure A.8 depicts the
distribution of the calculated values. The percentile and the average value of these
availabilities are reported in Table A.3. The MTTR and MTBF of different optical
components are based on the values proposed in [20] and are reported in Tables
A.1 and A.2.

Considering the availability model of a bidirectional line (formula (A.5)), fiber

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 205

Figure A.7: Histogram of the distances of the adjacent nodes in the CAIDA topology. For
better visualization, the inset illustrates the histogram of the range 0-5000 Km.

Figure A.8: Histogram of the line/link availability in the CAIDA topology. The inset
illustrates the histogram of the range 0.98-1.

206 APPENDIX A

Table A.1: MTTR and MTBF values for OAs and WDM Line systems.

MTBF(hours) MTTR(hours)
Bidirectional OA 5× 105 24
Bidirectional WDM Line system 5× 105 6

Table A.2: Cable Cut and MTBF values for Fiberoptic Cable.

Cable Cut-CC (km) MTTR(hours)
Terrestrial Fiberoptic Cable 450 24

optic cable is the dominant component in this model because the cable cuts are
frequent and repair times are very long. Therefore, the availability of a line is
dependent on its length. Observing the calculated line availabilities, the low min-
imum availability of 0.8787 can be explained because of the large distances (20K
Km) between some nodes. Based on these results, up to 75 percentile of the line
availabilities are below 0.999.

Due to these large distances (low line availability) in order to have a realis-
tic evaluation, the multi-layer model is considered in which links are assumed to
be protected in lower layers (L2/L1). The percentile and the average value for
availability of the protected lines are reported in Table A.3. We observe a signif-
icant enhancement in the availability of the lines compared to the values with no
protection. The minimum line availability is increased to 0.9852 and even the 25
percentile of the values is above 0.999.

A.5.3 Numerical results

Using the calculated line availabilities (with protection in lower layers L2/L1),
we evaluate the connections availability using geometric routing in the CAIDA
network based on formula (A.3) and the explanations in Section A.4. The node
availability is assumed to be 0.99994 which was proposed in [20].

Note that in CAIDA topology, up to 30% of the nodes are leaf nodes. As these
nodes/attached links can not be protected by the proposed protection scheme, their

Table A.3: Percentile and average values for line availability (A) in the CAIDA topology
and the availability of the protected links (A-P). (A-L) represents the availability for links

attached to the leaf nodes.

Min. 25 50 75 Max. Average
A 0.8787 0.9820 0.9925 0.9986 0.99999 0.985
A-P 0.9852 0.99967 0.99994 0.99999 0.99999 0.9993
A-L 0.9852 0.99986 0.99999 0.99999 0.99999 0.99965

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 207

0.970 0.975 0.980 0.985 0.990 0.995 1.000
Availability

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
Pe

rc
en

ta
ge

 o
f c

on
ne

ct
io

ns

Connection availability

Figure A.9: Histogram of the connection availability of geometric routing on CAIDA
topology without protection.

availability is limited to the obtained line availability with protection in lower lay-
ers (L1/L2). Table A.3 reports the percentile of the availability of the edges at-
tached to the leaf nodes. As the protection schemes do not enhance the availability
of these edges, we report the availability of the connections excluding the leaves.

We first evaluate the connection availability without any recovery scheme and
in the second experiment the protection scheme is considered and the explained
simulation methodology is followed.

Figure A.9 illustrates the distribution of the connections availability based on
geometric routing in CAIDA network when no recovery is considered (for all pos-
sible source-destination pairs). For better visualization, the availability in the range
0.97-0.99985 is depicted however, the percentile and average values are reported
in Table A.4. As mentioned earlier, length of a link is the dominant factor in the
availability of the link and the availability of a connection is also dependent on the
length of the links. Therefore, availability of the connections including the very
long links can be negatively affected. The low minimum value of 0.94202 can
be explained because of the estimation of very large distances for some adjacent
nodes in the network.

Figure A.10 depicts the distribution of the connections availability with protec-
tion technique in geometric routing. We observe how the availability is enhanced
compared to the previous scheme, when no recovery was used. The availability in
the range 0.99980-0.99988 is depicted and the percentile and the average value are
reported in Table A.4. The minimum availability is increased to 0.98 and the aver-

208 APPENDIX A

0.99981 0.99983 0.99985 0.99987

Figure A.10: Histogram of the connection availability of geometric routing on CAIDA
topology with protection.

age value is 0.9998 which is a significant enhancement compared to no protection
scheme.

In the final scheme, as a comparison, we evaluate the connection availability
in an alternative scheme in which the shortest cycle between every two nodes is
calculated. Finding the shortest cycle between two nodes in the topology boils
down to finding minimum-cost flow of 2 between the nodes. Once the working
path is unavailable, the second node-disjoint shortest path is used as the protection
path. Availability of a connection is also dependent on the number of hop counts in
that connection. The comparison with the shortest cycle scheme gives an overview
on how the connection availability is affected by the increase in the number of
hop counts. Figure A.11 illustrates the distribution of the connections availability
for the shortest cycle scheme. For better visualization, the values in the range
of 0.9998 and 0.99999 are depicted. The percentile and the average values are
reported in Table A.4. An interesting observation is that, the minimum availability
obtained by this scheme is much lower than the one achieved by the proposed
protection scheme in geometric routing. This can be explained by the fact that for
some connections in the topology, it might not be feasible to find two node disjoint
paths while the proposed protection scheme is successful in finding an alternate
path. The average connection availability achieved by both schemes are almost the
same (0.9998). However, the maximum availability of the shortest cycle reaches
0.99999 while in the geometric scheme it reaches 0.99988.

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 209

0.99996 0.99997 0.99998 0.99999 1.00000

Figure A.11: Histogram of the connection availability of shortest cycle scheme on CAIDA
topology.

Table A.4: Percentile and average values for connection availability in 3 schemes :i)
geometric routing without protection (G) ii) geometric routing with protection (G-P) and

iii) shortest cycle (SH)

Min 25 50 75 Max. Average
G 0.94202 0.99388 0.99600 0.99845 0.99985 0.99531
G-P 0.98516 0.99984 0.99986 0.99987 0.99988 0.99983
SH 0.94841 0.99997 0.99999 0.99999 0.99999 0.99987

A.6 Summary and future work

We calculated connection availability of geometric routing over optical transport
network on the Internet topology. Finding a reasonable model for the Internet
topology was a challenge due to the incompleteness of the available data. This
was tackled by using different databases and some estimations on the geolocation
of the nodes in the Internet graph.

As fiber optic cable is the dominant component in the availability model of
network (frequency of the cuts and long repair times), the availability of connec-
tions is dependent on the distances of the adjacent nodes in the topology. Using
the explained Internet model, the length of the links in the Internet topology ranges
from 10 km to 20K km. Therefore, the availability of connections including the
links with large length as 20K km are considerably negatively affected. The other
dominant factor in the connection availability is the hop counts between source

210 APPENDIX A

and destination of the connections. However, the results in our prior work showed
that the proposed protection schemes result into paths with length close to the
shortest path length. The experimental results showed that the proposed scheme
performs reasonably well compared to the shortest cycle alternative. Although the
maximum achievable connection availability is higher in the shortest cycles, the
minimum availability achieved by the proposed protection is much higher than the
other scheme.

In large topologies such as Internet, the probability of multiple failures is not
negligible. In order to obtain higher connection availability, protection against
more failures should be considered. An interesting direction for future work is
to evaluate the connection availability in geometric routing for multiple failure
scenarios. Using recovery schemes against multiple failures should allow for high
availability of up to 0.99999 as the ultimate goal.

A.7 Conclusion
In this paper, we considered geometric routing as an alternative to BGP to route be-
tween Autonomous Systems (ASes) in the Internet. We used a simple and promis-
ing greedy embedding based on a spanning tree of the network. As failures in the
network might affect the greedy embedding, recovery techniques were considered
to avoid packets reaching a dead end. We performed an availability analysis of
the protection scheme for single failure in geometric routing on the Internet topol-
ogy. For this analysis, we used a network model for the Internet topology which
was challenging to achieve due to the incompleteness of the existing data. The
availability was evaluated on a AS-level graph of CAIDA. In order to achieve a
realistic evaluation, we used a multi-layer model in which links are protected in
lower layers than network layer. The results showed significant enhancement in the
availability compared to the scheme when no protection for the geometric routing
was considered. We compared our results with an existing alternative in which
the shortest cycle between the source and the destination is calculated. An inter-
esting observation was that the minimum connection availability achieved by the
proposed scheme was much higher than the shortest cycle scheme and the average
connection availability obtained by both schemes were almost the same.

Acknowledgment
This work is partly funded by the European Commission through the EULER
project (Grant 258307), part of the Future Internet Research and Experimentation
(FIRE) objective of the Seventh Framework Programme (FP7).

AVAILABILITY ANALYSIS OF RESILIENT GEOMETRIC ROUTING 211

References

[1] G. Huston. BGP Routing Table Reports, 2013. http://bgp.potaroo.net/.

[2] R. Fonseca, S. Ratnasamy, J. Zhao, C. Ee, D. Culler, S. Shenker, and I. Sto-
ica. Beacon vector routing: Scalable point-to-point routing in wireless sen-
sornets. In Proceedings of the 2nd conference on Symposium on Networked
Systems Design & Implementation-Volume 2, pages 329–342. USENIX As-
sociation, 2005.

[3] C. Papadimitriou and D. Ratajczak. On a conjecture related to geometric
routing. Theoretical Computer Science, 344(1):3–14, 2005.

[4] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Single
failure resiliency in greedy routing. In Proceedings of the 9th international
conference on Design of Reliable Communication Networks, pages 312–319,
2013.

[5] S. Sahhaf, W. Tavernier, D. Colle, M. Pickavet, and P. Demeester. Link failure
recovery technique for greedy routing in the hyperbolic plane. Computer
Communications, 2012.

[6] The CAIDA AS Relationships Dataset, January 2004.
http://www.caida.org/data/active/as-relationships/.

[7] M. Clouqueur and W. D. Grover. Availability analysis of span-restorable
mesh networks. Selected Areas in Communications, IEEE Journal on,
20(4):810–821, 2002.

[8] D. Arci, G. Maier, A. Pattavina, D. Petecchi, and M. Tornatore. Availability
models for protection techniques in WDM networks. In Design of Reliable
Communication Networks, 2003.(DRCN 2003). Proceedings. Fourth Inter-
national Workshop on, pages 158–166. IEEE, 2003.

[9] Q. She, X. Huang, and J. P. Jue. How reliable can two-path protection be?
Networking, IEEE/ACM Transactions on, 18(3):922–933, 2010.

[10] D. A. Mello, D. A. Schupke, and H. Waldman. A matrix-based analytical
approach to connection unavailability estimation in shared backup path pro-
tection. Communications Letters, IEEE, 9(9):844–846, 2005.

[11] J. Ahmed, C. Cavdar, P. Monti, and L. Wosinska. Hybrid Survivability
Schemes Achieving High Connection Availability With a Reduced Amount
of Backup Resources [Invited]. Journal of Optical Communications and Net-
working, 5(10):A152–A161, 2013.

http://bgp.potaroo.net/

212 APPENDIX A

[12] M. Azim and M. Kabir. Availability study of M:N automatic protection
switching scheme in WDM networks. Journal of High Speed Networks,
18(1):1–13, 2011.

[13] M. Azim and M. Kabir. Availability analysis under multiple link failures in
WDM networks with shared-link connections. Photonic Network Communi-
cations, 23(1):83–91, 2012.

[14] E. Calle, J. Segovia, and P. Vila. Availability Analysis of GMPLS Connections
based on Physical Network Topology. Other IFIP Publications, (1), 2011.

[15] R. Kleinberg. Geographic routing using hyperbolic space. In INFOCOM
2007. 26th IEEE International Conference on Computer Communications.
IEEE, pages 1902–1909, 2007.

[16] D. Eppstein and M. Goodrich. Succinct Greedy Geometric Routing Using
Hyperbolic Geometry. IEEE Transactions on Computers, 60(11):1571–1580,
2011.

[17] R. Flury, S. Pemmaraju, and R. Wattenhofer. Greedy routing with bounded
stretch. In INFOCOM 2009, IEEE, pages 1737–1745, 2009.

[18] D. Chen and P. Varshney. A survey of void handling techniques for geo-
graphic routing in wireless networks. IEEE Communications Surveys and
Tutorials, 9(1):50–67, 2007.

[19] A. Cvetkovski and M. Crovella. Hyperbolic embedding and routing for dy-
namic graphs. In INFOCOM 2009, IEEE, pages 1647–1655, 2009.

[20] J. Vasseur, M. Pickavet, and P. Demeester. Network recovery: Protection
and Restoration of Optical, SONET-SDH, IP, and MPLS. Morgan Kaufmann
Publishers, 2004.

	Front cover
	Title page
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms
	Samenvatting
	Summary
	Introduction
	Background on communication network
	Internet network infrastructure
	Network layering and technology overview
	IP routing

	Network recovery
	Recovery scope
	Restoration
	Protection

	The challenge of Internet routing
	Geometric routing
	Addressing and forwarding

	Research challenges in geometric routing

	The challenge of telecom virtualization
	Network function virtualization
	Network service chaining
	Research challenges in service orchestration

	Outline and research contributions
	Geometric routing
	Service orchestration

	Publications
	Publications in international journals (SCI)
	Publications in international conferences (SCI)
	Publications in other international conferences
	Publications in national conferences

	References

	Link failure recovery technique for greedy routing in the hyperbolic plane
	Introduction
	Existing work
	Greedy embedding in the hyperbolic plane
	Recovery method in greedy routing
	Single link failure
	Upstream/downstream failure recovery
	Subtree determination
	Exchanged packets
	Correctness of the method

	Multiple link failures
	Multiple link failure recovery
	Finding hub nodes in a backup path

	Comparison with tree-oriented routing algorithms

	Evaluation of the recovery method
	Experimental results for single link failure recovery method
	Stretch evaluation
	Overhead evaluation

	Experimental results for multiple link failure recovery method
	Stretch evaluation
	Overhead evaluation

	Conclusion
	References

	Experimental validation of resilient tree-based greedy geometric routing
	Introduction
	Our contribution

	Related work
	Greedy Tree-based geometric Routing (GTR)
	Tree-based greedy embedding
	Single link failure protection technique
	Proposed distributed algorithm
	Tree construction
	Coordinate calculation
	Algorithm complexity
	Algorithm states
	Network failures
	Network additions
	Protection

	Routing platform
	GTR implementation in Quagga routing suite
	Greedy forwarder implementation in Click modular router

	Experimentation and discussion of the results
	iLab.t virtual wall platform
	Emulation vs. simulation
	Experimentation setup and objectives
	Stretch evaluation of GTR
	Recovery capabilities of GTR
	Impact of topology dynamics on GTR

	Lessons and discussions

	Conclusions
	References

	Efficient geometric routing in large-scale complex networks with low-cost node design
	Introduction
	Related work
	Greedy Tree-based geometric Routing (GTR)
	Tree-based greedy embedding
	Greedy forwarding based on coordinate sets (CS)
	Delivery guarantee

	Hardware design of a greedy forwarder
	Performance evaluation and analysis
	Routing stretch evaluation
	Coordinate size evaluation
	Area complexity evaluation

	Challenges and future work
	Conclusion
	References

	Routing at large scale: advances and challenges for complex networks
	Introduction
	Routing design problem
	The routing function
	Trade-offs in routing
	Challenges in the Internet routing system

	Routing schemes
	Path-vector schemes improvements
	Routing schemes in complex networks
	Compact routing
	Geometric routing
	Route Discovery with network's structural properties (RD)

	Routing schemes for DTN and P2P networks
	Delay Tolerant Network (DTN)
	Peer-to-Peer (P2P) overlay network

	Comparative analysis and identified trade-offs
	Conclusion and future directions
	References

	Network service chaining with optimized network function embedding supporting service decompositions
	Introduction
	Related work
	Service decomposition
	Problem description
	Integer Linear Programming formulation
	Physical network
	Service request
	Decision variables
	Objective function
	Constraints
	Decomposition mapping constraints
	Physical node constraints
	Link to path mapping
	Quality of service requirements

	ILP-based algorithm

	Decomposition selection-backtracking mapping algorithm: DSBM
	Performance evaluation
	Simulation environment
	Performance metrics
	Evaluation results

	Conclusion
	References

	Scalable architecture for service function chain orchestration
	Introduction
	Related work
	Service function chaining
	Service chain orchestration
	ESCAPE framework
	Network Function-Information Base (NF-IB)

	Embedding algorithm
	Performance evaluation
	Discussion: Towards a scalable orchestration framework
	Conclusion
	References

	Conclusions and future work
	Resilient scalable routing in Internet
	Future directions and trends

	Service orchestration in virtualized telecom networks
	Future directions and trends

	References

	Availability analysis of resilient geometric routing on Internet topology
	Introduction
	Related work
	Greedy geometric routing
	Tree-based greedy embedding
	Single failure protection techniques

	Performance parameters
	Component availability
	Protected/Unprotected connection availability
	Network availability model

	Reliability performance evaluation of connections
	Methodology for simulation approach
	Internet topology
	Numerical results

	Summary and future work
	Conclusion
	References

