
Soft Error Analysis and Mitigation
at High Abstraction Levels

Zur Erlangung des akademischen Grades eines

Doktors der Ingenieurwissenschaften

von der Fakultät für Informatik
des Karlsruher Instituts für Technologie (KIT)

genehmigte

Dissertation

von

Liang Chen
aus Henan, China

Tag der mündlichen Prüfung: June 19, 2015

Referent: Prof. Dr. Mehdi Baradaran Tahoori, KIT
Korreferent: Dr. Dan Alexandrescu, iRoC Technologies

Acknowledgments

Completing the PhD is a long expedition for me, during which I underwent unforgettable
life experience: from daunting and discouraging periods after bitter frustrations on research
and publications, to the comforting and reassuring moments after fruitful project progress
and final acknowledgment from the research community. Standing at the destination point
and looking back at the old times, I want to express my deepest gratitude to all the people
accompanying me in this journey.

First and foremost I want to give the sincere thanks to my advisor Prof. Mehdi Tahoori.
During the more than 4 years PhD period, his visionary advice on my research directions, his
continuous care of my research progress as well as his patient efforts to improve my research
capabilities are the prerequisites for my successful completeness of this dissertation today. In
addition, his encouragement after research difficulties and paper rejections, the valuable op-
portunities he provided for communications with scientific experts as well as industry leaders
during international conferences or workshops, are other indispensable factors for my profes-
sional and personal development. In particular, during the internship at iRoC I met Dr. Dan
Alexandrescu and had impressive working experience with him. His extraordinary expertise in
my research period, the inspiring discussion with him on the cutting edge industry progress,
and the efforts he spent as the second advisor during the graduation progress are all highly
appreciated.

Furthermore, I want to thank all the colleagues in our Chair of Dependable Nano Computing
(CDNC). Their responsible and kind-hearted help in both working and personal aspects facil-
itated my research activities in CDNC, as well as my living experience in Karlsruhe. Among
them I would like to give special gratitude to Mojtaba Ebrahimi, with whom I had very close
research collaborations in the past years. His inspiring advices during idea formulation, his
consistent help in the implementations, paper writing and polishing have made significant
contributions to my PhD achievements.

In addition, I gratefully acknowledge the funding sources that made my PhD work possible:
the DFG SPP1500 Priority Program “PERICES: Providing Efficient Reliability in Critical
Embedded Systems”.

I am also very grateful to my friend and senior Dr. Bing Li from Technical University
Munich, who gave me essential advices and encouragement to go through the toughest period
during my PhD study. Last but not least, I want to thank my parents and sister who are
accompanying me with endless love all the time. No matter what happens, they are always
supporting me and standing on my side, which is the root source of all my power and passion
in the life.

Liang Chen
Haid-und-Neu Str. 62
76131 Karlsruhe

Hiermit erkläre ich an Eides statt, dass ich die von mir vorgelegte Arbeit selbstständig verfasst
habe, dass ich die verwendeten Quellen, Internet-Quellen und Hilfsmittel vollständig angegeben
haben und dass ich die Stellen der Arbeit - einschließlich Tabellen, Karten und Abbildungen
- die anderen Werken oder dem Internet im Wortlaut oder dem Sinn nach entnommen sind,
auf jeden Fall unter Angabe der Quelle als Entlehnung kenntlich gemacht habe.

Karlsruhe, Juli 2015

———————————
Liang Chen

ABSTRACT

With the rapid advance of semiconductor technology in the past several decades, computing
systems already become indispensable parts of our society. The main driving forces behind the
prevalent usage of these systems are their boosting performance and continuous integration
of sophisticated functionalities. However, alongside with the aggressive downscaling of the
transistor feature size in these systems, the current and future technologies are facing serious
reliability challenges, which mandate a new paradigm to take reliability into consideration
during the entire system design flow to achieve cost-efficient reliable computing.

One of the major reliability issues is radiation-induced soft error, which is a type of transient
fault during the system operation, and it is caused by charge collection after the transistor
is struck by the energetic particles from packaging materials or cosmic rays. Soft errors are
not reproducible and can severely corrupt the system data integrity. The previous soft error
mitigation solutions at low abstraction levels are very costly, because they stay at the end of
the design stack and the useful high level application semantics for error abstraction and the
corresponding error masking effects are totally ignored. In contrast, at high abstract levels
there are significant potentials for cost-effective solutions, because the reliability metric are
considering earlier in the design phase, and the larger flexibility in the design space exploration
can be leveraged.

This thesis presents several novel and efficient techniques for soft error evaluation and
mitigation at high abstract levels, i.e. from register transfer level up to behavioral algorithmic
level. For error evaluation, first we perform sophisticated correlation analysis during the
propagation process of multiple errors, which enables the appropriate error abstraction from
logic level to register transfer level. Then at register transfer level, according to different error
propagation properties, the data and control paths are carefully analyzed with analytical and
formal techniques, respectively. Finally at the algorithmic level, the soft error evaluation is
comprehensively performed by considering branch probabilities and functional semantics using
the probabilistic model checking technique.

Based on previous detailed soft error evaluation, cost-efficient error mitigation solutions
based on selective protection are investigated during the high level synthesis process. We
develop a versatile reliability-aware synthesis framework regarding the allocation and bind-
ing of hardware modules (in the spatial domain), and the scheduling of behavioral operations
(in the temporal domain), which can generate low-cost reliability-enhanced hardware imple-
mentations at register transfer level. This synthesis framework features the comprehensive
consideration of the reliability metrics at both low and high abstraction levels, i.e. intrin-
sic soft error rates of hardware modules and algorithmic error vulnerabilities of behavioral
variables and operations. The effectiveness of the proposed techniques is demonstrated with
extensive synthesis experiments, which show that compared with the state-of-the-art solutions,
our techniques can achieve much higher system reliability with the same hardware overhead,
i.e. more cost-efficient reliability enhancement.

ZUSAMMENFASSUNG

Bedingt durch die schnell voranschreitende Entwicklung der Halbleitertechnologie in den
vergangenen Jahrzehnten sind Computersystem mittlerweile essentielle Bestandteile unserer
Gesellschaft. Der Hauptgründe für diesen Erfolg und die gängige Nutzung solcher Systeme
ist die kontinuierlich wachsende Leistungsfähigkeit und die Integration von immer mehr sowie
immer ausgeklügelteren Funktionen. Um dies zu ermöglichen werden die Transistordimensio-
nen mit jeder Generation weiter verkleinert. Dies bringt allerdings auch zahlreiche Heraus-
forderungen mit sich. So sind aktuelle und zukünftige Technologiegenerationen grossen Zuver-
lässigkeitsherausforderungen ausgesetzt, weshalb die Zuverlässigkeit von Computersystemen
als Paradigma in allen Phasen des gesamten Entwicklungszyklus solcher Systeme beachtet
werden muss.

Eine der wichtigsten Zuverlässigkeitsherausforderungen sind “Soft Errors” verursacht durch
Strahlung. Dabei handelt es sich um transiente Fehler, die während des Betriebs auftreten, und
durch Treffer von hochenergetischen Teilchen aus dem Verpackungsmaterial oder aus kosmis-
cher Strahlung hervorgerufen werden. “Soft Errors” können daher nicht reproduziert werden.
Darüber hinaus können sie die Datenintegrität des betroffenen Systems stark beeinträchti-
gen. Die bisherigen Lösungsansätze konzentrieren sich auf die untersten Abstraktionsschichten
und sind daher sehr kostspielig, da in solchen Methoden “Soft Errors” nur am Ende des De-
signzyklus beachtet werden und nützliche Informationen von höheren Abstraktionsebenen nicht
berücksichtigt werden. Dennoch haben höhere Abstraktionsebenen ein grosses Potential um zu
einer effektiven Problemlösung beizutragen, da die Zuverlässigkeitsprobleme bereits in frühen
Phasen des Entwicklungszyklus betrachtet werden können und zudem ein grösserer Suchraum
für Lösungsansätze besteht.

In dieser Dissertation werden neue Ansätze zur Modellierung und zur Problemlösung für
“Soft Errors” auf höheren Abstraktionsebenen (von Register-Transfer-Ebene bis zur Algorithmen-
Ebene) vorgestellt. Um eine geeignete Abstraktion der Fehlermechanismen zu erreichen,
müssen dazu die Korrelationen von diversen Fehlerursachen auf Logikebene untersucht wer-
den. Anschliessend folgt eine weitere Abstraktion auf Register-Transfer-Ebene, auf der die
Daten- und Kontrollpfade mit Hilfe von analytischen sowie formalen Methoden analysiert wer-
den. Schlussendlich wird eine “Soft Error” Evaluierung auf noch höheren Abstraktionsebenen
unter der Berücksichtigung der Verhaltensbeschreibung des Designs durchgeführt. Hierzu wird
ein probabilitischer Model-Checker-Ansatz entwickelt, der Sprungwahrscheinlichkeiten und se-
mantischen Aussagen des Designs in die Analyse miteinbezieht.

Basierend auf der detaillierten “Soft Error” Analyse können dann kostengünstige Ansätze
entwickelt werden um die Fehlerrate zu verringen, in dem selektive Schutzmöglichkeiten währen
der High-Level Synthese ausgenutzt werden. Zu diesem Zweck haben wir eine Synthese-
Plattform auf Register-Transfer-Ebene entwickelt, die die Zuverlässigkeit der Schaltung berück-
sichtigt. Mit dieser Plattform ist es möglich, eine optimale Strategie hinsichtlich der Zuverläs-
sigkeit für die Allokierung und Bindung der Hardware-Ressourcen (örtliche Domäne) sowie für
das Scheduling der Operationen (zeitlich Domäne) zu finden, um auf diese Weise die Zuverläs-

sigkeit der Schaltung zu verbessern. Dafür baut die Plattform auf ausführlich beschriebenen
Zuverlässigkeitsmetriken auf. Die Effektivität der vorgestellten Ansätze während der High-
Level Synthese wird in ausführlichen Experimenten beleuchtet und mit State-of-the-Art Lö-
sungen verglichen. Diese Vergleiche zeigen dabei, dass unsere Methoden wesentlich effizienter
die Zuverlässigkeit verbessern können, d.h. mit den gleichen Kosten kann die Zuverlässigkeit
des Systems deutlich gegenüber gängigen Lösungen gesteigert werden.

Contents

Glossary v
List of Figures ix
List of Tables xi

1 Introduction 1
1.1 Scope and Contributions . 2
1.2 Outline . 5

2 Preliminaries and State of the Art 7
2.1 Soft Error Basics . 7

2.1.1 Origins . 7
2.1.2 Models and Metrics . 9
2.1.3 Scaling Trends . 10

2.2 Soft Error Analysis and Mitigation . 11
2.2.1 Design Views and Abstraction Levels . 11
2.2.2 Low Level Error Analysis and Mitigation 14
2.2.3 High Level Error Analysis and Mitigation 17
2.2.4 Summary of State of the Art . 20

3 Error Correlation Analysis at Logic Level 21
3.1 Introduction . 21
3.2 Related Work . 22
3.3 Correlation Model . 23

3.3.1 Correlation Coefficient Method . 24
3.3.2 Error Correlation . 26

3.4 Proposed Error Estimation Methodology . 26
3.4.1 Error Propagation Model . 27
3.4.2 Error Cone Extraction . 29
3.4.3 Super-gate Correlation Formulas . 29
3.4.4 Dynamic Blocking of Error Propagation 31
3.4.5 Limited Depth Correlation Analysis . 31

3.5 Extensions of the Proposed Method . 34
3.5.1 Multiple Errors Propagation with Correlation 34
3.5.2 Block-level Error Estimation . 34

3.6 Experimental Results . 35
3.6.1 Experimental Setup . 35
3.6.2 Benchmark Results . 39
3.6.3 Case Study of OpenRISC 1200 ALU . 40

3.7 Conclusion and Summary . 43

i

Contents

4 Vulnerability Analysis at Register Transfer and Behavioral Levels 47
4.1 Introduction . 47
4.2 Preliminary and Problem Statements . 49

4.2.1 RTL Control and Data Paths . 49
4.2.2 Fault Model and Register Vulnerability 49
4.2.3 Formal Methods for Soft Error Analysis 50

4.3 Register Vulnerability Evaluation in RTL Control Paths 52
4.3.1 Probabilistic Model Construction . 52
4.3.2 Property Specification . 54
4.3.3 Model Checking . 55
4.3.4 Scalability Improvement of the RTL Model Checking 56

4.4 Word-level Error Analysis in RTL Data Paths 61
4.4.1 Basic Idea . 61
4.4.2 Bit-level vs Register-level . 61
4.4.3 Register-level EPP Rules . 63
4.4.4 Overall EPP Estimation . 66

4.5 Vulnerability Analysis at Behavioral Level . 67
4.5.1 Random Error Occurrence Modeling . 67
4.5.2 Error Propagation Modeling . 67
4.5.3 Vulnerability Evaluation . 69

4.6 Experimental Results . 69
4.6.1 Control Path Evaluation Results . 69
4.6.2 Data Path Evaluation Results . 72
4.6.3 Case Study of OpenRISC IC FSM . 76
4.6.4 Comparison with Related Work . 77

4.7 Conclusion and Summary . 79

5 Reliability-aware Resource Allocation and Binding 81
5.1 Introduction . 81
5.2 Motivation . 83

5.2.1 Non-uniform Soft Error Vulnerabilities 83
5.2.2 Non-unique Binding Solutions . 84

5.3 Reliability-aware Register Binding . 84
5.3.1 Definitions and Notations . 85
5.3.2 Register Binding Optimization . 86

5.4 Functional Unit Allocation and Binding . 87
5.4.1 FU Allocation and Binding Space Determination 88
5.4.2 Constraints and Objective . 90
5.4.3 Reliability-aware FU Binding Optimization 91

5.5 Vulnerability Compaction and Heuristic Resource Binding 91
5.6 Experimental Results . 92

5.6.1 Work Flow . 94
5.6.2 Characterization of the RTL Resources 94
5.6.3 Register Binding Results Analysis . 96
5.6.4 FU Binding Results Analysis . 99

ii

Contents

5.6.5 Combined analysis of register and FU binding 101
5.7 Conclusion and Summary . 102

6 Reliability-aware Operation Chaining 105
6.1 Introduction . 105
6.2 Preliminaries and Motivation . 106

6.2.1 Behavioral Design and Reliability Models 106
6.2.2 Reliability-aware Chaining in CFI Designs 107

6.3 Reliability-aware Scheduling and Binding . 108
6.3.1 Definitions and Notations . 108
6.3.2 Basic Scheduling Constraints . 110
6.3.3 Operation Chaining Constraints . 111
6.3.4 Binding Constraints and Multiplexer Consideration 113
6.3.5 Objective . 114
6.3.6 Heuristic Algorithm . 114

6.4 Experimental Results . 115
6.4.1 Experimental Setup . 115
6.4.2 RTL Component Library Characterization 116
6.4.3 Results Analysis . 117
6.4.4 Comparison with Related Work . 118

6.5 Conclusion and Summary . 119

7 Concluding Remarks and Outlook 121

Bibliography 123

iii

Glossary
A | B | C | D | E | F | H | I | L | M | N | P | R | S | T | V
A
ACE Architecturally Correct Execution.
ADPCM Adaptive Differential Pulse Code Modulation.
ALU Arithmetic Logic Unit.
AVF Architectural Vulnerability Factor.

B
BB Basic Block.
BISER Built-in Soft Error Resilience.

C
CC Correlation Coefficient.
CCM Correlation Coefficient Method.
CDFG Control and Data Flow Graph.
CEP Correlated Error Propagation.
CFI Control Flow Intensive.
CMOS Complementary Metal-Oxide-Semiconductor.

D
DFG Data Flow Graph.
DFI Data Flow Intensive.
DFS Depth First Search.
DICE Dual Interlock Storage Cells.
DTR Data Type Reduction.

E
ECC Error Correction Code.
EPF Error Propagation Function.
EPP Error Propagation Probability.

F
FI Fault Injection.
FIT Failure in Time.
FPE Failures per Execution.
FSM Finite State Machine.
FU Functional Unit.

H
HLS High Level Synthesis.

I

v

Glossary

IC Instruction Cache.
ILP Integer Linear Programming.

L
LLVM Low Level Virtual Machine.
LP Linear Programming.

M
MBG Mapping and Binding Graph.
MBU Multi Bit Upset.
MC Monte-Carlo simulation.
MCU Multi Cell Upset.
MDP Markov Decision Process.
MPSoC Multi-Processor System on Chip.
MTTF Mean Time To Failure.
MUX Multiplexer.

N
NP Nondeterministic Polynomial.

P
PCC Pearson product-moment Correlation Coefficient.
PI Primary Input.
PMC Probabilistic Model Checking.
PO Primary Output.
PRISM A probabilistic model checker.

R
RAM Random Access Memory.
RTL Register-Transfer Level.

S
SAT Boolean Satisfiability.
SBU Single Bit Upset.
SDG Signal Dependency Graph.
SEE Single Event Effects.
SEL Single Event Latchup.
SER Soft Error Rate.
SET Single Event Transient.
SEU Single Event Upset.
SFI Statistical Fault Injection.
SFR System Failure Rate.
SOI Silicon-On-Insulator.
SP Signal Probability.
SPICE Simulation Program with Integrated Circuit Emphasis.

T
TCAD Technology Computer-Aided Design.

vi

Glossary

TMR Triple Modular Redundancy.
TPP Time-multiplexed PIs Partitioning.

V
VAS Verification Assisted Simplification.
VCD Value Change Dump.
VLSI Very-Large-Scale Integration.

vii

List of Figures

1.1 A typical digital system design flow . 3
1.2 Contributions of this work visualized on the Y-chart 4

2.1 Particle striking and the induced ionization in a transistor 8
2.2 Soft error trends for SRAMs . 10
2.3 Single-event multiple upsets (SEMU) rate to SEU rate ratio for the SRAMs

with Silicon-on-Insulator CMOS process [1] . 11
2.4 Gajski-Kuhn chart (Y-chart) . 12
2.5 Illustration of the design at different abstraction levels 13
2.6 Y-chart and design activities [2] . 14
2.7 Three masking effects in the combinational logic 15
2.8 Schematic of a DICE latch [3] . 17
2.9 Transient filter schematic [4] with the Filter Gates (FG) driven by the input

node N0 . 17
2.10 ACE and un-ACE intervals in the generic ACE analysis 18

3.1 Typical structures for correlation calculation 25
3.2 Different types of correlation . 26
3.3 Super gate representation . 27
3.4 Super and semi-super AND gate-level implementation 28
3.5 Error propagation paths and error cone . 29
3.6 Super-AND and wire correlation . 30
3.7 Super-AND equivalent of Super-OR gate . 31
3.8 Correlation reduction with signal/error propagation 32
3.9 Propagation paths with multiple error cones . 35
3.10 Error probability estimation and validation flow 37
3.11 Speedup, maximum and average inaccuracy for considering variant correlation

depths . 38
3.12 Primary input statistics of OpenRISC ALU running applications StringSearch

and BasicMath . 41
3.13 Error statistics for primary outputs of OpenRISC ALU running applications

StringSearch and BasicMath . 42

4.1 RTL control and data paths with code examples 50
4.2 Structural view of the RTL error evaluation . 52
4.3 Model construction for the soft error evaluation 53
4.4 Example of modeling the SEU and MBU . 55
4.5 Example of bisimulation equivalent states . 56
4.6 Construction of the error checking module . 58

ix

List of Figures

4.7 Time-multiplexed PIs partitioning . 59
4.8 RTL-level error propagation . 62
4.9 AND operation EPP . 64
4.10 Shift operation EPP . 65
4.11 Control data flow graph example and our adopted error propagation model . . 68
4.12 Register vulnerability evaluation flow in control paths 70
4.13 Relative reduction of modeling variables with three different techniques 72
4.14 Scalability investigation with large benchmarks 73
4.15 Validation Flow of the EPP rules . 74
4.16 Accuracy comparison of different DFG benchmarks 75
4.17 Runtime comparison of different DFG benchmarks 76
4.18 Vulnerabilities of representative registers in OR1200 IC FSM with four different

workloads . 78
4.19 Vulnerability ranking of the registers sorted based on the BasicMath workload . 78
4.20 Inaccuracy of the register vulnerabilities in related work [5] due to random

inputs assumption . 79

5.1 The lifetime, vulnerabilities and compatibilities of the variables in the barcode
benchmark . 84

5.2 An example of resource allocation and binding space determination 89
5.3 Reliability-aware register and FU binding flow 95
5.4 SER characterization of the RTL FU circuits 95
5.5 The achieved reliability with different level of register protection 97
5.6 Vulnerability distributions of the registers in the vulnerability-unaware baseline

and vulnerability-aware binding scenarios for barcode benchmark 98
5.7 Comparison on the runtime of the ILP-based and heuristic binding 100
5.8 Comparison between our vulnerability-aware binding and the vulnerability-

unaware binding with the sequence of 10%, 20% and 30% area overhead 101
5.9 Comparison of the reliability values from our behavioral estimation and RTL FI 102

6.1 An example of control and data flow graph . 107
6.2 Running example of reliability-aware chaining 109
6.3 Two cases of compatibility extraction from operation scheduling 113
6.4 Work flow of the proposed operation chaining based on ILP 116
6.5 Characteristics of two FUs with different hardening levels 116

x

List of Tables

3.1 Runtime (sec.) and accuracy of proposed CEP approach with correlation depth
d = 2 . 38

3.2 Outliers of average error probabilities for primary outputs of OpenRISC 1200
ALU . 44

3.3 Top 10 conditional error probabilities for primary outputs of OpenRISC 1200
ALU . 44

4.1 Comparison between simulation-based fault injection and formal methods [6] . 50
4.2 Benchmark characteristics and the runtime for register vulnerability evaluation 70
4.3 PMC variables reduction and corresponding runtime by applying three scala-

bility improvement techniques . 71
4.4 Overview of the benchmark DFGs . 73
4.5 Comparison of proposed analytical EPP approach with traditional SFI simula-

tion regarding accuracy and runtime (sec.) . 75
4.6 PI signal probabilities with different workloads 76

5.1 Area, power and reliability metrics of different versions of resource in the em-
ployed RTL library . 96

5.2 Reliability improvement and runtime for different binding scenarios 98
5.3 ILP runtime, reliability values with different area budgets for the CFI benchmarks 99
5.4 Comparison of the heuristic binding with ILP-based binding 99
5.5 Combined reliability improvement of vulnerability-aware binding over the vulnerability-

unaware case with the same area budgets . 102

6.1 Notations for reliability-aware scheduling . 111
6.2 Comparison between our proposed method and the previous techniques 117
6.3 Comparison between the ILP and heuristic binding 118

xi

1 Introduction

With the rapid development of semiconductor industry in the past several decades, comput-
ing systems nowadays become prevalent and indispensable parts of the human society. A
variety of application domains of the computing systems range from high-end mainframes
and mission-critical applications, such as aerospace satellites and civil aircraft, to the daily
consumer electronics such as laptops, smart phones and tablets. The primary driving force be-
hind the astonishing growth of computing system is the boosting performance and continuous
integration of sophisticated functionalities in the Very-Large-Scale Integration (VLSI) chips.
According to Moore’s law, which was first described by Gordon E. Moore in 1965 [7] and later
proved by the semiconductor industry, the number of transistors per integrated circuit chip
doubles approximately every two years. The corresponding aggressive scaling of the transistor
size, however, is facing serious reliability challenges, particularly in the nanoscale technology
era. The computing systems become more susceptible to the manufacturing and environmen-
tal imperfections, e.g. process variations and runtime variations. These challenges lead to a
new paradigm considering reliability as an additional design metric or constraint in the design
space exploration.

One of the major reliability issues is the radiation-induced soft error, which is transient fault
arising from the strike of energetic particles, such as alpha particles in packaging material
or neutrons from the atmosphere. When the particles with high energy pass through the
semiconductor device, e.g. Metal-Oxide-Semiconductor Field-Effect Transistor, and generate
electron and hole pairs, the electric charge can be collected by the source and drain nodes of
the transistors. If the accumulated charge exceeds a specific threshold (the so-called “critical
charge”), the strike may invert the state of a logic component, such as a memory cell, latch
or gate, thereby introducing a transient fault into the circuit operation. These errors are
called “soft” because rather than permanent malfunction of the impaired circuit, they have
the intermittent and transient characteristics. Compared with the permanent faults (i.e. hard
errors), soft errors are not reproducible and can occur even more often and severally corrupt
the system data integrity [8].

For many years soft error was regarded as a reliability issue only for the microelectronics in
aerospace applications, because the density of high energy particles in space is several orders
of magnitude larger than that at terrestrial level [9]. However, starting from 1980s this kind
of radiation-induced transient error has been demonstrated to be present in computing system
at sea level. The first report on soft errors due to the alpha particles in the contaminated
packing materials was from Intel company in 1978 [10], while the soft errors arising from
cosmic radiation were predicated by Ziegler and Lanford in 1979 [11], and first reported by
IBM corporation in 1984 [12].

Subsequently the soft error issue has become one of the major reliability concerns in semi-
conductor industry [3]. With the transistor feature size continuously shrinking, the critical

1

1 Introduction

charge is decreasing and a particle strike is more likely to cause soft error. Even the parti-
cles of lower energy, which have much larger amount than the high energy ones, can generate
sufficient charge to flip the circuit state. Aside from the traditional single bit error, the mul-
tiple bit upsets or transients are already coming into the picture [13]. Furthermore, although
the Soft Error Rate (SER) per device, the rate at which soft errors appear in a device for a
given environment, is predicted to remain roughly constant over several technology nodes [14],
the continuously increasing integration of transistors per chip (i.e. Moore’s law) makes the
system soft error rate approximately double with the advance of each technology node [15].
In consequence, soft error is emerging as a significant reliability obstacle to the microproces-
sors manufactured in nano technologies, and has already caused significant commercial loss
in recent years [12, 16, 17]. Therefore, soft error mitigation is becoming indispensable for
an increasing number of application domains at the ground level such as networking, servers,
medical, and automotive electronics.

Traditionally, the high-end computing systems always used redundant copies of hardware
components to detect and recover from errors. However, as in nanoscale era the soft error threat
spreads to the mainstream commodity computing markets, such kind of massive-redundancy-
based solutions have been prohibitively expensive and difficult to justify due to the high-volume
production and stringent constraints on the cost and power budgets. Although the efficient
coding techniques, such as parity and Error Correction Code (ECC), can be employed to
protect the regular memory blocks, they are not applicable to irregular sequential flip-flops
and combinational gates, which already become the dominant contributors to the system soft
error rate. The necessity to find cost-efficient reliability enhancement solutions has driven the
accurate quantitative evaluation of soft errors and the successive selective protection, which
can mitigate the soft error effects in an efficient way.

In the previous work on soft error evaluation and mitigation, most of the researchers focused
at the low abstraction levels. At device level the interactions among striking particles and the
silicon atoms in the semiconductor materials are analyzed in details, and at circuit level the
generation and propagation of radiation-induced transient current pulses are simulated by
SPICE. These fundamental analysis are essential and can obtain very accurate intrinsic soft
error rates. However, they can not take the error masking effects at architectural or application
levels into consideration, when the occurred errors at low levels propagate upwards in the
abstraction stacks. Furthermore, with the increased underlying complexity of future computing
system (with larger number of cores, heterogeneous integration of hardware components),
appropriate error abstraction ascending from low abstraction levels, modular evaluation and
simultaneous optimization on reliability and other traditional design metrics, are becoming
imperative to explore the cost-effective reliable designs.

1.1 Scope and Contributions

In a typical digital system design flow as shown in Figure 1.1, the design process starts from
a system specification and involves various synthesis and optimization phases at different lev-
els of abstraction. At each level the design functionalities are equivalent but the structural
components are different. The more refinements are performed, the smaller the component
granularity will become. At the end of this design flow, the physical layout of the design is

2

1.1 Scope and Contributions

finalized after rigorous verification, then it will be taped out to the manufacturing process
in a semiconductor foundry to obtain the real chips. During this entire design flow, various
automatic refinement processes - synthesis can be preformed to realize the design description
with components from the lower abstraction levels. In addition, to meet the final system
requirements without too many design iterations, the design metrics of the hardware compo-
nents such as power, area and reliability, which are typically abstracted from low levels, are
also indispensable inputs of the synthesis process.

Gate Level Design
(e.g. gate netlist)

Functional Description
(e.g. RTL structures)

Algorithmic Description
(e.g. C language)

System Specification

Physical Layout
(e.g. placed & routed cell)

Tape Out
(e.g. silicon chips)

High Level
Synthesis

High Level
Synthesis

Logic
Synthesis

Logic
Synthesis

Physical
Synthesis

Physical
Synthesis

R
e
fi
n
e
m
e
n
t

A
b
st
ra
ct
io
n

Figure 1.1: A typical digital system de-
sign flow

Regarding reliability analysis and improvement dur-
ing the design flow, in contrast to previous techniques
focusing mainly on gate and lower levels, in this thesis
we deal with the problem of soft error evaluation and
mitigation at higher abstraction levels. The objective
is to accurately evaluate the contribution of individual
hardware component regarding SER, and then alleviate
the error impact in a cost-efficient way – selective protec-
tion. To achieve this goal, the detailed analysis of error
propagation at each abstraction level (e.g. logic level,
register transfer level or algorithmic level), and also error
abstraction across the level boundaries need to be per-
formed properly. Based on the detailed error rate eval-
uation, error mitigation by selective protection scheme,
which just partially protects or hardens the most vul-
nerable components to achieve maximum reliability en-
hancement with minimum overhead, can be performed at
various abstraction levels. Nevertheless, compared with
low level solutions, the optimization starting from spec-
ifications at higher levels of abstraction can obtain more
benefits, because it leverages the behavioral semantics
which are ignored by low level techniques, and hence can
provide larger flexibility in the design space exploration.

In particular, the novel contributions of this thesis,
visualized on the well-known Y-chart [18] in Figure 1.2,

are described in details as following:

• Logic level soft error evaluation with correlation analysis.
Single particle strike on the transistors at device level can result in multiple correlated
bit flips during the error propagation at logic or higher abstraction levels. Addressing
this correlation is essential for accurate soft error rate estimation, and more importantly,
for the cross-layer error abstraction, e.g. from bit errors at logic level to word errors
at Register-Transfer Level (RTL). Our proposed logic level analysis technique [19, 20]
unifies the treatment of error-free signals and erroneous signals, and not only computes
accurate output error probabilities when internal gates are impaired by soft errors, but
also provides detailed quantification of the error correlations during the propagation
process.

• RTL error estimation leveraging word level error propagation properties.

3

1 Introduction

source drain

gate

+ - + - + -
- + - + - +
+ - + - + - +

α-particle/
cosmic neutron

Allocation Binding

Scheduling
Behavioral Description

(Control and Data Flow Graph)

Memory

Data
Paths

Control
Paths

RTL Component
Library

(Functional Unit)

Soft Error Rate
CharacterizationCircuit

Logic
RTL

Algorithm
System

Reliability-aware
High Level Synthesis

Error Abstraction

Behavioural
View

Structural
View

Physical
View

Vulnerability Evaluation

Error
Correlation

Figure 1.2: Contributions of this work visualized on the Y-chart

One drawback of the error estimation approaches at circuit/logic levels is that they
are only applicable to flattened netlists, in which there is no design hierarchy and each
signal is treated individually. Consequently, they lose the efficiency of error analysis
and mitigation at higher level. To overcome this shortcoming, our proposed modeling
work is extended from logic level to register transfer level [21–23]. It enables faster
error estimation by utilizing the word-level abstraction efficiency at RTL, and moreover,
quantifies the error contributions of different RTL components in a typical embedded
processor by taking the workload dependency into consideration.

• Behavioral variable and operation vulnerability analysis.
In addition to reliability characteristics of the RTL components, the behavioral variable
and operation vulnerability, i.e. the probability of system failure given that component
being erroneous, is another essential factor which influences the efficiency of selective
protection and hardening. To have an accurate evaluation of these vulnerability values,
with the behavioral design represented as a Control and Data Flow Graph (CDFG),
we perform a comprehensive vulnerability evaluation with probabilistic model checking
technique.
These proposed cross-layer error estimation techniques take advantage of the abstraction
efficiency and can successfully quantify the error contribution of each design component,
therefore provide indispensable guideline for the following co-optimization of cost and
reliability.

• Reliability-aware resource binding during high-level synthesis.
During the High Level Synthesis (HLS) a behavioral description of the design at algorith-

4

1.2 Outline

mic level is translated to a structural RTL implementation. HLS stays in the early design
phases, and provides the advantages of wide design space exploration and reduced design
and verification efforts. In addition to conventional performance, power and area criteria,
reliability-aware optimization during HLS is also investigated in our work [24, 25].
Motivated by the observation that for the behavioral designs, especially control intensive
ones, the behavioral variables and operations manifest nonuniform error vulnerabilities,
the co-optimization with other design objectives such as area and power is performed
to improve the error mitigation efficiency by binding vulnerable behavioral constructs
to few protected RTL components during HLS. The selective RTL protection guided by
behavioral vulnerabilities can obtain the most cost-efficient soft error mitigation in the
synthesized RTL implementation.

• Reliability-aware scheduling during high-level synthesis.
Scheduling plays a critical role during the HLS process to explore the concurrent execu-
tion to improve the performance of the generated RTL design. In the scope of reliability-
aware scheduling, we propose to redistribute the time within clock cycles according to
the operation criticality, i.e. assign less time to execute non-vulnerable operations (using
fast but less reliable RTL components) and more time to harden the vulnerable oper-
ations, so that the overall reliability of the generated RTL can be maximized with the
same performance constraint. Our novel scheduling formulation takes into consideration
not only the operation vulnerabilities at the behavioral level, but also the reliability and
delay characteristics of RTL components.

1.2 Outline

The remainder of the thesis is divided into three main parts. In the first part, Chapter 2
contains the necessary background as well as the state of the art on soft error evaluation and
mitigation. The second part (Chapter 3 and 4) focuses on the soft error evaluation using the
proposed framework at various abstraction levels, from error correlation analysis at logic level
to the vulnerability analysis at behavioral algorithmic level. The third part (Chapter 5 and 6)
discusses how to make use of the evaluated reliability information to achieve cost-efficient error
mitigation during the process of high level synthesis.

In particular, a brief introduction of each chapter is described as follows:
Chapter 2 contains the technical background on soft errors, which includes the origins of soft

error occurrence, the error analysis and mitigation at different abstraction levels. In addition,
the related work and the missing parts in the state of the art are also discussed.

In Chapter 3 a novel error estimation method is proposed to take into consideration the
error correlations at logic level. The employed concept of error propagation function and
super gate representation, which unify the treatment of error-free and erroneous signals, are
described. It not only calculates both signal and error probabilities in one pass, but also takes
the complex correlations among them into account. Two efficient heuristic algorithms are also
introduced to improve the scalability of the proposed method.

Chapter 4 raises the error abstraction to register transfer and behavioral levels, and performs
the error analysis by leveraging the word-level semantics. According to the different error

5

1 Introduction

propagation properties, the RTL data paths are analyzed with analytical formulas of error
propagation probability, while the control paths are modeled as state transition systems, and
formal probabilistic model checking is adopted to quantify the soft error vulnerabilities of the
registers in the control modules. In addition, the vulnerabilities of behavioral variables and
operations are also investigated with similar model checking technique.

Chapter 5 proposes a new reliability-aware allocation and binding technique during high
level synthesis. By adjusting the binding relations, i.e. mapping most vulnerable behavioral
structures to few RTL resources, and only applying selective protection to those resources,
cost-efficient reliability enhancement is achieved. The integer linear programming formulation
of this reliability-aware optimization as well as a hardening-efficiency guided greedy algorithm
to improve the scalability of the exact method is introduced.

Chapter 6 looks at the high level synthesis process from the timing perspective, i.e. the
scheduling step is investigated for the potential of reliability enhancement. This chapter
includes both the integer linear programming formulation and heuristic algorithm of the
reliability-aware scheduling technique, which simultaneously considers the behavioral oper-
ation vulnerabilities and RTL reliability-cost trade-offs of the functional units.

Finally, Chapter 7 concludes the thesis and discusses the potential directions of future
research.

6

2 Preliminaries and State of the Art

In the first part of this chapter, we will present the fundamental knowledge on soft errors,
including the error origins, models, evaluation metrics and scaling trends. In the second part,
the existing techniques to evaluate and mitigate soft errors at various abstraction levels will
be discussed.

2.1 Soft Error Basics

Soft errors are radiation-induced transient hardware malfunctions due to the interactions be-
tween striking particles with high energy and semiconductor materials of the transistor. Ac-
cording to different types of circuits such as combinational gates, flip flops and memory cells,
soft errors are modeled and analyzed in different ways. With the continuous technology scal-
ing, the system SER is also increasing which exacerbates the error mitigation challenges in
future.

2.1.1 Origins

For semiconductor devices, there exist various causes of transient faults such as supply voltage
drop due to simultaneous switching current flows in the power and ground networks, and
radiation from the external environments [26]. In this work we focus on the latter radiation-
induced transient soft errors.

When a transistor is struck by an energetic particle, this collision can induce localized ions
- a track of electron-hole pairs which may be collected by the source and drain areas of the
transistor. Figure 2.1 gives a brief illustration of this striking and ionizing phenomenon. The
recombination of these deposited charge will form a short current pulse, which may flip the
logic value in a memory cell or at the output of a logic gate and introduce a soft error. The
smallest amount of charge which can cause soft error is the so-called critical charge [3]. These
errors are called soft because the transistor itself is not permanently damaged by the strike.
After the system is reset, the hardware will again perform correct functionality.

For terrestrial applications, there are two main radiation sources which cause the soft er-
rors [9]:

• Alpha particles emitted by radioactive impurities in the chip packaging materials;
• Neutrons generated by the interaction between the cosmic radiation and the atmosphere

around the earth.
In the following, we will discuss the nature of these particles and the mechanisms that they
introduce errors in transistors.

7

2 Preliminaries and State of the Art

source drain

gate

 + - + - + -

 - + - + - +
 + - + - + - +

striking particles

Figure 2.1: Particle striking and the induced ionization in a transistor

Alpha Particles

An alpha particle is composed of two protons and two neutrons, which are bound together
and identical to one helium nucleus. The most common sources of alpha particles are from
the radioactive nuclei, such as 238U , 235U , and 232Th, in their decay process.

The first report on soft error, from Intel company in 1978, identified the alpha particles
from the contaminated packing materials as the main error cause [10]. The alpha particles
from the impurities in packaging materials typically have kinetic energies in the range from 4
to 9 MeV, which are lower than those of typical neutrons which affect Complementary Metal
Oxide Semiconductor (CMOS) transistors. However, when these alpha particles pass through
the semiconductor device, they lose the kinetic energy mainly through interactions with the
transistor substrate, therefore deposit a dense track of charge and create electron-hole pairs.

The radioactive impurities, which emit alpha particles and cause soft errors, are mainly
from the chip manufacturing and packaging processes, such as the semiconductor materials
or the solder bumps. In particular, with the increasing use of flip-chip packaging toward 3-
dimensional integrated circuits, the solder bumps have already moved very close to the active
silicon devices. Therefore, even the low-energy alpha particles become capable to induce soft
error [27].

There are different mitigation strategies to reduce the rate of alpha-particle-induced soft
errors. The first one is to develop and manufacture the semiconductor chips using new materials
with low radioactive compositions. The second one is to develop a barrier, either on the chip,
directly under the solder bumps, or on the packaging above the thin-film wiring levels. This
barrier can prevent the alpha particles due to external sources from affecting the internal
product circuits [28]. However, both these approaches increase the processing complexity and
manufacturing cost. It is very difficult, also very expensive, to completely eliminate alpha
particles from the chip manufacturing and packaging process. Therefore, semiconductor chips
typically need fault tolerant methods during the design to protect the chip against alpha
particle strikes.

Cosmic Particles

Before 1980s radiation-induced reliability issue was only considered for the space applications.
In space, the radiation conditions are much more severe than at the ground level due to

8

2.1 Soft Error Basics

the primary cosmic rays and secondary cosmic rays [3]. The primary cosmic rays include
galactic particles and solar particles, which bombard the outer atmosphere of the earth. While
these particles collide with the atoms in the atmosphere, a shower of newly-created particles,
including pions, muons and neutrons, consist of the secondary cosmic rays. The particles,
which ultimately arrive at the earth surface, become the major threats of computing system
at terrestrial level. Although protons and pions can also induce soft errors, and in particular,
direct ionization of protons is promising to be a new concern in future technologies with
smaller transistor size, currently the neutrons are considered as the most important source of
radiation-induced soft errors [9].

The neutron is one of the elementary particles that make up an atom. It is an uncharged
subatomic particle slightly heavier than that of the proton, which is positively charged. As
neutron is neutral without electric charge, it does not interact with the charged electrons
and can pass through the electronic clouds in atoms without being affected. Compared with
electrons and other charged particles, neutrons are highly penetrating particles. That is to say,
they can travel significantly large distance in the matter without obstruction. Therefore, they
interact with atomic nuclei and become one origin of soft errors mainly via the production of
secondary charged particles. This kind of mechanism is called indirect ionization [28].

2.1.2 Models and Metrics

As a subset of Single Event Effects (SEE), soft error can be categorized into following models
according to different circuit types [9, 29]:

• Single Bit Upset (SBU), which represents the radiation-induced bit-flip in a memory cell
or a latch;

• Multi Bit Upset (MBU), when the striking particles have very high energy, they can
cause the upset of two or more bits in the same word;

• Multi Cell Upset (MCU), when the striking event causes the upset of two or more memory
cells or latches;

• Single Event Transient (SET), when the particle strikes a combinational logic gate, it
can generate transient glitches in the gate output. If the induced SETs propagate in the
gate network and finally are latched in downstream flip-flops or latches, they become
soft errors;

• Single Event Latchup (SEL), when the particle strike triggers the parasitic bipolar tran-
sistors in CMOS technology. It creates abnormal large current and therefore induces a
latch-up. For the occurrence of SEL, it is necessary to have a full chip power reset to
remove this system malfunction. In some case SELs can also cause permanent damage
to the device and introduce a hard error.

The term Single Event Upset (SEU) is generally a synonym for soft error, and in most case it
is used to cover the two most common types of soft errors: SBU and MBU.

Regarding soft error metrics, usually the SER of a device is reported in Failure in Time
(FIT), where 1 FIT means one failure per billion (109) operational hours, i.e. one failure per
144,077 years. The typical FIT rates of an electronic system is in the range from 100 to 100,000
FIT, which means approximate 1 soft error per year [9]. For soft error evaluation, the FIT
metric is additive, which means the error rates (FIT) of a system is the summation of all the

9

2 Preliminaries and State of the Art

(a) Per-bit SEU rates [31]

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

2232456590130180250

S
o

ft
 E

rr
o

r
R

at
e

(n
o

rm
al

iz
ed

)

Technology Node (nm)

System SER

Per-bit SER

(b) Trends of bit and system SER predicted in [15]

Figure 2.2: Soft error trends for SRAMs

FIT rates of its consisting components [3].

FITsystem =
N∑
i=1

FIT icomponent (2.1)

In the reliability engineering, Mean Time to Failure (MTTF) is another commonly used
metric to express the system failure rates, which represents the mean time elapsed between
two successive failures. As the soft errors are randomly introduced bit flips, it is reasonable to
assume that the instantaneous SER of a system in a given time period is constant. Therefore,
under the exponential failure law [30], the MTTF of a system and its soft error FIT rates are
inversely related:

MTTF in years = 109

FIT rate× 24 hours× 365 days

2.1.3 Scaling Trends

Following the famous Moore’s law, the International Technology Roadmap for Semiconductors
[32] predicts a drastic reduction of both the transistor supply voltage and physical gate size.
According to this roadmap, in the next 10 years the number of transistors per system-on-chip
(SoC) will increase by 12. In addition, the continuous increasing frequency of circuit operation
also has significant impact on the evolution of SER. All these factors will exacerbate the soft
error challenges in future technology nodes [28, 33].

Figure 2.2(a) shows the per-bit rate of SEU in SRAM. We can see that this rate has
saturated and is even decreasing with technology downscaling. This is because not only the
critical charge which can generate an SEU, but also the silicon volume from which induced
charges can be collected, have decreased [9]. The latter trend dominates over the former one
for the most advanced technology nodes. Nevertheless, the per-chip (i.e. system) SEU rate is
still rapidly arising due to the continuously increasing integrity of transistors [15], as shown in
2.2(b). In addition, as the transistor size continues shrinking, the rate of single-event multiple

10

2.2 Soft Error Analysis and Mitigation

 1.1

 1.4

 1.7

 10 15 20 25 30 35

S
E

M
U

 R
at

e
to

 S
E

U
 R

at
e

R
at

io

Technology Node (nm)

Figure 2.3: Single-event multiple upsets (SEMU) rate to SEU rate ratio for the SRAMs with Silicon-
on-Insulator CMOS process [1]

upsets [34, 35], where a single particle strike can result in upsets at multiple circuit nodes,
increases faster than that of SEUs, as shown in Figure 2.3.

Besides memory structures, due to the increasing operational frequency and decreased op-
erating voltage, the latest experimental and radiation-testing results show that the rate of
transient errors in sequential logic (i.e. latches and flip-flops) and combinational logic circuits
is becoming comparable with that of memories [36–38]. Due to these exacerbating effects,
accurate soft error analysis and the following efficient mitigation will become more challenging
in the future technology nodes.

2.2 Soft Error Analysis and Mitigation

Driven by the continuously increasing market demands and technological advances, nowadays
the complexity of computing system is growing rapidly with higher and higher integration
density such as Multi-Processor System on Chip (MPSoC). The traditional design methods,
in which the systems were designed directly starting from device or circuit level, are fast be-
coming infeasible in nano-scale era. To handle this complexity challenge, the common solution
is to raise the abstraction level in the design process [39]. Well-defined abstraction levels
and corresponding system models are particularly important to ensure accurate and efficient
systematic design automation.

In this section we will firstly introduce the abstraction levels in a typical system design flows.
Then we will turn to the specific soft error problem, and describe its analysis and mitigation
solutions at both low and high abstraction levels in the state of the art. Particularly, the high
level soft error analysis and mitigation techniques, which are the focus of this work, will be
paid special attention.

2.2.1 Design Views and Abstraction Levels

In order to clearly explain the difference and connections among various abstraction levels, we
adopt the well-known Gajski-Kuhn chart (i.e. Y-chart), which was developed in 1983 to depict

11

2 Preliminaries and State of the Art

Behavioural Domain Structural Domain

Physical Domain

Circuit
Logic

RTL
Algorithm

System

Figure 2.4: Gajski-Kuhn chart (Y-chart)

different stages involved in the system design flow [18].
According to this model, each design, no matter how complex, can be perceived in three

domains (views), which represent different properties of this design. Specially, the Y-chart has
three axes showing each domain:

• Behavioural: This domain describes the functional and temporal behaviors of the design,
i.e. the outputs of the design can be represented in terms of its inputs over time;

• Structural: Here the subsystems which assemble the entire system are described, i.e. the
structure of the system, different subsystems and their interconnections are described;

• Physical: For this domain dimensionality is added to the structure. It specifies the
geometric properties of each component, i.e. information about the size (height and
width), the shape and physical placement are included in this domain.

In the Y-chart a design can also be represented at different abstraction levels, i.e. the
five concentric circles shown in Figure 2.4. Generally the outer circles are generalization
(abstraction), while the inner ones are refinements of the same design. From the highest
abstracted level to the most refined one, the five hierarchical levels are described as follows:

• System Level: The design specification is described as a set of subsystems and they loosely
interact with each other (e.g. by exchanging messages). Typically block diagrams are
used and the basic blocks in the structure domain are central processing unit, memory
chip, etc.;

• Algorithmic Level (behavioral level): The specification describes the design functionality
with algorithmic semantics including signals, loops, variables, assignments, etc.;

• Register-Transfer Level: With more detailed information, the design behavior are rep-
resented as values transfers between storage components, such as registers and register
files, and functional units such as ALUs and multipliers. The data structures and data
flows are also defined at this level;

• Logic Level: In the behavioral perspective the design is described as Boolean equations,

12

2.2 Soft Error Analysis and Mitigation

A = B*C + F;
IF (D=TRUE) THEN

A = A*2 + F;
ELSE

A = A - 1;
ENDIF

Algorithm LevelSystem Level

Memory Pr
oc

es
so

r

I/O

Memory

ALU

Registe Transfer Level

MUX

R
eg

is
te

rs

Circuit LevelLogic Level

A

B

Q

Figure 2.5: Illustration of the design at different abstraction levels

and in the structural view the basic constructing elements are logic gates, flip-flops and
their interconnections;

• Circuit Level: At this level the circuit behaviors are represented by differential equations
which define the mathematical relations between signal currents and voltage changes, etc.
The structural elements consisting of the system are transistors, resistors and capacitors.

During the entire design flow, various design activities are involved, which can also be clearly
demonstrated in the Y-chart, as shown in Figure 2.6. Among these activities, abstraction and
synthesis are the main focus in our work on soft error analysis and mitigation. Therefore, we
will describe them in more details.

Abstraction suppresses unnecessary details below specific granularity and is a commonly
used approach to manage the complexity of computing systems. Due to the increasing com-
plexity of current and future systems, high level design methodologies are more emphasized
compared to low level techniques [39]. One reason for this trend is that high level abstractions
are closer to the designer’s usual way of reasoning about a complicated system. Hence, it is
much easier to specify and verify various system functionalities with the help of abstractions,
rather than modeling and analyzing a design starting from hundred thousands of concrete
transistors. Another reason is that high level abstractions enable the system engineers to ex-
plore and verify the various design options in application domains without expert knowledge
of low level technology engineering and chip manufacturing.

Synthesis is the transformation process of a design in the behavioral domain into a represen-
tation in the structural domain. The structural description of the same design after synthesis
is typically formulated as interconnections of the abstract components. Automatic synthesis
can significantly shorten the design cycle, and the associated design automation is a major
contributor to reduce the well-known productivity gap, which is generated by the disparity
between the rapid paces of increasing design complexity and the relatively slow rise of de-
sign productivity [32]. In addition, design optimization is usually performed in conjunction

13

2 Preliminaries and State of the Art

Synthesis

Analysis

Structural

domain

Optimization
Generation

Extraction

Physical

domain

Behavioral

domain

Abstraction

Refinement

Figure 2.6: Y-chart and design activities [2]

with synthesis. The automatic synthesis, especially the high level synthesis staying at early
design phase, adopts mathematical optimization algorithms to handle various design metrics
of the system components, therefore they can explores the design trade-offs in a very efficient
way [40].

Similar to the traditional design metrics like performance, area and power, for the specific
SER metric its analysis and mitigation techniques can also be classified according to the
abstraction levels. In this work we refer low levels as the circuit and logic abstraction levels in
the Y-chart, while high levels represent the register transfer level and above.

2.2.2 Low Level Error Analysis and Mitigation

Soft errors are radiation-induced circuit malfunctions starting from the external particles strik-
ing the sensitive regions of semiconductor device. Therefore, the low level error analysis and
mitigation techniques are always involved in charge collection, current pulse generation and
transient pulse propagation in the circuit netlist.

Error Analysis

To obtain an accurate SER of a chip or its components, it is essential to have in-depth knowl-
edge of the circuit elements (e.g. latches, gates, etc.) and their corresponding sensitivities to
soft errors. Transient pulse generation and propagation at the gate output are the basis of
SER evaluation. A commonly used pulse model is a double exponential current as described
in [41, 42]:

Iexp(t) = Qtot
τα − τβ

(exp(− t

τα
)− exp(− t

τβ
)) (2.2)

where Qtot is the total injected charge due to particle strike, τα is the charge collection time-
constant of the junction, and τβ represents the ion-track establishment time-constant. Both
τα and τβ are constant factors related to the technology process.

For older technologies, this double exponential current waveform can provide good ap-

14

2.2 Soft Error Analysis and Mitigation

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

DError Site

0

①

②

③

Figure 2.7: Three masking effects in the combinational logic

proximation of the charge collection process. However, for advanced technologies the shapes
of current pulses are more complex, therefore, more accurate but also more time consum-
ing approaches are introduced [43, 44]. They use either a device simulator working in full
3-dimensional model of the complete circuit (e.g. 6T SRAM cell), or mixed mode simula-
tion with one transistor with a device simulator and the remaining transistors with a circuit
simulator.

After current pulses generation modeling, how to analyze their propagation and masking
behaviors in the gate-level network is another important issue. On the one hand, for sequential
elements such as flip-flops, the timing masking efforts need to be carefully taken into account,
when the SEU occurs too late in the clock period so that it cannot arrive at the input of
downstream flip-flops within their latching windows [9]. On the other hand, when the current
pulses are generated at the output of combinational gates, during their propagation process
three masking mechanisms can take effects, which are illustrated in Figure 2.7 and described
in the following [3]:

1. Electrical masking. After the current pulse is generated by particle strike, during its
propagation alongside a chain of gates, typically the electrical strength of the pulse
continues to attenuate. To be more specific, the rise and fall time of the pulse is increasing
and its amplitude is decreasing. These changes are mainly due to the transistor switching
delay and the turning off of a gate before the output pulse reaches the full amplitude,
respectively. If the radiation-induced current pulses are completely attenuated before
they reaches the downstream flip-flops, the soft error is said to be electrically masked.
Either direct SPICE simulation or analytical models on the rise and fall time or the
current waveform [45–48] can be employed to evaluate the electrical masking effect;

2. Logic masking. The generated current pulses arrive at the input of a gate, but its output
value is completely determined by other controlling input. For example, for an AND
gate with one input ‘0’, the current pulse at another input will be masked and not cause
an error. Typically for logic masking effect evaluation, either a logic-level simulator [49]
with flipped inputs from ‘0’ to ‘1’ or vice versa, or analytical methods with probabilistic
modeling of the input statistics [20, 50–52] can be used;

3. Timing window masking. If the current pulses are not electrically or logically masked,
they can arrive at the inputs of downstream flip-flops. However, an edge-triggered flip-
flop is only vulnerable to these propagated current pulses when they arrive within a small

15

2 Preliminaries and State of the Art

timing window. Typically the size of this timing window is the sum of the setup and
hold time of the flip-flop [9]. The current pulses outside this timing window can not be
captured by the flip-flop. Assume the clock period is Tclk and the current pulse width at
the input of flip-flop is PW , the timing window masking probability can be accurately
estimated as 1− PW/Tclk [9, 49, 53].

With these established models, the low level soft error estimation techniques can be gen-
erally categorized into statistical fault injection [54–56] and analytical approaches [8, 46, 47,
50, 57–60]. Fault injection techniques are based on Monte-Carlo simulations and to achieve
a reasonable accuracy, they require long simulation time. Analytical probabilistic approaches
have been developed and can be orders of magnitude faster than fault injection techniques.
However, the accuracy and efficiency of analytical approaches rely heavily on the error and
error propagation models. The circuit-level analytical techniques presented in [46, 47, 57–59]
can handle the aforementioned three masking effects with detailed models and obtain accurate
results for soft error rate estimation, but they do not have good scalability and are not suitable
for error analysis at high level.

Error Mitigation

When the SER of the original circuit exceeds the user reliability specification, soft error mit-
igation schemes should be employed. The first category of low level mitigation techniques is
manufacturing process improvement. For instance, the removal of Boron Phosphosilicate glass
materials has significant contribution to reduce the soft errors [14]. In addition, the adoption
of advanced Silicon-On-Insulator (SOI) process technology is another very efficient solution
to reduce soft error rates, because unlike bulk CMOS, in SOI devices the collected electrical
charge from particle strike is much less due to the much thinner silicon layer [28].

The second category of mitigation techniques is the design-based approach. Triple Modular
Redundancy (TMR) is the most reliable solution for reducing the SER of a computing system.
However, TMR-based mitigation solutions introduce excessive area and power overhead, hence
are not applicable to most embedded system designs. To reduce the massive overhead, for
sequential logic radiation-hardened storage cells (latches and flip-flops) such as Dual Interlock
Storage Cells (DICE) [61], Built-in Soft Error Resilience (BISER) technique [38], Single Event
Upset Tolerant [62] and Reinforcing Charge Collection [63] can be employed. They preserve
the storage value even if the state of one of the internal nodes is altered by an ionizing particle
strike, therefore reduce the intrinsic soft error rate.

We take the widely known DICE latch in Figure 2.8 as an example to explain the basic
idea. The output node of each N and P transistor pair is the controlling input of another
N and P transistor pair, i.e. “dual interlock”. When one of the output nodes is affected by
transient current pulse due to particle strike, it can turn off the successively connected P
and N transistors. Therefore, the turning off can isolate the impaired node and preserve the
original state values in unaffected nodes. Once the generated transient pulse disappears, the
preserved original value of the latch can be restored. According to the data from real radiation
testing [33], with 80% area and 60% power overheads, the SER of the DICE-hardened flip-flop
can be reduced by 10X compared with the unprotected one. In addition, a DICE latch does
not increase the d-to-q time compared with the unhardened latch, therefore it is very attractive
for the high speed design such as the processor pipeline [3].

16

2.2 Soft Error Analysis and Mitigation

Figure 2.8: Schematic of a DICE latch [3]

Figure 2.9: Transient filter schematic [4] with the Filter Gates (FG) driven by the input node N0

For combinational gates, to reduce the SET sensitivity, gate resizing [64, 65] can be employed
to increase either signal strength or the node capacitance, therefore raise the critical charge
of the circuit node, i.e. reduce its soft error susceptibility. In addition, transient filters can
also provide a considerable SER reduction by imposing small area and power overheads [4].
As logic gates have non-zero inertial delay, for the input current pulses which have smaller
width than this delay, the gates can suppress the pulses from passing through. As shown
in Figure 2.9, the basic idea of transient filters is to either completely remove the current
pulse, or suppress its magnitude and duration to reduce the transient capturing probability of
downstream flip-flops.

2.2.3 High Level Error Analysis and Mitigation

At high abstraction levels the detailed implementations of the design are transparent to the
designer, therefore the soft errors are typically modeled as bit upset in the system states.
The mitigation techniques are typically selective protection by exploring architectural and
application level masking efforts, or software-based error detection and correction.

Error Analysis

Soft errors occur when particles strike the transistors and the collected charge is sufficient to
change the logic state of this transistor. At RTL and above, this malfunction simply manifests
as a bit flip in RTL registers, the architectural states, memories or behavioral variables. So
the error model adopted at these levels are typically SBU or MBU [3].

17

2 Preliminaries and State of the Art

W
ri
te

R
e

a
d

R
e

a
d

R
e

a
d

W
ri
te

R
e

a
d

R
e

a
d

W
ri
te

ACE un-ACE ACE

Time

Figure 2.10: ACE and un-ACE intervals in the generic ACE analysis

After the occurrence of soft errors at low levels and during their propagation alongside the
abstraction stacks, they can also be functionally masked at architecture [8] and application [66]
levels. For the former architectural level masking, one example is that the soft errors, which
occurred in branch predictor structures of a processor, only affect the system performance
rather than the functional correctness. Regarding the latter application level masking, one
example is that the errors propagated to the program variables, which are used in the proce-
dure of random number generation, would be considered as benign, because these erroneous
variables result only a different random sequence, but the system functionality is still correct.
To obtain accurate error analysis, the functional masking effects at high abstraction levels also
need to be carefully considered.

To achieve this goal, simulation-based fault injection is widely adopted to evaluate the
system SER [67, 68]. The simulation-based fault injection has fair scalability, but it suffers
from incomplete input space coverage and relatively low accuracy. Therefore, RTL formal
methods, which feature exhaustive search of the design space and generation of the evaluation
results with high confidence, are also widely researched [5, 6, 69]. However, the techniques
in [6, 69] only consider qualitative error metrics (i.e. not quantitative probabilistic values),
while the work in [5] cannot model the workload dependency during error evaluation.

For a bit flip generated by particle strike, from the application perspective whether it
eventually influences the outcome of a program or not depends on how the bit flip propagates
in the system and whether it is masked during this propagation process. To evaluate this
masking effects at architectural level, the well known Architectural Vulnerability Factor (AVF)
metric is introduced [70]. It is defined as the probability that a fault in the processor structure
will result in a visible system error in the final output of a program. A bit, in which a fault
will result in incorrect system execution, is seen to be necessary for Architecturally Correct
Execution (ACE), and such kind of bits are termed ACE bits. All other bits are conservatively
considered to be un-ACE bits. An individual bit may be ACE for a fraction of the overall
execution cycles and un-ACE for the rest. Therefore, the AVF of a single bit can be defined
as the fraction of cycles that the bit is ACE [8].

This generic ACE model is explained with respect to a simple example illustrated in Fig-
ure 2.10, which shows an example of serial accesses to a particular memory entry during the
execution of a workload. In this model, all time intervals which lead to a write access are un-
ACE as the write access overwrites the possible error. In contrast, an error in a time interval
leading to a read access is always propagated to the memory output and has a chance to impair
the final output of the program. Hence, such intervals are assumed to be ACE. The AVF of
each memory entry is the fraction of time that it is in the ACE state, and the vulnerability of
the entire memory is the average vulnerability of all memory entries.

18

2.2 Soft Error Analysis and Mitigation

Beside the generic ACE model, there are also more advanced techniques which exploit the
architectural information to identify more non-vulnerable time intervals, and hence provide less
pessimistic results. Such techniques leverage the specific behavior of each memory component
such as data characteristics or access patterns to further reduce the ratio of ACE intervals to
the entire execution time. For instance, there are dedicated techniques for data cache [71, 72],
instruction cache [73], L2 cache [74], and register-file [75] which are less conservative than the
generic model. Nevertheless, there is still a considerable gap between the failure probability
obtained from fault injection and ACE analysis results (7X [76]).

Although the ACE approach has considerably short runtime which is almost equal to that
of just one fault injection in a simulation environment, the significant overestimation limits
its application on the soft error estimation. In addition, this technique is only suitable for
the regular structures like memory units and register files, but not applicable to the irregular
structures such as controllers with combinational and sequential elements [77].

Error Mitigation

For the high level soft error mitigation, there are both hardware and software solutions. In the
hardware side, modular redundancy, as a general reliability enhancement scheme, can be ap-
plied at high abstraction levels as well. However, to avoid the introduction of massive overhead,
the only viable solution is pre-evaluation of the vulnerability of individual component and then
applying selective protection [6, 78]. For memory protection, the coding techniques [79, 80]
nowadays become the popular low-cost solutions for the SER mitigation. The typical tech-
niques, such as parity bit or ECC, can always be used for a large number of bits, e.g. memory
words or blocks. Take the single error correct double error detect ECC code as an example, for
each 64 bits data it only need 8 additional bits (around 12% overhead), which is much smaller
than the typical 2X overhead of TMR.

As coding techniques are only applicable to regular memory structures, for the irregular
controller and data processing blocks, another category of approaches for soft error mitigation
are introduced. They reside in the scope of high level synthesis, which performs the automatic
translation of a design from its behavioral description to a structural RTL implementation. In
the recent work [81–86], soft error-induced reliability is taken into account in addition to the
traditional metrics such as performance, area and power. These works explore the potential of
reliability improvement on the resource allocation and binding process of high level synthesis.
They leveraged the RTL library information to explore the system reliability enhancement, by
adjusting the binding relations between behavioral operations and multiple implementations
of the RTL functional units with different area and reliability metrics [81–86]. However, the
important behavioral reliability information, which can capture the application level masking
effects, is totally ignored in the previous methods. This can lead to inappropriate priorities of
hardware protection and introduce unnecessary cost.

Software-based mitigation techniques are another attractive solution category which can
either cooperate with hardware resilient measures, or just modify the software part to detect
and correct errors by introducing redundancy without changing the underlying hardware. This
is known as software-implemented hardware fault tolerance [87, 88]. Such software can not only
perform the original functionalities according to the user’s specification, but also support spe-
cial mechanisms to detect, signal and even correct the possible occurrence of both permanent

19

2 Preliminaries and State of the Art

and transient hardware errors. These techniques include computation duplication [89], exe-
cutable assertions [90] to address the faults affecting the data flow, and control flow checking
using assertions [91] or signatures [92].

2.2.4 Summary of State of the Art

The previous soft error estimation and mitigation techniques can be generally categorized
according to their abstraction levels. At low abstraction level soft error estimation is performed
either by statistical fault injection or analytical approaches. Fault injection techniques are
based on Monte-Carlo simulations, therefore to achieve a reasonable accuracy, they require
huge simulation time. Analytical probabilistic approaches can be orders of magnitude faster
than fault injection techniques. However, their accuracy and efficiency rely heavily on the
error and error propagation models. The circuit-level analytical techniques can handle logical,
electrical and timing window masking, but they do not have good scalability and are not able
to capture the masking effects at high abstraction levels (e.g. architectural and application
level). Moreover, most of existing solutions are based on single error assumption and do not
consider MBUs or multiple correlated errors to next abstraction levels.

At RTL, the current error estimation techniques can only provide qualitative error metrics
rather than quantitative values, or cannot capture the application dependency during error
evaluation. At architecture level, most current techniques rely on the ACE analysis, which is
suitable for the regular structures like memory units and register files, but not applicable to
the irregular structures such as controllers with sequential elements.

To enhance the reliability of future embedded system designs, while ECC can be employed
to efficiently protect the regular memory blocks, the sequential elements (flip-flops) and combi-
national logic gates become the dominant contributors to the overall system SER. Traditional
reliability enhancing techniques such as duplication or triple module redundancy, as well as cir-
cuit level radiation-hardening cells can introduce high performance, area, and power overhead,
making them inapplicable to current and future reliability challenges of embedded systems.
Therefore, cross-layer soft error resilient techniques based on selective protection, which take
into consideration not only low level reliability information but also the application level mask-
ing effects, are still missing in the literature.

In the following chapters we will discuss in details how our research work advances the state
of the art by novel cross-layer error evaluation and mitigation techniques.

20

3 Error Correlation Analysis at Logic Level

Single or multiple event transients at low levels can result in multiple correlated bit flips at
logic or higher abstraction levels. Addressing this correlation is essential for accurate soft error
rate estimation, and more importantly, for the cross-layer error abstraction, e.g. from bit errors
at logic level to word errors at register-transfer level. This chapter introduces a novel error
estimation method to take into consideration both signal and error correlations. The proposed
method not only reports accurate error probabilities when internal gates are impaired by soft
errors, but also gives quantification of the error correlations in their propagation process. This
feature enables our method to be a versatile technique to be used in high-level error estimation.

3.1 Introduction

In digital circuits, a single event transient at one circuit node can propagate to multiple
outputs, and be captured by multiple flip-flops in the same clock cycle. The way this single
event transient is seen at higher abstraction levels could typically manifest asmultiple correlated
errors (bit flips). This correlation is particularly important for high level error modeling of
the commonly used multi-bit data/control words, intellectual property macro interfaces and
so on. Assuming independence among these bits can severely reduce the accuracy of soft error
modeling at higher abstraction levels, and in turn the efficiency of the mitigation techniques.

However, currently at register-transfer or higher (e.g. architectural) levels, single bit-
flip or multiple independent bit-flips are assumed and these errors are randomly injected for
simulation-based techniques [55, 93]. The same assumption is used for analytical approaches
as well [8, 60]. Although circuit and logic level techniques consider detailed erroneous glitches
for accurate soft error rate estimation [46, 47, 57–59], they do not quantify correlations among
different erroneous signals.

To close this gap between low level error estimation and high level error abstraction, we
proposes a novel method to explicitly consider and report quantified error correlations in soft
error analysis. It is based on the concept of error propagation function and a new super gate
representation to unify the treatment of error-free and erroneous signals. It not only calculates
both signal and error probabilities in one pass, but also takes the complex correlations among
them into account. The correlation coefficient method originating from signal probability
calculation is adjusted to obtain error probabilities and correlations of primary outputs due
to particle strike at internal nodes.

In addition, two efficient heuristic algorithms are introduced to further improve the scala-
bility of our method:

• Dynamic blocking of error propagation dynamically sets gates with very low error prob-
abilities as error-free to speedup the calculation with negligible accuracy loss.

• Limited depth correlation analysis reveals the opportunity to consider only highly corre-

21

3 Error Correlation Analysis at Logic Level

lated signal pairs to significantly improve the scalability.
Compared with the preliminary implementation in [94], these heuristics make our framework
reach three orders of magnitude speedup, while still maintaining satisfactory accuracy. In
addition, in this chapter we also present a detailed case study of OpenRISC ALU to illustrate
the necessity of error correlation analysis and the applicability of our proposed methodology.
The experimental results show that our method is five orders of magnitude faster than Monte-
Carlo simulation while the average inaccuracy1 of error probability estimation is only 0.02.

The organization of the rest of this chapter is as follows. Section 3.2 reviews related work
on soft error and circuit reliability estimation. Section 3.3 introduces our adopted correlation
model. Sections 3.4 discusses different procedures to calculate correlated error probabilities
based on the proposed super gate representation and Section 3.5 discusses the extensions of
our method. Section 3.6 describes the experimental results. Finally, this chapter is concluded
in Section 3.7.

3.2 Related Work

Soft error estimation techniques can be generally categorized into statistical fault injection [54–
56] and analytical approaches [8, 46, 47, 57–60]. Fault injection techniques are based on Monte-
Carlo simulations and to achieve a reasonable accuracy, they require long simulation time.
To overcome the scalability of fault injection, analytical probabilistic approaches have been
developed and can be orders of magnitude faster than fault injection techniques. However, the
accuracy and efficiency of analytical approaches rely heavily on the error and error propagation
models. The circuit-level techniques presented in [46, 47, 57–59] handle three masking effects,
namely logical, electrical and timing masking, with detailed models and obtain accurate results
for soft error rate estimation, but they do not have good scalability and are not suitable for
error analysis at high level.

Additionally, in the scope of correlation modeling for logic errors (bit-flips), the technique
proposed in [58] uses random vector simulation to estimate the probability of logical masking,
which does not give error correlations and furthermore, requires high simulation time for large
circuits. In the techniques [46, 47, 57, 59], only the error probabilities of primary outputs are
obtained without providing their correlations, which, however, are indispensable for lifting the
abstraction level of soft error analysis. The error propagation probability technique [95] has
better scalability with respect to runtime, but it addresses only the reconvergent effects of
error propagation using 4-value logic. The error-free signals are assumed to be uncorrelated,
even for the inputs of the reconvergent gate. The inaccuracy due to this simplification impairs
its runtime advantage and again, it cannot report the error correlations at circuit outputs.

With bit-flip model, soft error probability estimation at logic level can also be handled
by circuit reliability estimation techniques [50, 52, 96–99], where each gate is assumed to be
unreliable and has a specified failure probability. Regarding the modeling of error correlations,
probabilistic transfer matrix approach [50] employs algebraic decision diagrams to facilitate
matrix operations and capture correlations among internal signals, but it suffers from massive
matrix storage and high runtime. Bayesian network approach [96] uses conditional probability

1As Monte-Carlo simulation can not obtain the exact results either, the inaccuracy here actually means the
deviation of our estimated error probabilities from the results reported by Monte-Carlo simulation.

22

3.3 Correlation Model

table for each gate to capture all internal signal correlations, however, manipulating large
circuits using Bayesian network potentially need very high runtime.

One-pass reliability method [52] uses correlation coefficients to model the correlations of
two bit-flip events, 0→1 and 1→0, on different wires. Four correlation coefficients are neces-
sary for each pair of wires and up to 16 correlation coefficients if higher accuracy is required.
Trigonometry-based probability calculation [98] uses trigonometric functions to manipulate
signal and error probabilities, and obtains accurate results for low error probabilities (<10−4),
but it is not appropriate for large error probabilities. Boolean Difference-based Error Calcu-
lator [99] adopts mathematical differential equations to model error propagation, and several
levels of logic from the fanout node are collapsed into one level to handle reconvergent effects,
however, its scalability is questionable for larger correlated regions. The hybrid approach [97]
combines exact analysis with probabilistic measures to estimate reliability, and establishes al-
gebraic decision diagrams for each reconvergent region, which limits its application to large
circuits.

To sum up, in the scope of error correlation with bit-flip model, the related work mentioned
above suffers from at least one of the following disadvantages:

• Only the error probabilities of primary outputs are obtained, therefore it cannot report
quantified error correlations.

• Due to the intrinsic scalability issue its applicability is always limited to small or medium
size circuits.

Therefore, in this chapter we propose a new technique to overcome these two disadvantages,
aiming at quantification of error correlations to support hierarchical soft error analysis and
scalability enhancement to handle large size circuits.

3.3 Correlation Model

In typical digital circuits, there are two kinds of correlations: temporal and spatial correlations
[100]. Temporal correlation is related to the historical trends of bit streams, which is always
considered in switching activity calculation and it is beyond the scope of this work on error
propagation estimation in combinational circuits. Spatial correlation, which describes the
dependencies between signals at different locations in the netlist, originates from two main
sources:

• Structural dependence: It is due to the reconvergent fanout, where two or more signals
originate from the same gate, propagate on different paths and converge again to the
inputs of another gate.

• Primary input dependence: It refers to the spatial correlations among primary input
signals, which result from input vectors with workload dependencies.

The most familiar measure of dependence between two variables is the Pearson product-
moment Correlation Coefficient (PCC). It is obtained by dividing the covariance of the two
variables with the product of their standard deviations [101]:

ρX,Y = corr(X,Y) = cov(X,Y)
σXσY

= E[(X − µX)(Y − µY)]
σXσY

(3.1)

23

3 Error Correlation Analysis at Logic Level

where X,Y are random variables, µX , µY are the mean values and σX , σY are the standard
deviations. If X are Bernoulli variables (e.g. the logic signal with binary values), we know
that

E(X) = P (X), σX =
√
P (X)(1− P (X)) (3.2)

where P (X) is the probability of X, therefore the PCC of two Bernoulli variables can be
expressed as:

ρX,Y = E[(X − P (X))(Y − P (Y))]√
P (X)(1− P (X))P (Y)(1− P (Y))

= P (XY)− P (X)P (Y)√
P (X)(1− P (X))P (Y)(1− P (Y))

(3.3)

The value of the ρX,Y ranges from -1 to 1. A value of 0 implies that there is no linear
relationship between the two variables, while the value of -1(1) implies they are perfectly
negative(positive) correlated, i.e. whenever one variable has a high/low value, the other has a
low/high(high/low)value.

3.3.1 Correlation Coefficient Method

PCC can clearly indicate the degree of correlation between two variables, but it is too com-
plicated to be used for the correlation modeling in combinational network. To make it easier,
Correlation Coefficient Method (CCM) [102] is adopted in our work for two main reasons.
First, it provides accurate results, while has better scalability than the approaches in [50, 96].
Second, CCM can be easily extended to address the primary input dependencies as well [100].

Algorithm

Based on the topologically levelized circuit netlist, CCM propagates both signal probabilities
and signal correlations level by level from primary inputs to primary outputs. It considers
the correlations between any two signals in each level, therefore can handle both structural
dependencies and primary input dependencies effectively.

In CCM with the notation of signal probability p(i) ≡ P (i = 1), the Correlation Coefficient
(CC) of signals i, j is defined as

Ci,j = Cj,i = p(ij)
p(i)p(j) = p(i|j)

p(i) = p(j|i)
p(j) (3.4)

where p(ij) is the joint probability P (i = 1, j = 1), p(i|j) is the conditional probability
P (i = 1|j = 1), therefore Ci,j is in the range [0,+∞).

Compared with Equation (3.3), it is clear that Ci,j and ρi,j can be derived from each other.
For the special case that two signals are uncorrelated,

p(ij) = p(i)p(j)→ Ci,j = 1, ρi,j = 0

In this work, PCC is only used to indicate the degree of correlation between signals, due to
its normalized value range [−1, 1], while CC is used mainly for correlation propagation in the
circuits.

24

3.3 Correlation Model

i
l

m

(a) Fanout node

i

j
l

h h

(b) AND gate and wire

Figure 3.1: Typical structures for correlation calculation

Take an AND gate l = ij as example, given pi, pj and Ci,j we can exactly calculate the
signal probability of the output l using the following formula:

p(l) = p(i)p(j)Ci,j , 0 ≤ Ci,j ≤
1

p(i)p(j) (3.5)

In addition, based on several basic propagation rules, the correlation coefficients between
different signals can be analytically computed for all structural cases in the combinational
network. Two typical cases are illustrated in Figure 3.1 and the corresponding correlation
formulas are Cl,m = 1/p(i) and Cl,h = Ci,hCj,h, respectively. Note that in CCM for a gate
with fanout > 1, each fanout is treated as a separate wire for the correlation calculation.

Accuracy Issue

In Figure 3.1(b) it is assumed that

Cij,h ≈ Ci,hCj,h (3.6)

thus the dependencies of two signals to a third one is neglected. Hence the second and higher
order correlations among multiple signals are not taken into account in CCM. The signal
probability estimation in [102] and switching activity estimation in [100] show this first-order
approximation can provide accurate results in practice. However, neglecting high order cor-
relations may cause the gate output probability to be smaller than 0.0 or larger than 1.0.
Therefore, Inequality (3.5) is used to limit Ci,j of the AND gate to avoid probability over-
flow. For other logic gates, similar inequalities can be derived for the purpose of probability
bounding.

Actually, we find that the upper bound of correlation coefficient in Inequality (3.5) is rather
loose. Revisiting the definition of correlation coefficient in Equation (3.4), we have:

Ci,j = p(i|j)
p(i) = p(j|i)

p(j) , p(i|j) ≤ 1 and p(j|i) ≤ 1

=⇒ Ci,j ≤ min{ 1
p(i) ,

1
p(j)} (3.7)

This new inequality gives a tighter upper bound, therefore provides better error bounding in
the correlation propagation, especially for the signals with high order correlation.

25

3 Error Correlation Analysis at Logic Level

Uf1

Us1

Us0

Uf0

Cross Correlation

Error Correlation

Signal Correlation

Error Propagation Paths

Impaired Gate

Figure 3.2: Different types of correlation

Complexity Issue

It is shown in [102] that the complexity of CCM is linear in the number of topological levels
L and pseudo-quadratic in the number of gates per level NL, which could be expressed as

Complexity of CCM ≤
∑
L

NL(NL − 1)/2 (3.8)

Please note that the right side of this inequality is the worst case, because to get output
probabilities CCM only needs to calculate the correlation coefficients for these signals that are
dependent from each other.

3.3.2 Error Correlation

In the scope of soft error modeling, the irregular structures in combinational logic make the er-
ror correlation modeling more complicated than that in the regular structures such as memory
arrays.

After error occurs and propagates along multiple reconvergent paths, there exist various
types of correlations, as shown in Figure 3.2. Not only the error-free signals, whose proba-
bilities determine the logical masking effects, but also the erroneous signals, are possible to
be correlated (referred as Signal Correlation and Error Correlation, respectively). To make
things worse, even the signal probabilities of error-free signals and error probabilities of er-
roneous signals are not independent (referred as Cross Correlation). It is indispensable to
consider all these correlations to achieve good accuracy for error estimation.

3.4 Proposed Error Estimation Methodology

Soft errors are modeled as bit flips in our work. For the sake of simplicity, we present our
approach for the circuit mapped into a network of two-input elementary gates. Nevertheless,
the presented approach can readily be applied to a network of arbitrary logic cells.

26

3.4 Proposed Error Estimation Methodology

l
lf

j
jf

i if i

j
if

jf

l

lf
Super AND

Figure 3.3: Super gate representation

The proposed methodology for error probabilities and correlations estimation is divided
into three main parts. First, error propagation in the network of elementary gates is efficiently
modeled. Second, combining this error propagation model with CCM enables us to estimate
both error probabilities and correlations. Third, due to the intrinsic complexity issue of CCM,
scalability enhancement techniques are explored to make our method applicable to large size
circuits.

3.4.1 Error Propagation Model

To illustrate the basic idea, we take the Boolean AND function l = ij as the running example.
Totally there are four error-free input combinations. For ij = 01, only when i is erroneous
(0→1) and j is error-free, the output l is erroneous (0→1). The other three combinations
could be analyzed similarly.

If notation xf is used to indicate whether the signal x is erroneous, i.e. xf = 1 means a
bit-flip occurs on signal x, caused by either particle strike or error propagation, the four cases
for the AND gate can be combined and expressed with a single Boolean function, called Error
Propagation Function (EPF):

lf = ij̄īf jf + īj̄if jf + ījif j̄f + ij(if + jf) (3.9)

here if , jf , lf are just virtual error signals to facilitate the modeling of error propagation, and
do not exist in real circuits. Although the virtual error signals are treated as normal ones,
their property interpretations are different:

• Logic value: ’1’ is interpreted as bit-flip occurring in the corresponding real signal and
’0’ means error-free;

• Signal Probability (SP): interpreted as the error probability of the corresponding real
signal.

If the error-free function l = ij is combined with EPF, a four-input, two-output super gate
can be constructed, as illustrated in Figure 3.3. This representation has several important
features:

• It simplifies the propagation and correlation modeling of the bit-flips in combinational
network: it does not differentiate two kinds of bit flips: 0→1 and 1→0 as in [52]. To
model all three types of correlations between two wires in Figure 3.2, our method needs
only

(4
2
)

= 6 rather than 16 correlation coefficients in [52].
• The super gate representation is independent of any specific algorithm: it is just an

additional Boolean function and could be analyzed using the well-known methods in the

27

3 Error Correlation Analysis at Logic Level

i

j

if

jf
lf

l

(a) Super AND

j

i

jf

l

lf

(b) Semi-super AND

Figure 3.4: Super and semi-super AND gate-level implementation

areas of signal probability [102], switching activity [100], power estimation [103], etc.
• This concept can be easily extended to more complicated error modeling: it can be ad-

justed for modeling single bit-flip, multiple bit-flips, transient errors, permanent errors,
etc.

This modeling technique doubles the number of signals needed to be considered in the
analysis. Recalling the runtime Inequality (3.8) and the intuitive gate-level implementation
of super AND in Figure 3.4(a), it is clear that the super-gate implementation increases not
only the circuit level L, but also the number of gates NL at each level, therefore introducing
high runtime overhead. This additional complexity is unavoidable to model propagation of
bit-flip errors and their complicated correlations. Nevertheless, this complexity problem can
be alleviated by exploration of the logic properties of EPF and limited correlation heuristic,
as discussed later in this section.

28

3.4 Proposed Error Estimation Methodology

Us1

Us0 PO2

Uf1

Us4

Us3

Us5

Uf2

Us2

Ug0

Ug2

Ue

PO1

PO3

Ug1

Ug3

Uf0

PO0

Ug4

PO4

Ug5

Original Gate

Semi-super Gate

Super Gate

Figure 3.5: Error propagation paths and error cone

3.4.2 Error Cone Extraction

Due to the complexity issue of CCM in Section 3.3.1, the straightforward approach to uniformly
replace each gate in the original circuit with its corresponding super gate is not feasible.
Actually, in the scope of soft error only the gates in the fanout cone of the error site (i.e. error
cone) will contribute to the error probabilities of primary outputs, as shown in Figure 3.5.

Moreover, for the gates at the boundary of the error cone, only one of its two inputs can be
erroneous. This observation can be explored to efficiently reduce the complexity of super gate
implementation in Figure 3.4. Recalling the EPF in Equation (3.9), and assuming the input i
is error-free, i.e. if = 0, this EPF can be simplified as following:

lf = ij̄jf + ijjf = ijf (3.10)

In this way, the complex super gate collapses to only two basic gates, called semi-super
gate: one for the error-free function, the other for the error propagation. Obviously, on the
error propagation paths, the more gates collapsing into semi-super gate, the more benefit we
get from this simplification, as shown in Figure 3.5.

3.4.3 Super-gate Correlation Formulas

To avoid replacing super/semi-super gates with their complex gate-level implementation and
the corresponding netlist transformation efforts, it is necessary to derive error probability and
correlation propagation formulas for super, semi-super and original gate pairs [94].

29

3 Error Correlation Analysis at Logic Level

h h

i

j
if

jf

l

lf
Super AND

h

lf0

i

j

if

jf
hlf0

Figure 3.6: Super-AND and wire correlation

The EPF of AND gate in Equation (3.9) can be rewritten as

l = ij

lf = ij̄īf jf︸ ︷︷ ︸
lf0

+ īj̄if jf︸ ︷︷ ︸
lf1

+ ījif j̄f︸ ︷︷ ︸
lf2

+ ij(if + jf)︸ ︷︷ ︸
lf3

(3.11)

One very important property of this function is that the four terms lf0 , lf1 , lf2 , lf3 are mu-
tually exclusive, which means

p(lfi
lfj

) = 0, i, j = 0, 1, 2, 3 and i 6= j

p(lf) = p(lf0) + p(lf1) + p(lf2) + p(lf3) (3.12)

This logical property can be explored to simplify and accelerate the calculation of error prob-
abilities, cross correlations and error correlations.

For the calculation of probability p(lf), each of the four terms could be calculated using
basic gate rules introduced in Section 3.3.1, as every term contains only four variables. For the
correlation coefficient Cl,lf , instead of using the original CCM for gate-level implementation
of EPF, with the Boolean Equations (3.11) we turn to correlation coefficient definition in
Equation (3.4) to derive this value:

p(llfi
) = 0, i = 0, 1, 2

Cl,lf = p(llf)
p(l)p(lf) = p[l(lf0 + lf1 + lf2 + lf3)]

p(l)p(lf)

= p(llf0) + p(llf1) + p(llf2) + p(llf3)
p(l)p(lf)

= p(llf3)
p(l)p(lf) = p(lf3)

p(l)p(lf) (3.13)

where p(lf3) and p(lf) can be obtained from Equation (3.12) and p(l) is the signal probability
from error-free CCM.

To derive the general formulas for typical structures, e.g. Super-AND/wire pair in Figure
3.6, a similar approach can be applied to avoid unnecessary correlation computation efforts:

Ch,lf = p(hlf)
p(h)p(lf) = p[h(lf0 + lf1 + lf2 + lf3)]

p(h)p(lf)

= p(hlf0) + p(hlf1) + p(hlf2) + p(hlf3)
p(h)p(lf)

30

3.4 Proposed Error Estimation Methodology

i

j
if

jf

l

lf
Super OR

l
i
j

i
j l

i

j
if

jf

l

lf
Super AND

Figure 3.7: Super-AND equivalent of Super-OR gate

Based on the mutually exclusive property, the complex EPF is broken up into four small parts,
each of which can be calculated quickly.

Using De Morgan’s law, and since INV gate does not logically mask any error, the above
Super-AND correlation rules can be extended to Super-OR with minor modifications as shown
in Figure 3.7. Furthermore, for EPFs of the simplified semi-super gate, the derivation of
corresponding formulas is straightforward and omitted here for brevity.

3.4.4 Dynamic Blocking of Error Propagation

Our focus is probabilistic analysis of the soft error propagation in combinational networks,
and the area having erroneous signals is always limited to the error cone. In addition to the
techniques introduced in Section 3.4.2 and 3.4.3, dynamic blocking of error propagation can
also be employed to speedup the calculation.

This idea comes from the observation that due to logical masking, the longer the error
propagation path is, the smaller the error probability could be. Therefore, when the calculated
output error probability of one gate is smaller than predefined threshold value, this gate
could be assumed to be error-free, i.e. its type changes from super gate or semi-super gate
to original gate, its error probability is reset to constant zero and the correlations between
its corresponding virtual error signal to all other signals are eliminated. The choice of this
predefined threshold is a trade-off between scalability and accuracy, and in our implementation
this value is set to 10−4. Note that this gate type change may cause the type of its successor
chain to be dynamically adjusted, e.g. from super gate to semi-super gate or semi-super to
original gate. Therefore, this dynamic error resetting technique can reduce the complexity of
our estimation with negligible accuracy impact, especially for circuits where long propagation
paths exist.

3.4.5 Limited Depth Correlation Analysis

Due to the consideration of pair-wise signal correlations, the worst case complexity of CCM
is quadratic

(N
2
)
, i.e. O(N2), where N is the total number of gates. Although structural

properties of the netlist can be explored to consider only correlated signals on reconvergent
paths, its impact on scalability improvement is very limited. Therefore, to make our proposed

31

3 Error Correlation Analysis at Logic Level

I1 X

Y1
Z1

Z3Y2

Uf2

Z2I2

I3

I4 Y3

l = 0 l = 1 l = 2 l = 3 l = 4

Figure 3.8: Correlation reduction with signal/error propagation

method applicable to large circuits (e.g. more than 5000 gates), a heuristic algorithm is
necessary to improve the scalability while maintaining satisfactory accuracy.

Inspired by the switching activity estimation work [100, 103], one heuristic algorithm -
limited depth correlation analysis is proposed and integrated into our method to further improve
its scalability. The basic idea is to consider spatial signal/error correlations within only limited
logic depth d. Intuitively, starting from the gate with multiple fanouts, the farther the gates
on different propagation paths are from the fanout point, the less correlated the corresponding
output signals will be. The rational is that the signals outside the reconvergent regions will
interact with these fanout signals and statistically decouple the corresponding gate outputs.
We take one simple circuit in Figure 3.8 to illustrate this phenomenon.

In this circuit there are three reconvergent regions: {I1 → Y1 → Z1, I1 → X → Z1};
{I1 → Y1 → Y2 → Z2, I1 → X → Z2} and {I1 → Y1 → Y2 → Y3 → Z3, I1 → X → Z3}.
Assume all the signals at level 0 are uncorrelated, p(I1) = p(I2) = p(I3) = p(I4) = 0.5, and
additionally, p(I1f

) = 0.5 (i.e. the error probabilities of signal I1 is 0.5). From the circuit
structure, the logic functions of concerned signals can be derived as follows:

X = Ī1, Xf = I1f

Y1 = I2I1, Y1f
= I2I1f

Y2 = Y1 + I3 = I2I1 + I3, Y2f
= Ī3Y1f

= Ī3I2I1f

Y3 = Y2I4 = I2I1I4 + I3I4, Y3f
= I4Y2f

= I4Ī3I2I1f

Base on these Boolean functions and Equation (3.3), we can derive the exact joint signal/error
probabilities and PCCs of concerned signals at the reconvergent points Z1, Z2 and Z3:

ρI1,I1 = 1 ρI1f
,I1f

= 1

ρX,Y1 = −0.5774 ρXf ,Y1f
= 0.5774

ρX,Y2 = −0.2582 ρXf ,Y2f
= 0.3780

ρX,Y3 = −0.1348 ρXf ,Y3f
= 0.2582

The calculated values show that with the signal/error propagation, the highly correlated signals
(i.e. PCC is 1 at the fanout point) become less and less correlated (i.e. PCC approaches 0).

32

3.4 Proposed Error Estimation Methodology

This trend holds not only for error-free signals, but also for erroneous signals. Therefore, using
independent assumption for probability estimation of less correlated signals will cause smaller
inaccuracy.

Based on this observation, the limited depth correlation heuristic is implemented and inte-
grated into our method. As shown in Algorithm 3.1, the limited depth d is specified by the
user, then for each gate g with multiple fanouts, a modified Depth First Search (DFS) pro-
cedure LIMITED_DEPTH_DFS (G, g, d) is carried out to identify the reconvergent regions
within this depth. The gates in each reconvergent region will be recorded in one Boolean cor-
relation matrix m and their outputs will be considered as correlated signals in the later error
estimation phase. Note that in our implementation of the function Depth_First_Search (G,
g, d) in line 16, INV gate is excluded from the depth calculation, as it has no logical masking
effect for error propagation at all.

Algorithm 3.1 Limited Depth Correlation Analysis
1: Input: Netlist G, search depth d, Boolean correlation matrix m
2: Correlated_Regions = empty set
3: for each gate g in G do
4: if fanout of g >1 then
5: tmp_Correlated_Regions = LIMITED_DEPTH_DFS(G, g, d);
6: Add tmp_Correlated_Regions to Correlated_Regions
7: end if
8: end for
9: for each region r in Correlated_Regions do

10: for each two gates g1, g2 in r do
11: m[g1, g2] = true; . These two gates should be considered as correlated in the error

estimation
12: end for
13: end for
14:
15: function LIMITED_DEPTH_DFS(G, g, d)
16: revisiting_gates = Depth_First_Search(G, g, d) . DFS procedure within depth d
17: if number of revisiting_gates >0 then
18: backtrack and generate reconvergent paths;
19: return reconvergent regions;
20: end if
21: end function

This algorithm explores the structural properties of circuit netlist to identify the correlated
gates with a single user-specified parameter: search depth d. Take Figure 3.8 as example, the
starting point of DFS is gate I1 (fanout node). When d = 1, the DFS visiting sequence can
be I1 → X → Z1 → Z2 → Z3 → Y1. Note INV gate X is considered as transparent with
depth increase of zero. No gate is revisited and no reconvergent region is found, therefore
signal pairs Y1 and X will be considered as uncorrelated in error estimation. When d = 2, the
DFS visiting sequence can become I1 → X → Z1 → Z2 → Z3 → Y1 → Z1 → Y2 and Z1 is
revisited, therefore reconvergent region is identified. In this case, signal pairs Y1 and X will

33

3 Error Correlation Analysis at Logic Level

be considered as correlated when error probabilities should be calculated.
If not only the error probabilities but also the error correlations of primary output are

of concern, we only need to add one virtual gate where all primary outputs converge, and
Algorithm 3.1 can automatically take into account the necessary propagation paths to calculate
primary output correlations.

Actually, the search depth d can either be specified by the user, or determined automatically
by the algorithm. For example, this depth can be set to different value according to the number
of fanout. The more fanout branches, the larger search depth will be used, therefore more
reconvergent regions may be found. Again, such variant depth correlation search implies the
flexibility of our proposed algorithm.

3.5 Extensions of the Proposed Method

As the proposed method addresses signal and error correlations explicitly in a unified way, it
enables the extensions of this method to the following two directions.

3.5.1 Multiple Errors Propagation with Correlation

Our approach can be extended to account for more complex error models than single bit flip.
As stated in [13, 104], multiple transient errors are no longer negligible in logic circuits. To
obtain accurate estimation, correlated error occurrence and the correlations in the propagation
of errors originating from different error sites must be taken into account, rather than the
independent assumption used in existing technique [105].

Our proposed approach needs only minor modification to address these correlations. Specif-
ically, as error occurrence of impaired gates is no longer deterministic and independent, both
error probabilities of the error sites and their correlation coefficients can be specified by the
user as plug-in parameters. In the case of multiple errors modeling, there are multiple er-
ror cones and the unified error cluster must be considered which is the union of the gates in
the fanout cones of all error sites. The gates within the unified error cluster are treated as
super gates and those at the boundary as semi-super gates, as illustrated in Figure 3.9. In
this way, the same framework can be used to handle multiple error sites and their correlated
propagation.

3.5.2 Block-level Error Estimation

Another advantage of the CCM method is that it explicitly calculates correlation coefficients
from primary inputs to primary outputs. Therefore, it supports cascaded and hierarchical
analysis of error propagation among different function blocks, which provides the possibility
to raise the abstraction level from logic to register transfer level. However, two issues must be
taken care of for this analysis.

First, it is essential to take into consideration the signal/error correlation of primary inputs.
Actually, Algorithm 3.1 needs only small modifications to handle correlated inputs. For func-
tion LIMITED_DEPTH_DFS (G, g, d), the original single source DFS should be replaced
with multiple source DFS, that is to say, the correlated primary inputs will be considered as

34

3.6 Experimental Results

Us1

Us0 PO2

Uf1

Us4

Us3

Ug0

Ue

PO1

PO3

Ug1

Uf0

PO0

Original Gate

Semi-super Gate

Super Gate

Ue

Ug2

Figure 3.9: Propagation paths with multiple error cones

the start points of DFS. In this way, both kinds of spatial correlations mentioned in Section
3.3 are covered by the proposed approach, since CCM intrinsically supports conveying signal
statistics from primary outputs of one block to the primary inputs of its successors. To sim-
plify the correlation calculation without loss of much accuracy, similar techniques as dynamic
blocking of error propagation in Section 3.4.4 can be employed as well to treat primary outputs
with low error probabilities as error-free ones.

Second, the reconvergency among multiple blocks needs to be handled as well. The tech-
nique in [106] provides one promising solution. First the signal probability of fanout node F
is set to 0 or 1, i.e. this node has deterministic value 0 or 1, thus the statistical dependency
of fanout signals can be eliminated. After the two deterministic cases are handled separately,
the output error probabilities can be obtained by combining the two cases together accord-
ing to the signal probability of node F . The scalability of this technique is questionable for
netlists with large number of reconvergent regions. However, at block level the number of
modules for the entire circuit is relatively small, therefore this technique is suitable regarding
the complexity.

3.6 Experimental Results

3.6.1 Experimental Setup

The proposed approach has been implemented in C++ using the igraph library [107], and
experiments have been performed on a workstation with Intel E5540 2.53 GHz and 16 GB
RAM.

The overall estimation and validation flow is illustrated in Figure 3.10. The circuit is first

35

3 Error Correlation Analysis at Logic Level

synthesized with elementary gates, then the generated netlist is parsed and mapped to the
corresponding graph structure. Both fault injection and the proposed Correlated Error Prop-
agation (CEP) technique use this graph structure to evaluate the output error probabilities.
After traversal of all error sites, the probabilities are compared to obtain the accuracy results.

In the experiments on benchmark circuits, the primary inputs of the circuits are assumed
to be independent with signal probability 0.5. For the fault injection part, in the scenario of
circuits with small number of primary inputs (<20), we use exhaustive simulation to obtain
exact primary output error probabilities for all error sites, while for more primary inputs where
exhaustive simulation is intractable, we turn to the statistical fault injection, based on Monte-
Carlo simulation [108]. For the error probability of each primary output, with 95% confidence
level, the Confidence Interval (CI) is given by

(p̂e − 1.96 S√
N
, p̂e + 1.96 S√

N
)

where p̂e is the estimated error probability of the primary output (i.e. mean estimation), S2

is the variance estimation computed on the fly and N is the number of input vectors. Taking
into consideration that the probability values are between 0.0 and 1.0, absolute width of the
confidence interval

wCI = 2× 1.96× S√
N
≤ 0.005

is used as termination criteria.
In the proposed analytical method, graph preprocessing is carried out at setup phase and

correlated gates within specified logic depth are identified. This step takes very short time
because the search depth d is always very small (≤ 4). In this phase, error-free signal probabil-
ities and correlation coefficients are also calculated to be used for later error estimation. Then
for each error site, its error probability is set to 1.0 and its correlation coefficients with all the
other signals at this level are set to 1.0 (independent error occurrence). After that the gates
in the error cone are extracted and tagged as either super gates or semi-super gates. Start-
ing from the logic level of error site, different formulas in Section 3.4.3 are used according to
different gate types in the graph traversal. Finally, the error probabilities of primary outputs
are obtained for later accuracy comparison.

Our proposed method has been validated for several ISCAS 85 benchmark circuits with
regard to both accuracy and scalability. For the large combinational cores extracted from
sequential circuit benchmarks ISCAS 89 and ITC 99, fault injection of each error site using
simulation is not feasible. Therefore, only absolute runtime of our analytical method are
reported to illustrate its scalability with different circuit sizes. In addition, to illustrate the
necessity of error correlation modeling, we use the 32-bit ALU of OpenRISC 1200 processor
[109] as a case study to investigate the correlated error probabilities at primary outputs. The
realistic signal probabilities and correlation coefficients for primary inputs of this ALU are
extracted from Value Change Dump (VCD) files of OpenRISC processor running Mibench
benchmarks [110].

36

3.6 Experimental Results

Graph Structure

All gates
traversed?

Yes

No

Select gate i
as error site

No

Compare
(Accuracy Results)

Gate-level netlist

Parser

i =
 i

+
1

i =
 i

+
1

PI<20?

No

Exhaustive
Fault Injection

Monte Carlo
Simulation

Yes

Setup Phase
Graph Preprocessing and

Signal Probabilities,
Correlation Coefficients

Calculation

Select gate i
as error site

Extract error cone;
Gates tagged

(Super, Semi-Super)

Super-gate correlation
calculation starting from

level of gate i

Error probabilities of
POs for gate i recorded

All gates
traversed?

Yes

CEP

Error probabilities of POs
for gate i recorded

Fault
Injection

Figure 3.10: Error probability estimation and validation flow

37

3 Error Correlation Analysis at Logic Level

10
2

10
3

10
4

10
5

10
6

c432
c499

c880
c1355

c1908

c2670

c3540

c5315

c7552

A
verage

S
p
ee

d
u
p
 R

at
io

d=2 d=3 d=4 d=inf

0.0

0.2

0.4

0.6

0.8

c432
c499

c880
c1355

c1908

c2670

c3540

c5315

c7552

A
verage

M
ax

im
u
m

 I
n
ac

cu
ra

cy

0.00

0.01

0.02

0.03

0.04

0.05

c432
c499

c880
c1355

c1908

c2670

c3540

c5315

c7552

A
verage

A
v
er

ag
e

In
ac

cu
ra

cy

Figure 3.11: Speedup, maximum and average inaccuracy for considering variant correlation depths

Table 3.1: Runtime (sec.) and accuracy of proposed CEP approach with correlation depth d = 2

Benchmark
of Gates MC

Runtime
4-value EPP [95] Inaccuracy CEP Inaccuracy

Total
Gates

Error
Sites

MAX AVG Runtime Speedup
vs CEP

MAX AVG Runtime Speedup
vs MC

c432 198 198 5412.5 0.301 0.031 0.004 13.2 0.265 0.039 0.06 90210
c499 575 575 11112.8 0.500 0.031 0.020 26.2 0.006 0.001 0.55 20205
c880 459 459 30885.1 0.825 0.099 0.007 22.9 0.237 0.030 0.16 193032
c1355 588 588 17587.5 0.273 0.020 0.023 23.1 0.058 0.004 0.54 32569
c1908 524 524 40892.9 0.657 0.040 0.016 26.8 0.299 0.015 0.45 90873
c2670 834 834 106617.0 0.825 0.049 0.015 40.9 0.244 0.018 0.64 166589
c3540 1088 100 15022.4 0.722 0.099 0.003 42.1 0.345 0.048 0.15 102807
c5315 1666 100 21425.2 0.872 0.052 0.002 58.5 0.398 0.025 0.16 133407
c7552 1999 100 28195.4 0.699 0.079 0.003 68.2 0.313 0.030 0.21 136606
s38584 11818 11818 - - - 74.040 1.4 - - 105.15 -
s38417 12351 12351 - - - 81.002 1.4 - - 113.03 -
b20 38912 38912 - - - 163.424 13.1 - - 2149.73 -
b21 39168 39168 - - - 162.468 12.6 - - 2053.11 -

average - - - 0.630 0.056 - 27.0 0.240 0.023 - 107366

38

3.6 Experimental Results

3.6.2 Benchmark Results

As our motivation is analyzing correlated error propagation from logic level to higher abstrac-
tion levels, individual error probabilities rather than an overall reliability metric are preferred.
For each error site, the error probabilities of all primary outputs in the error cone are calcu-
lated first, and then they are compared one by one with fault injected Monte-Carlo simulation
to obtain the accuracy results. For benchmarks with number of gate larger than 1000, the
Monte-Carlo simulation takes very long time if each error site is simulated, so 100 gates are
randomly selected for fault simulation. We report the maximum absolute inaccuracy (MAX)
and average absolute inaccuracy (AVG), as defined in the following:

MAXinaccuracy = max
1≤n≤N

max
1≤i≤On

|PeCEP (POi)− PeMC(POi)|

AV Ginaccuracy = 1
N ·On

N∑
n=1

On∑
i=1
|PeCEP (POi)− PeMC(POi)|

where N is the number of error sites evaluated in the benchmark circuit, On is the number
of primary outputs in the error cone of error site n and Pe(POi) is the error probability
of primary output i. The relative inaccuracy is deliberately excluded due to its misleading
meaning for small probability values.

To illustrate the trade-off between accuracy and scalability discussed in Section 3.4.5, we
also carried out the experiments with different correlation depth and the results are shown in
Figure 3.11, in which d=inf means no depth limitation is considered. With regard to accuracy,
for most of the benchmarks, the average inaccuracies are always reduced or almost the same
when larger depth of correlation is considered. This means that with the logic depth increasing
and correlation degree decreasing, the uncorrelation assumption causes less inaccuracy. At the
same time, the speedup ratio of our analytical CEP approach with regard to Monte-Carlo
simulation increases a lot, e.g. the average speedup ratio of d=2 is approximately 2 orders of
magnitude larger than that of d=inf.

However, for benchmark circuits c432, c3540 and c7552 the maximum inaccuracies for
d=inf are even larger than that for d=2. After investigating the circuit structure, we find
that it is due to the first-order approximation of CCM introduced in Section 3.3.1. After
the propagation of errors on multiple long (e.g. fanout > 5) reconvergent paths, this first-
order approximation results in larger inaccuracy compared to the case where the inputs of
reconvergent gate are assumed to be independent. That is why the maximum inaccuracies
of the benchmark c432, c3540 and c7552 with d=inf are larger than that with d=2. This
interesting phenomenon illustrates that considering limited depth of correlation is beneficial
not only to speedup our analytical method, but also to avoid inaccuracy accumulation of CCM
for some special worst-case scenarios.

Table 3.1 shows the runtime and accuracy comparison between our proposed CEP (d =
2), Monte-Carlo simulation (MC) and the previously proposed 4-value Error Propagation
Probability (EPP) technique [95]. It is worth mentioning that our reported inaccuracy values
are based on node by node comparison of the error probabilities of all concerned primary
outputs for all error sites, rather than one overall accuracy metric for the whole circuit. Taking
this into consideration, the maximum inaccuracies are still in reasonable range, as shown
similarly in the probability estimation work [100, 111]. Regarding runtime, compared with

39

3 Error Correlation Analysis at Logic Level

Monte-Carlo simulation our proposed method with depth d = 2 exhibits different speedup
ratios from 4 to 5 orders of magnitude, which reflect the complexity of CCM related to different
circuit structures and additionally, the speedup potential of the proposed heuristics for various
error cone structures.

Compared with 4-value EPP, our method has much smaller inaccuracy, less than half re-
garding both maximum and average inaccuracies. This is because the 4-value EPP considers
only error correlations on reconvergent paths, while the signal correlations and cross correla-
tions in Figure 3.2 are all ignored. This simplification makes it one order of magnitude faster
than our method (for fair comparison, the time to obtain signal probabilities, 4-value EPP
using time-consuming logic simulation while CEP using analytical CCM, are excluded in the
runtime reported in Table 3.1), but causes larger inaccuracy for the estimated probabilities,
especially for the highly correlated circuit structures. In addition to the significant accuracy
improvement, the main advantage of our method is that we are able to provide correlated error
information but 4-value EPP can not.

3.6.3 Case Study of OpenRISC 1200 ALU

To illustrate the necessity of error correlation modeling, we investigated the ALU from Open-
RISC processor as a case study. This ALU has 112 primary inputs including two 32-bit
operands, one 32-bit multiply accumulation input, opcode, etc., and 38 primary outputs con-
sisting of 32-bit computation results and some control signals. After synthesis there are 2854
elementary gates.

To investigate the error correlations of primary outputs under realistic workloads, we used
the signal statistics extracted from VCD files as ALU primary inputs. The VCD files are
dumped in the behavioral simulation of OpenRISC processor. Two typical applications -
StringSearch and BasicMath from Mibench benchmarks [110] are selected to demonstrate the
soft error statistics with workload dependencies. As shown in Figure 3.12, for these two
applications both the signal probabilities and signal correlations have significant difference. As
StringSearch executes mostly logic comparison operations without arithmetic multiplication,
all of primary input numbers 64 ∼ 95 have signal probabilities 0.0 and the corresponding PCCs
are also 0.0, i.e. signals with constant logic values are independent from all the other ones.

Using the proposed analytical CEP, we evaluated all possible error sites, which, however,
is intractable with Monte-Carlo simulation. The error probability PeAV G(i) of each primary
output i averaged on all possible error sites is obtained first. We also calculated the pairwise
joint error probabilities and Pearson product-moment Correlation Coefficient (PCC) to ex-
plicitly demonstrate their correlation degree. At the same time, the most interesting metric
conditional error probabilities for primary outputs are also reported, which can answer the
following question:
For soft errors occurring inside the functional block, given one primary output is erroneous,
what is the probability that other outputs are erroneous at the same time?
The answer for this question is very useful for both high-level fault injection and efficient
exploration of reliability enhancement.

The conditional error probability is defined as following:

PeAV G(i|j) = PeAV G(ij)
PeAV G(j) (3.14)

40

3.6 Experimental Results

0

0.2

0.4

0.6

0.8

1

 20 40 60 80 100

s
ig

n
a

l
p

ro
b

a
b

ili
ty

primary input number

 0

0.2

0.4

0.6

0.8

 1

 20 40 60 80 100

si
gn

al
 p

ro
b

ab
ili

ty

StringSearch

BasicMath

Number 0~31: Operand 1
Number 32~63: Operand 2
Number 64~95: Interface to multiply unit of CPU
Number 96~111: Opcode and other control signals

(a) Signal probabilities

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

P
C

C

primary iutput pairs

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1000 2000 3000 4000 5000 6000

P
C

C

StringSearch

BasicMath

(b) Sorted pairwise PCCs

Figure 3.12: Primary input statistics of OpenRISC ALU running applications StringSearch and Basic-
Math

41

3 Error Correlation Analysis at Logic Level

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

 0 5 10 15 20 25 30 35

a
v
e

ra
g

e
 e

rr
o

r
p

ro
b

a
b

ili
ty

primary output number

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0 5 10 15 20 25 30 35

av
er

ag
e

er
ro

r
p

ro
b

ab
ili

ty

StringSearch

BasicMath

(a) Error probabilities

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700

a
v
e

ra
g

e
 P

C
C

primary output pairs

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 100 200 300 400 500 600 700

av
er

ag
e

P
C

C

StringSearch

BasicMath

(b) Sorted pairwise PCCs

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 400 600 800 1000 1200 1400

a
v
e

ra
g

e
 c

o
n

d
it
io

n
a

l
p

ro
b

a
b

ili
ty

primary output pairs

StringSearch

BasicMath

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 200 400 600 800 1000 1200 1400

av
er

ag
e

co
n

d
it

io
n

al
 p

ro
b

ab
ili

ty

(c) Sorted conditional error probabilities

Figure 3.13: Error statistics for primary outputs of OpenRISC ALU running applications StringSearch
and BasicMath

42

3.7 Conclusion and Summary

Note that PeAV G(i|j) is different from PeAV G(j|i), so there are totally 38 · 37 = 1406 output
pairs. Although it is possible to approximate second order correlations using Equation (3.6),
there will be

(38
2
)
· (38 − 2) = 25308 coefficients. For brevity it is sufficient to use pairwise

correlations and conditional probabilities to illustrate the concept of correlated bit flips.
Figure 3.13(a) shows the average error probabilities of primary outputs of ALU running

StringSearch and BasicMath applications. The average error probabilities of 32-bits computa-
tion results do not have large fluctuations, while the five outliers with particularly small error
probabilities are listed in Table 3.2. From this table we can see that they are three control
signals cy_we, ov_we, flag_we and two data signals cyforw, ovforw. Actually these three con-
trol signals become erroneous only when ALU executes wrong operations, and the average on
all error sites including these executing operations on operands, makes the error probabilities
of control outputs very small. For these two data signals, as the carry and overflow bits are
generated in specific ADDITION operation and operands, the errors on these two signals are
more probable to be masked, e.g. two erroneous operands are very likely to generate the same
overflow bit ’0’ as two error-free operands, because ADDITION overflow occurs relatively rare.
Due to this reason, the average error probabilities of these two data signals are also very small.

Figure 3.13(b) and 3.13(c) show that the PCCs and conditional error probabilities exhibit
significant variations among all primary output pairs. The detailed experimental reports in
Table 3.3 show that for both applications, the first two largest conditional error probabilities
correspond to the same pair of outputs: carry write-enable signal and overflow write-enable
signal, i.e. the carry write-enable signal has high probability to be erroneous given overflow
write-enable signal is flipped (when the ALU executes the wrong operation due to internal soft
errors), and vice visa. This observation is consistent with the functionality analysis of ALU,
because normally these two signals are both ’1’ when the operation is ADDITION, otherwise
they are both ’0’. Our method can provide quantitative correlation values rather than the pure
qualitative functional analysis.

For the remaining eight large conditional error probabilities in Table 3.3, almost all of
them are related to the overflow write enable signal. However, for the two applications most
of the signals having high error probabilities given ov_we is erroneous are different. This
significant difference is due to the workload dependencies as shown in Figure 3.12. Different
primary inputs statistics would generate different internal signal probabilities and correlations,
therefore result in different masking effects in the error propagation.

In a word, our quantification of error correlations can not only identify highly correlated
error signals due to the intrinsic functionalities, but also capture the influence of different
workloads on error propagation and correlations. These quantified correlations and conditional
probabilities can provide valuable insights and guides for the fault injection based simulation
or analytical error estimation at higher abstraction levels.

3.7 Conclusion and Summary

Explicitly addressing the correlated bit-flips propagating from low level circuits is essential for
accurate error estimation and error abstraction at high levels. This chapter described a novel
approach to explicitly take into account both signal and error correlations in a unified way,
therefore it can provide quantified error correlations. Based on the concept of error propa-

43

3 Error Correlation Analysis at Logic Level

Table 3.2: Outliers of average error probabilities for primary outputs of OpenRISC 1200 ALU

StringSearch BasicMath
signal i PeAV G(i) signal i PeAV G(i)
cy_we 0.0026 cy_we 0.0026
ov_we 0.0019 cyforw 0.0022
cyforw 0.0017 ov_we 0.0019
ovforw 0.0012 ovforw 0.0018
flag_we 0.0009 flag_we 0.0009
cy_we: carry write enable; ov_we: overflow write
enable; cyforw: carry forward
ovforw: overflow forward; flag_we: comparison
flag write enable

Table 3.3: Top 10 conditional error probabilities for primary outputs of OpenRISC 1200 ALU

StringSearch BasicMath
signal pair i|j PeAV G(i|j) signal pair i|j PeAV G(i|j)
cy_we|ov_we 0.8572 cy_we|ov_we 0.8689
ov_we|cy_we 0.6229 ov_we|cy_we 0.6302

result[16]|ov_we 0.2958 result[0]|ov_we 0.2331
result[13]|ov_we 0.2598 result[3]|ov_we 0.2272
result[8]|ov_we 0.2470 result[2]|ov_we 0.2250
result[4]|ov_we 0.2407 result[7]|ov_we 0.2230
result[7]|ov_we 0.2392 result[1]|ov_we 0.2189
result[9]|ov_we 0.2288 result[8]|ov_we 0.2174
result[14]|ov_we 0.2183 result[5]|ov_we 0.2163
result[16]|cy_we 0.2150 result[4]|ov_we 0.2159

44

3.7 Conclusion and Summary

gation function, a new super-gate representation was conceived to address error probability
and correlation problems with signal probability and correlation techniques. Experimental
results showed our approach is 5 orders of magnitude faster than Monte-Carlo simulation,
while the average inaccuracy of error probability estimation is only 0.02. This method can be
extended to model correlated error propagation due to multiple error sites at logic level as well
as hierarchical and modular error analysis at higher levels.

45

4 Vulnerability Analysis at Register Transfer
and Behavioral Levels

As last chapter covers the logic level error analysis with detailed consideration of error cor-
relation, in this chapter we abstract these error information to RTL and higher behavioral
level, and introduce our error analysis framework by leveraging the word-level semantics. At
RTL, according to the different error propagation properties, the data paths are analyzed with
analytical formulas of error propagation probability, while the control paths are modeled as
a state transition system, and formal probabilistic model checking is adopted to quantify the
soft error vulnerabilities of the registers in the control modules. In addition, we also introduce
how to evaluate the vulnerabilities of variables and operations at behavioral level with similar
model checking techniques.

4.1 Introduction

The circuit level soft error analysis techniques [20, 50, 112–115] can provide very detailed and
accurate estimation on the SER of each gate, but they can only be applied to the flattened
netlists, and the useful high level behavioral semantics are ignored. For instance, at circuit level
the registers with large bitwidth are treated as individual flip-flops and protected at bit-level
using techniques such as DICE [61] and BISER [38]. However, at RTL or higher abstraction
levels they can be protected together at word-level by ECC with less area and power overhead.
Thus, performing the soft error evaluation at higher levels than circuit level has the potential
to achieve more cost-efficient error mitigation.

An RTL design typically consists of a data path and a control path. In the data path,
most operations are arithmetic and logic ones without control loops, hence the error propa-
gation analysis can be performed with analytical approaches in one pass from primary input
to output. However, in the control path, the error propagation and masking analysis is much
more challenging due to the complicated control structures. In addition, compared with data
operands, the control signals are very probable to manifest non-uniform probabilities due to
the different running workloads [116]. This means for an accurate soft error analysis in a
control path, the workload dependency has to be carefully taken into consideration.

Accurate evaluation of register vulnerabilities is particularly important for the control path,
because it determines when and which RTL operations in the data path should be executed,
hence is very critical to the design functionality. Moreover, recent research [34, 117] showed
that in multi-processor SoCs, the so called MPSoCs, the complexity of control path and uncore
logic increases significantly, which mandates efficient methods to investigate their vulnerabili-
ties to provide cost-effective protection schemes. Although the occupied area of control path
is not as high as data path, full register protection is still very costly and unnecessary [6, 53].

47

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

In addition, the timing impact of full register hardening can be another critical issue. For the
well-known hardening techniques like DICE [61], Single Event Upset Tolerant [62] and Rein-
forcing Charge Collection [63], the delay of hardened registers can be 5%∼10% higher than the
unprotected ones. As the control path determines the sequence of data transfer in data path
and is critical to the system functionality, the delay impact due to full register hardening can
be also significant. Therefore, the selective hardening scheme based on an accurate evaluation
of register vulnerabilities is indispensable.

There are a few techniques focusing on soft error evaluation at RTL, including statistical
fault injection [67] and analytical methods [5, 6, 69, 118]. The fault injection technique [67] is
based on simulation and only covers a small portion of the state space. Therefore, it is incom-
plete and requires a long simulation time to obtain results with a reasonable accuracy [119].
Formal analytical techniques [5, 6, 69] are introduced in the soft error investigation due to the
advantage in the completeness of the analysis. However, the techniques in [6, 69] only consider
qualitative error metrics (i.e. not a quantitative probabilistic metric), while the work in [5]
cannot model the workload dependency during error evaluation. In addition to these formal
techniques, another RTL analytical method in [118] uses empirical hierarchical models to es-
timate the SER of the combinational data paths. However, it is inapplicable to the sequential
control paths.

In addition to reliability characteristics of the RTL components, the behavioral variable
and operation vulnerability, i.e. the probability of system failure given that component being
erroneous, is another essential factor which influences the efficiency of selective protection
and hardening. To evaluate these vulnerabilities, several important factors should be taken
into account, including lifetime, functional dependencies, weight in conditional branches and
error masking effects [120–124]. The work in [120–122] did not consider the important error
masking phenomena, especially for the relational and logic operations which are common in
the control flows. The authors in [123, 124] used path enumeration to exploit program-level
error propagation and masking mechanisms. However, path enumeration is not applicable for
the control-intensive designs, as not only the number of paths grow exponentially with the
number of branch nodes, but also the presence of loops makes this enumeration intractable.

In this chapter, we propose novel methods based on formal probabilistic model checking
and analytical error propagation probability formula to quantitatively evaluate the component
vulnerabilities at both RTL and behavioral levels. In particular, the main contributions are
threefold:

1. We model the probabilistic behaviors of the RTL control paths, the random soft error
occurrence and their interactions using formal Markov chains. In this modeling process,
the workload dependency can be also taken into account. In addition, leveraging the
RTL behavioral semantics, several state abstraction and model simplification techniques
are proposed. They can significantly improve the scalability of the formal model checking
in the register vulnerability evaluation;

2. By analyzing and deriving EPP rules for different RTL operations in the data paths, our
analytical method provides a good trade off between accuracy and complexity.

3. With the design functionality represented as CDFG at behavioral level, we perform a
comprehensive variable and operation vulnerability evaluation with similar model check-
ing technique as in RTL.

48

4.2 Preliminary and Problem Statements

The experimental results show that the proposed methods are capable of handling complex
control modules in a typical embedded processor, and the EPP rules for representative data
paths are with rather small inaccuracy. In addition, we successfully quantify the non-uniform
vulnerability distributions among the RTL registers under different running workloads.

The organization of the rest of this chapter is as follows. Section 4.2 introduces the prelim-
inary and problem statement of this work. Section 4.3 describes the proposed model checking
method to evaluate the register vulnerabilities in RTL control paths. Section 4.4 introduces
the word-level soft error estimation methodology in RTL data paths. Section 4.5 presents the
modeling and evaluation technique to evaluate the vulnerabilities of behavioral variables and
operations. Section 4.6 shows the experimental results, and finally Section 4.7 concludes this
chapter.

4.2 Preliminary and Problem Statements

4.2.1 RTL Control and Data Paths

An RTL design typically consists of two basic components: a control path and a data path [39,
125]. As shown in Figure 4.1, the data path receives the data, performs the data manipulation
and generates the output results. In contrast, the control path identifies the status of the
RTL design and provides control signals to the data path, determining when and which RTL
operations should be executed. The control path is typically modeled as a Finite State Machine
(FSM), containing the state registers, the next-state function and the output function.

For the error evaluation, in the data path the error propagation analysis can be performed
with analytical approaches, as the typical register transfer operations have regular error mask-
ing properties. Furthermore, the operands in the data path can be generally assumed to have
uniform signal probabilities [126].

However, in the control path the error propagation properties are significantly different
from that in the data path. As shown in Figure 4.1, with prevalent logical operations and
branch constructs, the control path has more sophisticated structures than the data path with
regular operations. The error propagation in such control path can not be assumed transparent
any more. To make things more complicated, the RTL control signals are very probable to
manifest non-uniform probabilities [116]. That is to say, accurate error analysis in the control
path requires carefully considering both the sophisticated error masking effects and various
probabilistic distributions of the control signals.

4.2.2 Fault Model and Register Vulnerability

The fault model adopted in this RTL evaluation work is Single Event Upset (SEU), i.e. a
bit-flip in the impaired register. Nevertheless, our evaluation method can be also extended
to handle Multiple Bit Upset (MBU) by specifying simultaneous multiple bit flips during the
modeling of error occurrence, as described later in Section 4.3.1.

In this work, the RTL registers refer to the data storage elements which typically correspond
to circuit level flip-flops in the synthesized netlist. In our soft error evaluation, the RTL
registers are treated either at bit level (single-bit control register, e.g. data valid bit) or at

49

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

Control Path Data Path

if (a='1' or b = '1') then
 state_next <= store;
else
 state_next <= load;
end if ;
...

d = c * e;
f = c - d;

...

Control inputs

Control outputs

Data inputs

Data outputs

Control
signals

Status
signals

Figure 4.1: RTL control and data paths with code examples

word level (multiple-bit register, e.g. 32-bit address). Additionally, we use the term RTL
signals to represent both the internal registers (REGs), the primary inputs (PIs) and primary
outputs (POs).

The vulnerability of a register is defined as the probability of having a system failure, given
an SEU occurs in this register. It is a conditional probability which reflects the error sensitivity
of the RTL design to this specific register. Without loss of generality, in this work system failure
is defined as error being observed in at least one of the RTL POs. With the flexibility of model
checking, the system failure definition can also be adjusted according to the user specification.

4.2.3 Formal Methods for Soft Error Analysis

To evaluate the SEU effects at RTL, both simulation-based fault injection [67] and formal
methods [5, 6, 69] can be employed. A brief comparison of these two kinds of techniques is
illustrated in Table 4.1. The simulation-based fault injection has fair scalability, but it suffers
from incomplete input space coverage and relatively low accuracy. In contrast, the formal
methods feature exhaustive search of the design space and generation of the evaluation results
with high confidence. Its main disadvantage is that scalability improvement techniques have
to be developed to handle large designs.

Table 4.1: Comparison between simulation-based fault injection and formal methods [6]

Aspect Simulation-based fault injection Formal methods
Input coverage Not exhaustive Exhaustive
Fault coverage Random cycle to inject fault Exhaustive

Confidence Long simulation time to
reach acceptable confidence Very high

Scalability Fair (accuracy may degrade) Large designs need
improvement techniques

50

4.2 Preliminary and Problem Statements

The RTL control paths can be naturally modeled as state transient systems. They do not
have as huge state space as the data paths with large bitwidth operands (e.g. 32 or 64 bits).
Therefore the exhaustive feature of the formal methods can be fully explored to handle the
complicated error analysis in the control paths [6].

Regarding previous work using formal methods at RTL, the authors in [69] use a formal
verification approach to analyze the effectiveness of online error detection and correction logic.
A model-checking based technique is employed in [6] to identify the registers that must be
protected to guarantee correct system functionality, but it only provides a binary classification
(yes/no) rather than a quantitative metric. Another formal method based on Boolean Satisfia-
bility (SAT) formulation is introduced in [5] to analyze the soft error rate at RTL. It computes
the error propagation probability as the ratio between the number of satisfying SAT instances
and the number of all input combinations, however, it fails to capture the dependency of error
probabilities on workloads.

In this work the Probabilistic Model Checking (PMC) [127] is employed to obtain the soft
error vulnerabilities of RTL registers. PMC is a formal technique for modelling and analyzing
the state transition systems that exhibit probabilistic behaviours. Compared with the formal
technique in [6] which targets absolute guarantee of the functional correctness (i.e. qualitative
metric), PMC takes the stochastic behaviors of the design into consideration, therefore it can
provide probabilistic evaluation (i.e. quantitative metric). In addition, different from the SAT-
based technique in [5], PMC accepts user-specified input statistics (e.g. non-uniform signal
probabilities and correlations) in the modeling process, so the workload dependency can be
accurately captured in the evaluation.

In a typical PMC process, the systems is modelled as Markov Chains, i.e. the stochas-
tic process with the property that the next system state depends only on the current state
rather than the sequence of states preceding it. While the Continuous-Time Markov Chains
(CTMCs) use a dense time model and the state transitions can occur at any (real-valued) time
instant, the transitions in Discrete-Time Markov Chain (DTMC) proceeds in discrete time
steps. Therefore, the DTMCs can provide appropriate system model with discrete time units,
such as the clock ticks in the modeling of RTL circuits [128].

In addition to the probabilistic system model, PMC also accepts a wide range of user
specifications, which are formally described by probabilistic temporal logics [127]. These logics
specify how the behaviour of a system changes over time and one of its important use is
the representation of system properties to be checked by a model checker. According to the
different types of temporal properties, the model checker can return either Boolean or numerical
value, e.g. the property P>Pe [♦ fail] means “whether the system eventually fails with the
probability larger than the predefined value Pe?” and P= ? [♦ fail] is interpretated as “what is
the probability that the system eventually fails?”. Here ♦ is a temporal operator specifying the
“eventually in the future” behavior of the state transition system, and fail is a state property
which can be represented by logic proposition, e.g. system states with non-zero value of the
error flag signal, value(ef)! = 0.

51

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

Combinational
functions

Combinational
functions

PIs

REGs
PO

comparison

Fault-free design

Faulty design

Figure 4.2: Structural view of the RTL error evaluation

4.3 Register Vulnerability Evaluation in RTL Control Paths

The PMC process for our register vulnerability evaluation can be generally divided into three
phases:

• Model Construction: The state transition model, which combines the probabilistic be-
haviors of an RTL design and the random soft error occurrence, is constructed;

• Property Specification: The temporal properties which can guide the model checker to
extract the error probabilities at POs are specified;

• Model Checking: Model checker uses numerical methods to explore the state space of the
constructed model, and finally gives the desired error probabilities.

4.3.1 Probabilistic Model Construction

As mentioned earlier, an RTL control path can be modeled as an FSM and each time step
corresponds to a state transition. Here one RTL state is represented by the unique values
of the REGs and PIs, therefore for an RTL design with n PIs and m REGs1, in worst case
the state space size is 2m+n. Based on the values of PIs and REGs in current time step, the
next-state and output functions determine the values of REGs in the next time step and also
the values of POs. These functions typically correspond to the combinatorial logics and are
represented by Boolean expressions at behavioral RTL. Figure 4.2 shows the basic structure
of an RTL design, and in addition, a faulty design to compare with the fault-free one for soft
error evaluation.

To consider the probabilistic behaviors of an RTL design, we employ the DTMC model in
which each state transition in the FSM is associated with a probability value. One DTMC state
represents the value assignments to a set of state variables (corresponding to the PIs and the

1For the estimation of state space size, the number n and m should be the bit-width sum of the RTL signals.

52

4.3 Register Vulnerability Evaluation in RTL Control Paths

// SPi is signal probability
// of input i
module example(clk, i, o);
 input clk, i;
 output o;
 reg r;

 assign o = i & r;
 always @(posedge clk)
 r <= i;
endmodule

state variables

00

0110

11

i r

1-SPi

SPi

SPi

SPi

1-SPi
SPi

1-SPi

(a) A simple example of an RTL design and the corresponding fault-
free DTMC

S=0 S=1 S=2 S=k

(b) Soft error occurrence DTMC

state variables
00|00

01|1010|00

11|10

i r|rf s

01|0111|01

(s=2)

00|1110|11

...

...

(s=1)

No bif-flip
(s=0)

Combined
DTMC

(s=k)

(c) Combined DTMC with soft error in register r

Figure 4.3: Model construction for the soft error evaluation

53

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

REGs in the RTL design). Figure 4.3(a) is a simple DTMC example, where the state variables
are i and r, and the value of the output o is just a Boolean function of these two state variables.
To capture the workload dependency in the constructed model, the signal probabilities of all
PIs as well as the correlations can be integrated into the state transition probabilities. Note
that only the PI probability distributions, the output and next-state Boolean functions need
to be provided, then the REG and PO probabilities will be automatically computed by the
model checker.

Modeling of SEU

After the fault-free RTL design modeling, the random occurrence of a soft error at any possible
DTMC state needs to be integrated. We use the parallel composition mechanism of DTMC
to model this effect. For one DTMC module composed with several parallel submodules, the
global states of the entire DTMC are the interleaved states of each submodule. In this way,
the occurrence of a bit-flip (Figure 4.3(b)) is interleaved with each possible state in the fault-
free design (Figure 4.3(a)). As shown in Figure 4.3(c), in the combined DTMC there are
two additional variables rf and s. The variable rf represents the possible erroneous value of
the register r in the faulty design, and s is the state indicator of the bit-flip occurrence. In
the states with s = 0 no bit-flip has occurred yet, and the states with s = i, (i = 1, 2...k)
correspond to the successive time steps after the bit-flip occurrence.

Modeling of MBU

To extend the SEU modeling to MBUs, the main modification is that during the transitions
from states with s = 0 (i.e. error-free) to states with s = 1 (i.e. error occurrence), instead of
only a single bit difference in the case of SEU, for modeling MBU the value of multiple bits
are flipped. This is shown by the example in Figure 4.4, where the state variables r1, r2 and
r1
f , r

2
f represent the error-free and possible erroneous values of the two registers, respectively.

After modeling the MBU occurrence, the error propagation behavior is analyzed in a similar
manner as SEUs. As the same set of state variables are already considered during the SEU
analysis, the overall state size of modeling MBUs is the same as that of SEUs.

4.3.2 Property Specification

To obtain quantitative measurements of the modeled system, we need to specify the model
checking properties expressed with probabilistic temporal logic.

For evaluating the soft error vulnerability of the impaired RTL register, a traversal of all
paths in Figure 4.3(c) starting from the initial state and reaching the states with system failure
is necessary. As defined in Section 4.2.2, it means in these failure states, there exist different
PO values in fault-free and faulty RTL designs. As explained in Section 4.2.3, this kind of
path traversal can be specified by the following temporal property

P= ? [♦ fail] , P= ? [♦ (s == k&POe! = PO)] (4.1)

where P= ? means that the model checker should obtain the quantitative probability value,
and the temporal operator ♦ means starting from the initial state, eventually the states with

54

4.3 Register Vulnerability Evaluation in RTL Control Paths

modeling variables of two registers

r1 r2 | r1
f r

2
f

...

10|01

(s=1)

(s=2)

(s=k)

MBUSEU

...

10|00

(s=1)

(s=2)

(s=k)

(s=0) 10|10

Figure 4.4: Example of modeling the SEU and MBU

system failure will be reached. The fail state property is defined as (s == k&POe! = PO),
which means that at k steps after SEU occurrence, the primary outputs from fault-free and
faulty DTMC are different.

Therefore, this property will guide the model checker to obtain the overall probability that,
after an SEU occurs, the RTL system proceeds k time steps and eventually encounters a system
failure. The failure probability obtained here is a conditional probability given a bit-flip occurs
in the specific register, i.e. register vulnerability. Note that taking advantage of the flexibility
of property specification, other error scenarios can also be analyzed by the model checker:

• The system failure definition may be adjusted according to the RTL semantics. For
instance, when one “validation bit" signal is inactive, the errors in data outputs do not
matter and can be safely ignored;

• there exist correct PO values but erroneous REG values in the faulty RTL design, i.e.
latent errors;

• the PO/REG errors appear at the kth step (s = k), or within k steps (s ≤ k) after the
SEU occurrence.

4.3.3 Model Checking

We use PRISM [129], a symbolic model checker to rigorously analyze the DTMC model. The
tool has been widely used for quantitative verification in a broad spectrum of application
domains. It supports the construction of various types of probabilistic models and adopts the
compact binary decision diagrams to efficiently manipulate them. In this work PRISM is also
combined with Sigref [130], a tool that performs the bisimulation-based state minimization
[127] for faster model checking.

55

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

State transition systems generally contain large degree of redundancy as there are many
states which behave very similarly. A bisimulationR on the state space is a binary relation that
relates states which are indistinguishable in some sense. The idea of bisimulation minimization
is to collapse all states that are related by a bisimulation R into one meta-state, which has
the same behavior as all contained states. It can be shown that bisimilar states satisfy the
same formula of the probabilistic temporal logic [131]. Therefore, bisimulation minimization
preserves all properties expressed with this temporal logic while reducing the size of the model.
Consider the two states s1 and s2 as an example in Figure 4.5. Although they have different
outgoing probability distributions, the cumulative probability of going to states satisfying the
same property, e.g. system fails, which are indicated by the grey color is 0.7 for both states ,
so the two states are indistinguishable with regard to the concerned property and thus can be
merged.

Bisimulation minimization has been proved to speed-up PMC runtime for many systems [132].
For large systems it can even enable the analysis that could not be dealt with before [133]. Fur-
thermore, the technique has the advantage of being fully automated and requiring no manual
interaction with the user.

4.3.4 Scalability Improvement of the RTL Model Checking

Formal model checking techniques exhaustively explore the entire state space to obtain the
desired results with high confidence. However, the well-known state explosion problem limits
their applicability and hence scalability improvement techniques are essential. In our evalu-
ation of soft error probabilities, the size of state space has an exponential relation with the
numbers of PIs and REGs in the RTL design. Therefore, our main goal is to reduce these two
numbers in the model construction phase.

Except for adopting the state abstraction technique - data type reduction [134, 135], we
propose another two new techniques to further improve the scalability, i.e. verification-assisted
model simplification, and time-multiplexed PIs partitioning. They can either remove the mod-
eling redundancy by RTL abstraction and simplification, or explore the structural decomposi-
tion of the state space. As the error propagation properties are preserved in these processes,
applying them do not influence the evaluated vulnerability values.

s1 s2

System
fails

0.5 0.2

0.3

0.7 0.3

System
fails

System
not fail

Bisimilar
states

Figure 4.5: Example of bisimulation equivalent states

56

4.3 Register Vulnerability Evaluation in RTL Control Paths

Data Type Reduction (DTR)

One main advantage of the error investigation at RTL is that the word-level information can be
leveraged to reduce both the numbers of PIs and REGs. For a given property to analyze in the
model checking, RTL signal with large bitwidth can be treated as several multi-bit blocks [134],
as opposed to clusters of single bit signals at circuit level without any special semantics. This
kind of abstraction is particularly suitable for the RTL control paths, in which there are limited
number of signals with large bitwidth (e.g. data, address). These signals always move around
as blocks in the RTL designs.

For some RTL arithmetic and block-assignment operands, the bit-width of concerned operands
can be significantly reduced, while the error propagation properties are still preserved. Accord-
ing to the bits extraction and concatenation operations in RTL designs, the entire multi-bit
signals may be divided into several segments. Take the following codes as example:

saved_addr_r[3:2] <= saved_addr_r[3:2] + 1;
...
saved_addr_r[31:12] <= start_addr[31:12];

The errors on the right hand side of these two assignments propagate directly to the left
hand side. According to the involved operations of the different segments in the register
saved_addr_r, its total 32-bits can be broken into two segments: [31:12] and [11:0]. The first
segment is related to the assignment of the signal start_addr, and for the second segment,
due to the transparent error propagation any errors in this segment will stay there even after
the assignment is finished. Both segments can be abstracted to a single bit, when similar
treatments are performed for the signal start_addr. This abstraction modifies the original
functionality, but preserves the error propagation properties. This powerful abstraction of
error propagation at word-level is only possible when the analysis is done at high levels such as
RTL. In addition, this abstraction is independent of the word width, e.g. even when the width
of saved_addr_r signal increases to 64 or 128 bits, the similar abstractions are still applicable.
Our experimental results in Section 4.6 show that, on average it can reduce the number of PI
and REG variables in the model construction by more than 70%.

Verification-assisted Simplification (VAS)

Another efficient way of scalability improvement is to explore the local influence of error propa-
gation, and remove the unnecessary REGs in the model construction process. As illustrated in
Figure 4.6, to check the correctness of PO values the fault-free and faulty versions of the RTL
design need to be compared, which implicitly doubles the number of internal REGs. However,
after the bit-flip occurs and in the following error propagation, the registers influenced by the
errors are always in limited regions of the entire design. Due to the similar functionalities of
fault-free and faulty designs, straightforward comparison will introduce significant modeling
redundancy.

To obtain a compact error propagation model, we propose to employ Sequential Equivalence
Checking (SEC) [136] to merge equivalent registers for the removal of modeling redundancy.
The key point here is how to incorporate the transient behavior of the soft error in the faulty
design.

57

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

Output/Next-state
functions

Output/Next-state
functions

PIs

REGs POs_error

Bit-flip injection submodule

flipped

flip_ctrl

clk

injection

flipped

flip_ctrl

injection

transient bit flip

Figure 4.6: Construction of the error checking module

For fault simulation purpose, only one additional primary input and an XOR gate are
necessary. The user can inject a single bit-flip in the register during the RTL simulation.
However, for SEC purpose, only one XOR gate is not enough. SEC is a formal technique and
it assumes that the value of any primary input will always have two possibilities: low or high.
To model a transient soft error in SEC, we integrate a new bit-flip injection submodule into
the faulty design, as shown in Figure 4.6. Assume the flipped flag signal is initialized with low
value, and after the input injection becomes high, the flip_ctrl output will be high for only
one clock cycle and then always stay low, no matter how injection changes.

After the integration of the bit-flip injection submodule, the entire error checking module
is sent to an SEC tool for design simplification [136]. By merging the equivalent registers and
removing the redundant logic, a compacted error checking module is obtained. The compaction
potential of this method is significant for larger designs, because they manifest much locality
of error influence. As shown later in our experiments, on average this compaction can reduce
the number of REG modeling variables by more than 30%.

Time-multiplexed PIs Partitioning (TPP)

Except for reducing the number of REG variables, another technique, called time-multiplexed
PIs partitioning, is proposed to handle the design with large number of PIs. This technique
divides the entire huge state space into small partitions, and then analyzes them sequentially.
Generally the output and next-state functions of each individual PO/REG depend only on
limited number of PIs rather than all of them, especially for a design with large number of

58

4.3 Register Vulnerability Evaluation in RTL Control Paths

(a) An RTL example

i0

i1

i2

r1

r0

r2

o0

o1

Strongly Connected
Components (SCC)

i3

(b) Signal dependency graph

(d) Schedule different partitions

(b)
SCC

micro step 2

micro step 1

i0

i1

i2 r2

o0

o1

i3

(c) Graph partitions

SCC
i0

i1

i2 r2

o0

o1

i3

partition 1

partition 2

Output/Next-state
functions

i0

i1

i2

i3

o0

o1

r0

r1

r2

Figure 4.7: Time-multiplexed PIs partitioning

PIs. Therefore, one time step of the original design can be divided and modeled by several
micro-steps. In each micro-step, only a fraction of PIs, POs and REGs values will be assigned,
calculated and updated. That is, we replace a set of PI assignments working in parallel with a
time-multiplexed version working in sequence. It explores the inherent structural decomposi-
tion of the RTL designs, and alleviates the state explosion problem. In different micro-steps,
with different input probabilistic distributions the same PI modeling variables can be reused
for different PO/REG value assignments. The functionalities of the original and partitioned
designs are equivalent, but the computation effort for each partition can be much smaller than
directly analyzing the entire state space.

The key challenge here is how to partition the design. The interactions among different
partitions should be minimized, while the signal dependencies must be preserved to guarantee
the functional correctness. To achieve this, the following work flow is proposed:

1. Construction of the PI/PO/REG Signal Dependency Graph (SDG) G;
2. Condensation of G into an associated directed acyclic graph (DAG) Gscc;
3. Min-cut partitioning of Gscc;
4. Scheduling of the partitions into different micro-steps.
Taking Figure 4.7(a) as an example, there are four PIs i0, i1, i2, i3 in this design. First the

SDG G is established as in Figure 4.7(b). In this SDG the RTL signals correspond to the
graph nodes, and the edges represents the signal dependencies in the output and next-state

59

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

functions.
Due to the existence of feedback loops among REG signals, G could be a cyclic graph.

Partitioning of such graph can introduce mutual dependent signals, making their treatments
at the partition boundaries very complicated. Therefore, we extract the Strongly Connected
Components (SCCs), and then build Gscc by collapsing together all the nodes of each SCC. In
this Gscc signal dependencies are unidirectional and the mutual dependencies across different
partitions are removed, as in Figure 4.7(c). To find partitions with minimum interactions, Gscc
is min-cut partitioned [137]. As the maximum number of modeling variables in all micro-steps
determine the largest space size of the partitioned design, the number of PI variables in different
partitions should be balanced. Finally the partitions are scheduled in a way that the signal
dependencies are preserved as much as possible. This can reduce the number of additional
modeling variables, which are necessary to store intermediate values. For this example in
Figure 4.7(d), partition 2 is scheduled in micro-step 1 (before partition 1). As the value of o1
depends on the value of r0 in current time step, o1 needs to be calculated before the value of
r0 is updated in micro-step 2. If we use s and s′ to represent the signal value in current and
next time step respectively, the scheduling of these micro steps and the corresponding signal
value update are as follows:

• Micro step 1: r′2 = fr2(i2, i3), o1 = fo1(r0, r2);
• Micro step 2: r′0 = fr0(i1, i2, r1), r′1 = fr1(i0, r0), o0 = fo0(r1).

Note that fs(·) represents the Boolean output function of PO signal s or next-state function
of REG signal s. It can be seen that the two subsequent micro steps perform exactly the same
operations as one original time step with simultaneous update of all signal values. That is to
say, the partitioned time-multiplexed design is functionally equivalent to the original design.

To see the advantage of this PI partitioning, assume each PI corresponds to one variable in
model checking, then there are 24 = 16 states in the original PI space. For this partitioning and
scheduling scheme, at most three variables v0, v1, v2 are necessary to model the PI variables:
micro-step 1 (i3 = v0, i2 = v2) and then micro-step 2 (i0 = v0, i1 = v1, i2 = v2). Note that
v0, v1 can have different values across different micro-steps, while v2 keeps the same value,
because i2 is shared in partition 1 and 2. By reusing the variables across different micro-
steps, the number of modeling variables is reduced from the previous 4 to current 3. For this
small running example the reduction is not significant, but for larger designs there can be
more benefits due to the partial PI dependency, which is around 50% variable reduction as
illustrated in Section 4.6.

Further Discussion on Scalability

The above scalability improving techniques either remove the modeling redundancy, or explore
the structural decomposition of the state space. Therefore, they maintain the exhaustive
feature of formal model checking to explore the entire search space. If accuracy can be sacrificed
to further increase the scalability, statistical model checking can also be adopted [138]. It is
a scalable verification technique that provides statistical guarantees of the verification results.
The basic idea is to perform the verification of the DTMCs by sampling the executing paths,
therefore it can obtain the approximate probabilities within tolerable bounds of error. Unlike
the exhaustive model checking with numerical analysis on DTMCs, it avoids the construction

60

4.4 Word-level Error Analysis in RTL Data Paths

of the entire state space, hence it is particularly suitable for very large models where normal
model checking is infeasible.

4.4 Word-level Error Analysis in RTL Data Paths

The key idea of data path error analysis is to derive EPP rules for different RTL operations with
an accurate analytical method of Error Propagation Probability (EPP). This feature makes
our approach distinctive from traditional statistical fault injection method. Moreover, since
the proposed analytical method is performed at register-level (word-level), the complexity of
our approach is considerably reduced compared with bit-level techniques.

4.4.1 Basic Idea

The basic approach of our proposal is derived from the preliminary work about gate-level SER
estimation [139]. This work presents an analytical approach of traversing structural paths from
struck site to primary outputs. It uses propagation rules of different gate types for on-path
signals and signal probabilities (SP) for off-path signals. Thus in only one pass, the error
probabilities of all the on-path signals will be computed.

Taking advantage of the similarity, it is possible to compute and estimate the EPP, i.e.
the vulnerability, of each RTL building block, rather than gate mentioned in previous work.
That is to say, we raise the abstraction level from gate level to RT level. Take Figure 4.8 as
an example, particle strike may cause bit errors in the primary input B, then with successive
operations along the paths, these error may propagate to primary outputs F and Cout. By
calculating and obtaining the vulnerability of each register, we can average all of them to get
the vulnerability value for the current RTL block. In similar way, EPP (vulnerability) values
for different RTL parts in the system could be computed. As long as the occurrence rate of
soft error in ith register RSE(i) is known, we could estimate the SER of the whole system as

SERtotal =
∑

SER(i) =
∑

RSE(i) · EPP (i)

where the parameter RSE(i) depends on the energy of particle, type and size of gate, active
area and device characteristics. In the estimation phase, this reliability parameter should be
provided by the cell library on which the system is planed to implement later.

Thus it is possible to distinguish the most vulnerable parts in the system and apply appro-
priate soft error mitigation techniques taking into consideration the reliability metric.

4.4.2 Bit-level vs Register-level

From the hardware perspective, the basic storage element at RTL is register. Between differ-
ent registers are combinational logic circuits that finish specific operations. For synchronous
circuits, one common clock signal synchronizes all the output from combinational parts and
updates the content in each register. When we consider soft errors at RTL level, they manifest
themselves as bit-flips, so the consideration of EPP at RTL level could also have two direc-
tions: bit-level EPP and register-level EPP. The former has the advantage of better handling
of bit-flips on basic operations, especially for operations with bit manipulation such as shift

61

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

NOT

01

01

N-bit Adder

0

F

S

B

Cout

A

Cin

Cout

Figure 4.8: RTL-level error propagation

and comparison. However, with the wordsize for each register and the number of total reg-
isters scaling up, the computational complexity of bit-level EPP increase dramatically, which
unfortunately deviate from our initial intention of RTL soft error modeling. As an alterna-
tive, register-level EPP method considers register with multiple bits as a whole and therefore
simplify the modeling of error propagation for different operations. Based on some reasonable
assumptions, it can still guarantee satisfactory accuracy, just as what will be demonstrated
later.

Therefore, our proposed approach is actually register-level EPP calculation among different
RTL building blocks. To facilitate later analytical EPP computation and analysis, except for
the regular register properties like word size and bit values, two additional properties need to
defined:

• Definition: Error Probability Pe(X)
the probability that the value of register X is erroneous. We assume that any one bit
error in the register will cause the whole register to be faulty;

• Definition: Signal Probability SP (X)
the probability of each bit in the register X to be 1. It can be formulated as following
equation:

SP (X) ≡ 1
N

N−1∑
i=0

SP (X[i])

where N is the word size and SP (X[i]) is the probability of ith bit of register X to be 1;

62

4.4 Word-level Error Analysis in RTL Data Paths

4.4.3 Register-level EPP Rules

A basic action in register transfer methodology is register transfer operation, which can be
described as following notation for a register transfer operation [125]:

rdest ← f(rsrc1, rsrc1, · · · rsrcn)

where rdest is the destination register and on the right side (rsrc1, rsrc1 and rsrcn) are the
source registers. After previous definition and assignment of necessary properties to each
register, error propagation rules should be formulated for register transfer operations.

As complex operations can always be decomposed into simple and basic operations, here
only EPP rules for the most common, basic and furthermore hardware synthesizable operations
are considered and formulated. Generally speaking, these operations could be categorized into
three groups:

• Arithmetic
Here only Addition is considered as a representative of the whole category, e.g. Z = A+B;

• Bitwise Logic
The most elementary operations are AND, OR and NOT, e.g. Z = A&B, Z = A|B,
Z =∼ A;

• Shift
For simplicity, only Logic shift is considered here, e.g. Z = A � k and Z = A � k,
where k is the number of shifted bits and is considered as a constant value;

Register-level EPP Assumptions

Before using the analytical approaches to estimate EPP, the employed assumptions are ex-
plained and listed as following:

• Assumption 1: The two input registers of basic operations listed above are independently
faulty, which means their error probabilities are not related;

• Assumption 2: Each bit in the same register is independent, and its signal probability
is the same as the overall SP of this register. Besides, each bit’s error probability is not
related to others and assumed to be 1/N of the register’s error probability (N is the
word size of this register).

For the investigation of data paths, Assumption 2 is reasonable because for the data register,
its content could be roughly considered to be random. Although logic shift operations would
generate several continuous 0 bits, which may make this assumption debatable, it is just one
source of inaccuracy and as shown later in the experimental part, the inaccuracy resulting
from this is in tolerable range. It may also be argued that for Assumption 1, convergent paths
in the data flow would cause some dependency between several input registers, but just as
mentioned before and validated later, the simplicity of analysis and computation is worth of
some acceptable inaccuracy.

63

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

EPP Rules for Basic Operations

Based on the assumption before, EPP rules for basic operations are derived. The error prob-
ability of output register can be generally described as

Pe(Rego) = Pe(Regin1 ∪Regin2 ∪ · · · ∪ReginN)− Pmask

where N is the number of input ports and Pmask is the probability that the errors at the inputs
are masked and cannot propagate and appear at the output.

Now it is ready to formulate the EPP rules of basic operations:
• Arithmetic

For arithmetic operations like Z = A + B, as they generate accurate value, EPP is
roughly considered to be 1. Some extreme cases may bring about masking phenomenon,
such as Z = A + (−A) and Z = A ∗ 0, but for simplicity these rare cases are ignored,
that is to say, Pmask ≈ 0. Therefore, EPP rules for Z = A+B is

Pe(Z) = Pe(A ∪B)− Pmask
≈ Pe(A) + Pe(B)− Pe(A ∩B)
≈ Pe(A) + Pe(B)− Pe(A) · Pe(B)

where the second approximation is from Assumption 1.
• Bitwise Logic

For NOT operation Z =∼ A, obviously the EPP is 1, that is to say, error in the input
register will definitely propagate to output register, therefore

Pe(Z) = Pe(A);

A=1

B=0
Z=0

Figure 4.9: AND operation EPP

For logic AND operation Z = A&B, the EPP calculation is a little complicated and a
method similar to deductive fault simulation [140] is used. Here we take one case A =
1, B = 0 as an example in Figure 4.9. The probability of this case is SP (A) ·(1−SP (B)),
and only when B is faulty and A is fault-free, the output Z is faulty, so the error
probability of output register can be derived as

P 1,0
e (Z) = Pe(Ā ∩B)

= Pe(B)− Pe(A ∩B)
≈ Pe(B)− Pe(A) · Pe(B)

In the similar way, we could get the Pe(Z) for the other three cases A = 0, B = 0;
A = 0, B = 1 and A = 1, B = 1. Finally, the EPP rule for AND operation could be

64

4.4 Word-level Error Analysis in RTL Data Paths

obtained as

Pe(Z) ≈
[Pe(A) + Pe(B)− Pe(A) · Pe(B)] · SP (A) · SP (B)+
[(Pe(B)− Pe(A) · Pe(B)] · SP (A) · (1− SP (B))+
[Pe(A)− Pe(A) · Pe(B)] · SP (B) · (1− SP (A))+
[Pe(A) · Pe(B)] · (1− SP (B)) · (1− SP (A))

For logic OR operation, the EPP rule is derived similarly as

Pe(Z) ≈
[(Pe(B)− Pe(A) · Pe(B)] · SP (B) · (1− SP (A))+
[Pe(A)− Pe(A) · Pe(B)] · SP (A) · (1− SP (B))+
[Pe(A) · Pe(B)] · SP (A) · SP (B)+
[Pe(A) + Pe(B)− Pe(A) · Pe(B)]·
(1− SP (B)) · (1− SP (A))

Up to now, we already have the EPP rules for elementary logic operations AND, OR
and NOT. As mentioned before, more complicated logic operations could be decomposed
into combination of elementary logic operations, it is easy to use the EPP rules available
now to obtain EPP rules for NAND, NOR, XOR and XNOR operations.

• Shift
As illustrated in Figure 4.10, the number of shifted bits k is a constant and assumed to be

A Z

10010 1001001

<< k

N

1001001 00000

N

<< k

Figure 4.10: Shift operation EPP

fault-free. Using the general formula mentioned above, for Z = A� k and Z = A� k,
we have

Pe(Z) = Pe(A)− Pmask;

To calculate the error probability of output register Z, the masking probability need to

65

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

be obtained first for different cases:

1 bit error in A: P 1
mask = k

N
;

2 bit error in A: P 2
mask = C2

k

C2
N

= k(k − 1)
N(N − 1) ;

...

m bit error in A: Pmmask = Cmk
CmN

(m ≤ k)

where Cmk is m-combination of set k. The computation of Pe(Z) also requires the prob-
ability for each case above, which, however, are not available for us. We only know the
probability of erroneous Z, rather than probability of different number of bit errors. For
simplicity and raw estimation, we only consider 1 and 2 bit error cases and more bit
error cases are ignored. Therefore, using following equations:

P 1
mask + P 2

mask = 1
(P 1

mask)2 = P 2
mask

We set 0.6 and 0.4 as raw probabilities for 1 and 2 bit error in input register A and
finally get the EPP rules for Shift operation:

Pe(Z) = Pe(A) · [1− (0.6 · k
N

+ 0.4 · C
2
k

C2
N

)]

4.4.4 Overall EPP Estimation

After the formulation of EPP rules for basic operations, the overall EPP of an RTL block can
be estimated as following, where high-level Data Flow Graph (DFG) is used as the input:

1. Traverse the whole DFG to obtain the register set of concern, assume its number is N ;
2. For each register in this set, the following steps are performed:

• Initialization: for the register Regi at error site, Pe(Regi) = 1 and all other registers
Pe = 0;

• Traverse from primary inputs of DFG and apply EPP rules for each operation to
obtain the output register’s error probability until it reaches the primary outputs.
The Pe of register on the reachable paths from error site Regi to primary outputs
would be updated automatically and Pe of other registers are still 0;

• Assume there are M reachable output registers RegO from Regi, and as error in
any output register would be considered as the overall outputs are wrong, we use
following equations to calculate EPP of Regi

EPP (Regi) = 1−
M∏
i=1

[1− Pe(RegO(i))];

3. After all registers are repeated on step 2, the EPP of the whole RTL block is computed
as

EPPoverall = 1
N

N∑
i=1

EPP (Regi);

66

4.5 Vulnerability Analysis at Behavioral Level

4.5 Vulnerability Analysis at Behavioral Level

To evaluate the variable and operation vulnerabilities to soft error, several important factors
should be taken into account, including lifetime, functional dependencies, weight in conditional
branches and error masking effects. In this work, we propose a state-based vulnerability
evaluation technique to analyze both data and control errors, which inherently takes into
account all the above mentioned factors, and can efficiently handle the sophisticated branch
and loop structures in the control flows of the behavioral designs.

The vulnerability evaluation in this work is based on single error model and performed on the
CDFG of the behavioral design, which is a directed graph consisting of two level structures:
control flow graph and Basic Blocks (BB). Each BB includes a sequence of operations to
perform the computation i.e. DFG, and the last one is associated with a branch condition
to indicate the control dependencies between BBs, as shown in Figure 4.11(a). Without loss
of generality, we assume that the CDFG has a single entry BB and a single exit BB. The
variable/operation vulnerability evaluation in this CDFG consists of three main parts: random
error occurrence modeling, error propagation modeling and the vulnerability evaluation.

4.5.1 Random Error Occurrence Modeling

The random property of soft errors means that they can occur at any possible moment of the
program execution starting from the function entry to exit. Taking different branch probabil-
ities and error masking effects into consideration, two subtle scenarios make the vulnerability
analysis a challenging task: errors occur and propagate along the branch with low (high) execu-
tion probability, while the error masking probability is also very low (high). In these scenarios,
large amount of paths have to be investigated to check the contribution of the errors, which
propagate on these paths and finally arrive at function exit.

To efficiently handle this issue without sophisticated path enumeration and time-consuming
fault injection, we model the occurrence of soft error as a nondeterministic phenomenon by
Markov Decision Process (MDP) [127], which can be viewed as a variant of Markov chain
that permits both probabilistic and nondeterministic choices. We use one state variable phase
to indicate whether soft errors occurred or not. For each state with phase = 0 (error has
not occurred yet), the system nondeterministically makes transitions to either phase = 0
or phase = 1 (error occurs). Following phase = 1 are the states with phase = 2 (error
propagates).

4.5.2 Error Propagation Modeling

The investigation of error propagation in a software system has been studied in [141, 142].
While the work in [141] considered only the control errors, the technique in [142] did not
differentiate data and control errors while propagating them in the software components. In
this work, we should handle the two types of errors separately, as they have different error
propagation and masking mechanisms. The basic idea on modeling data error propagation is
to construct a macro-state with error-free and erroneous transitions for each operation in the
BB, as shown in Figure 4.11(b). For one operation with the input I, output O and function
O = f(I), the macro-state consists of four states:

67

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

BB0

IF

BB3

IF

1.0

BB1 BB2

1.0

0.8 0.2

1.0

0.3 0.7

(a) CDFG with branch probabilities

BB0

I Ie

O Oe

Pmask

...
0.8 0.2

BB1 BB2 BB3

BB2

IF

Error
-free

Erron-
eous

P’mask 1-P’mask

(b) Error propagation model

Figure 4.11: Control data flow graph example and our adopted error propagation model

• I: all the inputs of this operation are error-free;
• Ie: at least one of the inputs of this operation is erroneous;
• O: the output of this operation is error-free;
• Oe: the output of this operation is erroneous;

To model the error masking effects, one special transition from Ie to O is added with an
associated masking probability Pmask (e.g. one AND operation can theoretically mask half of
the input errors with Pmask = 0.5 and generate the correct output). Note that for different
operation types Pmask can be different, and in this work we adopt the masking probability
values from [123].

When the errors propagate to the conditional IF branch (i.e. control errors) as shown
in Figure 4.11(b), we can use a conservative assumption [141] that the values of variables
calculated in wrong branches are erroneous. The rationale behind this assumption is that: i) if
the same operation with same operands is carried out no matter whether the condition is true
or not, it can be moved just outside the conditional statements by the common redundancy
elimination compiler optimization [143]; ii) the behavioral variables always have wide width
(e.g. 32-bits integers) and the probability that variables from different branches have the
same values is rather low. Therefore, due to the control error (with probability 1 − P ′mask)
in IF condition of BB0 in Figure 4.11(b), the state makes transition to BB3 directly and the
variables calculated in BB1 and BB2 are set to be erroneous.

Note that this propagation modeling is not limited to be at operation level, and it is
also possible to build the macro-states of error propagation and masking for each BB or
even function. Therefore with different input error probabilities we are able to calculate the
corresponding output error probabilities for each macro-state, and propagate errors across

68

4.6 Experimental Results

macro-states, i.e. support hierarchical modeling of the error propagation to reduce the overall
complexity.

4.5.3 Vulnerability Evaluation

In the last step, the error occurrence and error propagation model need to be combined. In
this work we exploit the parallel composition mechanism, which means for one MDP composed
with several parallel submodules, the global states of the combined MDP are the interleaved
states of each submodule [127]. In this way, the occurrence of soft error is interleaved with
each possible state in the error propagation submodule. This means before soft error occurs,
the combined MDP just follows the normal execution and every variable is error-free, and after
soft error nondeterministically occurs, the combined MDP proceeds with the error propagation
model. The propagation terminates when the MDP reaches one sink state representing the
function exit and the error probabilities of the function output will be evaluated at this sink
state.

The probabilistic model checking tool PRISM [129] is employed in our work to automatically
reason about the observed error probability at function exit over all possible resolutions of the
nondeterminism. The obtained error probabilities are conservative estimation of the behavioral
vulnerabilities, which are appropriate for the variable and operation ranking as a guideline of
error mitigation.

4.6 Experimental Results

To evaluate the proposed techniques for register vulnerability analysis, we carried out the ex-
periments on several representative RTL control paths and data paths. In addition, a case
study on an RTL cache controller is performed to demonstrate the non-uniform register vul-
nerabilities, and the quantification of workload dependency. The experiments were performed
on a workstation with Intel Xeon E5540 2.53GHz and 16GB RAM.

4.6.1 Control Path Evaluation Results

Six RTL control path benchmarks are used, including the control FSMs from the data man-
agement unit of OpenSPARC [144], instruction/data cache (IC/DC) controller, and program
counter (PC) generator of the OpenRISC 1200 (OR1200) processor [109].

The vulnerability evaluation flow is illustrated in Figure 4.12. First the RTL description
is processed for data type reduction, especially for the signals with large bitwidth. Then
the design is partitioned and modeled as a PI-multiplexed version. For each register to be
evaluated, the error checking module is constructed as in Figure 4.6 and simplified by SEC.
The corresponding DTMC models are generated and then using the prepared property file,
the PRISM model checker generates the register vulnerability. Note that the three techniques
are actually orthogonal to each other, and they can be applied in any user specified order.
According to the previous analysis in Section 4.3.4, DTR and TPP techniques are independent
of the error sites (i.e. impaired registers), therefore the two processing steps can be performed
only once when the vulnerabilities of multiple registers need to be evaluated.

69

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

Register
vulnerabilities

RTL description

Data type reduction

Temporal properties
to evaluate vulnerability

Time-multiplexed PIs
partitioning

Registers traversal? N

Y Model checker
(PRISM with Sigref)

Verification assisted
simplification

DTMC model
generation

Figure 4.12: Register vulnerability evaluation flow in control paths

Table 4.2: Benchmark characteristics and the runtime for register vulnerability evaluation

Benchmarks PIs REGs Model Construction
Time (sec.)

Model Checking
Time (sec.)

rmu_rrm_etsbfsm 5 8 0.7 0.3
ilu_eil_xfrfsm 15 6 0.4 0.9

clu_crm_pktctlfsm 15 14 85.4 5.1
or1200_ic_fsm 40 42 230.5 1.3
or1200_dc_fsm 102 48 1927.9 0.1
or1200_genpc 241 95 2330.2 0.1

It is worth to mention that actually the proposed technique for error evaluation is not
limited to RTL description. In principle, if a gate-level design is modeled as a state transition
system, the proposed method can also be applied to a pure gate-level description. However,
in terms of scalability it is not efficient to use formal model checking technique for gate-level
design, because all the word-level information are lost and the signals are flattened bit by bit,
which will deteriorate the scalability of applying formal methods. Therefore, we start from
RTL, and make full use of the high level abstraction efficiency to reduce the model size. In
other words, we exploit the power of formal model checking techniques for RTL designs in
which the disadvantage of such methods, i.e. scalability, can be hidden by doing the analysis
at a higher level of abstraction which allow us to reduce the state space. In summary, this
technique is more appropriate for error evaluation in an RTL description rather than a pure
gate-level netlist.

Table 4.2 shows the characteristics of the employed benchmarks as well as the runtime for
evaluating the register vulnerabilities. For the first three small benchmarks, direct modeling
and analysis of the register vulnerabilities is possible, therefore the DTR, VAS and TPP
techniques are not adopted. For the remaining benchmarks, due to the large size of PIs and
REGs all the abstraction and simplification techniques are applied, then the PMC runtime are
reported based on the reduced design.

70

4.6 Experimental Results

Table 4.3: PMC variables reduction and corresponding runtime by applying three scalability improve-
ment techniques

Benchmarks PI Variables REG Variables Runtime (sec.)

Ori. DTR TPP DTR
+TPP

Ori. 1 DTR VAS DTR
+VAS

Ori. DTR DTR
+TPP

DTR
+VAS

DTR+
VAS+TPP

or1200_ic_fsm 40 10 21 9 84 24 72 21 TO1 719.7 541.4 306.4 231.8
or1200_dc_fsm 102 25 75 11 96 42 33 12 TO TO TO TO 1928.0
or1200_genpc 241 37 58 19 190 26 154 18 TO TO TO TO 2330.3
Avg. reduction - 78% 50% 86% - 71% 33% 84% - - - - -
1 As shown in Figure 4.2, the number of REGs for error checking includes both fault-free and faulty designs.
2 Time Out (TO): in these experiments, the time limit for model checker was set to be 3 hours.

The model construction time includes the time taken for preprocessing the RTL designs as
well as the bisimulation time. While the preprocessing steps (i.e. DTR, VAS and TPP) need
only several seconds, the bisimulation process dominates the model construction time, because
it tries to compact the equivalent states as much as possible. With the reduced state space,
the model checking time is very short.

Table 4.3 shows the scalability improvement of our proposed techniques, when they are
applied separately or all-together to the three larger benchmarks. Note that VAS technique
only aims to reduce REG variables, while TPP only for PI variables. As the state space
size increases exponentially with the number of PI/REG variables, direct model checking
without abstraction and simplification is not feasible. Therefore, the numbers of PI and REG
modeling variables in DTMCs, instead of the runtime, are reported here. The numbers of
REG variables in VAS technique are averaged over all possible error sites, and the PI variables
in TPP include the PIs in individual micro-step as well as the shared PIs across multiple
micro-steps, as illustrated in Figure 4.7.

The detailed comparison of all three techniques regarding relative variable reduction is
shown in Figure 4.13. The DTR technique leverages the efficient RTL abstraction, therefore
it can reduce the number of modeling variables on average by 78% and 71% for PIs and
REGs. In comparison, applying VAS or TPP separately is able to reduce the number of
REG or PI variables by 33% or 50%. If all three techniques are applied together, the total
reduction of the PI and REG variables can reach 86% and 84%, respectively. As the overall
state space size increases exponentially with the number of PI/REGs variables, such amount
of reduction has tremendous impact on the PMC runtime when the three techniques are
applied separately. As expected, there are many timeout scenarios without proper state space
reduction, which directly impact the feasibility of probabilistic model checking for register
vulnerability evaluation.

To investigate the efficiency of proposed scalability improving techniques, we use two ad-
ditional larger benchmarks: 64-bit version of the controller or1200_genpc_64 with double
bitwidth signals, and duplication of the controllers or1200_genpc_dup with double PIs and
REGs but the same number of POs. The corresponding runtime and comparison with origi-
nal design without PMC variable reduction are illustrated in Figure 4.14. Note that for the
original benchmarks without simplification, the exponential runtime is extrapolated based on
the available actual PMC runtime of the smaller benchmarks, for which the model checking
was able to successfully terminate. From this investigation we can see that although the PMC

71

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

 0

 20

 40

 60

 80

 100

P
I

v
ar

.
re

d
u
ct

io
n
 (

%
)

DTR TPP DTR+TPP

 0

 20

 40

 60

 80

 100

or1200_ic_fsm

or1200_dc_fsm

or1200_genpc

Average

R
E

G
 v

ar
.
re

d
u
ct

io
n
 (

%
)

DTR VAS DTR+VAS

Figure 4.13: Relative reduction of modeling variables with three different techniques

runtime increases exponentially with the number of modeling variables, with the proposed
variable reduction techniques, this trend is significantly alleviated and the PMC-based vulner-
ability evaluation can be well applied to handle complex control modules. Considering the fact
that the vulnerability evaluation of different control units could be evaluated independently
and be fully parallelized, the runtime of applying the proposed technique to other controller
units can be estimated with this largest block. As this work focuses on the control path anal-
ysis, regarding the entire processor, there are another set of orthogonal techniques like [126]
for analyzing data path blocks.

4.6.2 Data Path Evaluation Results

For data path EPP evaluation, we use 8 DFG examples for evaluation and these benchmarks
can be categorized into two groups:

• The first 4 DFGs (benchmark 1∼4) are manually constructed including all the mentioned
basic operations and the usual convergent paths. To evaluate the inaccuracy caused by
shift operation and convergent path, special cases that only contain convergence or shift
operations are designed;

• The other 4 DFGs (benchmark 5∼8) are from algorithm DFGs in the literature [145–147],
which are Secure Hash Algorithm, ADPCM encoder and FIR filter.

An overview of these 8 DFGs are shown in Table 4.4.

72

4.6 Experimental Results

 1

 100000

 1e+10

 1e+15

 1e+20

 1e+25

 1e+30

 200 400 600

R
u
n
ti

m
e

(s
)

PIs + REGs

Proposed technique
Available runtime data

Exponential extrapolation

 0

 4000

 8000

 12000

 200 400 600

PIs + REGs

(a) Runtime comparison with the exponential case without PMC variable reduction

Benchmarks Original Reduced Vars Runtime
(sec.)PIs REGs PIs REGs

or1200_ic_fsm 40 42 9 21 231.8
or1200_dc_fsm 102 48 11 12 1928.0
or1200_genpc 241 95 19 18 2330.3

or1200_genpc_64 339 187 19 20 4117.5
or1200_genpc_dup 482 190 24 24 10311.8

(b) Benchmark statistics and runtime

Figure 4.14: Scalability investigation with large benchmarks

Table 4.4: Overview of the benchmark DFGs

Bench Operations Registers Input
registers

Output
registers Additional notes

DFG1 8 12 4 2 All basic operations included with convergent path
DFG2 8 11 3 2 All basic operations, stronger convergence
DFG3 8 11 3 2 Without SHIFT operation but with convergence
DFG4 6 10 4 2 With SHIFT operation but without convergence
DFG5 13 17 4 2 SHA algorithm DFG
DFG6 13 17 4 2 SHA algorithm DFG without SHIFT operation
DFG7 9 13 4 2 ADPCM encoder algorithm DFG
DFG8 9 10 1 1 FIR filter DFG

73

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

Validation Flow of EPP Rules

To verify the accuracy and speed advantage of the proposed EPP rules, a validation flow is
conceived and illustrated in Figure 4.15.

Proposed
RTL

Analytical
Approach

DFG Description

Monte Carlo
Simulation

All bits in
REG[i]

traversal?

Bit j fault injection

Monte Carlo
Simulation

Select one REG i,
computation of

EPP[i]

Signal Probability

REG list
traversal?

Average all EPP[i]
to get the overall

EPP

Y

N

REG list
traversal?

N

Select one REG i

N

Average all
EPP[i][j] to get the

EPP[i]

Y

Average all EPP[i]
to get the overall

EPP

Y

Compare

Accuracy results

Tradiditonal
Bit-level SFI
Approach

Figure 4.15: Validation Flow of the EPP rules

The input of validation flow is the DFG description. After the initial traverse of the
whole DFG, registers of concern to be investigated are obtained. Then there are two dif-
ferent branches for verification:

• For each register of concern, using Statistical Fault Injection (SFI) based on Monte-Carlo
simulation, fault is injected into each bit and simulated, primary output are compared
with expected values in fault-free simulation and then EPP for one bit is obtained.
Average of these bit EPPs gives EPP of the whole register. After traversing all registers
of concern, average of them gives fault-simulation EPP of the overall DFG;

74

4.6 Experimental Results

• First fault-free Monte-Carlo simulation generates SP for each register, and then with
fault occurring in each whole register rather than specific bit, propagation rules are
applied to each operations in the DFG and EPP of the impaired register is obtained.
After traversing all registers of concern, average of them gives analytical EPP of the
overall DFG.

Comparing the EPP value from two different branches give us the accuracy of our analytical
approach and runtime comparison could tell the speedup ratio of our method.

Comparison Results

With the SFI simulation of 99.9% confidence level, the EPP results and corresponding com-
parison are shown in Table 4.5, Figure 4.16 and Figure 4.17.

Table 4.5: Comparison of proposed analytical EPP approach with traditional SFI simulation regarding
accuracy and runtime (sec.)

Bench Analytical
value

SFI
value

Absolute
difference

Relative
difference

Analytical
runtime

SFI
runtime

Speedup
(w/o SP)

SP
runtime

Speedup
(with SP)

DFG1 0.624 0.598 0.043 7.3% 5.0E-06 208.0 4.1E+07 5.5 37.6
DFG2 0.602 0.542 0.060 11.0% 8.0E-06 196.0 2.4E+07 4.8 40.7
DFG3 0.430 0.440 0.010 2.2% 6.0E-06 139.8 2.3E+07 4.7 29.3
DFG4 0.715 0.594 0.122 20.4% 4.0E-06 111.9 2.8E+07 0.4 226.7
DFG5 0.777 0.680 0.096 14.1% 1.0E-05 499.6 5.0E+07 7.2 68.9
DFG6 0.741 0.662 0.079 11.9% 1.1E-05 403.6 3.6E+07 7.4 54.4
DFG7 0.559 0.555 0.003 0.6% 9.0E-06 267.2 2.9E+07 6.9 38.7
DFG8 0.999 0.987 0.012 1.2% 4.0E-06 615.4 1.5E+08 4.1 37.6
Average - - 0.053 8.6% - - 4.8E+07 - 80.7

 0

 0.2

 0.4

 0.6

 0.8

 1

DFG1 DFG2 DFG3 DFG4 DFG5 DFG6 DFG7 DFG8

A
v
er

ag
e

v
u
ln

er
ab

il
it

y

Analytical EPP SFI simulation

Figure 4.16: Accuracy comparison of different DFG benchmarks

The experimental results shows that for 8 benchmarks, compared with traditional SFI
simulations, the maximum EPP absolute value difference is around 0.1 and average relative

75

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

DFG1 DFG2 DFG3 DFG4 DFG5 DFG6 DFG7 DFG8

R
u
n
ti

m
e

(s
ec

.)

Analytical EPP
SFI simulation

SP calculation

Figure 4.17: Runtime comparison of different DFG benchmarks

inaccuracy of our analytical approach is 8.64%. Considering that RTL design is in early
design phase and much information of real implementation is not available, this inaccuracy
is acceptable. It also shows that the previously mentioned convergent paths which result in
dependency among input registers do not have significant impact on our approach.

The speedup results have two groups. In the first group, the runtime of our approach
does not include signal probability runtime, which, however, is included in the second group.
The average speedup ration for these two groups are 4.85E+07 and 80.72, respectively. Signal
probability computation is a really time-consuming part, but fortunately, in real system design,
SP values are available from power estimation. Reuse of these information makes our approach
have high speedup compared with traditional fault simulation.

4.6.3 Case Study of OpenRISC IC FSM

To illustrate the vulnerability variance for different registers, we investigated the instruction
cache FSM of the OpenRISC processor as a case study. This FSM has 40 primary inputs
including one 32-bit address signal, and 8 control signals that interact with the cache RAM
and bus interface to fetch cache-missed instructions. In addition, it has 42 internal registers

Table 4.6: PI signal probabilities with different workloads

Workloads PI Signal Probabilities
icqmem_cycstb_i tagcomp_miss biudata_valid

BasicMath 0.89 0.08 0.054
Qsort 0.92 0.13 0.099

StringSearch 0.89 0.01 0.004
FFT 0.90 0.02 0.001

76

4.6 Experimental Results

related to the FSM states, the instruction fetch address and other control signals for cache
hit/miss evaluation.

For the investigation of register vulnerabilities with realistic workloads, we extracted the
signal probabilities at PIs of the IC FSM from behavioral RTL simulation. Four typical work-
loads - BasicMath, Qsort, StringSearch and Fast Fourier Transform (FFT) from Mibench
benchmarks [110] are selected to run on the processor. In Figure 4.18, we plot the vulnerabil-
ities of several representative registers. The system failure probabilities within multiple time
steps are computed with the formula in [148], which can combine the model checking results
for each individual time step.

It is clearly shown that different registers in this FSM have non-uniform soft error vul-
nerabilities. In addition, with different workloads the register vulnerabilities manifest large
variance, e.g. the register cache_inhibit. To further investigate the reasons for this invari-
ance, in Table 4.6 we list the signal probabilities at some PIs of the IC FSM. Note that the
PI signal tagcomp_miss is related to the cache miss rates and hence, the corresponding state
transitions of the cache FSM. It is clear that the signal probabilities of this PI for workloads
BasicMath and Qsort are larger (around 0.1) than that of StringSearch and FFT. This is also
the reason why the register vulnerabilities in Figure 4.18 are close to each other within two
different workload groups: (BasicMath, Qsort) and (StringSearch, FFT). In this case study,
we can see that there is only 0.1 probability difference at the PI signal tagcomp_miss, but it
leads to around 0.4 vulnerability difference for the internal register cache_inhibit.

Except for the different quantitative vulnerability values, we also investigated the qualitative
trends across different running workloads. In Figure 4.19, we plot the vulnerabilities of the
registers in the IC FSM, and sort them in a descending order according to their vulnerabilities
respect to the BasicMath workload. Then the vulnerabilities of corresponding registers for the
other three workloads are overlaid. From this figure we can see that there is large overlapped
portion of the top-ranked registers in the four workloads. That is to say, although the absolute
vulnerability values vary across different workloads, the relative vulnerability ranking of the
registers are rather similar. This kind of qualitative information is very valuable for selective
register protection in the RTL design with different running workloads.

4.6.4 Comparison with Related Work

To highlight our contributions, we also compare the features of the proposed method with
several representative techniques on soft error evaluation [5, 6, 50, 78, 113, 115, 118, 149–151],
both at circuit level and RTL. Among them only [50, 113, 149, 150] can provide probabilistic
quantification of soft error vulnerabilities, and at the same time, take workload dependency
into consideration. The techniques in [50, 149] handle only combinational circuits and are not
applicable to the sequential analysis in control paths. The work in [113, 150] stay at circuit
level, and lack the capability of RTL abstraction such as data type reduction to handle the
designs with signals with large bitwidth.

As the RTL and circuit level techniques consider different types of benchmarks (i.e. be-
havioral FSMs versus gate-level netlists), we use the number of PIs and REGs to estimate the
design size. Regarding the largest design considered in this work (or1200_genpc with 241 PIs
and 95 REGs) and in related work (s5378 with 35 PIs and 179 REGs in [151]), the runtime

77

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

 0

 0.2

 0.4

 0.6

 0.8

 1

cnt state
cache_inhibit

start_addr

last_eval_miss

icqmem_ci_i

R
eg

is
te

r
v

u
ln

er
ab

il
it

y

BasicMath
StringSearch

Qsort
FFT

Figure 4.18: Vulnerabilities of representative registers in OR1200 IC FSM with four different workloads

 0

 0.2

 0.4

 0.6

 0.8

 1

V
u

ln
er

ab
il

it
y

Register

BasicMath
StringSearch

Qsort
FFT

Figure 4.19: Vulnerability ranking of the registers sorted based on the BasicMath workload

78

4.7 Conclusion and Summary

-100

-50

 0

 50

 100

BasicMath StringSearch Qsort FFT

V
u

ln
er

ab
il

it
y

 i
n

ac
cu

ra
cy

 (
%

)

Average

Figure 4.20: Inaccuracy of the register vulnerabilities in related work [5] due to random inputs assump-
tion

of our proposed method is in a reasonable range to analyze large control modules in a typical
embedded processor. Note that our method performs exhaustive exploration of the state space
to avoid the approximate sequential circuit unrolling [113]. In the closest related work [5] on
RTL soft error evaluation using formal technique, the authors can only use the random input
assumption, because their error propagation probability is computed as # of SAT instances

2# of inputs . To
see how much inaccuracy can be introduced with this assumption, the signal probabilities of
all inputs of the IC FSM benchmark are set to 0.5, then the corresponding register vulner-
abilities are evaluated. We compare those obtained vulnerabilities with the values evaluated
using signal probabilities extracted from real workloads in Section 4.6.3. Figure 4.20 shows
that this simple assumption on average causes 20% inaccuracy of evaluated vulnerabilities,
and the maximum deviation reaches around 80%. This significant inaccuracy arises due to the
large difference with the input statistics as shown in Table 4.6. Therefore, it is essential to
carefully take the workload dependency into consideration for accurate register vulnerability
evaluation.

To summarize, the proposed method extends previous RTL error evaluation techniques by
introducing probabilistic quantification and considering workload dependency.

4.7 Conclusion and Summary

For efficiently mitigating soft error in digital systems, it becomes increasingly important to
evaluate and model soft error in early design phase to balance performance, cost and reliability.
Most of previous SER modeling work are either at architectural level or circuit/logic level,
which have either accuracy or complexity disadvantages. To face these challenges we propose
new methodologies on RTL and behavior level soft error estimation, which can find a better
balance between the complexity and accuracy of error analysis.

According to the different error propagation properties, the RTL control and data paths are
analyzed with different methods. For the control path analysis, we employed a state transition
system to represent the behavior of RTL design, and uses formal probabilistic model checking
to handle the error propagation and masking effects. Efficient state space reduction techniques

79

4 Vulnerability Analysis at Register Transfer and Behavioral Levels

are developed to improve the scalability of our approach to handle complex control modules
in a typical embedded processor. For the data path, we have categorized basic operation
groups and derived EPP rules for these operations, and then how to perform the overall EPP
estimation was discussed. The experimental results based on DFG shows that compared with
bit-level SFI method, our approach could achieve 7 orders of magnitude speedup, with less
than 9% inaccuracy on average. For the controller, the experiments reveal that the registers
in control paths have significantly non-uniform soft error vulnerabilities, which can be later
exploited for cost-effective selective register protection.

In addition, we also discussed how to evaluate the vulnerabilities of variables and operations
at behavioral level with similar model checking technique. The obtained vulnerability values
will be used for selective protection in our error mitigation techniques in next chapters.

80

5 Reliability-aware Resource Allocation and
Binding

As the error estimation techniques in previous chapters can provide accurate reliability evalu-
ation of both the low level hardware modules and behavioral level constructs, in this chapter
we focus on how to achieve efficient error mitigation by making use of such valuable vulnera-
bility information. We propose a reliability-aware allocation and binding technique during the
high level synthesis. This is based on the observation that for behavioral designs, especially
control-flow intensive ones, variables and operations have non-uniform soft error vulnerabili-
ties. The optimizations based on integer linear programming, as well as heuristic algorithm,
are employed to incorporate the behavioral vulnerabilities into the register and functional unit
binding phases to achieve cost-efficient error mitigation.

5.1 Introduction

During HLS, the automatic translation of a design from its behavioral description to a struc-
tural RTL implementation is performed. Generally the HLS process consists of three phases:
scheduling, allocation and binding. Scheduling explores the concurrent operation execution to
improve the performance of the RTL design, while the resource allocation and binding select
necessary and efficient RTL resources to implement behavioral functionalities, and determine
the mapping relation between the behavioral constructs to the allocated RTL resources [40].
Typically the allocation and binding process can be further divided into subtasks regarding
Functional Units (FUs) and storage elements such as registers. The hierarchical feature and
large flexibility of HLS can be fully leveraged to enhance the system reliability in a cost-efficient
way [81, 82].

Due to the irregular structures of the sequential elements (registers in HLS) and the com-
binational logic cores (FUs in HLS), the low-cost coding techniques, which are widely adopted
for memory protection, can not be applied here. As the full protection of such structures (e.g.
triple modular redundancy) introduces very high overhead, selective hardening becomes the
only viable solution for cost-efficient reliability enhancement [6]. To efficiently select the hard-
ened registers and FUs in the RTL implementation, the vulnerabilities of the variables and
operations in behavioral design, which will be mapped to these RTL resources during HLS,
need to be carefully integrated.

The behavioral vulnerability values are related to the complexity of the control structures
in the designs. Generally the behavioral designs can be divided into two categories: Data-Flow
Intensive (DFI) designs and Control-Flow Intensive (CFI) designs [152]. The DFI designs are
characterized by significant amount of arithmetic operations with few control dependencies,
while the CFI ones contain many relational operations and have unbalanced branch execution

81

5 Reliability-aware Resource Allocation and Binding

probabilities. Therefore, the variables and operations in CFI designs may manifest nonuniform
vulnerabilities to soft error compared with that in DFI ones. This reveals the possibility to add
vulnerability metric into the resource binding phase of CFI designs, so that more efficient soft
error mitigation can be achieved. However, 1) how to identify the most vulnerable variables
and operations to bind with reliable RTL resources, and 2) which registers and FUs should be
protected to maximize the overall soft error mitigation, are very important questions that are
not appropriately addressed in the literature so far.

In the recent reliability-aware HLS work [81–86], soft error-induced reliability is taken into
account in addition to the traditional metrics such as performance, area and power. These
works focus on data flow graph and only explore the potential of reliability improvement on
the FU allocation and binding, but the important register binding process is ignored in these
techniques. In addition, they leveraged only the RTL reliability information to explore the
reliability enhancement, either by N modular redundancy [83–86], or multiple implementations
of the RTL FUs with different area and reliability metrics [81, 82]. However, in addition to
the RTL reliability metrics, the aforementioned behavioral vulnerability, i.e. the probability
of system failure given that behavioral component being erroneous, is another essential factor
which influences the efficiency of selective protection. Such important behavioral vulnerabil-
ity information is totally ignored in the previous methods, which can lead to inappropriate
priorities of register and FU protection and introduce unnecessary cost.

In this chapter we propose a reliability-aware register and FU binding technique based on
Integer Linear Programming (ILP) to find the most cost-efficient selective protection scheme.
In addition to the failure rates of the RTL resources, in our technique the behavioral vulner-
abilities, previously presented in Section 4.5, are also taken into consideration. In particular,
we make the following threefold contributions:

• Reliability-aware register binding that proposes an ILP-based optimization to bind vul-
nerable variables to hardened RTL registers;

• Reliability-aware FU allocation and binding, which extends the ILP formulation to bind
operations to different implementations of FUs in the RTL library;

• Heuristic binding that exploits a hardening-efficiency guided greedy algorithm to signif-
icantly improve the scalability of the exact ILP method.

These features enable our framework to handle the general allocation and binding problems
in HLS from the reliability perspective. Regarding runtime the heuristic reaches 76X speedup
compared with the optimal ILP, while maintaining satisfactory accuracy.

To our best knowledge, this is the first attempt to explore the potential of register and FU
binding taking soft error vulnerabilities of behavioral variables and operations into consider-
ation. Compared with vulnerability-unaware binding, the experimental results show that our
proposed technique can achieve much more efficient reliability enhancement, i.e. up to 85%
higher reliability with the same area budget.

The organization of the rest of this chapter is as follows. Section 5.2 motivates the proposed
work on vulnerability-based resource binding. Section 5.3 describes the ILP formulation of the
reliability-aware register binding, and Section 5.4 focuses on the extension to FU allocation
and binding. Section 5.5 discusses the heuristic binding algorithm and in Section 5.6 the
experimental results are discussed. Finally Section 5.7 concludes the chapter.

82

5.2 Motivation

5.2 Motivation

During HLS, behavioral variables are merged and bound to storage elements like registers, while
operations are assigned to RTL FUs. The traditional allocation and binding problem focuses
on the minimization of the number of registers or the aggregated FU cost, i.e. maximizing the
resource sharing [39].

In the scope of reliability enhancement, cost-efficient resource allocation and binding can be
performed by investigating two important factors. On the one hand, the behavioral variables
and operations can have non-uniform error vulnerabilities, according to the error generation
and propagation analysis described later. On the other hand, there exist significant binding
flexibilities between the behavioral structures (i.e. variables and operations) and the RTL
resources (i.e. registers and FUs) [40]. Therefore, by adjusting the binding relations, i.e.
mapping most vulnerable behavioral structures to few RTL resources, and applying selective
protection only to those resources, we can achieve cost-efficient reliability enhancement. In the
following, we will take register binding as a running example to demonstrate this reliability-
aware binding concept, which is similar for the case of FU binding.

To bind multiple variables into a shared register, the information on variable lifetime is
necessary. The lifetime of a variable is defined as the set of states in which the variable is
alive, including the state in which this variable is defined, every state in which it is used as an
operand of another operation, and all the states on the path between the definition state and
the usage state [39].

In the traditional register binding phase, the register sharing among different variables
is maximized to reduce the number of storage components. This optimization requires one
basic constraint to be satisfied: one register can be shared only by the compatible variables.
Considering a scheduled control and data flow graph, two variables are defined as compatible
when i) they do not have overlapping lifetimes, or ii) their lifetimes extend over mutually
exclusive control paths. In this work, the register binding is performed in each behavioral
function, which is always represented by high level programming language, e.g. function in C,
and both the variable lifetime and compatibility information are extracted using the LegUp
HLS framework [153].

5.2.1 Non-uniform Soft Error Vulnerabilities

The vulnerability of a variable is defined as the probability that the impaired content of this
variable by soft errors will cause an erroneous value at the function output. The lifetime of a
variable is an important factor influencing its vulnerability, as soft error is a random process
over the entire period of the function execution. Intuitively, the variable with long lifetime is
probable to have high soft error vulnerability. However, it is not necessarily proportional to its
lifetime, as there are other factors such as the branch probabilities and functional dependencies
which also impact the vulnerability value [120]. One simple example is a variable defined and
used near the function exit, even if it has relatively short lifetime, its soft error vulnerability
can be rather large due to the short error propagation paths.

To better illustrate this phenomenon, Figure 5.1 shows the deviation of variable lifetimes
from the vulnerabilities for the barcode benchmark [154]. Here the lifetimes are normalized to
the largest value to be comparable with vulnerability values, which are from our comprehensive

83

5 Reliability-aware Resource Allocation and Binding

 0

 0.2

 0.4

 0.6

 0.8

 1

 34 0 5 10 15 20 25 30

 34

 0

 5

 10

 15

 20

 25

 30
V

u
ln

er
ab

il
it

y
/L

if
et

im
e

(N
o
rm

.)

N
u
m

b
er

 o
f

co
m

p
at

ib
le

 v
ar

ia
b
le

s

Variable ID

Lifetime Vulnerability # of compatible variables

Figure 5.1: The lifetime, vulnerabilities and compatibilities of the variables in the barcode benchmark

analysis previously detailed in Section 4.5. This clearly shows that the vulnerability values
of these variables manifest significant variance, and more importantly, different trends with
their lifetimes. Therefore, the lifetime of a variable is not an appropriate metric to use as its
soft error vulnerability, and more sophisticated analysis, considering error propagation and
masking, is indispensable.

5.2.2 Non-unique Binding Solutions

Given the compatibility information among variables, minimization on the number of necessary
registers can be performed. However, even for the minimum number of registers, there are still
not unique binding solutions between variables and registers [39]. This is due to the fact that
these variables manifest variant mobility, i.e. the variable compatible with more variables has
higher mobility, and therefore can be allocated to different registers while the total number of
registers remains the same. Figure 5.1 also shows the number of compatible variables for each
variable in the barcode benchmark, which can be seen as a measurement of their mobilities. We
can see that many highly vulnerable variables also have high mobilities. This means that there
is a significant potential to improve the register binding quality with respect to reliability, i.e.
binding more vulnerable variables to fewer registers, therefore using less register protection to
achieve more efficient soft error mitigation.

5.3 Reliability-aware Register Binding

Given the variable and operation vulnerabilities obtained in Section 4.5, we can integrate
both the behavioral and RTL reliability metrics into the allocation and binding phases. In
the following, the formulation of reliability-aware register binding is first introduced and then
extended to the case of FU binding in the next section.

The aim of reliability-aware register binding is to use the minimum subset of protected
registers to cover the maximum variable vulnerabilities, i.e. “jamming” as many vulnera-

84

5.3 Reliability-aware Register Binding

ble variables as possible to the protected registers. This will result in maximum soft error
mitigation at the minimum costs. To achieve this, we use an optimization based on integer
linear programming due to its advantage of obtaining optimal solutions and easy extension
to incorporate additional constraints and objectives. In the following the ILP formulation is
explained.

5.3.1 Definitions and Notations

Let v1, v2, . . . , vN represent the total N variables in behavioral description, and r1, r2, . . . , rR
the total R available registers. In addition, the following notations are employed to facilitate
the ILP formulation:

• Vulv: a vector of sizeN , and V ulvi is a constant with real value in the range [0, 1], which is
the vulnerability of variable vi obtained in Section 4.5 scaled by active_statesvi /total_states
to take the variable lifetime into consideration, i.e. the individual vulnerability contri-
bution of multiple variables bound to a single register;

• P: a vector of size R, and Pj is a binary value 1/0, representing whether register rj
should be protected or not;

• Vulr: a vector of size R, and V ulrj is a real value, representing the sum of the vulnera-
bilities of all variables bound to register rj ;

• MREG: an N×R matrix andMREG
i,j is a binary value 1/0, representing whether variable

vi is bound to register rj or not.

Vulv = [V ulv1 . . . V ulvN], MREG =

MREG

1,1 · · · MREG
1,R

...
MREG
N,1 · · · MREG

N,R

 , P =

P1
...
PR

Vulr = Vulv ·MREG = [V ulr1 . . . V ulrR] (5.1)

For the register binding problem, there are two basic constraints which should be satisfied
as prerequisites:

• Uniqueness: each variable vi should be bound to one and only one register

R∑
j=1

MREG
i,j = 1 for each variable vi (5.2)

• Compatibility: two incompatible variables vi1 and vi2 (i.e. with overlapped lifetime)
cannot be bound to the same register

MREG
i1,j +MREG

i2,j ≤ 1 for each register rj (5.3)

There are also two additional metrics used in our ILP formulation:
• Reliability: the overall variable vulnerabilities covered by the protected registers is

Vulv ·MREG ·P = Vulr ·P =
N∑
i=1

R∑
j=1

V ulvi ·MREG
i,j · Pj (5.4)

85

5 Reliability-aware Resource Allocation and Binding

Maximizing this coverage corresponds to minimizing the system failure rate SFRREG

contributed by the registers in the RTL implementation, i.e. maximizing the register reli-
ability. Given the failure rate of a single unprotected and protected register λREG, λ′REG
(constant values from the RTL component library), the overall register failure rates can
be expressed as

SFRREG = λREG ·
N∑
i=1

V ulvi − (λREG − λ′REG) ·Vulr ·P (5.5)

• Cost: the number of protected registers can be formulated as
R∑
j=1

Pj (5.6)

Given the cost of unprotected register cREG and protected register c′REG, minimizing
this number is equivalent to minimize the overall cost of the registers:

CostREG = cREG ·R+ (c′REG − cREG) ·
R∑
j=1

Pj (5.7)

5.3.2 Register Binding Optimization

For the register binding, on the one hand, associating one register with each variable suffices,
which gives the upper bound on the number of registers. On the other hand, the Uniqueness
and Compatibility constraints limit the lower bound. To explore the potential of reliability-
aware binding, we perform a two-pass optimization.

Minimum Register Optimization

In this optimization, the number of register R should be minimized, which means the R value
is not fixed and the dimension of binding matrix MREG is variant. To overcome this difficulty,
we assume at the beginning the total number of register is set to the upper bound, i.e. R = N .
Then with the constraints in Equation (5.2)(5.3), we try to maximize the number of all-0
columns in MREG, which is equivalent to minimize the number of registers:

max
R∑
j=1

NORNi=1M
REG
i,j (5.8)

where NORNi=1 represents the NOR function of N Boolean variables. As ILP requires all
constraints and objective to be linear, we use the similar method as in [155] to convert the
Boolean function NOR into linear constraints:

f = NOR(i1, . . . , in)⇒
{
f ≤ 1− (i1 + · · ·+ in)/n
f ≥ 1− (i1 + · · ·+ in)

(5.9)

Reliability-aware Optimization

Given the number of available registers R (e.g. the minimum value), we can perform the
following optimization with the basic constraints in Equations (5.2)(5.3):

86

5.4 Functional Unit Allocation and Binding

• Cost-constrained: maximize the overall coverage of variable vulnerabilities with the num-
ber of protected registers as the constraint Rc:

max
N∑
i=1

R∑
j=1

V ulvi ·MREG
i,j · Pj

subject to
R∑
j=1

Pj ≤ Rc (5.10)

• Reliability-constrained: minimize the number of protected registers with the overall cov-
erage of variable vulnerabilities as the constraint V ulc:

min
R∑
j=1

Pj

subject to
N∑
i=1

R∑
j=1

V ulvi ·MREG
i,j · Pj ≥ V ulc (5.11)

Complexity Analysis

The ILP complexity can be represented with the numbers of Linear Programming (LP) vari-
ables and constraints (assume N behavioral variables and R registers):

• Minimum Register Optimization (N = R): from Equations (5.2), (5.3), (5.8), (5.9) the
number of LP variables is O(N2) and that of constrains is O(N3);

• Reliability-aware Optimization (N >= R): from Equations (5.2), (5.3), (5.10)/(5.11)
the number of LP variables is O(R ·N) and that of constrains is O(R ·N2).

Therefore, for our two-pass optimization the number of LP variables is O(N2), and that of
constrains is O(N3).

5.4 Functional Unit Allocation and Binding

Compared with the register binding presented in the previous section, the reliability-aware FU
allocation and binding is a more sophisticated problem due to the following reasons:

• There aremultiple types of FUs to execute different kinds of behavioral operations, rather
than a single type of register to store behavioral variables;

• In addition to the timing compatibilities from scheduling results, there are also type
compatibilities of the operations, which determines whether the behavioral operations
can be executed by specific types of RTL FU components. For instance, a comparison
operation can be bound to either an RTL comparator or an ALU, but not an adder.

To generalize the ILP formulation of reliability-aware register binding to multiple types of
FU allocation and binding, we need to account for these difference. First there are several
important terms which need to be clearly defined:

• Operation: the instance of the behavioral operations in the design, e.g. op1, op2, . . . ;
• Operation type: the type of the behavioral operations, e.g. ADD (addition), CMP (com-

parison) and MUL (multiplication). Each operation has only one operation type;

87

5 Reliability-aware Resource Allocation and Binding

• FU type: the type of the RTL functional units, e.g. adder (+), comparator (>,< . . .)
and ALU;

• FU instance: in an RTL design there can be several instances of the same FU type, e.g.
I+

1 , I
+
2 , I

ALU
1 , . . . ;

• Resource: a specific RTL implementation of an FU instance, which has different area,
power and reliability metrics, e.g. an original or hardened implementation of the FU
instance I+

1 ;
Assume there are overall NOP operations in a behavioral function, and total RFU resources

from an RTL library to execute these operations. Similar to the register binding in Section 5.3,
the following notations of FU binding are used, which can be generally grouped into constant
and variable categories.

Constant matrices:
• Vulop: a vector of size 1×NOP , and the operation vulnerability V ulopi is a real value in

the range [0, 1]. Similar to the variable vulnerabilities, the operation vulnerability used
here is also scaled by active_statesopi /total_states to consider the operation execution
time;

• λr: a vector of size RFU × 1, and λrj is a real value, representing the failure rate of the
resource rj in the RTL library;

• Cr: a vector of size RFU × 1, and Crj is a real value, representing the cost (e.g. area) of
resource rj in the RTL library;

Variable matrices:
• MFU: an NOP × RFU matrix and MFU

i,j is a binary variable, representing whether
operation opi is bound (mapped) to resource rj or not.

• Br: a vector of size 1×RFU and Br
j is a binary variable, representing whether resource

rj is bound or not in the synthesized RTL. Because several behavioral operations may
be bound to the same RTL resource, the element of Br is obtained by the OR function
of all the elements in column j of matrix MFU, i.e. Br

j = ORN
OP

i=1 MFU
i,j .

MFU =

MFU

1,1 · · · MFU
1,RF U

...
MFU
NOP ,1 · · · MFU

NOP ,RF U

 , Br =
[
Br

1 · · ·Br
RF U

]
(5.12)

5.4.1 FU Allocation and Binding Space Determination

Given a behavioral design and an RTL library with different versions of FU implementation,
we need to determine the search space of the reliability optimization problem, i.e. the number
of allocated RTL resources to contain all the possible binding options. Specifically, the size
RFU of the binding matrix MFU should be derived and proper binary ILP variables should
be assigned to its elements as well.

We propose a three step procedure to determine the binding search space while considering
the operation/FU type compatibilities. For the running example in Figure 5.2, at the behav-
ioral level there are four operations with three types: addition (ADD), comparison (CMP)
and multiplication (MUL). On the RTL side there are three FU types: adder (+), ALU and

88

5.4 Functional Unit Allocation and Binding

op3

Operations
Operation

Types
FU

Types
Resource
versions

ADD +

ALU r2
ALU

r1
ALU

r3
ALU

CMP

Behavioral Level RTL Library

op4 × r
×
1MUL

op1

op2

r+
1

r+
2

op
V type_op

V
type_FU

V
r

V

(a) Example of mapping and binding graph

op1 I+1

I1
ALU

op3 I3
ALU

Resource
 Index

op2 I+2

I2
ALU

3
4
5

1

2

8
9
10

6

7

13

11
12

I
×
1op4 14

Operations
FU

instances

(b) Binding space constructed from MBG

Figure 5.2: An example of resource allocation and binding space determination

multiplier (×), and for each FU instance there are several kinds of resources implementing the
same functionality, but with different characteristics such as area, power and reliability. The
following procedure determines how many FU instances as well as FU resources are necessary
to cover the entire binding space.

Mapping and Binding Graph (MBG) Construction

First we construct a four-level mapping and binding graph G = (V,E), which is directed
acyclic, as shown in Figure 5.2(a). The vertices grouped in four levels, namely V op, V op_type, V FU_type

and V r, represent the operations, operation types at behavioral level and FU types, resource
versions in the RTL library. The edges E represent the mapping and binding relations between
vertices in neighbouring levels. The solid edges represent fixed mapping relation between its
head and tail vertices, and the dotted edges represent optional binding relations.

Backward MBG Traversal

Then the backward traversal of MBG is performed to determine how many FU instances are
necessary to cover all the possible binding options. For each vertex in V FU_type, we extract
all its predecessors, including the direct and indirect ones [40]. The number of V op vertices
in the predecessors determines the number of such FU instances that should be included in
the binding search space. For instance, the predecessors of the vertex vALU include three V op

vertices: vop1 , vop2 and vop3 . Hence, there should be three ALU instances to cover all the
possible binding options. Similar analysis shows that two adder instances and one multiplier
instance are needed, as shown in Figure 5.2(b). As there are 2 (3) different versions of RTL
implementations for each adder (ALU) instance, in total we have 14 resources as the binding
candidates.

89

5 Reliability-aware Resource Allocation and Binding

Binding Space Determination

Finally each element value in the binding matrix is determined. Initially all the elements of
MFU are assigned to 0. Then for each RTL resource rj , if it can execute operation opi and
there are multiple binding candidates (dotted edges) for opi, a binary ILP variable is assigned
to the element MFU

i,j . If there is only one single candidate (i.e. rj itself), constant value ‘1’ is
assigned, e.g. MFU

4,14 = 1 because operation op4 will be definitely bound to resource r14. Note
that the limited binding options among behavioral operations, FU instances and specific RTL
resources, as shown in Figure 5.2(b), make the matrix MFU to be sparse, and the number of
binding ILP variables is much smaller than the product of NOP and RFU .

5.4.2 Constraints and Objective

Similar to the register binding formulation, there are also two basic constraints to be satisfied
for the FU binding problem:

• Uniqueness: each operation opi should be bound to one and only one resource.

RF U∑
j=1

MFU
i,j = 1 for each operation opi (5.13)

• Compatibility: As the functional type compatibilities are already considered during the
construction step of binding matrix MFU in Section 5.4.1, only scheduling compatibilities
need to be formulated here. Two operations opi1 and opi2 are incompatible when they
are concurrently executed in the same time step. Two incompatible operations should
not be bound to the same resource which can execute these two operations.

MFU
i1,j +MFU

i2,j ≤ 1 for each resource rj (5.14)

Both the reliability and cost metrics are considered in our ILP formulation:
• System Failure Rate (SFRFU): the system failure rate contributed by the FUs in the

synthesized RTL, which is the sum of the products of RTL resource failure rate λrj (error
generation) and the behavioral vulnerabilities V ulopi (error propagation) of the bound
operations (MFU

i,j = 1):

SFRFU = Vulop ·MFU · λr =
RF U∑
j=1

NOP∑
i=1

V ulopi ·M
FU
i,j · λrj (5.15)

• Cost: the aggregated cost of bound RTL resources. Due to the FU sharing, a multiplexer
(MUX) has to be inserted before an input port of an FU whenever multiple registers feed
data to this port. In our reliability-aware binding problem, the FU cost, and the MUX
cost at the input port of FUs can be formulated as follows:

CostFU = Br ·Cr =
RF U∑
j=1

Br
j · Crj (5.16)

CostMUX = DMUX
RF U∑
j=1

Portj∑
p=1

(
REG∑
reg=1

zreg,j,p −Br
j) (5.17)

90

5.5 Vulnerability Compaction and Heuristic Resource Binding

DMUX is the cost of a MUX unit. Assume resource rj has Portj number of input
ports, and var is the pth operand of operation opi. There must be one connection (i.e.
zreg,j,p = 1) from register reg, holding the value of variable var, to the pth port of FU rj
which executes the operation opi. The employed MUX formulation is similar to [156],
and considers both the register and FU binding simultaneously.

5.4.3 Reliability-aware FU Binding Optimization

Quantification of the Design Space Boundaries

Given the operation vulnerabilities as well as the cost and failure rate metrics of the resource
in RTL library, we can separately determine the lower bound of SFRFU or cost. This can give
the designer good estimation of the characteristics of the synthesized RTL. Moreover, it is a
starting point of further design space exploration on the trade-off between cost and SFR. Two
kinds of optimization can be performed with the basic constraints in Equations (5.13)(5.14)
and objectives in Equations (5.15), or (5.16)(5.17):

• Minimization of SFRFU : obtain the minimum failure rate SFRFUmin of the RTL imple-
mentation without cost constraint;

• Minimization of cost: obtain the minimum cost Costmin of the RTL implementation
without any constraint on SFRFU .

Reliability-aware Optimization

After the lower bounds of cost and SFRFU are obtained, two kinds of optimization can be
performed with the basic constraints in Equations (5.13)(5.14):

• Cost-constrained: minimize the SFRFU of the RTL implementation with the cost con-
straint Cc = (1 + α) · Costmin (α is a user-specified coefficient of cost overhead);

• SFR-constrained: minimize the overall cost of the RTL implementation with the SFR
constraint SFRFUc = (1 + β) · SFRFUmin (β is a user-specified coefficient of allowable
SFRFU increase).

5.5 Vulnerability Compaction and Heuristic Resource Binding

For both register and FU binding, either the cost-constrained or the reliability-constrained
optimizations can be performed according to the user requirements. However, it has the
disadvantage that whenever the constraint changes, the entire optimization has to be rerun. In
addition, ILP requires integer solutions and generally is a computation-expensive problem. The
ILP-based resource binding is an NP-complete problem, especially for the resource constrained
scenarios [157], and hence is mainly applied to the designs with moderate size [40]. To overcome
these issues, we propose to perform vulnerability compaction to avoid multiple-run optimization
with different cost/reliability constrains, and use an efficient hardening heuristic to explore the
trade-off between reliability and cost, as shown with details in Algorithm 5.1.

The motivation for the optimization on vulnerability compaction is to find the optimal
register and FU sharing with regard to vulnerability concentration. The basic idea is to sort

91

5 Reliability-aware Resource Allocation and Binding

the available RTL components (i.e. registers and FUs) in a descending order according to
their accumulated vulnerabilities, i.e. concentrate the component vulnerability distribution as
much as possible. Therefore, we need to maximize the vulnerabilities covered by the first one
component, the first two components, and until first R components, which can be formulated
as following:

V ulRTLj =
Nbeh∑
i=1

V ulbehi ·MRTL
i,j

max V ulRTL1 + (V ulRTL1 + V ulRTL2) + · · ·+ (V ulRTL1 + · · ·+ V ulRTLIF U)

⇒max
IF U∑
j=1

j∑
k=1

V ulRTLk (5.18)

in which the N beh, V ulbehi , and MRTL
i,j correspond to either behavioral variables or operations

as in Equation (5.4) or (5.15). The benefits of the compaction are twofold: i) this optimization
is independent of the RTL component characteristics and need to be run only once for different
cost/reliability constraints; ii) a single run of the compaction optimization can find the solution
much faster than a single run of cost/reliability-constrained optimization, because we remove
the tight cost (reliability) constraints and just change the weight of vulnerabilities of different
RTL components in the objective function. After solving this optimization problem, the list of
RTL components are ordered in a descending order based on their concentrated vulnerabilities.

In the subsequent RTL hardening step, to decide which registers should be protected within
the cost constraints, we just need to select the top registers in previous descending list. For FU
hardening, the selection of appropriate implementation in the RTL library for each FU instance
is performed based on its concentrated vulnerabilities. The main goal of the RTL binding is
to maximize the FU hardening efficiency, i.e. achieving large reduction of failure rates with
small hardening overhead. For this purpose, a greedy algorithm is proposed and described
in details in Algorithm 5.1. First we evaluate the efficiency for each possible hardening case
with the finest cost granularity in the RTL library, i.e. from one FU version to its nearest
hardened version (Line 6 to 15). Then in Line 16 to 25 the efficiency calculation considers
both the reliability of RTL FUs (error occurring rates) and the behavioral vulnerability (error
propagation probability).

Assume there are total N behavioral operations, and in the worst case without sharing, N
FU instances are necessary. If the maximum number of versions for RTL FUs is V , the time
complexity of this greedy heuristic is O(N · V log(N · V)). This is because the part of sorting
N · V hardening cases is O(N · V log(N · V)), and the part of selecting hardening candidates
is O(N · V).

5.6 Experimental Results

The proposed approach is implemented and applied to the CDFGs extracted from a set of HLS
benchmarks on a workstation with Intel Xeon E5540 2.53GHz and 16GB RAM. The square-
root approximation function sra_func [39], the barcode reader barcode [154], the send process
of the X.25 communications protocol send_X25, QRS state machine qrs, the ADPCM coder
and decoder, and the quantization and coding function gsm_qc [158] are CFI benchmarks and

92

5.6 Experimental Results

Algorithm 5.1 Vulnerability Compaction and Heuristic Binding for Efficient Reliability En-
hancement
1: Input: CDFG of the behavioral function, vulnerabilities of each variable/operation
2: Input: scheduled state information of each behavioral variable/operation, and different

FU implementations in an RTL library
3: Input: cost budgets for register and FU hardening
4: Output: the sequence of hardening specific registers and FUs to achieve maximum effi-

ciency of reliability enhancement

5: Perform the vulnerability compaction optimization on registers and FU instances, and
return the sorted list of registers list_REGs and FU instances list_FU_inst.

6: RTL_lib_hardening_info = ∅
7: for each FU type tFU in the RTL library do
8: Sort different versions of tFU in an ascending order regarding the cost;
9: for each version v in this sorted list do

10: ∆Cost = Costv+1 − Costv
11: ∆FIT = FITv − FITv+1 . Hardening introduces additional cost with reduced

failure rate
12: Harding efficiency ηFU (tFU , v, v + 1) = ∆FIT

∆Cost
13: Add ηFU (tFU , v, v + 1) to RTL_lib_hardening_info
14: end for
15: end for

16: FU_inst_hardening_info = ∅
17: for each instance j in list_FU_inst do
18: Its FU type is tj and the concentrated vulnerability is V ulinstj

19: for each ηFU (tFU , v, v + 1) in RTL_lib_hardening_info do
20: if tj == tFU then
21: ηinstj (tj , v, v + 1) = V ulinstj × ηFU (tFU , v, v + 1)
22: Add ηinstj (tj , v, v + 1) to FU_inst_hardening_info
23: end if
24: end for
25: end for

26: Sort FU_inst_hardening_info in an descending order of ηinstj

27: Within the given cost budgets of register and FU hardening, select the top items of the
list_REGs and the sorted FU_inst_hardening_info as hardening candidates.

93

5 Reliability-aware Resource Allocation and Binding

the differential equation solver diffeq [154] is one DFI benchmark for comparison. The open-
source HLS tool LegUp [153] and the LP solver CPLEX are employed for scheduling and ILP
optimization, respectively. The RTL area and power values are reported after logic synthesis
by Design Compiler based on the 45 nm Nangate library.

5.6.1 Work Flow

The overall reliability-aware register and FU binding flow is illustrated in Figure 5.3. First,
the behavioral description of the design is processed by the front-end of the LLVM compiler
infrastructure [159] and the platform-independent Intermediate Representation (IR) are ob-
tained. Second, our script parses the IR and generates the vulnerability evaluation model.
Then the model checker PRISM analyzes the model and extracts the variable and operation
vulnerabilities. At the same time, the LegUp HLS tool performs the scheduling process and
the variable lifetime and operation execution states are obtained accordingly. Then we carry
out the reliability-aware optimization for both register and FU binding. In case that the
number of register is not specified, ILP is used to obtain the minimum number; otherwise
the variable vulnerabilities are taken into consideration and the optimization on reliability-
aware register binding is carried out to obtain the binding and protection solutions. Similarly,
the lower bounds of SFR and cost are obtained first as described in Section 5.4.3, then the
cost-reliability trade-off is investigated by selective hardening the vulnerable FUs. Finally the
combined analysis of register protection and FU hardening is carried out to evaluate their
individual contributions to the overall system SER.

5.6.2 Characterization of the RTL Resources

For our experimental evaluation, an RTL component library with soft error characterization is
used. In this library, different implementations of the same resource type with different area,
power and SER values are available. The SER metric is expressed with FIT rate (Failure In
Time), i.e. 1 FIT is equal to 1 error per billion operational hours.

For the register hardening, we employed the DICE technique [61], and used the data from
real radiation testing [33]. With 80% area and 60% power overheads, the SER of the DICE
register can be reduced 10X compared with the unprotected one. For the FU hardening, we
investigated variety of techniques including gate sizing, voltage scaling, and transient filter
insertion. Among them, transient filters provide a considerable SER reduction by imposing
small area and power overheads [4]. Using this method, we have implemented three different
versions of each RTL FU type with various masking factors. Then, the overall area, power,
and SER of each version were evaluated.

For SER computation of each version of RTL FUs, we employed a hierarchical approach for
error generation and propagation analysis based on [53]. First, the effect of soft errors at device
level is analyzed with combination of 3D-TCAD simulation and current injection on transistors
at SPICE netlist using a commercial FIT rate analysis tool [160] with 45 nm Nangate library.
As shown in Figure 5.4, for each combinational cell this tool provides the distribution of pulses
of various widths, depending on the output load seen by the cell. Then, the current pulses at
the cell output are propagated from the error site to the primary outputs or downstream flip-
flops. During the error propagation, three important masking effects, namely electrical, logic

94

5.6 Experimental Results

LLVM
intermediate

representation (IR)
Vulnerability

evaluation model

Model checker
(PRISM)

HLS tool
(LegUp)

Scheduled CDFG

NO

YES

Behavioral
description

(C, C++)

Operation
execution states

Variable
lifetime

Min. register
binding Register number

known?

Variable
vulnerabilities

Operation
vulnerabilities

Characterized RTL
FUs

Min. cost/SFR
optimization

Combined reliability analysis

Vulnerability-aware
Register binding

Vulnerability-aware
FU binding

Vulnerability evaluation

FU binding Register binding

Compatibility Extraction

Figure 5.3: Reliability-aware register and FU binding flow

Pulse Width

F
IT

 R
at

e d

(a) FIT Rate of each pulse width inter-
val for the error site gate

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Q

Q
SET

CLR

D

Error Site

0

(b) Error propagation with electrical, logic
and timing window masking

Figure 5.4: SER characterization of the RTL FU circuits

95

5 Reliability-aware Resource Allocation and Binding

Table 5.1: Area, power and reliability metrics of different versions of resource in the employed RTL
library

RTL metrics Flip-Flop 32bit-Adder 32-bit-XOR 32-bit-Comparator
regular DICE v1 v2 v3 v1 v2 v3 v1 v2 v3

Area
(µm2)

4.52 8.14 421.79 425.16 428.53 121.41 124.67 127.94 109.66 109.76 109.87

Power
(µW)

0.42 0.68 324.30 327.74 331.19 62.48 65.82 69.16 69.11 69.21 69.32

Failure Rate
(×10−3 FIT)

0.16 0.016 14.87 10.07 6.03 7.12 4.85 3.25 0.48 0.32 0.18

and timing windows masking are all taken into account. The obtained SERs are expressed as
the number of FIT. In Table 5.1 the area, power and reliability values of several representative
resources in the employed RTL library are listed. For entire system, the FIT rate can be
calculated by summing the FIT rates of each individual components in the system [3], and we
compute the system failure rates as SFR = SFRREG + SFRFU using Equations (5.5)(5.15).

As soft error FIT rate and Mean Time to Failure (MTTF) of the system are inversely
related [3], in this work we use the MTTF of the synthesized RTL system as the reliability
metric to evaluate different allocation and binding solutions. For each benchmark, the binding
solution with SFRmin corresponds to the maximum achievable reliability, i.e. MTTFmax, and
to illustrate the obtained results better, the obtained MTTF after each evaluation is normalized
to this MTTFmax. The cost used in the experiments is the area of the bound RTL resources,
and starting from the binding scenario with minimum area value, we evaluate the normalized
reliability that can be achieved with additional area budget.

5.6.3 Register Binding Results Analysis

To show the effectiveness of the proposed reliability-aware binding technique, we first evaluated
the register binding and FU binding separately, and then the combined binding. Two selective
protection scenarios are investigated for the register binding:

• Vulnerability-unaware baseline: as there is no previous work investigating this particular
problem, we construct "the best effort" approach for selective protection. In this scenario
the actual vulnerabilities of the variables are unknown, and the registers are sorted in
a descending order according to the number of variables bound to each register, then
based on the protection budget, the top registers in this list are hardened;

• Vulnerability-aware binding: this scenario corresponds to the optimization step for reg-
ister vulnerability compaction, and the registers are sorted according to the solution of
ILP optimization.

We then calculate the register reliability value by selectively protecting registers in each sce-
nario, and normalize it to the maximum achievable reliability, i.e. when all registers are
hardened in each benchmark.

The results in Figure 5.5 show that for all the CFI benchmarks, with the same hardware
overhead the vulnerability-aware binding outperforms the baseline. However, for the DFI
benchmark diffeq the vulnerability-aware binding is almost the same as the baseline. This is
due to the characteristic of the DFI design. As shown in Table 5.2, the diffeq has much fewer

96

5.6 Experimental Results

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

R
el

ia
b

il
it

y
send_X25

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

diffeq

Vulnerability-aware

Vulnerability-unaware

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

sra_func

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

qrs

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

R
el

ia
b

il
it

y

% Area overhead

barcode

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

% Area overhead

adpcm_decoder

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

% Area overhead

adpcm_coder

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80

% Area overhead

gsm_qc

Figure 5.5: The achieved reliability with different level of register protection

conditional branches compared with other CFI benchmarks. In addition, our investigation
shows that most of the operations in the DFG of this benchmark are of arithmetic type, which
have very low error masking probabilities. Therefore, the variable vulnerability distribution
in this benchmark is relatively uniform compared with the CFI benchmarks, and hence the
vulnerability-aware binding optimization cannot gain much against the baseline.

To understand the reason for higher achieved reliability, we illustrate different register vul-
nerability distributions for the scenarios vulnerability-unaware baseline and vulnerability-aware
binding for the benchmark barcode, which is also used as the motivation example in Section
5.2. Figure 5.6 shows that for the vulnerability-unaware baseline scenario, the vulnerabilities
of the registers sorted based on the number of bound variables are not in a decreasing order.
While for the vulnerability-aware binding scenario, not only the vulnerabilities are highly con-
centrated in the first few registers, but also the vulnerabilities of all the registers are arranged
in a monotonically decreasing order. Therefore, whenever the top registers in this order are
chosen to be protected, they always yield the maximum coverage to assure the most efficient
error mitigation.

Table 5.2 quantitatively shows the protection efficiency improvement of the proposed vulnerability-
aware binding in contrast to the baseline. We can see that with the same level of register
protection (i.e. hardware overhead), the proposed vulnerability-aware binding can reach up to
89% reliability improvement. Regarding runtime, the model checking to evaluate variable vul-
nerabilities takes several minutes, while the ILP optimization on both the number of registers
and vulnerability compaction can be finished in a few seconds.

97

5 Reliability-aware Resource Allocation and Binding

Table 5.2: Reliability improvement and runtime for different binding scenarios

Benchmark
Characteristics Runtime (sec.) Reliability improv. of vulnerability

aware binding over baseline

Var. Branch Loop Vul.
eval.

Min.
reg.

Vul.
compac.

10%
overhead

20%
overhead

30%
overhead

diffeq 24 2 1 1.4 0.2 0.1 0.0 % 2.0 % 6.0%
send_X25 16 5 2 3.7 0.4 0.1 15.6% 22.3% 49.3%
barcode 35 7 2 12.1 0.6 0.2 2.3 % 10.2% 32.4%
sra_func 38 11 0 10.2 0.5 0.1 32.1% 50.2% 63.0%

adpcm_decoder 52 11 1 39.0 3.2 0.6 10.3% 91.6% 150.0%
adpcm_coder 68 13 1 289.3 5.0 1.0 59.4% 64.6% 149.5%

qrs 121 12 0 175.0 10.7 3.1 38.4% 151.5% 151.0%
gsm_qc 256 48 0 295.2 60.2 9.5 12.5% 24.4% 28.1%

average of CFI - - - 103.2 10.1 1.8 24.4% 59.2% 89.0%

 23

 0

 4

 8

 12

 16

 20

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
er

ce
n
ta

g
e

o
f

v
u
ln

er
ab

il
it

ie
s

Register ID

Vulnerability-unaware
Vulnerability-aware

Figure 5.6: Vulnerability distributions of the registers in the vulnerability-unaware baseline and
vulnerability-aware binding scenarios for barcode benchmark

98

5.6 Experimental Results

Table 5.3: ILP runtime, reliability values with different area budgets for the CFI benchmarks

Benchmark OPs ILP Runtime (sec.) Reliability values
with different area budgets

min.
area

min.
SFR

area-
constr.

10%
overhead

20%
overhead

30%
overhead

send_X25 14 0.1 0.1 0.3 0.80 0.91 0.97
barcode 22 0.2 0.1 1.0 0.76 0.89 0.94
sra_func 35 0.4 0.2 6.5 0.76 0.86 0.94

adpcm_decoder 37 0.5 0.1 7.1 0.83 0.92 0.98
adpcm_coder 48 1.2 0.2 11.9 0.88 0.98 0.99

qrs 88 7.9 1.0 61.8 0.97 0.98 0.99
gsm_qc 101 10.9 0.4 89.8 0.95 0.96 0.98
Average - 3.0 0.4 25.5 0.85 0.93 0.97

Table 5.4: Comparison of the heuristic binding with ILP-based binding

Benchmark
Heuristic reliability with
different area budgets

Deviation from
the optimum ILP values

Heuristic
runtime (s) Speedup

10%
overhead

20%
overhead

30%
overhead

10%
overhead

20%
overhead

30%
overhead

send_X25 0.76 0.84 0.91 5.2% 8.4 % 6.1% 0.04 8 X
barcode 0.73 0.79 0.87 4.6% 11.4% 7.1% 0.09 73 X
sra_func 0.75 0.83 0.94 1.6% 3.9 % 0.8% 0.20 36 X

adpcm_decoder 0.76 0.91 0.98 9.5% 1.5 % 0.8% 0.21 57 X
adpcm_coder 0.88 0.98 0.99 1.4% 0.1 % 0.2% 0.30 203 X

qrs 0.96 0.98 0.99 1.7% 0.4 % 1.1% 1.03 87 X
gsm_qc 0.94 0.96 0.96 1.3% 0.1 % 1.7% 1.29 69 X
Average 0.82 0.90 0.95 3.6% 3.7% 2.5% 0.45 76 X

5.6.4 FU Binding Results Analysis

After register binding analysis, for FU binding we first evaluated our proposed method, and
then compared it with the related work without vulnerability consideration.

Table 5.3 shows the runtime of our ILP optimization and the achieved reliability with
different area overheads compared with Costmin. As ILP-based resource binding is generally
an NP-complete problem, the heuristic binding algorithm is proposed in Section 5.5 and here
its accuracy and run-time efficiency are also evaluated.

Accuracy and Efficiency of Heuristic Binding

As shown in Table 5.4, on average the heuristic binding can generate the RTL designs with reli-
ability values around 4% deviation from the optimal ILP results, while achieving 76X speedup.
Figure 5.7 shows how the runtime increases with the number of behavioral operations, and
we can see that the trend of the ILP-based binding is close to exponential, while the heuristic
runtime is close to linear. This is because the used RTL library is fixed, i.e. the number of
FU versions V is constant. According to the analysis O(N · V log(N · V)) in Section 5.5, the
runtime complexity becomes O(N · logN).

99

5 Reliability-aware Resource Allocation and Binding

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100

R
u

n
ti

m
e

(s
)

Operations

ILP-based binding
Heuristic binding

 0

 0.4

 0.8

 1.2

 0 20 40 60 80 100

Operations

Figure 5.7: Comparison on the runtime of the ILP-based and heuristic binding

Comparison with Related Work

To show the importance of behavioral vulnerabilities, we compare our vulnerability-aware FU
binding with the binding technique in [81]. In this related work only the reliability and area
metrics of RTL components are known, and it starts from the initial solution which employs the
most reliable version for each bound FU (i.e. the initial binding has the minimum failure rate
SFRmin in our case). If the overall binding area is greater than the user-specified constraint,
a victim RTL resource is selected based on its area to be replaced with a smaller version. This
procedure is repeated until the area constraint is met or all FUs use the least reliable versions.

Figure 5.8 compares the achieved reliability for both our vulnerability-aware binding and
the vulnerability-unaware binding in [81]. It is clear that with the same amount of additional
area starting from minimum value, the vulnerability-aware binding generates a system with
much higher reliability. Guided by behavioral vulnerability information, the ILP optimization
can selectively harden the RTL FUs bound with the most vulnerable operations. While for
the vulnerability-unaware binding, the FUs are hardened according to the priority determined
by their RTL area value. This priority is very likely to be non-optimal, as FUs with small
area do not necessarily bind with vulnerable operations. Therefore the reliability improve-
ment with area increase is slower than in the vulnerability-aware case. Note that for the
benchmark gsm_qc, both binding have almost the same reliability values. This is because the
area and failure rate of RTL FUs are discrete values, and furthermore, this benchmark uses
RTL multipliers, which have dominant area compared with other smaller FUs such as adders,
comparators. Therefore, the absolute area of 10% interval is rather large. Within the first 10%
area, almost all the small FUs are hardened and only multipliers are left for further hardening.
In this regard, the vulnerability-aware binding is more suitable and efficient for the scenarios
that absolute area budget is limited and fine-grained binding space exploration is essential,
such as the cases for other benchmarks in Figure 5.8. On average, compared with the binding
in [81] our vulnerability-aware binding can reach 25% relative higher reliability with the same
area budget.

100

5.6 Experimental Results

 0.5

 0.6

 0.7

 0.8

 0.9

 1

send_X25

barcode
sra_func

adpcm_decoder

adpcm_coder

qrs gsm_qc
Average

R
el

ia
b
il

it
y

Vulnerability-aware (proposed)
Vulnerability-unaware (previous work)

Figure 5.8: Comparison between our vulnerability-aware binding and the vulnerability-unaware binding
with the sequence of 10%, 20% and 30% area overhead

5.6.5 Combined analysis of register and FU binding

To investigate the overall reliability improvement considering the register and FU binding
together, we performed the combined analysis.

Combined reliability analysis

In Table 5.5, the FIT rate contributions of registers and FUs are computed for each benchmark.
We can see that on average the RTL registers contribute to a large portion (around 88%) of
the overall SER, which is in the similar range as reported in [36].

In addition, when register and FU binding are considered together, on average our vulnerability-
aware binding can reach up to 85% reliability improvement compared with the vulnerability-
unaware scenarios. The improvement ratio is close to the pure register binding case in Table 5.2
due to two main reasons. First, the register SER contributions are higher than that of FUs
to the entire system. Second, according to Table 5.1, the DICE register hardening has around
10X FIT reduction while FU hardening has only around 1.5X FIT reduction with the same
additional area. Nevertheless, with smaller technology nodes the SER contributions of combi-
national circuits will increase fast and become even comparable to register SER [161], therefore
the impact of selective FU hardening will become more profound.

Validation by RTL Fault Injection

To validate our behavioral vulnerability analysis and the following reliability-aware binding
technique, we also performed Fault Injection (FI) in the generated RTL implementations of
the benchmarks. First we used LegUp to generate the corresponding RTL Verilog description.
Then the RTL design is running with input stimulus from the benchmark suits [158] and the bit
flip is injected at the output of random FU module and random clock cycle. For each injection,
we continue running the applications until the error-free execution is finished, then the func-
tional output of the error-free and error-injected design are compared to determine whether
there exists system failure. According to different binding solutions, the RTL components can

101

5 Reliability-aware Resource Allocation and Binding

Table 5.5: Combined reliability improvement of vulnerability-aware binding over the vulnerability-
unaware case with the same area budgets

Benchmark
FIT rate

contribution
Reliability improvement over
vulnerability unaware binding

Register FU 10%
overhead

20%
overhead

30%
overhead

send_X25 85.2% 14.8% 15.3% 22.3% 48.1%
barcode 80.6% 19.4% 2.1% 10.5% 31.1%
sra_func 85.5% 14.5% 31.5% 49.2% 61.5%

adpcm_decoder 90.0% 10.0% 9.6% 89.0% 140.0%
adpcm_coder 89.0% 11.0% 58.8% 63.7% 142.3%

qrs 96.2% 3.8% 38.4% 149.4% 148.1%
gsm_qc 89.6% 10.4% 12.2% 23.8% 27.3%
Average 88.0% 12.0% 24.0% 57.2% 85.5%

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.7 0.8 0.9 1

R
T

L
-F

I
R

el
ia

b
il

it
y

Estimated Reliability

send_X25

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.7 0.8 0.9 1

Estimated Reliability

sra_func

Estimated vs. RTL-FI

y=x

 0.6

 0.7

 0.8

 0.9

 1

 0.6 0.7 0.8 0.9 1

Estimated Reliability

adpcm_coder

Figure 5.9: Comparison of the reliability values from our behavioral estimation and RTL FI

have different SER (i.e. FIT), which are used to calculate the system reliability.
To illustrate the consistency between RTL FI reliability and the estimated values using

behavioral vulnerability analysis in HLS, we evaluate three benchmarks as representatives,
and show the comparison in Figure 5.9. From this figure we can see that the estimated
reliability with behavioral vulnerability and the real system reliability from RTL FI are close
to each other (on average with 3% and maximum with 10% difference), therefore can validate
the results of our reliability-aware binding technique.

5.7 Conclusion and Summary

Performing soft error mitigation during the HLS process is necessary for cost-efficient reliability
improvement. Sequential and combinational elements, i.e. registers and FUs in the HLS flow,
are the main contributors to the system soft error rate, when the memory blocks are efficiently
protected with ECC codes. This chapter introduced a approach to explore reliability-aware
register and FU binding with comprehensive analysis of the variable and operation vulnera-
bilities. For the vulnerability evaluation, we used a state-based method to probabilistically

102

5.7 Conclusion and Summary

investigate the soft error propagation and masking in the control and data flow graph. Then
based on the obtained vulnerability values, both ILP-based and heuristic optimization are per-
formed to bind vulnerable registers/operations to hardened registers/FUs using the selective
protective scheme. The experimental results show that the proposed binding techniques reach
much more efficient reliability enhancement than the vulnerability-unaware binding, i.e. up to
85% reliability improvement with the same area budget.

Generally speaking, the reliability-aware optimization on resource allocation and binding
are in the spatial domain during the HLS process. In the next chapter, we will discuss how to
achieve similar optimization in the temporal domain, i.e. handling reliability-aware scheduling
in HLS.

103

6 Reliability-aware Operation Chaining

In previous chapter the reliability enhancement potentials are explored during the allocation
and binding phases of high level synthesis, i.e. in the spatial domain. In this chapter we
will introduce a novel scheduling approach in the temporal domain to further investigate these
potentials in high level synthesis. Inspired by the observation that the timing resource within
individual clock cycle can be redistributed to maximize reliability, we propose a reliability-
aware operation chaining technique, considering both the behavioral operation vulnerabilities
and RTL reliability-cost trade-offs in functional units.

6.1 Introduction

In addition to the allocation and binding steps introduced in last chapter, scheduling is another
important step in the HLS process. Scheduling plays a critical role in exploring the concurrent
execution to improve the performance of the generated RTL design [162]. As there exist large
delay variations for executing different behavioral operations, for the performance improvement
it is possible to chain multiple operations bound to fast FUs in a single clock cycle (i.e.
operation chaining) or execute an operation bound to slow FU across multiple clock cycles
(i.e. multicycling).

In the scope of reliability aware HLS, there have been previous attempts to investigate the
reliability potentials of scheduling and binding [24, 81, 86, 163, 164]. The work in [85, 86]
explored the expensive duplication or triple modular redundancy of FUs, while the authors
in [81, 163, 164] investigated the reliability potentials of using multiple implementations of
FUs. They focused only on the multicycling techniques in the scheduling of DFI designs. As
discussed in Chapter 5, the DFI designs are characterized by significant amount of arithmetic
operations (e.g. addition, multiplication and division) with few control dependencies. Due
to the long execution delays of such operations, multicycling scheduling technique is mainly
adopted and investigated. In contrast, the CFI designs contain many relational and logic
operations (e.g. comparison, logic AND operations) which typically have short execution
delays. Therefore, operation chaining is more appropriate scheduling technique for CFI designs.
Recent fault injection results [165, 166] showed that control flows are more vulnerable to the
transient errors than data flows, so the reliability enhancement of the operations in the CFI
designs is a very critical task. Actually, due to unbalanced branch execution probabilities
and error masking effects in CFI designs [24], the operations in these designs are likely to
manifest non-uniform vulnerabilities. Hence, selective enhancement of the operations becomes
a promising solution for cost efficient reliability improvement. However, these potentials are
not explored in the literature yet.

In this chapter we propose a reliability-aware operation chaining technique to achieve ef-
ficient reliability enhancement in the CFI designs. This technique redistributes the timing

105

6 Reliability-aware Operation Chaining

resource during the chaining process from the reliability perspective, i.e. within given timing
constraints, “borrow" time from the robust operations and use it for hardening vulnerable
ones. Our scheduling and binding formulation takes into consideration not only the operation
vulnerabilities at the behavioral level, but also the reliability and delay characteristics of RTL
components. Compared to the traditional operation chaining, experimental results show that
with the same timing constraint, our proposed technique can reduce the system failure rates
by 3X with only 15% area and 16% power overhead.

The rest of this chapter is organized as follows. Section 6.2 introduces the HLS preliminaries
and motivates the proposed work. Section 6.3 describes both the ILP formulation and heuristic
algorithm of the reliability-aware operation chaining. In Section 6.4 the experimental results
are discussed and finally Section 6.5 concludes the chapter.

6.2 Preliminaries and Motivation

In the scheduling phase of HLS, the behavioral operations are partitioned into different groups
and all the operations in the same group can be concurrently executed. Many techniques
have been investigated to improve the design performance, such as multicycling and operation
chaining [39, 40, 167]. The multicycling technique reduces the clock period by executing
a slow operation across multiple clock cycles with either a non-pipelined or pipelined FU.
Operation chaining is performed when the dependent operations can satisfy the following
requirement [167]: Two operations i and j that have a data dependency between them can be
chained, if their execution time di and dj are such that di+dj ≤ clk_period, where clk_period
is the allocated clock period for scheduling the design. Also, operation j can start execution
only after the execution of i has finished.

In the scope of reliability-aware scheduling, multicycling technique has been well researched
in previous work targeting DFI applications [81, 163, 164]. In contrast, our work focuses on
reliability-aware operation chaining in CFI designs. The basic idea is to redistribute the time
within clock cycles among the dependent operations according to their criticality, i.e. assign
less time to execute non-vulnerable operations (using fast but less reliable FUs) and more time
to harden the vulnerable operations, so that the overall reliability of the generated RTL can
be maximized.

6.2.1 Behavioral Design and Reliability Models

In our work the behavioral design is represented as a Control and Data Flow Graph (CDFG),
which is a directed graph consisting of two level structures: control flow graph and Basic
Blocks (BBs), as shown in Figure 6.1. Each BB includes a sequence of operations, and there
exist control dependencies between BBs. To incorporate the behavioral reliability information
into the HLS process, our work uses the metric operation vulnerability, which is defined as
the probability of system failure given errors occur during the execution of this operation.
Therefore it is a conditional probability which reflects the error sensitivity of the behavioral
design to each individual operation.

For the vulnerability evaluation, we adopt the single fault model, i.e. during the entire
design execution, fault occurs at only one operation. Actually, according to the failure rates

106

6.2 Preliminaries and Motivation

IFIF

src sink

src sink

Data dependency

Control dependency

Behavioral operation

Basic block

Artificial node to

facilitate scheduling

Figure 6.1: An example of control and data flow graph

reported in [53], the probability of multiple faults occurring spatially or temporally in different
hardware modules is extremely low. In addition, we consider the aggregated fault effects as
erroneous value at the operation output, so various fault types (e.g. single/multiple faults
within the same hardware module) can be modeled as well.

We use our previous model checking technique presented in Section 4.5 to obtain the op-
eration vulnerabilities. For error generation modeling, the impaired operation receives correct
inputs but generates erroneous output. For error propagation and masking, the CDFG is
modeled as a state transition system, which is then analyzed by probabilistic model checker.
Note that the obtained vulnerability is independent of the schedules and the final RTL imple-
mentations, but only determined by the error propagation properties, i.e. the functionalities
of the behavioral design.

6.2.2 Reliability-aware Chaining in CFI Designs

To integrate reliability into the scheduling and binding steps, there are two essential factors to
be considered: the failure rate of an RTL FU and the vulnerability of a behavioral operation.
The failure rate of an FU determines the error occurrence rates, which is a reliability measure-
ment of that FU, while the vulnerability of a behavioral operation shows the probability that
the occurred errors propagate and finally appear in the design outputs as visible failures.

During HLS, the hardware components (e.g. registers and FUs) implementing the vari-
ables and functions in the behavioral model, are selected from an RTL library [39]. In this
resource/component library, there can be various implementations of the same FU type with
different reliability characteristics [81]. As a running example, Figure 6.2(b) shows the delays
and failure rates of the FUs in an RTL component library, which are characterized regarding
soft errors using the approach detailed in Section 6.4.2. The unit of failure rate is FIT (Failure
In Time), i.e. 1 FIT is equal to 1 error per 109 hours.

In the behavioral CFI designs, due to the unbalanced branch executions and error masking
effects, the operations are very likely to have non-uniform vulnerabilities. For instance, in
Figure 6.2(a) the vulnerability of OR operation is evaluated as 0.5 due to the error masking
effect of the operation >, while others are 1.0 because the outputs are directly affected by the
errors.

Due to these two factors, for the generated RTLs with different FU implementations, the
contribution of each individual operation to the overall system failures can be significantly

107

6 Reliability-aware Operation Chaining

different. To better illustrate this phenomenon, the running example are investigated with the
number of Failures per Execution (FPE) as the reliability metric:

FPE =
NOP∑
i=1

NF U∑
v=1

V ul(OPi) · active_period(OPi) · biv · Failure_rate(FUv)

where NOP , NFU are the total number of behavioral operations and FU versions, respectively.
active_period(OPi) is the timing duration that OPi is active, and biv represents the binding
relation between operation and FU. Note that each operation can only be bound to one FU
version for each schedule. The following two cases are investigated:
Case I : The scheduling takes two cycles by chaining the operations with nominal FUs (i.e.

reliability-unaware);
Case II : Considering the behavioral and RTL reliability information, the cycle number is the

same but the scheduling and binding solution is different.
Note that due to clock period limitation, in case II operation > is bound to hardened FU but
operation OR still uses the nominal version. This is because considering both the operation
vulnerabilities and FU failure rates, more failure reduction can be achieved by hardening >
rather than OR. The detailed comparison of the two schedules is shown in Figure 6.2(c). It can
be seen that compared with reliability-unaware schedule I, by making full use of the timing
slacks and selectively hardening the operations, schedule II can reduce the FPE by 2.5X with
only 7% area overhead.

6.3 Reliability-aware Scheduling and Binding

With the available behavioral vulnerabilities and characterized RTL component library, the
proposed formulation of reliability-aware scheduling and binding is described as follows.

Given: 1) a CDFG with operations as graph nodes and dependencies as graph edges; 2)
operation vulnerabilities; 3) an RTL component library of FUs with different delays, areas and
failure rates; 4) the allocated clock period; 5) user specified constraints, such as timing, or
resource constraint for the generated RTL implementation.

Objective: Schedule and bind the behavioral operations with different FUs, such that the
FPE of the generated RTL is minimized, while the user specified constraints are satisfied.

We leverage the ILP technique in [162] to facilitate the modeling of basic scheduling con-
straints. As it can only handle fixed operation delay with single version of FU, our work
introduces the new formulation of reliability-aware operation chaining with variant delays, i.e.
multiple versions of FUs.

6.3.1 Definitions and Notations

The notations used in our reliability-aware scheduling are listed in Table 6.1. For each oper-
ation i in the CDFG, there is one FU type k to execute this operation, e.g. a behavioral +
operation is to be executed by an RTL adder. There are several constant metrics of the behav-
ioral operations and RTL FUs, and furthermore, two integer scheduling variables starti and
endi determine the starting and ending clock cycle of operation i. For a single cycle operation

108

6.3 Reliability-aware Scheduling and Binding

Behavioral operation vulnerabilities

+1: 1.0 OR: 0.5 +2: 1.0 >: 1.0

(II)

+1

OR

>

+2

hardened

hardened hardened

nominal

(I)

+1

OR

>

C0

+2C1

chained

nominal

(a) Two chaining cases with 1.2 ns clock period: I) with nominal FUs; II)
reliability-aware with hardened FUs

FU version Delay (ns) Failure Rate
(×10−3 FIT)

Area (µm2)

+ OR > + OR > + OR >

0 (nominal) 1.0 0.2 0.7 6 2.1 1.5 420 50 110
1 (hardened) 1.1 0.4 0.9 1.8 1.6 1.1 440 70 130

(b) Delay, area and reliability of an RTL component library

Schedules FPE
(×10−24)

Total Delay
(cycles)

Area
(µm2)

I 5.8 2 580
II 2.3 2 620

(c) Metrics of two different schedules

Figure 6.2: Running example of reliability-aware chaining

109

6 Reliability-aware Operation Chaining

endi = starti, while for multi-cycle operation endi > starti. The binding variables biv deter-
mine which FU version v will be used for the execution of operation i, and the corresponding
FU delay will in turn influence the scheduling of dependent operations.

6.3.2 Basic Scheduling Constraints

Data Dependency

For each data dependency edge from operation i to j, the following constraint is to make sure
that operation j only starts after the execution of operation i:

endi ≤ startj (6.1)

Control Dependency

Control dependencies exist between the BBs of CDFG, and each BB is polarized with two
artificial nodes: super source src and super sink sink as shown in Figure 6.1. For each control
dependency from basic block BBi to BBj the following constraint is added

endsinkBBi
≤ startsrcBBj

(6.2)

Timing Constraint

This constraint guarantees that the user-specified timing requirement, maximum L number
of cycles for the longest path latency [162], will be met for the exit basic block BBexit in the
CDFG

endsinkBBexit
≤ L (6.3)

Resource Constraint

Each operation should be implemented by one and only one version of the FU

FUk∑
v=1

biv = 1 for each operation i (6.4)

Note that two concurrent operations in the same cycle cannot be executed by the same FU
instance. Therefore, we need to find the maximum number nvk of instances of the version v
for FU type k:

nvk ≥
∑

i executed by FU type k
xicv for each clock cycle c

Then the area/power constraints are formulated as

M∑
k=1

FUk∑
v=1

avk · nvk ≤ A,
M∑
k=1

FUk∑
v=1

pvk · nvk ≤ P (6.5)

110

6.3 Reliability-aware Scheduling and Binding

Table 6.1: Notations for reliability-aware scheduling
Notation Definition Type

N
Number of operations to be scheduled; operation i is executed by specific
FU type k, k ∈ [1,M] Constant

M Number of FU types Constant
FUk Number of implementation versions of FU type k Constant
V uli Behavioral vulnerability of operation i Constant
L Timing constraint (number of cycles) on the schedule Constant
A Area constraint on the schedule Constant
P Power constraint on the schedule Constant
avk Area of the version v of FU type k Constant
pvk Power of the version v of FU type k Constant
λiv Failure rate of operation i executed by version v of FU type k Constant
div Delay of operation i executed by version v of FU type k Constant

xicv
xicv = 1 if operation i is scheduled in cycle c and executed by version v of
the FU. i ∈ [1, N], c ∈ [1, L], v ∈ [1, FUk]

Binary variable

biv
biv = 1 if operation i is executed by version v of the FU. biv =

∑
c
xicv, i ∈

[1, N], v ∈ [1, FUk]
Binary variable

starti Start clock cycle of operation i, starti =
∑
c

∑
v
c · xicv ∈ [0, L] Integer variable

endi End clock cycle of operation i, endi ∈ [0, L] Integer variable

di Execution delay of operation i, determined by the used FU version: di =
∑
v
bivdiv

[di]
Delay interval of operation i with lower and upper bounds from the

RTL component library, [di] = [dli, dui], di ∈ [di], dli = min(div), dui = max(div),∀v ∈ [1, FUk]

6.3.3 Operation Chaining Constraints

In the conventional chaining, the propagation delay of an operation is fixed with a single
FU version in the RTL component library, therefore, the overall path delay can be directly
computed before scheduling starts [40, 168]. If the path delay from operation i to its nearest
successor operation j (e.g. operation +1 and +2 in Figure 6.2) exceeds the clock period, in
addition to the dependency constraint in Equation (6.1), another constraint has to be added
to separate them into different cycles [168]

endi + 1 ≤ startj (6.6)

However, for our reliability-aware operation chaining, there are multiple versions of FU
implementation. Therefore, the path delay becomes dependent on the binding solutions. Ac-
tually the delay of operation i is a function of the binding variables, di =

∑FUk
v=1 bivdiv. To

overcome this inter-dependency between scheduling and binding, we propose to use interval
arithmetic to find the candidates of operation chaining.

The basic idea is to calculate the path delay intervals based on the operation delay intervals.
After comparing these intervals with the clock period, we can determine whether the dependent
operations can be chained or must be separated into different cycles. The detailed algorithm
for the generation of chaining constraints is listed in Algorithm 6.1. Note that the lower bound
dli and upper bound dui for each operation i are extracted from the RTL component library,
and are constant values, e.g. dlOR = 0.2, duOR = 0.4 in Figure 6.2. We calculate the interval of

111

6 Reliability-aware Operation Chaining

path delay from operation i to j with this formula:{
[dpathij

] = [dli, dui] + [dlj , duj] = [dli + dlj , d
u
i + duj]

dpathij
∈ [dpathij

] = [dlpathij
, dupathij

] (6.7)

Depending on the comparison of clock period with the lower and upper bounds of this path
delay interval, three cases are handled differently:

1. clk_period < dlpathij
: The lower delay bound exceeds the clock period. This means for

operation i and j, no matter which versions of FU are bound, they must be scheduled
into different cycles. Therefore, constraint (6.6) is added;

2. dupathij
< clk_period: The upper delay bound is smaller than the clock period. This

means operation i and j can be safely chained, and the dependency constraint (6.1) is
enough;

3. dlpathij
≤ clk_period ≤ dupathij

: Depending on the binding solution, if clk_period <

dpathij
, then the two operations must be separated with constraint (6.6), otherwise they

can be chained.
The modeling difficulty in case 3 arises due to the conditional constraints, which can be stated
using the following notation

f(i, j) = clk_period− dpathij

g(i, j) = endi + 1− startj
if f(i, j) < 0, then g(i, j) ≤ 0 (6.8)

Such kind of conditional constraint cannot be directly modeled by linear programming method,
therefore we need to convert it to linear constraints.

The basic idea is to use a 0/1 variable linked to the “condition" to indicate whether it holds
or not. Therefore, one additional binary indicator variable y, a sufficiently small lower bound
Lf (negative value) on f(i, j) and a sufficiently large upper bound Ug on g(i, j) are introduced.
If f(i, j) < 0, y = 1, otherwise y = 0. Then the following two linear constraints are added to
model this conditional constraint {

f(i, j) ≥ Lfy
g(i, j) ≤ Ug(1− y)

(6.9)

Testing the different values of this indicator variable y, the above constraints yield:

y = 0⇒
{
f(i, j) ≥ 0
g(i, j) ≤ Ug

, y = 1⇒
{
f(i, j) ≥ Lf
g(i, j) ≤ 0

(6.10)

We can see that for each value of y, the constraints with Ug or Lf are tautology and the
remaining ones just represent the semantics of the conditional constraint. As the lower and
upper bounds of the path delay dpathij

are already available, the values of the constants Lf , Ug
actually can be easily set.

As shown in Algorithm 6.1, for each operation to be scheduled in the CDFG, we perform
a modified depth first search along its data dependent paths. During the search process, the
real propagation delay of the path is computed as a function of the binding variables (Line 6,
7 and 15, 16). In addition, the delay intervals of the path are also calculated according to the

112

6.3 Reliability-aware Scheduling and Binding

Algorithm 6.1 Chaining Constraints Generation with Variant Operation Delays
1: Input: CDFG of the behavioral function, clock period, different FU implementations in an RTL component library
2: Output: Chaining constraints for reliability-aware scheduling
3: for each BB in CDFG do
4: for each operation i in BB do
5: [dpathi

] = [di] = [dl
i, d

u
i] . Constant bounds

6: di =
∑F Uk

v=1 bivdiv . Operation delay
7: dpathi

= di . Path starting from operation i
8: CHAINING_DELAY_UPDATE(i, [dpathi

], dpathi
)

9: end for
10: end for
11:
12: function CHAINING_DELAY_UPDATE(i, [dpathi

], dpathi
)

13: for each successor operation j of operation i do
14: [dpathij

] = [dpathi
] + [dl

j , d
u
j]

15: dj =
∑F Uk

v=1 bjvdjv

16: dpathij
= dpathi

+ dj

17: if dl
pathij

> clk_period then . Case 1
18: Add constraint (6.6)
19: else if du

pathij
≥ clk_period ≥ dl

pathij
then . Case 3

20: Add constraint (6.9)
21: else . Case 2, further chaining
22: CHAINING_DELAY_UPDATE(j, [dpathij

], dpathij
)

23: end if
24: end for
25: end function

Cycles

(I) starti1 ≤ starti2 (II) starti1 > starti2

i1

i2i1

i2

Figure 6.3: Two cases of compatibility extraction from operation scheduling
interval arithmetic (Line 14). By comparing the lower and upper bounds of the path delay
interval, we either add the chaining constraints (Line 18 and 20), or search deeper for more
chaining potentials (Line 22).

6.3.4 Binding Constraints and Multiplexer Consideration

During the binding process in HLS, the behavioral operations and variables are mapped to
RTL FUs and registers, respectively. The reliability-aware register binding is performed using
our previous formulation in [24], so here we mainly discuss the operation binding. The key
point is how to extract the binding compatibilities of behavioral operations from the above
scheduling formulation.

Two different operations i1 and i2, which have the same operation type (e.g. both are
arithmetic additions), are defined as incompatible when they are concurrently executed in the

113

6 Reliability-aware Operation Chaining

same clock cycle. We use a binary variable ci1,i2 = 0 to represent this incompatibility. Using
the scheduling variables in Table 6.1, the following constraints are used to link the scheduling
and binding process:

ci1,i2 < 1 +OLi1,i2

OLi1,i2 =
{

starti2−endi1
Lc

, if starti1 ≤ starti2
starti1−endi2

Lc
, else

Lc > L⇒ −1 < OLi1,i2 < 1 (6.11)

where Lc is a constant number larger than the longest path latency L, and OLi1,i2 is an
auxiliary variable to check if the execution cycles of i1 and i2 are OverLapped (OL). As shown
in Figure 6.3, when the value of OLi1,i2 is non-positive, the binary variable ci1,i2 is forced
to be 0 (i.e. operation i1 and i2 are incompatible). Similar technique as Equation (6.9) can
transform these conditional constraints to linear constraints.

The register and operation bindings determine the multiplexing logics in the generated
RTL implementations. Generally, if FUk has nk,l interconnections at the lth input port from
different registers, an nk,l-to-1 multiplexer needs to be inserted before this port. In this work
we employ the formulation in [156] to model the possible multiplexers. Taking the delay of
multiplexer dMUX(i) before the FU executing operation i into consideration, the delay of
operation i should be modified as di =

∑FUk
v=1 bivdiv + dMUX(i).

6.3.5 Objective

The goal of our reliability-aware operation chaining is to minimize the number of Failures per
Execution (FPE) of the generated schedule, which takes into consideration the total execution
time of the schedule as well. Similar to the running example in Section 6.2.2, for each operation
three factors are considered in the computation of FPE: the failure rate of the bound RTL
FU, the active period of this operation and its behavioral vulnerability. The first two factors
represent the error occurrence, i.e. the number of occurring failures during this operation
execution, and the third one represents the error propagation probability, i.e. how much
percentage of occurred errors propagate and manifest at the final function output. Note that
as explained in Section 6.2.1, the correlations and dependencies in error propagation and
masking are already considered by the comprehensive model checking technique. Therefore,
the objective of our optimization can be simply formulated as

minimize FPE =
N∑
i=1

(
FUk∑
v=1

bivλiv · active_periodiv) · V uli (6.12)

In this formulation, the failure rate λiv and the active_periodiv of operation i are already
known depending on the implemented version v of the executing FU type in the RTL compo-
nent library. The behavioral vulnerability V uli is also evaluated before scheduling, therefore
the FPE of the schedule is a linear function of the binding variables biv.

6.3.6 Heuristic Algorithm

The problem of simultaneous scheduling and binding is known to be NP-hard, and the ILP-
based method is generally only applicable to medium size designs [40]. To improve the scala-

114

6.4 Experimental Results

Algorithm 6.2 Heuristic Reliability-aware Scheduling and Binding
1: All operations are bound to the most reliable FUs
2: Initial schedule with all hardened operations
3: while constraints not met do
4: Select candidate operations
5: Calculate the priority metric for each candidate operation
6: Select the operation with highest priority
7: Bind a less reliable FU version to this operation
8: Update the chaining constraints and reschedule the design
9: end while

bility, we propose and implement a reliability-aware heuristic algorithm for operation chaining.
The basic idea is to prioritize the behavioral operations and schedule the design in an itera-
tive manner. As a guide for the design space exploration, the priority metric will take into
consideration both the behavioral and RTL reliability information. Then for each iteration,
the reliability-related binding constraints are removed and only conventional scheduling will
be performed. Therefore, the runtime of the iterative scheduling can be significantly reduced
compared with ILP-based simultaneous binding and scheduling. The detailed description of
the heuristic is shown in Algorithm 6.2.

The key point here is to construct the priority function. For FPE minimization, we calculate
the priority metric of one operation according to the FPE change when it is bound to different
FU versions. Assume operation OPi can be bound to version v or v − 1 of the corresponding
FU. By binding OPi to a less reliable version v − 1 (“softening"), a quick evaluation on the
FPE change can be used to compute the priority metric

∆FPE = FPEv−1 − FPEv, priority(OPi) = 1
∆FPE

The user-specified constraints can be considered in the selection of candidate operations as
in Line 4. For instance, if the timing constraint is not met, the operations in the critical
paths, rather than all operations in the CDFG, will be chosen as “softening" candidates.
Then for the candidate operation with the highest priority, its implementation FU version is
modified and the design is rescheduled. This iterative process continues until all constraints
are met. If all operations are already implemented by the least reliable FU versions and there
are still unmet constraints, the algorithm will report scheduling as infeasible. Note that the
priority metric is constructed based on our reliability evaluation, and actually can be integrated
with any existing scheduling algorithm in the iteration, such as the scheduling technique with
polynomial runtime [162], and other optimization methods [40, 169].

6.4 Experimental Results

The proposed technique is applied to the CDFGs extracted from seven benchmarks, and we
use a characterized RTL component library regarding soft errors to demonstrate the advantage
of the reliability-aware operation chaining.

6.4.1 Experimental Setup

The used behavioral benchmarks in our experiments are barcode, sra_func, send_X25, qrs,
gsm_qc, and the ADPCM encoder and decoder. The extraction of behavioral CDFGs and
the reliability-unaware scheduling [162] are performed with the HLS tool LegUp [153], and we

115

6 Reliability-aware Operation Chaining

Behavioral

CDFG

Delay Interval

Extraction of the

RTL Components

(3)

Dependency

Constraints

(2)

Operation

Vulnerabilities

(1)

Chaining

Candidate?

(3)

Chaining

Constraints

(3)

Scheduling with

Nominal Delays

(2)

Timing Constraint L

Dependency

Constraints

(2)

Y

N

Reliability-aware

 Chaining with ILP

(4)

Figure 6.4: Work flow of the proposed operation chaining based on ILP
carry out the ILP optimization using the solver lp_solve [170]. The RTL area and power values
are reported after logic synthesis by Design Compiler based on the 45 nm Nangate library.
The experiments are performed on a workstation with Intel Xeon E5540 2.53GHz and 16GB
RAM.

As shown in Figure 6.4, the overall work flow of ILP-based operation chaining consists of four
main steps: 1) the extracted CDFGs are analyzed to obtain the operation vulnerabilities; 2) the
reliability-unaware operation chaining is performed with nominal FU delays, which can give the
longest path delay L of the design. This will be used later for timing constraint; 3) characterized
RTL component library with several versions of FU implementation is utilized to construct
the dependent path delay intervals to generate the chaining constraints as demonstrated in
Algorithm 6.1; 4) the ILP optimization is performed to redistribute the operation delays within
the timing constraint L to generate the schedule with high reliability.

6.4.2 RTL Component Library Characterization

To explore the delay and reliability trade-off, we need to have various versions of FUs with
different delays and SER in the component library. A variety of hardening techniques including
gate sizing, voltage scaling, and transient filter insertion were investigated. Transient filters
are used as a case study here, as they provide a considerable reduction in SER while imposing

 4

 8

 12

 16

 0.9 1 1.1 1.2

 405

 420

 435

 450

S
E

R
 (

1
0

-3
 F

IT
)

delay (ns)

32-bit adder

SER
Area

 2

 4

 6

 8

 0.1 0.2 0.3
 110

 120

 130

 140

A
re

a
(

µ
m

2
)

delay (ns)

32-bit XOR

Figure 6.5: Characteristics of two FUs with different hardening levels

116

6.4 Experimental Results

Table 6.2: Comparison between our proposed method and the previous techniques

Benchmark
No.
OPs

Scheduling without
reliability [162] Proposed scheduling with ILP reliability optimization Scheduling without

vulnerability [81, 163]
Area
(µm2)

Power
(mW)

FPE
(10−24)

Area
(µm2)

Power
(mW)

FPE
(10−24)

Area
overhead

Power
overhead

FPE
reduction

FPE
(10−24)

FPE
increase

send_X25 14 1657.1 1.15 6.5 1691.2 1.18 2.6 2.1% 3.0% 2.5 X 5.1 1.9 X
barcode 24 1809.7 1.29 12.6 1839.5 1.32 3.8 1.6% 2.4% 3.4 X 6.3 1.7 X
sra_func 35 2096.2 1.53 10.6 2658.9 1.98 5.6 26.8% 28.7% 1.9 X 15.7 2.8 X

adpcm_decoder 37 3306.1 2.18 7.7 4135.1 2.80 2.3 25.1% 28.6% 3.3 X 14.0 6.0 X
adpcm_coder 48 4405.4 3.16 8.3 5179.5 3.61 3.0 17.6% 14.3% 2.8 X 19.4 6.5 X

qrs 88 6911.6 4.63 7.2 8500.4 5.83 2.4 23.0% 26.0% 3.0 X 23.1 9.5 X
gsm_qc 101 1866.7 1.42 9.8 2094.1 1.57 3.0 12.2% 10.5% 3.2 X 24.5 8.1 X
Average - - - - - - - 15.5% 16.2% 3.0 X - 5.2 X

small delay and area overheads [4]. To obtain the delay and SER values of FUs with different
hardening levels, we performed logic synthesis on the RTL description of each FU to obtain
the gate-level netlist, inserted different number of transient filters at each output, and then
employed a hierarchical approach for error generation and propagation analysis [53] based
on the commercially characterized 45 nm Nangate library. In total we have implemented 5
versions of each FU and use them in the following reliability-aware chaining. The typical delay
and FIT curve for the FUs is similar to that in Figure 6.5. Note that the SER reduction
saturates when inserting large number of filters, while the area monotonically increases. The
clock period is set to 1.2 ns to accommodate one adder and other possible chaining operations.

To better demonstrate the trade-off between the FU delays and reliabilities, for each oper-
ation we selected the FU version which is in the middle of the delay-reliability curve as the
nominal case. In this way, we have both less reliable and more reliable versions of the FUs in
the design space to be explored.

6.4.3 Results Analysis

To show the effectiveness of reliability-aware operation chaining, two different scenarios are
considered for comparison:

• Scheduling without reliability: similar to case (I) in Figure 6.2(a), only nominal versions
of FUs are used in the general scheduling algorithm [162];

• Proposed scheduling with reliability optimization: this scenario corresponds to the case
(II) in Figure 6.2(a), considering both behavioral and RTL reliability information.

For both scenarios the longest path delay of the schedule is set to be the same, meaning that
the investigation does not incur any performance penalty and the proposed approach tries to
redistribute the timing resources to improve the design reliability. We perform the comparison
on FPE and area/power of the generated schedules. The detailed results are shown in Table 6.2.
In addition to FUs, the power and area values for RTL registers and the steering logic like
multiplexers are also included here.

We can see that on average the proposed reliability-aware scheduling can reach 3X FPE
reduction. This is because it can make full use of the timing slack in each clock cycle, and
efficiently redistribute the timing resource among operations with non-uniform vulnerabilities.
Hardening FUs intrinsically introduces area and power overhead, and implementing operations
of the same type with different versions of FU may also impair the potential of FU sharing.
However, due to the reliability-aware selective hardening, our chaining method generates the

117

6 Reliability-aware Operation Chaining

Table 6.3: Comparison between the ILP and heuristic binding

Benchmark
No.
OPs

ILP Heuristic
FPE

(×10−24)
Runtime

(s)
FPE

(×10−24)
Runtime

(s)
FPE
diff.

Speedup

send_X25 14 2.6 0.03 2.6 0.01 0.0% 3 X
barcode 24 3.8 0.06 4.0 0.01 5.1% 6 X
sra_func 35 5.6 0.29 5.8 0.01 3.9% 29 X

adpcm_decoder 37 2.3 0.13 2.3 0.01 0.0% 13 X
adpcm_coder 48 3.0 15.42 3.0 0.13 0.0% 116 X

qrs 88 2.4 0.39 2.4 0.01 0.0% 67 X
gsm_qc 101 3.0 20.04 3.1 0.23 3.2% 87 X

qrs+gsm_qc 189 - Time out 6.0 0.43 - -
gsm_qc+gsm_qc 202 - Time out 6.8 0.97 - -

Average - - - - - 1.8% 45 X

schedules with rather small area and power overheads, i.e. 15.5% and 16.2% respectively. To
evaluate the efficiency of proposed heuristic scheduling, we also compare it with the optimal
ILP, as shown in Table 6.3. To investigate the scalability of both methods, we construct two
additional applications by connecting the largest benchmarks qrs and gsm_qc. Due to the
rapid increase of the number of variables and constraints, ILP is time out (> 0.5 hour) for the
two largest benchmarks, while the heuristic still works well. This speedup is mainly due to the
fact that the heuristic leverages the reliability information with different FU implementations
to guide an iterative scheduling loop, instead of direct scheduling and binding with all FU
versions. For the benchmarks where ILP results are available, the comparison shows that the
heuristic generates the schedules with similar FPEs (on average around 2% difference with 45
X speedup).

6.4.4 Comparison with Related Work

In the category of reliability-aware scheduling and binding techniques, the previous work [81,
163] utilized multiple versions of FUs as well, but they assumed that the reliability of one
operation is directly determined by that of bound FU, while the behavioral vulnerability
information is ignored. Without these operation vulnerabilities, a conservative assumption
has to be made that each failure occurring in the FU results in errors at behavioral function
outputs, i.e. operation vulnerabilities are 1.0. Using these pessimistic vulnerabilities, on
average the FPE of the generated schedule is increased by around 5X, as shown in Table 6.2.
We can also see that the FPE increase ratios generally grow with the number of operations in
the behavioral designs. This is because in larger designs there are more error masking effects
and the operation vulnerabilities are likely to be much smaller than 1.0. This significant
difference, which can lead to over-designed RTL with unnecessary resource overhead, shows
that behavioral operation vulnerability is an indispensable part for cost-efficient reliability-
aware HLS.

118

6.5 Conclusion and Summary

6.5 Conclusion and Summary

Complementary to the spatial domain reliability exploration in Chapter 5, in this chapter
we proposed a temporal domain optimization techniques, i.e. reliability-aware scheduling, by
investigating the operation chaining potential for reliability enhancement. Both the vulnera-
bilities of behavioral operations and reliability metrics of RTL FUs are considered during the
optimization step of operation scheduling. The experimental results show that compared with
reliability-unaware chaining, the proposed technique generated the schedule with 3X reduction
of the number of failures per execution, while having small area and power overheads.

119

7 Concluding Remarks and Outlook

Over the past several decades, aggressive device downscaling has enabled exponential increase
of the number of computing system in our society. The continuous increasing frequency of
circuit operation and reduction in operating voltages have exacerbate the reliability challenges
in future technology nodes. Radiation-induced soft errors, as one of the major reliability issues
in nanoscale era, have to be carefully taken into consideration as an additional design metric
or constraint in the design space exploration.

The state-of-the-art work on soft error evaluation and mitigation was mostly focused at
the low abstraction levels. However, the low level solutions are very costly, because they
stay at the end of the design flows and the useful high level application semantics are totally
ignored. In contrast, at high abstract levels there are significant potentials for cost-effective
solutions, because the reliability metric are considering earlier in the design phase. To handle
the increasing complexity of future system and leverage the large flexibility in the design space
exploration, this thesis deals with the problem of soft error evaluation and mitigation at higher
abstraction levels.

For soft error evaluation, we started from logic level and considered the error correlation
during their propagation using an accurate and efficient analytical technique. Addressing
this correlation is essential for accurate soft error rate estimation, and more importantly,
for the cross-layer error abstraction, e.g. from bit errors at logic level to word errors at
register-transfer level. Then the abstraction level is raised to RTL, where the data paths
and control paths are analyzed using both analytical and formal methods according to their
different error propagation properties. These techniques can successfully quantify the non-
uniform vulnerability distributions among the RTL registers under different running workloads.
Finally, the error occurrence and evaluation are investigated at the even higher level regarding
the behavioral functionality. The vulnerabilities of the behavioral variable and operations, i.e.
error sensitivities, are analyzed in a comprehensive way using model checking techniques.

Based on the detailed error rate evaluation at high abstraction levels, cost-efficient error
mitigation by selective protection or hardening are investigated during the high level synthesis
flow. The optimization starting from specifications at higher levels of abstraction can obtain
more benefits, because it leverages the behavioral semantics which are ignored by low level soft
error mitigation techniques, and can provide larger flexibility in reliability-aware design space
exploration. We developed reliability-aware optimization techniques regarding both resource
allocation and binding (in the spatial domain), and operation scheduling (in the temporal do-
main). The soft error vulnerabilities of behavioral variables and operations are carefully taken
into consideration. Compared with the state-of-the-art techniques, our proposed technique
can achieve much more efficient reliability enhancement.

Following the famous Moore’s law, the International Technology Roadmap for Semiconduc-
tors [32] predicts a drastic reduction of both the transistor supply voltage and physical gate

121

7 Concluding Remarks and Outlook

size. According to this roadmap, in the next 10 years the number of transistors per system-
on-chip (SoC) will increased by a factor of 12. This direction for further progress is labelled
More Moore [28]. Concerning this More Moore trend, not only radiation-induced soft error,
but also other reliability challenges caused by manufacturing and environmental imperfections,
variabilities and threats, e.g. voltage droop, transistor aging and electro migration [33, 171]
are already coming into scope.

This thesis focuses on the soft error issue and proposes various evaluation and mitigation
techniques. Nevertheless, the entire framework is not restricted to this specific fault model.
The error propagation analysis in the circuit network as well as the general reliability-aware
optimization algorithms are all suitable to integrate other fault models, such as voltage droop
and transistor aging. How to identify the difference between error occurrence models, and
adjust our framework to handle different reliability-aware scenarios, are very interesting and
promising directions in the future work.

122

Bibliography
[1] K. Rodbell and C. Cher, “Where radiation effects in emerging technologies really matter,” in IEEE

NSREC Short Course, 2013.

[2] P. Eles, K. Kuchcinski, and Z. Peng, System Synthesis with VHDL. Springer, 2010.

[3] S. Mukherjee, Architecture Design for Soft Errors. Morgan Kaufmann, 2008.

[4] M. Choudhury, Q. Zhou, and K. Mohanram, “Soft error rate reduction using circuit optimization and
transient filter insertion,” Journal of Electronic Testing, vol. 25, no. 2-3, pp. 197–207, 2009.

[5] S. Z. Shazli and M. B. Tahoori, “Using boolean satisfiability for computing soft error rates in early design
stages,” Microelectronics Reliability, vol. 50, no. 1, pp. 149–159, 2010.

[6] S. Seshia, W. Li, and S. Mitra, “Verification-Guided Soft Error Resilience,” in Design, Automation and
Test in Europe, pp. 1–6, 2007.

[7] G. Moore, “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, Apr. 1965.

[8] S. Mukherjee, J. Emer, and S. Reinhardt, “The soft error problem: an architectural perspective,” in
International Symposium on High-Performance Computer Architecture, pp. 243–247, 2005.

[9] M. Nicolaidis, Soft Errors in Modern Electronic Systems, ser. Frontiers in Electronic Testing. Springer
US, 2010.

[10] T. C. May and M. H. Woods, “A new physical mechanism for soft errors in dynamic memories,” in
International Reliability Physics Symposium, pp. 33–40, April 1978.

[11] J. F. Ziegler and W. A. Lanford, “Effect of Cosmic Rays on Computer Memories,” in Science, vol. 206,
no. 4420, pp. 776–788, 1979.

[12] J. F. Ziegler and H. Puchner, SER–History, Trends and Challenges: A Guide for Designing with Memory
ICs. Cypress, 2004.

[13] D. Rossi, M. Omana, F. Toma, and C. Metra, “Multiple transient faults in logic: an issue for next
generation ics?” in IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, pp.
352–360, 2005.

[14] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design and Test of Computers, vol. 22,
no. 3, pp. 258–266, 2005.

[15] E. Ibe, H. Taniguchi, Y. Yahagi, K. Shimbo, and T. Toba, “Impact of scaling on neutron-induced soft
error in srams from a 250 nm to a 22 nm design rule,” IEEE Transaction on Electron Devices, vol. 57,
no. 7, 2010.

[16] S. Michalak, K. Harris, N. Hengartner, B. Takala, and S. Wender, “Predicting the number of fatal
soft errors in los alamos national laboratory’s asc q supercomputer,” IEEE Transactions on Device and
Materials Reliability, vol. 5, no. 3, pp. 329–335, Sept 2005.

[17] “Sun screen,” Forbes Magazine, http://members.forbes.com/global/2000/1113/0323026a.html, Nov.
2000.

[18] D. Gajski and R. Kuhn, “Guest Editors’ Introduction: New VLSI Tools,” Computer, vol. 16, no. 12, pp.
11–14, Dec 1983.

123

http://members.forbes.com/ global/2000/1113/0323026a.html

Bibliography

[19] L. Chen and M. B. Tahoori, “An Efficient Probability Framework for Error Propagation and Correlation
Estimation,” in International On-Line Testing Symposium, pp. 70–75, 2012.

[20] L. Chen, M. Ebrahimi, and M. Tahoori, “CEP: Correlated Error Propagation for Hierarchical Soft Error
Analysis,” Journal of Electronic Testing, vol. 29, no. 2, pp. 143–158, 2013.

[21] L. Chen, F. Firouzi, S. Kiamehr, and M. Tahoori, “Fast and Accurate Soft Error Rate Estimation at RTL
level,” in GMM/GI/ITG-Fachtagung Zuverlaessigkeit und Entwurf, 2011.

[22] L. Chen, M. Ebrahimi, and M. Tahoori, “Quantitative Evaluation of Register Vulnerabilities in RTL
Control Paths,” in European Test Symposium, pp. 1–2, 2014.

[23] L. Chen, M. Ebrahimi, and M. Tahoori, “Formal Quantification of the Register Vulnerabilities to Soft
Error in RTL Control Paths,” Journal of Electronic Testing, vol. 31, no. 2, pp. 193–206, 2015.

[24] L. Chen and M. Tahoori, “Reliability-aware Register Binding for Control-Flow Intensive Designs,” in
Design Automation Conference, pp. 75:1–75:6, 2014.

[25] L. Chen, M. Ebrahimi, and M. Tahoori, “Reliability-aware Resource Allocation and Binding in High Level
Synthesis,” ACM Transaction on Design Automation of Electronic Systems, p. Submitted for review, 2015.

[26] S. Borkar, “Designing reliable systems from unreliable components: the challenges of transistor variability
and degradation,” IEEE Micro, vol. 25, no. 6, pp. 10–16, 2005.

[27] S. Kumar, S. Agarwal, and J. P. Jung, “Soft error issue and importance of low alpha solders for micro-
electronics packaging,” Reviews on Advanced Materials Science, vol. 34, pp. 184–202, 2013.

[28] J. Autran and D. Munteanu, Soft Errors: From Particles to Circuits. Taylor and Francis, 2015.

[29] “Measurement and reporting of alpha particle and terrestrial cosmic ray-induced soft errors in semi-
conductor devices,” JEDEC Standard JESD89A, 2006.

[30] B. W. Johnson, Design and Analysis of Fault Tolerant Digital Systems. Addison-Wesley Longman
Publishing Co., Inc., 1988.

[31] R. Baumann, “Landmarks in terrestrial single event effects,” in IEEE NSREC Short Course, 2013.

[32] “International technology roadmap for semiconductors,” http://www.itrs.net, 2012.

[33] S. Mitra, P. Bose, E. Cheng, C.-Y. Cher, H. Cho, R. Joshi, Y. Kim, C. Lefurgy, Y. Li, K. Rodbell,
K. Skadron, J. Stathis, and L. Szafaryn, “The resilience wall: Cross-layer solution strategies,” in Inter-
national Symposium on VLSI Technology, Systems and Application, pp. 1–11, April 2014.

[34] L. Leem, H. Cho, H.-H. Lee, Y. M. Kim, Y. Li, and S. Mitra, “Cross-layer error resilience for robust
systems,” in International Conference on Computer-Aided Design, pp. 177–180, 2010.

[35] R. Harada, Y. Mitsuyama, M. Hashimoto, and T. Onoye, “Neutron induced single event multiple tran-
sients with voltage scaling and body biasing,” in IEEE International Reliability Physics Symposium, pp.
3C.4.1–3C.4.5, 2011.

[36] N. Mahatme, S. Jagannathan, T. Loveless, L. Massengill, B. Bhuva, S.-J. Wen, and R. Wong, “Comparison
of combinational and sequential error rates for a deep submicron process,” IEEE Transaction on Nuclear
Science, vol. 58, no. 6, pp. 2719–2725, dec. 2011.

[37] K. Lilja, M. Bounasser, S.-J. Wen, R. Wong, J. Holst, N. Gaspard, S. Jagannathan, D. Loveless, and
B. Bhuva, “Single-event performance and layout optimization of flip-flops in a 28-nm bulk technology,”
IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp. 2782–2788, Aug 2013.

[38] S. Mitra, N. Seifert, M. Zhang, Q. Shi, and K. S. Kim, “Robust System Design with Built-in Soft-error
Resilience,” IEEE Computer, vol. 38, pp. 43–52, 2005.

124

http://www.itrs.net

Bibliography

[39] D. D. Gajski, S. Abdi, A. Gerstlauer, and G. Schirner, Embedded System Design: Modeling, Synthesis
and Verification. Springer, 2009.

[40] G. D. Micheli, Synthesis and Optimization of Digital Circuits. McGraw-Hill, 1994.

[41] A. Dharchoudhury, S. Kang, H. Cha, and J. Patel, “Fast timing simulation of transient faults in digital
circuits,” in International Conference on Computer-Aided Design, pp. 719–726, Nov 1994.

[42] G. Messenger, “Collection of charge on junction nodes from ion tracks,” IEEE Transactions on Nuclear
Science, vol. 29, no. 6, pp. 2024–2031, 1982.

[43] P. Dodd and L. Massengill, “Basic mechanisms and modeling of single-event upset in digital microelec-
tronics,” IEEE Transaction on Nuclear Science, vol. 50, no. 3, pp. 583–602, 2003.

[44] K. Yamaguchi, Y. Takemura, K. Osada, K. Ishibashi, and Y. Saito, “3-d device modeling for sram
soft-error immunity and tolerance analysis,” IEEE Transactions on Electron Devices, vol. 51, no. 3, pp.
378–388, 2004.

[45] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Modeling the effect of technology trends
on the soft error rate of combinational logic,” in International Conference on Dependable Systems and
Networks, pp. 389–398, 2002.

[46] R. Rao, K. Chopra, D. Blaauw, and D. Sylvester, “An efficient static algorithm for computing the soft
error rates of combinational circuits,” in Proceeding of Design, Automation and Test in Europe, pp. 1–6,
2006.

[47] B. Zhang, W. Wang, and M. Orshansky, “FASER: fast analysis of soft error susceptibility for cell-based
designs,” in International Symposium on Quality Electronic Design, pp. 755–760, 2006.

[48] F. Wang, Y. Xie, R. Rajaraman, and B. Vaidyanathan, “Soft error rate analysis for combinational logic
using an accurate electrical masking model,” in International Conference on VLSI Design, pp. 165–170,
2007.

[49] E. Costenaro, D. Alexandrescu, K. Belhaddad, and M. Nicolaidis, “A practical approach to single event
transient analysis for highly complex design,” Journal of Electronic Testing, vol. 29, no. 3, pp. 301–315,
2013.

[50] S. Krishnaswamy, G. Viamontes, I. Markov, and J. Hayes, “Probabilistic transfer matrices in symbolic
reliability analysis of logic circuits,” ACM Transaction on Design Automation of Electronic Systems,
vol. 13, no. 1, pp. 8:1–8:35, 2008.

[51] G. Asadi and M. Tahoori, “An analytical approach for soft error rate estimation in digital circuits,” in
IEEE International Symposium on Circuits and Systems, pp. 2991–2994, 2005.

[52] M. Choudhury and K. Mohanram, “Reliability analysis of logic circuits,” IEEE Transaction on Computer-
Aided Design of Integrated Circuits and Systems, vol. 28, no. 3, pp. 392–405, 2009.

[53] M. Ebrahimi, A. Evans, M. B. Tahoori, R. Seyyedi, E. Costenaro, and D. Alexandrescu, “Comprehensive
analysis of alpha and neutron particle-induced soft errors in an embedded processor at nanoscales,” in
Proceedings of the Conference on Design, Automation and Test in Europe, pp. 30:1–30:6, 2014.

[54] J. Baraza, J. Gracia, S. Blanc, D. Gil, and P. Gil, “Enhancement of fault injection techniques based on
the modification of VHDL code,” IEEE Transaction on Very Large Scale Integration Systems, vol. 16,
no. 6, pp. 693–706, 2008.

[55] N. Wang, J. Quek, T. Rafacz, and S. Patel, “Characterizing the effects of transient faults on a high-
performance processor pipeline,” in International Conference on Dependable Systems and Networks, pp.
61–70, 2004.

125

Bibliography

[56] L. Entrena, M. Garcia-Valderas, R. Fernandez-Cardenal, A. Lindoso, M. Portela, and C. Lopez-Ongil,
“Soft error sensitivity evaluation of microprocessors by multilevel emulation-based fault injection,” IEEE
Transaction on Computers, vol. 61, no. 3, pp. 313–322, march 2012.

[57] N. Miskov-Zivanov and D. Marculescu, “Circuit reliability analysis using symbolic techniques,” IEEE
Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 12, pp. 2638–
2649, 2006.

[58] M. Zhang and N. Shanbhag, “Soft-Error-Rate-Analysis (SERA) methodology,” IEEE Transaction on
Computer-Aided Design of Integrated Circuits and Systems, vol. 25, no. 10, pp. 2140–2155, 2006.

[59] R. Rajaraman, J. S. Kim, N. Vijaykrishnan, Y. Xie, and M. J. Irwin, “SEAT-LA: A soft error analysis
tool for combinational logic,” in International Conference on VLSI Design, pp. 499–502, 2006.

[60] X. Li, S. V. Adve, P. Bose, and J. A. Rivers, “SoftArch: an architecture-level tool for modeling and
analyzing soft errors,” in International Conference on Dependable Systems and Networks, pp. 496–505,
2005.

[61] T. Calin, M. Nicolaidis, and R. Velazco, “Upset hardened memory design for submicron cmos technology,”
IEEE Transaction on Nuclear Science, vol. 43, no. 6, pp. 2874–2878, 1996.

[62] P. Hazucha, T. Karnik, S. Walstra, B. Bloechel, J. Tschanz, J. Maiz, K. Soumyanath, G. Dermer, S. Naren-
dra, V. De, and S. Borkar, “Measurements and analysis of ser-tolerant latch in a 90-nm dual-vt cmos
process,” IEEE Journal of Solid-State Circuits, vol. 39, no. 9, pp. 1536–1543, 2004.

[63] N. Seifert, V. Ambrose, B. Gill, Q. Shi, R. Allmon, C. Recchia, S. Mukherjee, N. Nassif, J. Krause,
J. Pickholtz, and A. Balasubramanian, “On the radiation-induced soft error performance of hardened
sequential elements in advanced bulk cmos technologies,” in International Reliability Physics Symposium,
pp. 188–197, 2010.

[64] Y. Dhillon, A. Diril, A. Chatterjee, and A. Singh, “Analysis and optimization of nanometer cmos circuits
for soft-error tolerance,” IEEE Transaction on Very Large Scale Integration Systems, vol. 14, no. 5, pp.
514 –524, 2006.

[65] Q. Zhou and K. Mohanram, “Cost-effective radiation hardening technique for combinational logic,” in
International Conference on Computer Aided Design, pp. 100–106, Nov 2004.

[66] V. Sridharan and D. Kaeli, “Eliminating microarchitectural dependency from architectural vulnerability,”
in International Symposium on High Performance Computer Architecture, pp. 117–128, Feb 2009.

[67] S. Kim and A. Somani, “Soft Error Sensitivity Characterization for Microprocessor Dependability En-
hancement Strategy,” in International Conference on Dependable Systems and Networks, pp. 416–428,
2002.

[68] N. Wang, A. Mahesri, and S. Patel, “Examining ACE analysis reliability estimates using fault-injection,”
in ACM SIGARCH Computer Architecture News, vol. 35, no. 2, pp. 460–469, 2007.

[69] U. Krautz, M. Pflanz, C. Jacobi, H. W. Tast, K. Weber, and H. T. Vierhaus, “Evaluating coverage of
error detection logic for soft errors using formal methods,” in Proceeding of Design, Automation and Test
in Europe, pp. 176–181, 2006.

[70] S. Mukherjee, C. Weaver, J. Emer, S. Reinhardt, and T. Austin, “A systematic methodology to compute
the architectural vulnerability factors for a high-performance microprocessor,” in International Symposium
on Microarchitecture, pp. 29 – 40, dec. 2003.

[71] A. Haghdoost, H. Asadi, and A. Baniasadi, “System-level vulnerability estimation for data caches,” in
Pacific Rim International Symposium on Dependable Computing, pp. 157–164, 2010.

[72] L. Tang, S. Wang, J. Hu, and X. S. Hu, “Characterizing the L1 Data Cache’s Vulnerability to Transient
Errors in Chip-Multiprocessors,” in International Symposium on VLSI, pp. 266–271, 2011.

126

Bibliography

[73] S. Wang, “Characterizing system-level vulnerability for instruction caches against soft errors,” in Defect
and Fault Tolerance in VLSI and Nanotechnology Systems, pp. 356–363, 2011.

[74] Y. Cheng, M. Anguo, and M. Zhang, “Accurate and simplified prediction of l2 cache vulnerability for
cost-efficient soft error protection,” IEICE transactions on Information and Systems, vol. 95, no. 1, pp.
56–66, 2012.

[75] P. Montesinos, W. Liu, and J. Torrellas, “Using register lifetime predictions to protect register files against
soft errors,” in International Conference on Dependable Systems and Networks, pp. 286–296, 2007.

[76] N. J. George, C. R. Elks, B. W. Johnson, and J. Lach, “Transient fault models and avf estimation
revisited,” in International Conference on Dependable Systems and Networks, pp. 477–486, 2010.

[77] M. Ebrahimi, L. Chen, H. Asadi, and M. Tahoori, “CLASS: Combined Logic and Architectural Soft Error
Sensitivity Analysis,” in Asia and South Pacific Design Automation Conference, pp. 1–6, 2013.

[78] G. Fey, A. Sülflow, S. Frehse, and R. Drechsler, “Effective robustness analysis using bounded model
checking techniques,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems,
vol. 30, no. 8, pp. 1239–1252, 2011.

[79] P. Meaney, S. Swaney, P. Sanda, and L. Spainhower, “IBM z990 soft error detection and recovery,” IEEE
Transaction on Device and Materials Reliability, vol. 5, no. 3, pp. 419–427, 2005.

[80] S. Baeg, S. Wen, and R. Wong, “SRAM interleaving distance selection with a soft error failure model,”
IEEE Transaction on Nuclear Science, vol. 56, no. 4, pp. 2111–2118, 2009.

[81] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie, “Reliability-Centric High-Level Synthesis,”
in Proceeding of Design, Automation and Test in Europe, pp. 1258–1263, 2005.

[82] M. Glaß, M. Lukasiewycz, T. Streichert, C. Haubelt, and J. Teich, “Reliability-aware System Synthesis,”
in Proceeding of Design, Automation and Test in Europe, pp. 409–414, 2007.

[83] S. Golshan, H. Kooti, and E. Bozorgzadeh, “SEU-Aware High-Level Data Path Synthesis and Layout
Generation on SRAM-Based FPGAs,” IEEE Transaction on Computer-Aided Design, vol. 30, no. 6, pp.
829–840, 2011.

[84] T. Imagawa, H. Tsutsui, H. Ochi, and T. Sato, “A Cost-effective Selective TMR for Heterogeneous Coarse-
grained Reconfigurable Architectures Based on DFG-level Vulnerability Analysis,” in Design, Automation
and Test in Europe, pp. 701–706, 2013.

[85] G. Lakshminarayana, A. Raghunathan, and N. K. Jha, “Behavioral Synthesis of Fault Secure Controller
Datapaths Based on Aliasing Probability Analysis,” IEEE Transaction on Computer, vol. 49, no. 9, pp.
865–885, 2000.

[86] K. Wu and R. Karri, “Fault Secure Datapath Synthesis Using Hybrid Time and Hardware Redundancy,”
IEEE Transaction on Computer-Aided Design, vol. 23, no. 10, pp. 1476–1485, 2006.

[87] G. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. August, “Swift: software implemented fault
tolerance,” in International Symposium on Code Generation and Optimization, pp. 243–254, March 2005.

[88] O. Goloubeva, Software-Implemented Hardware Fault Tolerance. Springer, 2006.

[89] M. Rebaudengo, M. Reorda, M. Torchiano, and M. Violante, “Soft-error detection through software fault-
tolerance techniques,” in International Symposium on Defect and Fault Tolerance in VLSI Systems, pp.
210–218, Nov 1999.

[90] M. Hiller, “Executable assertions for detecting data errors in embedded control systems,” in Proceedings
International Conference on Dependable Systems and Networks, pp. 24–33, 2000.

127

Bibliography

[91] Z. Alkhalifa, V. Nair, N. Krishnamurthy, and J. Abraham, “Design and evaluation of system-level checks
for on-line control flow error detection,” IEEE Transactions on Parallel and Distributed Systems, vol. 10,
no. 6, pp. 627–641, Jun 1999.

[92] N. Oh, P. Shirvani, and E. McCluskey, “Control-flow checking by software signatures,” IEEE Transactions
on Reliability, vol. 51, no. 1, pp. 111–122, Mar 2002.

[93] U. Kretzschmar, A. Astarloa, J. Lazaro, J. Jimenez, and A. Zuloaga, “An automatic experimental set-up
for robustness analysis of designs implemented on SRAM FPGAs,” in International Symposium on System
on Chip, pp. 96–101, 2011.

[94] L. Chen and M. B. Tahoori, “Soft Error Propagation and Correlation Estimation in Combinational
Network,” in Workshop on Manufacturable and Dependable Multicore Architectures at Nanoscale, 2012.

[95] H. Asadi and M. Tahoori, “Soft Error Derating Computation in Sequential Circuits,” in International
Conference on Computer-Aided Design, pp. 497–501, 2006.

[96] T. Rejimon, K. Lingasubramanian, and S. Bhanja, “Probabilistic error modeling for nano-domain logic
circuits,” IEEE Transaction on Very Large Scale Integration Systems, vol. 17, no. 1, pp. 55–65, 2009.

[97] S. Sivaswamy, K. Bazargan, and M. Riedel, “Estimation and optimization of reliability of noisy digital
circuits,” in International Symposium on Quality of Electronic Design, pp. 213–219, 2009.

[98] C. Yu and J. Hayes, “Trigonometric method to handle realistic error probabilities in logic circuits,” in
Proceeding of Design, Automation and Test in Europe, pp. 1–6, 2011.

[99] N. Mohyuddin, E. Pakbaznia, and M. Pedram, “Probabilistic error propagation in logic circuits using the
Boolean difference calculus,” in IEEE International Conference on Computer Design, pp. 7–13, 2008.

[100] R. Marculescu, D. Marculescu, and M. Pedram, “Probabilistic modeling of dependencies during switching
activity analysis,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems,
vol. 17, no. 2, pp. 73–83, 1998.

[101] A. Papoulis, Probability and statistics. Prentice Hall, 1990.

[102] S. Ercolani, M. Favalli, M. Damiani, P. Olivo, and B. Ricco, “Estimate of signal probability in combina-
tional logic networks,” in European Test Conference, pp. 132–138, 1989.

[103] J. C. Costa, L. M. Silveira, S. Devadas, and J. Monteiro, “Power estimation using probability polynomi-
als,” Design Automation for Embedded Systems, pp. 19–52, 2004.

[104] N. Miskov-Zivanov and D. Marculescu, “Multiple transient faults in combinational and sequential circuits:
a systematic approach,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems,
vol. 29, no. 10, pp. 1614–1627, 2010.

[105] M. Fazeli, S. Ahmadian, S. Miremadi, H. Asadi, and M. Tahoori, “Soft error rate estimation of digital
circuits in the presence of Multiple Event Transients (METs),” in Design, Automation and Test in Europe
Conference, pp. 1–6, march 2011.

[106] J. Han, H. Chen, E. Boykin, and J. Fortes, “Reliability evaluation of logic circuits using probabilistic gate
models,” Microelectronics Reliability, vol. 51, no. 2, pp. 468 – 476, 2011.

[107] G. Csárdi and T. Nepusz, “The igraph software package for complex network research,” InterJournal
Complex Systems, p. 1695, 2006.

[108] R. Rubinstein and D. Kroese, Simulation and the Monte Carlo method. John Wiley, 2008.

[109] OpenRISC, http://opencores.org/openrisc.

[110] M. R. Guthaus, J. S. Ringenberg, D. Ernst, T. M. Austin, T. Mudge, and R. B. Brown, “Mibench: A free,
commercially representative embedded benchmark suite,” in IEEE International Workshop on Workload
Characterization, pp. 3–14, 2001.

128

http://opencores.org/openrisc

Bibliography

[111] S. Bhanja and N. Ranganathan, “Cascaded bayesian inferencing for switching activity estimation with
correlated inputs,” IEEE Transaction on Very Large Scale Integration Systems, vol. 12, no. 12, pp. 1360–
1370, 2004.

[112] D. Holcomb, W. Li, and S. A. Seshia, “Design as you See FIT: System-level soft error analysis of sequential
circuits,” in International Conference on Design, Automation and Test in Europe, pp. 785–790, 2009.

[113] N. Miskov-Zivanov and D. Marculescu, “Modeling and optimization for soft-error reliability of sequential
circuits,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems, vol. 27, no. 5,
pp. 803–816, 2008.

[114] I. Polian, J. Hayes, S. Reddy, and B. Becker, “Modeling and mitigating transient errors in logic circuits,”
IEEE Transaction on Dependable and Secure Computing, vol. 8, no. 4, pp. 537–547, 2011.

[115] J. Liang, J. Han, and F. Lombardi, “Analysis of error masking and restoring properties of sequential
circuits,” IEEE Transaction on Computers, vol. 62, no. 9, pp. 1694–1704, 2013.

[116] G. Lakshminarayana, A. Raghunathan, N. K. Jha, and S. Dey, “Transforming control-flow intensive
designs to facilitate power management,” in International Conference on Computer-aided Design, pp.
657–664, 1998.

[117] Y. Li, E. Cheng, S. Makar, and S. Mitra, “Self-repair of uncore components in robust system-on-chips:
An opensparc t2 case study,” in International Test Conference, pp. 1–10, 2013.

[118] A. Evans, D. Alexandrescu, E. Costenaro, and L. Chen, “Hierarchical RTL-based combinatorial SER
estimation,” in International On-Line Testing Symposium, pp. 139–144, 2013.

[119] L. Anghel, R. Leveugle, and P. Vanhauwaert, “Evaluation of SET and SEU effects at multiple abstraction
levels,” in International On-Line Testing Symposium, pp. 309–312, 2005.

[120] S. Bergaoui, P. Vanhauwaert, and R. Leveugle, “A New Critical Variable Analysis in Processor-Based
Systems,” IEEE Transaction on Nuclear Science, vol. 57, pp. 1992–1999, 2010.

[121] J. Cong and K. Gururaj, “Assuring application-level correctness against soft errors,” in International
Conference on Computer-Aided Design, pp. 150–157, 2010.

[122] J. Lee and A. Shrivastava, “Static Analysis of Register File Vulnerability,” IEEE Transaction Computer
Aided Design Integrated Circuits and Systems, vol. 30, no. 4, pp. 607–616, 2011.

[123] M. Shafique, S. Rehman, P. V. Aceituno, and J. Henkel, “Exploiting Program-level Masking and Error
Propagation for Constrained Reliability Optimization,” in Design Automation Conference, pp. 17:1–17:9,
2013.

[124] S. Rehman, M. Shafique, F. Kriebel, and J. Henkel, “Reliable software for unreliable hardware: Embedded
code generation aiming at reliability,” in International Conference on Hardware/Software Codesign and
System Synthesis, pp. 237–246, 2011.

[125] P. Chu, RTL Hardware Design Using VHDL: Coding for Efficiency, Portability, and Scalability. Wiley,
2006.

[126] H. Lin, C. Wang, S. Chang, Y. Chen, H. Chou, C. Huang, Y. Yang, and C. Shen, “A Probabilistic Analysis
Method for Functional Qualification under Mutation Analysis,” in Design, Automation Test in Europe
Conference, pp. 147 –152, march 2012.

[127] C. Baier and J. Katoen, Principles of Model Checking. MIT Press, 2008.

[128] J. A. Kumar and S. Vasudevan, “Automatic compositional reasoning for probabilistic model checking of
hardware designs,” in International Conference on the Quantitative Evaluation of Systems, pp. 143–152,
2010.

129

Bibliography

[129] M. Kwiatkowska, G. Norman, and D. Parker, “PRISM 4.0: Verification of Probabilistic Real-time Sys-
tems,” in International Conference on Computer Aided Verification, 2011.

[130] R. Wimmer, M. Herbstritt, H. Hermanns, K. Strampp, and B. Becker, “Sigref – a symbolic bisimulation
tool box,” in International Symposium on Automated Technology for Verification and Analysis, pp. 477–
492, 2006.

[131] A. Aziz, V. Singhal, and F. Balarin, “It usually works: The temporal logic of stochastic systems,” in
International Conference on Computer Aided Verification, pp. 155–165, 1995.

[132] J. Katoen, T. Kemna, I. Zapreev, and D. Jansen, “Bisimulation minimisation mostly speeds up prob-
abilistic model checking,” in International Conference on tools and algorithms for the construction and
analysis of systems, pp. 87–101, 2007.

[133] C. Dehnert, J. Katoen, and D. Parker, “SMT-based bisimulation minimisation of markov models,” in
VMCAI, pp. 28–47, 2013.

[134] K. L. McMillan, “A methodology for hardware verification using compositional model checking,” Journal
Science of Computer Programming, vol. 37, no. 1-3, pp. 279–309, 2000.

[135] P. Bjesse, “Word level bitwidth reduction for unbounded hardware model checking,” Formal Methods
System Design, vol. 35, no. 1, pp. 56–72, Aug 2009.

[136] A. Mishchenko, M. Case, R. Brayton, and S. Jang, “Scalable and scalably-verifiable sequential synthesis,”
in International Conference on Computer-Aided Design, pp. 234–241, 2008.

[137] G. Karypis and V. Kumar, “Multilevel k-way hypergraph partitioning,” in Design Automation Conference,
pp. 343–348, 1999.

[138] J. Kumar and S. Vasudevan, “Verifying dynamic power management schemes using statistical model
checking,” in Asia and South Pacific Design Automation Conference, pp. 579–584, 2012.

[139] G. Asadi and M. B. Tahoori, “An analytical approach for soft error rate estimation in digital circuits,”
in Proceeding of IEEE International Symposium Circuits and Systems, pp. 2991–2994, 2005.

[140] L.-T. Wang, C.-W. Wu, and X. Wen, VLSI Test Principles and Architectures: Design for Testability.
Morgan Kaufmann Publishers Inc., 2006.

[141] R. C. Cheung, “A User-Oriented Software Reliability Model,” IEEE Transaction on Software Engineering,
vol. 6, no. 2, pp. 118–125, 1980.

[142] A. Filieri, C. Ghezzi, V. Grassi, and R. Mirandola, “Reliability Analysis of Component-based Systems
with Multiple Failure Modes,” in Conference Component-Based Software Engineering, pp. 1–20, 2010.

[143] A. V. Aho, M. S. Lam, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, 2nd ed.
Addison-Wesley, 2007.

[144] OpenSPARC, http://www.oracle.com/technetwork/systems/opensparc.

[145] N. T. Clark, H. Zhong, and S. A. Mahlke, “Automated custom instruction generation for domain-specific
processor acceleration,” IEEE Transaction on Computers, vol. 54, no. 10, pp. 1258–1270, 2005.

[146] H. Noori, F. Mehdipour, M. S. Zamani, K. Inoue, and K. Murakami, “Handling control data flow graphs
for a tightly coupled reconfigurable accelerator,” in Proceeding of the 3rd International Conference on
Embedded Software and Systems, pp. 249–260, 2007.

[147] V. Sundararajan and K. K. Parhi, “Synthesis of low power folded programmable coefficient fir digital
filters (short paper),” in Proceeding of the Asia and South Pacific Design Automation Conference, pp.
153–156, 2000.

130

http://www.oracle.com/technetwork/systems/opensparc

Bibliography

[148] M. Fazeli, S. Miremadi, H. Asadi, and S. Ahmadian, “A fast and accurate multi-cycle soft error rate
estimation approach to resilient embedded systems design,” in International Conference on Dependable
Systems and Networks, pp. 131–140, 2010.

[149] D. Bhaduri, S. Shukla, P. Graham, and M. Gokhale, “Reliability analysis of large circuits using scalable
techniques and tools,” IEEE Transaction on Circuits and Systems, vol. 54, no. 11, pp. 2447–2460, 2007.

[150] Z. Dan, “Research on sequential equivalence checking based system-level soft error reliability analysis of
circuits,” Ph.D. dissertation, National University of Defense Technology, Hunan, China, 2010.

[151] J. Hayes, I. Polian, and B. Becker, “An analysis framework for transient-error tolerance,” in VLSI Test
Symposium, pp. 249–255, 2007.

[152] J. Luo, L. Zhong, Y. Fei, and N. Jha, “Register binding-based RTL power management for control-flow
intensive designs,” IEEE Transaction on Computer-Aided Design of Integrated Circuits and Systems,
vol. 23, no. 8, pp. 1175–1183, 2004.

[153] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski, S. D. Brown, and J. H. Anderson,
“Legup: An open-source high-level synthesis tool for fpga-based processor/accelerator systems,” ACM
Transaction in Embedded Computing Systems, vol. 13, no. 2, pp. 24:1–24:27, 2013.

[154] F. F. Hsu, E. M. Rudnick, and J. H. Patel, “Enhancing High-level Control-flow for Improved Testability,”
in International Conference on Computer-Aided Design, pp. 322–328, 1996.

[155] F. Gao and J. P. Hayes, “Exact and Heuristic Approaches to Input Vector Control for Leakage Power
Reduction,” IEEE Transaction on Computer-Aided Design, vol. 25, no. 11, pp. 2564–2571, 2006.

[156] M. Rim, A. Mujumdar, R. Jain, and R. De Leone, “Optimal and Heuristic Algorithms for Solving the
Binding Problem,” IEEE Transaction on Very Large Scale Integrated Systems, vol. 2, no. 2, pp. 211–225,
1994.

[157] L. Kruse, E. Schmidt, G. Jochens, A. Stammermann, A. Schulz, E. Macii, and W. Nebel, “Estimation of
lower and upper bounds on the power consumption from scheduled data flow graphs,” IEEE Transaction
on Very Large Scale Integrated Systems, vol. 9, no. 1, pp. 3–15, 2001.

[158] Y. Hara, H. Tomiyama, S. Honda, and H. Takada, “Proposal and quantitative analysis of the chstone
benchmark program suite for practical c-based high-level synthesis,” Journal of Information Processing,
vol. 17, pp. 242–254, 2009.

[159] C. Lattner and V. Adve, “LLVM: A Compilation Framework for Lifelong Program Analysis and Trans-
formation,” in International Symposium on Code Generation and Optimization, 2004.

[160] TFIT, http://www.iroctech.com/soft-error-tools/tfit-cell-level/, 2014.

[161] N. Mahatme, N. Gaspard, S. Jagannathan, T. Loveless, B. Bhuva, W. Robinson, L. Massengill, S.-J. Wen,
and R. Wong, “Impact of supply voltage and frequency on the soft error rate of logic circuits,” IEEE
Transactions on Nuclear Science, vol. 60, no. 6, pp. 4200–4206, Dec 2013.

[162] J. Cong and Z. Zhang, “An Efficient and Versatile Scheduling Algorithm Based on SDC Formulation,” in
Design Automation Conference, pp. 433–438, 2006.

[163] Y. Hara-Azumi and H. Tomiyama, “Cost-efficient scheduling in high-level synthesis for Soft-Error Vul-
nerability Mitigation,” in International Symposium on Quality Electronic Design, pp. 502–507, 2013.

[164] S. Tosun, O. Ozturk, N. Mansouri, E. Arvas, M. Kandemir, Y. Xie, and W.-L. Hung, “An ilp formulation
for reliability-oriented high-level synthesis,” in International Symposium on Quality of Electronic Design,
pp. 364–369, 2005.

[165] G. Saggese, A. Vetteth, Z. Kalbarczyk, and R. Iyer, “Microprocessor sensitivity to failures: control vs.
execution and combinational vs. sequential logic,” in International Conference on Dependable Systems
and Networks, pp. 760–769, June 2005.

131

http://www.iroctech.com/soft-error-tools/tfit-cell-level/

Bibliography

[166] N. Nakka, K. Pattabiraman, and R. Iyer, “Processor-level selective replication,” in International Confer-
ence on Dependable Systems and Networks, pp. 544–553, 2007.

[167] S. Gupta, R. Gupta, N. Dutt, and A. Nicolau, SPARK: a parallelizing approach to the high-level synthesis
of digital circuits. Springer, 2004.

[168] C.-T. Hwang, J.-H. Lee, and Y.-C. Hsu, “A formal approach to the scheduling problem in high level
synthesis,” IEEE Transaction on Computer-Aided Design, vol. 10, no. 4, pp. 464–475, 1991.

[169] F. Khosravi, F. Reimann, M. Glass, and J. Teich, “Multi-objective local-search optimization using relia-
bility importance measuring,” in Design Automation Conference, pp. 1–6, 2014.

[170] lp_solve, http://sourceforge.net/projects/lpsolve.

[171] A. Dixit and A. Wood, “The impact of new technology on soft error rates,” in International Reliability
Physics Symposium, pp. 4.1–4.7, 2011.

132

	Glossary
	List of Figures
	List of Tables
	Introduction
	Scope and Contributions
	Outline

	Preliminaries and State of the Art
	Soft Error Basics
	Origins
	Models and Metrics
	Scaling Trends

	Soft Error Analysis and Mitigation
	Design Views and Abstraction Levels
	Low Level Error Analysis and Mitigation
	High Level Error Analysis and Mitigation
	Summary of State of the Art

	Error Correlation Analysis at Logic Level
	Introduction
	Related Work
	Correlation Model
	Correlation Coefficient Method
	Error Correlation

	Proposed Error Estimation Methodology
	Error Propagation Model
	Error Cone Extraction
	Super-gate Correlation Formulas
	Dynamic Blocking of Error Propagation
	Limited Depth Correlation Analysis

	Extensions of the Proposed Method
	Multiple Errors Propagation with Correlation
	Block-level Error Estimation

	Experimental Results
	Experimental Setup
	Benchmark Results
	Case Study of OpenRISC 1200 ALU

	Conclusion and Summary

	Vulnerability Analysis at Register Transfer and Behavioral Levels
	Introduction
	Preliminary and Problem Statements
	RTL Control and Data Paths
	Fault Model and Register Vulnerability
	Formal Methods for Soft Error Analysis

	Register Vulnerability Evaluation in RTL Control Paths
	Probabilistic Model Construction
	Property Specification
	Model Checking
	Scalability Improvement of the RTL Model Checking

	Word-level Error Analysis in RTL Data Paths
	Basic Idea
	Bit-level vs Register-level
	Register-level EPP Rules
	Overall EPP Estimation

	Vulnerability Analysis at Behavioral Level
	Random Error Occurrence Modeling
	Error Propagation Modeling
	Vulnerability Evaluation

	Experimental Results
	Control Path Evaluation Results
	Data Path Evaluation Results
	Case Study of OpenRISC IC FSM
	Comparison with Related Work

	Conclusion and Summary

	Reliability-aware Resource Allocation and Binding
	Introduction
	Motivation
	Non-uniform Soft Error Vulnerabilities
	Non-unique Binding Solutions

	Reliability-aware Register Binding
	Definitions and Notations
	Register Binding Optimization

	Functional Unit Allocation and Binding
	FU Allocation and Binding Space Determination
	Constraints and Objective
	Reliability-aware FU Binding Optimization

	Vulnerability Compaction and Heuristic Resource Binding
	Experimental Results
	Work Flow
	Characterization of the RTL Resources
	Register Binding Results Analysis
	FU Binding Results Analysis
	Combined analysis of register and FU binding

	Conclusion and Summary

	Reliability-aware Operation Chaining
	Introduction
	Preliminaries and Motivation
	Behavioral Design and Reliability Models
	Reliability-aware Chaining in CFI Designs

	Reliability-aware Scheduling and Binding
	Definitions and Notations
	Basic Scheduling Constraints
	Operation Chaining Constraints
	Binding Constraints and Multiplexer Consideration
	Objective
	Heuristic Algorithm

	Experimental Results
	Experimental Setup
	RTL Component Library Characterization
	Results Analysis
	Comparison with Related Work

	Conclusion and Summary

	Concluding Remarks and Outlook
	Bibliography

