

Sagkriotis, Stefanos (2023) Accelerating orchestration with in-network
offloading. PhD thesis.

http://theses.gla.ac.uk/83898/

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,
without prior permission or charge

This work cannot be reproduced or quoted extensively from without first
obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any
format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,
title, awarding institution and date of the thesis must be given

Enlighten: Theses
https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://theses.gla.ac.uk/83898/
mailto:research-enlighten@glasgow.ac.uk

Accelerating Orchestration with In-Network Offloading

Stefanos Sagkriotis

Submitted in fulfilment of the requirements for the
Degree of Doctor of Philosophy

School of Computing Science
College of Science and Engineering

University of Glasgow

May 2023

Abstract

The demand for low-latency Internet applications has pushed functionality that was orig-
inally placed in commodity hardware into the network. Either in the form of binaries for
the programmable data plane or virtualised network functions, services are implemented
within the network fabric with the aim of improving their performance and placing them
close to the end user. Training of machine learning algorithms, aggregation of networking
traffic, virtualised radio access components, are just some of the functions that have been
deployed within the network. Therefore, as the network fabric becomes the accelerator
for various applications, it is imperative that the orchestration of their components is also
adapted to the constraints and capabilities of the deployment environment.

This work identifies performance limitations of in-network compute use cases for both
cloud and edge environments and makes suitable adaptations. Within cloud infrastruc-
ture, this thesis proposes a platform that relies on programmable switches to accelerate
the performance of data replication. It then proceeds to discuss design adaptations of
an orchestrator that will allow in-network data offloading and enable accelerated service
deployment. At the edge, the topic of inefficient orchestration of virtualised network
functions is explored, mainly with respect to energy usage and resource contention. An
orchestrator is adapted to schedule requests by taking into account edge constraints in
order to minimise resource contention and accelerate service processing times. With data
transfers consuming valuable resources at the edge, an efficient data representation mech-
anism is implemented to provide statistical insight on the provenance of data at the edge
and enable smart query allocation to nodes with relevant data.

Taking into account the previous state of the art, the proposed data plane replication
method appears to be the most computationally efficient and scalable in-network data
replication platform available, with significant improvements in throughput and up to an
order of magnitude decrease in latency. The orchestrator of virtual network functions at
the edge was shown to reduce event rejections, total processing time, and energy con-
sumption imbalances over the default orchestrator, thus proving more efficient use of the
infrastructure. Lastly, computational cost at the edge was further reduced with the use
of the proposed query allocation mechanism which minimised redundant engagement of
nodes.

i

Acknowledgements

First and foremost, I would like to express my gratitude to Prof. Dimitrios Pezaros who
patiently shaped my academic criterion by introducing me to state of the art challenges,
transferring his experience and knowledge, and guiding me on how to conduct impactful
research. His support made this PhD possible, and his advice and feedback turned it into
an invaluable experience.

This PhD would also not be possible without the help and support of my partner,
Evangelia Nakou. She has been my strongest ally, tirelessly offering solutions to every
hurdle by sacrificing her time and energy. I cannot thank her enough for helping me
pursue my goals.

I am also grateful to my family: Georgios Sagkriotis, Elpida Mitropoulou, Angeliki
Sagkrioti, for their care and encouragement. They have always provided a safety net
behind each of my decisions.

I would also like to thank my second supervisor Dr Christos Anagnostopoulos for
his feedback and guidance during the early stages of my PhD. I am also thankful to Dr
Kostas Kolomvatsos for his advice and collaboration. From BT, I would like to thank
my industrial supervisor, Peter Willis, for sharing his experience and thoughts to help me
shape my PhD topic.

For his encouragement to pursue a PhD and his belief in me, I would like to thank
Prof. Ioannis Moscholios. His mentorship during this journey greatly helped me form
decisions and pursue my dreams.

To the fellow PhD students and collaborators: Dr Mircea-Mihai Iordache-Sica, Dr Kyle
Simpson, Dr Alejandro Llorens Carrodeguas, Dr Irian Leyva-Pupo, Haruna Umar Adoga,
Dr Marco Cook, Yiliyasi Sulaiman, Dimitrios Barkas, I am thankful for the engaging
discussions, encouragements, and occasional banter. You have all assisted me greatly in
unique ways over the previous years.

ii

Contents

Abstract i

Acknowledgements ii

1 Introduction 1
1.1 Overview . 1
1.2 Thesis Statement . 4
1.3 Contributions . 4
1.4 Publications . 6
1.5 Organisation of the Thesis . 6

2 Background 8
2.1 Overview . 8
2.2 Challenges in Network Evolution . 8
2.3 Early Efforts for Network Programmability 9
2.4 Programmable Networking in Commodity Hardware 10

2.4.1 User Space Packet Processing . 11
2.4.2 In-Kernel Packet Processing . 12
2.4.3 Software Routers . 13
2.4.4 GPU Offloading . 14
2.4.5 Single Board Computers . 15

2.5 Network Programmability over Bespoke Hardware 16
2.5.1 End-Host Programmability . 16
2.5.2 Middleboxes . 17
2.5.3 Software Defined Networking . 18
2.5.4 Programmable Application-Specific Integrated Circuits 23

2.6 Network Function Virtualisation . 26
2.6.1 Reference Architecture . 26
2.6.2 Virtualisation Technologies . 27
2.6.3 Placement & Resource Allocation 28
2.6.4 Network Function Virtualisation Platforms 34

iii

CONTENTS iv

2.7 In-network Offloading . 36
2.7.1 Data storage . 37
2.7.2 Machine Learning . 41
2.7.3 Aggregation . 41

2.8 Summary . 42

3 Replicated Storage in the Data Plane 44
3.1 Overview . 44
3.2 Existing Limitations . 46

3.2.1 NetChain . 46
3.3 CRAQ . 49
3.4 NetCRAQ Design . 51

3.4.1 Data Plane . 52
3.4.2 Control Plane . 56

3.5 NetCRAQ Performance (vs NetChain) . 57
3.5.1 Evaluation Setup . 57
3.5.2 Throughput . 58
3.5.3 Latency . 59
3.5.4 Mixed Workloads . 60
3.5.5 Scalability . 61

3.6 Discussion . 62
3.6.1 State Preservation . 62
3.6.2 Technical Challenges . 64
3.6.3 Example Use Case . 64

3.7 Summary . 67

4 In-Network Storage and Processing at the Edge 69
4.1 Overview . 69
4.2 Motivation . 70
4.3 Energy Monitoring on Clusters of Single Board Computers 71

4.3.1 Design . 72
4.3.2 Measurements . 75

4.4 Energy-Aware Placement . 79
4.4.1 Problem Definition & Notation . 80

4.5 The ECAS Scheduler . 83
4.5.1 SoC Monitor . 83
4.5.2 Node Selector . 85
4.5.3 Evaluation . 96
4.5.4 Evaluation Setup . 96

CONTENTS v

4.5.5 Discussion . 102
4.6 Query allocation at the Edge . 103

4.6.1 Definitions & Problem Formulation 104
4.6.2 Scaling-out the Assignment of Queries 107
4.6.3 Experimental Evaluation . 110

4.7 Summary . 112

5 Conclusion 115
5.1 Overview . 115
5.2 Contributions . 115
5.3 Thesis Statement Revisited . 117
5.4 Future Research Directions . 118
5.5 Concluding Remarks . 120

References 121

List of Tables

4.1 Descriptions of used notation. 82
4.2 Evaluation parameter ranges based on testbed. 97
4.3 Impact of error tolerance ϵ on expected involvement ratio r. 112

vi

List of Figures

2.1 The processing pipeline of OpenFlow switches. 20
2.2 Overview of controller design and modules. 21
2.3 The Protocol-Independent Switch Architecture. 24
2.4 Kubernetes architecture overview [9]. 36

3.1 Comparison of message path for a read query in Chain Replication vs CRAQ. 48
3.2 Overview of NetCRAQ. 51
3.3 Multiple versions per object in a single array – objects_store. 53
3.4 Auxiliary data structure used to determine clean/dirty KV pairs – read_index. 53
3.5 Comparison of packet format between NetChain and NetCRAQ. 54
3.6 Max read QPS vs distance from tail. 59
3.7 Sustained read throughput vs percentage of congestion. 60
3.8 Response latency vs QPS. 61
3.9 Write latency vs increasing QPS. 62
3.10 Performance under mixed read/write workloads. 63
3.11 Read throughput vs chain length. 63
3.12 Overview of proposed design. 66

4.1 Overview of cluster’s architecture. 72
4.2 Overview of application architecture . 73
4.3 Voltage measurements under CPU stress. 76
4.4 Current measurements under CPU stress. 76
4.5 Input of current values to the SoC estimation algorithm. 77
4.6 Response of the coulomb counting method to the input of Figure 4.5 . . . 78
4.7 Average current measurement per activity. 78
4.8 Software architecture showing distribution of tasks and services. 80
4.9 Assessment of controller participation by measuring event rejections and

deadline violations over different event generation rates. 86
4.10 Average metrics time while deploying or not events in the controller node. . 87
4.11 Average events acceptance ratio with and without deploying events in the

controller node. 88

vii

LIST OF FIGURES viii

4.12 Multiple regression models for SoC estimation based on CPU usage for
compute nodes. 90

4.13 SoC regression based on CPU usage for the control plane node. 90
4.14 SoC regression based on incoming packets at the control plane node. 91
4.15 Lineal regression model with CPU usage and incoming packets as predictors

for the controller node. 92
4.16 Number of requested, scheduled and rejected events (i.e., Services and

Tasks) for each scheduling algorithm. 98
4.17 Number of requested, scheduled and rejected VNFs per scheduling algorithm. 99
4.18 Acceptance ratio of events per scheduling algorithm. 100
4.19 Number of successfully scheduled events and deadline violations for each

scheduling algorithm. 101
4.20 Waiting time for all scheduling algorithms. 101
4.21 Total processing time for all scheduling algorithms. 102
4.22 Battery consumption for each node while running different scheduling algo-

rithms. 103
4.23 An architecture that distributes queries through QCs to edge nodes. 105
4.24 Comparison between the variance that a query is exposed to w.r.t. the

baseline solution and our proposed mechanism. 113
4.25 The involvement ratio r is compared to variance decrease that occurs from

our query allocation mechanism. 113

Acronyms

API Application Programming Interface. 12, 20, 35, 36

ASIC Application-Specific Integrated Circuit. 2, 17, 24, 25, 45, 47, 60, 119

BPF Berkeley Packet Filter. 12

cBPF classic BPF. 12

CLI Command-Line Interface. 20

CNI Container Network Interface. 64–67, 74, 77

CPU Central Processing Unit. 10, 11, 13, 14, 16, 24, 31–33, 36, 75, 83–85, 89, 91, 92, 94,
97, 99, 102

CRAQ Chain Replication with Apportioned Queries. 45, 49, 50, 52, 53, 57

DMA Direct Memory Access. 14, 16

DPDK Intel Data Plane Development Kit. 11–13

eBPF extended Berkeley Packet Filter. 12, 13, 16

ECAS Energy Capacity-Aware Scheduler. 83, 92, 94, 97–100, 102, 103, 114

EN Edge Node. 104–110

ETSI European Telecommunications Standards Institute. 26, 27, 30, 35

FPGA Field-Programmable Gate Array. 17, 68, 119

GPU Graphics Processing Unit. 14, 24, 41, 119

GUI Graphical User Interface. 20

HDL Hardware Description Language. 17

ix

Acronyms x

IaaS Infrastructure as a Service. 34

IETF Internet Engineering Task Force. 9

ILP Integer Linear Programming. 29, 31, 32

IoT Internet of Things. 3–5, 7, 15, 32, 34, 40, 42, 69, 71, 72, 75, 86, 96, 98, 99, 102–104,
106, 111, 112, 114, 116–118

KPI Key Performance Indicator. 1, 2, 27, 31

KS Kubernetes Scheduler. 97–100, 102

KV Key-Value. 5, 37, 39, 44–47, 49, 50, 52, 54, 56, 57, 61, 62, 64–68, 103, 117, 118

KVS Key-Value Store. 2, 3, 5, 17, 36, 38, 39, 44–47, 49, 51, 54, 57, 60, 64, 65, 67, 68,
104, 116, 118, 119

LLS Least Loaded Scheduler. 97–100, 102, 114

MANO Management and Orchestration. 26, 28, 35

NAT Network Address Translation. 30

NF Network Function. 17, 26, 28, 30, 35, 36, 69

NFV Network Function Virtualisation. 2, 4, 26–29, 34, 35, 42, 44, 69, 74, 79, 115, 116

NIB Network Information Base. 21, 22

NIC Network Interface Card. 10–14, 16, 118

NPU Network Processing Unit. 16, 24, 25, 38, 47

ONAP Open Network Automation Platform. 34

OS Operating System. 13, 15, 27, 28, 72, 79

OSM Open Source Mano. 35

OVSDB Open vSwitch Database Management Protocol. 20

P4 Programming Protocol-Independent Packet Processor. 12, 16, 17, 25, 26, 36, 42, 45,
47, 52, 56, 57, 60, 64, 68, 115, 119

PaaS Platform-as-a-Service. 15

Acronyms xi

PCA Principal Components Analysis. 106, 108, 109, 118

PDP Programmable Data Plane. 2, 5, 8, 37, 38, 40, 44–47, 50–52, 58, 64–67, 103, 115,
117

PISA Protocol-Independent Switch Architecture. 24, 25, 45, 67

QC Query Controller. 70, 104–107, 109, 110

QoS Quality of Service. 19, 30–32, 85, 86

QP Query Processor. 104–107, 109–111

QPS Queries Per Second. 58, 60

REST Representative State Transfer. 20

RFC Request For Comments. 9

RMSE Root Mean Square Error. 89

RMT Reconfigurable Match-Action Table. 23, 24

RSS Receive-Side Scaling. 11, 14

RTT Round-Trip Time. 45, 47, 48, 57, 62, 65, 67

SBC Single Board Computer. 3, 4, 15, 33, 70–72, 75, 79, 83, 89, 93, 110, 116

SDN Software Defined Networking. 1, 2, 4, 6, 18, 19, 22, 27, 44, 116

SLA Service Level Agreement. 32, 82

SLO Service Level Objective. 20, 22

smartNIC smart Network Interface Card. 16, 23, 24, 68, 115, 118

SoC State of Charge. 33, 72–74, 77, 83, 85, 88, 89, 91–94, 100, 102

SRAM Static Random-Access Memory. 24, 44, 51, 65, 117

TCAM Ternary Content-Addressable Memory. 24

TCP Transmission Control Protocol. 9, 14

UDP User Datagram Protocol. 45, 47, 52, 53, 116

USV Unmanned Surface Vehicle. 110, 111

Acronyms xii

VM Virtual Machine. 27, 28, 30–32, 34, 35

VNE Virtual Network Embedding. 28, 29

VNF Virtualised Network Function. 5, 26–35, 42–44, 47, 69, 70, 79–81, 98, 114, 118, 119

XDP eXpress Data Path. 12, 13

Chapter 1

Introduction

1.1 Overview

Over the past few years, computer networks have proved to be essential infrastructure by
providing services that are used daily from billions of users. Data centres and end-user net-
works are interconnected through backbone infrastructure with methods resilient enough
to support growing numbers of users at constantly increasing access speeds, requesting
new types of online services. Even during the series of challenges imposed (or amplified)
by the Covid-19 pandemic, critical sectors like healthcare, education, banking, commerce,
were in periods relying entirely on network infrastructure. Network traffic increases of
around 20% had to be rapidly tamed (within a week) with the yearly estimated increase
prior to the pandemic being approx. 30% [56]. The growing reliance in networking infras-
tructure brings expectations of high availability and stable performance while the room
for configuration and management errors is shrinking.

To achieve this resilience and performance, the Internet structure has changed since its
early days with the majority of Internet traffic now directed to a few cloud providers and
content delivery networks like Google and Meta, also known as Hyperscalers or Hyper-
giants [72]. To minimise the distance between the end user and their infrastructure and
meet latency requirements, they are peering directly at Internet Exchange Points and,
in some cases, lay their own fibre networks. Hyperscalers bear the burden of ensuring
availability of their services over the Internet with minimum latency overhead on top of
backbone networks. They have to manage services spanning across multiple data centres
in different locations while maintaining availability and consistency [36]. It is apparent
that they cannot settle for eventual convergence of networking protocols or best-effort de-
livery. Hyperscalers strive to achieve intent-based network management so that network
configuration is optimised towards meeting certain Key Performance Indicators (KPIs).
This is done by employing Software Defined Networking (SDN) to obtain a centralised
view of the network, monitor traffic and failures, and perform routing decisions shaped

1

CHAPTER 1. INTRODUCTION 2

around certain KPIs [57]. SDN technologies have been at the forefront of research during
the previous years with multiple efforts from both industry and academia to deliver a
sustainable separation of the network control plane from the forwarding plane. This sepa-
ration is not trivial. Even one of the most prominent SDN specifications in-use, OpenFlow,
presents multiple shortcomings: it supports a limited number of protocols, it fails to per-
form stateful traffic processing, and it is limited to a fixed set of possible actions against
traffic flows.

Some of these technical challenges have been addressed through advances in pro-
grammable networking hardware which enabled stateful per-packet processing at line rate,
with similar throughput to fixed-function switches. Programmable packet parsing allows
experimentation with new protocols without the need for specification revisions. These
developments have created momentum in the area of data plane programmability with
multiple efforts to offload applications, either partially or completely, in Programmable
Data Plane (PDP) hardware, like programmable Application-Specific Integrated Circuits
(ASICs). With their hardware design optimised for certain computations, programmable
network devices showcase accelerated performance of the offloaded services when com-
pared to legacy implementations. Designing applications for partial or complete offloading
of computation within network devices is also known as in-network compute.

Implementations of Key-Value Stores (KVSs) within network devices have been par-
ticularly promising, not only due to the integral role of KVSs in mainstream data centre
applications (e.g., Google Spanner [36], Facebook Memcache [150, 7]), but also because of
the close proximity of network devices to the source of KVS queries. The hops between
the client and the corresponding server are minimised if the network device can accommo-
date queries instead of just forwarding them. Within the scope of this thesis is the design
of in-network compute applications accommodating KVS workloads within programmable
data planes to deliver performance enhancements. A replication algorithm is designed and
implemented in PDP and through evaluation it is shown to improve the state of the art
in aspects like scalability, throughput, and latency.

In parallel, both within and outside data centres, network administrators have to deal
with device heterogeneity. The co-existence of different switching hardware generations
can be the consequence of upgrades to achieve continuous growth [163]. Processing nodes
might also be updated in phases within a data centre in order to be on par with modern
processing capabilities. To deploy and manage network functions and services in hetero-
geneous hardware and be able to repurpose hardware, network operators employ Network
Function Virtualisation (NFV) technologies. In the case of 5G and 6G, network func-
tions need to converge between the cloud and the Radio Access Network [60, 144]. The
management and orchestration of virtualised functions need to be agile and optimal in
order to satisfy the availability and scale requirements of the workloads with minimum

CHAPTER 1. INTRODUCTION 3

excess resource consumption. These requirements are satisfied with complex orchestration
platforms that gather measurements and health statistics from the deployed services and
store them in distributed KVS. This thesis studies the characteristics of this functionality
and proposes partial offloading of this functionality in programmable network devices in
order to accelerate decision-making and provide scalability for large-scale orchestration.

In the case of telecommunication providers, the dependence of modern applications
on low-latency responses from the network has pushed virtualised network functionality
outside the cloud and close to the edge, especially for certain 5G and 6G use cases like
Internet of Things (IoT) and augmented reality [20, 104, 38]. Storage and analysis of large
amounts of data at the edge offers reduced link bandwidth usage that would otherwise be
required for data transfers at the cloud, resulting in an overall computationally efficient
infrastructure. This work explores data representation techniques that can describe the
type of information held by the participating devices. Through data representation, queries
can be directed to nodes based on the statistical relevance between the query and the
information stored at the nodes. Data traversals can be minimised by executing data
analysis tasks at the parts of the network that store relevant data. A methodology that
can be used on resource-constrained nodes holding low-dimensional data is presented.

Single Board Computers (SBCs) have become a mainstream choice for IoT environ-
ments because of their small form factor, their connectivity with a wide variety of sensors
and adaptors, and their improved hardware capabilities that demonstrate increasing pro-
cessing capacity, higher network speeds, and growing memory size. These changes have
increased the adoption rate of SBCs as computational nodes for Fog Computing and Edge
Computing, either as standalone devices or in clusters [103]. This work explores this direc-
tion further by developing a cluster of SBCs that is used as a testbed for the development
of a virtualised, scalable, and fault-tolerant application that is able to hold sensor data
in local KVSs. Developed using lightweight containers to deploy virtualised services, the
application proved that cloud-native virtualisation methods are usable at the edge and
can run on resource-constrained SBCs. To assess the impact of virtualisation in IoT de-
vices, the energy overhead of different tasks running within the cluster is measured and
compared.

Mainstream virtualisation platforms like Kubernetes are usable in IoT clusters with-
out however adapting their orchestration approach to the constrains of such environments.
Sensor devices are usually running on limited energy resources that enables them to be
mobile and easily deployable in diverse environments. Deploying and managing virtu-
alised services without taking this into consideration can result in failed deployments due
to insufficient resources or underutilisation of the available ones. Part of this thesis is
dedicated in performing a list of changes in Kubernetes to make energy-aware decisions
for service orchestration in energy-constrained IoT clusters. To achieve this, a regression

CHAPTER 1. INTRODUCTION 4

model that is able to establish the relationship between battery consumption and hard-
ware utilisation is implemented. A new scheduling algorithm is integrated in Kubernetes
to make it capable of assigning services to nodes based on the expected battery consump-
tion and the available resources. The above are implemented and tested using a testbed
of energy-constrained SBCs, indicative of edge infrastructure constraints and capabilities.

1.2 Thesis Statement

This work considers the capability of modern network hardware to perform per-packet
stateful processing at line rates as a potential accelerator of computations within the net-
work fabric. It asserts that, through stateful packet processing, data replication services
can be implemented within the network in a scalable manner that outperforms legacy
data replication methods. This work identifies limitations of previous in-network replica-
tion platforms and proposes design changes that offer better scalability, throughput and
latency over the previous state of the art, without harming consistency or fault-tolerance.
Because of the central role of Key-Value Stores as a coordination platform for widely
deployed controllers and orchestrators and their workload characteristics, offloading this
functionality in programmable hardware is proposed to reduce reaction times to network
events and promote scalable orchestration.

This work also recognises the proliferation of virtualised network functions, able to
formulate advanced network services in both data centres and edge infrastructure. It
asserts that Edge IoT infrastructure can host mainstream orchestration platforms despite
the existing resource constraints, further reducing latency at the end user by placing
computation in low proximity. It proceeds to examine the energy impact of running an
orchestration platform in IoT devices and obtains energy profiles for different roles and
workloads within an IoT cluster. This work affirms that a mainstream orchestrator can
be adapted to perform energy-aware scheduling and operate on a cluster of edge devices,
using real time sensor readings to offer efficient use of the available resources. Finally, it
asserts that statistical matching between queries arriving at the cloud and data existing
at the edge can reduce excess computations by minimising data transfers and using only
nodes storing statistically relevant data.

1.3 Contributions

The contributions of this thesis are presented alongside the produced publications:

• A study of the technological advancements leading to in-network compute, inclusive
of NFV, SDN, and the respective applications existing in the literature (Chapter
2). The study is inclusive of works in the area of accelerated computing through

CHAPTER 1. INTRODUCTION 5

in-network offloading, both in PDP hardware designed for data centre environments
and resource-constrained IoT environments. Particularly, motivating factors and
existing limitations in the area of data storage technologies in data plane hardware
and edge devices are traced through the literature.

• The thesis expands on the impact of design decisions in PDP environments (Chapter
3) (Publication 3). It addresses weaknesses and performance limitations of Key-
Value (KV) platforms that operate in PDP by proposing a new in-network KVS
platform that adopts a primary-backup replication method with major (in the or-
ders of magnitude) latency, throughput, and scalability improvements over existing
solutions (Publication 2). The thesis, by analysing the workloads generated from
mainstream orchestration platforms, expands on the potential benefits of using in-
network data storage to deliver scalable orchestration (Publication 1).

• Motivated by the benefits of the Edge Computing paradigm, one of the first testbeds
showcasing a mainstream orchestration platform running over resource-constrained
IoT devices is implemented to validate the proliferation of locally-managed virtu-
alised computing close to the end-user (Chapter 4) (Publication 6).

• The design and implementation of a virtualised application able to obtain the energy
usage profiles of the various cluster nodes (Chapter 4). The results are used to
identify the energy overhead of virtualised services running in IoT but also measure
the energy overhead of routine functions of the orchestration platform (Publication
6).

• An energy-aware scheduling implementation that uses real-time sensor data to place
Virtualised Network Functions (VNFs) within an IoT cluster (Chapter 4). The
scheduler is integrated in a mainstream orchestration platform. It fully utilises the
energy resources of the cluster by placing computations even at the master node,
without sacrificing the systems reliability. Compared to the default scheduling ap-
proach, it increases the average acceptance ratio and reduces the total time events
spend within the cluster (Publication 4).

• A mechanism that, by using in-network compute at the edge, generates statistical
representations (signatures) of data stored in IoT nodes (Chapter 4). Data repre-
sentations are used to help cloud nodes direct queries at the edge and reduce the
participation of nodes holding irrelevant data. Due to statistical matching, the vari-
ance of the provided responses appears to be lower, thus improving the quality of
the responses (Publication 5).

CHAPTER 1. INTRODUCTION 6

1.4 Publications

The work in this thesis has led to the following publications:

1. Stefanos Sagkriotis and Dimitrios Pezaros. Scalable data plane caching for kuber-
netes. In 2022 18th International Conference on Network and Service Management
(CNSM), pages 345–351, 2022

2. Stefanos Sagkriotis and Dimitrios Pezaros. Scale-friendly in-network coordination.
In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 5747–
5752, 2022

3. Stefanos Sagkriotis and Dimitrios Pezaros. Accelerating kubernetes with in-network
caching. In Proceedings of the SIGCOMM ’22 Poster and Demo Sessions, SIG-
COMM ’22, page 40–42, New York, NY, USA, 2022. Association for Computing
Machinery

4. Alejandro Llorens-Carrodeguas, Stefanos G. Sagkriotis, Cristina Cervelló-Pastor,
and Dimitrios P. Pezaros. An energy-friendly scheduler for edge computing systems.
Sensors, 21(21), 2021

5. Stefanos Sagkriotis, Kostas Kolomvatsos, Christos Anagnostopoulos, Dimitrios P.
Pezaros, and Stathes Hadjiefthymiades. Knowledge-centric analytics queries alloca-
tion in edge computing environments. In 2019 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6, 2019

6. Stefanos Sagkriotis, Christos Anagnostopoulos, and Dimitrios P. Pezaros. Energy
usage profiling for virtualized single board computer clusters. In 2019 IEEE Sym-
posium on Computers and Communications (ISCC), pages 1–6, 2019

1.5 Organisation of the Thesis

The remaining of this thesis is structured as follows:

• Chapter 2 describes the evolution of network softwarisation: the path towards a
centralised view of the network with SDN; the key contributions that have enabled
data plane programmability and use cases; and topics on the management and or-
chestration of virtualised network functions for both edge and cloud environments.

• Chapter 3 reviews state of the art work on data replication using the programmable
data plane. It identifies shortcomings and addresses key design limitations by propos-
ing a new data replication platform that operates entirely in data plane. It discusses

CHAPTER 1. INTRODUCTION 7

the potential integration of the platform for the acceleration of container orchestra-
tion.

• Chapter 4 explores the use of container deployment over clusters of edge devices as
a way to offer virtualised services close to the end user. It identifies the challenges of
container deployment in resource-constrained nodes, like IoT devices. With energy
capacity being the limiting factor in such environments, an energy-aware scheduler is
presented as a component that will efficiently allocate the available energy resources
to incoming requests. Lastly, this chapter provides a mechanism that allows queries
from the cloud to be allocated to the appropriate edge device, based on statistical
similarity between the query and the data existing at the device.

• Chapter 5 summarises the work by revisiting the contributions and the thesis state-
ment. It also discusses future research directions.

Chapter 2

Background

2.1 Overview

This Chapter critically discusses a sequence of efforts and ideas that have shaped modern
networking into offering enhanced programmability, interoperability, and ease of manage-
ment. These works are not presented in a linear timeline and instead are grouped into
sections based on their relevance. For example, technologies that attempt to enhance
end-host packet processing are grouped together, the same happens for bespoke hardware
technologies, etc. The reasoning behind each technological shift is presented, leading to
current challenges in each respective area, with a focus on PDP technologies, in-network
compute, and orchestration of virtualised network functions, which are analysed in more
detail to help the reader assess the contributions of this thesis.

2.2 Challenges in Network Evolution

The networking community was challenged with tremendous growth of Internet traffic
and network users after the 1990s. The increasing popularity of applications like media
streaming, online gaming and peer-to-peer networking has resulted in a permanent increase
of demand and pushed networking infrastructure to accommodate greater amounts of
generated traffic. New types of applications surface daily with requirements for low-
latency, high-bandwidth, and high availability. More recently, critical society domains,
e.g., healthcare, banking, commerce, anticipate high quality of experience and reliability
for their day to day activities that are running over the network infrastructure. A series of
changes and adaptations of infrastructure have shaped modern networking and have made
it capable of surpassing previous bottlenecks while growing reliance on the infrastructure
and coping with an ever-growing demand for bandwidth.

Efforts to satisfy demand revealed important flaws in the operation of networks. One
such flaw was the interaction between manufacturers of silicon for network devices and

8

CHAPTER 2. BACKGROUND 9

the networking protocol standardisation community – the Internet Engineering Task Force
(IETF). Silicon manufacturers developed closed hardware that implemented existing ver-
sions of protocols. On the other end, IETF produced Requests For Comments (RFCs)
that patched issues existing in proprietary protocols with the aim of increasing stability,
security and performance. Switches existing in networks could not be reprogrammed due
to their closed hardware, which resulted in security and performance issues existing in
the wild. This caused reliance on outdated protocols – an issue also known as protocol
ossification [158, 160].

Protocol ossification proved particularly costly in the case of Transmission Control
Protocol (TCP) which is still widely used as the main transport protocol. In TCP, the
use of large buffers could heavily impact its probing mechanism and increase queuing times
– a problem that is known as bufferbloat [71]. Although numerous proposals were made to
mitigate this, e.g., Active Queue Management methods that dynamically change the buffer
size (like RED and CODEL [59, 149]), switches with locked hardware slowed the adoption
of these methods. Exogenous technological changes can also introduce novel factors of
degraded performance. An example is the use of of mmWave wireless links with TCP
where rapid bandwidth variations in the physical layer can lead to bufferbloat problems
[204].

2.3 Early Efforts for Network Programmability

The coupling of network hardware and implemented protocols was disrupting network
evolution and slowing down adaptation to external changes and demand. Extensibility was
limited and experimentation with new ideas was constrained. The networking community
was aware of the limited flexibility of the networking architectural model since the ’90s
and suggested alternatives before the manifestation of large scale consequences. Early
efforts focused on addressing these fundamental limitations by proposing programmable
network nodes able to perform arbitrary computations on traversing packets and modify
them accordingly. This body of work is known as active networking [189, 85].

In the context of this thesis, active networks are examined as an early conception of the
idea of network programmability. Programmable switches, a currently popular research
topic, were proposed as part of a framework that allows network operators to dynamically
change the code that runs within their routers, thus enabling extensibility and coping with
ossification. A more passive alternative was capsules – packets that entail code fragments
and embedded data that can be processed by switches to either activate built-in primitives
or re-program the switch using their payload [189].

Due to the significant technical challenges and security concerns that their implemen-
tation involves, these proposals remained mostly theoretical until recently. The idea of

CHAPTER 2. BACKGROUND 10

switches that are able to perform arbitrary computations at line rates could not be sup-
ported by the available hardware. Innovation in silicon manufacturing and data plane
programming languages made programmable switches available. Yet, contrary to what
was portrayed in active networking papers, the tools to program network devices restrict
certain operations that can impact packet processing performance (e.g., loops) to ensure
time-bounded execution of the compiled code. Moreover, completely repurposing a switch
is not possible without significant downtime.

On the other hand, the security and performance implications of capsules rendered
their use prohibitive in modern networks. One such limitation is the authentication of
the encapsulated code which requires privileged access to networking resources. Recent
research examines programmable hardware as a potential enabler for the deployment of
capsules and suggests modern authentication approaches as a way to overcome the security
limitations of the original proposal [41]. However, there is not adequate motivation for the
deployment of capsules as the benefits over existing methods of network programmability
are yet unclear.

A more pragmatic approach to resolve the early problems of networking envisioned the
separation of the control from the data plane. An example of such effort to introduce an
open interface between the control and the data plane is detailed in the ForCES standard
[199]. The standard attempts to provide logically centralised control by allowing the
installation of forwarding-table entries in switches through an external controller. The lack
of adoption of the standard from router vendors resulted in little deployment and halted
its evolution [55]. Similarly, works like RCP [54] and and SoftRouter [119] attempted
to deliver a programmable control plane that is able to adapt to traffic loads. These
works were faced with criticism on the fault-tolerance properties of the controller and the
violation of the fate sharing principle of traditional network protocols [55].

2.4 Programmable Networking in Commodity Hardware

With fixed-function switches not permitting programmability, other alternatives were ex-
plored. Network researchers turned to general purpose processing hardware to build soft-
ware routers based on commodity PC components. The extensive list of programming
tools available for x86 Central Processing Units (CPUs) ensures easy adaptation of new
protocol features and customisation in packet processing. It is reasonable to assume that
the performance achieved by a software router that lacks all hardware-level optimisations
is not on par with a fixed-function switch. Software packet processing entails multiple pro-
cessing overheads that occur from the various components of a commodity PC that have
to exchange data in order to process a packet: packets from the Network Interface Card
(NIC) are transferred to memory, which are subsequently processed by the CPU and then

CHAPTER 2. BACKGROUND 11

sent to NIC’s ring buffer. Packets are finally transferred from memory to NIC in order to
be transmitted. The upper bound of a processor’s capacity and bus speeds remains a big
factor of routing performance for software implementations, even with today’s available
hardware [157].

2.4.1 User Space Packet Processing

The network stack transactions of a general-purpose Linux kernel can introduce processing
delays, for example, multiple system calls that facilitate the kernel to user space transi-
tion of packets introduce delays [28]. Other disadvantages are the restricted in-kernel
programmability and processing performance that, while it is higher over user space, is
proven to be inadequate for multiple 10 Gbps interfaces [14]. This is also affected from
network stack features that are enabled by default but are unnecessary for certain environ-
ments and negatively affect processing times, e.g., traffic filtering at an end host device of
a data centre. To circumvent overheads and maintain programmability, various methods
of accelerating user space packet processing have been developed:

• One of the simplest methods is transferring raw packets to user space by bypassing
the kernel completely.

• Transferring packets from NIC in batches, as a way to minimise the total amount
of system calls required to access the interface.

• A buffer pool that is visible from both the NIC and user space, therefore avoiding
memory-to-memory copies of buffers between kernel space and user space. This
method is known as zero-copy.

• Supporting multiple hardware queues in modern NICs to improve parallelism
by offloading packets to multiple cores. Therefore, incoming traffic can be load-
balanced among the available cores.

Frameworks that combine the aforementioned methods in order to provide a coher-
ent environment that enables packet processing have been proposed. One of the most
prominent ones is Intel Data Plane Development Kit (DPDK) [164]. It provides a set of
drivers and libraries that mainly support packet processing programmability for x86 and
ARM CPUs. DPDK incorporates all of the aforementioned features (kernel bypass, zero-
copy, etc.) to enhance processing performance and enables multi-core handling of packets.
Packets are transferred either in run-to-completion mode or pipeline mode. Under run-
to-completion, packets are distributed to multiple cores using Receive-Side Scaling (RSS)
[142]: a packet distribution method that hashes packet header fields and distributes them
evenly across multiple hardware RX queues. In pipeline mode, one core is responsible for
transferring packets from NIC and another one for processing and transmitting them.

CHAPTER 2. BACKGROUND 12

Another widely adopted framework is Netmap [169]. Its Application Programming
Interface (API) receives packets directly from NIC whose rings are partially disconnected
from the network stack (which would be the default setup). A shared memory provides
buffer rings between the host stack and the NIC and enables Netmap to exchange packets
with both. It enables programmability through lightweight metadata representations of
packet processing definitions. Through this, device-specific features are hidden and batch
processing is enabled. It supports zero-copy features through a buffer pool which is stati-
cally allocated upon device initialisation. The lack of dynamic definition of this buffer can
force memory-to-memory copies upon buffer overflow, which in turn can degrade perfor-
mance. Netmap, while not as feature-rich as DPDK, displays similar performance when
integrated in software routing platforms [14].

2.4.2 In-Kernel Packet Processing

The network stack of the Linux kernel is mostly restrictive in terms of programming
flexibility. There have been efforts to introduce programmability to some of the network
layers. A well-regarded framework that provides an instruction set and an execution
environment that enables programmability in Linux kernel is the extended Berkeley Packet
Filter (eBPF) [97]. More specifically, instructions and data are passed at the lowest level
of the Linux kernel – called eXpress Data Path (XDP). A restricted version of C or
Programming Protocol-Independent Packet Processor (P4) (see Section 2.5.4) can be used
as the programming language which is then compiled into object code. The code is then
verified and translated before being offloaded to the processor or a compatible NIC. Data
can be exchanged between user space and the eBPF executable through generic key-value
stores called maps (defined in user space). Maps enable data to persist between different
executions of a program, can share info between different programs, and interact with user
space in real time [193].

eBPF origins date back to 1992 and the Berkeley Packet Filter (BPF) framework,
developed to apply packet filters within the kernel. In the original BPF (also known as
classic BPF (cBPF)), packet filters were described with the use of 22 instructions and two
32-bit registers. In eBPF, the instructions are extended to implement arithmetic and logic
instructions, function calls, and table operations. The 32-bit registers are also swapped
for 64-bit width registers and their number grows from 2 to 11. The pipeline that was
followed in BPF to deploy filters in-kernel ensured high performance, crash-free execution,
and Just-In-Time compilation. The instructions describing the filters were passed to the
kernel in the form of bytecode which was then verified and compiled. A similar pipeline
was followed in eBPF, as described above, to retain the proven performance benefits.
eBPF’s programmability would be expected to bear performance costs in throughput and
processing latency, but its reliance on XDP displays improvements over default Linux:

CHAPTER 2. BACKGROUND 13

it outperforms default Linux in packet drop throughput by achieving five times greater
performance while consuming fewer CPU resources for the same amount of traffic [87]. It
is worth noting that both eBPF and Linux are outperformed by DPDK with significant
latency improvement and throughput increases but with increased CPU usage [87, 193].

Unlike DPDK, eBPF does not require a re-implementation of structures used to process
packets, like routing tables. By using existing structures found in the kernel, implemen-
tation becomes simpler and stability is ensured by using the default XDP kernel module
[193]. eBPF does not require exclusive control over the NIC and permits its use from other
Operating System (OS) applications. Taking into account the reduced CPU usage it shows
when compared to DPDK, it provides an efficient way to utilise hardware resources. eBPF
has been used to deliver diverse functionality over large-scale environments, like Facebook’s
load-balancer Katran [52], Netflix’s traffic monitoring tool Vector [96], or widely adopted
software like the Suricata network monitor and Intrusion Prevention System [62].

2.4.3 Software Routers

One of the first attempts to deliver a software router was Click [111]. The developers fo-
cused mostly on providing an easily extensible router based on a modular architecture that
combines building blocks called "elements". Each building block constitutes a different
feature in the packet processing pipeline (e.g., queues, scheduling) and they are written in
C++. Its design contributed significantly in materialising a programmable and extensible
router. Fine grained latency measurements were obtained for each proposed "element",
but the results concern deprecated hardware and cannot be assessed in a meaningful man-
ner for today’s standards. Click was later adapted to use both DPDK and Netmap with
great performance improvements in both cases.

In order to obtain the best possible performance it is sensible to optimise for processing
parallelism. In recent years, CPUs have greatly improved their parallelism capabilities
through multi-core architectures. One of the first implementations that optimised for
parallelism across all stages of packet processing is RouteBricks [48]. The developers
aimed to deliver performance comparable to fixed-function routers by utilising parallelism
not only within a single server but also across multiple servers. Packets are distributed
among the servers with the use of load balancing. However, efforts to utilise all the
available hardware features did not yield real switch performance. The main bottleneck
was identified to be the CPU’s speed and the shared bus between the memory and the
CPU.

CHAPTER 2. BACKGROUND 14

2.4.4 GPU Offloading

The integration of NIC hardware features in packet processing allowed higher throughput
and better utilisation of CPU resources (e.g., multi-queuing traffic offloaded to multi-
ple cores) while maintaining the flexibility of user space environment. This motivated
experimentation with other PC components with unique hardware features, like Graph-
ics Processing Units (GPUs), that could be used as a co-processor for offloading certain
workloads. GPUs host a lot of processing cores, up to orders of magnitude more when
compared to a CPU, and therefore present great potential for parallel processing. What
can be challenging, is providing adequate volume of data to make use of all the cores. GPU
cores tend to be slower than CPU ones, making their use inefficient for small workloads
[185].

Snap, a platform based on Click, utilised GPUs for fast path computations and man-
aged to increase the platform’s maximum attainable throughput up to four times [185].
Snap’s main goal is to preserve parts of Click’s packet processing pipeline in CPU for
flexibility and only transfer the parts that present degraded performance in GPU. Snap
enabled multiple packets to be transferred between the platform’s elements (previously
prohibited in Click). A new type element was added, called PacketBatch, that is able to
pass batches of packets between Click’s elements, thus utilising the parallelism potential
of GPUs. A shortcoming of parallel processing is packet re-ordering, which can negatively
affect TCP performance. To avoid out-of-order packet transfers between the GPU and
the CPU, a new queue element was developed that would pass packets sequentially back
to the CPU. Other optimisations concern the elimination of packet divergence occurring
from packets following different processing paths and the use of packet slicing to reduce
the amount of data that is copied between CPU and GPU. Snap’s evaluation indicated
meaningful forwarding performance improvements over Click, with approx. 2× higher
throughput for smaller packet sizes (64-256 Bytes) and similar performance for bigger
packet sizes.

PacketShader [81] is another routing platform that faced similar challenges to adapt
packet processing for GPUs. The default Linux network stack implements a mechanism
that consumes a lot of CPU cycles to allocate and deallocate buffer memory for incoming
packets. The allocations concern two buffers: skb, used for packet metadata that is
passed between network layers, and a buffer for the packet data. PacketShader replaced
the dynamic buffers with two fixed-size buffers, with fixed-sized cells which are reused upon
RX queue wrap-up. This removed the per-packet buffer allocation costs and the Direct
Memory Access (DMA) mapping costs (DMA: the transfer of packet data from NIC to
memory through PCIe). Apart from this, batch processing was also implemented at the
application level (instead of just using batching for NIC in Click [111]) in order to fully
utilise GPU capabilities. RSS was used to deliver core-aware NIC RX and TX queues.

CHAPTER 2. BACKGROUND 15

Forwarding Performance appeared improved for small packet sizes (64 - 512 Bytes) of IPv6
traffic.

2.4.5 Single Board Computers

SBCs are small form-factor devices that provide all of the components of common comput-
ers using a single circuit board. SBCs are, in most cases, low-cost devices using low energy
(compared to common computers). Their OS is typically based on Linux, which inherits a
well-known networking stack and some of the packet processing features explained in the
previous sections. SBCs can therefore support custom packet processing pipelines in edge
environments, albeit with reduced performance due to hardware limitations. Additionally,
SBCs offer connectivity with a wide range of sensors and devices [103]. An extensive sur-
vey by Johnston et al. performs an in-depth analysis of the state of the art use cases for
these devices [103]. They explain the main characteristics of SBCs and detail the different
device models available in the market. In addition, the authors identify the broad domains
where the SBCs might be deployed. The authors confirm that these devices present great
potential for service deployment at the edge because of their power requirements and size.
SBCs are characterised as computational game changers that can bring computation closer
to the data-generating parts of the network [103].

SBCs present a wide range of characteristics that satisfy the requirements posed by
modern edge applications, either as standalone devices or through formulation of clusters.
The works of Basford et al and Pahl et al further expand on the topic of cluster formulation
using SBCs [15, 156]. A cluster can be created either by coupling physical elements
together or by using the concept of Platform-as-a-Service (PaaS) to create and manage
the cluster. Basford et al. present a new method for creating physical clusters of SBCs,
called the Pi Stack [15]. This method minimises the amount of cabling required to create
a cluster by reusing some elements of an SBC’s physical construction as a communication
channel for both power and management. The researchers compare three different SBC
clusters using the proposed technique. The clusters are composed of nodes from several
vendors. Their results reinforce how important SBC clusters are in improving resilience
and performance in IoT deployments. Likewise, Pahl et al. [156] have built an SBC cluster
using the PaaS paradigm. However, they deploy their own dedicated tool to manage and
configure the cluster. The authors do not compare against other management platforms.
Thus, further evaluations needs to be done to demonstrate the feasibility and benefits of
their approach.

CHAPTER 2. BACKGROUND 16

2.5 Network Programmability over Bespoke Hardware

Efforts to achieve network programmability in commodity hardware, while successful, pro-
vide limited performance in terms of throughput and latency. The research community
has been exploring alternatives in the form of bespoke hardware, able to accelerate packet
processing while remaining programmable. The latter is increasingly difficult when mov-
ing away from generic processors. Recent advancements in programmable networking
devices and programming languages, both for end-host and switching devices, have (to a
certain degree) addressed previous limitations. This Section discusses such changes with
an emphasis on switching hardware which is within the scope of this thesis’ contributions.

2.5.1 End-Host Programmability

Network Processing Units

To cope with the continuous expansion of supported network protocols and applications,
a special type of hardware was incorporated in network topologies circa 2000 known as
network processors or Network Processing Units (NPUs). These were usually substituting
traditional NICs in the network. NPUs integrated application-specific instruction proces-
sors which provide packet processing at relatively fast line rates. Their design was based
on processors with reduced instruction sets, mainly developed for instructions like bit ma-
nipulation and lookup operations. They also integrated specialised hardware components
for fast DMA between RX and TX ports and internal memory [107]. A special packet
scheduler was responsible for distributing packets across the processor’s cores according
to their incoming order [126]. Some representative devices, like the Cavium LiquidIO
and the Intel X520 appear to have a low port density, and therefore reduced throughput
[27, 94]. Programming these devices is dependent on the vendor’s support and requires
high expertise, which made them a less popular choice for network operators [100].

Smart Network Interface Cards

Similar to NPUs, smart Network Interface Cards (smartNICs) can perform packet process-
ing in specialised hardware in order to avoid the use of CPU resources. The term "smart"
is attributed to the extended programmability that these devices offer when compared to
legacy NICs. They are equipped with a fully programmable multi-core System-on-Chip
processor which, like NPUs, is designed for fast network-specific operations. They can be
programmed with open tools like eBPF (Section 2.4.2), P4 (Section 2.5.4), and C, min-
imising the requirement for specialised knowledge of the vendor’s tools. Their attainable
throughput is up to 400 GbE with the port count remaining fairly low (up to four ports)
[152]. Their memory and processor specifications are the main bottlenecks to the types of

CHAPTER 2. BACKGROUND 17

programs they can host. Example applications include load balancing [141], distributed
denial of service mitigation [140], and the deployment of a KVS [182].

Field-Programmable Gate Array Cards

Another type of programmable network cards has become available. Field-Programmable
Gate Array (FPGA) attached to network cards offer a conceptual array of programmable
logic blocks and memories that can be combined using Hardware Description Language
(HDL). Their hardware enables runtime reconfiguration while using only the required
processing blocks for the specified functionality, offering fast processing speeds. FPGA
cards have shown comparable performance to ASICs by achieving processing speeds of up
to 400 Gbps, making them a very capable end-host processing device. An influential open-
source implementation, targeted towards educational purposes, has been made available
with the work of Lockwood et al., [129]. A HDL might require a significant time investment
to master and optimise for specific network operations. Alternatively, high-level synthesis
tools can be used with syntax similar to C and the output can then be converted to HDL.
This workflow does not offer the maximum attainable speeds from hardware and therefore
is not optimal for commercial deployments. Another workflow which allows describing
the data plane behaviour of the device with P4 and then compile it in HDL without
performance reductions has been recently proposed [92].

2.5.2 Middleboxes

To keep up with network adaptations required to satisfy performance and security require-
ments, bespoke hardware appliances known as middleboxes have been extensively used in
operational networks. Middleboxes contain fixed-function ASICs that process packets at
high rates according to the function they implement. Examples of middlebox functions
are: load balancing, Network Address Translation, flow monitoring, firewall, or intrusion
detection. Significant upfront cost might be necessary to acquire and configure middle-
boxes, with many of the aforementioned network functions requiring placement at the edge
of the network and therefore great capacity provisioning which translates to increased cost.

Middleboxes require careful planning as the same Network Function (NF) might need
to be applied on multiple traffic flows which have to be redirected to the same middlebox.
In such cases, redirection can incur high bandwidth consumption and latency increases
[29]. Middleboxes can also have traffic-changing effects, with certain functions generating
or reducing the amount of traffic based on its characteristics, leading to unpredictable
hot spots in the network [132]. In other cases, there might be dependencies between
middleboxes, e.g., traffic that first has to be processed by an Intrusion Detection System
before reaching a load-balancer [137]. Middlebox placement in general topologies has

CHAPTER 2. BACKGROUND 18

been proved to be NP-hard [29]. Their fixed-function characteristics also result in limited
extensibility and reliance on vendors for patches and updates.

2.5.3 Software Defined Networking

Since the era of active networking, the execution of custom computations in the data
plane was identified as a key enabler for expanding the list of supported protocols and
introducing in-network services. Network engineers, in most cases, strive for fast inte-
gration of new features to the equipment they operate instead of relying to vendors for
delayed implementations of these features. From an investment perspective, owners of
network equipment expect adequate programmability that will allow future integration of
new services and features.

SDN was designed to address these rigid requirements. Under SDN, the traffic for-
warding functionality – data plane, is differentiated from the decision making around
forwarding rules – control plane. In this manner, the control plane remains agnostic about
the implementation of data plane code and hardware that forwards traffic. The two planes
communicate using a specification that details the different types of messages required for
establishing rules. The first and most prominent specification is OpenFlow, originally de-
signed for deployment over a university campus and later adopted by many commercial
switch vendors and network operators [135].

OpenFlow

Under OpenFlow, the software that is able to manipulate the forwarding rules of com-
patible switches is called the controller (details in Section 2.5.3). OpenFlow specifies a
controller-switch protocol that is executed to establish a secure channel between the two
entities which is subsequently used to exchange switch features, like supported optional
instructions, which are sent to the controller and the desired rules are forwarded back to
the switch. Traffic monitoring and device statistics can be exchanged in order to adapt
decision-making in the controller. Packets can also be forwarded to the controller in order
to process unexpected entries and introduce new rules.

In OpenFlow switches, packet header fields are matched against tables of rules that
define a corresponding action. This is known as the Match-Action approach. A rule can
be matched against a subset of traffic called a flow and the tables that contain multiple
rules are called flow tables. A packet that goes through the ingress port has to enter
the ingress processing stage and (after OpenFlow v1.5.0) optionally an egress processing
stage. Within each stage, multiple numbered flow tables define actions that are applied
based on the matched packet fields. Actions are written in a per-packet action set that,
when not containing a GoTo-Table instruction, the processing stops and all of the actions

CHAPTER 2. BACKGROUND 19

within are executed on the packet. Packets cannot return to previous flow tables and the
outcome of a table needs to be forward-pointing. Between the ingress and egress stages,
a list of action buckets is defined in the form of a table which can decide which bucket
will be executed. Tables within the egress stage are not allowed to change the output port
that was originally assigned to the packet and can only forward packets to other egress
flow tables.

Through the Open Networking Foundation, a non-profit body constituted of multiple
networking equipment vendors, this specification has been revised multiple times through
the years with the aim of enhancing the level of programmability offered. A sequence
of the most significant of these changes is presented here in order to offer a notion of
the standard’s evolution relative to the requirements of the networking environments that
adopted it. The standard moved from a single table to multiple tables per switch in
Version 1.1. Tables could be linked to formulate sophisticated processing pipelines. Version
1.2 enabled extensible matching and header rewriting by defining custom descriptors for
existing header fields, and simultaneous connection to multiple controllers. In Version 1.3,
Quality of Service (QoS) was enabled with the addition of per-flow meters used to control
the rate of packets. This version also included several quality improvements by enabling
more options in handling table misses and allowing simultaneous connections with a single
controller. Version 1.4 added improved support for monitoring across multiple controllers,
support for optical ports, and bundled control for easier rule updates in multiple switches.
Finally, Version 1.5 added egress table processing per port, port recirculation for service
chaining, better support for multiple controllers with more customisable bundles, and
packet-aware pipeline processing by substituting the need for all packets to be layered
over Ethernet.

Changes happening in the specification can provide a good insight of the deployment
characteristics and requirements of the environments that adopted OpenFlow. A move
towards more complex processing pipelines is apparent, with the aim to support a wider
gamut of services in the network. Flow metrics are introduced in parallel with enhanced
scalability which captures the need for automated decision-making to facilitate larger scale
deployments with less human involvement. Concurrent connections to multiple controllers
aim to increase fault tolerance and minimise potential downtime as OpenFlow starts to
be deployed in more mainstream networks with stringent availability requirements.

OpenFlow Control Plane

Multiple SDN controllers have been developed in order to cover the different performance
requirements of various deployments. Identifying some common elements among different
controller designs can help assess the contribution of this thesis and link content from
the following chapters. An overview of the main components that commonly exist in

CHAPTER 2. BACKGROUND 20

Incoming
packets

Ingress
port

Ingress stage

Flow
table 0

Flow
table 1

Flow
table n

Action Set
Execution

Output
portOutgoing

packets Egress stage

Action Set
Execution

Flow
table e

Flow
table
e+1

Flow
table
e+m

Group table

OpenFlow Switch

in-port

out-port

Figure 2.1: The processing pipeline of OpenFlow switches.

a controller is presented in Figure 2.2. The controller design is divided between the
southbound and northbound interfaces that interact with its core modules.

The southbound interface is responsible for mediating communication between the con-
trol and the data plane. Flow rules can be disseminated through the OpenFlow specifica-
tion that is implemented in the southbound interface. Similarly, virtual switch instances,
like Open vSwitch, can be configured through an Open vSwitch Database Management
Protocol (OVSDB) implementation [159]. Device configuration parameters can be man-
aged through NETCONF [50]. The list of supported southbound protocols can vary for
different controller implementations.

The northbound interface provides an API that developers can use to interact with
the controller in order to implement their functionality. The interface can interact with
the necessary controller modules to satisfy application requirements, providing a level of
abstraction to the application developer. Depending on the controller implementation,
this interface can be standardised with the use of a Representative State Transfer (REST)
API to promote interoperability [208], e.g., YANG. Graphical User Interface (GUI) and
Command-Line Interface (CLI) can also be implemented, delivering common functionality
for debugging and monitoring.

The core modules are responsible for all internal controller operations. For example,
the installation and management of flow rules is an integral functionality that is imple-
mented as a core module. The rules installed in each network device need to be visible and
manageable by the controller to perform further decision-making and rule updates. Other
core controller modules include: the device drivers that are required to communicate with
network devices or families thereof and manage their resources, the storage of authenti-
cation keys for all the connected entities, and the definition of Service Level Objectives
(SLOs) that are used to automate configuration according to application intents.

CHAPTER 2. BACKGROUND 21

Controller modules

App App App

Control plane

Data plane

Southbound

OpenFlow NetConf OVSDB

SDN snSDN s3

Northbound

GUI REST API CLI

SDN s1 SDN s2

Store

Network
State

Failure
Recovery

Security

Flow Rules

Southbound
Drivers Device Cfg.

Intent
Framework

Figure 2.2: Overview of controller design and modules.

The maintenance of a consistent and up to date view of the network state (e.g., link
status, capacities, port counters) within the controller – also known as Network Informa-
tion Base (NIB), is instrumental to achieve reliability and scalability [116]. It is also an
important assumption for the development of applications that rely on NIB accuracy to
manage rules, e.g., load balancing. Mismatches between the perceived network state and
the actual state leads to suboptimal rule updates [122].

This becomes an increasingly difficult problem for environments with a large number
of data plane devices. A centralised controller entity (e.g., Ryu [34], Floodlight [165]) is
inadequate for the amount of forwarding decisions required [2]. It is a scalability bottleneck
and a potential single point of failure. A physically distributed controller is used instead in
order to cope with demand by deploying multiple controller instances [13]. Such controllers
are either operating in:

• a flat manner: physically distributed instances controlling forwarding only in their
respective area (e.g., ONOS [117], Onix [116]). They still maintain a logically cen-
tralised view of the network by synchronising the network state.

• a hierarchical manner: the controller is vertically separated in layers. Lower layers
handle local events. Events that require a wider view of the network are forwarded
to the higher controller layers.

CHAPTER 2. BACKGROUND 22

A flatly distributed controller requires frequent exchanges between all participating in-
stances in order to obtain a consistent view of the network. The notion of a hierarchi-
cally distributed controller allows frequent events to be handled locally, resulting in fewer
updates to the higher-tier controller instances. The latter is used in state of the art con-
trollers, like Google’s Orion, as it is found to significantly reduce the number of events
forwarded to hierarchically higher instances without harming availability. In both cases,
a consistent NIB is usually achieved through an in-memory hash table.

OpenFlow Achievements and Limitations

OpenFlow materialised a big portion of the SDN vision by defining a specification that
could offer a logically centralised view of the network. This was an impactful step towards
network softwarisation that in many ways resolved problems related to legacy networks
(see Section 2.2). OpenFlow has been adopted in numerous data centres, allowing protocol
extensibility over existing hardware in a pragmatic manner, contrary to active networking.
The suggested changes over legacy networks maintained the previous link rates while
introducing forwarding control.

An OpenFlow controller can configure multiple data plane devices, offering a scal-
able model for large deployments. It rendered per-device, vendor-specific, configuration
unnecessary. Dynamic changes in forwarding rules were enabled, allowing adaptation to
workload requirements. Different types of traffic were abstracted with the use of flows,
grouping traffic in easier to manage groups and making batch changes possible. Internal
protocol implementations are abstracted from the controller’s perspective, adding flexibil-
ity for deployment in heterogeneous environments.

Overall, the separation of the data from the control plane improved manageability
through achieving intent-based networking instead of eventual convergence of the under-
lying protocols – a big step forward from legacy networks. Thanks to OpenFlow, network
administrators could gracefully handle network failures through the controller, enabling
datacentre operation under measurable SLOs. OpenFlow moved from experimental de-
ployment in campus networks to hierarchical deployment for hyper-scale networks, like
Google’s Jupiter [57]. More recently, it was even adapted to support the transition to
optical circuit switches within the Jupiter network [163].

While the wide adoption of the OpenFlow specification from network vendors and
operators brought SDN to fruition in data centre environments, being hardware agnostic
is a key assumption in OpenFlow’s design and remains a big constraint for the evolution
of SDN. An issue that stems from this design decision is that local storage of data in
the switch is not permitted in OpenFlow, making all data plane processing stateless.
Flows that require storage of local metadata for their operation could require traversals to
middleboxes and the controller. This results in increased flow processing overheads and a

CHAPTER 2. BACKGROUND 23

missed opportunity for partial controller functionality to be offloaded in the data plane.
Despite stateless forwarding, the packet processing pipeline requires multiple match-action
stages that are protocol-dependent. Parallel processing is not available and all of the
stages are sequentially executed, resulting in high overall packet processing complexity.
Data plane customisation is not permitted, leaving potential optimisations unutilised.

OpenFlow supports a limited number of protocols by assuming a fixed parser, making
the deployment and testing of new protocols a slow process. Even if a new protocol gets
adopted by the specification, the controller as well as the participating networking devices
need to be updated to the version that supports it. This recreates, at a certain extent,
reliance to vendors for supporting their devices with specification updates.

2.5.4 Programmable Application-Specific Integrated Circuits

All aforementioned methods of introducing data plane programmability: purely software
based, hybrid hardware-software designs, and smartNICs, either lack in performance or
fine-grained programmability. OpenFlow reinstated that data centre traffic and scalable
control can only be achieved through application-specific hardware. A significant break-
through, by Bosshart et al. [22], was achieved in this direction which provided an archi-
tecture and chip design that allows the definition of tables that match against arbitrary
header fields, as described by the programmer. It can be considered fundamental because
it proved that Reconfigurable Match-Action Table (RMT) switching is feasible, which for-
mulated the basis for many innovations in the area of programmable switches. To deliver
RMT, the packet processing pipeline that was defined in OpenFlow was revisited and
extended:

• The parser could be reprogrammed with new fields and modifications of previous
ones.

• The output of the parsing stage produces a vector of the received header fields
alongside a metadata struct containing router state variables and information like
the ingress port. These are input arguments to the ingress processing stage.

• Within the ingress stage, a pipeline of tables of arbitrary number, topology, widths,
and depths can be defined, so long as their total size abide to the memory limitations
of the device.

• New, more complex types of actions like protocol encapsulations or addition of new
header fields can be defined and executed as single-cycle operations.

• Header fields and action data occurring from the match stage can be arguments
for action functions. Meters and counters are also available and can impact the
processing of future packets without the involvement of control plane.

CHAPTER 2. BACKGROUND 24

• Packets can be output in queues with varying queuing disciplines that lead to any
subset of ports.

• The pipeline of match-action tables can be dynamic, contrary to OpenFlow which
only allowed a forward-pointing table pipeline.

Ingress
Parser

Ingress
DeparserIngress Buffer Egress

Parser Egress Egress
Deparser

Resubmit Clone

Unicast

Multicast

Clone

Incoming
packets

Processed
packets

Recirculate

Figure 2.3: The Protocol-Independent Switch Architecture.

RMT was implemented in a switch that supported 64 ports of up to 10Gb/s each, which
at the time the paper was released was orders of magnitude higher than CPU, GPU,
and NPU router implementations. The obtained throughput was the result of parallel
processing of incoming traffic with multiple parsers, pipelines, and action units. Important
was also the role of restrictions in the physical pipeline stage to achieve terabit speeds:
only a fixed number of match stages can be defined, both because of physical match
stage restrictions tied to hardware but also because each stage requires an amount of
memory hardware resources (e.g., Ternary Content-Addressable Memory (TCAM), Static
Random-Access Memory (SRAM), Hash Units, etc.) which are limited and expensive;
one instruction per field is permitted for each stage of processing, with the instructions
being simple arithmetic, logical, and bit manipulations; the packet header vector produced
after parsing has to be limited in size. RMT was later generalised in a single pipeline
forwarding architecture that became known as Protocol-Independent Switch Architecture
(PISA). Around 2016, the first PISA-based ASIC, Tofino [93], became available from
Barefoot networks (later acquired by Intel). It offered line-rate execution of compiled
binaries, proving that programmability does not always result in reduced performance.
Commercial implementations hosting Tofino are able to accommodate 100 GbE over 8
ports. The latest iteration of the chip, Tofino 3, promises 64 ports with up to 400 GbE
each. More recently, PISA programmable switches have also been available in smaller form
factor (half-width rack switches) and can be used in couples for redundancy purposes or be
deployed at the edge of the network to potentially facilitate end-to-end programmability
[146]. The same stands for end-host devices like smartNICs [145].

CHAPTER 2. BACKGROUND 25

Programming Protocol-Independent Packet Processors

With existing hardware architectures offering terabit throughput using the PISA archi-
tecture, a common language that can describe packet processing pipelines in high level
is necessary for easy definition of new protocols. Low-level programming of the chip re-
quires expertise and increases the complexity of implementing network applications (as
demonstrated by NPU implementations). P4 (Programming Protocol-independent Packet
Processors) was invented to address this as a language able to describe packet processing
pipelines regardless of target hardware [21]. The authors originally saw OpenFlow’s lim-
ited number of supported protocols as an important obstacle for the deployment of novel
protocols and the encapsulation requirements of modern data centres. P4 was originally
envisioned to be the extensible data plane component that would complement a newer
version of OpenFlow and offer protocol independence and reconfigurable switches. A ver-
sion of OpenFlow that can interact with P4 has not been available till now and OpenFlow
switches are mostly controlled through scripts relying on manufacturer-provided runtime
libraries.

P4 is employing a forwarding model that is similar to the PISA architecture to ensure
hardware compatibility. Each of the pipeline blocks becomes programmable through the
language’s keywords. Headers can be specified through an ordered set of lists. A pro-
grammable parser implements a state machine operating on header values. Ingress and
egress match-action pipelines are separated with a buffer and populated through the con-
trol plane. Different types of matching (e.g., exact, ternary) happens against header fields.
Actions can be composed out of protocol-independent primitives supported through hard-
ware. Serial or parallel execution of tables is determined by analysing a table dependency
graph based on header fields. P4 evolved (from P414 to P416) by removing many core
language features and instead placing them in libraries, resulting in a smaller language.
In its current version, P4 allows the description of new library elements through the "ex-
tern" construct suggesting that new, hardware-specific functionality can be added to the
language in a modular manner [63]. Currently, a great variety of use cases make use of
P4 to apply stateful per-packet processing in line rates with great success – offering in
some cases the fastest available implementation. Example use cases include: in-network
telemetry [18], key-value stores [100], and consensus protocols [187]. Some of them were
accelerated beyond legacy implementations through using P4 programmable ASICs to
offload computations.

P4 introduced helpful abstractions to program a processing pipeline for different types
of hardware but manufacturers still have an important role in the deployment of P4 code
by providing essential tools to compile and run software on each device. The software
development framework, the definition of the device’s architecture, and the compiler for
the target device are all provided by the manufacturer and constitute essential tools in

CHAPTER 2. BACKGROUND 26

the programming process. Match-action table entries in most cases are edited through
the manufacturer-provided runtime libraries. Therefore, while P4 development and proto-
typing can happen independently with software like BMv2 [35], deployment in hardware
can be dependent on the idiosyncrasies of the provided software which might introduce
unexpected bugs or obscure error codes.

2.6 Network Function Virtualisation

The deployment of middleboxes incurred a significant capital expenditure for network
operators and increased complexity in managing the deployed functions due to their fixed-
function characteristics. Traffic within the network in some cases has to be redirected
to multiple middleboxes in order to apply various NFs, which in turn alters the traffic
characteristics and consumes bandwidth. The lack of flexibility in middleboxes makes
adaptation to external changes cumbersome and the implementation of new services slow.
To address these shortcomings, NFV was proposed. NFV aims to enable elastic service
deployment in heterogeneous infrastructure through virtualisation of NFs. By deploying
VNFs on general purpose hardware (e.g., x86 servers), general programming tools can be
utilised to develop new services and support can be provided for existing ones. Horizon-
tal and vertical scalability can be facilitated through resource allocation to various VNFs
based on traffic demands. Co-location of different functions can happen even within the
same server, minimising bandwidth consumption and latency. Without the fixed-function
characteristics of middleboxes, NFV promises a wide set of deployed services including the
ones traditionally deployed in middleboxes (e.g., firewalls, deep packet inspection services,
content caches, etc.), scalable deployment that aligns with demand, cost minimisation
through hardware repurposing, and decreased configuration complexity compared to mid-
dleboxes [29, 32].

2.6.1 Reference Architecture

Network function instantiation, placement and migration decisions, and monitoring of
deployed services are accomplished through the NFV orchestration framework. The afore-
mentioned operations are known as Management and Orchestration (MANO) operations.
The code base to achieve this functionality can be quite large, with all of the sub-
components being developed as standalone programs with failure-recovery mechanisms.
European Telecommunications Standards Institute (ETSI), the NFV standardisation body,
defined a reference MANO architecture comprised of the following components:

1. NFV Orchestrator: it accepts the desired policy for certain VNFs (or chains thereof)
and is responsible for their high-level control and monitor of their health. It dis-

CHAPTER 2. BACKGROUND 27

seminates instructions to other sub-modules to retrieve the state of health for the
deployed VNFs and react to events in order to maintain the KPIs of the specified
policy.

2. VNF Manager: deploys the desired services within the virtualised environment and
configures them according to the parameters defined by the orchestrator. A link to
a VNF catalogue can be achieved for standardising the core of deployed services and
only configuring certain parameters upon deployment.

3. Virtualised Infrastructure Manager: it monitors and manages the underlying network
infrastructure. It is responsible for the allocation of physical or virtual resources that
will be used by the deployed VNFs. ETSI acknowledged the importance of SDN in
managing the underlying network infrastructure and relied on OpenFlow for rule
installation and management.

4. Data repositories: hold structured data that describe the state and health of running
VNFs, the infrastructure resources, and the deployed services.

Network operators relying on NFV frameworks, can utilise the flow of information between
the components to perform real-time monitoring of the deployed services and define policies
that maintain certain KPIs. This is known as intent-based networking and is one of the
most fundamental differences between NFV and traditional networking.

2.6.2 Virtualisation Technologies

NFV achieves separation of the executed binary from the underlying infrastructure through
virtualisation. To preserve this property, an isolated environment with dedicated resources
needs to be defined for application binaries. This can be achieved through various tech-
nologies that allow hardware resources to be allocated to different isolated instances. Vir-
tualisation can be primarily offered in two levels:

1. Hardware-level virtualisation: server resources can be managed by a hypervisor
which exposes them to virtual machines, each with a complete OS and the neces-
sary libraries to implement the desired application. This has been the predominant
virtualisation method across mainstream data centres.

2. OS-level virtualisation: server resources can be managed through the OS and a
software engine running above it can provide access to resources for encapsulated
applications running above it. Application dependencies and code are encapsulated
in a single software unit that is known as container.

Virtual Machines (VMs) rely on hardware-level virtualisation to deploy a full OS along-
side the necessary libraries and binaries. They offer great flexibility in terms of software

CHAPTER 2. BACKGROUND 28

stacks and provide good isolation for the binaries they host. Apart from data centre ap-
plications, they have been extensively used for VNFs deployed in 5G, with slices being
usually dependent on a VM to host the desired functionality.

Containers belong to the category of OS-level virtualisation. By encapsulating only
the required dependencies, they operate on top of a software engine that is responsible
to interact with the OS to allocate resources and ensure isolation. Containers using the
Docker system, the most popular system to date, were originally designed for deployment
over the Linux kernel (using cgroups, namespaces, etc.) but a separate software engine
was later developed for other OSs, like Windows. Containers offer significantly smaller
footprint compared to full VMs which allows for quick deployment across various host
machines. The performance of containers has been shown to be similar to bare-metal
deployments, with the main source of performance degradation for containers being multi-
tenancy in large scales [180]. They can be executed in various types of hardware, so long
as the engine is supported by the host OS.

The small footprint and quick deployment of containers led to their integration in agile
software development. Services deployed using this level of virtualisation are also known
as microservices. Deployment of VNFs in the form of microservices has some architectural
advantages over monolithic VM deployment: it minimises redundancy by separating core
VNF functionality in microservices; each microservice can be scaled separately based on
demand [32]; redundancy costs are minimised and fine-grained MANO operations can be
conducted over the deployed functions [32].

2.6.3 Placement & Resource Allocation

NFV presents various algorithmic challenges with open-ended questions. One such topic
which covers multiple optimisation problems is that of resource allocation. In NFV, re-
source allocation requires taking into account both physical and virtual resources. The
NFV framework is responsible to map virtual to physical resources and dynamically change
the ratio between the two types. Physical processing resources can host multiple VNFs,
either chained together or by forming layers of virtualised resources [58]. This type of
problem bears resemblance to the Virtual Network Embedding (VNE) problem, where
a set of virtual resources has to be allocated to a set of physical resources in an offline
or online manner and the decision has to be optimised for cost, link bandwidth, energy
efficiency, etc. However, for resource allocation within a NFV framework, VNE is not
directly applicable. The orchestrator deals with placement requests for chains of interde-
pendent VNFs that form NFs, instead of requests for deployment of single NFs in the case
of VNE. Moreover, the topology changes dynamically and resource demands also change
over time even for NFs that have been already deployed [131]. In most cases, traffic flow
requirements have to be mapped to VNFs and not vice versa.

CHAPTER 2. BACKGROUND 29

The clear advantages of NFV have driven research on the placement and resource al-
location problem. Placement decisions have to be mostly dynamic, with VNF requests
describing arbitrary resources for random time periods. The orchestrator itself can be dis-
tributed or centralised, depending on the framework capabilities. Redundancy of deployed
VNFs can also heavily impact resource allocation decisions as the need for resources scale
drastically with high redundancy requirements. Balancing the aforementioned require-
ments in an online, efficient manner is a challenging task for the VNF orchestrator. The
work of Herrera and Botero was among the first to define the three stages of NFV resource
allocation [73]:

1. Chain composition: the formulation of chains of VNFs by taking into account de-
pendencies between them and their behaviour (e.g., potential traffic gains). Chain
formulation can impact throughput, traffic cost, latency, etc., and can therefore be
optimised towards these aspects [138].

2. Forwarding Graph Embedding: processing the Forwarding Graph produced in the
chain composition stage as input and subsequently matching the available network
resources to satisfy chain requirements. This problem can be considered as a general-
isation of the VNE problem that includes a broader spectrum of available resources,
like storage, processing capacity, etc. It is therefore an NP-hard problem as well.

3. Scheduling: arranging the order of execution of VNFs to minimise total processing
time based on the set of available resources and their processing requirements.

To be able to mathematically formulate problems for these stages and generate solu-
tions, it is common that a linear objective function is formulated which, when minimised
(or maximised) around a certain variable, it provides the best mapping of the available
resources to the set of functions that need to be deployed. This is known as the Integer
Linear Programming (ILP) optimisation method. ILP models, including mixed ILP and
binary ILP, provide accurate solutions for resource allocation and placement problems
but by being NP-hard they require a lot of resources and scale poorly with network size.
Similarly, non-linear programming models, i.e., containing non-linear constraints, present
NP-hardness and are therefore not scalable enough to be integrated in real-world orches-
tration frameworks. This is why most of the research on VNF placement is using ILPs
as an accuracy comparison baseline for a proposed heuristic alternative, which signifi-
cantly reduces the execution time but only provides near-optimal solutions. The proposed
heuristics are novel and specialised for the problem in question. They follow different ap-
proaches to reduce complexity, usually through ranking the solutions of the results space
and picking the best one [44].

Luizelli at el. provided one of the first ILP formulations of the placement problem
considering VNF chains and the performance impact of allocating more resources (e.g.,

CHAPTER 2. BACKGROUND 30

CPU, memory) per VNF [131]. Through the proposed model, authors managed to reduce
end-to-end latency and resource over-provisioning. This work considered some basic NFs
types: load-balancer, firewall, Network Address Translation (NAT), without differenti-
ating placement based on their characteristics. The placement problem has since been
further contextualised to consider the type of deployed network function and the environ-
ment in which it is deployed. For example, Ali et el., by extending the work of Basile et
al. [16], consider security VNFs in the context of a Cloud data centre [4]. Unlike generic
VNFs, security VNFs in the cloud showcase intricacies such as custom traffic processing re-
quirements which are differentiated for each tenant based on their individual requirements
from a security function [4]. To address this, security VNFs are classified using traffic
requirements and then placement decisions are trying to maximise residual resources.

Lately, Machine Learning methods have been proposed as the optimisation technique
for placement problems [109, 184]. Machine Learning methods present certain strengths in
the context of VNF placement. Their ability to create statistical correlations of dynamic
traffic changes and particularly hidden patterns of traffic variations is particularly impor-
tant for prediction of demand and reallocation of resources [79]. Furthermore, trained
machine learning models present low computation time, especially when compared with
numerical methods [184]. For each deployment scenario, a machine learning model that
will satisfy the deployment requirements and provide the statistical accuracy that is re-
quired has to be picked. Then it has to be parameterised accordingly. The process of
selecting and evaluating the best model for different scenarios is beyond the scope of this
work, however relevant papers are cited to inform the reader of potential solutions to the
placement problem, add insight towards what is currently feasible, and help assess the
contributions of this thesis.

Flow-Aware Placement

Through research, arguments have been formulated on the benefits of including QoS aware-
ness and flow handling in the placement problem. It has been proposed that placement
decisions should be optimised around a given traffic matrix instead of placing VNFs and
then making traffic routing decisions. Sahhaf et al. proposed a novel, flow-aware NF
decomposition model based on a heuristic that allows scaling of VNFs based on demand,
successfully increasing the acceptance ratio of incoming service requests [176]. Kuo et el.
attempt to balance path length and VM usage, i.e., make use of shorter paths without
spanning multiple new VMs. By doing so, they maximise the amount of available resources
and remaining link capacity [118]. Similarly, Mechtri et al. aim to offer joint VNF place-
ment and chaining that is able to adapt to complex use cases proposed by ETSI. The work
integrates concepts like multi-tenancy and resource heterogeneity, being among the first
to consider the combination of physical and virtual nodes [136]. They propose an eigende-

CHAPTER 2. BACKGROUND 31

composition of the requested graph and the infrastructure graphs to solve the problems of
VNF placement and traffic distribution. Future models have become even more inclusive
of real-world requirements, taking into account: vertical services, VM setup times, and
KPI requirements. One such example is the work of Golkarifard et al [74], which provides
a mixed ILP that is able to make joint decisions on a number of different deployment
parameters: VMs activation, VNF placement, CPU resources, and routing.

Iordache-Sica et al. [95] integrate a flow matrix in a context-aware placement problem
of security-oriented VNFs to minimise path latency when compared to a non flow-aware
ILP. However, due to the dynamic nature of networks, which is emphasised at the edge,
frequent re-calculation of the placement decisions is required to adjust to changes. A traffic
matrix makes this process more complex. This was effectively addressed in the work of
Cziva et el. with the use of optimal stopping theory which informs the best moment to
re-execute the placement algorithm in order to preserve optimality despite changes in the
network [39].

Placement at the Edge

Placement algorithms have also been adjusted for the network edge where processing re-
sources are limited, VNFs need to accommodate bursty traffic and be optimised for user
mobility. Whereas, functions placed at the core of the network usually process steady,
high-throughput traffic and can use more processing resources. Apart from withstanding
volatile behaviour and optimising resource expenditures, placement approaches need to
provide guarantees on delay for the end user, as this is the primary goal of edge comput-
ing. The aforementioned work of Cziva et al. developed a latency-optimal VNF placement
method for the edge [39]. It can dynamically schedule containerised VNFs with the best
possible QoS. Zhang et al., motivated by the variety of 5G use cases (like autonomous driv-
ing, 4K video transmission, etc.), acknowledged the differences in latency and throughput
requirements per slice [206]. They suggested a placement model that is using each slide’s
latency and throughput characteristics as an input. They proceeded to study the im-
pact of VNF consolidation on performance degradation by employing a demand-supply
model to quantify the interference in terms of throughput reductions. VNFs are gradually
consolidated after deployment without violating throughput requirements. The topic of
performance interference between co-located VNFs has been further investigated by Zeng
et al., without however any proposals for interference-aware placement [203].

The body of work for placement at the edge has been extended by capturing the need
to deploy and manage chains of VNFs without voiding latency limitations. In doing so,
there is effort to best utilise all the available resources. Jin et al. have developed a mixed
ILP that is able to solve the VNF chain deployment problem while minimising the total
resource consumption of edge devices [99]. To achieve this, they use a two-stage placement

CHAPTER 2. BACKGROUND 32

approach: a constrained depth-first search algorithm for path selection, and a path-based
greedy algorithm for VNF placement with minimum resource consumption. The approach
demonstrated near-optimal performance during evaluation. Other work by Nguyen et al.
addresses the VNF placement problem in multi-cloud deployments with interconnected
IoT gateways [148]. The authors formulated a non-convex ILP to establish the optimal
solution for the problem. Furthermore, they proposed a Markov approximation technique
and a heuristic-based approach for near-optimal solving with faster convergence times.
They proved significant reductions in bandwidth and computation cost by considering the
IoT topologies during VNF placement.

Energy-Aware Placement

Placement approaches primarily attempt to optimise towards a network-oriented goal,
which is usually latency, throughput, etc. In the literature however, there have been place-
ment algorithms with optimisation goals that are peripheral to core networking metrics,
like energy efficiency – a matter well regarded both in data centre networks and edge envi-
ronments. Placement approaches that target energy efficiency often aim to minimise the
number of active nodes in the network, or enforce policies that reduce the power consump-
tion. Tajiki et al. have been among the first to propose an ILP and a heuristic approach
to minimise energy consumption without voiding defined QoS Service Level Agreements
(SLAs) [186]. Their placement method tries to minimise the number of required servers
to run VNFs without harming QoS in order to minimise energy consumption. The re-
sults show moderate reductions in energy consumption for most cases when compared
with standard ILP solvers. Xu et al., apart from server energy consumption (based on
CPU usage), they also consider link energy consumption through its on/off state and its
bandwidth utilisation during placement [198]. Varasteh et. al propose a framework to
solve the power-aware and delay-constrained joint VNF placement and routing problem
[192]. In the framework’s first phase, a centrality-based ranking method maps the VNFs
to physical nodes. In a second stage, the delay budget between consecutive VNFs is split,
and the shortest path through the selected nodes is found using the Lagrange Relaxation
Aggregated Cost algorithm.

The works of Abd et al. propose energy efficient scheduling algorithms in a cloud com-
puting environment to place tasks and reduce energy consumption [1]. They try to min-
imise VM migrations and strike the right balance of machine utilisation before bottleneck-
ing performance using pre-defined thresholds. Evaluation with the use of synthetic data
and Google trace logs showed that their placement algorithm reduces total resource utilisa-
tion and energy consumption when compared to static allocation or scheduling strategies.
Marahatta et al. also propose a placement algorithm for cloud environments that in-
cludes a fault-tolerant scheduling scheme alongside minimisation of energy consumption

CHAPTER 2. BACKGROUND 33

[134]. The results showed decreases in rejection ratio and energy consumption. However,
the number of migrations might have a negative impact on energy consumption and it is
not included in the proposed placement method. In a similar manner, Ding et al. have
proposed a Q-Learning algorithm to schedule tasks using an energy-efficient method [47].
Their approach aims to minimise the task response time and maximise the utilisation of
a node’s CPU therefore improving resource utilisation and energy consumption for the
infrastructure.

This thesis explores energy-aware VNF placement for edge computing, which is a com-
bination of technologies usually found in cloud infrastructure with environmental chal-
lenges found at the edge, like limited processing and energy resources. This combination
creates new optimisation problems related to resource allocation but also reveals chal-
lenges related to the systems aspect, like the integration of sensor measurements in a
reliable way in the orchestrator. In the case of edge nodes managing wireless sensor net-
works and simultaneously hosting VNFs, the placement problem becomes more complex
as energy measurements need to be taken into account for both the edge nodes and the
wireless sensors in a way that will maximise the total lifetime of the network and allow
discrepancy between device errors and battery depletion.

Several works aim to estimate battery State of Charge (SoC) by using different meth-
ods. Hu et al. present the Extended Kalman Filter technique as the SoC estimation algo-
rithm [89]. The researchers evaluate the proposed estimator using two types of Lithium-ion
batteries under different loading profiles and temperatures. The optimal model parame-
ters used in the Extended Kalman Filter are obtained from generic functions for battery
modelling that combine several degrees of polynomials [89].

Soon et al. have proposed an enhanced coulomb counting method for estimating the
SoC and the State of Health of lithium-ion batteries [147]. They improve the estimation
accuracy by considering the correction of the operating efficiency and the impact in the
State of Health. The proposed method can be easily implemented in all portable devices,
such as SBCs, due to simple calculations and low hardware requirements. Pop et al.
propose a new SoC algorithm by combining direct measurement of the Electro-Motive
Force and Coulomb counting [161]. They demonstrate the effectiveness of their approach
by improving the SoC and accuracy of the remaining run-time.

In contrast to the previous work, the authors of [196] have presented two methods for
actual bias modelling of batteries. They have proposed a polynomial and Gaussian process
regression model using a typical battery circuit model to examine the bias modelling
and the SoC estimation. The results of their model show a significant improvement in
comparison with the baseline models (i.e., first- and second-order resistance-capacitance
models) while being able to maintain similar computational efficiency.

For the management of the lifetime of wireless sensors, early work by Lim et al. pro-

CHAPTER 2. BACKGROUND 34

posed an adaptive algorithm that is able to determine the sampling schedule of wireless
sensors [125]. The algorithm is trying to adjust data gathering based on user accuracy
goals, network connectivity, and preliminary collected data. Results show substantial im-
provements over baseline algorithms in terms of network lifetime. The proposed scheduler
covers only the lifetime of wireless sensors and does not consider energy consumption of
the base station.

Gazori et al developed a Deep Reinforcement Learning approach that tackles the task
scheduling problem in fog IoT applications considering both edge and cloud infrastructure
[69]. The main function of the proposed scheduler is to decide whether to process the task
in a fog node or send it to the cloud data centre. The authors include an energy consump-
tion model in the scheduler’s proposal to guarantee selection of the most appropriate VM
in terms of power consumption.

2.6.4 Network Function Virtualisation Platforms

In this Section, an overview of representative orchestration platforms is presented. The
reference architecture, presented in Section 2.6.1, has been adapted (or changed) by the
various platforms to favour certain properties (performance, robustness, scalability) based
on the intended use cases. The presented platforms have been successfully deployed in
different scales by mainstream operators and have proved the feasibility of relying on NFV
for deploying virtualised services.

Open Network Automation Platform

The Linux Foundation, alongside mainstream telecommunication providers have devel-
oped the Open Network Automation Platform (ONAP) framework [67]. ONAP is de-
signed to support the deployment and management of VNFs in commercial deployments,
currently used to manage deployments for Nokia, Ericson, and Huawei [19]. ONAP’s
hardware-agnostic architecture is comprised of the Management Framework – which fol-
lows a microservices-based approach to monitors other ONAP components, the Design
Framework – which leverages a declarative modeling language for the definition of re-
source requirements of each service, and the Run-time Framework – which manages the
deployment of and deletion of microservices and allows real-time monitoring of the infras-
tructure. ONAP offers modularity through northbound and southbound interfaces, used
to extend its functionality with the use of other operating systems and platforms.

Openstack

With a primary focus on ease of deployment, Openstack [64], is a widely used Infrastructure
as a Service (IaaS) platform that allows the deployment of VMs, containers, and bare

CHAPTER 2. BACKGROUND 35

metal workloads. For the management of containers, it supports orchestrators like Docker
Swarm or Kubernetes. It relies on an extensible, open-source architecture that enables
flexibility for deployment in heterogeneous infrastructures [207]. However, Openstack’s
forwarding performance appears to be impacted in large-scale deployments due to either
layer-2 flooding or oversize routing tables and poor synchronisation [205].

Open Source Mano

Open Source Mano (OSM) is a NFV platform developed by ETSI that follows the reference
architecture defined by the same body. OSM is one of the first NFV platforms to be
released. OSM’s scope is to provide an interoperable, open-source, and scalable framework
to manage VNFs for the purposes of 5G networks. OSM was initially oriented towards
VM orchestration but the appearance of lighter virtualisation methods, like containers [49],
and the proliferation of physically deployed NFs contributed to changes in the scope of
the platform. Its community now plans to incorporate all of the available NF deployment
methods and make OSM a high-level orchestrator that can manage services regardless of
the technology they rely on. Its architecture is envisioned to support unified orchestration
across cloud and edge, providing abstractions that are ideal for heterogeneous operator
environments and offering automation in service monitoring and management. As such,
OSM is more popular in 5G environments where various verticals are anticipated to be
supported under one common infrastructure. To make this possible, 5G utilises network
slicing through softwarisation in both the Core Network and the Radio Access Network
[60]. NFV MANO and OSM are key components to this vision [104]. This vision aligns
well with hot topics in the research frontier, where end-to-end programmability becomes
an increasingly important and complex topic.

Kubernetes

Kubernetes is a container orchestration platform that has been extensively used in produc-
tion environments. It manages Docker containers enclosed in pods – an overlay structure
that enables MANO operations and network handling by Kubernetes. The source code is
open and extensible, making it ideal for experimentation with various deployment scenar-
ios. It offers a fault-tolerant control plane through replication and failover mechanisms.
Kubernetes relies on a modular architecture with each of its components running within
stateless pods that can be restarted upon failure.

Kubernetes’ architecture is split between control plane components (frequently referred
as Master node) and worker node components. An overview is shown in Figure 2.4. Central
to Kubernetes’ control plane is its API component which handles front end traffic and
interacts with all other components to manage pod deployments. Kubernetes relies on etcd
for fault-tolerant storage of the control plane data. Etcd is a standalone platform that offers

CHAPTER 2. BACKGROUND 36

consistent, distributed, consensus-based KVS storage [51]. By default, Kubernetes runs
etcd within a pod that can be replicated and accessed from the API in order to store lease
information, pod health status, etc. Etcd can also be installed as a standalone application
that is linked with Kubernetes using authentication keys allowing further customisation
of its setup like high-availability replication, setup on custom hardware, etc. Pods are
assigned to nodes and scaled through the scheduler component. The scheduler first filters
the nodes based on their available resources and the defined deployment requirements
like deadlines, hardware, software, data locality, etc. It then ranks the candidate nodes
based on a score that describes their availability of resources with the top candidates being
selected for hosting the pod.

Kubernetes Control Plane
Controller
manager

Control
Network
Interface

API

Scheduler

etcd
node 1

etcd
node 2

etcd leader

Raft
Write

ahead log

Snapshot

gRPC

Kubernetes
worker

Kubelet

k-proxy

Kubernetes
worker

Kubelet

k-proxy

Kubernetes
worker

Kubelet

k-proxy

Figure 2.4: Kubernetes architecture overview [9].

By default, worker nodes host two types of services: kubelet – ensures that the defined
pod specifications are executed through health monitoring and restarts of the failed pods,
and kube-proxy which manages network rules to facilitate communication between pods,
the master node(s), and outside traffic. Worker nodes also interface with the underlying
container runtime (usually Docker).

2.7 In-network Offloading

The proliferation of bespoke networking hardware able to perform stateful packet process-
ing at increasingly high throughput and the appearance of virtualised NFs have created
new possibilities for compute within the network fabric. Stateful processing in traditional
networks required access to an end-host CPU or fixed-function middleboxes. Instead,
modern hardware deliver programmability directly within the network fabric. Advances
in the area of programmable switches, both in programming tools (P4 [21], PSA [78])
and in hardware implementations (Intel Tofino [93], Broadcom Trident [24]) have allowed
line-rate performance for compiled binaries executed on programmable switches. These
enablers have driven innovation in the area of in-network compute. Researchers have used

CHAPTER 2. BACKGROUND 37

such technology to offload computation primitives in PDP, significantly improving the
performance of the applications that rely upon these primitives [123, 162, 197, 178]. New
protocols can be developed and previous ones can be extended with new features without
traffic rerouting or acquiring new hardware.

2.7.1 Data storage

With the growth in demand for online services like cloud, web services, online gaming, etc.,
the performance and scalability of storage solutions has become a critical design aspect for
the developers and administrators of replicated storage platforms. For example, in the case
of Facebook, the total photo storage grew from 1.5 petabytes to 20 petabytes just between
2009 and 2010 [17]. At the same time, the traffic generated by users doubled, making
time-efficient retrieval of the requested data a challenging task. To deal with performance
requirements, data engineers employed various solutions both in terms of data structures
and hardware.

In order to respond to workload demand with minimum upfront investment, data
centres followed a scaling out strategy by acquiring and deploying more commodity servers
in response to projected demand increases. In this manner, adequate amount of redundant
resources can be budgeted towards availability targets to ensure fault tolerance and fault
recovery. However, relational data models incur increased overhead in data retrieval among
distributed normalised data [86]. In order to increase query capacity and performance,
scaling up is required through upgrading the used computational nodes. This requires
significant upfront investment and a higher risk of downtime in case of failures. It was
evident that relational databases were not an efficient tool for the growth strategy of data
centres and big-data applications.

Furthermore, the scale and throughput requirements of modern applications posed
software development challenges. Modern applications required the conception of data as
a single, highly available entity with low latency access [86]. This development abstrac-
tion alongside the aforementioned performance, availability, and scalability requirements
led to the emergence of NoSQL data stores: schemaless data models that would allow
relaxed consistency in favour of performance without harming the application’s function-
ality. NoSQL data stores did not constitute the silver bullet for all of the above [42]. They
simply offered design flexibility by promoting specific design goals, like availability and
consistency with trade-offs in partition tolerance, as explained in the CAP theorem [23].

KV replication methods are commonly separated between quorum-based and primary-
backup methods. Quorum-based methods require the majority of the participating nodes
to conduct an operation in order to render it successful (e.g., Paxos [120]). Primary-backup
methods operate by appointing one of the participating nodes as the primary (or reference)
node. Operations are considered successful when they are executed on this reference node.

CHAPTER 2. BACKGROUND 38

The rest of the nodes act as replicas of the primary one. E.g., Chain Replication [191].
KVSs have quickly become a popular NoSQL data store due to their simplicity and

efficiency. They store data based on a key-value tuple: keys are used to perform lookup
operations on the values. They constitute a lightweight, highly-scalable storage and coor-
dination service and provide design flexibility that enhances the performance of relational
database implementations [17]. KVSs have hosted a range of use cases, from graph data
caching to storage pipelines involving machine learning [181, 43, 25].

Different types of hardware were used for writing commits to balance persistence with
performance in NoSQL. To favour persistence, direct writes to Hard Disk Drives or Solid
State Drives were used (e.g., Oracle NoSQL [154]). On the other hand, performance could
be prioritised by writing directly to memory (e.g., memcached [139]). Hybrid platforms
are also available in order to achieve the desired balance by first using memory cells and
subsequently transferring them to disk for persistence (e.g., [130].

Transferring Key Value Stores in the Data Plane

By examining a query’s path in KVS implementations, network devices appear to be
reached first in order to transfer the query to the designated server. By generating re-
sponses as close to the client as possible, and in this case the closest network device, an
opportunity to significantly reduce the transfer time of the query to the server is presented.
Latency is expected to decrease analogously, given that responses are transferred with the
least possible delay back to the client. Furthermore, there are potential improvements
in the attainable throughput of generated replies, with programmable switches able to
generate packets in data rates that are orders of magnitude higher than the throughput
obtained from conventional KVS implementations.

The IncBricks paper was among the first to capture the potential of PDP devices be-
cause of their location in a query’s message path [126]. The message path for a query in a
legacy KVS would start from the client, go through network devices, and finally it would
reach the servers that host the KVS. IncBricks substituted the need to reach coordination
servers for some types of queries and suggested a shorter path for cached values which
stays between the client and the network devices. Replication among the participating
switches was based on a hierarchical directory-based coherence algorithm. Network pro-
grammability was achieved with the use of NPUs which offered limited instructions and
were tied to proprietary programming tools provided by the manufacturer. Despite this
limitation, the realisation of this new role for network devices greatly reduced the query
response time and increased the attainable throughput over legacy KVS deployments.

NetChain and NetCache followed up as a couple of the most prominent works in the
area of in-network caching [100, 101]. By accommodating queries entirely in the data
plane, NetChain is effectively the fastest in-network KVS platform that exists today. Other

CHAPTER 2. BACKGROUND 39

important works perform offloading of certain KV processes, such as conflict detection [187,
209], which offer performance improvements over legacy storage. NetChain is explained
in more detail in Section 3.2 where its functionality is analysed and certain limitations of
its design are identified.

In-Network Conflict Detection

Other platforms for network-accelerated data storage offer partial offloading of data stor-
age functionality within the network fabric, like conflict detection operations. For example,
Harmonia attempts to provide scalable replication without sacrificing linearizability, i.e.,
correctness is preserved upon concurrent modifications of an object [209]. Harmonia treats
the memory of a programmable switch as storage space for the set of contended objects.
It uses a shim layer to communicate with mainstream KVS platforms (e.g., Redis), which
act as the main storage. Through performing in-network conflict detection, Harmonia can
direct queries to any replica with the latest version of the object, improving scalability of
legacy replication methods. It reduces the need for multiple message exchanges to identify
an up-to-date replica, replacing it with look-ups in the line-rate accessible memory of the
switch and subsequent routing to up-to-date replicas. One key assumption is that work-
loads are read-mostly, which is expected for data centre KVS traffic. By monitoring write
requests, for each object it stores the following metadata in switch memory: a monotoni-
cally increasing sequence number, a set of dirty objects and their highest sequence number,
and the latest write committed by the switch. Switch memory, being a scarce resource,
can be a limiting factor to the amount of simultaneous writes Harmonia can deal with.
Through evaluation, NetChain appears to have up to three orders of magnitude higher
throughput than what Harmonia can achieve [209]. This is expected since KV replies can
be generated directly in data plane, eliminating the need to contact a server. Despite this,
Harmonia still manages meaningful performance improvements (up to millions of queries
per second) over legacy replication methods.

Similar goals and practices are adopted by Flair, which is designed to work on top of
quorum-based protocols (e.g., Raft [153], Zookeeper [91], etc.). Differently from Harmonia,
Flair focuses on quorum-based approaches and deploys modules (shim layer) on top of all
participating followers (storage nodes). Updates on followers are subsequently committed
to the leader node which then stores them in a central programmable switch. The switch
is able to direct queries to storage nodes based on the list provided by the leader. This
centralised allocation of queries allows load balancing among up-to-date storage nodes
and awareness of the load of each node. The switch can also drop replies with suspected
stale data, in case there are pending writes concurrently with a read reply. Through
evaluation with synthetic workloads (generated with 95:5 read-write ratio using YCSB
[102]), it is shown to achieve superior performance to legacy replication methods: Flair

CHAPTER 2. BACKGROUND 40

achieved higher throughput than legacy alternatives and appeared to be less susceptible
to diminishing performance due to workload skewness. Similar to Harmonia, Flair relies
on external storage nodes and it is therefore adopting the performance limitations of this
design decision which are not present in the case of fully offloaded platforms in PDP.

Data Storage at the Edge

Service function chains extend networking functionality to the network edge and therefore
devices operating at the edge also perform computations necessary for traffic routing, pro-
visioning of security services, storage of configuration data, etc. In parallel, programmable
switching hardware becomes available in smaller form factors, like the APS2112D switch
which is the smallest form-factor Tofino switch available [146]. The synergy of pro-
grammable networking devices and IoT devices being able to execute accelerated user
space packet processing places in-network compute applications closer to the end-user. To
this end, in-network storage at the edge is examined as a key technology that can aid the
convergence of cloud and edge infrastructure.

An example of work that considers data management at the edge is the Dragon scheme,
able to identify nodes that can reply to users’ requests based on criteria describing nodes
themselves and their data [112]. Huacarpuma et al. propose a distributed data service
providing functionality for data collection and processing [37]. The objective is to enable
multiple IoT middleware systems to share common data services covering interoperability
issues. The parallel execution of queries increases the performance of the applications and
at the same time, analytics are retrieved by different nodes aggregating them to deliver
the final outcome. In edge environments, it is of high importance to obtain a view on the
data statistics on each node since the relevance between the data and analytics queries
can be estimated [113], [115], [114]. Multiple efforts handle the problem of allocating
data to specific nodes. Balkesen et al. provide a mechanism to partition data streams
on-the-fly taking into consideration the query semantics [12]. Cao et al. propose a multi-
route optimiser exploiting intra- and inter-stream correlations to produce effective data
partitions [26]. Other schemes propose the separation of streams into sets of sub-streams
over which queries are executed in parallel [70, 202].

Query engines for the IoT domain provide results in real time and data are processed
on the devices at the network edge [195]. Such edge-centric processing is important in real-
time, mission-critical applications such as self-driving vehicles [31]. Multiple works utilise
edge-centric processing in the literature for various applications [3, 46, 143, 168, 84, 88].
Some efforts deal with the automated separation of queries into two sets: queries processed
on edge devices and queries processed in the cloud [75]. Quoc et al. adopt statistical
learning to recommend a previously generated query plan to the optimiser for a given
query [167]. The objective is to predict the query execution time for workload management

CHAPTER 2. BACKGROUND 41

and capacity planning. The delivery of edge analytics involves communication efficient
predictive modelling within the edge network [83]. Analytics are derived by models dealing
with dynamic optimal decisions for data delivery in light of communication efficiency
[84, 30]. Several schemes exploit the computational capability of edge nodes to launch
algorithms directly at the data sources [5, 68, 105].

2.7.2 Machine Learning

The work of Li et al. explored the impact of communication delays in distributed Re-
inforcement Learning [124]. By examining state of the art distributed Reinforcement
Learning systems, they observed that: either workers had to exchange local gradients
with the centralised parameter server – incurring all-to-all communication for updating
the weights of each worker, or the weights had to be exchanged in a circular, distributed
manner among the workers. They have calculated that message exchanges for gradient
aggregation occupy up to 83.2% of the time for each training session. By using stateful
packet processing and simple arithmetic operations, they accelerate the training process
through in-network aggregation of gradients and distribution of updated weights to the
workers, effectively repurposing the switch to a Reinforcement Learning accelerator. Ac-
cording to the evaluation they conducted, the training time was sped up by up to 3.66×
for synchronous and up to 3.71× for asynchronous training. However, the implementation
does not cover multi-rack topologies nor does it include a mechanism to prevent lossy
traffic.

In a similar manner, SwitchML identifies all to all communication patterns and sug-
gests a more generic aggregation mechanism for Machine Learning [178]. In SwitchML,
computation is partitioned between end hosts and switches in order to best utilise the
computational capacity of both systems. End hosts perform quantisation of floating num-
bers before submitting them for aggregation in order to enable arithmetic operations in
the switch. End hosts are also responsible for failure recovery. The switch performs fixed
point aggregation and dispatching of updates. The authors managed a 2.27× speedup in
training times over a 100 Gbps network, with training times improving when using faster
GPUs due to the minimisation of computation/communication ratio.

2.7.3 Aggregation

Another type of in-network computation which, similarly to data storage, is common be-
tween both edge and data centre environments is data aggregation. At the edge, the data
obtained from sensor readings that require transferring to Wide Area Networks and pro-
cessing nodes are usually low-dimensional and therefore small-sized. As a result, sensor
data encapsulated to packets consume a small amount of the total packet size with most

CHAPTER 2. BACKGROUND 42

of the packet size allocated to layered headers responsible for transferring data. For ex-
ample, Wang et al. calculate that in Sigfox (a prominent IoT protocol) a 12-byte payload
over 42-byte header consumes just 28% of the network bandwidth – with 78% used for
transferring header fields [194]. The solution proposed by Wang et al. suggests aggregat-
ing multiple IoT packets under a single transfer packet to minimise processing overheads.
The solution is implemented in P4 and consists of one aggregation switch transferring
traffic to Wide Area Network and one disaggegation switch responsible for unpacking the
large payloads of transfer packets back to single IoT packets. A similar work has been
presented by Madureira et al., performing data aggregation at layer-2 and confirming that
data aggregation can reduce communication costs in IoT-cloud communication [133, 110].

In data centre environments, applications that distribute data across multiple worker
nodes, like distributed big data analytics, machine learning, stream processing, appear to
be bottlenecked on communication cost, with message exchanges between the participating
entities consuming a major portion of their execution time [177]. These are also the types of
applications that would yield the best results from data aggregation, as the communication
cost can significantly be reduced [178]. Data aggregation usually requires simple arithmetic
operations which current version of programmable switches are capable of conducting
at line rate. SwitchML used programmable switches to offload machine learning model
updates [178] in an all-reduce manner (as mentioned in Section 2.7.3). A similar proof-of-
concept implementation has been conducted by Sapio et al. [177], proposing a hierarchical
aggregation tree using the map-reduce principle over programmable switches.

2.8 Summary

This chapter presents a series of technological and theoretical shifts in computer networks
that support the assumptions and the contributions of this thesis. It explains the route
towards network programmability as a series of efforts to efficiently utilise the available
hardware: starting from attempts to use commodity hardware for packet processing, the
proliferation of middleboxes, the contributions of OpenFlow in delivering intent-based
networking and, finally, the use of bespoke programmable hardware architectures and
VNFs. At the same time, this chapter presents work that shows how network expansion
brought heterogeneity, pushed service deployment at the edge, and increased management
complexity by requiring balanced allocation of diverse resources to dynamic processing
requirements.

This chapter shows that managing such dynamic environments requires storing and
updating metrics-related information in various parts of the network. In the data centre,
NFV orchestrators require distributed data replication for failure recovery and hierarchical
management. Similarly, distributed control plane deployments require real-time updates

CHAPTER 2. BACKGROUND 43

on the status of the participating devices across multiple control plane instances. At the
edge, placement decisions involve the processing of resource utilisation metrics. The fol-
lowing chapters are shaped by these findings and discuss research outcomes on: distributed
data replication within programmable switches; the efficient orchestration of VNFs at the
edge; and the synergy of cloud and edge computing for efficient data representation.

Chapter 3

Replicated Storage in the Data Plane

3.1 Overview

Distributed data replication has been primarily used as a way to deliver coordination
services for many mainstream applications, as explained in Section 2.7.1. KVSs have been
used as the primary storage solution for hyperscale web applications like Google Ads [181],
mainstream social media like Facebook [150], data centre software like Amazon AWS [43]
etc. Originally, KVSs were used to accelerate MySQL database systems as an in-memory
caching solution for frequent queries. This is apparent in the case of Facebook where
memcached servers constituted 33% of the total amount of storage servers [155].

For KVSs, computation offloading in PDP not only enables line-rate generation of
replies but effectively reduces the amount of hops necessary in a query’s path. The Round-
Trip latency is reduced in half by generating a reply from the first network device in the
path instead of traversing all the way to the server that stores KV pairs. Given the in-
strumental role of KVSs in providing configuration management [51], locking mechanisms
[11], and web-service related operations in large-scale data centres [181], the potential for
performance improvement from PDP deployment is significant.

Distributed storage is also at the core of network configuration frameworks, respon-
sible for state sharing between entities of the control plane. As shown in Section 2.5.3,
state needs to be shared among hierarchical SDN controller entities for consistent network
configuration. This is also true in the case of distributed or microservice-based NFV or-
chestrators. Rotsos et al. classified data replication and consistency among distributed
VNF orchestration entities as an important challenge for network evolution [170]. It is
evident that distributed data stores are a backbone tool for large-scale services but are
also used for network configuration and VNF management.

This chapter presents NetCRAQ, a new data replication platform that can be placed
within programmable data plane devices by leveraging their protocol-independent pro-
cessing pipeline. The Static Random-Access Memory (SRAM) memory of programmable

44

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 45

switches is used to store state-related data and make them retrievable in line rates. The
necessary protocols that deliver KVS transactions and consistency among the participating
devices are also presented.

NetChain, transferred the original idea of IncBricks to accommodate queries in PDP
and delivered an in-network KVS that is able to generate responses to queries with the
line-rate performance of programmable ASICs. Using PISA and the P4 language, the
authors manipulated the registers of programmable switches to store KV pairs and gen-
erate replies based on a custom protocol layered over User Datagram Protocol (UDP).
NetChain’s implementation had provided the fastest in-network KVS which, however,
presents limitations that make it less appealing for large-scale deployments in a data
centre environment and make it slower compared to NetCRAQ. Its Chain Replication
mechanism requires full chain traversals to fetch values from the appointed reference node
in order to maintain per-item consistency among the participating nodes. In a data cen-
tre environment, this results in generating packets that require multiple hops between
switches to fetch a value, and then return this value back to the source of the query. A
repercussion of this is the generation of high volumes of traffic directed towards a single
node, which can cause traffic hot-spots within the topology and eventually lead to link
saturation. Moreover, NetChain’s packets place the IPs of participating nodes inside the
header, rendering its size dependent on the number of participating nodes. This design
can make the total packet size arbitrarily large and can cause increases in parsing times
which, in combination with repeated chain traversals, can results in performance losses
and inefficient use of resources [82].

NetCRAQ is able to accommodate queries entirely in the data plane in order and main-
tains the sub-Round-Trip Time (RTT) latency demonstrated in NetChain. The design
limitations like high traffic generation and full chain traversals are addressed by adapt-
ing a different replication method, Chain Replication with Apportioned Queries (CRAQ)
[190], to work under the PSA architecture. Packet control logic complexity and hardware
memory are traded for performance and to provide better scalability.

The scalability achieved by NetChain is reassessed to show that increasing chain lengths
are deteriorating its attainable latency and throughput. This work promotes higher scal-
ability and offers lower average latency over increasing chain lengths and higher average
throughput: up to 9.46× higher throughput for a chain of 8 nodes, and 4 orders of magni-
tude lower latency. The routing mechanism is designed to achieve high parsing efficiency
and low overhead over the underlying transfer protocol. NetCRAQ operates under strong
consistency, while the replication method can be adapted to work with relaxed consistency
in favour of performance.

Overall, this work contributes by:

• Identifying weaknesses and performance limitations of KV platforms that operate in

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 46

PDP.

• Stateful packet processing at link rate involves numerous programming constraints
to ensure that the compiled binary can achieve the attainable rates. This introduces
a series of design decisions that need to be made in order to strike a balance between
the environment constraints, performance, and the functionality of the selected use
case. A replicated storage fully implemented in PDP allows experimentation with
various design choices: algorithm selection, elements maintained in PDP, protocol
structure, failure handling, etc. This work discusses such design decisions in detail
and provides reasoning behind design choices for the case of replicated storage in
PDP.

• Using the insight acquired from examining the various design choices of previous
works in the area (as mentioned above), this work contributes by proposing a new
in-network KV platform with design elements that combine a different replication
algorithm alongside various engineering improvements (like reduced packet size, im-
plicit KV state representation, etc.). Through evaluation, the new platform appears
to offer major performance and scalability improvements over the state-of-the-art.

• Providing the accessory routing and processing mechanisms to efficiently deliver
strong consistency and flexibility.

3.2 Existing Limitations

Research in the workload characteristics of deployed KVS shows that they accommodate
read-mostly workloads: the read-write ratio is 30:1 for Facebook’s Memcache [7], 380:1 for
Google F1 [181], and 500:1 for Facebook TAO [25]. Primary-backup variations, like Chain
Replication, are specifically designed for read-mostly workloads, making them an appealing
candidate for the underlying replication method of data centre KVSs. In the context PDP
devices, it has been shown that the simple design of primary-backup protocols and their
reduced computation complexity requirements, ensure integration without performance
compromises. For this reason, most approaches focus on primary-backup methods (instead
of consensus-based methods) that are designed for read-mostly workloads.

3.2.1 NetChain

Capturing the need of modern data centre applications for fast transactions between var-
ious distributed entities, NetChain created a KVS platform for the programmable data
plane, able to accommodate the need for distributed, consistent data replication at the
processing speed of programmable switches (going beyond what IncBricks had achieved

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 47

IncBricks) [100, 126]. Modern VNF orchestration platforms perform regular reads of KV
pairs concerning configuration variables, health metrics, and scheduling variables. Offload-
ing such values in network devices that are co-located in the same infrastructure as the
orchestrator enables sub-RTT responses and therefore quick recoveries in case of failures
or changes within the network. There is also a large range of data centre applications and
network functionalities that rely on data caching and could be greatly accelerated with
the use of an in-network replication platform, e.g., distributed Machine Learning, value
exchanges for protocol convergence, etc. For the purposes of this work, NetChain is con-
sidered as an important platform that expands in-network compute to include frequently
used services.

Under Chain Replication, the replication method used by NetChain, the participating
nodes/programmable switches form a chain and each has a distinct role: head, tail, or
replica. All of the participating nodes hold the same KV pairs. Write queries originate
from the head and then propagate across all replica nodes until they reach the tail. The
tail issues a response which acts as an acknowledgement for the write. A tail node is also
responsible for responding to read queries. Only the tail is considered to be up-to-date
with the latest commit for a value and acts as a reference point for the entire chain. In
Figure 3.1a, we show the path of a read query (dashed arrows) and its response (solid
arrows). Replicas can replace the head or the tail in case of a failure.

Defining the tail as the reference point allows per-key consistency for the entire chain
to be achieved. When a write query reaches the tail, it has certainly been processed by
all previous chain nodes. Therefore, all chain nodes are updated with its latest version. If
the write query is lost before reaching the tail, then all subsequent reads will be replied
with the previous version for this object. This ensures consistency in replies.

NetChain [100], with the use of P4 [63] managed to deploy an in-network KVS in
high-performance ASICs, instead of NPUs in the case of IncBricks, and therefore achieved
greater performance than IncBricks. Its design realised that queries can be processed
in PDP with minimal interactions with the control plane, as part of a fully deployed
replication method.

The query-response mechanism employed relies heavily on the incoming packets that
are processed using the match-action pipeline [78]. A custom packet format was used
(shown in Figure 3.5a), layered over UDP transport, which contained the following fields:
OP - the type of operation (read, write), KEY - the ID of the object in question, VALUE -
its value, SEQ - a monotonically increasing sequence number that mitigates out-of-order
deliveries, SC - the number of chain nodes in the header, Sk - IP of the kth participating
node. Storing the IPs of the nodes in the header aims at reducing the amount of stored
data per switch and allowing dynamic mapping of data to chains.

We notice that the suggested packet structure can add significant overhead bytes,

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 48

HEAD replica replica TAIL

Read query

(a) Message path for a read query in Chain Replication.

HEAD replica replica TAIL

Read query Read query Read query Read query

(b) Message path for read queries to clean objects in CRAQ.

HEAD replica

Write request Dirty read query

replica TAIL

(c) Message path for read queries to dirty objects in CRAQ.

Figure 3.1: Comparison of message path for a read query in Chain Replication vs CRAQ.

especially for larger chains where all the participating node IPs have to be added in the
header. For a 4-node chain, NetChain’s header is 58 bytes, and grows by 32 bits with
every node addition. The linear growth of the packet size with the chain length can cause
increased parsing times and adds complexity when fields need to be added or removed
[82], which according to the platform’s design happens each time a query is processed. In
a data centre topology, the overhead computations result in scalability loss and wasted
resources. This design choice forces the administrator to choose between performance and
redundancy. Another issue arises from the use of a monotonically increasing value in the
SEQ packet field, which is 16 bits by default. This size allows just 65, 536 operations before
the field overflows.

The reasoning behind the choice of Chain Replication as the main replication method
for NetChain reflects the limitations and features of the deployment environment and
provides important lessons. Firstly, Chain Replication has small redundancy requirements
to achieve fault tolerance: to survive f node failures, it requires f + 1 nodes. This is
significant reduction when considering that it translates to the amount of programmable
switches in use. Secondly, Chain Replication presents low implementation complexity by
requiring a simple commit-and-forward pipeline to execute a write query among the chain
nodes. A quorum-based approach would require several RTTs to reach consensus on a

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 49

successful write or respond to a read, which would increase implementation complexity:
the chain has to remain small for performance to remain unaffected from increased packet
sizes and chain traversals. In which case, the offered redundancy is limited and the burden
to monitor and maintain multiple small chains grows with the number of KV pairs.

While the choice of Chain Replication as an in-network replication method displayed
superior performance over legacy KVSs, we observe some performance-limiting factors.
Based on the principle that only the tail can reply to read queries, the amount of generated
packets is substantial: for n participating nodes, 2n packets are required for read queries
and n+1 for write queries. NetChain, by employing Chain Replication, adopts this design
which, in the context of a data centre environment, has the following limitations:

1. generating messages for the tail results in high packet gain for the platform. It
requires network resources for extensive parsing and forwarding;

2. the chain’s reply rate is limited to the throughput that can be provided by the tail
node, being the only one responsible to reply. This heavily harms scalability;

3. directing all queries to a certain node can also be root cause for hot-spots within the
topology;

4. the response latency increases linearly with the chain length because of the increasing
number of hops.

NetChain attempts to spread the load among nodes and minimise downtime in case
of failures by adopting a variation of consistent hashing [106] in combination with virtual
groups [40]. In other words, the KV pairs are partitioned among different hash rings
with each switch holding different continuous segments of the ring. The parameters for
these methods are defined when the nodes are initiated and remain static. There is no
mechanism to re-adjust at a later stage. To make a manual change in the deployed KV
pairs, each switch has to be updated with the appropriate match-action rules while an in-
network KVS is live and accommodates millions of queries, resulting in potential failure
to serve the queries. Even then, the idiosyncrasies of Chain Replication are not resolved
and performance is not guaranteed to be improved.

3.3 CRAQ

Another primary-backup replication method, CRAQ [190], employs a different design but
operates in a similar manner to Chain Replication: the nodes form a chain and each node
can be a head, tail, or replica. The key differences with Chain Replication are: CRAQ’s
ability to handle load across all chain nodes – effectively enhancing scalability, and its
ability to operate under relaxed consistency guarantees to benefit performance.

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 50

In CRAQ, each KV pair can be either clean, in which case the there are no pending
commits for its value, or dirty, which means that the most recent commit is yet to be
acknowledged by the tail. Therefore, multiple versions of a value can correspond to a
key. CRAQ places this information inside each participating node. Upon receiving a read
query, each node can either: respond to it, if the version is clean (cf. Figure 3.1b), or
redirect the query to the tail in order to fetch the latest version (cf. Figure 3.1c). Writes
operate similarly to Chain Replication: a node has to propagate a write down the chain
until it reaches the tail and then be acknowledged as the latest clean version. Once this
happens, the rest of the chain nodes are notified and can delete previous versions of this
object.

The performance limitations of Chain Replication, as identified in Section 3.2, are
revisited here to examine how CRAQ’s design addresses them.

1. Packet gain is reduced, given that only dirty read requests need to be redirected to
the tail. Considering that workloads are read-mostly, the ratio of clean reads over
dirty reads should be high, resulting in a small amount of queries transferred to the
tail.

2. The chain’s throughput is not limited by the throughput of the tail. Replica nodes
are able to reply to clean requests and contribute to the total throughput of the
chain, promoting scalability.

3. While the notion of the tail node as the reference point remains, the amount of traffic
directed to it is reduced, making the rising of hot-spots less probable.

4. Response latency is consistently lower than Chain Replication for the case of clean
objects, regardless of chain size. Only a single hop is required to fetch the reply.

Furthermore, read performance can be further enhanced using CRAQ’s feature to
operate under relaxed consistency. CRAQ has two operation modes that support relaxed
consistency. The first supports eventual consistency: dirty versions of an object can be
used for replies meaning that monotonic read consistency is only locally maintained, and
not throughout the chain. The second supports eventual consistency with maximum-
bounded inconsistency: replies use dirty values that are above a certain time or version
threshold.

It appears that CRAQ offers various improvements over Chain Replication with advan-
tages in performance and scalability while maintaining strong consistency. In the following
Section, we examine how CRAQ can be adapted to work in PDP, adhering to the posed
constraints of such devices while preserving its advantages over Chain Replication.

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 51

Rack kRack 2Rack 1

Switch 1

Key Action

... ...

NetCRAQ code

KV

. . .

Controller

Clients Clients Clients

Switch 2

Key Action

... ...

NetCRAQ code

KV

Switch k

Key Action

... ...

NetCRAQ code

KV

Figure 3.2: Overview of NetCRAQ.

3.4 NetCRAQ Design

NetCRAQ’s design delivers a fault-tolerant, in-network KVS with focus on high through-
put and scalability, minimum packet gain, and strong consistency. The design allocates
functionality between the control and the data planes according to the advantages and
disadvantages of each. Time-critical computations are placed in the data plane to utilise
line-rate performance. The control plane is responsible for network-wide operations, like
failure detection and recovery. An overview of the design is shown in Figure 3.2. NetCRAQ
supports multi-level topologies and is able to direct queries to nodes using IP forwarding.
This could be utilised to formulate different chains within a topology, using the available
resources in the most efficient way. However, for demonstrating the platform’s functional-
ity in a simple way, its deployment is presented in top-of-rack switches in a linear topology.

We leverage the line-rate performance of PDP devices to offload all the query processing
tasks in the data plane. This ensures that fast responses are generated even when retrieving
values from other switches cannot be avoided. The time necessary to retrieve a local key-
value pair is minimised by placing the necessary data structures within each switch’s
registers. The registers are located at the switch’s SRAM to ensure line-rate accesses [22].
Moreover, we keep all coordination messages within the data plane to ensure minimum
delay and consistency.

The control plane is used for less time-critical operations of the platform. Forwarding
rules are generated and installed through the control plane upon initialisation or failure.
The roles of the switches are also initialised through the control plane. They are installed
across all switches to make sure role-based forwarding does not involve retrieving data
from the controller, which would introduce delays in the packet processing pipeline. The

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 52

control plane is also entirely responsible for reacting to failures. In the case of a failure, it
initially activates the failover mechanism, which redirects traffic from the failed node to
a working switch. This is done to minimise traffic loss while the node is down. Once a
recovery node is booted, the control plane installs the latest KV pairs in its registers and
then replaces the failed node with the recovery one.

On the client side, NetCRAQ requests are layered over UDP, using a reserved port
number. The requests can be easily integrated in any modern API using a simple script
to transform them to NetCRAQ’s packet format. The same format is followed by reply
packets.

3.4.1 Data Plane

NetCRAQ’s data plane design is responsible for two main operations: storing/retrieving
the KV pairs in the relevant data structures and processing and forwarding queries and
coordination messages. We present the different elements that enable these operations.

To adhere to the constraints of PDP devices and program under a solid set of rules
that will make our implementation transferable to programmable switch chips, we choose
the P4 programming language [63] and the Portable Switch Architecture (PSA) [78]. P4
is specifically designed to be compatible with programmable switches and ensures that the
compiled binary can be executed with near line-rate performance. This choice also allows
for a direct comparison against NetChain, which is developed with the same tools.

Implicit KV State in PDP

A key difference between Chain Replication and CRAQ is the way that new writes are
processed. In CRAQ, for each object k, there are potentially multiple versions, n. In
Chain Replication, appending multiple values for an object is not required and instead
the only “clean” version exists in the tail. In the context of programmable switches, to
satisfy CRAQ’s requirement, n register cells need to be available to commit writes. For
this reason, the switch is initialised with k × n sequential register cells reserved, forming
an array. We call this the objects_store array. Figure 3.3 shows the format of the
array. Each object consumes n number of cells in the array to allow dirty commits to be
appended at the end of the last commit.

The state of each object (clean/dirty) has to be retrieved to determine the future
control logic operations. We implicitly define the state as clean iff the latest committed
value exists in the first cell of the object’s space within the array. The location of the latest
committed value for each object in the read_index array (cf Figure 3.4). Similarly, the
location of the next available cell to commit a write is stored in the write_index array.
The latter is also used to prevent out-of-bound writes. This implicit definition is based on

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 53

R1 R2 ... Rn Rn+1 ... R2n ... Rkn

Allocated to object 1 Allocated to object 2

Stores k objects of up to n versions per object

Figure 3.3: Multiple versions per object in a single array – objects_store.

R1 R2 ... Rk

R1 R2 ... Rn Rn+1 ... R2n ... Rkn

objects_store

read_index

Figure 3.4: Auxiliary data structure used to determine clean/dirty KV pairs – read_index.

the principle that every previous value is deleted upon a successful write of an object, i.e.,
when this is acknowledged by the tail node. To give an example of how this mechanism
differentiates between clean and dirty values, assume n = 30 objects with k = 10 versions
each are stored in a switch consuming 300 register cells in total. Assume a query arrives for
object with id=1. To determine if the latest version of this object is clean or dirty, its read
index has to be examined. If the read index for this object points to objects_store[10]

then there are no pending commits and the version is clean. If the read index for this
object points anywhere between objects_store[11] and objects_store[19], then the
version is dirty. This mechanism is presented in the form of pseudo-code as part of the
complete control logic in Algorithm 1.

Packet Format

In Section 3.2, NetChain’s packet structure is described. We reiterate its variability ac-
cording to the chain length and the large amount of overhead bytes that can be added.
Since extensive packet parsing cannot be avoided when messages have to traverse the
entire chain, even by employing CRAQ, truncating the packet size and reducing packet
modifications on each switch should enable faster forwarding between the participating
nodes. NetCRAQ’s packet format (seen in Figure 3.5b) follows a simpler approach by
having just three fields layered over UDP:

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 54

ETH IP UDP SCETH IP S0 S1 . . . Sk OP SEQ KEY VALUE

(a) NetChain’s packet format.

ETH IP UDP KV_OP KEY_ID VALUEETH IP

(b) NetCRAQ’s packet format.

Figure 3.5: Comparison of packet format between NetChain and NetCRAQ.

• KV_OP: defines the type of the operation: read request/reply, write request, acknowl-
edgement. (2 bit)

• KEY_ID: contains the key id. (32 bit)

• VALUE: the field containing the value for the specific key. (128 bit)

NetChain’s design placed information tied to the functionality of the platform, like
the number of participating nodes and their IPs, within the packet. We follow a different
approach, where such information is omitted from the packet and instead placed within
the match-action rules of the switch, thus minimising the header size and reducing the
parsing time for all KV operations and coordination messages. The control plane is re-
sponsible for updating the roles according to changes, instead of relying on the incoming
packets for information that concerns the network infrastructure. This way, when changes
occur within the network, recalculation of forwarding rules and switch role allocations can
happen in a single entity that is responsible for such operations.

Ingress Control Logic

The control logic, executed by all participating switches, entails all the necessary opera-
tions for interacting with the KV pairs and managing the network traffic. All operations of
the KVS are atomic to protect the values from simultaneous accesses. NetCRAQ’s control
logic relies heavily on the match-action concept, while values obtained from parsing the
NetCRAQ header are matched against a pre-defined table that dictates the action that
is executed when a match occurs. These match-action pairs are computed at the control
plane.

Metadata fields, used for branching decisions, are also filled by the control plane in
advance using the same mechanism. These metadata fields contain values that need to
be regularly retrieved to manage incoming traffic. For example, the role of each switch
or the IP of the switch appointed to be the tail of the chain. This constitutes a key
design difference with NetChain, since the aforementioned information is already stored
and maintained in the switches instead of being passed through incoming packets (in the

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 55

Algorithm 1: Control Logic
1 objects_store = register[k ∗ n] ; /* main storage of n objects with k

versions */
2 read_index = register[n] ; /* defines read pointer array */
3 write_index = register[n] ; /* defines write pointer array */
4 if kv_op == READ then
5 get_read_index(KEY_ID);
6 get_my_role();
7 if meta.read_index == 0 then
8 clean_read(KEY_ID);
9 generate_reply();

10 else if meta.my_role == TAIL then
11 dirty_read(KEY_ID);
12 generate_reply();
13 else
14 forward_to_tail();
15 else if kv_op == WRITE then
16 get_write_index(KEY_ID);
17 get_my_role();
18 if meta.write_index == 0 then
19 clean_write(KEY_ID);
20 forward_to_tail();
21 else
22 if meta.write_index >= k then
23 drop();
24 else
25 dirty_write(KEY_ID);
26 forward_to_tail();
27 if meta.my_role == TAIL then
28 clean_write(KEY_ID);
29 generate_acknowledgement();
30 multicast();
31 else if kv_op == ACKNOWLEDGEMENT then
32 clean_write(KEY_ID);

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 56

case of NetChain). Having this information stored instead of parsed enables faster overall
parsing and forwarding [82].

The control of packets that contain the NetCRAQ header is primarily dictated by
the KV_OP field. The allowed operations for this field are: READ, READ_REPLY, WRITE,
and ACKNOWLEDGE. Deletes happen in the form of a WRITE operation, since the memory is
statically managed and cannot be freed upon removal of KV pairs. Packets requesting a
READ operation need to contain the value 100 in this field. Replies are matched with 101.
Writes contain the value 200 and acknowledgements the value 300.

Algorithm 1 shows the complete control logic. If the identified operation is a READ, the
next decision is based on the position of the value within the register. If a value exists in
the first position of the object’s register space, we know that the version is clean, otherwise
it is dirty. The next stage includes checking the role of the node. Only a tail node can
reply to a read with a dirty version, while the rest can only reply with clean versions of an
object. Writes in the tail node may be committed but not yet acknowledged by all nodes,
therefore replying with the latest value is not voiding consistency.

3.4.2 Control Plane

The control plane is responsible for installing all the match-action rules related to for-
warding, KV operations, and failure recovery. The control plane allocates a different IP in
each switch. This IP is stored within the metadata of each switch and determines whether
a query will be replied on the arriving node or forwarded. We use the IP protocol for
this and modify the header accordingly to forward to tail or generate acknowledgements.
This provides flexibility for multi-level topologies, offering integration with load-balancing
protocols, like Equal-Cost Multi-Path. Furthermore, the control plane determines and
allocates the roles of the switches within the chain. Based on the number of participating
nodes and the distance between them, different role allocation techniques can be used for a
more flexible deployment. For example, the control plane can integrate the meter extern,
offered by P4, to identify potential hot spots within the topology and re-adjust the chain
lengths and the KV pairs within each register.

The multicast rules of the tail switch are maintained through the control plane, ensuring
that nodes are added/removed as changes happen within the chain. Registers can also
be accessed and managed from the control plane, avoiding packet generation in the chain
during initialisation or addition of a node. All things considered, NetCRAQ’s control
plane design emphasises reconfiguration of rules according to changes within the chain
and the network. Ensuring a smooth adaptation to network changes can be critical in
dynamic data centre environments where failures are common. That said, beyond the
failure recovery mechanism, the evaluation of the reconfiguration properties is beyond the
scope of this work and scenarios like dynamic role changes or hot-spot detection are not

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 57

examined.

Handling Failures

Failure mitigation happens in two phases: 1. immediate redirection of traffic to a failover
node to reduce the traffic loss; and 2. complete recovery with a replacement node and
re-installation of forwarding rules and KV pairs.

When a node remains unresponsive for a certain amount of time, the client can auto-
matically direct requests to a different chain node. This time can be adjusted based on
what is considered as a prolonged lack of response according to the average response rate
of the network. Once the failure is noticed by the control plane, the forwarding rules are
updated by removing the node from the forwarding tables and the multicast group.

In the second phase, a new node re-enters the chain. To maintain consistency, we
follow CRAQ’s approach to identify which node will be used to copy KV pairs from. The
control plane, depending on the position of the failed node, decides the node that will be
used to copy the KV pairs to the new node. The reader can refer to the original CRAQ
paper for the complete list of scenarios [190]. The recovery node remains offline while the
control plane copies the KV pairs from an online node. During this phase, the control
plane also disables any writes across the chain in order to preserve consistency. When the
copy is complete, the node is added in the forwarding tables and the multicast group of
the chain.

3.5 NetCRAQ Performance (vs NetChain)

NetChain was compared against legacy KVS and demonstrated the clear performance
benefits from generating sub-RTT responses using fast data plane memory accesses [100].
NetChain’s findings allow us to safely infer that, if NetCRAQ’s performance is equal or
better than NetChain, then it is also faster than legacy methods. Therefore, we directly
compare NetCRAQ’s performance against NetChain in a series of tests concerned with:
throughput, latency, mixed workloads, and scalability.

3.5.1 Evaluation Setup

The testbed used for evaluation runs a bare-metal installation of Ubuntu 18.04 (kernel:
4.15.0-140-generic) on Intel Core i7-4790 CPU and 16GB of DDR3 RAM. P4 behaviour is
emulated using the reference BMv2 switch [35] - compiled using performance flags. The
topology is generated and managed using Mininet [121] and P4-utils [76]. The control
plane is written in Python and communicates with the Mininet switches using Thrift [61]
and the P4-utils API.

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 58

Typically, BMv2 is used for prototyping purposes. There is a big gap between BMv2
performance and the performance of programmable switch chips. However, by closely fol-
lowing the documentation and compiling it using performance flags, we ensured a stable
behaviour that enabled reproducible results. BMv2 documentation testing reports a me-
dian throughput of 1047 Mbps and our testbed achieved a median of 1176 Mbps for the
same tests, which ensures that the testbed in use has adequate resources and its perfor-
mance is on par with the expected performance. We were able to demonstrate the design
differences between the two platforms and showcase the impact these have on performance.
The measured performance differences stem from the optimisations that reduce the num-
ber of computations and hops required to generate a reply. In the case of implementing
the platform in PDP hardware, such optimisations should be prevalent regardless of the
implementation details of the hardware.

Each experiment uses the same topology for both platforms. The same holds true for
the number of objects and their sizes, the changes of which did not impact performance
during evaluation. All topologies are linear and have the same number of switches and
hosts. Since one host is able to generate enough queries to saturate the link with the switch,
there is no need to use more than one host per switch. To compare raw performance, no
load balancing methods were used despite that both platforms can support them.

3.5.2 Throughput

We evaluate the throughput of both platforms based on the maximum attainable rate at
which they can provide responses to queries. The measurements are in Queries Per Second
(QPS). We direct millions of packets to each switch while increasing the packet rate. The
maximum attainable response rate is considered the rate at which the response rate starts
to decrease and the response latency rises.

Figure 3.6 shows that NetCRAQ’s throughput is not impacted by distance when the
queried object is clean. The reduction in required hops and computations create a big per-
formance difference in favour of NetCRAQ: 4.08× higher throughput for queries directed
to the head of the chain. In case of dirty objects, throughput is still higher than NetChain
with the difference being attributed to the smaller packet size used by NetCRAQ, 72 over-
head bytes for NetChain (SEQ field set to 128 bits to allow continuous traffic) vs 22 bytes
for NetCRAQ. This difference results in smaller parsing times, which when the number
of hops increases is less apparent. When dirty queries are generated directly at the tail,
the amount of processing required to generate a reply is the only factor impacting per-
formance since hops are minimum. In this case, NetCRAQ shows 22% higher throughput
than NetChain, proving higher overall computation efficiency. When queries are directed
to the head, the amount of nodes between the source of the queries and the tail is intro-
ducing limitations in throughput. Here, NetCRAQ is 10.5% faster. Overall, in terms of

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 59

Figure 3.6: Max read QPS vs distance from tail.

throughput, NetCRAQ shows superior performance irrespective of the state of the object
and the distance from tail.

We examine how the two platforms operate in an environment with limited resources
in order to determine the impact of traffic gain and the overall computation efficiency. A
platform with fewer redundant operations will be able to utilise the available resources
to generate replies instead of performing chain traversals and packet parsing. This is
indicative of the wasted processing cycles and link strain that would occur in a data
centre environment. To evaluate these properties, we create congestion in an increasing
number of switches across the chain and assess the impact this has in throughput. To
make the comparison fair, all different combinations of clients are averaged, irrespective
of their distance from the tail. Figure 3.7 shows the outcome of this experiment. Once
more, NetCRAQ achieves better utilisation of the testbed resources and sustains higher
throughput under intense workload scenarios: 2.25× higher throughput for 25% of clients
generating queries, 2.8× higher throughput for 50% of clients generating queries, and
4.73× higher throughput for 100% of clients generating queries.

3.5.3 Latency

As the rate of queries rises, sustaining the same response latency becomes increasingly
harder with continuous atomic operations causing contention of the available resources.
The number of hops and the ingress processing pipeline are the two main factors to impact
the latency of a response. To investigate the latency of the two platforms under different
loads, we use the same 4-node chain and generate an increasing number of read queries.

Figure 3.8 displays the obtained measurements for this scenario. In the displayed

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 60

Figure 3.7: Sustained read throughput vs percentage of congestion.

measurements, we include metrics from all participating nodes, regardless of distance
from tail. Providing consistent latency with different chain lengths adds flexibility to
the platform and the ability to adapt to the requirements of the KVS and the network.
NetCRAQ shows a steady latency response that rises marginally with the number of read
queries. NetChain presents a big variance in response latency which is related to the
varying distance from the tail. The difference becomes more significant as the number
of QPS rises: two orders of magnitude faster responses for 5k and 10k QPS, and three
orders of magnitude for 20k QPS. It is worth noting that the latency profile observed in
our evaluation setup is different than the one in the original publication [100]. The reason
is two-fold: 1. we are using emulation instead of an ASIC, which is also the main reason
for any latency discrepancies, and 2. we use a larger chain (4 nodes) than the one used in
the original paper

Figure 3.9 shows the relevant graph for write queries. NetCRAQ is able to accommo-
date writes faster for query rates up to 10k QPS. For 15k QPS, the multicast operation
of NetCRAQ is congesting the tail link causing a rise in latency. To avoid unintended
congestion, rate-limiting can be applied through P4 externs. We explore the impact of
slower writes in mixed read/write workloads below. It is worth noting that these platforms
are targeted towards read-mostly workloads and a scenario with continuous writes would
be an extreme use case.

3.5.4 Mixed Workloads

We evaluate the platforms under realistic workloads containing a mix of reads and writes.
The behaviour of both platforms under such workloads is shown in Figure 3.10. Starting

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 61

Figure 3.8: Response latency vs QPS.

from a read-only workload, we gradually increase the percentage of writes with a step
of 25%. The performance of the platforms is judged by their attainable response rate.
NetCRAQ achieves more than double the read throughput for all write percentages. With
75% of the queries being writes, both platforms show a decrease of around 85% of their
read-only workload performance. Nonetheless, the read efficiency of NetCRAQ enables
higher throughput, despite the write latency measurements observed in Figure 3.9. Ade-
quate register cells need to be budgeted to maintain all dirty versions before they can be
acknowledged by the tail. This is depicted by the increasing amount of dirty commits as
write percentage rises, observed in the right y axis of Figure 3.10.

Although we evaluate both platforms with workloads with a higher percentage of write
queries, these are not considered typical workloads for these platforms. Both the al-
gorithms and their data-plane implementations are designed for workloads with a high
percentage of read queries, as shown in the representative examples of Section 3.2. Appli-
cations that would generate a high percentage of write queries would have to be able to
withstand a large amount of dirty commits. This means that they should either be able
to operate under relaxed consistency or face delays in convergence times.

3.5.5 Scalability

NetCRAQ is also able to operate over longer chains with smaller throughput and latency
losses over NetChain. We validate this in Figure 3.11. Here, the comparison is between
read queries directed to the head of the chain. We vary the chain length from 4 to 8 nodes.
There are no intermittent writes and therefore all KV pairs are clean. The results showed
that in a chain of 8 nodes, the throughput of NetChain was reduced in half. On that

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 62

Figure 3.9: Write latency vs increasing QPS.

account, we did not proceed to further increasing the chain length as the performance gap
was already representative of the throughput losses that occur. The performance difference
is indicative of the potential gap between the two platforms when accommodating read-
mostly workloads in varying chain lengths. The throughput difference can be up to 9.46×
in favour of NetCRAQ, in the case of 8 chain nodes. This difference stems mainly from the
ability of nodes to respond directly to read queries, thus reducing unnecessary forwarding
and header parsing and processing. NetCRAQ requires only a single RTT to respond to
a read query for a clean KV pair. Because of this, the performance remains the same
regardless of chain size or the role of the node that generates the response (head, tail,
or replica). For the case of NetChain, the amount of computations necessary in order to
respond grows with the number of participating nodes.

3.6 Discussion

This section discusses challenges and limitations of the designed replication platform. It
also expands on potential use cases that would benefit from using the platform, based on
their workload characteristics.

3.6.1 State Preservation

Current programmable switches hold a limited amount of register memory which is acces-
sible at line rates. On that account, registers are considered a scarce resource. Moreover,
the number of registers that will be used can only be reserved during the initialisation of

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 63

Figure 3.10: Performance under mixed read/write workloads.

Figure 3.11: Read throughput vs chain length.

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 64

the switch. Therefore, their use should be done with careful consideration.
While NetCRAQ outperforms the state-of-the-art in many aspects, it also comes with

a higher memory footprint. Namely, multiple object versions need to be stored per key.
The exact amount is dependent on the application requirements and the link rates which
will determine the required buffering between commits of a value. The chain-related
information is also placed within the switch, minimising packet size but reserving space
for storing the chain. This is a platform requirement that needs to be examined according
to the deployment environment and the workload characteristics. By examining the Tofino
iterations, we notice that they tend to grow in terms of available register memory [93].
We expect that this trend will also propagate to other programmable network devices and
this requirement will become less constraining with time.

3.6.2 Technical Challenges

As explained on 3.6.1, a significant amount of information has to be maintained in switches
for the platform to function correctly. Namely, the implicit definition of clean or dirty KV
pairs, the IPs and roles of the participating switches, and a consistent KVS. The control
and the data planes need to interoperate dynamically over network and platform changes.
This can be a challenging task for the developer who needs to ensure that the hosted
KVS as well as the accessory information remains coherent in a variety of scenarios. Even
though P4 enables the development of custom layers in a fairly straight-forward manner,
the final control logic relies mostly on conditionals and can expand quickly. The P4 code
base becomes rather monolithic and complex with little options for debugging prior to
deploying. The control plane can be developed using a variety of tools but evaluation of
its responsiveness to PDP events requires real workloads, making development slow. All
in all, while the technology has matured enough to support such implementations, in its
current state the development becomes challenging, time consuming, and error prone.

3.6.3 Example Use Case

Apart from standalone deployments, KVS operate as part of other orchestration and
network configuration frameworks, e.g., Kubernetes. Central to Kubernetes’ architecture
is etcd [51], a fault-tolerant, consistent KVS that provides coordination services and is used
as the backup store for all of Kubernetes’ control-plane components. Most importantly,
crucial parameters for the operation of the cluster are stored in etcd, such as Container
Network Interface (CNI) information like lease times and health status of participating
nodes. However, it has been shown that etcd presents scalability bottlenecks[98]. Etdc
relies on a consensus-based approach to ensure consistency among the participating nodes.
This approach requires a growing amount of time to confirm that changes have been

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 65

committed in the majority of the participating nodes, which in turn creates increased
response times. In this work, we examine the workload imposed to etcd by Kubernetes
to examine its suitability for deployment in PDP. Based on this analysis, a suggestion is
made to extend the Kubernetes architecture and offload part of the KV traffic to PDP
devices.

Kubernetes Requests

To find out the type of requests directed to etcd, we operate a Kubernetes cluster with four
nodes while monitoring various metrics of the generated requests. Stateless services are
deployed in the form of containers which in Kubernetes are further enclosed within pods.
We then proceed to scale these pods equally among the participating nodes. The pods
are originally 2 and then scale up to 25. After the deployment has finished successfully
we proceed to delete all of them.

The results are the average metrics as obtained over multiple runs of the same experi-
ment. The majority of the requests were read queries (known as ranges in etcd) of a single
KV pair – approx. 15.3k requests. The write requests were just 2.9k, which is 16% of the
total number of queries. Most of the read requests, 55%, were directed to just 25 KV pairs
which concerned health requests, leases, and scheduler values. There were 3.1k consensus
proposals, all of which were successfully conducted.

To establish the best performance that can be achieved by etcd, an etcd benchmark
is set up with representative characteristics of a typical Kubernetes deployment (as found
on Kubernetes’ documentation): 3 nodes, 128bit values, 1 client with parallel connections.
The default benchmark tool provided by etcd was used to establish these parameters. The
results showed an average write duration of 0.21s and an average read query duration of
0.7ms. These numbers are orders of magnitude higher that what can be offered by PDP
platforms like NetChain.

The workload measurements reveal a read-mostly workload, skewed towards a small
subset of KV pairs. The amount of consensus proposals appears to be significant consider-
ing that each consensus involves multiple RTTs to be conducted. Moreover, the response
time of etcd is orders of magnitude lower than the existing in-network implementations. A
PDP implementation of a KVS is not impacted by skewed workloads, given that all SRAM
memory registers are accessed at line rate. The combined performance characteristics can
ensure faster response times of Kubernetes to events such as changes within the network
like health status updates and CNI transactions. Given that a big portion of the workload
is generated during deployment, deployment times can also be reduced after allocation of
the relevant KV pairs in PDP. These results compile a good use case for in-network KV
offloading and integration of programmable devices in Kubernetes’ design.

To this end, a new design for the integration of NetCRAQ within Kubernetes is pro-

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 66

Kubernetes
worker

Rack 2
ToR Switch

Key Action
... ...

NetCRAQ
code

Registers

P4
Runtime

Kubernetes
workerKubernetes
worker

Kubernetes Control Plane
Controller
manager API

Scheduler

etcd
node 1

etcd
node 2

etcd leader

RaftWrite
ahead log

Snapshot

gRPC

KV
metrics

P4 Runtime
Calico CNI

NetCRAQ
placement

API
Server

Kube
controllers

calicoctl

Kubernetes
worker

Rack 1
ToR Switch

Key Action
... ...

NetCRAQ
code

Registers

P4
Runtime

Kubernetes
workerKubernetes
worker

Figure 3.12: Overview of proposed design.

posed. The design can be differentiated in two main parts: the aforementioned PDP
components of NetCRAQ; and the Kubernetes framework changes to support offloading
KV pairs to PDP based on real-time metrics. An overview of the design is shown in Fig-
ure 3.12. Pink blocks represent the extended NetCRAQ design including blocks that are
integrated in Kubernetes to extend its functionality. The rest of the depicted blocks show
Kubernetes and etcd architecture in blue and green, respectively.

Kubernetes Control Plane Extension

Kubernetes’ control plane comprises 5 components: the API server which is the front end
for the control plane; the controller manager that monitors jobs, endpoints, and distributes
tokens; etcd; the CNI that establishes network routing among the participating nodes; and
the scheduler which allocates pods to workers by comparing the requested resources with
the available worker resources [9]. In our proposed design, two Kubernetes components
have been extended to support the integration of PDP: etcd and CNI.

A monitoring component has been added to etcd in order to identify most commonly
accessed KV pairs. It uses the integrated Prometheus endpoint to read metrics [8]. The
most frequent KV pairs are selected as candidates for deployment in PDP. The number
of pairs is decided based on the available memory of the network device and the total size
of the candidate KV pairs.

Monitoring is also in place for the values already in the PDP, which have counters
for access frequency. These statistics are obtained through P4Runtime which is added
as an extended part of the CNI [77]. Through the NetCRAQ placement scheduler, also
located within the CNI, these metrics are compared and a decision on which values will
be transferred to PDP is made. The most frequently read values are placed in the data
plane. The pairs are transferred through packets that are generated in the CNI.

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 67

The P4Runtime CNI component is also used for less time-critical control plane op-
erations. Forwarding rules are generated and installed through the control plane upon
initialisation or failure. Equally, the roles of the switches are initialised through the con-
trol plane. They are installed across all switches to make sure role-based forwarding does
not involve retrieving data from the controller, which would introduce delays in the packet
processing pipeline. The CNI is entirely responsible for reacting to failures. In the case
of a failure, it initially activates the failover mechanism, which redirects traffic from the
failed node to a working switch. This is done to minimise traffic loss while the node is
down. Once a recovery node is booted, the CNI installs the latest KV pairs in its registers
and then replaces the failed node with the recovery one.

3.7 Summary

In this chapter, the capability of programmable network devices to perform per-packet
stateful processing at line rate is leveraged to perform in-network replication. Literature
review indicates that previous work contributed by implementing a KVS replication mech-
anism in PDP that delivers orders of magnitude throughput and latency improvements
over traditional KVS platforms. By examining the design elements of previous in-network
replication platforms I have identified key limitations that harm the performance and
scalability: the selected replication algorithm can become a factor of performance degra-
dation for longer chains leading to link saturation, traffic hot spots, and bottlenecked
performance; the packet format used for managing the deployed chain introduces higher
parsing times as the number of participating nodes increases; sequence control limits the
maximum number of writes of a KV pair to the size of a single header field.

To address these limitations, a new design has been proposed. The key assumptions
of previous work are adopted to ensure a fair comparison: 1. the platform accommo-
dates read-mostly workloads as they are the most frequent type of workload within a
data centre; 2. replies to queries are generated solely in data plane by manipulating the
processing pipeline of PISA programmable hardware to minimise RTT. A new replication
mechanism is adjusted to address previous design limitations and enable scalable genera-
tion of query replies among all participating nodes for clean KV pairs. A smaller packet
format is adopted, transferring the duty of maintaining chain-related information at the
control plane and practically reducing parsing and forwarding time. Furthermore, a se-
ries of ingress control logic changes allows implicit definition of clean and dirty KV pairs
directly at the data plane, maintaining consistency and line rate processing performance
without the need to consult the control plane or introduce consistency errors. The pro-
posed platform design tries to address previous design limitations without compromising
fault-tolerance

CHAPTER 3. REPLICATED STORAGE IN THE DATA PLANE 68

The evaluation of the aforementioned design choices shows improvements in scalability,
throughput, and latency for the proposed platform at the cost of higher memory consump-
tion – used to store committed values before they are acknowledged by the reference node.
The workload imposed at a KVS from mainstream orchestration platforms, like Kuber-
netes, is examined as a potential use case. This can be part of a discussion for further
integration of in-network replication within orchestration frameworks. This integration
can offer faster deployment times and faster reactions to network events like node failures,
link changes, etc. Additionally the co-location of data plane management elements with
management elements of virtualised computing can unify network configuration in a sin-
gular control plane instance, allowing hybrid orchestration and management of services in
both data plane and host servers.

This work can be further extended to dynamically integrate end-host programmable
hardware, like smartNICs and FPGAs, in the replication chain. Through existing mech-
anisms (like P4 counters), sources of traffic can be identified and linked to popular KV
pairs. In a multi-rack deployment, this information can be used to extend the chain of
participating nodes to include end-host programmable hardware located at the source
of the traffic, and therefore provide responses to client queries at reduced latency while
reducing bandwidth consumption that would be spent on query/response transfers. To
achieve this, there are many intermediate steps that need to be in place before committing
to expand the chain of participating nodes. Certain metrics need to be adjusted to inform
the decision of expanding the chain, e.g., what is the amount of generated traffic from
a certain host that will trigger the expansion of the chain?, what is the maximum chain
size that can be supported without compromising performance? etc. Such questions can
expand the current scope of this work and constitute avenues for further research.

Chapter 4

In-Network Storage and Processing at
the Edge

4.1 Overview

With edge computing being the main driver for deploying IoT applications, orchestration
frameworks have to manage increasingly complex infrastructures with diverse constraints.
More specifically, works in the area of cooperative sensing, augmented reality and Industry
4.0 have stringent requirements in terms of latency, availability, resilience and scalability
[201, 108, 166]. Several edge nodes that inter-operate formulate clusters that enable failure
recovery and accumulate processing capacity. The management of the deployed NFs needs
to be agile and offer unique optimisations for each deployment environment.

To achieve edge-cloud convergence and scalable management of the deployed clusters,
edge computing is envisioned to work in conjunction with NFV to deliver a dynamic,
scalable computation environment at the edge [183]. However, mainstream VNF orches-
tration frameworks are primarily designed for use in cloud infrastructures and therefore
do not integrate mechanisms that adapt to the constraints of edge nodes. For example, in
edge environments with limited energy resources, the orchestrator remains oblivious about
the energy levels of each processing node which results to suboptimal placement decisions
that harm the network’s lifetime. Furthermore, responses for queries that arrive in cloud
infrastructure require processing of aggregated data that are gathered at the edge. This
results in excessive bandwidth and energy consumption for transferring and processing
these data at the cloud.

This chapter treats energy-constrained IoT clusters as a representative edge deployment
environment and identifies existing limitations. It also contributes to the discussion of
whether virtualised NFs can be hosted at the edge, what is the energy impact, and what
would be the minimum viable computing specifications. The main limitations that are
identified and discussed further in this chapter are:

69

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 70

• Absence of an in-network storage mechanism for energy usage profiling that is based
on real-time measurements.

• Lack of energy awareness of the orchestrator leading to suboptimal placement deci-
sions.

• High-cost edge-cloud communication for data transferring and analysis.

To demonstrate these limitations, one of the most popular orchestration platforms,
Kubernetes, is selected as a representative framework for deployment of containerised
VNFs at the edge. Using a real world cluster of SBCs running on batteries and managed
by Kubernetes, energy consumption measurements are collected. Based on the collected
measurements, I build the energy profile of Kubernetes in order to further examine the
feasibility of such deployments in terms of energy footprint. This work further contributes
with a new placement method that uses the obtained energy measurements to deliver
real-time energy-aware VNF placement in Kubernetes. Mainstream orchestration plat-
forms like Kubernetes are developed to provide robust software components and ensure
trustworthy behaviour and interoperability. These aspects are maintained in our case
by extending this platform and only altering the scheduling component. Additionally, a
unified edge-cloud infrastructure is promoted through reliance on the same orchestration
platform.

The issue of expensive edge-cloud communications is further addressed for the afore-
mentioned environment. By leveraging the data stored at the edge and the processing
capabilities of edge nodes that make them able to respond to analytics queries of simple
sensor data, a mechanism that is able to direct queries to the relevant edge node is built.
This is achieved by building statistical signatures of data held by edge nodes and storing
them in a Query Controller (QC). The QC determines the relevance between queries and
stored data and directs queries to nodes with relevant data where they are processed and
responses are generated. This allows the deployment of a hierarchical query allocation
mechanism that can direct queries to relevant nodes and therefore save the bandwidth
and energy cost of data transferring to the cloud.

4.2 Motivation

With edge computing being a core component of modern services, the need to perform
fine-grained management of virtualised services at the edge, i.e., aware of local constraints
and demands, becomes apparent. Work reviewed in Section 2.6.3 reveals lack of research
on the computational and energy footprint of virtualised in-network computations at the
edge is not examined. Moreover, the energy footprint of running an orchestration platform
at the edge is not measured and the virtualisation overheads are not established. This work

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 71

is motivated from the above and deploys a testbed managed by a mainstream orchestration
platform running on typical IoT devices to monitor the energy footprint of different roles
of cluster nodes and different types of computations typically found within the cluster,
like data gathering and data storage.

Section 2.6.3 analyses a plethora of works in the areas of resource allocation, place-
ment, and scheduling. In the literature, the placement problem has been adjusted to
various parameters like latency, communication cost, etc. However, practical implementa-
tions of scheduling algorithms are scarce, especially for edge environments. The proposed
algorithms mostly use simulated environments and testbeds with abundance of compu-
tational resources to test the proposed solutions. This work is motivated by the lack of
real-world implementations of schedulers that deal with the placement problem for energy-
constrained environments and addresses this gap by deploying the proposed scheduler in
the aforementioned testbed. A representative cluster of off-the-shelf SBC devices is man-
aged entirely using the proposed scheduler, proving its feasibility and technical soundness.
It extends previous work by introducing real-time energy measurements in the placement
process in order to minimise the avoid service disruption due to battery depletion.

As explained in Section 2.7.1, past research dealt with the allocation of queries to a set
of nodes; either through a time-optimised scheme for selecting the appropriate nodes based
on the odds algorithm, or a reinforcement learning model for query allocation [113, 115].
A statistical learning processes for query load balancing has previously been implemented
[114]. The query allocation mechanism shown in this work extends previous schemes
by providing a statistics-based efficient mechanism responsible to deliver the minimum
sufficient information of the data for query allocation in edge computing environments.
Such mechanism is exposed to the Cloud infrastructure being part of the schemes proposed
in [113, 115, 114].

4.3 Energy Monitoring on Clusters of Single Board Com-

puters

This section describes a virtualised, scalable, and fault-tolerant energy monitoring mech-
anism for SBC clusters that can derive and store energy measurements for the deployed
services based on sensor readings. This mechanism is designed to be integrated into Ku-
bernetes and allow network planning and real-time optimisation of energy consumption
through placement and migration. Furthermore, it showcases the potential of SBC devices
to formulate clusters and host containerised functions and services at the edge. This is
among the first demonstrated deployments of SBC clusters running Kubernetes in the
literature and providing some insights on the energy usage requirements of Kubernetes
running over SBCs.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 72

4.3.1 Design

UM24C Anker Astro E1
Kubernetes Master

Kubernetes Worker 1

Kubernetes Worker 2

Kubernetes Worker 2

UM24C

UM24C

Anker Astro E1

Anker Astro E1

Figure 4.1: Overview of cluster’s architecture.

To explore the potential of an edge SBC cluster, a testbed comprised of four Raspberry
Pi 3 Model B devices is deployed [65]. These devices are a typical representation of an IoT
device, commonly used as the core devices for many SBC clusters built in the past [103].
By being compatible with a wide range of sensor devices, the Raspberry Pi can function
both as a sensor device and a processing node. The OS of choice is Raspbian, a variation
of Debian Linux that is officially supported by the manufacturer of Raspberry Pis.

The energy source for each device is a battery rated at the capacity of 5200 mAh
[127]. The sensor device for the electric measurements of the power consumption for each
node is the UM24C module [188], which connects with the Raspberry Pi via Bluetooth.
Connectivity via non standard methods can prove challenging when using containers or
other virtualisation methods. However, IoT devices are likely to rely on such connectivity.
To address this, such use cases are explored using this testbed. A diagram depicting the
connections among the devices can be seen in Figure 4.1.

The energy monitoring is handled by a virtualised application that will communicate
with the UM24C module to obtain energy measurements. The application components
need to be designed to recover from failures, given that they can be common in IoT
environments. The application must also process the measurements and calculate an
estimation of the remaining capacity of the battery. This metric, called State of Charge
(SoC), will be updated on a database table separately for each of the nodes. The database

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 73

Kubernetes Master

Kubernetes Control Plane

Container Network Interface

Kubernetes Worker 3

Postgre DB

Replica DB
pod

Cache

Sensor
Communication

Measurement
pod

Kubernetes Worker 2

Postgre DB

Database
pod

Cache

Sensor
Communication

Measurement
pod

Kubernetes Worker 1

Cache

Sensor
Communication

Measurement
pod

Figure 4.2: Overview of application architecture

must be maintained in more than one nodes for data recovery in case of battery depletion
or failure of the pods.

Communication with the UM24C device was achieved through serial-over-Bluetooth
connectivity. There is an initial message which the application must send to UM24C in
fixed time intervals to trigger the broadcast of the measurements. The required measure-
ments are acquired by investigating the 130-byte reply message. The SoC estimation of
a battery, depending on the estimation model in use, can be dependent on factors like
the state of health of the battery, the specific battery model, etc. [90]. These factors
are typically hardware related and estimations that integrate them have to be considered
coupled with the hardware under use. In such cases, they have to be re-estimated upon
hardware change. Such complications are less present in the coulomb counting method
[147]. By using the coulomb counting method, the total electric charge that a battery
absorbs while being charged is monitored, and the same stands for the total charge that
is released when the battery is used to depletion. In principle, the SoC is estimated ac-
cording to the percentage of the electric charge that exited the battery over the electric
charge that entered the battery:
With Qreleasable denoting the released capacity when the battery is completely discharged,
and Qrated depicting the rated capacity of the battery, SoC percentage is given by:

SoC =
Qreleasable

Qrated

(4.1)

Because of its simple yet accurate approach, the coulomb counting method is followed

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 74

for providing SoC updates in the application. To get more accurate results, we decided to
evaluate the Qrated capacity by examining the actual electric charge that the battery is able
to deliver over a number of charge-discharge cycles. We followed a process similar with
the coulombic efficiency estimation that authors proposed in [147]. Coulombic efficiency,
denoted with η, was found to be ≈ 57.69% of the rated capacity, or around 3000 mAh in
total capacity. To increase the accuracy of the SoC estimation, Qmax was used to denote
the maximum releasable capacity and eq. 4.1 was adjusted to:

SoC =
Qmax

η ·Qrated

=
Qmax

0.576923 · 5200mAh
(4.2)

Estimated SoC values are stored in a database after being written in a Redis cache. The
pods responsible for these operations are always considered prone to failure. Therefore, the
application must be designed according to a resilient architecture. Replicas of the database
have to be stored in multiple nodes, so that it can be recovered in case of unexpected
failures. Equally, a caching mechanism is used to ensure that services are able to restore
their last state after failure. If the pod hosting the cache and the application container
fails, the application uses the database to restore its last state. The final architecture of
the application can be seen in Figure 4.2. Each black rectangle represents a node. Inside
each node there are pods, represented by blue rectangles. The collection of pods necessary
for the execution of CNI – in this case Weave-net, are omitted. The rectangles inside the
pods depict the containers running within.

The Measurement pod is the main component of the application. Inside it is a Redis
container, which functions both as a cache for the data and a safety measure in case of
failure. Data can be requested from the Redis cache of each node in case of high traffic on
the database. This can help reduce load from the database at times of congestion, when
for example an administrator performs demanding tasks, and save the database pod from
failure.

Within the Measurement pod is also the Sensor Communication container which per-
forms data gathering, SoC estimation, and saves the measurements in the Redis container
and in the Postgres database (located in the Database pod). The Measurement pod is
deployed in every worker node and measures their energy requirements. The database is
replicated in the Replica DB pod. The Replica DB pod can easily scale to allow higher
redundancy.

The redundancy characteristics of our architecture are not bound to energy monitor-
ing applications and could be equally used for other applications that make use of sensing
devices and need redundant storage of the measurements. These fault-tolerant charac-
teristics can be combined with the scalable properties of the design to make it appealing
for applications with dynamic node numbers. Other NFV services can also be deployed

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 75

in parallel, alter the processing pipeline of obtained measurements, and introduce new
routines, e.g., anomaly detection.

4.3.2 Measurements

Our goal is to obtain measurements from real-world, energy-constrained deployments of
IoT hardware that host virtualised computing workloads. To do so, we mounted energy
measurement devices that obtain voltage and current measurements to containerised ser-
vices.

Setup

More specifically, four UM24Cs were mounted to pods through privileged execution of
volumeMounts within Kubernetes. The same was done for Docker containers. This was
adequate to obtain a fully functional cluster, showcasing that combinations of SBCs and
sensors can be used to host virtualised applications at the edge. However, a way to support
device mounting in pods without granting generic rights, like rights for manipulation of
the network stack, is an addition that would enhance security control.

At the time of testing, Kubernetes was still in early development stages with minimum
support for the processing architecture of Raspberry Pi. Despite this, the application
presented a small amount of fails. On more than 40 hours of testing, pods failed 3 times
and were able to recover without loosing any data. The resilient design seems mandatory
as pod failures are likely to happen. The observed failures were not linked to development
mistakes. Instead, platform related errors were the main source of pod failures.

Stress test

To obtain an insight on the energy requirements of a standalone Raspberry Pi, we per-
formed a CPU stress test, spawning four workers of the stress Debian package, and
measured the voltage and current drained from the battery until depletion. The voltage
graph of Figure 4.3 reveals a sawtooth function whose period gets shorter near the deple-
tion time of the battery. This sawtooth behaviour is due to the voltage regulator circuit
that is used in the Anker Astro E1, which ensures that the voltage never drops bellow a
certain value.

The graph of current, in Figure 4.4, displays a peak current of ≈ 0.750A at the begin-
ning of the measurements subsequently remaining between 0.6A - 0.68A. This comes as a
result of the thermal throttling that the Raspberry Pi experiences. As CPU temperatures
raise above 83.5 degrees Celsius, the frequency of the CPU drops from 1.2GHz to 600MHz
which results in the aforementioned average of power consumption. Behaviour is likely to
change with active cooling.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 76

12:00 13:00 14:00 15:00 16:00 17:00 18:00
Time (hh:mm)

5.10

5.12

5.14

5.16

5.18

5.20

5.22

5.24

Vo
lta

ge
 (v

ol
ts

)

CPU stress - voltage until depletion
Mean values per minute

Figure 4.3: Voltage measurements under CPU stress.

12:00 13:00 14:00 15:00 16:00 17:00 18:00
Time (hh:mm)

0.3

0.4

0.5

0.6

0.7

Cu
rre

nt
 (a

m
pe

re
)

CPU stress - current consumption until depletion
Mean values per minute

Figure 4.4: Current measurements under CPU stress.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 77

State of Charge estimation

The SoC estimation method is evaluated by checking for a synchronisation between the
estimated remaining capacity and battery depletion. This was found to be accurate in
most cases, an example of which is shown in Figures 4.5 and 4.6. Differentiation occurred
when batteries with different states of health and age were tested.

To demonstrate the SoC estimation method, we test it against unsteady current values,
expecting a change of behaviour in accordance to the fluctuation of current. The input
values of current are shown in Figure 4.5 and the corresponding output in Figure 4.6.
Opposite to the expected output, the SoC estimation is linear without presenting any
major changes that correspond to the varying values of current. The hypothesis behind
this observation is that the changes in the current are neither big nor long enough to cause
such change when compared with the capacity of the battery.

12:00 13:00 14:00 15:00 16:00 17:00
Time (hh:mm)

0.26

0.28

0.30

0.32

0.34

0.36

0.38

0.40

0.42

Cu
rre

nt
 (a

m
pe

re
)

Arbitrary current consumption
Mean values per minute

Figure 4.5: Input of current values to the SoC estimation algorithm.

Consumption per Task

Another area of investigation is the average energy consumption of nodes depending on
the tasks that are executed on them. The measurements for the nodes were obtained
while the monitoring application was at full scale for 1.5 hours on the testbed. The
task allocation for each node was: the master node executing Weave-net (CNI) pods
and managing the running pods, a worker performing energy measurements and logging,
another worker performing measurement and logging while running the database where
measures are stored. The results are shown in Figure 4.7.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 78

12:00 13:00 14:00 15:00 16:00 17:00
Time (hh:mm)

101

102

SO
C

pe
rc

en
ta

ge
 (%

) i
n

lo
g

sc
al

e

SOC estimation during discharge

Figure 4.6: Response of the coulomb counting method to the input of Figure 4.5

Idle Electric
logging

Electric logging
& db

Master

Tasks performed

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Cu
rre

nt
 (a

m
pe

re
) 5.0% 8.0% 26.0%

Average current consumption for 1.5 hour
Current when idle
Consumption overhead per task

Figure 4.7: Average current measurement per activity.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 79

Our comparison basis for energy needs is an idle Raspberry Pi which was found to con-
sume an average of 0.281A. The node responsible for the logging of energy measurements
displayed an increase of ≈ 5%, reaching 0.295A. The combination of database and logging
services was found to consume an average of 0.304A, or ≈ 8% growth from the baseline
measurements. The master node was found to be the most energy-demanding node, with
an average consumption of 0.379A which translates to ≈ 26% increase in power consump-
tion compared to our basis. The explanation behind this result is that the master node
is responsible for all management and orchestration processes, i.e., monitoring pod health
status, monitoring the resources of worker nodes, scheduling, maintaining forwarding rules,
handling of API requests. These processes have a constant demand for computation and
networking resources resulting in a high power draw. This concludes that the master node
is the most affected node from Kubernetes’ execution in terms of energy consumption.

Findings

Overall, the successful deployment of the testbed proved that SBC clusters are ready to be
used in conjunction with NFV platforms to host custom-made applications interconnected
with sensor hardware. The lack of an official method to mount host devices to VNFs is
not a limiting factor, at least for the development stage of applications. Additionally,
the overall stability of the hardware, the OS, and the NFV platform is sufficient to claim
that SBC clusters have the potential to be considered as trustworthy edge devices when
a resilient application design is employed. Even when hosting NFV platforms they retain
their small energy footprint. This justifies their suitability for applications that run on
batteries and have mobility or distant location characteristics. The NFV support makes
the management of such networks even easier, especially if resilient and scalable monitoring
applications ensure the normal operation of the network. All these contribute towards the
use of SBC clusters as the infrastructure to develop edge-oriented applications.

4.4 Energy-Aware Placement

This Section shows how the integration of the mechanism presented above (Section 4.3) in
the VNF placement process is achieved in order to perform placement decisions based on
energy measurements. The goal is to maximise the attainable lifetime of the edge cluster
infrastructure without compromising the interoperability and fault-tolerant features of the
orchestrator.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 80

4.4.1 Problem Definition & Notation

To capture the aforementioned environment characteristics and formally define the prob-
lems we investigate, we consider the reference software architecture depicted in Figure 4.8.
It builds upon the previous hardware and software architectures shown on Figures 4.1 &
4.2 by using the same cluster and orchestration framework. The previous architectures
are expanded to enable energy-aware placement. It also defines the types of events that
can be scheduled within the cluster.

Default Controller Node Computing node

Service 1

ECAS

Orchestrator

VNF 1 VNF n...

VNF 1 VNF n...

Service n

Task 1

Task n

SOC estimator

.

.

. .
.
.

Computing node

Service 1

VNF 1 VNF n...

VNF 1 VNF n...

Service n

Task 1

Task n

SOC estimator

.

.

. .
.
.

Computing node

Service 1

VNF 1 VNF n...

VNF 1 VNF n...

Service n

Task 1

Task n

SoC estimator

.

.

. .
.
.

SoC Monitor

Node Selector

Events
Queue

NS Event

Description:
apiVersion: apps/v1
kind: Deployment
metadata:
 name: test-probe-test001
 namespace: default
spec:
 replicas: 1
 selector:
 matchLabels:
 selector: test-probe-test001
 spec:
 containers:
 - name: nginx-liveness-probe
 image: nginx
 imagePullPolicy: IfNotPresent
 ports:
 - containerPort: 80
 protocol: TCP

Priority: 1

Task Event
Priority: 2

Description:
$ mysqldump energy_metrics > time_energy_metrics.sql

Figure 4.8: Software architecture showing distribution of tasks and services.

The controller is responsible for distributing incoming event requests and schedule them
according to their deadline and requirements for resources. The cluster is treated as a pool
of available resources which has to be managed in a way that does not violate deadlines
or energy constraints. Two types of events are considered: tasks and network services.
The former is a set of instructions that require a fixed amount of time for their execution.
Examples of tasks are: log rotation (compressing log files older than a particular time
and deleting deprecated ones), processing rows of a database table, backing up a service
database before its deletion, etc. The resources required for the execution of a task are
released upon completion. A service event is composed of a set of VNFs that can reserve
resources for arbitrary amounts of time that is not known in advance.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 81

The incoming events are examined by the scheduler in an online manner, i.e., as they
arrive and by examining the current resource capacity of the cluster. The events are
scheduled to a set of deployable units within computing nodes (P). P represents all the
virtual nodes (p) – in this case Kubernetes pods, created over physical nodes (N). Each
virtual node p ∈ P is identified with an ID. The parameter pni indicates that virtual node
pi is placed in physical node n, where n ∈ N .

Any given network service (S) is formed by a sequence of VNFs (F), where each
function f must be processed on a set of physical nodes. These functions must be scheduled
one after the other in a specified sequence. Each created virtual node p can only process
one function at a time. Similar to the network functions, any given task (T) will be
processed on the selected physical node where a virtual node p will be created to execute
the requested task. Each event has a requested rate (re) that must be met by the selected
node. In addition, the processing capacity of the node (cn) has to cover the requested rate
by the event (i.e., cn ≥ re).

All network functions and tasks have a running time parameter (tr) that denotes the
amount of time that must pass before an event can be considered completed. When
tr > 0, the event runs during the specified time. In the case that this parameter is 0, or
not specified, the event will be executed during the whole life cycle of the system. Both
types of events also have a starting time (ts) and a completion time (tc). Thus, we can
calculate the execution time (te) of an event through the following equation:

te = tc − ts (4.3)

In addition, the event’s time of arrival (ta) is registered to calculate the entire time
that an event is in the system (tt). Thus, the first parameter (ta) denotes the time when
the request for scheduling was received by the controller node. The second parameter (tt)
is defined as the total time, starting from when an event arises until its completion, and
it can be calculated as follows:

tt = tc − ta (4.4)

As our system will receive event requests following a Poisson process, we introduce a
priority queue to the controller node. The events can have different priorities according to
user demands. The events are ordered in the queue according to various criteria including
priority. The scheduler takes the highest ranking element in the list and chooses the best
physical node to deploy a virtual node that will run the event (task or network function).
The priority queue introduces certain delay in the node assignment process since the
controller node schedules events one by one. In the case of the arrival event rate becoming
higher than the scheduling rate, we define the waiting time (tw) of an event as the time

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 82

from its arrival until its execution is started. This parameter can be obtained from the
following equation:

tw =

{
ts − taf=1

if the event is a service
ts − taT if the event is a task

(4.5)

From Equation (4.5), we obtain the waiting time for each event. In the case of a
service, we need the arrival time of the first network function, as this function represents
the beginning of the service. Both the waiting and total time parameters are considered
evaluation metrics that capture the performance of the scheduler.

Finally, a deadline (d) is defined for processing a given event. In the case of a network
service, the processing of its last function must be completed before this deadline. Other-
wise, the scheduler incurs a SLA violation. A list of notations related to the system model
is provided in Table 4.1.

Notation Description

P Set of deployable units of computing nodes
N Set of physical nodes where events can be scheduled
S Network service request arriving to controller node
F Sequence of VNFs compounding a network service request
T Task request arriving to controller node
p Each virtual node created on the physical nodes to run the events
n Each physical node where virtual nodes are created
pfi Indicates the virtual node where function fi is running
pT Indicates the virtual node where task T is running
fi Each network function forming part of a network service
re Demanded rate of each task and network function
cn Processing capacity of each physical node (n ∈ N)
tr Running time of an event before considering it completed
ts Starting time of an event when being processed in the selected node
tc Completion time of an event in the selected node
te Execution time of an event in the assigned node
ta Arrival time of an event request in the controller node
tt Total time of an event in the system
tw Waiting time of an event in the priority queue
d Deadline for processing a given event

Table 4.1: Descriptions of used notation.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 83

4.5 The ECAS Scheduler

A new scheduler is proposed to replace Kubernetes’ default scheduler. Energy Capacity-
Aware Scheduler (ECAS) is able to process event requests and determine the best node
in a cluster of SBCs to allocate them based on the remaining battery of each node, the
predicted power requirements of the event, and the processing resources of each node.
The proposed scheduler, shown in Figure 4.8 is formed by three main elements: the SoC
Monitor, the Node Selector, and the Events Queue. The SoC Monitor and Node Selector
components will be described in detail in the following sections. The Events Queue com-
ponent was described in Section 4.4.1. External to ECAS is the SoC estimator component
that runs constantly in the computing nodes as an agent and provides measurements to
the SoC Monitor part of ECAS. It is a simplified version of the mechanism described in
Section 4.3 that omits database replication and instead feeds measurements directly in
the SoC Monitor component. The remaining Controller components are depicted in the
Orchestrator block to simplify presentation and allow focusing on the novel parts of the
proposed Controller.

4.5.1 SoC Monitor

This module is responsible for gathering and storing CPU and memory usage measure-
ments from virtual nodes that have been created and assigned an event. It also monitors
the status and power usage of the physical nodes and tracks the number of rejected events
and violations due to insufficient resources.

It starts by obtaining the status of the nodes that form the resources pool for the
cluster, as shown in Procedure "Update Status of Nodes". This procedure updates the

Procedure Update Status of Nodes
1 forall n ∈ N do
2 Update node usage by comparing the accumulative CPU and memory use of

all the virtual nodes placed in physical nodes
3 if (nusageCPU

≥ usageCPUmax or nusageRAM
≥ usageRAMmax) and nstatus is

available then
4 nstatus ← unavailable

5 if (nusageCPU
< usageCPUmax or nusageRAM

< usageRAMmax) and nstatus is
unavailable then

6 nstatus ← available

resource utilisation of each node within the SBC cluster. It determines a node’s resource
utilisation by calculating the whole usage of its virtual nodes in terms of CPU and memory.
Considering all the cluster nodes as candidates to place a created virtual node by default,

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 84

this procedure checks if a current node’s utilisation has not reached its defined maximum
capacity (line 3). If the maximum capacity has been reached, the node’s status is marked
as unavailable, and it is excluded from the candidate selection process in the scheduling
algorithm (line 4). Line 5 checks for the opposite condition. It verifies that the current
node’s usage is below its maximum value. The node’s status is set to available in line 6
if it was previously marked as unavailable. The node updating procedure is used by the
monitor block and its behaviour is described in Algorithm 2.

Algorithm 2: Update Event Metrics
1 Eventrejected ← 0 (Amount of rejected events)
2 Eventviolations ← 0 (Amount of deadline violation in events)
3 while True do
4 forall p ∈ P do
5 if pstatus is Running then
6 Get CPU and Memory usage from metrics server
7 Save CPU and Memory values in pusage

8 else
9 if pstatus is Succeeded and ptc > pd then

10 Eventviolations = Eventviolations + 1

11 if pstatus is Failed then
12 Eventrejected = Eventrejected + 1

13 Delete the virtual node running the event to release its resources
14 Remove p from P
15 Remove S or T from lS or lT accordingly

16 Procedure: Update Status of Nodes

The monitor process begins by initialising two parameters (lines 1-2) that run through-
out the component’s execution (line 3). It checks several parameters (e.g., pstatus, ptc , pd)
for all the created virtual nodes (p ∈ P) to verify if certain conditions have been satisfied.
If a virtual node is running, the monitor block gathers its CPU and memory usage from a
metrics server (e.g., Prometheus [8]) and records these values (lines 5-7). Otherwise, the
event is determined to be in one of two possible states: succeeded or failed. In the case that
an event has completed its execution, the virtual node where it was running is marked
as succeeded. If the event has been completed past its deadline (line 9), the algorithm
updates the amount of deadline violations in line 10. The other state is related to the
failed virtual nodes (line 11). When this condition is satisfied, the amount of rejected
events is updated (line 12). Afterwards, the algorithm releases the used resources and
updates the respective parameters (lines 13-15). Finally, the algorithm calls the updating
nodes procedure in line 16. The rejected events and deadline violations parameters are
later used as evaluation metrics of the proposed scheduler.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 85

Finally, the monitoring block receives the SoC information sent by the SoC estimator
block in a process parallel to Algorithm 2. The received SoC information is saved in
nusageSoC

. The Node Selector component is able to obtain node utilisation metrics such as
CPU usage, memory usage, and SoC by reading the stored values in nusage.

4.5.2 Node Selector

This module is responsible for allocating events from the queue to nodes. To determine
the best node for an event, it takes into account the node’s remaining energy resources, its
processing resources, and the event’s requirements. It uses a regression model to estimate
if the event can be hosted in the node or it will fail due to insufficient energy resources.
The selection of the model and its evaluation is presented below. Typically the controller
node is not included in the node selection process, due to the importance of the workloads
it is already executing. This work re-evaluates this decision and assesses the behaviour of
the system with and without deployment of events in the controller.

Impact of Controller Participation

To study the impact of this decision, we ran several experiments that include/exclude
the controller from the scheduling problem. The cluster’s ability to schedule more events
successfully by using controller resources will be evaluated. Another aspect that will be
evaluated is the saturation of controller processes when computational workloads coincide
with them.

Experimental Setup

The testbed that is used is similar to the one used to obtain the energy monitoring mea-
surements in Section 4.5.1. It is presented in more detail in Section 4.5.3. Generated events
follow a Poisson distribution with requirements defined in Table 4.2. The results are pre-
sented with a 95% ci. Figure 4.9 depicts the average number of successfully scheduled and
rejected events as well as deadline violations for different rates of event generation. An
event is considered successfully scheduled when it did not exceed its deadline. On par with
other works in the area, we assume that QoS is a soft constraint and therefore surpassing
a deadline does not lead to service interruption [69].

Findings on Controller Participation

Controller participation in the resource pool did not affect the number of successfully
scheduled events, which was relatively similar for both cases for all event generation rates.
However, the number of event rejections appears to be decreased for generation rates of 8,
10, and 12 with a reduction of 50%, 61% and 66% respectively. On the contrary, deadline

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 86

30

19 54

42 93

51

55

114

142 147 149

15

22
21

60

32

76

55

114

139 145 149

N
ot D

eployed in C
ontroller

D
eployed in C

ontroller

 2 12

0

50

100

150

200

0

50

100

150

200

5 8 10
Events Generation Rate per Time Unit

E
ve

nt
s

(V
N

Fs
+

Ta
sk

s)

ine violationsDeadl
Successfully scheduled

edReject

Figure 4.9: Assessment of controller participation by measuring event rejections and dead-
line violations over different event generation rates.

violations appear increased compared to a non-participating controller, with rates of 16%,
42%, and 49% for the same generation rates. This increase reveals two things: (i) the
controller takes more time to remove events from the queue when it acts as a computing
node and as a result events exceed their deadlines; (ii) an increase of the total amount
of resources does not guarantee a faster performing cluster and caution should be taken
when allocating roles at each node in the cluster during network planning. Assuming QoS
is a soft constraint for IoT workloads (as explained in the experimental setup), deadline
violations are not severely compromising performance. If this assumption changes, then
we can infer that QoS will be affected proportionally to deadline violations.

Figure 4.10a shows the average waiting time of the events for both criteria. The waiting
time for events that are scheduled in the controller appears increased (soft orange line)
when compared with events scheduled in regular compute nodes (strong red line). This
is the result of the scheduling algorithm which limits the number of deployed events in
the controller to just one, in order to ensure that there is no saturation of the system
components because of excessive load in the controller. Similar results were obtained
for the average total time of the events, which includes the waiting time, as seen in
Figure 4.10b. Deployment of events in compute nodes does not involve this constraint,
and therefore happens at a faster pace. For 8 and 10 events per Time Unit it is clear
that waiting time is minimally impacted. This shows that the specific arrival rates are
matching the testbed resources which is able to quickly perform the ranking of nodes and
allocate events.

A reduced number of rejections is assumed to be a better overall outcome for our

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 87

250

500

750

1000

2 5 8 10 12
Events Generation Rate per Time Unit

W
ai

tin
g

tim
e

Not Deployed in Controller
Deployed in Controller

(a) Waiting time.

400

800

1200

1600

2 5 8 10 12
Events Generation Rate per Time Unit

T
ot

al
 ti

m
e

Not Deployed in Controller
Deployed in Controller

(b) Total time.

Figure 4.10: Average metrics time while deploying or not events in the controller node.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 88

cluster since it satisfies a hard constraint. In Figure 4.11, we show the average acceptance
ratio of events for both criteria. Events are generated following Poisson distribution and
using randomly selected values values from Table 4.2 following a uniform distribution. For
a generation rate of 2 and 5 events per time unit, both criteria have an acceptance rate of
100%. However, for generation rates greater than 5 events per time unit, performance was
different. Specifically, when deploying events in the controller node, the events acceptance
ratio was increased by 11%, 28% and 30% for generation rates of 8, 10 and 12 events per
time unit, respectively.

60

70

80

90

100

2 5 8 10 12
Events Generation Rate per Time Unit

A
cc

ep
ta

nc
e

R
at

io
 (

%
)

Not Deployed in Controller
Deployed in Controller

Figure 4.11: Average events acceptance ratio with and without deploying events in the
controller node.

Based upon these results, we can confirm that using the controller node to deploy
specific events guarantees a higher event acceptance ratio than using its resources solely
for scheduling tasks. The higher acceptance ratio was evidenced by a significant reduction
in the number of rejected events, although, it was at the cost of greater deadline violations.
Overall, the advantages outweigh the drawbacks when deploying services and tasks on the
controller node in a resource-constrained environment. Thus, the proposed scheduler has
been implemented by taking these results into account.

SoC Regression Model

Data driven methods can derive the statistical relevance between usage of resources and
SoC measurements. Such methods are autoregression moving average, artificial neural
networks, support vector machine, etc. [45]. These methods can be computationally
expensive to train, especially when applied over large training data. Additionally, they
must be trained in advance before their hyper-parameters can be adjusted. These methods

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 89

are thus deemed unsuitable for resource-constrained environments like an edge cluster.
A simpler method that is able to estimate future values based on previous trends is

regression. In the case of regression, the coefficients are determined from available training
data by minimising the Root Mean Square Error (RMSE) between the predicted and real
values. The RMSE represents the standard deviation of the prediction errors, thus showing
how concentrated the data is around the line of best fit [53]. In general, regression models
can be classified into two types: polynomial and linear regression models. The former
may include higher powers of one or more predictor variables and are defined in Equation
(4.6). The latter may include the interaction effects of two or more variables, and a typical
example is represented in Equation (4.7).

y = β0 + β1x+ β2x
2 + ...βkx

n
k (4.6)

y = β0 + β1x1 + β2x2 + β12x1x2 + ...βmnxmxn (4.7)

Several regression models were studied to choose the one that best fit our case of study.
Figure 4.12 shows three polynomial models of first, second and third order which use CPU
usage as a predictor to estimate the SoC in a compute node. To describe the accuracy
of the models, we included the adjusted R2 parameter which reflects the variation of
predictors. Additionally, the adjusted R2 parameter does not automatically increase when
more predictors are added to the model. According to this metric, the best model was the
third-order model, which is represented by the blue line. However, given the negligible
accuracy difference of the third-order model and the computation overhead it requires,
the second-order polynomial was used instead to strike a balance between accuracy and
computation cost.

The controller node has different behaviour compared to compute nodes since its main
function is to schedule service and task requests which demand less CPU usage than
hosting services and tasks. Figure 4.13 depicts the controller’s behaviour when CPU usage
reaches its highest value of around 1900 milliCPU (milliCPU: fraction of CPU resources
used in Kubernetes [10]) and starts to decrease while the SoC begins to decline. From the
adjusted R2 values, we can see that none of the analysed models, based on CPU usage,
fit the data correctly because the values were below 0.80. We have hence analysed the
number of incoming packets in the controller node to measure user requests and worker
messages. The studied polynomial models are shown in Figure 4.14. This figure shows
that all tested models fit the data as their adjusted R2 was 1.

The CPU usage represents a boundary parameter for the SBCs because when a node
reaches its maximum value it cannot process any new requests. As a result, CPU usage
must also be considered in the regression model for the controller node. In this regard,
figure 4.15 depicts a three-dimensional representation of the regression model for the con-

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 90

0 500 1000 1500 2000 2500 3000 3500 4000
CPU usage(milliCPU)

65

70

75

80

85

So
C(

%
)

Poly n=1 R2=0.92
Poly n=2 R2=0.95
Poly n=3 R2=0.96
Measured value

Figure 4.12: Multiple regression models for SoC estimation based on CPU usage for com-
pute nodes.

1200140016001800
CPU usage(milliCPU)

75.0

77.5

80.0

82.5

85.0

87.5

90.0

92.5

So
C(

%
)

Poly n=1 R2=0.50
Poly n=2 R2=0.59
Poly n=3 R2=0.64
Measured value

Figure 4.13: SoC regression based on CPU usage for the control plane node.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 91

0 20 40 60 80 100 120 140
Incoming packets

83

84

85

86

87

88

89

90

91

So
C(

%
)

Poly n=1 R2=1.00
Poly n=2 R2=1.00
Poly n=3 R2=1.00
Measured value

Figure 4.14: SoC regression based on incoming packets at the control plane node.

troller node based on incoming packets and CPU usage. When using two predictors, the
least square regression line becomes a plane with two estimated slope coefficients. The
model’s coefficients are estimated by finding the minimum sum of squared deviations be-
tween the blue plane and the measured values. With consideration of the adjusted R2,
this model fits our data since it has the highest possible value.

Finally, the SoC regression model for the SBC cluster can be expressed as follows:

SoCpredmodel
= δ0 + δ1 · pktin + δ2 · cpu+ (δ3i · computei) · cpu2 + δ4i · computei (4.8)

The model coefficients (δ) were obtained from the available training data set. Cate-
gorical variables computei are introduced to represent each compute node in the model.
These variables are binary. The node whose SoC is to be predicted takes a value of 1 and
the others take a value of 0 (e.g., compute1=1, compute2=0, ..., computen=0). Notice
that in the case of the controller node, all categorical variables are 0 (e.g., compute1=0,
compute2=0, ..., computen=0). Thus, the SoC regression model is transformed into a
linear model with two predictors (i.e., pktin and cpu). In contrast, for the compute nodes,
a second-order polynomial model based on CPU usage was used since the pktin term was
discarded due to its low impact when compared with CPU usage.

Algorithmic Components of Node Selector

Procedure SoC estimation summarises the SoC estimation methodology. It uses the afore-
mentioned trained regression model to estimate the SoC value that a node will have if a
specific virtual node was assigned to it (explained in more detail below) [53]. Furthermore,

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 92

CPU usage(milliCPU)
1100 1200 1300 1400 1500 1600 1700 1800

Incoming packets 0
20

40
60

80
100

120
140

SoC(%
)

83

84

85

86

87

88

89

90

91
Lineal 2 parameters R2=1.00

Measured
Predicted

Figure 4.15: Lineal regression model with CPU usage and incoming packets as predictors
for the controller node.

by using the outcome of the controller participation experiments it integrates the controller
in the list of candidate nodes in a way that increases the total amount of resources but
also prevents system saturation due to extensive workload deployment.

The SoC estimation procedure uses a physical and a virtual node as input arguments.
Then, using the trained regression model, it predicts the SoC value if the allocation of vir-
tual node to the physical node proceeds. The first step in the SoC prediction procedure is
to initialise the output variable and create an empty set to store the data used by the pre-
diction model (line 1). Next, the procedure checks if the input node is the controller node
in order to adjust the model arguments and provide accurate predictions using network
measurements (line 2). Lines 3-6 determine the values required by the model and store
them in the data variable. In line 3, the expected CPU usage of the node is calculated by
adding the current CPU usage and the CPU usage in case the event is allocated in the
physical node. Lines 4 and 5 determine the expected overall number of exchanged packets
between the controller and the computing nodes once the virtual node is scheduled. The
obtained values are then stored in the data set (line 6). In the case of computing nodes,
the procedure only factors in the expected CPU usage and saves this value in the data set
(lines 7-9). Finally, the prediction value is obtained from the SoC regression model using
the stored data as input (line 10).

Algorithm 3 is constantly running within ECAS and it is triggered by events entering

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 93

Procedure SoC estimation
Input: p0, n
Output: SoCvalue

1 SoCvalue ← 0, data← ∅
2 if n is controller then
3 cpu← nusageCPU

+ p0CPUreq

4 pktin ← npktin +
npktin∑
p∈P

5 pktout ← npktout +
npktout∑

p∈P

6 data← cpu, pktin, pktout, n

7 else
8 cpu← nusageCPU

+ p0CPUreq

9 data← cpu, n

10 SoCvalue ← SoCpredmodel
(data)

11 return SoCvalue

the priority queue (line 1). The algorithm fetches the resource utilisation metrics for
each physical node from the SoC Monitor component (line 2). It then takes the first
element in lpriority and initialises the list of candidates that can host the new virtual node
(lines 3-5). In the next steps, a list of potential candidate SBCs for the virtual node is
formulated. Each physical node with a battery percentage above a minimum predefined
value and status set to "available" is added to lcandidate (lines 6-8). If there are more than
one available candidates for deployment and the controller belongs to the list, then it is
removed to prioritise allocation to compute nodes (lines 9-10). This is done to reduce
unnecessary use of the controller’s resources and avoid unnecessary processing that can
delay core functions of the cluster. In this manner, controller resources are only used when
the rest of the cluster resources are reserved. If the previous condition is not met (line 9),
two scenarios are examined (line 11):

• There are no available resources to host a virtual node.

• The only available node is the controller and the event has arbitrary execution time.

In both cases, the associated event is rejected (lines 12-22) and the Eventrejected metric
is incremented. The created virtual node for that event is removed and P , lS and lT

are updated. In the case of a service event, the algorithm checks each participating
network function: if the function has already been deployed, it is deleted and the associated
resources are released; if the function is in the priority queue, it gets removed to save
scheduler resources. After not meeting the aforementioned conditions (lines 9 and 11),
there is at least one node in lcandidate (line 23). Notice that the controller node can be in
lcandidate when there are no more available computing nodes and the events to be placed

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 94

have a specified running time (tr > 0). ECAS in this case is trying to minimise the number
of rejected events. At this stage, nodes in lcandidate are ranked using equation 4.9 to find
the best one to deploy the event (lines 24-32). In line 26, the algorithm uses the SoC
predictor model to calculate the SoC of the current candidate node using Procedure SoC
estimation (line 27).

The output of the SoC prediction procedure is used in Algorithm 3 to calculate the
node score through Equation (4.9) (line 28). With this equation, the algorithm tries to
maximise the node score by selecting the node with the highest SoC and the minimum
CPU usage.

nscore = α1 · (SoC/100) + (1− α1) · (1− ECPU /UsageCPUmax) (4.9)

In Equation (4.9), the value α1 is an adjustable positive weight with values between 0
and 1. SoC is a value between 0 and 100, as obtained from the monitoring component.
(ECPU) represents the expected CPU usage of the node if the assignment of the event
proceeds. This value is derived by adding the current CPU usage of the node and the
CPU usage described in the event requirements. After calculating nscore for all nodes,
Algorithm 3 selects the one with the highest score (line 31). Finally, by communicating
with the orchestrator, ECAS binds p0 in nbest (line 33).

Algorithm 4 shows an overview of the sequence of the different procedures and algorith-
mic components of ECAS. It initialises the set of virtual nodes, which can be updated by
both the node selector and the monitor block and the event lists (lines 1-3). In addition,
it initialises the SoC prediction model used in Algorithm 3 and the data set to train the
regression model (line 4). Algorithm 4 listens for event requests while the node selector
component is running (line 8). When a request arrives, the algorithm adds it to the cor-
responding list in line 9. Then, it creates a virtual node with the specified requirements
and adds it to the set of virtual nodes that need to be scheduled (line 10). Events are
ranked in the priority queue (lpriority) (lines 11-13) which is determined by a process that
considers two factors: delay(p) and waitqueue(p). The former represents the amount of
time that the scheduler can delay the execution of an event without missing its deadline
(see Equation (4.10)). The latter is the waiting time of the event before being processed
by the scheduler (see Equation (4.11)). In both equations, we denote the current system
time as tnow. Note that the smaller the delay(p), the faster the created virtual node will
be executed.

delay(p) = pd − tnow − ptr (4.10)

waitqueue(p) = tnow − pta (4.11)

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 95

Algorithm 3: Event Scheduler
1 while len(lpriority) > 0 do
2 Get node’s capacity information
3 p0 ← First element of lpriority
4 Update lpriority
5 lcandidate ← ∅
6 forall n ∈ N do
7 if nusageSoC

> SoCminthreshold
and nstatus is scheduled then

8 lcandidate ← lcandidate + n

9 if lcandidate > 1 and ncontroller ∈ lcandidate then
10 Remove ncontroller from lcandidate

11 else if lcandidate == 0 or (lcandidate == 1 and ncontroller ∈ lcandidate and
p0tr == 0) then

12 if p0event is Service then
13 forall f ∈ F do
14 if pfi is deployed then
15 Delete pfi to release its resources

16 if pfi ∈ lpriority then
17 Remove pfi from lpriority

18 else
19 Delete pT to release its resources

20 Remove p from P
21 Remove S or T from lS or lT accordingly
22 Eventrejected = Eventrejected + 1

23 else
24 nbest ← First element in lcandidate
25 forall n ∈ lcandidate do
26 if SoCpredmodel

̸= ∅ then
27 nSoCpred

← Procedure SoC estimation: Predict SoC(p0, n)
28 Calculate nscore using Equation (4.9) with nSoCpred

29 else
30 Calculate nscore using Equation (4.9) with nusageSoC

31 if nscore > nbest
score then

32 nbest ← n

33 Bind p0 to nbest

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 96

Algorithm 4: Main process
1 P ← 0
2 lS ← 0 (List of running services)
3 lT ← 0 (List of running tasks)
4 SOCpredmodel

← ∅, training_data← ∅
5 Algorithm 2: Update Status of Events
6 Algorithm 3: Event Scheduler
7 Training of regression model
8 while True do
9 Add S or T to lS or lT according to event requests

10 Create p for S or T and add it to P
11 Determine maximum delay to process p through Equation (4.10)
12 Determine the time before putting p into priority queue through

Equation (4.11)
13 Calculate prank using Equation (4.12)
14 Add p to lpriority
15 Sort lpriority by virtual node ranking

Based on the previous definitions, we calculate the ranking score for the virtual node
where an event runs, denoted by prank, as follows:

prank = β1 · delay(p)− (1− β1) · waitqueue(p), (4.12)

where β1 is an adjustable positive weight with values between 0 and 1. A virtual node
with the lowest ranking must be executed first. Thus, the algorithm updates the priority
list and sorts the queue by taking into account the calculated ranking of the virtual node
(lines 14-15).

4.5.3 Evaluation

Here we demonstrate the performance of the design decisions explained in the previous
sections when combined together and integrated within Kubernetes.

4.5.4 Evaluation Setup

A similar cluster to that of Section 4.5.1 has been used, with a few upgrades. Raspberry
Pi 3 Model B were replace by Raspberry Pi 4 Model B [66]. While both devices are
representative of modern IoT nodes, in terms of cluster capabilities, Model 4 has higher
processing capacity and therefore evaluation can conducted using a more diverse set of
events. A higher capacity battery was also used as the energy source, raising the capacity
from 5200 mAh to 10000 mAh. The sensor device that obtains energy measurements
remained the same. Kubernetes 20.04 was deployed as the management framework for

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 97

Table 4.2: Evaluation parameter ranges based on testbed.

Number of VNFs in a Service 5 - 10
Processing Capacity per Node (MIPS) 500 - 3000
CPU Capacity per Node (milliCPU) 4000
Memory Capacity per Node (Ki) 7998464
Required Processing Rate per Event (MIPS) 100 - 500
Required CPU per Event (milliCPU) 150 - 250
Required Memory per Event (Ki) 200 - 500

virtualised services and tasks. Services and tasks are virtualised using Docker containers
within pods. The deployed events are placed into the devices and utilise their available
capacity according to predefined requirements. ECAS was implemented using Python
3.6.8 and deployed within Kubernetes, replacing the baseline scheduler.

In our evaluation scenarios, the services and tasks to be scheduled arrive one at a time
following a Poisson distribution. We explore different event arrival rates that range from
2 to 12 events per time unit. The main parameters used for creating the services and
tasks are selected randomly from the list of values shown in Table 4.2 following a uniform
distribution. The evaluation parameters are defined based on typical workloads derived
from the literature. CPU usage is measured in CPU units and is expressed as an absolute
quantity. Thus, 100 milliCPU and 0.1CPU are approximately the same amount of CPU
usage in a single-core, dual-core, or 48-core machine. This conforms with Kubernetes’
design and allows portability of the designed platform to different clusters [10].

The proposed scheduling component, ECAS, is compared against the popular greedy
Least Loaded Scheduler (LLS), and the native Kubernetes Scheduler (KS). LLS aims to
allocate the different events to the node with the highest available buffer capacity. Thus,
the node whose CPU is least utilised is ranked first. KS first filters the nodes that can
host the event by checking the requirements of the event and the node’s specifications.
It then ranks all of the candidate nodes based on the remaining processing resources
they will have if the assignment proceeds and selects the one with the highest amount
of remaining processing resources. There are more scoring criteria in the process of node
scoring (affinity, anti-affinity of pods, data locality, etc) for KS, but to ensure a fair
comparison they have been disabled. The main metrics used to evaluate their performance
were: scheduled and rejected events, deadline violations, waiting time and total time,
acceptance ratio and battery consumption. To ensure the reliability of the obtained results,
for each generation rate the experiment is run multiple times for all scheduling algorithms
to obtain a 95% confidence interval.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 98

Scheduled, Requested, and Rejected Events

Figure 4.16 depicts the obtained results in terms of requested, scheduled and rejected tasks
and services. We can observe that all the schedulers, except for the KS, achieved similar
results when the generation rate was small (i.e., 2 and 5) and managed to deploy all the
requested services (rejected services were 0). The KS had 2 rejected services (red bar) for
a generation rate of 5 events per unit time. We also notice that for high generation rates
(i.e., 8, 10 and 12), KS rejected 2 tasks (salmon bar). In contrast, the other algorithms
deployed all the requested tasks (mid blue bar).

L
L

S
E

C
A

S
K

S

2 5 8 10 12

0

10
20
30
40

0
10
20
30
40

0

10
20
30
40

Events Generation Rate per Time Unit

E
v
e

n
ts

Rejected_Services
Rejected_Tasks

Requested_Services
Requested_Tasks

Scheduled_Services
Scheduled_Tasks

Figure 4.16: Number of requested, scheduled and rejected events (i.e., Services and Tasks)
for each scheduling algorithm.

Since generated services are formed by several VNFs, figure 4.17 shows the obtained
results for their constituent VNFs. By looking at rejected VNFs for low-value generation
rates, KS appears to have rejected 8 VNFs (apricot bar) for the rate of 5 events per time
unit. By contrast, the other schedulers were able to schedule all requested VNFs for low
generation rates. In terms of scheduled VNFs (windows blue bar), ECAS outperformed
LLS and KS by 19% and 17%, 8% and 7%, respectively, for low event generation rates.
For higher generation rates the differences are incremental with 5% and 2%, respectively.
Additionally, the ECAS reduced the rejected VNFs w.r.t LLS by 11%, 12% and 12% for
8, 10 and 12 events per unit time, respectively. For the same generation rates, reductions
were higher when compared against KS, with values up to 16%, 23% and 18%. For low
event generation rates, which are more typical for an IoT cluster, ECAS demonstrates that
events are less likely to be initially accepted and then evicted due to low energy resources.
This is reflected in the increased number of scheduled events but also with fewer event

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 99

rejections on average.
L

L
S

E
C

A
S

K
S

2 5 8 10 12

0

100

200

300

0

100

200

300

0

100

200

300

Events Generation Rate per Time Unit

E
v
e

n
ts

Rejected_VNFs Requested_VNFs Scheduled_VNFs

Figure 4.17: Number of requested, scheduled and rejected VNFs per scheduling algorithm.

Average Acceptance Ratio

The acceptance ratio represents the proportion between scheduled and requested events.
Figure 4.18 shows the average acceptance ratio for various generation rates for all consid-
ered schedulers. KS had the worst performance across all generation rates with its lowest
point being around 72% for 12 events/time unit. LLS and ECAS showed similar perfor-
mance for low generation rates. For arrival rates of 8 or more events per unit time ECAS
showed increased acceptance ratios by around 2% with respect to LLS. The performance
of KS shows that the default ranking approach, originally designed for commodity servers,
ignores energy resources and fails to adapt to low-end devices which operate well under
reduced resources. In contrast, LLS – by relying primarily on CPU resources captures the
potential of IoT devices better. ECAS further improves this by including energy resources.

Average Number of Scheduled Events and Deadline Violations

Figure 4.19 illustrates a deeper insight into the number of scheduled events, since it sep-
arates the events with deadline violations from the successful ones. In general, ECAS
showcased reduced deadline violations compared to the others for all the generation rates.
For the highest generation rate (i.e., 12 events per unit time), ECAS decreased the number
of deadline violations by 75% and 83% w.r.t LLS and KS, respectively. Only for the case
of 5 events per unit time, LLS had the lowest value of all. This indicates that events

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 100

70

80

90

100

2 5 8 10 12
Events Generation Rate per Time Unit

A
cc

ep
ta

nc
e

R
at

io
(%

)

LLS
ECAS
Kube

Figure 4.18: Acceptance ratio of events per scheduling algorithm.

arriving at lower generation rates are less likely to cause resource contention and a greedy
approach is adequate to ensure timely fulfilment of the requests.

Average Waiting and Total Time

As seen in Subsection 4.5.2, the values of the waiting and total times are higher when the
scheduler deploys events in the controller node. From Figures 4.20, 4.21, it is affirmed
that ECAS had the lowest increment for event waiting time and total time. The waiting
time is reduced by 42% and 53% w.r.t to LLS and KS for high event generation rates,
respectively (Figure 4.20). Additionally, ECAS decreased the total up to 34% and 53% in
comparison with LLS and KS, respectively. KS is particularly slow at managing the queue
of events, with various processes delaying the deployment of events to perform ranking
and parsing of the queue. This is addressed with LLS and ECAS, with the latter allowing
faster processing of events by deploying them in less congested nodes with adequate energy
capacity.

Average Battery Consumption

To measure battery consumption, the difference between the initial and final measured SoC
was compared for various event generation rates. Figure 4.22 shows the average battery
consumption for each node for all studied scheduling algorithms. The results show that
increases in arrival rate translate to higher battery consumption. KS appears to have
the highest battery consumption for all generation rates when compared to the rest. In
contrast, the node selection criteria of ECAS ensured the lowest battery consumption.
This is attributed to two main aspects of the scheduler:

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 101

LLS
EC

AS
KS

2 5 8 10 12

0

50

100

150

200

0

50

100

150

200

0

50

100

150

200

Events Generation Rate per Time Unit

Ev
en

ts
 (V

N
Fs

+T
as

ks
)

Deadline Violations
Successfully scheduled

Figure 4.19: Number of successfully scheduled events and deadline violations for each
scheduling algorithm.

500

1000

1500

2000

2 5 8 10 12
Events Generation Rate per Time Unit

W
ai

tin
g

tim
e

LLS
ECAS
Kube

Figure 4.20: Waiting time for all scheduling algorithms.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 102

50
0

1000

1500

2000

2 5 8 10 12
Events Generation Rate per Time Unit

T
ot

al
 ti

m
e

LLS
ECAS
Kube

Figure 4.21: Total processing time for all scheduling algorithms.

1. It always selects nodes with high SoC and low CPU utilisation, reducing resource
contention.

2. The reduced number of deadline violations reduce the time events spend in the
system, and therefore lower the impact in battery consumption when compared to
the other schedulers.

By taking a closer look at the highest generation rate, our scheduler is shown to have
saved up to 39% and 59% of in battery resources for the master node w.r.t LLS and
KS, respectively. Likewise, it decreased the consumption in Worker1 by 36% and 51%
in comparison. It was also found that ECAS reduced imbalances in power consumption
among workers: for a generation rate of 12 events per time unit, ECAS presented an
imbalance of 0.25 between the maximum and minimum average battery consumption. On
the contrary, for the same generation rates, LLS and KS scored 2.82 and 3.61, respectively.

4.5.5 Discussion

Apart from the advantages of energy-aware placement shown over a series of tests, there is
also another subtle observation that relates to the absolute values in terms of deployment
time and processing time for various event generation rates. The reader can easily notice
that the waiting time for an event can vary from a few minutes up to a substantial duration
of time (close to 30 minutes) depending on the rate of generation. Our analysis shows
that waiting time constitutes a significant percentage of the total processing time for an
event. The devices used in the previous experiments are indicative of IoT equipment,
limited in processing resources and unable to mitigate this problem. Offloading parts of

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 103

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0

20

40

60

2 5 8 10 12
Events Generation Rate per Time Unit

B
at

te
ry

 C
on

su
m

pt
io

n
(%

)

LLS ECAS KS
Master
Worker1

Worker2
Worker3

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

●

●●

●

●

●●

●

●●

●

● ●

●

●●

●

● ●

●

●

● ●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

●●

●

●

●

●

●●

●

●

●

●

●●

●

● ●

●

● ●

●

●

●

●

●●

●

● ●

●

●

●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

● ●

●

●

●

●

●●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

●●

●

● ●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

● ●

●

●●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

● ●

●

●●

●

●●

●

● ●

●

●

●

●

● ●

●

●●

●

● ●

●

● ●

●

● ●

●

●●

●

●●

●

●●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●●●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●

●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ●

●

● ●

●

●●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ●

●

● ●

●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

●

●

● ●

● ●

●●

● ● ●

●●●●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ● ● ●

●

●●

● ● ●

●●●●

●

● ●

●

● ●

●

●

●●

●

●●

●

● ● ●

●●●●

●

● ● ● ●

●●●

● ● ● ●

●

●●

●

●●

Figure 4.22: Battery consumption for each node while running different scheduling algo-
rithms.

the computation within the network fabric can be accelerate certain processes such as
deployment times and reaction time to events. In the Chapter 3, an architecture that
allows offloading KV pairs within the PDP has been presented. This mechanism can be
adapted to work in edge environments with the use of small form-factor programmable
switches. For example, devices like the APS 2112d can be deployed in close proximity to
clusters of IoT devices and enable line-rate access to replicated storage or other in-network
compute services [146]. Offloading of ECAS parameters can also happen in data plane to
provide faster updates and allow access from other network devices or higher-tier nodes,
operating in close proximity to the cloud or data centre. This is another example of how
offloading at the data plane can facilitate real-time sharing of information that leads to
synergy between different network segments.

4.6 Query allocation at the Edge

In the previous sections, cluster formulation at the edge and local decision making opti-
mised service deployment around available resources. However, with infrastructure span-
ning across both data centre and the network edge there is need to scale management and
provide a converged management architecture. This thesis has shown that deployment
of data in PDP supports high-throughput responses to queries (Chapter 3). A converged
architecture needs to place management information across all available infrastructure in a
way that relieves heavy processing from edge nodes and transfers it to cloud infrastructure.
An important question arises from this endeavour: in a scenario where a cluster of data-

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 104

gathering IoT devices is interconnected to the cloud (possibly through a programmable
switch), what type of information should be placed at the gateway to the cloud to en-
hance data representation and query processing for the whole infrastructure? This section
presents a new mechanism that allows data to remain stored in edge nodes while simulta-
neously maintaining meaningful representations of these data in the cloud infrastructure
(e.g., a programmable switch). This information can be used to direct queries to statis-
tically relevant nodes which can process the queries and transfer the replies back to the
cloud. It contributes by minimising the amount of data transferred over the network,
reducing bandwidth, energy, and usage of processing resources.

Edge Nodes are regarded as distributed data repositories, holding a KVS with sensor
readings, where queries can be executed using the available processing resources. The
efficient management and allocation of incoming analytics queries as well as the provided
results characterise the success of the supported applications. Usually, applications de-
mand a response in the minimum time to provide high quality services to end users.
Hence, the Edge Nodes (ENs)/Query Processors (QPs) should adopt query allocation and
execution plans that limit the time required for obtaining the final analytic result.

Should we desire to significantly reduce the time required for delivering final results
of incoming analytics queries, the selection of the appropriate query execution plan is
the first step of the process. Then, one should involve the selection of an efficient query
allocation plan, i.e., selecting the most appropriate subset of nodes that will deliver the
appropriate results according to queries semantics and in the minimum time. Then, an
efficient aggregation mechanism on the partial results should be invoked. This work focuses
on the allocation process of analytics queries arriving at a QC, either located in the Cloud
or in a master node at the edge, taking into consideration the sufficient statistics (statistical
signatures) of the data present in each EN. The underlying nodes are considered to be
logically clustered based, for example, on geospatial criteria imposed by the analytics
applications. A decision making mechanism is introduced that exploits the statistical
signatures of nodes’ data sets and concludes on the most appropriate subset of nodes for
allocation and execution. Based on this approach the time for getting responses is reduced
and the quality of the responses is improved as nodes with irrelevant data (compared to
queries semantics) are excluded from the query allocation and execution process. The ENs
regularly send their statistical signatures to the QC (at pre-defined intervals) involving the
elimination of outliers and the reduction of the data dimensionality. This way, ENs send
reliable statistics for their dataset that consequently support the QC’s decision making.

4.6.1 Definitions & Problem Formulation

A set of (N) ENs (e.g., Raspberry Pis) is considered: E = {n1, n2, . . . , nN}, placed at
various locations, e.g., in a city. IoT sensors are connected with ENs to deliver their

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 105

contextual data. At the upper layer, e.g., in the Cloud, there is a set of QCs responsible
to receive and execute analytics queries q1, q2, . . . defined by analytics applications and/or
end users (data analysts). Such queries are then allocated to the appropriate QPs for exe-
cution functioning in the available ENs. Consider the set of N QPs P = {p1, p2, . . . , pN},
each one corresponding to an EN. After receiving an analytics query a QC invokes the
most appropriate subset P ′ ⊂ P of QPs to get their query results and return the final
aggregated result to the requesting applications depending on how relevant is the query
to the underlying data of each EN. The determination of the subset P ′ is achieved from
certain statistics of data that each EN delivers to the back-end infrastructure, i.e., QC.
Such statistics support the QC with the necessary view on what data are present in each
EN used for the statistical matching with each incoming analytics query. Figure 4.23
illustrates the considered architecture.

Edge NodeEdge Node Edge Node

QCQC

Dataset Dataset Dataset

...

QC

Edge Node

Dataset

...

Q
ueries

Queries

Queries

Users

Applications

Queries

Queries

Figure 4.23: An architecture that distributes queries through QCs to edge nodes.

Definition 1 A data set Di = {xj}mi
j=1 of the EN i is a set of mi row data vectors x =

[x1, . . . , xd] ∈ Rd with real attributes xk ∈ R.

Analytics queries are issued over a d-dimensional data space and bear two key char-
acteristics: First, they define a subspace of interest, using various predicates on attribute
(dimension) values. Second, they perform aggregate functions over said data subspaces
(to derive key statistics over the subspace of interest). A general vectorial representation
is adopted for modelling a query over any type of data storage/processing system. Pred-
icates over attributes define a data subspace over a data set D formed by a sequence of
logical conjunctions using (in)equality constraints (≤,≥,=). A range-predicate restricts
an attribute xk to be within range [lk, uk]: xk ≥ lk ∧ xk ≤ uk, k = 1, . . . , d. A range query
is modelled over a dataset D through conjunctions of predicates, i.e.,

∧d
k=1(lk ≤ xk ≤ uk)

represented as a vector in R2d.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 106

Definition 2 A (range) row analytics query vector is defined as q = [l1, u1, . . . , ld, ud] ∈
R2d corresponding to the range query

∧d
k=1(lk ≤ xk ≤ uk).

For instance, consider an analytics range query asking for extracting the correlation
between temperature x1 and humidity x2 in the 2-dim subspace [5, 10] × [80, 100] ⊂ R2.
If such a query is executed over a dataset where the pairs (temperature, humidity) are
outwith the above-mentioned 2-dim subspace, then the corresponding node will waste
computational resources for executing this range query. In addition, such results will
affect the final response due to aggregation.

Every EN i at pre-defined intervals calculates certain statistics of its dataset Di forming
the statistical signature: Si. Si contains sufficient statistics of the underlying data vectors
in Di. The following statistics are adopted for the signature: the mean row vector µ =

[µ1, . . . , µd], the variance row vector σ = [σ1, . . . , σd] and the eigenbase Wd×K of the first
K ≤ d column eigenvectors wk ∈ Rd (Principal Components) produced by the Principal
Components Analysis (PCA) [80] over the data in Di (or a sample); see Section 4.6.2. The
signature of EN i is:

Si = {µi,σi,Wi,d×K}. (4.13)

Note that, the signature should be constructed and incrementally updated in limited time,
thus, the performance of nodes is not affected. The extraction of the signature Si is based
on a multidimensional outliers elimination model. The outliers elimination model is based
on an aggregation scheme over two known statistical measures of χ2 and the Grubb’s test
in order to decide about the presence of outliers in Di. The outcomes of the two outliers
techniques are combined and then the signature is constructed over outliers-free data.

Each dataset Di is updated over the time as data streams are produced by IoT devices
at high rates. In our context, the QC does not have any view on the data present in
every dataset since data are not delivered to the QC; only their corresponding statistical
signatures are delivered and updated regularly.

The QC receiving a query q should conclude on a matching degree between the query
and the available signatures {Si}Ni=1. Based on this matching, the QC should decide on
the most appropriate subset P ′ ⊂ P of QPs referring to those ENs that will selectively
execute the query q. Based on this partial engagement of the QPs, irrelevant ENs are
excluded from the query execution thus avoiding providing results that do not match the
query predicates. Hence, irrelevant nodes are not involved in the execution of queries
whose data are not matched with the queries semantics (represented by predicates). By
analogy with the previous sections, a task that invokes fewer nodes allows a more energy-
efficient response than a task that invokes all of the nodes. The QC becomes responsible
for selecting the appropriate nodes and therefore removes the computational burden from

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 107

energy-constrained devices. The problem is formalised as follows:

Problem 1 Given an analytics query q to the QC and a set of N statistical signatures
{Si}Ni=1 derived from N ENs, seek the most appropriate subset of QPs P ′ ⊆ P which will
be engaged for executing the query q.

4.6.2 Scaling-out the Assignment of Queries

This section describes the methodology for finding the relevant subset P ′ of the QPs
given a random range analytics query q in the QC. First, an aggregation mechanism is
introduced for removing outliers from the ENs’ data sets before constructing the statistical
signatures. Then, we provide the construction of the signatures and elaborating on the
methodology of selecting the most relevant ENs for query execution based on the query
semantics and the signatures.

Aggregation-Based Outliers Elimination

For detecting multivariate outliers in a dataset Di, we can rely on widely adopted tech-
niques, which could be categorised to: (i) statistical-based (parametric or non-parametric
approaches), (ii) nearest neighbour-based, (iii) clustering-based, (iv) classification-based
(Bayesian network-based and support vector machine-based approaches), and (v) spectral
decomposition-based approaches. In this work, we focus on the statistical methods that
require less computational resources. An aggregation scheme of the χ2 metric and the
Grubb’s test [80] for the final outliers outcome is introduced. A data vector x ∈ Di is
considered as an outlier if the χ2-statistic exceeds a specific threshold, which is defined as:

χ2(x) =
d∑

k=1

(xk − µk)
2

µk

(4.14)

where µk is the k-th mean value dimension of the mean vector µ of the dataset Di.
According to the central limit theorem, when d is large (≫ 30), the χ2 has approximately
a Gaussian distribution [200]. The Grubb’s test is also adopted for outlier elimination
providing the so-called z-score for data vector x ∈ Di defined as: z(x) = max(∥x−µ∥)

maxk=1,...,d(σk)
.

The vector x ∈ Di is considered as an outlier when

z(x) ≥ |Di| − 1√
|Di|

√√√√ t2α/(2|Di|),|Di|−2

|Di| − 2 + t2α/(2|Di|),|Di|−2

(4.15)

where t2α/(2|Di|),|Di|−2 is retrieved by the t-distribution at the significance level of α/(2|Di|).
This outlier aggregation mechanism is based on a conjunction of the outlier result

determined by χ2(x) and Grubb z(x). Specifically, let the outlier indicator functions be

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 108

Iχ(x) = 1 and IG(x) = 1, respectively denoting that x is an outlier based on the above-
mentioned statistics. Then, the vector x is considered as an outlier in the dataset Di if
Iχ(x) ∧ IG(x) = 1; otherwise the data vector is not an outlier. This means that both
methods should agree on the result. If there is a disagreement, x is not an outlier and is
included in the construction of the statistical signature Si.

Statistical Signature

The statistical signature Si of EN i is based on the data vectors in Di, which are not
considered outliers based on the above-mentioned methodology, i.e., D̃i = {x ∈ Di :

Iχ(x) ∧ IG(x) = 0}. The basic statistics of the mean vector µ and the variances vector σ
are directly determined and efficiently incrementally updated from the outliers-free dataset
D̃i. They are both used for matching with the query predicates, as will be discussed later.
Now, for establishing the minimum sufficient statistics that can reflect the basis of the
underlying data, we use the first Kd principal components of the data vectors in D̃i that
explain the α percentage of the inherent variance (normally α = 0.9). Specifically, we
seek the eigenbase of the outlier-free data D̃i such that given an random data vector
y ∈ Rd we can efficiently determine if this vector can be reconstructed (derived from)
from the eigenvectors of those data x ∈ D̃i. This is the rationale behind the concept
of the signature where we extract the sufficient synopsis of the data deriving the most
representative eigenvectors of D̃i. If the vector y can be explained by the eigenbase of D̃i

then we draw the conclusion that y belongs (can be projected onto) to the subspace of
D̃i. Otherwise, y is considered statistically irrelevant to D̃i. In order to come up with this
reasoning, we need first to derive the K PCs of D̃i by adopting (incremental) PCA over
the dataset D̃i.

In PCA over the D̃i, we seek the d×K matrix Wi of K column (eigen)vectors {wk}Kk=1

that minimizes the objective:

min
Wi∈Rd×K :W⊤

i W=I

∑
xj∈D̃i

∥xj −WiW
⊤
i xj∥2, (4.16)

where ∥x∥ is the Euclidean norm of the vector x. That is, we try to find those K PCs
in the eigenbase Wi such that when we project a d-dim vector onto the subspace defined
by those PCs, the error of the projection vector x̃ = WiW

⊤
i x and the actual vector x

are minimised. Hence, we argue that if x belongs to this subspace then the projection
error is the minimum w.r.t. the K PCs. We select the first K PCs, which are ordered
by their eigenvalues λk, k = 1, . . . , K, such that they explain α(%) of the variances in D̃i.

This is achieved by selecting the first K PCs such that: K = min{K ′ :
∑K′

k=1 λk∑d
k=1 λk

≥ α}.
Given a projection error tolerance ϵ > 0 and the eigenbase Wi reflecting the sufficient
eigenvectors from D̃i we infer that a random vector y ∈ Rd belongs to the subspace

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 109

defined by the PCs of D̃i iff its projection error ∥y−WiW
⊤
i y∥ ≤ ϵ; otherwise, the vector

y is considered statistically irrelevant (cannot be explained from) to D̃i, or in other words
it is highly unlikely to be observed in EN i. The statistical signature Si = {µi,σi,Wi}
is then delivered to the QC. Note, the eigenbase Wi can be incrementally updated with
trivial computational complexity adopting well-known incremental PCA methods. The
EN i regularly updates the QC with an updated signature S ′

i = {µ′
i,σ

′
i,W

′
i} iff there is

a significant difference in ∥µi − µ′
i∥, ∥σi − σ′

i∥ and ∥Wi −W′
i∥; otherwise, there is no

meaning for an update.

Signature-based Query Assignment

The QC receives the signatures {Si}Ni=1 from all N ENs in order to reason about the most
relevant subset of QPs to engage for each analytics query. This means that, for each query
q a different subset P ′ of QPs is determined engaging the corresponding ENs. Given
an analytics query q = [lk, uk]

d
k=1 ∈ R2d, the QC derives its d-dim centre query vector

y = [lk+uk

2
]dk=1 = [yk]

d
k=1 ∈ Rd, where each k-th component yk refers to the centre of k-th

range predicate, i.e., yk = lk+uk

2
. The centre query y is then projected onto each eigenbase

Wi of EN i in order to judge whether the centre predicate semantics are projected over the
data subspace defined by each D̃i. If the vector y is approximately considered to belong
to the eigenbase Wi based on the error tolerance ∥y−WiW

⊤
i y∥ ≤ ϵ, then the associated

QP i is a candidate to be engaged for the execution of this query. Otherwise, the dataset
Di is not relevant for providing analytics results for the query q. In the case where the
QP i is candidate for query q, we further examine if the underlying data are statistically
sufficient (in number) to support the query. This is examined by using the ratio of data
dimensions with yk ∈ [µk − σk, µk + σk], k = 1, . . . , d. If we let I(yk) = 1 if |yk − µk| ≤ σk;
otherwise 0, we can then introduce the degree of engagement I(q,Si) of an analytics query
to a QP i over the dataset Di of EN i as:

I(q,Si) =

{
0 if ∥y −WiW

⊤
i y∥ > ϵ,

1 + 1
d

∑d
k=1 I(yk) otherwise

(4.17)

Hence, given a query q at the QC, we first derive its centre query vector y and then for
each QP i, we check its corresponding degree of engagement I(q,Si) based on the signature
Si. Then, the QC determines the subset P ′(q) ⊆ P of those QPs with I(q,Si) > 0, i.e.,

P ′(q) = {pi ∈ P : I(q,Si) > 0}. (4.18)

The QC assigns the analytics query q to the QPs belonging in P ′(q) to execute that query
over their corresponding ENs.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 110

4.6.3 Experimental Evaluation

This section describes the experimental setup that has been employed to evaluate the
proposed mechanism presented in Section 4.6.2. Furthermore, the performance metrics
that have been used are presented alongside the comparison baseline – query allocation
without the use of our mechanism. The outcome of the performance assessment is discussed
at the end of this section.

Setup

To evaluate our approach, we simulated a deployment scenario that involves four ENs,
represented by SBC devices, that gather two-dimensional data over time. To make the
experiments reproducible, a publicly available dataset has been chosen to simulate the
data repositories of the ENs [6]. The dataset is composed of sensor readings that originate
from a cluster of SBCs, each one attached to an Unmanned Surface Vehicle (USV). The
sensors gather temperature and humidity readings over time at the sea surface, hence,
the two dimensional data vectors of our scenario. However, different nodes stop gathering
data at different times. To compensate for that inconsistency, we chose the time at which
the first USV node stops gathering data to indicate the end of the dataset. In this way,
we maintain consistency through all nodes for data gathered before that time.

With the use of Python libraries, like Scikit-Learn [179], NumPy [33], Pandas [151],
over the aforementioned data, we simulate the behaviour of QC and the underlying nodes.
Various queries and their respective responses are generated for a varying error tolerance
values and batch sizes. When the simulation commences, no data is available to the USV
nodes. Instead, data is parsed gradually according to typical node behaviour. Once a
predefined amount of data is available in an EN/USV, the method that builds the statis-
tical signature for this last amount of data is triggered and builds the relevant statistical
signature Si as defined in Equation 4.13. All USV/nodes transmit their latest statistical
signatures to the QC. In turn, the QC receives a four-dimensional (two temperature val-
ues and two humidity values) analytics query randomly generated according to a uniform
distribution which ranges between [0, 40] for humidity and [0, 60] for temperature. The
QC, based on the initial query qk, calculates the two-dimensional centre query vector yk.
Decisions on which nodes will accommodate the query are based on the mechanism de-
scribed in Section 4.6.2. The error tolerance ϵ defined in Equation 4.17 is pre-determined
to a certain value for each run of the experiment.

Performance Metrics

After queries are allocated to QPs, the responses are based on the available contextual
data on each node. Prior to using the proposed method, the query would be allocated

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 111

to every QP in the network, i.e., the baseline solution engaging all USVs. By using the
proposed query allocation and execution mechanism, the amount of nodes that receive
the query is expected to decrease because of the statistical irrelevance of their data. As
a result, the data that will formulate the response to the query will be fewer and more
relevant to the query, which is our goal. In order to evaluate this rationale, we calculate
the total variance of the data existing in nodes after a query allocation: V ′

total =
∑N ′

i=1 σi,
for N ′ = |P ′(q)| and compare it against the total variance of data across all nodes (prior
to applying the proposed mechanism) Vtotal =

∑N
i=1 σi, for N = |P|, where |P| is the

cardinality of set P .
After the query allocation phase is complete, the nodes that have been found to hold rel-

evant data for the issued queries are marked in order to examine the total node-involvement
ratio per query. The involvement ratio is defined as the number of nodes that were iden-
tified to hold relevant data over the total number of nodes r = N ′

N
, with 0 ≤ N ′ ≤ N .

Such involvement ratio provides a high-level metric of the resources that are utilised per
query execution. By utilising a portion of the nodes and thus having a small involve-
ment ratio, the message exchanges are reduced and fewer query processing transactions
are required. Maintaining a small involvement ratio r while accommodating the needs
of queries translates to more efficient use of the available resources: this is an important
aspect when considering scenarios involving resource-constrained edge nodes, like the UxV
environments.

Performance Assessment

A comparison baseline is set by examining the the naive query allocation mechanism. In
that case, the queries are allocated to every QP available in the edge network. Naive
allocation is selected as the default mechanism for query allocation in IoT. Comparison
with existing methods that have similar goals (e.g., Dragon’s scheme [112], Huarcapuma et
al. [37]) is not straightforward due to subtle differences in data modeling and processing.
It is therefore left for future work. After conducting experiments for this use case and
obtain the aforementioned metrics, we repeat the experiments with the query allocation
mechanism enabled. To ensure convergence of the obtained results, we conducted repeated
experiments and used the average of the outcome. The query allocation mechanism was
executed 1000 times over the previously described setup. The error tolerance was fixed,
ϵ = 40 for the execution of the experiments. Since the data are gathered in batches before
a statistical signature is built, to ensure synchronisation between the queries we fixed the
size of the batches to 40 rows, resulting in statistical signatures for data of 40 rows and 2
columns.

The results in Fig. 4.24 shows that the V ′
total values obtained through the use of

the query allocation mechanism are significantly lower when compared with the values

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 112

occurring when the mechanism is not in use. The observed variance reduction fluctuates
between 30% − 60%, depending on the query. The reduced variance indicates a higher
quality of the query response as it will be based on data with smaller variance not including
irrelevant contextual information.

Average involvement ratio r
Batch size

tolerance ϵ 30 40 50
20 0.225 0.21667 0.20834
30 0.425 0.38334 0.4375
40 0.6625 0.58334 0.47916
50 0.7625 0.88334 0.85416
60 0.9875 1 0.875

Table 4.3: Impact of error tolerance ϵ on expected involvement ratio r.

In order to examine the relation of the reduced variance and the involvement ratio,
we compared the two metrics in Fig. 4.25. The plot shows that variance reduction is,
for most of the time, inversely proportional to the involvement ratio. This shows that
nodes are only involved when they hold relevant information to the query. This increases
the quality of the response by excluding irrelevant information (and nodes). By using
statistical signatures to describe the underlying data, irrelevant nodes are filtered. The
statistical relevance of the data stored on each node is examined before assigning a query,
and therefore our mechanism avoids the use of unnecessary resources (nodes and links).

In Table 4.3, we included a summary of measurements of the average involvement ratio
for different error tolerance values and batch sizes. Our aim is to determine the impact
that the error tolerance ϵ has on the involvement ratio. We found that regardless of
the batch size, increasing values of the error tolerance lead to higher average involvement
ratio as more and more nodes are found to be within this tolerance threshold and therefore
are considered relevant to the query. By adjusting the value of the error tolerance, the
mechanism can be tuned to provide strict correlation between the query and the signatures
(low tolerance) or more relaxed correlation (higher tolerance).

4.7 Summary

The findings of the previous chapter motivated an attempt to extend in-network compute
for edge infrastructure and explore the challenges of deploying virtualised computations
at resource-constrained environments. This work studies the computational and energy
impact of deploying a mainstream orchestration platform at the edge by using an energy
constrained IoT cluster as an indicative deployment environment. A virtualised application
is built to measure energy consumption using wireless sensors. The gathered data is studied

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 113

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Query number

0

5

10

15

20

25

30

35

Va
ria

nc
e

Variance per query. = 40
Average variance for 1000 responses
Variance of original data

Figure 4.24: Comparison between the variance that a query is exposed to w.r.t. the
baseline solution and our proposed mechanism.

0 2 4 6 8 10 12 14
Query number

0

10

20

30

40

50

60

70

80

90

Pe
rc

en
ta

ge
 (%

)

Variance decrease per involvement ratio. = 40

Average variance decrease (1000 iterations)
Average involvement ratio (1000 iterations)

Figure 4.25: The involvement ratio r is compared to variance decrease that occurs from
our query allocation mechanism.

CHAPTER 4. IN-NETWORK STORAGE AND PROCESSING AT THE EDGE 114

to discover the energy impact of the different roles of nodes within the cluster (worker or
master) and how battery consumption changes based on different computations. The
findings show that the master node consumes more energy on average, due to monitoring
and networking processes running constantly to ensure the cluster is alive and healthy.
Overall, virtualised services posed insignificant overheads in energy consumption (5% -
8%) compared to idle power draw, suggesting that using virtualised services at the edge
is attainable under adequate energy provisioning.

The results of deploying the orchestration framework and the app revealed an imbal-
anced but overall modest energy consumption, which motivated the conception of a master
node that is able to integrate real-time energy measurements in the scheduling process with
the aim of reducing imbalances and minimise rejections. It is apparent that the inability
of the default master node to allocate VNFs to IoT nodes based on the required energy
resources makes the cluster underperform by evicting VNFs before their completion and
failing to distribute the available resources equally. A series of design adaptations were
made to introduce real-time measurements within the scheduling process and predict the
energy usage of various requests based on their requirements in processing and network
resources. The resources of the master node were allocated to the general pool of cluster
resources to increase the total processing and energy capacity of the cluster. This was
done for workloads with low processing requirements that will not corrupt the master
node functionality. The proposed energy-aware scheduler, ECAS, outperformed the de-
fault Kubernetes scheduler and the greedy LLS algorithm in a series of tests. It minimised
resource contention at the cluster nodes which was also reflected in evenly-balanced energy
consumption. By matching energy requirements to the available capacity, it minimised
event rejections and average deadline violations.

The use of a cloud orchestrator at the network edge revealed that cloud-edge conver-
gence can be achieved in a technical level with the use of interoperable and extensible
software. Cloud-edge convergence; however, involves distributing information between
edge and cloud, which, considering the vast data gathering of sensor data at the edge,
becomes a demanding task. The last part of this chapter proposes a mechanism that relies
on compute nodes in the cloud to hold representations of data existing at the edge. These
representations are formulated using statistical signatures generated at the edge, which
are subsequently stored and updated at the cloud gateways. Using these representations,
queries generated in the cloud can be directed at edge nodes with relevant data in order to
be processed. The mechanism is capable of providing responses with decreased variance
over naive query allocation. In doing so, it involved fewer nodes for generating a response,
therefore minimising computation and energy usage. The results serve as an indicator of
how cloud gateways, or similarly-located programmable networking hardware, can be used
to facilitate cloud-edge communication.

Chapter 5

Conclusion

5.1 Overview

This chapter revisits the thesis statement and the contributions described in Chapter 1
with the aim of explaining how the conducted work validates these claims. It also discusses
future research directions of the presented work.

5.2 Contributions

The work conducted in this thesis is motivated by a study of the literature that spans
across various disciplines, technologies, and methods. This thesis contributes by analysing
and critically discussing the findings of this study in Chapter 2. The main focus is on
network programmability tools that allow service offloading in both cloud and edge infras-
tructure. The study is inclusive of tools operating in commodity hardware (e.g., user-space
packet processing, kernel space), high port-count devices like programmable switches, and
even end-host interfaces like smartNICs. It then proceeds to analyse the potential and
limitations of modern service provisioning tools, like NFV, and the integration of services
in the network fabric with the use of P4. The most prominent use cases are presented for
both cloud and edge environments.

Having discussed the importance of distributed data replication for the orchestration
of services within the network, Chapter 3 of this thesis contributes by analysing previ-
ous efforts for service deployment in PDP (e.g., NetChain, NetCache, IncBricks). The
fastest available platform, NetChain, is presented in depth with the goal of identifying
the main design aspects that bottleneck its performance. A new data replication plat-
form is proposed that utilises the previous lessons from the deployment of NetChain and
the performance benefits of deploying this service in PDP. The platform is able to achieve
great performance improvements over NetChain: close to linear scalability for read-mostly
workloads and higher throughput across all read/write ratios over NetChain. The plat-

115

CHAPTER 5. CONCLUSION 116

form’s design supports easy integration with other data centre applications by providing
simple query-response messages over UDP. The offloading of Kubernetes’ KVS workload
is examined as a potential use case due to its high percentage in read queries over write
queries and bursty traffic during deployment of services.

With service provisioning expanding closer and closer to the end user, this thesis con-
tributes by reporting findings on edge IoT infrastructure as the host of virtualised ser-
vices and the benefits of synergy between cloud gateways and IoT clusters. In Chapter
4, the feasibility of managing IoT clusters of SBC devices using Kubernetes is assessed
and measurements on the energy impact are gathered. The findings reveal skewed en-
ergy consumption occurring from the operation of the master node and imbalances on
the allocation of resources. This work contributes by adapting the design of Kubernetes’
scheduler to integrate real-time energy measurements, used to predict the remaining ca-
pacity alongside resource utilisation after deploying services to nodes. This work achieves
this and contributes by presenting a scheduler integrated in Kubernetes that is able to min-
imise consumption imbalances and resource contention. Therefore, the scheduler maintains
compatibility with cloud by relying on the same orchestration software while improving
its operation at the edge by adapting it to local constraints.

Driven by the ability to use programmable networking at the edge, either as small
form-factor programmable switches or commodity hardware, and simultaneously use a
common orchestration platform, Chapter 4 of this thesis contributes by combining edge
and cloud infrastructure to improve the allocation of queries to nodes. More specifically,
this work proposes a mechanism that generates statistical signatures of data stored at
the edge and stores them in cloud gateways. Using this mechanism, queries arriving at
the cloud can be directed to nodes based on the statistical relevance between them. This
mechanism provides selective invocation of nodes by only directing queries to statistically
relevant nodes, hereby improving energy consumption by minimising redundant operations
and reducing the average variance in responses to queries.

The work conducted in Chapters 3, 4, appears to be interconnected in many regards.
Data storage within the network, either in data centre or the edge, and efficient data
retrieval appear to be a common denominator of the proposed frameworks. Furthermore,
this thesis formulates proposals by relying on the paradigms of SDN and NFV, that span
across both edge and cloud infrastructure and make service deployment and management
possible. The various proposals that are made either rely or extend these paradigms.
These are considered to be integral elements to achieve edge-cloud continuum and the
delivery of end-to-end service deployments.

CHAPTER 5. CONCLUSION 117

5.3 Thesis Statement Revisited

The thesis statement of Section 1.2 is restated here in order to be revisited afterwards:
"This work considers the capability of modern network hardware to perform per-packet

stateful processing at line rates as a potential accelerator of computations within the net-
work fabric. It asserts that, through stateful packet processing, data replication services
can be implemented within the network in a scalable manner that outperforms legacy data
replication methods. This work identifies limitations of previous in-network replication
platforms and proposes design changes that offer better scalability, throughput and latency
over the previous state of the art, without harming consistency or fault-tolerance. Because
of the central role of Key-Value Stores as a coordination platform for widely deployed
controllers and orchestrators and their workload characteristics, offloading this functional-
ity in programmable hardware is proposed to reduce reaction times to network events and
promote scalable orchestration.

This work also recognises the proliferation of virtualised network functions, able to for-
mulate advanced network services in both data centres and edge infrastructure. It asserts
that Edge IoT infrastructure can host mainstream orchestration platforms despite the ex-
isting resource constraints, further reducing latency at the end user by placing computation
in low proximity. It proceeds to examine the energy impact of running an orchestration
platform in IoT devices and obtains energy profiles for different roles and workloads within
an IoT cluster. This work affirms that energy-aware scheduling can be implemented at a
cluster of edge devices, using real time sensor readings, offering efficient use of the avail-
able resources. Finally, it asserts that statistical matching between queries arriving at the
cloud and data existing at the edge can reduce excess computations by minimising data
transfers and using only nodes storing statistically relevant data."

The work presented in Chapter 3 expands on the feasibility of performing data repli-
cation in PDP by manipulating the SRAM registers available in programmable switches.
In a wider context, implementing in-network replication means repurposing the hardware
that enables stateful packet processing to store values and update them consistently across
multiple programmable switches. This thesis presents the previous state of the art which,
by adopting the design aspects that enabled the generation of query responses entirely
in PDP and addressing limitations that impact performance and scalability, is further
improved. The evaluation of the proposed platform revealed great performance improve-
ments without harming consistency or fault tolerance. However, a potential downside is
that the total number of required registers for the implementation of the proposed method
is higher in total compared to previous state of the art. Kubernetes is examined as a po-
tential use case of the proposed platform. With its workload comprised of read-mostly
queries concerning a limited number of KV pairs, it conforms to the constraints of modern
programmable switches and presents great potential for accelerating the deployment times

CHAPTER 5. CONCLUSION 118

of services and its reaction to network events.
Chapter 4 expands on the topic of VNF offloading at the edge. It experiments with

the deployment of Kubernetes in a cluster of representative IoT devices (Raspberry Pis).
It is shown that an IoT cluster is capable of hosting virtualised services in the form of
Kubernetes pods and orchestrate them effectively, despite the constraints of the envi-
ronment. The aspect of energy consumption is also examined, as a way to examine the
feasibility of such deployments under more realistic constraints. Energy measurements are
obtained, showing that the infrastructure can support this deployment using moderate
energy resources, albeit with consumption imbalances. This is addressed in the later part
of this work, which implements an energy-aware scheduler that is able to minimise these
imbalances and improve the usage of the available resources by demonstrating fewer event
rejections and deadline violations. Lastly, this thesis proposes a mechanism that allows
data existing at the edge to be represented at the cloud. Using PCA, statistical signatures
of the data are built and subsequently stored at cloud gateways, which are able to use
them and direct queries to statistically relevant nodes. The mechanism has been evaluated
using real-world sensor data and has demonstrated reduced allocation of queries to nodes
holding irrelevant data. Therefore, only the statistical signature of the data is necessary
for query allocation which translates to fewer transactions compared to transferring all of
the data existing at the edge. It also means that nodes can remain inactive as long as
queries are irrelevant, further decreasing the amount of redundant processing cycles.

5.4 Future Research Directions

Each work segment of this thesis can be extended individually or in conjunction with the
rest of them to produce novel research since many of the problems presented in this the-
sis are still open-ended and gather attention from both academia and industry. Starting
with the topic of in-network data replication, the presented work could be extended by
evaluating various Kubernetes deployments with: 1. the use of in-network KV replication
instead of etcd; 2. hybrid use of in-network replication and etcd (with the latter storing less
frequently accessed pairs). Another future research direction is the integration of smart-
NICs in the chain of participating nodes for the acceleration of KVS transactions close to
the end-user, as explained in Section 3.7. In attempting to do so, various optimisation
problems are created. For example, how different workloads impact the duration that a
KV pair should remain cached at the end-host NIC? What are some general types of use
cases that can benefit the most from this type of data replication? Can the management
of KV pairs be done dynamically to be optimal for each workload based on real-time
measurements?

In the broader topic of network programmability, which is anticipated to be an active

CHAPTER 5. CONCLUSION 119

area of research for the following years, P4 has successfully become a language that allows
the definition of packet processing pipelines, regardless of the target hardware. This pushes
P4 towards becoming a reference language for the definition of protocols and distributed
applications. Although, closed hardware architectures currently make development tied to
a vendor’s provision of board support packages and software development kits, including
compilers. This creates inertia in the development and evaluation of new use cases from the
networking community. It also causes ideas to be bounded around hardware limitations,
harming creativity and resulting in a narrow research scope.

I remain optimistic that future hardware releases and community efforts will address
these problems, enabling the use of a common programming language across different ar-
chitectures and vendors with minimal adjustment of the source code. Therefore, the area
of network programmability will continue to grow with efforts directed towards interopera-
ble languages for the data plane. This will fuel research in the programmability of multiple
networking devices under a common framework, able to synthesise the end binary using
all the available network resources. Eventually, I hope to see the network infrastructure
conceptualised as a unified distributed system that is end-to-end programmable under a
common framework. A diverse infrastructure, able to utilise heterogeneous hardware, e.g.,
GPUs, FPGAs, ASICs, to accelerate different types of computations based on each de-
vice’s characteristics would present great potential performance improvements. Research
efforts towards chain synthesis, hybrid placement of network computations across both
commodity and networking hardware, real-time reprogramming of data plane hardware,
will greatly support the next generations of networking. It is apparent that in-network
data replication, by offering line-rate all-to-all communication, will have an instrumental
role in the programmability of such an infrastructure. An in-network KVS can supply all
of the necessary configuration parameters across the infrastructure, e.g., security keys, link
health states, congestion metrics etc. Therefore, in-network replication has the potential
of being a key enabler for large-scale configuration of next-generation networks.

The work conducted in the domain of energy-aware scheduling can be further evaluated
over infrastructure that combines both cloud and edge devices. The scheduler can be
adapted to take into account energy measurements of data centre devices, resulting in novel
optimisation problems related to placement decisions, energy usage prediction of a more
diverse set of requests, interconnected requests between edge and cloud, etc. By including
infrastructure with higher energy consumption and therefore varying energy data, it would
be beneficial to associate them with carbon emissions and create a reference metric on how
placement decisions impact the overall emissions of the infrastructure. This can also be
integrated in the process of VNF scheduling to allow trade-offs between performance and
emissions to be assessed and integrated in the configuration of the infrastructure. As
networks grow and VNF deployment becomes more standardised, such adjustments to the

CHAPTER 5. CONCLUSION 120

way networks are configured can have an impactful change in the energy footprint of the
infrastructure.

5.5 Concluding Remarks

This work has enhanced the previous state of the art by improving the design of use cases in
the area of in-network compute. It has improved the management of resource-constrained
edge infrastructure, with the aim of best utilising resources located close to the end user
for service deployment. It produced work on cloud-edge integration that improved data
representation across the infrastructure. By utilising the epitome of current technologies
in the area, it has delivered novel research ideas on the respective topics and motivated
future research directions.

References

[1] Sura Khalil Abd, Syed Abdul Rahman Al-Haddad, Fazirulhisyam Hashim, Azi-
zol BHJ Abdullah, and Salman Yussof. An effective approach for managing power
consumption in cloud computing infrastructure. journal of computational science,
21:349–360, 2017.

[2] Suhail Ahmad and Ajaz Hussain Mir. Scalability, consistency, reliability and security
in sdn controllers: a survey of diverse sdn controllers. Journal of Network and
Systems Management, 29(1):1–59, 2021.

[3] Noura Al-Hoqani, Shuang-Hua Yang, Daniel P. Fiadzeawu, and Ross J. Mcquillan.
In-network on-demand query-based sensing system for wireless sensor networks. In
2017 IEEE Wireless Communications and Networking Conference (WCNC), pages
1–6, 2017.

[4] Abeer Ali, Christos Anagnostopoulos, and Dimitrios P. Pezaros. Resource-aware
placement of softwarised security services in cloud data centers. In 2017 13th In-
ternational Conference on Network and Service Management (CNSM), pages 1–5,
2017.

[5] Christos Anagnostopoulos. Quality-optimized predictive analytics. Appl. Intell.,
45(4):1034–1046, 2016.

[6] Dr Christos Anagnostopoulos. Gnfuv dataset. https://archive.ics.

uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+

Data+Set+2. Accessed: 2022-01-29.

[7] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.
Workload analysis of a large-scale key-value store. In Proceedings of the 12th ACM
SIGMETRICS/PERFORMANCE Joint International Conference on Measurement
and Modeling of Computer Systems, SIGMETRICS ’12, page 53–64, New York, NY,
USA, 2012. Association for Computing Machinery.

[8] Prometheus Authors. Prometheus. https://prometheus.io/. Accessed: 2022-
05-30.

121

https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2
https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2
https://archive.ics.uci.edu/ml/datasets/GNFUV+Unmanned+Surface+Vehicles+Sensor+Data+Set+2
https://prometheus.io/

REFERENCES 122

[9] The Kubernetes Authors. Kubernetes components. https://kubernetes.io/
docs/concepts/overview/components/. Accessed: 2022-05-30.

[10] The Kubernetes Authors. Kubernetes resource management. https://

kubernetes.io/docs/concepts/configuration/manage-resources-

containers/. Accessed: 2022-01-29.

[11] Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and
Ion Stoica. Highly available transactions: Virtues and limitations. Proc. VLDB
Endow., 7(3):181–192, November 2013.

[12] Cagri Balkesen and Nesime Tatbul. Scalable data partitioning techniques for parallel
sliding window processing over data streams. In International workshop on data
management for sensor networks (DMSN), 2011.

[13] Fetia Bannour, Sami Souihi, and Abdelhamid Mellouk. Distributed sdn control:
Survey, taxonomy, and challenges. IEEE Communications Surveys & Tutorials,
20(1):333–354, 2018.

[14] Tom Barbette, Cyril Soldani, and Laurent Mathy. Fast userspace packet process-
ing. In Proceedings of the Eleventh ACM/IEEE Symposium on Architectures for
Networking and Communications Systems, ANCS ’15, page 5–16, USA, 2015. IEEE
Computer Society.

[15] Philip J Basford, Steven J Johnston, Colin S Perkins, Tony Garnock-Jones, Fung Po
Tso, Dimitrios Pezaros, Robert D Mullins, Eiko Yoneki, Jeremy Singer, and Simon J
Cox. Performance analysis of single board computer clusters. Future Generation
Computer Systems, 102:278–291, 2020.

[16] Cataldo Basile, Christian Pitscheider, Fulvio Risso, Fulvio Valenza, and Marco
Vallini. Towards the dynamic provision of virtualized security services. In Frances
Cleary and Massimo Felici, editors, Cyber Security and Privacy, pages 65–76, Cham,
2015. Springer International Publishing.

[17] Doug Beaver, Sanjeev Kumar, Harry C. Li, Jason Sobel, and Peter Vajgel. Finding
a needle in haystack: Facebook’s photo storage. In 9th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 10), Vancouver, BC, October
2010. USENIX Association.

[18] Ran Ben Basat, Sivaramakrishnan Ramanathan, Yuliang Li, Gianni Antichi, Minian
Yu, and Michael Mitzenmacher. Pint: Probabilistic in-band network telemetry. In
Proceedings of the Annual Conference of the ACM Special Interest Group on Data
Communication on the Applications, Technologies, Architectures, and Protocols for

https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/overview/components/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/

REFERENCES 123

Computer Communication, SIGCOMM ’20, page 662–680, New York, NY, USA,
2020. Association for Computing Machinery.

[19] Leonardo Bonati, Michele Polese, Salvatore D’Oro, Stefano Basagni, and Tommaso
Melodia. Open, programmable, and virtualized 5g networks: State-of-the-art and
the road ahead. Computer Networks, 182:107516, 2020.

[20] Flavio Bonomi, Rodolfo Milito, Jiang Zhu, and Sateesh Addepalli. Fog computing
and its role in the internet of things. In Proceedings of the First Edition of the MCC
Workshop on Mobile Cloud Computing, MCC ’12, pages 13–16, New York, NY, USA,
2012. ACM.

[21] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer Rex-
ford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and David
Walker. P4: Programming protocol-independent packet processors. SIGCOMM
Comput. Commun. Rev., 44(3):87–95, July 2014.

[22] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McKeown, Mar-
tin Izzard, Fernado Mujica, and Mark Horowitz. Forwarding metamorphosis: Fast
programmable match-action processing in hardware for sdn. SIGCOMM Comput.
Commun. Rev., 43(4):99–110, August 2013.

[23] Eric Brewer. Cap twelve years later: How the "rules" have changed. Computer,
45(2):23–29, 2012.

[24] Broadcom. Broadcom Trident4. https://www.broadcom.com/products/

ethernet-connectivity/switching/strataxgs/bcm56880-series.
Accessed: 2022-01-29.

[25] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter Dimov, Hui
Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni, Harry Li, Mark Marchukov,
Dmitri Petrov, Lovro Puzar, Yee Jiun Song, and Venkat Venkataramani. TAO:
Facebook’s distributed data store for the social graph. In 2013 USENIX Annual
Technical Conference (USENIX ATC 13), pages 49–60, San Jose, CA, June 2013.
USENIX Association.

[26] Lei Cao and Elke A. Rundensteiner. High performance stream query processing with
correlation-aware partitioning. Proc. VLDB Endow., 7(4):265–276, 12 2013.

[27] Cavium. Cavium liquidio. https://web.archive.org/web/

20170709170234/http://www.cavium.com/LiquidIO_Server_

Adapters.html. Accessed: 2022-10-18.

https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://web.archive.org/web/20170709170234/http://www.cavium.com/LiquidIO_Server_Adapters.html
https://web.archive.org/web/20170709170234/http://www.cavium.com/LiquidIO_Server_Adapters.html
https://web.archive.org/web/20170709170234/http://www.cavium.com/LiquidIO_Server_Adapters.html

REFERENCES 124

[28] Danilo Cerović, Valentin Del Piccolo, Ahmed Amamou, Kamel Haddadou, and Guy
Pujolle. Fast packet processing: A survey. IEEE Communications Surveys & Tuto-
rials, 20(4):3645–3676, 2018.

[29] Yang Chen and Jie Wu. Nfv middlebox placement with balanced set-up cost and
bandwidth consumption. In Proceedings of the 47th International Conference on
Parallel Processing, ICPP 2018, New York, NY, USA, 2018. Association for Com-
puting Machinery.

[30] Nan Cheng, Ning Lu, Ning Zhang, Tingting Yang, Xuemin Shen, and Jon W. Mark.
Vehicle-assisted device-to-device data delivery for smart grid. IEEE Transactions
on Vehicular Technology, 65(4):2325–2340, 2016.

[31] Aakanksha Chowdhery, Marco Levorato, Igor Burago, and Sabur Baidya. Urban
IoT Edge Analytics, pages 101–120. Springer International Publishing, Cham, 2018.

[32] S. R. Chowdhury, M. A. Salahuddin, N. Limam, and R. Boutaba. Re-architecting
nfv ecosystem with microservices: State of the art and research challenges. IEEE
Network, 33(3):168–176, 2019.

[33] NumPy Community. Numpy. https://numpy.org/. Accessed: 2022-01-29.

[34] Ryu SDN Framework Community. Ryu controller. https://ryu-sdn.org/

index.html, 2014. Accessed: 2022-01-29.

[35] Behavioral Model Contributors. Bmv2. https://github.com/p4lang/

behavioral-model. Accessed: 2022-01-29.

[36] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher
Frost, JJ Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter
Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexan-
der Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao,
Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor, Ruth Wang,
and Dale Woodford. Spanner: Google’s Globally-Distributed database. In 10th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 12),
pages 261–264, Hollywood, CA, October 2012. USENIX Association.

[37] Ruben Cruz Huacarpuma, Rafael Timoteo De Sousa Junior, Maristela Terto
De Holanda, Robson De Oliveira Albuquerque, Luis Javier García Villalba, and
Tai-Hoon Kim. Distributed data service for data management in internet of things
middleware. Sensors, 17(5), 2017.

[38] R. Cziva and D. P. Pezaros. Container network functions: Bringing nfv to the
network edge. IEEE Communications Magazine, 55(6):24–31, 6 2017.

https://numpy.org/
https://ryu-sdn.org/index.html
https://ryu-sdn.org/index.html
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model

REFERENCES 125

[39] Richard Cziva, Christos Anagnostopoulos, and Dimitrios P. Pezaros. Dynamic,
latency-optimal vnf placement at the network edge. In IEEE INFOCOM 2018 -
IEEE Conference on Computer Communications, pages 693–701, 2018.

[40] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Morris, and Ion Stoica.
Wide-area cooperative storage with cfs. In Proceedings of the Eighteenth ACM Sym-
posium on Operating Systems Principles, SOSP ’01, page 202–215, New York, NY,
USA, 2001. Association for Computing Machinery.

[41] Rajdeep Das and Alex C. Snoeren. Enabling active networking on rmt hardware.
In Proceedings of the 19th ACM Workshop on Hot Topics in Networks, HotNets ’20,
page 175–181, New York, NY, USA, 2020. Association for Computing Machinery.

[42] Ali Davoudian, Liu Chen, and Mengchi Liu. A survey on nosql stores. ACM Comput.
Surv., 51(2), 4 2018.

[43] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,
Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall,
and Werner Vogels. Dynamo: Amazon’s highly available key-value store. SIGOPS
Oper. Syst. Rev., 41(6):205–220, October 2007.

[44] Sedef Demirci and Seref Sagiroglu. Optimal placement of virtual network functions
in software defined networks: A survey. Journal of Network and Computer Applica-
tions, 147:102424, 2019.

[45] Zhongwei Deng, Xiaosong Hu, Xianke Lin, Yunhong Che, Le Xu, and Wenchao
Guo. Data-driven state of charge estimation for lithium-ion battery packs based on
gaussian process regression. Energy, 205:118000, 2020.

[46] Ousmane Diallo, Joel J.P.C. Rodrigues, and Mbaye Sene. Real-time data manage-
ment on wireless sensor networks: A survey. Journal of Network and Computer
Applications, 35(3):1013–1021, 2012. Special Issue on Trusted Computing and Com-
munications.

[47] Ding Ding, Xiaocong Fan, Yihuan Zhao, Kaixuan Kang, Qian Yin, and Jing Zeng. Q-
learning based dynamic task scheduling for energy-efficient cloud computing. Future
Generation Computer Systems, 108:361–371, 2020.

[48] Mihai Dobrescu, Norbert Egi, Katerina Argyraki, Byung-Gon Chun, Kevin Fall,
Gianluca Iannaccone, Allan Knies, Maziar Manesh, and Sylvia Ratnasamy. Route-
bricks: Exploiting parallelism to scale software routers. In Proceedings of the ACM
SIGOPS 22nd Symposium on Operating Systems Principles, SOSP ’09, page 15–28,
New York, NY, USA, 2009. Association for Computing Machinery.

REFERENCES 126

[49] Docker. Use containers to build, share and run your applications. https://www.
docker.com/resources/what-container. Accessed: 2022-10-29.

[50] Rob Enns. NETCONF Configuration Protocol. RFC 4741, December 2006.

[51] etcd Authors. etcd: A distributed, reliable key-value store for the most critical data
of a distributed system. https://etcd.io/. Accessed: 2022-01-29.

[52] Facebook. Katran. https://github.com/facebookincubator/katran#

readme. Accessed: 2022-10-18.

[53] Ludwig Fahrmeir, Thomas Kneib, Stefan Lang, and Brian Marx. Regression models.
In Regression, pages 21–72. Springer, 2013.

[54] Nick Feamster, Hari Balakrishnan, Jennifer Rexford, Aman Shaikh, and Jacobus
van der Merwe. The case for separating routing from routers. In Proceedings of the
ACM SIGCOMM Workshop on Future Directions in Network Architecture, FDNA
’04, page 5–12, New York, NY, USA, 2004. Association for Computing Machinery.

[55] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: An intel-
lectual history of programmable networks. SIGCOMM Comput. Commun. Rev.,
44(2):87–98, apr 2014.

[56] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis. A year in lockdown:
How the waves of covid-19 impact internet traffic. Commun. ACM, 64(7):101–108,
6 2021.

[57] Andrew D. Ferguson, Steve Gribble, Chi-Yao Hong, Charles Killian, Waqar Mohsin,
Henrik Muehe, Joon Ong, Leon Poutievski, Arjun Singh, Lorenzo Vicisano, Richard
Alimi, Shawn Shuoshuo Chen, Mike Conley, Subhasree Mandal, Karthik Nagaraj,
Kondapa Naidu Bollineni, Amr Sabaa, Shidong Zhang, Min Zhu, and Amin Vahdat.
Orion: Google’s Software-Defined networking control plane. In 18th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 21), pages 83–98.
USENIX Association, April 2021.

[58] Andreas Fischer, Juan Felipe Botero, Michael Till Beck, Hermann de Meer, and
Xavier Hesselbach. Virtual network embedding: A survey. IEEE Communications
Surveys & Tutorials, 15(4):1888–1906, 2013.

[59] S. Floyd and V. Jacobson. Random early detection gateways for congestion avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://etcd.io/
https://github.com/facebookincubator/katran#readme
https://github.com/facebookincubator/katran#readme

REFERENCES 127

[60] X. Foukas, G. Patounas, A. Elmokashfi, and M. K. Marina. Network slicing in 5g:
Survey and challenges. IEEE Communications Magazine, 55(5):94–100, 5 2017.

[61] Apache Software Foundation. Thrift api. https://thrift.apache.org/

docs/. Accessed: 2022-01-29.

[62] Open Information Security Foundation. Suricata. https://suricata.

readthedocs.io/en/latest/index.html. Accessed: 2022-10-18.

[63] Open Networking Foundation. P4_16. https://p4.org/p4-spec/docs/P4-
16-v-1.2.3.html. Accessed: 2022-01-29.

[64] OpenInfra Foundation. Opentack. https://www.https://www.openstack.
org/. Accessed: 2022-01-29.

[65] Raspberry Pi Foundation. Raspberry Pi 3. https://www.raspberrypi.org/
products/raspberry-pi-3-model-b/. Accessed: 2018-10-20.

[66] Raspberry Pi Foundation. Raspberry pi 4. https://www.raspberrypi.org/
products/raspberry-pi-4-model-b/. Accessed: 2022-10-18.

[67] The Linux Foundation. Onap. https://www.onap.org/. Accessed: 2022-01-29.

[68] Moshe Gabel, Daniel Keren, and Assaf Schuster. Monitoring least squares models
of distributed streams. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’15, page 319–328,
New York, NY, USA, 2015. Association for Computing Machinery.

[69] Pegah Gazori, Dadmehr Rahbari, and Mohsen Nickray. Saving time and cost on the
scheduling of fog-based iot applications using deep reinforcement learning approach.
Future Generation Computer Systems, 110:1098–1115, 2020.

[70] Bugra Gedik. Partitioning functions for stateful data parallelism in stream process-
ing. VLDB J., 23(4):517–539, 2014.

[71] Jim Gettys and Kathleen Nichols. Bufferbloat: Dark buffers in the internet: Net-
works without effective aqm may again be vulnerable to congestion collapse. Queue,
9(11):40–54, 11 2011.

[72] Petros Gigis, Matt Calder, Lefteris Manassakis, George Nomikos, Vasileios Kotronis,
Xenofontas Dimitropoulos, Ethan Katz-Bassett, and Georgios Smaragdakis. Seven
years in the life of hypergiants’ off-nets. In Proceedings of the 2021 ACM SIGCOMM
2021 Conference, SIGCOMM ’21, page 516–533, New York, NY, USA, 2021. Asso-
ciation for Computing Machinery.

https://thrift.apache.org/docs/
https://thrift.apache.org/docs/
https://suricata.readthedocs.io/en/latest/index.html
https://suricata.readthedocs.io/en/latest/index.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://p4.org/p4-spec/docs/P4-16-v-1.2.3.html
https://www.https://www.openstack.org/
https://www.https://www.openstack.org/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-3-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.onap.org/

REFERENCES 128

[73] Juliver Gil Herrera and Juan Felipe Botero. Resource allocation in nfv: A compre-
hensive survey. IEEE Transactions on Network and Service Management, 13(3):518–
532, 2016.

[74] Morteza Golkarifard, Carla Fabiana Chiasserini, Francesco Malandrino, and Ali
Movaghar. Dynamic vnf placement, resource allocation and traffic routing in 5g.
Computer Networks, 188:107830, 2021.

[75] Nithyashri Govindarajan, Yogesh Simmhan, Nitin Jamadagni, and Prasant Misra.
Event processing across edge and the cloud for internet of things applications. In
Srikanta Bedathur, Divesh Srivastava, and Satyanarayana R. Valluri, editors, 20th
International Conference on Management of Data, COMAD 2014, Hyderabad, India,
December 17-19, 2014, pages 101–104. Computer Society of India, 2014.

[76] ETH Networked Systems Group. P4-utils. https://github.com/nsg-ethz/
p4-utils. Accessed: 2022-01-29.

[77] The P4.org API Working Group. P4runtime specification. https://p4.org/p4-
spec/p4runtime/main/P4Runtime-Spec.html. Accessed: 2022-05-30.

[78] The P4.org Architecture Working Group. Portable switch architecture. https:

//p4lang.github.io/p4-spec/docs/PSA-v1.1.0.html. Accessed: 2022-
01-29.

[79] Lav Gupta, M Samaka, Raj Jain, Aiman Erbad, Deval Bhamare, and Chris Metz.
Colap: A predictive framework for service function chain placement in a multi-cloud
environment. In 2017 IEEE 7th Annual Computing and Communication Workshop
and Conference (CCWC), pages 1–9, 2017.

[80] Jiawei Han, Micheline Kamber, and Jian Pei. 3 - data preprocessing. In Jiawei Han,
Micheline Kamber, and Jian Pei, editors, Data Mining (Third Edition), The Morgan
Kaufmann Series in Data Management Systems, pages 83–124. Morgan Kaufmann,
Boston, third edition edition, 2012.

[81] Sangjin Han, Keon Jang, KyoungSoo Park, and Sue Moon. Packetshader: A gpu-
accelerated software router. In Proceedings of the ACM SIGCOMM 2010 Conference,
SIGCOMM ’10, page 195–206, New York, NY, USA, 2010. Association for Comput-
ing Machinery.

[82] Hasanin Harkous, Michael Jarschel, Mu He, Rastin Pries, and Wolfgang Kellerer. P8:
P4 with predictable packet processing performance. IEEE Transactions on Network
and Service Management, pages 1–1, 2020.

https://github.com/nsg-ethz/p4-utils
https://github.com/nsg-ethz/p4-utils
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4.org/p4-spec/p4runtime/main/P4Runtime-Spec.html
https://p4lang.github.io/p4-spec/docs/PSA-v1.1.0.html
https://p4lang.github.io/p4-spec/docs/PSA-v1.1.0.html

REFERENCES 129

[83] Natascha Harth and Christos Anagnostopoulos. Quality-aware aggregation & pre-
dictive analytics at the edge. In 2017 IEEE International Conference on Big Data
(Big Data), pages 17–26, 2017.

[84] Natascha Harth and Christos Anagnostopoulos. Edge-centric efficient regression
analytics. In 2018 IEEE International Conference on Edge Computing (EDGE),
pages 93–100, 2018.

[85] H. Hashim, J.A. Manan, and M. Samad. Active network implementations. In Student
Conference on Research and Development, pages 371–374, 2002.

[86] Pat Helland. Life beyond distributed transactions: An apostate’s opinion. Queue,
14(5):69–98, 10 2016.

[87] Toke Høiland-Jørgensen, Jesper Dangaard Brouer, Daniel Borkmann, John
Fastabend, Tom Herbert, David Ahern, and David Miller. The express data path:
Fast programmable packet processing in the operating system kernel. In Proceed-
ings of the 14th International Conference on Emerging Networking EXperiments and
Technologies, CoNEXT ’18, page 54–66, New York, NY, USA, 2018. Association for
Computing Machinery.

[88] Liang Hu, Rui Sun, Feng Wang, Xiuhong Fei, and Kuo Zhao. A stream process-
ing system for multisource heterogeneous sensor data. J. Sensors, 2016:4287834:1–
4287834:8, 2016.

[89] Xiaosong Hu, Shengbo Li, Huei Peng, and Fengchun Sun. Robustness analysis of
state-of-charge estimation methods for two types of li-ion batteries. Journal of power
sources, 217:209–219, 2012.

[90] F Huet. A review of impedance measurements for determination of the state-of-
charge or state-of-health of secondary batteries. Journal of power sources, 70(1):59–
69, 1998.

[91] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper:
Wait-free coordination for internet-scale systems. In 2010 USENIX Annual Technical
Conference (USENIX ATC 10). USENIX Association, June 2010.

[92] Stephen Ibanez, Gordon Brebner, Nick McKeown, and Noa Zilberman. The p4-
>netfpga workflow for line-rate packet processing. In Proceedings of the 2019
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA
’19, page 1–9, New York, NY, USA, 2019. Association for Computing Machinery.

REFERENCES 130

[93] Intel. Intel Tofino. https://www.intel.co.uk/content/www/uk/en/

products/network-io/programmable-ethernet-switch/tofino-

series.html. Accessed: 2022-01-29.

[94] Intel. Intel x520. https://www.intel.co.uk/content/www/uk/en/

products/docs/network-io/ethernet/network-adapters/server-

adapter-x520-da1-da2-for-ocp-brief.html. Accessed: 2022-10-18.

[95] Mircea M. Iordache-Sica, Christos Anagnostopoulos, and Dimitrios P. Pezaros. To-
wards qos-aware provisioning of chained virtual security services in edge networks.
In 2021 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 178–186, 2021.

[96] Koch Jason, Spier Martin, Gregg Brendan, and Hunter Ed. Ex-
tending vector with ebpf to inspect host and container performance.
https://netflixtechblog.com/extending-vector-with-ebpf-to-

inspect-host-and-container-performance-5da3af4c584b. Accessed:
2022-10-18.

[97] Schulist Jay, Borkmann Daniel, and Starovoitov Alexei. Linux socket fil-
tering aka berkeley packet filter (bpf). https://www.kernel.org/doc/

Documentation/networking/filter.txt. Accessed: 2022-10-18.

[98] Andrew Jeffery, Heidi Howard, and Richard Mortier. Rearchitecting kubernetes
for the edge. In Proceedings of the 4th International Workshop on Edge Systems,
Analytics and Networking, EdgeSys ’21, page 7–12, New York, NY, USA, 2021.
Association for Computing Machinery.

[99] Panpan Jin, Xincai Fei, Qixia Zhang, Fangming Liu, and Bo Li. Latency-aware vnf
chain deployment with efficient resource reuse at network edge. In IEEE INFOCOM
2020 - IEEE Conference on Computer Communications, pages 267–276, 2020.

[100] Xin Jin, Xiaozhou Li, Haoyu Zhang, Nate Foster, Jeongkeun Lee, Robert Soulé,
Changhoon Kim, and Ion Stoica. Netchain: Scale-free sub-rtt coordination. In 15th
USENIX Symposium on Networked Systems Design and Implementation (NSDI 18),
pages 35–49, Renton, WA, April 2018. USENIX Association.

[101] Xin Jin, Xiaozhou Li, Haoyu Zhang, Robert Soulé, Jeongkeun Lee, Nate Foster,
Changhoon Kim, and Ion Stoica. Netcache: Balancing key-value stores with fast
in-network caching. In Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 121–136, New York, NY, USA, 2017. Association for
Computing Machinery.

https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.co.uk/content/www/uk/en/products/network-io/programmable-ethernet-switch/tofino-series.html
https://www.intel.co.uk/content/www/uk/en/products/docs/network-io/ethernet/network-adapters/server-adapter-x520-da1-da2-for-ocp-brief.html
https://www.intel.co.uk/content/www/uk/en/products/docs/network-io/ethernet/network-adapters/server-adapter-x520-da1-da2-for-ocp-brief.html
https://www.intel.co.uk/content/www/uk/en/products/docs/network-io/ethernet/network-adapters/server-adapter-x520-da1-da2-for-ocp-brief.html
https://netflixtechblog.com/extending-vector-with-ebpf-to-inspect-host-and-container-performance-5da3af4c584b
https://netflixtechblog.com/extending-vector-with-ebpf-to-inspect-host-and-container-performance-5da3af4c584b
https://www.kernel.org/doc/Documentation/networking/filter.txt
https://www.kernel.org/doc/Documentation/networking/filter.txt

REFERENCES 131

[102] Ren Jinglei, Kjellqvist Chris, and Deng Long. Ycsb. https://github.com/

basicthinker/YCSB-C. Accessed: 2022-01-29.

[103] Steven J Johnston, Philip J Basford, Colin S Perkins, Herry Herry, Fung Po Tso,
Dimitrios Pezaros, Robert D Mullins, Eiko Yoneki, Simon J Cox, and Jeremy Singer.
Commodity single board computer clusters and their applications. Future Genera-
tion Computer Systems, 89:201–212, 2018.

[104] A. Kaloxylos. A survey and an analysis of network slicing in 5g networks. IEEE
Communications Standards Magazine, 2(1):60–65, 3 2018.

[105] Goutham Kamath, Pavan Agnihotri, Maria Valero, Krishanu Sarker, and Wen-Zhan
Song. Pushing analytics to the edge. In 2016 IEEE Global Communications Con-
ference (GLOBECOM), pages 1–6, 2016.

[106] David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and
Daniel Lewin. Consistent hashing and random trees: Distributed caching protocols
for relieving hot spots on the world wide web. In Proceedings of the Twenty-Ninth
Annual ACM Symposium on Theory of Computing, STOC ’97, page 654–663, New
York, NY, USA, 1997. Association for Computing Machinery.

[107] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas Anderson, and
Arvind Krishnamurthy. High performance packet processing with flexnic. In Pro-
ceedings of the Twenty-First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS ’16, page 67–81, New
York, NY, USA, 2016. Association for Computing Machinery.

[108] Irene Keramidi, Panagiotis Kardaras, Ioannis Moscholios, Panagiotis Sarigiannidis,
and Michael Logothetis. A study on the impact of service time distributions in a
vehicular ad hoc network. In 2021 IEEE International Mediterranean Conference
on Communications and Networking (MeditCom), pages 407–412, 2021.

[109] Irene Keramidi, Dimitris Uzunidis, Marinos Vlasakis, Panagiotis G. Sarigiannidis,
and Ioannis Moscholios. Exploiting machine learning for the performance analysis
of a mobile hotspot with a call admission control mechanism. In 2022 IEEE 27th
International Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pages 77–82, 2022.

[110] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. An exhaustive survey on p4
programmable data plane switches: Taxonomy, applications, challenges, and future
trends. IEEE Access, 9:87094–87155, 2021.

https://github.com/basicthinker/YCSB-C
https://github.com/basicthinker/YCSB-C

REFERENCES 132

[111] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti, and M. Frans Kaashoek.
The click modular router. ACM Trans. Comput. Syst., 18(3):263–297, 8 2000.

[112] Roman Kolcun and Julie A. McCann. Dragon: Data discovery and collection ar-
chitecture for distributed iot. In 2014 International Conference on the Internet of
Things (IOT), pages 91–96, 2014.

[113] Kostas Kolomvatsos. An intelligent scheme for assigning queries. Appl. Intell.,
48(9):2730–2745, 2018.

[114] Kostas Kolomvatsos and Christos Anagnostopoulos. Reinforcement learning for pre-
dictive analytics in smart cities. Informatics, 4(3), 2017.

[115] Kostas Kolomvatsos and Stathes Hadjiefthymiades. Learning the engagement of
query processors for intelligent analytics. Appl. Intell., 46(1):96–112, 2017.

[116] Teemu Koponen, Martin Casado, Natasha Gude, Jeremy Stribling, Leon Poutievski,
Min Zhu, Rajiv Ramanathan, Yuichiro Iwata, Hiroaki Inoue, Takayuki Hama, and
Scott Shenker. Onix: A distributed control platform for large-scale production net-
works. In 9th USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI 10), Vancouver, BC, October 2010. USENIX Association.

[117] Ayaka Koshibe. Onos system components. https://wiki.onosproject.org/
display/ONOS/System+Components. Accessed: 2022-01-29.

[118] Tung-Wei Kuo, Bang-Heng Liou, Kate Ching-Ju Lin, and Ming-Jer Tsai. Deploying
chains of virtual network functions: On the relation between link and server usage.
In IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on
Computer Communications, pages 1–9, 2016.

[119] TV Lakshman, T Nandagopal, Ramachandran Ramjee, K Sabnani, and T Woo.
The softrouter architecture. In Proc. ACM SIGCOMM Workshop on Hot Topics in
Networking, 2004.

[120] Leslie Lamport. The part-time parliament. ACM Trans. Comput. Syst.,
16(2):133–169, May 1998.

[121] Bob Lantz, Brandon Heller, and Nick McKeown. A network in a laptop: Rapid
prototyping for software-defined networks. In Proceedings of the 9th ACM SIG-
COMM Workshop on Hot Topics in Networks, Hotnets-IX, New York, NY, USA,
2010. Association for Computing Machinery.

https://wiki.onosproject.org/display/ONOS/System+Components
https://wiki.onosproject.org/display/ONOS/System+Components

REFERENCES 133

[122] Dan Levin, Andreas Wundsam, Brandon Heller, Nikhil Handigol, and Anja Feld-
mann. Logically centralized? state distribution trade-offs in software defined net-
works. In Proceedings of the First Workshop on Hot Topics in Software Defined
Networks, HotSDN ’12, page 1–6, New York, NY, USA, 2012. Association for Com-
puting Machinery.

[123] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. Accelerating distributed reinforcement learning with in-switch computing. In
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA), pages 279–291, 2019.

[124] Youjie Li, Iou-Jen Liu, Yifan Yuan, Deming Chen, Alexander Schwing, and Jian
Huang. Accelerating distributed reinforcement learning with in-switch computing. In
2019 ACM/IEEE 46th Annual International Symposium on Computer Architecture
(ISCA), pages 279–291, 2019.

[125] Jong Chern Lim and Chris Bleakley. Adaptive wsn scheduling for lifetime exten-
sion in environmental monitoring applications. International Journal of Distributed
Sensor Networks, 8(1):286981, 2011.

[126] Ming Liu, Liang Luo, Jacob Nelson, Luis Ceze, Arvind Krishnamurthy, and Kishore
Atreya. Incbricks: Toward in-network computation with an in-network cache. In
Proceedings of the Twenty-Second International Conference on Architectural Support
for Programming Languages and Operating Systems, ASPLOS ’17, page 795–809,
New York, NY, USA, 2017. Association for Computing Machinery.

[127] Fantasia Trading LLC. Anker Astro E1. https://web.archive.org/

web/20210306110603/https://www.anker.com/products/variant/

astro-e1/A1211012. Accessed: 2022-12-20.

[128] Alejandro Llorens-Carrodeguas, Stefanos G. Sagkriotis, Cristina Cervelló-Pastor,
and Dimitrios P. Pezaros. An energy-friendly scheduler for edge computing systems.
Sensors, 21(21), 2021.

[129] John W. Lockwood, Nick McKeown, Greg Watson, Glen Gibb, Paul Hartke, Jad
Naous, Ramanan Raghuraman, and Jianying Luo. Netfpga–an open platform for
gigabit-rate network switching and routing. In 2007 IEEE International Conference
on Microelectronic Systems Education (MSE’07), pages 160–161, 2007.

[130] Redis Ltd. Redis. https://redis.io/. Accessed: 2022-01-29.

[131] Marcelo Caggiani Luizelli, Leonardo Richter Bays, Luciana Salete Buriol, Mar-
inho Pilla Barcellos, and Luciano Paschoal Gaspary. Piecing together the nfv

https://web.archive.org/web/20210306110603/https://www.anker.com/products/variant/astro-e1/A1211012
https://web.archive.org/web/20210306110603/https://www.anker.com/products/variant/astro-e1/A1211012
https://web.archive.org/web/20210306110603/https://www.anker.com/products/variant/astro-e1/A1211012
https://redis.io/

REFERENCES 134

provisioning puzzle: Efficient placement and chaining of virtual network functions.
In 2015 IFIP/IEEE International Symposium on Integrated Network Management
(IM), pages 98–106, 2015.

[132] Wenrui Ma, Oscar Sandoval, Jonathan Beltran, Deng Pan, and Niki Pissinou. Traffic
aware placement of interdependent nfv middleboxes. In IEEE INFOCOM 2017 -
IEEE Conference on Computer Communications, pages 1–9, 2017.

[133] André Luiz R. Madureira, Francisco Renato C. Araújo, and Leobino N. Sampaio.
On supporting iot data aggregation through programmable data planes. Computer
Networks, 177:107330, 2020.

[134] Avinab Marahatta, Youshi Wang, Fa Zhang, Arun Kumar Sangaiah, Sumarga Ku-
mar Sah Tyagi, and Zhiyong Liu. Energy-aware fault-tolerant dynamic task schedul-
ing scheme for virtualized cloud data centers. Mobile Networks and Applications,
24(3):1063–1077, 2019.

[135] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson,
Jennifer Rexford, Scott Shenker, and Jonathan Turner. Openflow: Enabling inno-
vation in campus networks. SIGCOMM Comput. Commun. Rev., 38(2):69–74, 3
2008.

[136] Marouen Mechtri, Chaima Ghribi, and Djamal Zeghlache. A scalable algorithm for
the placement of service function chains. IEEE Transactions on Network and Service
Management, 13(3):533–546, 2016.

[137] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains
of virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet), pages 7–13, 2014.

[138] Sevil Mehraghdam, Matthias Keller, and Holger Karl. Specifying and placing chains
of virtual network functions. In 2014 IEEE 3rd International Conference on Cloud
Networking (CloudNet), pages 7–13, 2014.

[139] memcached contributors. memcached. https://memcached.org/. Accessed:
2022-01-29.

[140] Sebastiano Miano, Roberto Doriguzzi-Corin, Fulvio Risso, Domenico Siracusa, and
Raffaele Sommese. Introducing smartnics in server-based data plane processing: The
ddos mitigation use case. IEEE Access, 7:107161–107170, 2019.

[141] Rui Miao, Hongyi Zeng, Changhoon Kim, Jeongkeun Lee, and Minlan Yu. Silkroad:
Making stateful layer-4 load balancing fast and cheap using switching asics. In

https://memcached.org/

REFERENCES 135

Proceedings of the Conference of the ACM Special Interest Group on Data Commu-
nication, SIGCOMM ’17, page 15–28, New York, NY, USA, 2017. Association for
Computing Machinery.

[142] Microsoft. Scalable networking: Eliminating the receive processing bottle-
neck—introducing rss. https://view.officeapps.live.com/op/view.

aspx?src=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%

2F5%2Fd%2F6%2F5d6eaf2b-7ddf-476b-93dc-7cf0072878e6%2Fndis_

rss.doc. Accessed: 2022-10-18.

[143] Shangfeng Mo, Hong Chen, Xiaoying Zhang, and Cuiping Li. Tinyqp: A query pro-
cessing system in wireless sensor networks. In Jianyong Wang, Hui Xiong, Yoshiharu
Ishikawa, Jianliang Xu, and Junfeng Zhou, editors, Web-Age Information Manage-
ment, pages 788–791, Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

[144] Ioannis D. Moscholios, Mariusz Głąbowski, Panagiotis G. Sarigiannidis, and
Michael D. Logothetis. A special issue on modeling, dimensioning, and optimiza-
tion of 5g communication networks, resources, and services. Applied Sciences, 12(4),
2022.

[145] Netronome. Agilio cx smartnics. https://www.netronome.com/products/
agilio-cx/. Accessed: 2022-01-29.

[146] APS Networks. APS Networks 2112d. https://www.aps-networks.com/

products/aps2112d/. Accessed: 2022-01-29.

[147] Kong Soon Ng, Chin-Sien Moo, Yi-Ping Chen, and Yao-Ching Hsieh. Enhanced
coulomb counting method for estimating state-of-charge and state-of-health of
lithium-ion batteries. Applied energy, 86(9):1506–1511, 2009.

[148] Duong Tuan Nguyen, Chuan Pham, Kim Khoa Nguyen, and Mohamed Cheriet.
Placement and chaining for run-time iot service deployment in edge-cloud. IEEE
Transactions on Network and Service Management, 17(1):459–472, 2020.

[149] Kathleen Nichols and Van Jacobson. Controlling queue delay. Commun. ACM,
55(7):42–50, 7 2012.

[150] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,
Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford,
Tony Tung, and Venkateshwaran Venkataramani. Scaling memcache at facebook. In
10th USENIX Symposium on Networked Systems Design and Implementation (NSDI
13), pages 385–398, Lombard, IL, April 2013. USENIX Association.

https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F5%2Fd%2F6%2F5d6eaf2b-7ddf-476b-93dc-7cf0072878e6%2Fndis_rss.doc
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F5%2Fd%2F6%2F5d6eaf2b-7ddf-476b-93dc-7cf0072878e6%2Fndis_rss.doc
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F5%2Fd%2F6%2F5d6eaf2b-7ddf-476b-93dc-7cf0072878e6%2Fndis_rss.doc
https://view.officeapps.live.com/op/view.aspx?src=https%3A%2F%2Fdownload.microsoft.com%2Fdownload%2F5%2Fd%2F6%2F5d6eaf2b-7ddf-476b-93dc-7cf0072878e6%2Fndis_rss.doc
https://www.netronome.com/products/agilio-cx/
https://www.netronome.com/products/agilio-cx/
https://www.aps-networks.com/products/aps2112d/
https://www.aps-networks.com/products/aps2112d/

REFERENCES 136

[151] Inc. NumFOCUS. Pandas. https://pandas.pydata.org/. Accessed: 2022-
01-29.

[152] NVIDIA. NVIDIA Connectx-7. https://nvdam.widen.net/s/

srdqzxgdr5/connectx-7-datasheet. Accessed: 2022-01-29.

[153] Diego Ongaro and John Ousterhout. In search of an understandable consensus
algorithm. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
305–319, Philadelphia, PA, June 2014. USENIX Association.

[154] Oracle. Oracle nosql. https://www.oracle.com/database/nosql/

technologies/nosql/. Accessed: 2022-01-29.

[155] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal, Collin Lee,
Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry Qin, Mendel Rosenblum,
Stephen Rumble, Ryan Stutsman, and Stephen Yang. The ramcloud storage system.
ACM Trans. Comput. Syst., 33(3), 8 2015.

[156] Claus Pahl, Sven Helmer, Lorenzo Miori, Julian Sanin, and Brian Lee. A container-
based edge cloud paas architecture based on raspberry pi clusters. In 2016 IEEE
4th International Conference on Future Internet of Things and Cloud Workshops
(FiCloudW), pages 117–124. IEEE, 2016.

[157] Tian Pan, Nianbing Yu, Chenhao Jia, Jianwen Pi, Liang Xu, Yisong Qiao, Zhiguo
Li, Kun Liu, Jie Lu, Jianyuan Lu, Enge Song, Jiao Zhang, Tao Huang, and Shun-
min Zhu. Sailfish: Accelerating cloud-scale multi-tenant multi-service gateways with
programmable switches. In Proceedings of the 2021 ACM SIGCOMM 2021 Confer-
ence, SIGCOMM ’21, page 194–206, New York, NY, USA, 2021. Association for
Computing Machinery.

[158] Giorgos Papastergiou, Gorry Fairhurst, David Ros, Anna Brunstrom, Karl-Johan
Grinnemo, Per Hurtig, Naeem Khademi, Michael Tüxen, Michael Welzl, Dragana
Damjanovic, and Simone Mangiante. De-ossifying the internet transport layer:
A survey and future perspectives. IEEE Communications Surveys & Tutorials,
19(1):619–639, 2017.

[159] Ben Pfaff and Bruce Davie. The Open vSwitch Database Management Protocol.
RFC 7047, December 2013.

[160] Michele Polese, Federico Chiariotti, Elia Bonetto, Filippo Rigotto, Andrea Zanella,
and Michele Zorzi. A survey on recent advances in transport layer protocols. IEEE
Communications Surveys & Tutorials, 21(4):3584–3608, 2019.

https://pandas.pydata.org/
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet
https://nvdam.widen.net/s/srdqzxgdr5/connectx-7-datasheet
https://www.oracle.com/database/nosql/technologies/nosql/
https://www.oracle.com/database/nosql/technologies/nosql/

REFERENCES 137

[161] V Pop, HJ Bergveld, PHL Notten, JHG Op het Veld, and Paulus PL Regtien.
Accuracy analysis of the state-of-charge and remaining run-time determination for
lithium-ion batteries. Measurement, 42(8):1131–1138, 2009.

[162] Dan R. K. Ports and Jacob Nelson. When should the network be the computer? In
Proceedings of the Workshop on Hot Topics in Operating Systems, HotOS ’19, page
209–215, New York, NY, USA, 2019. Association for Computing Machinery.

[163] Leon Poutievski, Omid Mashayekhi, Joon Ong, Arjun Singh, Mukarram Tariq, Rui
Wang, Jianan Zhang, Virginia Beauregard, Patrick Conner, Steve Gribble, Rishi
Kapoor, Stephen Kratzer, Nanfang Li, Hong Liu, Karthik Nagaraj, Jason Ornstein,
Samir Sawhney, Ryohei Urata, Lorenzo Vicisano, Kevin Yasumura, Shidong Zhang,
Junlan Zhou, and Amin Vahdat. Jupiter evolving: Transforming google’s datacenter
network via optical circuit switches and software-defined networking. In Proceedings
of the ACM SIGCOMM 2022 Conference, SIGCOMM ’22, page 66–85, New York,
NY, USA, 2022. Association for Computing Machinery.

[164] Linux Foundation Projects. Dpdk. https://www.dpdk.org/. Accessed: 2022-
10-18.

[165] Ryan Izard Qing Wang, Geddings Barrineau. Floodlight controller. https://

floodlight.atlassian.net/wiki/spaces/floodlightcontroller/

overview, 2018. Accessed: 2022-01-29.

[166] Moritz Quandt, Benjamin Knoke, Christian Gorldt, Michael Freitag, and Klaus-
Dieter Thoben. General requirements for industrial augmented reality applications.
Procedia CIRP, 72:1130–1135, 2018. 51st CIRP Conference on Manufacturing Sys-
tems.

[167] Hoan Nguyen Mau Quoc, Martin Serrano, John G. Breslin, and Danh Le
Phuoc. A learning approach for query planning on spatio-temporal iot data. In
Krzysztof Janowicz, Werner Kuhn, Federica Cena, Armin Haller, and Kyriakos G.
Vamvoudakis, editors, Proceedings of the 8th International Conference on the In-
ternet of Things, IOT 2018, Santa Barbara, CA, USA, October 15-18, 2018, pages
1:1–1:8. ACM, 2018.

[168] Amir M. Rahmani, Tuan Nguyen Gia, Behailu Negash, Arman Anzanpour, Iman
Azimi, Mingzhe Jiang, and Pasi Liljeberg. Exploiting smart e-health gateways at the
edge of healthcare internet-of-things: A fog computing approach. Future Generation
Computer Systems, 78:641–658, 2018.

https://www.dpdk.org/
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview
https://floodlight.atlassian.net/wiki/spaces/floodlightcontroller/overview

REFERENCES 138

[169] Luigi Rizzo. netmap: A novel framework for fast packet I/O. In 2012 USENIX
Annual Technical Conference (USENIX ATC 12), pages 101–112, Boston, MA, 6
2012. USENIX Association.

[170] Charalampos Rotsos, Daniel King, Arsham Farshad, Jamie Bird, Lyndon Fawcett,
Nektarios Georgalas, Matthias Gunkel, Kohei Shiomoto, Aijun Wang, Andreas Mau-
the, Nicholas Race, and David Hutchison. Network service orchestration standard-
ization: A technology survey. Computer Standards & Interfaces, 54:203–215, 2017.
SI: Standardization SDN&NFV.

[171] Stefanos Sagkriotis, Christos Anagnostopoulos, and Dimitrios P. Pezaros. Energy
usage profiling for virtualized single board computer clusters. In 2019 IEEE Sym-
posium on Computers and Communications (ISCC), pages 1–6, 2019.

[172] Stefanos Sagkriotis, Kostas Kolomvatsos, Christos Anagnostopoulos, Dimitrios P.
Pezaros, and Stathes Hadjiefthymiades. Knowledge-centric analytics queries alloca-
tion in edge computing environments. In 2019 IEEE Symposium on Computers and
Communications (ISCC), pages 1–6, 2019.

[173] Stefanos Sagkriotis and Dimitrios Pezaros. Accelerating kubernetes with in-network
caching. In Proceedings of the SIGCOMM ’22 Poster and Demo Sessions, SIG-
COMM ’22, page 40–42, New York, NY, USA, 2022. Association for Computing
Machinery.

[174] Stefanos Sagkriotis and Dimitrios Pezaros. Scalable data plane caching for kuber-
netes. In 2022 18th International Conference on Network and Service Management
(CNSM), pages 345–351, 2022.

[175] Stefanos Sagkriotis and Dimitrios Pezaros. Scale-friendly in-network coordination.
In GLOBECOM 2022 - 2022 IEEE Global Communications Conference, pages 5747–
5752, 2022.

[176] Sahel Sahhaf, Wouter Tavernier, Matthias Rost, Stefan Schmid, Didier Colle, Mario
Pickavet, and Piet Demeester. Network service chaining with optimized network
function embedding supporting service decompositions. Computer Networks, 93:492–
505, 2015. Cloud Networking and Communications II.

[177] Amedeo Sapio, Ibrahim Abdelaziz, Abdulla Aldilaijan, Marco Canini, and Panos
Kalnis. In-network computation is a dumb idea whose time has come. In Proceedings
of the 16th ACM Workshop on Hot Topics in Networks, HotNets-XVI, page 150–156,
New York, NY, USA, 2017. Association for Computing Machinery.

REFERENCES 139

[178] Amedeo Sapio, Marco Canini, Chen-Yu Ho, Jacob Nelson, Panos Kalnis, Changhoon
Kim, Arvind Krishnamurthy, Masoud Moshref, Dan R. K. Ports, and Peter
Richtárik. Scaling distributed machine learning with in-network aggregation. In
James Mickens and Renata Teixeira, editors, 18th USENIX Symposium on Net-
worked Systems Design and Implementation, NSDI 2021, April 12-14, 2021, pages
785–808. USENIX Association, 2021.

[179] scikit-learn developers. Scikit-learn. https://scikit-learn.org/stable/.
Accessed: 2022-01-29.

[180] Prateek Sharma, Lucas Chaufournier, Prashant Shenoy, and Y. C. Tay. Containers
and virtual machines at scale: A comparative study. In Proceedings of the 17th
International Middleware Conference, Middleware ’16, New York, NY, USA, 2016.
Association for Computing Machinery.

[181] Jeff Shute, Radek Vingralek, Bart Samwel, Ben Handy, Chad Whipkey, Eric Rollins,
Mircea Oancea, Kyle Littlefield, David Menestrina, Stephan Ellner, John Cieslewicz,
Ian Rae, Traian Stancescu, and Himani Apte. F1: A distributed sql database that
scales. In VLDB, 2013.

[182] Giuseppe Siracusano and Roberto Bifulco. Is it a smartnic or a key-value store?
both! In Proceedings of the SIGCOMM Posters and Demos, SIGCOMM Posters and
Demos ’17, page 138–140, New York, NY, USA, 2017. Association for Computing
Machinery.

[183] Nina Slamnik-Kriještorac, Haris Kremo, Marco Ruffini, and Johann M Marquez-
Barja. Sharing distributed and heterogeneous resources toward end-to-end 5g net-
works: a comprehensive survey and a taxonomy. IEEE Communications Surveys &
Tutorials, 22(3):1592–1628, 2020.

[184] Tejas Subramanya and Roberto Riggio. Machine learning-driven scaling and place-
ment of virtual network functions at the network edges. In 2019 IEEE Conference
on Network Softwarization (NetSoft), pages 414–422, 2019.

[185] Weibin Sun and Robert Ricci. Fast and flexible: Parallel packet processing with gpus
and click. In Architectures for Networking and Communications Systems, pages 25–
35, 2013.

[186] Mohammad M. Tajiki, Stefano Salsano, Luca Chiaraviglio, Mohammad Shojafar,
and Behzad Akbari. Joint energy efficient and qos-aware path allocation and vnf
placement for service function chaining. IEEE Transactions on Network and Service
Management, 16(1):374–388, 2019.

https://scikit-learn.org/stable/

REFERENCES 140

[187] Hatem Takruri, Ibrahim Kettaneh, Ahmed Alquraan, and Samer Al-Kiswany.
FLAIR: Accelerating reads with consistency-aware network routing. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20), pages
723–737, Santa Clara, CA, February 2020. USENIX Association.

[188] Hangzhou Ruideng Technology. UM24C. https://www.mediafire.com/

folder/0jt6xx2cyn7jt. Accessed: 2022-12-20.

[189] D. L. Tennenhouse, J. M. Smith, W. D. Sincoskie, D. J. Wetherall, and G. J. Minden.
A survey of active network research. IEEE Communications Magazine, 35(1):80–86,
1997.

[190] Jeff Terrace and Michael J. Freedman. Object storage on CRAQ: High-throughput
chain replication for read-mostly workloads. In 2009 USENIX Annual Technical
Conference (USENIX ATC 09), San Diego, CA, June 2009. USENIX Association.

[191] Robbert van Renesse and Fred B. Schneider. Chain replication for supporting high
throughput and availability. In Eric A. Brewer and Peter Chen, editors, 6th Sympo-
sium on Operating System Design and Implementation (OSDI 2004), San Francisco,
California, USA, December 6-8, 2004, pages 91–104. USENIX Association, 2004.

[192] Amir Varasteh, Basavaraj Madiwalar, Amaury Van Bemten, Wolfgang Kellerer, and
Carmen Mas-Machuca. Holu: Power-aware and delay-constrained vnf placement
and chaining. IEEE Transactions on Network and Service Management, 18(2):1524–
1539, 2021.

[193] Marcos A. M. Vieira, Matheus S. Castanho, Racyus D. G. Pacífico, Elerson R. S.
Santos, Eduardo P. M. Câmara Júnior, and Luiz F. M. Vieira. Fast packet processing
with ebpf and xdp: Concepts, code, challenges, and applications. ACM Comput.
Surv., 53(1), 2 2020.

[194] Shie-Yuan Wang, Chia-Ming Wu, Yi-Bing Lin, and Ching-Chun Huang. High-speed
data-plane packet aggregation and disaggregation by p4 switches. Journal of Network
and Computer Applications, 142:98–110, 2019.

[195] Putu Wiramaswara Widya, Yoga Yustiawan, and Joonho Kwon. A onem2m-based
query engine for internet of things (iot) data streams. Sensors, 18(10), 2018.

[196] Zhimin Xi, Modjtaba Dahmardeh, Bing Xia, Yuhong Fu, and Chris Mi. Learning of
battery model bias for effective state of charge estimation of lithium-ion batteries.
IEEE Transactions on Vehicular Technology, 68(9):8613–8628, 2019.

https://www.mediafire.com/folder/0jt6xx2cyn7jt
https://www.mediafire.com/folder/0jt6xx2cyn7jt

REFERENCES 141

[197] Zhaoqi Xiong and Noa Zilberman. Do switches dream of machine learning? toward
in-network classification. In Proceedings of the 18th ACM Workshop on Hot Topics
in Networks, HotNets ’19, page 25–33, New York, NY, USA, 2019. Association for
Computing Machinery.

[198] Zhichao Xu, Xiaoning Zhang, Shui Yu, and Ji Zhang. Energy-efficient virtual net-
work function placement in telecom networks. In 2018 IEEE International Confer-
ence on Communications (ICC), pages 1–7, 2018.

[199] Lily Yang, Todd A. Anderson, Ram Gopal, and Ram Dantu. Forwarding and Control
Element Separation (ForCES) Framework. RFC 3746, April 2004.

[200] Nong Ye and Qiang Chen. An anomaly detection technique based on a chi-square
statistic for detecting intrusions into information systems. Quality and Reliability
Engineering International, 17(2):105–112, 2001.

[201] Ashkan Yousefpour, Caleb Fung, Tam Nguyen, Krishna Kadiyala, Fatemeh Jalali,
Amirreza Niakanlahiji, Jian Kong, and Jason P Jue. All one needs to know about
fog computing and related edge computing paradigms: A complete survey. Journal
of Systems Architecture, 98:289–330, 2019.

[202] Erik Zeitler and Tore Risch. Scalable splitting of massive data streams. In Hiroyuki
Kitagawa, Yoshiharu Ishikawa, Qing Li, and Chiemi Watanabe, editors, Database
Systems for Advanced Applications, 15th International Conference, DASFAA 2010,
Tsukuba, Japan, April 1-4, 2010, Proceedings, Part II, volume 5982 of Lecture Notes
in Computer Science, pages 184–198. Springer, 2010.

[203] Chaobing Zeng, Fangming Liu, Shutong Chen, Weixiang Jiang, and Miao Li. De-
mystifying the performance interference of co-located virtual network functions. In
IEEE INFOCOM 2018 - IEEE Conference on Computer Communications, pages
765–773, 2018.

[204] Menglei Zhang, Michele Polese, Marco Mezzavilla, Jing Zhu, Sundeep Rangan, Shiv-
endra Panwar, and Michele Zorzi. Will tcp work in mmwave 5g cellular networks?
IEEE Communications Magazine, 57(1):65–71, 2019.

[205] Qianyu Zhang, Gongming Zhao, Hongli Xu, Zhuolong Yu, Liguang Xie, Yangming
Zhao, Chunming Qiao, Ying Xiong, and Liusheng Huang. Zeta: A scalable and
robust East-West communication framework in Large-Scale clouds. In 19th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 22), pages
1231–1248, Renton, WA, April 2022. USENIX Association.

REFERENCES 142

[206] Qixia Zhang, Fangming Liu, and Chaobing Zeng. Adaptive interference-aware vnf
placement for service-customized 5g network slices. In IEEE INFOCOM 2019 -
IEEE Conference on Computer Communications, pages 2449–2457, 2019.

[207] Naweiluo Zhou, Huan Zhou, and Dennis Hoppe. Containerization for high perfor-
mance computing systems: Survey and prospects. IEEE Transactions on Software
Engineering, 49(4):2722–2740, 2023.

[208] Wei Zhou, Li Li, Min Luo, and Wu Chou. Rest api design patterns for sdn north-
bound api. In 2014 28th International Conference on Advanced Information Net-
working and Applications Workshops, pages 358–365, 2014.

[209] Hang Zhu, Zhihao Bai, Jialin Li, Ellis Michael, Dan R. K. Ports, Ion Stoica, and
Xin Jin. Harmonia: Near-linear scalability for replicated storage with in-network
conflict detection. Proc. VLDB Endow., 13(3):376–389, November 2019.

	Thesis cover sheet
	2023SagkriotisPhD
	Abstract
	Acknowledgements
	Introduction
	Overview
	Thesis Statement
	Contributions
	Publications
	Organisation of the Thesis

	Background
	Overview
	Challenges in Network Evolution
	Early Efforts for Network Programmability
	Programmable Networking in Commodity Hardware
	User Space Packet Processing
	In-Kernel Packet Processing
	Software Routers
	GPU Offloading
	Single Board Computers

	Network Programmability over Bespoke Hardware
	End-Host Programmability
	Middleboxes
	Software Defined Networking
	Programmable Application-Specific Integrated Circuits

	Network Function Virtualisation
	Reference Architecture
	Virtualisation Technologies
	Placement & Resource Allocation
	Network Function Virtualisation Platforms

	In-network Offloading
	Data storage
	Machine Learning
	Aggregation

	Summary

	Replicated Storage in the Data Plane
	Overview
	Existing Limitations
	NetChain

	CRAQ
	NetCRAQ Design
	Data Plane
	Control Plane

	NetCRAQ Performance (vs NetChain)
	Evaluation Setup
	Throughput
	Latency
	Mixed Workloads
	Scalability

	Discussion
	State Preservation
	Technical Challenges
	Example Use Case

	Summary

	In-Network Storage and Processing at the Edge
	Overview
	Motivation
	Energy Monitoring on Clusters of Single Board Computers
	Design
	Measurements

	Energy-Aware Placement
	Problem Definition & Notation

	The ECAS Scheduler
	SoC Monitor
	Node Selector
	Evaluation
	Evaluation Setup
	Discussion

	Query allocation at the Edge
	Definitions & Problem Formulation
	Scaling-out the Assignment of Queries
	Experimental Evaluation

	Summary

	Conclusion
	Overview
	Contributions
	Thesis Statement Revisited
	Future Research Directions
	Concluding Remarks

	References

