9,681 research outputs found

    An Evolutionary Algorithm to Generate Real Urban Traffic Flows

    Get PDF
    In this article we present a strategy based on an evolutionary algorithm to calculate the real vehicle ows in cities according to data from sensors placed in the streets. We have worked with a map imported from OpenStreetMap into the SUMO traffic simulator so that the resulting scenarios can be used to perform different optimizations with the confidence of being able to work with a traffic distribution close to reality. We have compared the results of our algorithm to other competitors and achieved results that replicate the real traffic distribution with a precision higher than 90%.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by project number 8.06/5.47.4142 in collaboration with the VSB-Technical University of Ostrava and Universidad de Málaga UMA/FEDER FC14-TIC36, programa de fortalecimiento de las capacidades de I+D+i en las universidades 2014-2015, de la Consejería de Economía, Innovación, Ciencia y Empleo, cofinanciado por el fondo europeo de desarrollo regional (FEDER). Also, partially funded by the Spanish MINECO project TIN2014-57341-R (http://moveon.lcc.uma.es). The authors would like to thank the FEDER of European Union for financial support via project Movilidad Inteligente: Wi-Fi, Rutas y Contaminación (maxCT) of the "Programa Operativo FEDER de Andalucía 2014-2020. We also thank all Agency of Public Works of Andalusia Regional Government staff and researchers for their dedication and professionalism. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish Ministry of Education, Culture and Sports

    A Model of the Rise and Fall of Roads

    Get PDF
    Transportation network planning decisions made at one point of time can have profound impacts in the future. However, transportation networks are usually assumed tobe static in models of land use. A better understanding of the natural growth pattern of roads will provide valuable guidance to planners who try to shape the future network. This paper analyzes the relationships between network supply and travel demand, and describes a road development and degeneration mechanism microscopically at the linklevel. A simulation model of transportation network dynamics is developed, involving iterative evolution of travel demand patterns, network revenue policies, cost estimation,and investment rules. The model is applied to a real-world congesting network – the Twin Cities transportation network which comprises nearly 8,000 nodes and more than 20,000 links, using network data collected since year 1978. Four experiments are carried out with different initial conditions and constraints, the results from which allow us toexplore model properties such as computational feasibility, qualitative implications, potential calibration procedures, and predictive value. The hypothesis that roadhierarchies are emergent properties of transportation networks is confirmed, and the underlying reasons discovered. Spatial distribution of capacity, traffic flow, andcongestion in the transportation network is tracked over time. Potential improvements to the model in particular and future research directions in transportation network dynamicsin general are also discussed.Transportation network dynamics, Urban planning, Road suppl

    A Coevolutionary Particle Swarm Algorithm for Bi-Level Variational Inequalities: Applications to Competition in Highway Transportation Networks

    Get PDF
    A climate of increasing deregulation in traditional highway transportation, where the private sector has an expanded role in the provision of traditional transportation services, provides a background for practical policy issues to be investigated. One of the key issues of interest, and the focus of this chapter, would be the equilibrium decision variables offered by participants in this market. By assuming that the private sector participants play a Nash game, the above problem can be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from the classical Cournot-Nash game because each and every player’s actions is constrained by another variational inequality describing the equilibrium route choice of users on the network. In this chapter, we discuss this BLVI and suggest a heuristic coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm is subsequently tested on example problems drawn from the literature. The numerical experiments suggest that the proposed algorithm is a viable solution method for this problem

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment

    An Intelligent Advisor for City Traffic Policies

    Get PDF
    Nowadays, city streets are populated not only by private vehicles but also by public transport, fleets of workers, and deliveries. Since each vehicle class has a maximum cargo capacity, we study in this article how authorities could improve the road traffic by endorsing long term policies to change the different vehicle proportions: sedans, minivans, full size vans, trucks, and motorbikes, without losing the ability of moving cargo throughout the city. We have performed our study in a realistic scenario (map, road traffic characteristics, and number of vehicles) of the city of Malaga and captured the many details into the SUMO microsimulator. After analyzing the relationship between travel times, emissions, and fuel consumption, we have defined a multiobjective optimization problem to be solved, so as to minimize these city metrics. Our results provide a scientific evidence that we can improve the delivery of goods in the city by reducing the number of heavy duty vehicles and fostering the use of vans instead.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R, TIN2016-81766-REDT, and TIN2017-88213-R. University of Malaga, Andalucia TECH. Daniel H. Stolfi is supported by a FPU grant (FPU13/00954) from the Spanish MECD. Christian Cintrano is supported by a FPI grant (BES-2015-074805) from Spanish MINECO

    Forecasting bus passenger flows by using a clustering-based support vector regression approach

    Get PDF
    As a significant component of the intelligent transportation system, forecasting bus passenger flows plays a key role in resource allocation, network planning, and frequency setting. However, it remains challenging to recognize high fluctuations, nonlinearity, and periodicity of bus passenger flows due to varied destinations and departure times. For this reason, a novel forecasting model named as affinity propagation-based support vector regression (AP-SVR) is proposed based on clustering and nonlinear simulation. For the addressed approach, a clustering algorithm is first used to generate clustering-based intervals. A support vector regression (SVR) is then exploited to forecast the passenger flow for each cluster, with the use of particle swarm optimization (PSO) for obtaining the optimized parameters. Finally, the prediction results of the SVR are rearranged by chronological order rearrangement. The proposed model is tested using real bus passenger data from a bus line over four months. Experimental results demonstrate that the proposed model performs better than other peer models in terms of absolute percentage error and mean absolute percentage error. It is recommended that the deterministic clustering technique with stable cluster results (AP) can improve the forecasting performance significantly.info:eu-repo/semantics/publishedVersio

    Preliminary Results of a Multiagent Traffic Simulation for Berlin

    Get PDF
    This paper provides an introduction to multi-agent traffic simulation. Metropolitan regions can consist of several million inhabitants, implying the simulation of several million travelers, which represents a considerable computational challenge. We reports on our recent case study of a real-world Berlin scenario. The paper explains computational techniques necessary to achieve results. It turns out that the difficulties there, because of data availability and because of the special situation of Berlin after the re-unification, are considerably larger than in previous scenarios that we have treated
    • …
    corecore