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Abstract. In this article we present a strategy based on an evolution-
ary algorithm to calculate the real vehicle flows in cities according to
data from sensors placed in the streets. We have worked with a map
imported from OpenStreetMap into the SUMO traffic simulator so that
the resulting scenarios can be used to perform different optimizations
with the confidence of being able to work with a traffic distribution close
to reality. We have compared the results of our algorithm to other com-
petitors and achieved results that replicate the real traffic distribution
with a precision higher than 90%.
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1 Introduction

Road traffic related problems have been studied frequently in the last decades.
Several published articles are based on traffic simulations and, if the city modeled
is big enough, the need for not only real maps, but also real traffic distribution
is obligatory in order to obtain valid conclusions.

Therefore, a traffic flow study is an important aspect to be taken into ac-
count when modeling scenarios based on real maps. These maps can later be
used to optimize traffic light cycles [12], to study the placement of LED Panels
throughout the city [14], to reroute vehicles with the aim of reducing travel times
[13], and for many other uses in smart mobility [1, 5, 6, 9].

Usually, local councils publish data about traffic (and other useful informa-
tion about the city), under a smart city initiative: the so called Open Data.
Within this information we can find origin-destination matrices, main vehicle
flows, or the number of vehicles at specific measurement points. When these
data are available they can be used to analyze drivers’ habits, predict traffic
congestion, or model a real traffic distribution consisting of traffic flows that
match the real values.

The problem we are solving here consists in calculating the best vehicle flows
on a real map so that the number of vehicles counted in several measurement
points are as close as possible to the data available from the local council. Our
proposal is a new strategy based on an evolutionary algorithm which is able to
calculate several traffic flows based just on a few measurement points, so that
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it can reproduce the real traffic, which in addition to a real map imported from
OpenStreetMap, achieves instances for traffic study which are close to reality.

2 Related Work

There are many studies (see survey in [2]) which focus on the estimation of
origin-destination matrix based on traffic counting locations. They can be static
[7, 8] or dynamic [3, 10]. However, these algorithms assume that all link costs are
available, which may not be true in practical situations such as our case study.
Unfortunately, authors do not usually detail the scalability of their algorithms
for larger networks, which is a key issue for the interest in their solutions.

In [15] a Hopfield Neural Network (HNN) model is used to estimate the urban
origin-destination distribution matrix. The author claims that due to the ability
of quick computation, parallel distributed processing and hardware realization
of neural networks, it is possible to overcome the difficulties of mathematical
optimization models. He finds the global optimal solution to the problem and
experiments on a graph made of just five nodes representing the same number
of zones. To the contrary, our method focuses on individual streets rather than
zones (finer grain, higher realism) and we need to route vehicles via individual
streets. Consequently, there are several routes available between measurement
points in which the vehicles are counted. Therefore, we need to use a different
technique to calculate the flows.

An open-source software, called TrafficModeler, is presented in [11]. This
program implements a traffic definition model describing traffic via a set of traffic
layers placed over a road network. By using those layers it is possible to represent
specific traffic patterns associated with different attributes. Additionally, traffic
flows can be obtained from virtual populations based on demographic data (i.e.
transportation between home, school and work). This tool for modeling traffic
flows differs from our proposal in that it cannot be applied when the only source
of data is the number of vehicles measured by sensors.

Finally, there are two utilities included in the SUMO [4] software package
called ACTIVITYGEN and DFROUTER. The former computes the mobility
wishes for a group of citizens matching a map, while the latter uses values from
induction loops (sensors) to compute vehicle routes. ACTIVITYGEN is quite
similar in some aspects to the aforementioned article, analyzed in this section,
although it does not provide a graphic user interface. DFROUTER is a tool that
may be used in the same way as the work we present in this article, however, it
assumes that the map is completely covered by sensors, especially on its borders,
and it requires the exact timestamp in which vehicles were detected and their
speed in all the measurement points. None of these options are suitable for the
problem we are solving as they cannot be applied to calculate the traffic flows
in the city based on just the number of vehicles counted by each sensor.
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3 Problem Description

The aim of this article is to present a new strategy to generate traffic distribu-
tions in a city by using the data previously collected from sensors which count
vehicles in a few streets. It is based on an evolutionary algorithm especially
adapted to work with the difficulties that are present in this problem, such as
high complexity due to the high number of vehicles and large scenarios, long
evaluation times, and the high probability of traffic jams occurring in an actual
city scenario when the number of vehicles moving through its streets increases.

Furthermore, as is the case in many cities of the world, we do not have
access to the actual vehicle flows, as this information is often not known (or not
published) by the city traffic authorities. However, our algorithm is capable of
dealing with this drawback by modifying the number of vehicles in each flow,
in order to match the number counted by the sensors at several points of the
simulated city, increasing the realism of the simulation.

Let v∗ = (v∗1 , . . . , v
∗
N ) be a vector containing the values collected from N

sensors in the real city, and v = (v1, . . . , vN ) a vector containing the values
obtained from the evaluation of the city map. Our objective is to minimize
the error ei = |v∗

i − vi|, i ∈ {1, . . . , N} by modifying the vehicle flows f =
(f1, . . . , fM ) in the city.

In short, by looking for appropriate flows (decision variables) we compute
estimated flows on a simulator with the goal that they match real measured
ones in the city where they are available. Of course, the set of flows contain a
subset of proposed ones for the streets where no measurements are available at
all, thus allowing the researcher to further study the city by using existing and
approximated flows for all streets.

4 Case Study

In order to evaluate our proposal we have selected the downtown of Malaga,
Spain, where several vehicle sensors have been installed by the local council.
The geographical area under study is delimited to the north by San Bartolomé
Street and Ferrándiz Street, to the west by the Guadalmedina River, to the
east by Keromnes Street, and to the south by the Mediterranean Sea, which
encompasses an area of about 3 km2.

We imported the selected area from OpenStreetMap into SUMO [4] traffic
simulator by using the program NETCONVERT included in the SUMO pack-
age so that we could work with a real road distribution consisting of the actual
streets, traffic lights, roundabouts, and junctions. Then, we added the measure-
ment points provided by the city council by using SUMO’s induction loops (log-
ical resource) in order to collect the number of vehicles in each of these points
and compare them to the real ones.

In Fig. 1 the map from OpenStreetMap and a snapshot of the same map
imported into SUMO are depicted. Note that the traffic sensors are located at
the original positions in which the vehicles are counted.
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(a) OpenStreetMap (b) SUMO

Fig. 1. Case study: Center of Malaga, Spain

Finally, we generated estimated flows between the input streets to the area,
output streets, and local sources by using the DUAROUTE program included in
SUMO to calculate routes by using the travel time as the weight function. All in
all, we defined 63 flows, which determined the length of the status vector. Note
that each flow consists in a sorted list of streets describing a route between the
origin and destination points in the city

In all our results we analyzed the case study for one hour of traffic, as the
values from the sensors correspond to this period of time. Additionally, we es-
tablished a warm up period of 10 minutes so as not to start our analysis in an
empty city, which is rather unrealistic.

5 Flow Generator Algorithm (FGA)

We propose here for the first time a Flow Generator Algorithm (FGA) to find
the flows which minimize the differences between the vehicles measured in the
city by the sensors and the values obtained after the simulation of the map.

Fig.2 shows the optimization process where we can see that FGA uses the
available sensor data and the map from OpenStreetMap as inputs to evaluate
individuals by using the SUMO traffic simulator. During the optimization pro-
cess the algorithm generates and evaluates different individuals which represent
the number of vehicles in each flow. Finally, when the optimization ends, the
output produced is the number of vehicles in each flow plus the map of the city.

FGA is based on a (10+2)-EA, a steady state EA with a population of ten
individuals generating two new individuals at each step. We used Binary Tour-
nament as the selection operator, Uniform Crossover as the recombination oper-
ator, and an elitist replacement policy. We used local search instead of mutation
after applying the recombination operator because it is necessary to provide ex-
tra information to the algorithm to avoid saturating the streets with a number
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Fig. 2. Optimization Process.

of vehicles so large that they will always provoke jams (not enough capacity in
the streets). The local search is described later in Section 5.3.

5.1 Problem Representation

In Fig.3 we can see the status vector containing flow values which are actually
the number of vehicles that are following each flow. There are 63 flows (M = 63)
in the case study we are optimizing, each one of the vector’s values consists of
an integer which can take values of between 10 and 500.

Fig. 3. Status vector containing the number of vehicles for the 63 flows.

5.2 Evaluation Function

Our evaluation function (Equation 1) assigns a numeric value to a configuration
representing the vehicle flows (an individual of the FGA). We calculate the
absolute value of the difference between the real values (v?) measured in the
city and the ones (v) collected during the simulation of the map using the flows
represented by the individual under evaluation. The fitness value of an individual
is calculated by applying the evaluation function so that the numeric value of F
is the summation of the absolute values of the differences for all the N sensors.
This only happens if C(v) ≤ 0.2, otherwise, we apply a penalization of a large
constant value in the algorithm (infinite) because we are minimizing, so the
lower, the better.

F (v) =

{∑N
i=1 |

vi−v∗
i

v∗
i
| if C(v) ≤ 0.2,

∞ if C(v) > 0.2.
(1)

C(v) = max

(
vi − v∗

i

v∗
i

)
, i ∈ {1, . . . , N} (2)
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As we want to avoid traffic jams, we need to keep the number of vehicles
in each street low while we target the real value as much as possible by adding
vehicles to different flows. To do this, we set a limit of 20% (C(v) ≤ 0.2) as
the maximum percentage each sensor can exceed the desired one (we have seen
that bigger values lead to traffic jams which the algorithm cannot detect). In
Equation 2 we present the calculation of C(v) as the maximum difference be-
tween the vi value and the v∗

i one, so that if one of the values obtained from
the simulation is higher than 20% of the real one, the individual is invalidated.
This threshold only affects high values while the lower ones are actually consid-
ered by the algorithm as we wish to match the desired number of vehicles by
incrementing them progressively, preventing street congestions.

5.3 Operators

As we have said, we used Binary Tournament as the selection operator, Uniform
Crossover as the recombination operator, and an elitist replacement policy. After
applying the recombination operator we applied the local search operator whose
pseudocode is shown in Algorithm 1.

Algorithm 1 Local Search

procedure localsearch(individual,∆(t))
v ← calculateSensorV alues(individual)
f ← getF lows(individual)
for all fi ∈ f do

if random() ≤ PLS then
sensors← getRelatedSensors(fi)
s← selectSensorRND(sensors)
if v[s]− sensors[s] < 0 then

incrementV ehicles(fi,∆(t))
else

decrementV ehicles(fi,∆(t))
end if

end if
end for
return individual

end procedure

First, the algorithm obtains the number of vehicles measured in each sensor
by simulating the scenario with the flow configuration provided by the individual
and stores the values in the vector v so that it is able to decide whether the
number of vehicles measured by each sensor is under or over the real value.
Second, it obtains all the flows from the individual and stores them in the vector
f to iterate over it. Third, it selects which flows are modified according to the PLS
parameter. Then, all the sensors which depend on the selected flow fi are stored
in the vector sensors, and just one of them is randomly selected and stored
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in s. This dependency data is available from the case study and depends on
the positions of the sensors and the routes of the vehicles which do not change
during the optimization process. If more vehicles are needed in the selected
measurement point v[s], the number of vehicles in the flow fi is incremented by
∆(t), otherwise v[s] is reduced by the same amount ∆(t). Note that we have set
a minimum value of 10 vehicles and a maximum of 500 for each flow, the former,
to be sure that all the flows are in use and the latter, as a value sufficiently higher
than the maximum obtained in our initial experiments. Finally, after the loop,
the local search ends and the individual is returned in order to be evaluated by
the fitness function.

The value of ∆(t) is calculated based on the minimum fitness value of the
population according to Equation 3 so that the lower the fitness value, the lower
the variation the algorithm makes to the individual. This mechanism allows us
to make big changes when the optimization begins (exploration) and lower ones
when the values from the simulation are close to the real ones (exploitation).
We have set α equal to 20 as this is the lower bound of ∆(t) and β equal to 3 in
order to control the reduction pace of ∆(t) as the FGA converges.

∆(t) = dα ∗ e(minFitnessi(t))/βe, i ∈ [1, λ], λ = 10 (3)

In Fig. 4 we show and example of the local search performed on an individual.
First, fi is selected to be modified. Second, one of the sensors (sj) whose value
depends on the flow fi is randomly selected. Finally, the number of vehicles in
fi is incremented or decremented according to the number of vehicles counted
by sj in order to be closer to the real value vj .

Fig. 4. Local search example.

We have experimentally found the values of the crossover probability (PC =
0.9) and the local search probability (PLS = 1/L). The maximum number of
generations was set to 3000, however, if the best individual does not change for
more than 500 generations, the FGA execution ends.
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6 Competitors for our FGA

In order to evaluate our local search operator, we propose two different alterna-
tives to configure the traffic flows in our case study: i) Random Search (RS) and
ii) an Evolutionary Algorithm (EA).

6.1 Random Search (RS)

We report the behavior of a pure random algorithm to perform a sanity check on
the validity of our FGA. We have implemented Random Search (RS) to obtain
configurations of the traffic flows by generating different random configurations,
saving the best of them until a better one is found. We have set a limit of 3000
iterations for the search process, the same number as in the FGA.

6.2 Evolutionary Algorithm (EA)

The Evolutionary Algorithm (EA) is exactly the same algorithm as the FGA
but for the mutation operator that is used instead of the local search. This
operator randomly selects flows according to the mutation probability (PM ) and
modifies them with a constant number of vehicles (Γ ). However, unlike FGA,
the current value of the flow is incremented or decremented with a probability of
0.5, as this operator does not have further knowledge of the sensors affected by
each flow. The main idea here is to support our choice of local search operator
instead of the mutation one, rather than compete against a basic EA which is
clearly unfair. Moreover, the parameters of the EA are the same as the FGA,
that is, PC = 0.9, PM = 1/L, Γ = 50, 3000 generations, and 500 generations as
convergence criterion.

7 Results

First, we have conducted the comparison between algorithms in order to analyze
the performance of our proposal (FGA). We carried out 30 independent runs of
each algorithm optimizing the same scenario and then collected and processed
the results which are shown in Table 1. There, we present the average fitness
value, the standard deviation, and the minimum (best) fitness solution. Addi-
tionally, we have calculated the Friedman Rank and the Wilcoxon p-value in
order to know the statistical significance of our results.

Table 1. Comparison between algorithm.

Algorithm
Fitness Friedman Wilcoxon

Average StdDev Minimum Rank p-value

RS 2.610 7.01% 2.117 3.00 0.00
EA 0.775 20.22% 0.541 2.00 0.00
FGA 0.224 32.53% 0.154 1.00 —
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(a) Fitness distributions. (b) Convergence curves.

Fig. 5. Comparison between the RS, EA, and FGA. We show in the box plot the fitness
distribution of the 30 runs of each algorithm on the left, and the convergence curve of
the best of those runs on the right.

We can see that FGA outperforms the rest of algorithms of this comparison
as it achieves the lowest fitness (both absolute and on average). Moreover, FGA
is the best ranked algorithm for this study, according to the Friedman Rank.
Having calculated the Wilcoxon p-value, we can say that the values reported are
statistically significant.

As was to be expected, RS produces the worst solution because it searches
in the solution space without any information of the problem’s characteristics.
Additionally, the results achieved by EA indicate configurations of the flows far
worse than the ones achieved by FGA, which better represents the real city
traffic. This confirms that the local search operator proposed (FGA) performs
much better than the ordinary mutation implemented in an EA as was expected.

Using the data from the 30 runs performed we have drawn a box plot, shown
in Fig. 5(a), to represent the fitness distribution of the algorithms. This figure
confirms the differences between the algorithms and how the fitness values of
FGA are the lowest ones. Furthermore, in Fig. 5(b) we present the fitness evolu-
tion during the best run of each algorithm where the more appropriate behavior
of the FGA is clearly depicted.

Second, we have tested the best solution achieved by the FGA by running
the simulation of the city with the configuration of the flows according to that
solution. In Table 2 we can see the names of the sensors, the same names as given
by the local council of Malaga, the real number of vehicles (third four-month
period of 2014), the number of vehicles measured in SUMO when we used the
flow values calculated by the FGA, and the percentage difference.

We can observe that the differences are under 1% except for sensor 16
(9.96%). Moreover, the number of vehicles measured by sensors 7 and 8 in the
simulation are exactly the same as in the real world. We have analyzed the
anomaly observed in sensor 16 and found that the main source of vehicles for
the street in which sensor 16 is placed (see Fig. 1), includes a left-turn inter-
section controlled by a traffic light. We have observed that many vehicles are
waiting at this traffic light so that they cannot reach the sensor during the sim-
ulation. We think that a modification of the light cycle of that traffic light is
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Table 2. Very accurate results found by FGA (best individual) for our case study.

Sensor
Vehicles

Difference
Real FGA

5 1088 1078 -0.92%
6 349 351 0.57%
7 289 289 0.00%
8 265 265 0.00%
9 263 265 0.76%
10 653 648 -0.77%
13 228 230 0.88%
14 510 512 0.39%
15 663 658 -0.75%
16 522 470 -9.96%
17 850 852 0.24%
18 571 570 -0.18%

necessary in the simulated map to allow more vehicles to cross the junction and
be detected. The analysis of previous optimization processes to be accomplished
on the map before launching FGA is part of our future work. In this study we
have used the traffic light cycles calculated by the experts from SUMO.

8 Conclusions and Future Work

In this article we have presented a strategy based on an evolutionary algorithm,
called FGA, to add vehicle flows to maps imported from OpenStreetMap into
the SUMO traffic simulator. As we use the real number of vehicles counted by
sensors placed throughout the city, the resulting flows can be used to perform
different types of optimizations with the confidence of being able to work with
a traffic distribution close to reality.

We have tested our proposal against other competitor algorithms, obtaining
results that show the best characteristics of our FGA. Furthermore, we have
optimized the number of vehicles in measurement points and compared them
against the real ones published by the mobility department of Malaga. Our
results show that the number of vehicles in 11 out 12 sensors of the simulated
map are under 1% the real value, and 0.8% on average if we consider all of them.

As a matter of future work we wish to study the previous optimizations
process (traffic lights, routes, etc.) required before applying our solution, as well
as extend the geographical area to be analyzed to include the entire city which
represents not only more vehicles and analysis time, but also more sensors. It
will be interesting to compare our FGA with other competitor algorithms which
could be applied to our case study by using the available data (sensors) as inputs.
However, at the moment they are hard to find.
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