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A Coevolutionary Particle Swarm Algorithm for
Bi-Level Variational Inequalities: Applications
to Competition in Highway Transportation
Networks

Andrew Koh

Abstract A climate of increasing deregulation in traditional highway transporta-
tion, where the private sector has an expanded role in the provision of traditional
transportation services, provides a background for practical policy issues to be in-
vestigated. One of the key issues of interest, and the focus of this chapter, would
be the equilibrium decision variables offered by participants in this market. By as-
suming that the private sector participants play a Nash game, the above problem can
be described as a Bi-Level Variational Inequality (BLVI). Our problem differs from
the classical Cournot-Nash game because each and every player’s actions is con-
strained by another variational inequality describing the equilibrium route choice of
users on the network. In this chapter, we discuss this BLVI and suggest a heuristic
coevolutionary particle swarm algorithm for its resolution. Our proposed algorithm
is subsequently tested on example problems drawn from the literature. The numeri-
cal experiments suggest that the proposed algorithm is a viable solution method for
this problem.

1 Introduction

Mathematicians have defined a class of problems known as equilibrium problems
with equilibrium constraints (EPECs) [33]. A particular subclass of these problems
are Bi-Level Variational Inequalities (BLVI). These are effectively Cournot-Nash
games modeled in a hierarchical fashion: The upper level problem is a Cournot-
Nash game and the constraints intrinsically define yet another Nash game parame-
terized by the solutions to former. In this chapter, the proposed algorithm is extended
to solve a BLVI that arises from competition in the provision of services within the
highway transportation sector.

Andrew Koh
Institute for Transport Studies, University of Leeds, Leeds, LS2 9JT, United Kingdom, e-mail:
a.koh@its.leeds.ac.uk
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Our motivation stems from the observation that in recent years, there has been an
increasing amount of private sector participation within areas that are convention-
ally the privy of the public purse. The driving force behind this change is brought
about by the higher efficiency of the private sector coupled with increasing public
pressures on governments for accountability and the corresponding need to derive
value for money from their various budgetary commitments which are ultimately
funded by the tax paying public [30, 53].

In highway transportation, privately operated roads are not novel concepts [56].
However there has been little analysis on this topic in terms of the competition be-
tween private sector providers and the equilibrium outcomes, save for theoretical
studies by economists (e.g. [39]). In reality, there have already been examples of
private sector participation in toll road construction and operation around the world
[15]. In return for the private capitalists funding the large initial capital investments
for the construction of the road, they are contractually allowed to collect tolls, for
some pre-specified duration, on traffic when the road is finally opened to use [12].
In an era when government budgets are becoming increasingly tight and with traffic
congestion becoming more of a problem in many major cities, the private sector is
recognized as having an increasing role to play in the provision of traditional high-
way transportation investment. When a private firm is engaged with the provision
of such services and in competition with others simultaneously doing the same, the
concept of Nash equilibrium [36] can be used to model the equilibrium decision
variables offered to the market.

Even though a Cournot-Nash equilibrium problem can be formulated as a vari-
ational inequality, the problem that we describe in this chapter differs because the
players are constrained by a second variational inequality describing the equilib-
rium routing behavior of travelers on a transportation network. Hence the problem
is formally a “Bi-Level” (denoting the two level hierarchical nature of the problem)
Variational Inequality. The objective of our research is to explore the possibilities of
employing a multipopulation coevolutionary method, based on the particle swarm
algorithm [23] to solve the resulting BLVI.

The rest of this chapter is organized as follows. In the next section, the basic traf-
fic assignment concepts are given to provide sufficient background for readers not
familiar with the tools of transportation network analysis. The variational inequality
that describes the equilibrium of a transportation system is developed. In Section 3
we discuss the concept of Nash equilibrium in further detail with reference to the be-
havior of players in a Cournot-Nash game and subsequently formulate the BLVI of
the problem at hand. Existing algorithms available to solve this problem are briefly
described. In Section 4 we describe the coevolutionary particle swarm algorithm,
developed based on an analogy with competition between species in natural sys-
tems, to solve the BLVI. The objective of the coevolutionary process is to evolve
swarms of strategies for each player that are robust against the strategies evolved
by other players while maintaining, at each iteration, the system equilibrium of the
transportation network. In Section 5 we give some examples to illustrate the perfor-
mance of our proposed solution algorithm on several problems. Finally in Section
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6 the findings are summarized and we provide further directions for research in this
developing subject area.

As the subject matter of this chapter transcends both market structures and game
theory, we will use the terms “players” and “firms” interchangeably to refer to the
private sector participants in this market who are the players in the Nash game gov-
erned by the variational inequality constraint. For the same reasons, “profits” and
“payoff” are also used synonymously.

2 Transportation Network Analysis

To facilitate understanding of this chapter, we discuss basic concepts associated
with traffic assignment and network analysis which are the key focus areas of this
chapter. We discuss the traffic assignment problem (TAP) and the theoretical model
explaining the route choice decisions of users on a highway network in a determin-
istic equilibrium setting and finally show how this can be formulated as a variational
inequality. Readers interested in this topic may refer to the texts [37, 49] for further
details.

2.1 Traffic Assignment Problem

Transportation network analysis seeks to understand factors affecting the route
choice decisions of road users so that control policies affecting it may be formu-
lated. The key to understanding this is facilitated by the traffic assignment problem
(TAP) which is the methodology of assigning users desiring to travel between origin
destination (OD)1 pairs onto a traffic network.

In a given transportation network represented by a directed network graph, let:
A: the set of all links in the transportation network
B: the set of all links that are subject to tolls and capacity enhancements B ⊆ A,
R: the set of all routes in the network,
H: the set of all OD pairs in the network,
Ω : the set of all feasible flows and demands,
Rh: the set of routes between OD pair h(h ∈ H),
d: the vector of demands between each OD pair d = [dh] (h ∈ H),
D−1: the continuous and decreasing inverse demand function giving the travel

cost as a function of the number of trips for each OD pair D−1 = [D−1
h ] (h ∈ H),

μ: the minimum travel cost between OD pair μ = [μh] (h ∈ H)
E: the route flow on all routes in the network E = [Er] (r ∈ R)
C: the cost of travel on all routes in the network C = [Cr] (r ∈ R)

1 Origins and destinations are equivalent to sources and sinks in other fields where analogous
concepts of network analysis is employed.
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v: the vector of link flows, v = [va] (a ∈ A),
δar : 1 if the route r (r ∈ R) uses link a(a ∈ A), 0 otherwise,
x: the vector of tolls, x = [xa] (a ∈ B),
K: the vector of capacities, K = [ka] (a ∈ A),
y: the vector of capacity enhancements, y = [ya] (a ∈ B),
c(v,x,y) : the vector of link travel costs as a function of link flows, c(v,x,y) =

[ca(va,0,0)] (a ∈ A,a /∈ B);c(v,x,y) = [ca(va,xa,ya)] (a ∈ B)
ta(va,ka) : the monotonically non decreasing travel time on the link excluding

tolls on the link a. Note that we have ∂ ta(va,ka)
∂va

> 0 and ∂ ta(va,ka)
∂ka

< 0
t0a: a scalar free flow travel time for link a (a ∈ A),
ρa: a positive scalar for link a (a ∈ A),
λa: a positive scalar for link a (a ∈ A).
Throughout this section we assume that x and y have already been exogenously

specified. We will discuss how these are chosen in Section 3.

2.1.1 From Link Travel Time to Path Travel Costs

The travel time function on a link gives the travel time of the link as a function of
traffic flows on the link and a commonly used functional form is depicted in 1.

ta(va,ka) =

⎧⎪⎨
⎪⎩

t0a + ρa

(
va
ka

)λa
,∀a ∈ A,a /∈ B

t0a + ρa

(
va

ka+ya

)λa
,∀a ∈ B

(1)

The functional form in 1, known as the Bureau of Public Roads (BPR) function
[3], includes link capacity as a determinant of the link travel time. When monetary
tolls are converted into a time equivalent amount, then 2 allows for an unique map
between the link travel time and the travel cost.

ca(va,xa,ya) =
{

ta(va,ka),∀a ∈ A,a /∈ B
ta(va,ka)+ xa,∀a ∈ B

(2)

Equation 2 states that if the use of the link is not subject to a toll charge, then the
travel cost of using that link is given solely by the travel time taken to traverse it.
However, if travel on it requires payment of a toll, then the time equivalent of the
toll is added to the time cost of travel.

Note that a route or path between an OD pair comprises all links that constitute
that route from O to D. In general, there could possibly be several routes available
for use by any single OD pair and that in equilibrium not all these routes would
necessarily be used.
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2.2 TAP as a Variational Inequality

The behavioural principle underlying the highway users’ choice of routes in the TAP
is founded on Wardrop’s Equilibrium Condition [57]. We state this more formally
in Lemma 1.

Lemma 1. Wardrop’s Equilibrium Condition of route choice implies that at equilib-
rium the following conditions are simultaneously satisfied:

Er∈R ≥ 0 ⇔Cr∈R ≤ D−1
h ∀h ∈ H,∀r ∈ R;

Er∈R = 0 ⇔Cr∈R > D−1
h ∀h ∈ H,∀r ∈ R;

dh∈H ≥ 0 ⇔ D−1
h ≥ μh∈H ∀h ∈ H;

dh∈H = 0 ⇔ D−1
h < μh∈H ∀h ∈ H;

The first two conditions of Lemma 1 state that at equilibrium, all routes used be-
tween a given OD pair have equal costs and routes with higher costs will not be used.
The next two conditions stipulate that travel occurs between OD pair h,(h∈ H) only
if the marginal utility derived from travel (given by the inverse demand function) is
greater than the minimum travel cost μh,(h ∈ H). Wardrop’s Equilibrium Condition
implies therefore that at equilibrium, no user can decrease his OD travel costs by
unilaterally changing routes. For a pre-determined vector of tolls x and capacity en-
hancement levels y, the following variational inequality (VI) can be used to restate
Wardrop’s Equilibrium Condition:

Find (v∗,d∗) ∈ Ω such that:

c(v∗,x,y)T (v−v∗)−D−1(d∗)T (d−d∗) ≥ 0, ∀(v,d) ∈ Ω (3)

Proposition 1. The solution of the Variational Inequality defined by 3 results in a
vector of link flows and demands ((v∗,d∗)∈Ω) that satisfies Wardrop’s Equilibrium
Condition of route choice given by Lemma 1.

For a proof of Proposition 1, see [9, 50].

2.3 Convex Optimization Reformulation

In the particular instance (and in the cases considered in this chapter) when the travel
cost of using a link is dependent only on its own flow2, there exists an equivalent
convex optimization program for the above VI as given by 4-7 [2].

min
v,d

∑
a∈A

va∫
0

ca (z)dz− ∑
h∈H

dh∫
0

D−1
h (z)dz. (4)

2 This is known as the separability assumption.



D
R

A
FT

6 Andrew Koh

Subject to: ((v∗,d∗) ∈ Ω) where Ω is a closed and convex set defined by 5 to 7.

∑
r∈Rh

Er = dh,∀h ∈ H. (5)

va = ∑
r∈R

Erδar,∀a ∈ A. (6)

Er,dh ≥ 0,∀r ∈ R,∀h ∈ H. (7)

The objective function 4 is a mathematical construct to solve for the equilibrium
link and demand flow tuple that satisfies Wardrop’s Equilibrium Condition [49]. In
this programme, the first constraint states that the flow on each route used by each
OD pair is equal to the total demand for that OD pair. The second constraint is a
definitional constraint which stipulates that the flow on a link comprises flow on
all routes that use that link. The last constraint restricts the equilibrium flows and
demands to be non negative. As Ω is closed and convex (Ω is in fact a bounded
polyhedron), the equilibrium link flows and demands ((v ∗,d∗) ∈ Ω) are unique [2].

3 A Model of Competition

With the above definition of the TAP from Section 2 in place, we are now able to
consider the problem of a set of pre-defined P (indexed by i = 1,2, ...,P) private
firms, individually and non cooperatively, choosing the toll and the capacity en-
hancement levels on one and only one of P pre-defined links in a highway network.

To simplify our exposition, but without loss of generality, we have implicitly as-
sumed that the cardinality of set P (i.e. |P|) is exactly equal to the cardinality of the
set of B,(B ⊆ A) network links which are subject to toll charges and capacity en-
hancements. In the ensuing discussion, we consider a given toll (x i∈P) and capacity
enhancement combination (yi∈P) of a link to be the only strategic variables available
to each of these firms. We formulate the optimization problem facing each firm be-
fore appealing to the concept of Nash Equilibrium (NE) to determine the strategic
combinations offered by these firms in competition. Our problem statement follows
that given in [58].

3.1 Optimization Formulation

The profit (or payoff) to firm i, i ∈ P is the difference between the toll revenue ob-
tained by charging a toll on the link and her investment cost of capacity enhance-
ment, I(yi). Mathematically, the resulting choice of the strategic variables for each
may be represented by the optimization problem in 8:
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Max
xi,yi

ψi(x,y) = vi(x,y)xi −θ I(yi),∀i ∈ P (8)

Where vi is obtained by solving the variational inequality (3) i.e.

c(v∗,x,y)T (v−v∗)−D−1(d∗)T (d−d∗) ≥ 0, ∀(v,d) ∈ Ω

In 8, the scalar θ , common to all firms, allows for conversion of the enhancement
costs from monetary equivalents into time value of money as we work in time units
throughout this chapter.

3.1.1 Single Firm Case

If there is only a single firm (i.e. |P| = 1), the problem is in fact an instance of a
mathematical program with equilibrium constraints (MPEC) [31]. These are hierar-
chical optimization problems with the key characteristic that the lower level problem
describes a variational inequality (such as those in 3) defining an equilibrium in a
system. In the parlance of economics, the MPEC is the equivalent of a Stackelberg
[51] or “leader follower” game [16] which provides a paradigm for considering the
actions of a single leader making decisions in transportation and elsewhere. This
hierarchical relationship is illustrated in Figure 1.

This paradigm is developed, in accordance with Stackleberg’s proposition, that
the sole decision maker (acting as a leader) sets the strategic variables of the system,
and the highway users follow by taking into account the firm’s decisions in formu-
lating their route choice on the network, manifesting as traffic flows v. As we have
shown in 8, the link flows have to satisfy the variational inequality and this serves
as a constraint to the leader’s optimization problem, fitting therefore into the defi-
nition of the MPEC. Evolutionary methods based on Genetic Algorithms [19] and
Differential Evolution [52] have been proposed to solve several planning problems
formulated as MPECs within transportation network analysis [25, 60].

Fig. 1 Single Player Model Fig. 2 Multiple Player Model
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3.1.2 Extension to Multiple Firms

However, when there are multiple firms, each firm continues to take into consid-
eration the route choices of the users as in the single firm model (i.e. the vertical
relationship between leaders and followers in Figure 2) but additionally the choices
made by other firms as required by the rationality postulate of non-cooperative be-
havior [18]. The latter is illustrated by the horizontal relationships between the var-
ious players at the upper level not present in the single firm model. In other words,
whilst these firms play a Cournot-Nash game [8] amongst themselves, the “leader
follower”relationship between these firms and the highway users still applies as in
the single firm case3.

3.2 Nash Equilibrium

In our current game context, a firm chooses its strategic combination from a set of
feasible toll and capacity enhancement strategies denoted by Xi ×Yi. The common
strategy set of tolls and capacity enhancements across all P players may therefore
be written as X(= ∏i∈P Xi) and Y (= ∏i∈P Yi) respectively. When player i,(i ∈ P)
chooses her tolls and capacities, she is faced with the strategic choices of her com-
petitors doing the same simultaneously. Writing her competitors’ choices of strate-
gic variables as x−i = {x1, ...,xi−1,xi+1, ...,xP} and y−i = {y1, ...,yi−1,yi+1, ...,yP},
then a toll and capacity enhancement combination (x i

∗,yi
∗) is a Nash Equilibrium if

the following in 9 is satisfied:

ψi
(
x∗i ,y

∗
i ,x

∗
−i,y

∗
−i

) ≥ ψi
(
xi,yi,x∗−i,y

∗
−i

)
,∀(xi,yi) ∈ Xi ×Yi,∀i ∈ P (9)

Equation 9 states that a NE is attained when no player in the game has an in-
centive to deviate from her current strategy. She is therefore doing the best she can
given what her competitors are doing [43].

3.2.1 Variational Inequality

A Nash Equilibrium can be represented as a VI [18, 35]. In our current context,
assume the profit function ψi is convex in Xi ×Yi strategies when viewed as a func-
tion of (xi,yi) alone, then the first order optimality conditions for the optimization
problem facing player i given in 8 are the following:

−∂ψi (x∗,y∗)
∂xi

(xi − x∗i ) ≥ 0 (10)

and

3 Thus the model is sometimes known as a Multi-Leader-Follower Game [29].
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−∂ψi (x∗,y∗)
∂yi

(yi − y∗i ) ≥ 0 (11)

Let fx(x∗,y∗) = − ∂ψi(x∗,y∗)
∂xi

,(i ∈ P) and fy(x∗,y∗) = − ∂ψi(x∗,y∗)
∂yi

,(i ∈ P) then
combining 10 and 11 we therefore arrive at the following VI

(x−x∗)T fx(x∗,y∗)+ (y−y∗)T fy(x∗,y∗) ≥ 0,∀x ∈ X ,y ∈ Y (12)

Proposition 2. The solution of the Variational Inequality defined by 12 results in
strategies (x∗ ∈ X ,y∗ ∈ Y ) satisfying the definition of Nash equilibrium given by 9.

For a proof of Proposition 2, see [18]4.

3.3 Bi-Level Variational Inequality Representation

Combining Proposition 2 given by 12 and Proposition 1 relating to the equilibrium
condition of the TAP as given in 3, we therefore represent the Bi-Level Variational
Inequality (BLVI) for this multi-firm game as follows:

Find x = {x∗
1
, ...,x∗

i−1
,x∗

i
,x∗

i+1
, ...,x∗

P
} and y = {y∗

1
, ...,y∗

i−1
,y∗

i
,y∗

i+1
, ...,y∗

P
} such that

(x−x∗)T fx(x∗,y∗, v̂, d̂)+ (y−y∗)T fy(x∗,y∗, v̂, d̂) ≥ 0,∀x ∈ X ,y ∈ Y (13)

Where for each x ∈ X and y ∈ Y , (v̂, d̂) is a unique solution to the following VI
in 14

c(v̂,x,y)T (v− v̂)−D−1(d̂)T (d− d̂) ≥ 0, ∀(v,d) ∈ Ω (14)

3.3.1 Solution Algorithms for BLVI

The BLVI is not only applicable in transportation network analysis 5, but is also a
model encountered in the deregulated electricity transmission markets [4, 22, 44]
and elsewhere. The solution method proposed in these references, based primarily
on [21], amounts to decomposing the problem into a series of inter-related MPECs
i.e. one for each player. An outline of the method is given in Algorithm 1.

Algorithm 1. Gauss-Jacobi Fixed Point Iteration
Step 1: Set iteration counter δ = 0. Select a convergence tolerance parameter,

ε(ε > 0). Choose a strategy for each player. Let the initial strategy set be x δ =
{xδ

1
, ...,xδ

i−1
,xδ

i
,xδ

i+1
...xδ

P
} and yδ = {yδ

1
, ...,yδ

i−1
,yδ

i
,yδ

i+1
...yδ

P
}. Set δ = δ + 1 and go

to Step 2,

4 Proposition 2.2, p276.
5 This concept has been used implicitly in modeling competition between transit operators, see[62].
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Step 2: For the ith player i ∈ {1,2, ...,P}, solve the following optimization prob-
lem:

(xδ+1
i

,yδ+1
i

) = max
xi∈X,yi∈Y

ψi(xδ ,yδ ) i ∈ {1,2, ...,P},

subject to

c(v∗,x,y)T (v−v∗)−D−1(d∗)T (d−d∗) ≥ 0, ∀(v,d) ∈ Ω

Step 3: If (
P
∑

i=1

∥∥∥xδ+1
i − xδ

i

∥∥∥ and
P
∑

i=1

∥∥∥yδ+1
i − yδ

i

∥∥∥)≤ ε terminate, else set δ = δ +1

and return to Step 2.

The drawback with Algorithm 1 is that it can fall prey to being trapped in local
optima [61] and this depends on the starting point assumed in Step 1.

At the time of writing, the study of BLVIs has only just begun to receive the
attention of researchers. Aside from the Gauss-Jacobi Algorithm mentioned above,
Mordukhovich [34] has applied tools of non smooth analysis (see [5, 46]) in order
to solve the BLVI. The proposed method is complex, employing advanced tools of
variational analysis, and has thus far not been applied within transportation analy-
sis. In his PhD thesis [54], Su proposed alternatively a sequential method for solving
EPECs by iteratively relaxing the complementarity conditions in each player’s pro-
gram and solving a sequence of resulting complementarity problems. These two
methods are relatively novel and could provide promise for further algorithmic de-
velopments for solving general BLVIs.

However the primary drawback of the above algorithms is their requirement for
derivative information. For the specific case of transportation network analysis, it
was shown [45] that the equilibrium constraint governing the route choice of users
is not continuously differentiable. Additional assumptions made to satisfy the con-
tinuous differentiability requirement could possibly limit the practical applications
of the algorithms to special cases. Thus methods relying on derivatives for a search
direction might be problematic to apply. To overcome these constraints, we pro-
pose instead a derivative free coevolutionary particle swarm algorithm as a solution
heuristic for the BLVI thus described.

4 A Coevolutionary Particle Swarm Approach

Any proposed solution method must take into account three separate but intertwined
elements consistent with the modeling framework of the BLVI viz,

1. optimization for each player as given by equation 8,
2. hierarchy as based on the premise that the firms act as leaders and the highway

users at the lower level take the leaders’ strategic variables as given in optimizing
their route choice decisions within a Stackleberg framework, and
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3. intra-firm dependency consistent with the assumptions that each firm makes its
decisions taking into account what its competitors are doing.

Thus the proposed algorithm is designed with a view to taking into account these
three aforementioned elements. In particular,

1. the Particle Swarm Optimization (PSO) Algorithm is used as the global opti-
mization method,

2. the evaluation process used within PSO to determine the fitness of candidate
solutions has to be modified to retain the Stackleberg framework, and

3. the use of coevolution to deal with the intra-firm dependency such that strategies
evolved by one player are robust to the strategies played by its competitors.

This section discusses how these elements are integrated within our proposed
solution approach. A pseudo code description of our algorithm is then given.

4.1 Mechanics of PSO

Particle Swarm Optimization (PSO), is a member of a class of Swarm Intelligence
methods. It was first developed by James Kennedy and Richard Eberhart [23] in-
spired by the simulation of fish schools and bird flocks. Since 1995, it has gained
increasing popularity due to its effectiveness in solving difficult optimization tasks,
with practical applications in diverse fields which range from chemistry [7, 38],
mechanical engineering [1, 17], to civil engineering [41].

Let x−i = {x1, ...,xi−1,xi+1, ...,xP} and y−i = {y1, ...,yi−1,yi+1, ...yP} be prede-
termined strategies for all players excluding player i and ψ i : ℜ2P → ℜ as given by
the objective function in 8. The global optimization problem for player i is to find
x∗i and y∗i such that ψi(x∗i ,y∗i ,x−i,y−i) ≥ ψi(xi,yi,x−i,y−i),∀xi,yi.

To solve this problem, the iterative PSO algorithm begins with the initialization
(random generation) of the positions of a J particle, 2 dimensional swarm. Each vec-
tor of the swarm is defined as: Mi

j = {mi
jx,m

i
jy},∀ j ∈ J. Here the subscripts x and y

indicate the pertinent toll and capacity enhancements for the link each particle de-
fines, thus each particle represents a real number encoding of the potential solution
for the optimization problem. Each particle is associated (also generated randomly
initially) with a velocity Si

j = {si
jx,s

i
jy},∀ j ∈ J. The best position ever encountered

by the jth particle at each iteration is denoted Qi
j = {qi

jx,q
i
jy},∀ j ∈ J. Define δ as

the iteration counter and let g be the index of the particle that attained the lowest
function value ever encountered by the entire swarm up to iteration δ . Each particle
is flown through the problem space and has its velocity updated by 15 6:

S j(δ + 1) = χ(S j(δ )+ αφ1(Q j(δ )−Mj(δ ))+ β φ2(Qg(δ )−Mj(δ ))), ∀ j ∈ J.
(15)

6 We drop i superscripts from this point to reduce notational clutter and only reintroduce it when
necessary to avoid confusion.
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In 15, χ , the constriction coefficient used to limit velocity explosion and pro-
mote convergence, is conventionally set to 0.7298 based on the theoretical analysis
of Clerc and Kennedy [6]. The scalars, α and β , are cognitive weights used to rep-
resent the attraction of a particle towards the personal and global bests respectively.
Finally φ1 and φ2 are pseudo random numbers ∈ (0,1). Combining the effects of
these variables, the velocity update equation given by 15 highlights the fundamen-
tal operation of PSO: each of these potential solutions attempt to discover better
solutions by “flying” in the search space with a velocity defined as a stochastic
combination of its best ever attained position and the entire swarm’s best position.

With its new velocity, its particle position can then be updated using 16 :

Mj(δ + 1) = Mj(δ )+ S j(δ + 1), ∀ j ∈ J. (16)

Once the particle position is updated, the particle is evaluated again. If the func-
tion value is better than the best value encountered by the particle so far, the best
ever position for the jth particle is updated and if this value is also better than the
highest function value ever encountered by the swarm up to iteration δ , the global
best position Qg is also updated. In other words, when considering player i, i ∈ P
we use 17 to update the personal best particle positions depending on the fitness
obtained.

Qi
j(δ + 1) =

{
Qi

j(δ ) if ψi(Mi
j(δ + 1),x−i,y−i) ≤ ψi(Qi

j(δ ),x−i,y−i)
Mi

j(δ + 1) if ψi(Mi
j(δ + 1),x−i,y−i) > ψi(Qi

j(δ ),x−i,y−i)
(17)

Now since Qi
g(δ + 1) ∈ {Qi

1(δ + 1), ...,Qi
J(δ + 1)}, we choose the global best

particle positions from this set such that 18 is satisfied.

ψi(Qi
g(δ ),x−i,y−i) = max{ψi(Qi

1(δ ),x−i,y−i), ...,ψi(Qi
J(δ ),x−i,y−i)} (18)

This process is repeated for a number of iterations until some user specified ter-
mination criteria is satisfied, usually the maximum number of iterations.

4.1.1 Global, Local and Unified PSO

The version we have presented above is developed on the assumption that the neigh-
borhood of the particle is defined as the entire swarm [13, 24]. This is often referred
to in the literature as the “global best PSO” since in 15, the particle moves towards
a combination of its own best position and the entire swarm’s best position. To elu-
cidate the so called “local best PSO” [13, 24], let l be the index of the particle that
attained the best function value ever encountered by the j th particle’s neighborhood
up to the current iteration. The most common neighborhood topology used for this
local best variant is known as the ring topology [13] where the neighbors of the j th

particle are the ( j−1)th and the ( j+1)th particle. The local best particle position in



D
R

A
FT

Coevolutionary PSO for BLVIs 13

this case is the best function value attained by either of these 3 particles. In the local
best version, the velocity update is performed by 19:

S j(δ + 1) = χ(S j(δ )+ αφ1(Q j(δ )−Mj(δ ))+ β φ2(Ql(δ )−Mj(δ ))), ∀ j ∈ H,
(19)

with all other terms remaining as previously defined.
In the local best case we therefore have Qi

l(δ + 1) ∈ {Qi
j−1(δ + 1),Qi

j(δ +
1),Qi

j+1(δ + 1)} 7 such that neighborhood analogue of 18 is satisfied. It is then

trivial to recover the “global best PSO” by defining the neighborhood of the j th

particle as the entire swarm [24].
An interesting variation to the basic algorithm was to synergize both the local

and global search mechanisms in the Unified Particle Swarm Optimization (UPSO)
Algorithm as proposed in [40]. In this model, the velocity update makes use of both
the global and local versions simultaneously using 20-22 as follows:

G j(δ ) = χ(S j(δ )+αφ1(Q j(δ )−Mj(δ ))+β φ2(Qg(δ )−Mj(δ ))), ∀ j ∈ J (20)

Lj(δ ) = χ(S j(δ )+αφ1(Q j(δ )−Mj(δ ))+β φ2(Ql(δ )−Mj(δ ))), ∀ j ∈ J, (21)

S j(δ + 1) = uG j(δ )+ (1−u)L j(δ ), ∀ j ∈ J. (22)

For purposes of exposition, we have used G j(δ ) and L j(δ ) as dummy variables
to distinguish the global and local velocity schemes. In 22, u ∈ (0,1) is a scalar
unification factor that combines the global and local updating mechanisms of the
PSO search algorithm. When u is 0, the UPSO reverts to “local best PSO” and
when u is 1, the UPSO reverts to “global best PSO”. Particle position updating then
follows as previously i.e. using 16.

4.2 Hierarchical Evaluation Framework

The evaluation process to determine the fitness of a particle has to be developed
within the Stackleberg framework (recall our discussion in Section 2) since the firms
take into account the traveler’s behavior for a given toll and capacity perturbation.
To do this, we used the method from [25].

Given x−i and y−i (strategies of the competitors), a two stage process is used to
evaluate the profit function and hence determine the fitness of a particle. In the first
stage, the tolls and capacity enhancement vectors are input into the TAP (equations 4
- 7) to solve for the (unique) vector of link flows such that routing satisfies Wardrop’s
Equilibrium Condition. These link flows serve as an input into the second stage
which determines the actual profits using the leaders’ objective specified by 8. A
summary of the process to determine the fitness of particle j, j ∈ J for player i, i ∈ P
is given in Algorithm 2.

7 Obvious modifications are necessary to deal with the first and last particles in the swarm.
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Algorithm 2. Two Stage Fitness Evaluation Process
Step 1: Combine mi

jx and x−i to obtain x. Combine mi
jy and y−i to obtain y.

Step 2: Solve the VI (3) to obtain vi i.e. Find (v∗,d∗) ∈ Ω such that:

c(v∗,x,y)T (v−v∗)−D−1(d∗)T (d−d∗) ≥ 0, ∀(v,d) ∈ Ω

Step 3: Evaluate ψ i
j(x,y) (≡ vimi

jx −θ I(mi
jy)) to determine the profit and hence

determine the fitness of the particle j.

4.3 Coevolution

To allow for the players to consider the strategies of their competitors, all strategies
are evolved simultaneously. This coevolution can be interpreted as the simultane-
ous adaptation of fitness from interaction between different species, which in our
case corresponds to the different players within the game. The development of co-
evolutionary algorithms was inspired from an analogy with biological coevolution
[11, 55]. In the context of nature inspired optimization algorithms, it is usual to clas-
sify coevolutionary algorithms into 2 categories: either cooperative or competitive.
Extending the parallel with biological phenomenon in the natural world, the former
imitates symbiosis while the latter imitates parasitism. An example of the former
class of cooperative type algorithms was exploited in [42] where different species
(one species for each problem dimension) were evolved to cooperatively solve an
optimization problem using genetic algorithms.

It is however the latter case of competitive coevolution [47, 48] that is the fo-
cus of this chapter. In this case, the fitness of a sub-population is “contingent” (i.e.
dependent) on the strategies of other species [14, 28]. Hence the key concept of
“contingent” fitness evaluation is a necessary ingredient embedded in our proposed
search algorithm and it is envisaged that the resulting “evolutionary arms race” [48]
would lead to fitter strategies selected by players in response to strategies evolved
by their competitors.

4.4 Algorithm Outline

Recall that there are P subpopulations containing J particles each. Combining all
the aforementioned elements, the pseudo code describing our PSO based method to
tackle the BLVI thus specified is given in Algorithm 3.

Algorithm 3. Coevolutionary Particle Swarm Algorithm

Step 1 Initialization: Generate Sub Populations of particles
and velocities randomly for all players decision variables.
Step 2 Randomly select one strategy vector from each player
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as its Nash strategy.
Step 3 Evaluate each sub population given the Nash strategy
of others by the Two Stage Evaluation Process to identify
the global best particle; Set this as the Nash strategy for
the player.
REPEAT
Step 4 Synchronization:
Announce Nash Strategy to all players
For each subpopulation i = 1 to P do
Step 5 Re-evaluate subpopulation i by the Two Stage
Evaluation Process given the announced Nash Strategies
in Step 4 and obtain personal bests and the global best
For each particle j = 1 to J do
Step 6 Fly particle j through problem space using the
velocity update equation.
Step 7 Update particle j’s position using position
update equation.
Step 8 Evaluate new particle fitness by the Two Stage
Evaluation Process, update personal best if fitter,
update global best if fitter.

Next j
Step 9 Identify new global best particle of
subpopulation i and set this as the Nash strategy
for the player.

Next i
UNTIL Termination Criteria

In the initialization phase of the algorithm, we randomly generate particle posi-
tions and velocities corresponding to the strategies of each player. One strategy from
each subpopulation is then randomly selected as the initial Nash strategy for each
player. Subsequently each subpopulation is evaluated separately to determine the
profit for each player, given the above initial moves of the other players. From this
process, the personal best and global best particle for each player can be identified.
When all subpopulations have been evaluated, each individual player’s global best
particles are announced to the whole group. We term this the synchronization phase
of the algorithm so that every participant is cognizant of their competitors’ actions.

With the new global best strategy of all players announced, each subpopulation
is once more evaluated to determine its own global best strategy in the light of the
foregoing announcement. For each subpopulation, particles are then flown through
the search space and the particle positions are updated using the particle swarm
method. New global best positions are produced and these are announced in the next
synchronization phase of the algorithm. The algorithm terminates after a number of
user specified maximum number of iterations. Any variant of the PSO algorithm
e.g. global, local, UPSO or even other variants (see [13]) can be employed in the
velocity and position updates in Steps 6 and 7 of the algorithm. In our examples, we
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utilize UPSO explained earlier as it integrates the global and local search elements
of the swarm.

Whilst the proposed algorithm is primarily a heuristic, our numerical examples
in the following section suggest that it provides a potential solution algorithm for
the BLVI.

5 Numerical Examples

The proposed coevolutionary particle swarm algorithm is applied on two problems
drawn from the literature. The first example assumes that the private firms are only
allowed to collect tolls for the operation of the road and ignores the costs associated
with capacity enhancement. The objective therefore is one of maximizing revenue
from the tolls. The second example is a literature problem given in [58] which ex-
plicitly considers capacity provision.

Table 1 PSO Parameters Used for Numerical Examples

Parameter Value

Maximum Number of Iterations 200
Swarm Size (H) 12
Unification Factor (u) 0.5
Constriction Factor (χ) 0.7298
Cognitive Factor (α) 2.05
Cognitive Factor (β ) 2.05

The parameters used in our PSO algorithm are shown in Table 1. Our reported
results are based on the average of 30 runs of the algorithm with different random
seeds. No attempt was made in this work to seek optimal parameters which might
improve the performance of our proposed algorithm.

5.1 Example 1: Network 1

The first example is taken from [27]. The link specific parameters and the specific
form of the demand functions can be found therein. This network has 18 one way
links with 6 OD pairs ((Node) 1 to 5, 1 to 7, 5 to 1, 5 to 7, 7 to 1 and 7 to 5).
As mentioned above, the objective of each player is to maximize toll revenue by
modifying the toll level x and we have ignored capacity enhancement. The problem
therefore is a modified form of 8 and adopts that shown in 23.

Max
xi

ψi(x) = vi(x)xi,∀i ∈ P (23)
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Fig. 3 Highway Network for Example 1, link numbers are indicated on links and travel is in
direction indicated by arrows

Where vi is obtained by solving the variational inequality (3) i.e.

c(v∗,x)T (v−v∗)−D−1(d∗)T (d−d∗) ≥ 0, ∀(v,d) ∈ Ω

Two mutually exclusive scenarios are considered for this numerical example. In
Scenario A, Links 3 and 4 shown as dashed lines in Figure 3, are the only links in
this network that are subject to tolls. In Scenario B, Links 7 and 10, shown in an
alternative style of dashed lines, are the only links subject to tolls in the network.
In both scenarios, however, there is one private firm operating on each link. The
maximum allowable toll was capped at 1000 seconds. Recently, [26] employed a
variant of Algorithm 1 for the solution of this problem. We compare the results
reported therein with that from application of the Coevolutionary Particle Swarm
Algorithm. This is shown in Table 2 and Table 3 for Scenarios A and B respectively.

Table 2 Example 1: Results of PSO algorithm on Scenario A

Proposed Algorithm [26]
Firm Link Toll Revenue Toll Revenue

(secs) (secs/hr) (secs) (secs/hr)

1 3 530.55 461,861 530.63 461,882
2 4 505.62 420,242 505.65 420,293

For Scenario A, the average revenue over 30 runs for Firm 1 and 2 are 461,861
and 420,242 with standard deviations of 0.0023 and 0.0018 respectively. In the case
of Scenario B, the average revenue over 30 runs for Firm 1 and 2 are 105,294 and
100,846 with standard deviations of 0.091 and 0.033 respectively.

From Figure 3 we see that when Links 3 and 4 are both subject to tolls, there
are no alternative free routes connecting Origin Node 1 to the rest of the network.
On the other hand, even when both Links 7 and 10 are both subject to tolls, Link
17 continues to be free to use. This is the intuitive explanation for the much higher
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Table 3 Example 1: Results of PSO algorithm on Scenario B

Proposed Algorithm [26]
Firm Link Toll Revenue Toll Revenue

(secs) (secs/hr)1 (secs) (secs/hr)

1 7 141.36 105,294 141.37 105,295
2 10 138.29 100,846 138.29 100,848

toll levels under Scenario A compared to Scenario B. Nevertheless, the proposed
Coevolutionary Particle Swarm Algorithm converges to similar solutions to that ob-
tained using Algorithm 1 reported in [26]. The convergence of the algorithm for a
typical run under each scenario are shown in Figure 4 and Figure 5.
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Fig. 4 Convergence of Proposed Algorithm
for Scenario A, Example 1
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Fig. 5 Convergence of Proposed Algorithm
for Scenario B, Example 1

5.2 Example 2: Network 2

The 11 link network for this example is taken from [58] and shown in Figure 6 with
4 OD pairs ((node) 1 to 7, 2 to 7, 3 to 7 and 6 to 7). This model considers capacity
enhancement with 3 private operators on this network each optimizing their profits
ψi as outlined in 8. Specifically, θ , given as 0.114, is common to all players and the
enhancement cost functions take the form I(y i) = t0iyi,∀i ∈ P. In other words, the
enhancement cost is proportional to the free flow travel time (t0 a,a ∈ B) for each of
these links. The free flow times for the 3 links (9,10 and 11) to be improved (shown
as dashed lines in Figure 6) are 11,11 and 15 secs respectively.
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Fig. 6 Highway Network for Example 2, link numbers are indicated on links and travel is in
direction indicated by arrows

Details of the link parameters and the functional forms of the travel demand
relationships for the 4 OD pairs can be found in [58] where a heuristic gradient based
algorithm was applied. We compare the results reported therein with those produced
from the Coevolutionary Particle Swarm Algorithm as summarized in Table 4.

Table 4 Example 2: Results of PSO algorithm

Proposed Algorithm [58]
Firm Link Toll Capacity Profit Toll Capacity Profit

(secs) (vehicles) (secs/hr) (secs) (vehicles) (secs/hr)

1 9 4.52 151.64 301.93 4.52 151.60 301.43
2 10 4.76 192.90 417.53 4.76 193.04 417.14
3 11 2.97 61.42 25.98 2.97 61.88 25.92

The average profit for firms 1, 2 and 3 over 30 runs (in seconds per hour) are
301.93, 417.53 and 29.58 with standard deviations 0.0033,0.0041 and 0.0017 re-
spectively. The convergence of the proposed PSO based algorithm is shown in Fig-
ure 7.
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6 Conclusions and Directions for Further Research

In this chapter, we presented a model of competition that arises in a highway net-
work with private sector participants. The private firms on a road network are as-
sumed to act as players in a Cournot-Nash game in choosing their decision variables
and their actions are constrained by a variational inequality describing the equilib-
rium routing pattern of the highway users. The Nash equilibrium paradigm was used
to model the behavior of the players in the resulting Bi-Level Variational Inequality
(BLVI).

To solve the BLVI and determine the optimal choice of strategic variables of these
firms, we employed a coevolutionary particle swarm algorithm to evolve strategies
for each player that are robust against strategies evolved by their competitors. The
traffic equilibrium constraint is achieved by solving the traffic assignment problem
with a view to determining the global best strategy and during the synchronization
phase of our proposed algorithm, the Nash strategy is revealed by all players simul-
taneously. Our algorithm embodies the principle that the fitness of a strategy for one
player is contingent on the strategies revealed by all other players which is consistent
with the rationality postulate of non-cooperative behavior in games. The proposed
method was applied to two problems from the literature. In the examples, we have
illustrated that our proposed algorithm easily obtained the solutions provided by
others in their earlier research. Thus the proposed algorithm is a potentially useful
method for this class of intrinsically non smooth optimization problems.

In our application of the proposed coevolutionary particle swarm algorithm, we
utilized the unified particle swarm method which combined both the local and global
search elements. There is no compelling reason however to prevent other variants
of particle swarm optimization to be employed. Further work will study in greater
effect the implications of swarm size and such parameters on convergence of the
algorithm. Further research could additionally investigate the impact of these pa-
rameters on the convergence of the algorithm to the Nash equilibrium. This includes
the possibility of employing fuzzy logic or other algorithms to adaptively tune the
parameters of PSO as well as exploring alternative neighborhood topologies in ad-
dition to the ring topology that was adopted here.

Implicit in this chapter was the assumption that the private firms did not collude
or that regulatory mechanisms prevented them from doing so. If an explicit collu-
sion was possible, then the problem becomes one of monopoly optimization subject
to the equilibrium constraint and this reverts to the familiar form of the MPEC.
However if collusion was implicit, then the problem is in fact a multiobjective (i.e.
vector valued) optimization problem with equilibrium constraints [32],[59]. Further
research studying the application of evolutionary multiobjective optimization algo-
rithms [10] to solve this latter category of problems is underway.
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