188 research outputs found

    Contribution to time domain readout circuits design for multi-standard sensing system for low voltage supply and high-resolution applications

    Get PDF
    Mención Internacional en el título de doctorThis research activity has the purpose of open new possibilities in the design of capacitance-to-digital converters (CDCs) by developing a solution based on time domain conversion. This can be applied to applications related with the Internet-of-Things (IoT). These applications are present in any electronic devices where sensing is needed. To be able to reduce the area of the whole system with the required performance, micro-electromechanical systems (MEMS) sensors are used in these applications. We propose a new family of sensor readout electronics to be integrated with MEMS sensors. Within the time domain converters, Dual Slope (DS) topology is very interesting to explore a new compromise between performances, area and power consumption. DS topology has been extensively used in instrumentation. The simplicity and robustness of the blocks inside classical DS converters it is the main advantage. However, they are not efficient for applications where higher bandwidth is required. To extend the bandwidth, DS converters have been introduced into ΔΣ loops. This topology has been named as integrating converters. They increase the bandwidth compare to classical DS architecture but at the expense of higher complexity. In this work we propose the use of a new family of DS converters that keep the advantages of the classical architecture and introduce noise shaping. This way the bandwidth is increased without extra blocks. The Self-Compensated noise-shaped DS converter (the name given to the new topology) keeps the signal transfer function (STF) and the noise transfer function (NTF) of Integrating converters. However, we introduce a new arrangement in the core of the converter to do noise shaping without extra circuitry. This way the simplicity of the architecture is preserved. We propose to use the Self-Compensated DS converter as a CDC for MEMS sensors. This work makes a study of the best possible integration of the two blocks to keep the signal integrity considering the electromechanical behavior of the sensor. The purpose of this front-end is to be connected to any kind of capacitive MEMS sensor. However, to prove the concepts developed in this thesis the architecture has been connected to a pressure MEMS sensor. An experimental prototype was implemented in 130-nm CMOS process using the architecture mentioned before. A peak SNR of 103.9 dB (equivalent to 1Pa) has been achieved within a time measurement of 20 ms. The final prototype has a power consumption of 220 μW with an effective area of 0.317 mm2. The designed architecture shows good performance having competitive numbers against high resolution topologies in amplitude domain.Esta actividad de investigación tiene el propósito de explorar nuevas posibilidades en el diseño de convertidores de capacitancia a digital (CDC) mediante el desarrollo de una solución basada en la conversión en el dominio del tiempo. Estos convertidores se pueden utilizar en aplicaciones relacionadas con el mercado del Internet-de-las-cosas (IoT). Hoy en día, estas aplicaciones están presentes en cualquier dispositivo electrónico donde se necesite sensar una magnitud. Para poder reducir el área de todo el sistema con el rendimiento requerido, se utilizan sensores de sistemas micro-electromecánicos (MEMS) en estas aplicaciones. Proponemos una nueva familia de electrónica de acondicionamiento para integrar con sensores MEMS. Dentro de los convertidores de dominio de tiempo, la topología del doble-rampa (DS) es muy interesante para explorar un nuevo compromiso entre rendimiento, área y consumo de energía. La topología de DS se ha usado ampliamente en instrumentación. La simplicidad y la solidez de los bloques dentro de los convertidores DS clásicos es la principal ventaja. Sin embargo, no son eficientes para aplicaciones donde se requiere mayor ancho de banda. Para ampliar el ancho de banda, los convertidores DS se han introducido en bucles ΔΣ. Esta topología ha sido nombrada como Integrating converters. Esta topología aumenta el ancho de banda en comparación con la arquitectura clásica de DS, pero a expensas de una mayor complejidad. En este trabajo, proponemos el uso de una nueva familia de convertidores DS que mantienen las ventajas de la arquitectura clásica e introducen la configuración del ruido. De esta forma, el ancho de banda aumenta sin bloques adicionales. El convertidor Self-Compensated noise-shaped DS (el nombre dado a la nueva topología) mantiene la función de transferencia de señal (STF) y la función de transferencia de ruido (NTF) de los Integrating converters. Sin embargo, presentamos una nueva topología en el núcleo del convertidor para conformar el ruido sin circuitos adicionales. De esta manera, se preserva la simplicidad de la arquitectura. Proponemos utilizar el Self-Compensated noise-shaped DS como un CDC para sensores MEMS. Este trabajo hace un estudio de la mejor integración posible de los dos bloques para mantener la integridad de la señal considerando el comportamiento electromecánico del sensor. El propósito de este circuito de acondicionamiento es conectarse a cualquier tipo de sensor MEMS capacitivo. Sin embargo, para demostrar los conceptos desarrollados en esta tesis, la arquitectura se ha conectado a un sensor MEMS de presión. Se ha implementado dos prototipos experimentales en un proceso CMOS de 130-nm utilizando la arquitectura mencionada anteriormente. Se ha logrado una relación señal-ruido máxima de 103.9 dB (equivalente a 1 Pa) con un tiempo de medida de 20 ms. El prototipo final tiene un consumo de energía de 220 μW con un área efectiva de 0.317 mm2. La arquitectura diseñada muestra un buen rendimiento comparable con las arquitecturas en el dominio de la amplitud que muestran resoluciones equivalentes.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Pieter Rombouts.- Secretario: Alberto Rodríguez Pérez.- Vocal: Dietmar Strãußnig

    Time-encoding analog-to-digital converters : bridging the analog gap to advanced digital CMOS? Part 2: architectures and circuits

    Get PDF
    The scaling of CMOS technology deep into the nanometer range has created challenges for the design of highperformance analog ICs: they remain large in area and power consumption in spite of process scaling. Analog circuits based on time encoding [1], [2], where the signal information is encoded in the waveform transitions instead of its amplitude, have been developed to overcome these issues. While part one of this overview article [3] presented the basic principles of time encoding, this follow-up article describes and compares the main time-encoding architectures for analog-to-digital converters (ADCs) and discusses the corresponding design challenges of the circuit blocks. The focus is on structures that avoid, as much as possible, the use of traditional analog blocks like operational amplifiers (opamps) or comparators but instead use digital circuitry, ring oscillators, flip-flops, counters, an so on. Our overview of the state of the art will show that these circuits can achieve excellent performance. The obvious benefit of this highly digital approach to realizing analog functionality is that the resulting circuits are small in area and more compatible with CMOS process scaling. The approach also allows for the easy integration of these analog functions in systems on chip operating at "digital" supply voltages as low as 1V and lower. A large part of the design process can also be embedded in a standard digital synthesis flow

    High-Bandwidth Voltage-Controlled Oscillator based architectures for Analog-to-Digital Conversion

    Get PDF
    The purpose of this thesis is the proposal and implementation of data conversion open-loop architectures based on voltage-controlled oscillators (VCOs) built with ring oscillators (RO-based ADCs), suitable for highly digital designs, scalable to the newest complementary metal-oxide-semiconductor (CMOS) nodes. The scaling of the design technologies into the nanometer range imposes the reduction of the supply voltage towards small and power-efficient architectures, leading to lower voltage overhead of the transistors. Additionally, phenomena like a lower intrinsic gain, inherent noise, and parasitic effects (mismatch between devices and PVT variations) make the design of classic structures for ADCs more challenging. In recent years, time-encoded A/D conversion has gained relevant popularity due to the possibility of being implemented with mostly digital structures. Within this trend, VCOs designed with ring oscillator based topologies have emerged as promising candidates for the conception of new digitization techniques. RO-based data converters show excellent scalability and sensitivity, apart from some other desirable properties, such as inherent quantization noise shaping and implicit anti-aliasing filtering. However, their nonlinearity and the limited time delay achievable in a simple NOT gate drastically limits the resolution of the converter, especially if we focus on wide-band A/D conversion. This thesis proposes new ways to alleviate these issues. Firstly, circuit-based techniques to compensate for the nonlinearity of the ring oscillator are proposed and compared to equivalent state-of-the-art solutions. The proposals are designed and simulated in a 65-nm CMOS node for open-loop RO-based ADC architectures. One of the techniques is also validated experimentally through a prototype. Secondly, new ways to artificially increase the effective oscillation frequency are introduced and validated by simulations. Finally, new approaches to shape the quantization noise and filter the output spectrum of a RO-based ADC are proposed theoretically. In particular, a quadrature RO-based band-pass ADC and a power-efficient Nyquist A/D converter are proposed and validated by simulations. All the techniques proposed in this work are especially devoted for highbandwidth applications, such as Internet-of-Things (IoT) nodes or maximally digital radio receivers. Nevertheless, their field of application is not restricted to them, and could be extended to others like biomedical instrumentation or sensing.El propósito de esta tesis doctoral es la propuesta y la implementación de arquitecturas de conversión de datos basadas en osciladores en anillos, compatibles con diseños mayoritariamente digitales, escalables en los procesos CMOS de fabricación más modernos donde las estructuras digitales se ven favorecidas. La miniaturización de las tecnologías CMOS de diseño lleva consigo la reducción de la tensión de alimentación para el desarrollo de arquitecturas pequeñas y eficientes en potencia. Esto reduce significativamente la disponibilidad de tensión para saturar transistores, lo que añadido a una ganancia cada vez menor de los mismos, ruido y efectos parásitos como el “mismatch” y las variaciones de proceso, tensión y temperatura han llevado a que sea cada vez más complejo el diseño de estructuras analógicas eficientes. Durante los últimos años la conversión A/D basada en codificación temporal ha ganado gran popularidad dado que permite la implementación de estructuras mayoritariamente digitales. Como parte de esta evolución, los osciladores controlados por tensión diseñados con topologías de oscilador en anillo han surgido como un candidato prometedor para la concepción de nuevas técnicas de digitalización. Los convertidores de datos basados en osciladores en anillo son extremadamente sensibles (variación de frecuencia con respecto a la señal de entrada) así como escalables, además de otras propiedades muy atractivas, como el conformado espectral de ruido de cuantificación y el filtrado “anti-aliasing”. Sin embargo, su respuesta no lineal y el limitado tiempo de retraso alcanzable por una compuerta NOT restringen la resolución del conversor, especialmente para conversión A/D en aplicaciones de elevado ancho de banda. Esta tesis doctoral propone nuevas técnicas para aliviar este tipo de problemas. En primer lugar, se proponen técnicas basadas en circuito para compensar el efecto de la no linealidad en los osciladores en anillo, y se comparan con soluciones equivalentes ya publicadas. Las propuestas se diseñan y simulan en tecnología CMOS de 65 nm para arquitecturas en lazo abierto. Una de estas técnicas presentadas es también validada experimentalmente a través de un prototipo. En segundo lugar, se introducen y validan por simulación varias formas de incrementar artificialmente la frecuencia de oscilación efectiva. Para finalizar, se proponen teóricamente dos enfoques para configurar nuevas formas de conformación del ruido de cuantificación y filtrado del espectro de salida de los datos digitales. En particular, son propuestos y validados por simulación un ADC pasobanda en cuadratura de fase y un ADC de Nyquist de gran eficiencia en potencia. Todas las técnicas propuestas en este trabajo están destinadas especialmente para aplicaciones de alto ancho de banda, tales como módulos para el Internet de las cosas o receptores de radiofrecuencia mayoritariamente digitales. A pesar de ello, son extrapolables también a otros campos como el de la instrumentación biomédica o el de la medición de señales mediante sensores.Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Juan Pablo Alegre Pérez.- Secretario: Celia López Ongil.- Vocal: Fernando Cardes Garcí

    Ring-oscillator with multiple transconductors for linear analog-to-digital conversion

    Get PDF
    This paper proposes a new circuit-based approach to mitigate nonlinearity in open-loop ring-oscillator-based analog-to-digital converters (ADCs). The approach consists of driving a current-controlled oscillator (CCO) with several transconductors connected in parallel with different bias conditions. The current injected into the oscillator can then be properly sized to linearize the oscillator, performing the inverse current-to-frequency function. To evaluate the approach, a circuit example has been designed in a 65-nm CMOS process, leading to a more than 3-ENOB enhancement in simulation for a high-swing differential input voltage signal of 800-mVpp, with considerable less complex design and lower power and expected area in comparison to state-of-the-art circuit based solutions. The architecture has also been checked against PVT and mismatch variations, proving to be highly robust, requiring only very simple calibration techniques. The solution is especially suitable for high-bandwidth (tens of MHz) medium-resolution applications (10–12 ENOBs), such as 5G or Internet-of-Things (IoT) devices.This research was funded by Project TEC2017-82653-R, Spain

    Linearization of Time-encoded ADCs Architectures for Smart MEMS Sensors in Low Power CMOS Technology

    Get PDF
    Mención Internacional en el título de doctorIn the last few years, the development of mobile technologies and machine learning applications has increased the demand of MEMS-based digital microphones. Mobile devices have several microphones enabling noise canceling, acoustic beamforming and speech recognition. With the development of machine learning applications the interest to integrate sensors with neural networks has increased. This has driven the interest to develop digital microphones in nanometer CMOS nodes where the microphone analog-front end and digital processing, potentially including neural networks, is integrated on the same chip. Traditionally, analog-to-digital converters (ADCs) in digital microphones have been implemented using high order Sigma-Delta modulators. The most common technique to implement these high order Sigma-Selta modulators is switchedcapacitor CMOS circuits. Recently, to reduce power consumption and make them more suitable for tasks that require always-on operation, such as keyword recognition, switched-capacitor circuits have been improved using inverter-based operational amplifier integrators. Alternatively, switched-capacitor based Sigma- Delta modulators have been replaced by continuous time Sigma-Delta converters. Nevertheless, in both implementations the input signal is voltage encoded across the modulator, making the integration in smaller CMOS nodes more challenging due to the reduced voltage supply. An alternative technique consists on encoding the input signal on time (or frequency) instead of voltage. This is what time-encoded converters do. Lately, time-encoding converters have gained popularity as they are more suitable to nanometer CMOS nodes than Sigma-Delta converters. Among the ones that have drawn more interest we find voltage-controlled oscillator based ADCs (VCOADCs). VCO-ADCs can be implemented using CMOS inverter based ring oscillators (RO) and digital circuitry. They also show noise-shaping properties. This makes them a very interesting alternative for implementation of ADCs in nanometer CMOS nodes. Nevertheless, two main circuit impairments are present in VCO-ADCs, and both come from the oscillator non-idealities. The first of them is the oscillator phase noise, that reduces the resolution of the ADC. The second is the non-linear tuning curve of the oscillator, that results in harmonic distortion at medium to high input amplitudes. In this thesis we analyze the use of time encoding ADCs for MEMS microphones with special focus on ring oscillator based ADCs (RO-ADCs). Firstly, we study the use of a dual-slope based SAR noise shaped quantizer (SAR-NSQ) in sigma-delta loops. This quantizer adds and extra level of noise-shaping to the modulator, improving the resolution. The quantizer is explained, and equations for the noise transfer function (NTF) of a third order sigma-delta using a second order filter and the NSQ are presented. Secondly, we move our attention to the topic of RO-ADCs. We present a high dynamic range MEMS microphone 130nm CMOS chip based on an open-loop VCO-ADC. This dissertation shows the implementation of the analog front-end that includes the oscillator and the MEMS interface, with a focus on achieving low power consumption with low noise and a high dynamic range. The digital circuitry is left to be explained by the coauthor of the chip in his dissertation. The chip achieves a 80dBA peak SNDR and 108dB dynamic range with a THD of 1.5% at 128 dBSPL with a power consumption of 438μW. After that, we analyze the use of a frequency-dependent-resistor (FDR) to implement an unsampled feedback loop around the oscillator. The objective is to reduce distortion. Additionally phase noise mitigation is achieved. A first topology including an operational amplifier to increase the loop gain is analyzed. The design is silicon proven in a 130 nm CMOS chip that achieves a 84 dBA peak SNDR with an analog power consumption of 600μW. A second topology without the operational amplifier is also analyzed. Two chips are designed with this topology. The first chip in 130 nm CMOS is a full VCO-ADC including the frequencyto- digital converter (F2D). This chip achieves a peak SNDR of 76.6 dBA with a power consumption of 482μW. The second chip includes only the oscillator and is implemented in 55nm CMOS. The peak SNDR is 78.15 dBA and the analog power consumption is 153μW. To finish this thesis, two circuits that use an FDR with a ring oscillator are presented. The first is a capacity-to-digital converter (CDC). The second is a filter made with an FDR and an oscillator intended for voice activity detection tasks (VAD).En los últimos años, el desarrollo de las tecnologías móviles y las aplicaciones de machine-learning han aumentado la demanda de micrófonos digitales basados en MEMS. Los dipositivos móviles tienen varios micrófonos que permiten la cancelación de ruido, el beamforming o conformación de haces y el reconocimiento de voz. Con el desarrollo de aplicaciones de aprendizaje automático, el interés por integrar sensores con redes neuronales ha aumentado. Esto ha impulsado el interés por desarrollar micrófonos digitales en nodos CMOS nanométricos donde el front-end analógico y el procesamiento digital del micrófono, que puede incluir redes neuronales, está integrado en el mismo chip. Tradicionalmente, los convertidores analógicos-digitales (ADC) en micrófonos digitales han sido implementados utilizando moduladores Sigma-Delta de orden elevado. La técnica más común para implementar estos moduladores Sigma- Delta es el uso de circuitos CMOS de capacidades conmutadas. Recientemente, para reducir el consumo de potencia y hacerlos más adecuados para las tareas que requieren una operación continua, como el reconocimiento de palabras clave, los convertidores Sigma-Delta de capacidades conmutadas has sido mejorados con el uso de integradores implementados con amplificadores operacionales basados en inversores CMOS. Alternativamente, los Sigma-Delta de capacidades conmutadas han sido reemplazados por moduladores en tiempo continuo. No obstante, en ambas implementaciones, la señal de entrada es codificada en voltaje durante el proceso de conversión, lo que hace que la integración en nodos CMOS más pequeños sea complicada debido a la menor tensión de alimentación. Una técnica alternativa consiste en codificar la señal de entrada en tiempo (o frecuencia) en lugar de tensión. Esto es lo que hacen los convertidores de codificación temporal. Recientemente, los convertidores de codificación temporal han ganado popularidad ya que son más adecuados para nodos CMOS nanométricos que los convertidores Sigma-Delta. Entre los que más interés han despertado encontramos los ADCs basados en osciladores controlados por tensión (VCO-ADC). Los VCO-ADC se pueden implementar usando osciladores en anillo (RO) implementados con inversores CMOS y circuitos digitales. Esta familia de convertidores también tiene conformado de ruido. Esto los convierte en una alternativa muy interesante para la implementación de convertidores en nodos CMOS nanométricos. Sin embargo, dos problemas principales están presentes en este tipo de ADCs debidos ambos a las no idealidades del oscilador. El primero de los problemas es la presencia de ruido de fase en el oscilador, lo que reduce la resolución del ADC. El segundo es la curva de conversion voltaje-frecuencia no lineal del oscilador, lo que causa distorsión a amplitudes medias y altas. En esta tesis analizamos el uso de ADCs de codificación temporal para micrófonos MEMS, con especial interés en ADCS basados en osciladores de anillo (RO-ADC). En primer lugar, estudiamos el uso de un cuantificador SAR con conformado de ruido (SAR-NSQ) en moduladores Sigma-Delta. Este cuantificador agrega un orden adicional de conformado de ruido al modulador, mejorando la resolución. En este documento se explica el cuantificador y obtienen las ecuaciones para la función de transferencia de ruido (NTF) de un sigma-delta de tercer orden usando un filtro de segundo orden y el NSQ. En segundo lugar, dirigimos nuestra atención al tema de los RO-ADC. Presentamos el chip de un micrófono MEMS de alto rango dinámico en CMOS de 130 nm basado en un VCO-ADC de bucle abierto. En esta tesis se explica la implementación del front-end analógico que incluye el oscilador y la interfaz con el MEMS. Esta implementación se ha llevado a cabo con el objetivo de lograr un bajo consumo de potencia, un bajo nivel de ruido y un alto rango dinámico. La descripción del back-end digital se deja para la tesis del couator del chip. La SNDR de pico del chip es de 80dBA y el rango dinámico de 108dB con una THD de 1,5% a 128 dBSPL y un consumo de potencia de 438μW. Finalmente, se analiza el uso de una resistencia dependiente de frecuencia (FDR) para implementar un bucle de realimentación no muestreado alrededor del oscilador. El objetivo es reducir la distorsión. Además, también se logra la mitigación del ruido de fase del oscilador. Se analyza una primera topologia de realimentación incluyendo un amplificador operacional para incrementar la ganancia de bucle. Este diseño se prueba en silicio en un chip CMOS de 130nm que logra un pico de SNDR de 84 dBA con un consumo de potencia de 600μW en la parte analógica. Seguidamente, se analiza una segunda topología sin el amplificador operacional. Se fabrican y miden dos chips diseñados con esta topologia. El primero de ellos en CMOS de 130 nm es un VCO-ADC completo que incluye el convertidor de frecuencia a digital (F2D). Este chip alcanza un pico SNDR de 76,6 dBA con un consumo de potencia de 482μW. El segundo incluye solo el oscilador y está implementado en CMOS de 55nm. El pico SNDR es 78.15 dBA y el el consumo de potencia analógica es de 153μW. Para cerrar esta tesis, se presentan dos circuitos que usan la FDR con un oscilador en anillo. El primero es un convertidor de capacidad a digital (CDC). El segundo es un filtro realizado con una FDR y un oscilador, enfocado a tareas de detección de voz (VAD).Programa de Doctorado en Ingeniería Eléctrica, Electrónica y Automática por la Universidad Carlos III de MadridPresidente: Antonio Jesús Torralba Silgado.- Secretaria: María Luisa López Vallejo.- Vocal: Pieter Rombout

    Voltage-to-Time Converter for High-Speed Time-Based Analog-to-Digital Converters

    Get PDF
    In modern complementary metal oxide semiconductor (CMOS) technologies, the supply voltage scales faster than the threshold voltage (Vth) of the transistors in successive smaller nodes. Moreover, the intrinsic gain of the transistors diminishes as well. Consequently, these issues increase the difficulty of designing higher speed and larger resolution analog-to-digital converters (ADCs) employing voltage-domain ADC architectures. Nevertheless, smaller transistor dimensions in state-of-the-art CMOS technologies leads to reduced capacitance, resulting in lower gate delays. Therefore, it becomes beneficial to first convert an input voltage to a 'time signal' using a voltage-to-time converter (VTC), instead of directly converting it into a digital output. This 'time-signal' could then be converted to a digital output through a time-to-digital converter (TDC) for complete analog-to-digital conversion. However, the overall performance of such an ADC will still be limited to the performance level of the voltage-to-time conversion process. Hence, this thesis presents the design of a linear VTC for a high-speed time-based ADC in 28 nm CMOS process. The proposed VTC consists of a sample-and-hold (S/H) circuit, a ramp generator and a comparator to perform the conversion of the input signal from the voltage to the time domain. Larger linearity is attained by integrating a constant current (with high output impedance) over a capacitor, generating a linear ramp. The VTC operates at 256 MSPS consuming 1.3 mW from 1 V supply with a full-scale 1 V pk-pk differential input signal, while achieving a time-domain output signal with a spurious-free-dynamic-range (SFDR) of 77 dB and a signal-to-noise-and-distortion ratio (SNDR) of 56 dB at close to Nyquist frequency (f = 126.5 MHz). The proposed VTC attains an output range of 2.7 ns, which is the highest linear output range for a VTC at this speed, published to date
    corecore