195 research outputs found

    Efficient heuristics for the parallel blocking flow shop scheduling problem

    Get PDF
    We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, each consisting of a series of m machines, and doing so with a blocking constraint. The applied criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar to another problem known in the literature as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies with more than one factory, each factory with a flow shop configuration. Therefore, the proposed methods can solve the scheduling problem under the blocking constraint in both situations, which, to the best of our knowledge, has not been studied previously. In this paper, we propose a mathematical model along with some constructive and improvement heuristics to solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum completion time among lines. The proposed constructive procedures use two approaches that are totally different from those proposed in the literature. These methods are used as initial solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), both of which are combined with a variable neighborhood search (VNS). The proposed constructive procedure and the improved methods take into account the characteristics of the problem. The computational evaluation demonstrates that both of them –especially the IGA– perform considerably better than those algorithms adapted from the DPFSP literature.Peer ReviewedPostprint (author's final draft

    A computational evaluation of constructive and improvement heuristics for the blocking flow shop to minimize total flowtime

    Get PDF
    This paper focuses on the blocking flow shop scheduling problem with the objective of total flowtime minimisation. This problem assumes that there are no buffers between machines and, due to its application to many manufacturing sectors, it is receiving a growing attention by researchers during the last years. Since the problem is NP-hard, a large number of heuristics have been proposed to provide good solutions with reasonable computational times. In this paper, we conduct a comprehensive evaluation of the available heuristics for the problem and for related problems, resulting in the implementation and testing of a total of 35 heuristics. Furthermore, we propose an efficient constructive heuristic which successfully combines a pool of partial sequences in parallel, using a beam-search-based approach. The computational experiments show the excellent performance of the proposed heuristic as compared to the best-so-far algorithms for the problem, both in terms of quality of the solutions and of computational requirements. In fact, despite being a relative fast constructive heuristic, new best upper bounds have been found for more than 27% of Taillard’s instances.Ministerio de Ciencia e Innovación DPI2013-44461-P/DP

    Iterated-greedy-based algorithms with beam search initialization for the permutation flowshop to minimize total tardiness

    Get PDF
    The permutation flow shop scheduling problem is one of the most studied operations research related problems. Literally, hundreds of exact and approximate algorithms have been proposed to optimise several objective functions. In this paper we address the total tardiness criterion, which is aimed towards the satisfaction of customers in a make-to-order scenario. Although several approximate algorithms have been proposed for this problem in the literature, recent contributions for related problems suggest that there is room for improving the current available algorithms. Thus, our contribution is twofold: First, we propose a fast beam-search-based constructive heuristic that estimates the quality of partial sequences without a complete evaluation of their objective function. Second, using this constructive heuristic as initial solution, eight variations of an iterated-greedy-based algorithm are proposed. A comprehensive computational evaluation is performed to establish the efficiency of our proposals against the existing heuristics and metaheuristics for the problem.Ministerio de Ciencia e Innovación DPI2013-44461-PMinisterio de Ciencia e Innovación DPI2016-80750-

    Efficient constructive procedures for the distributed blocking flowshop scheduling problem

    Get PDF
    the distributed blocking flow shop scheduling problem (DBFSP) allows modeling of the scheduling process in companies with more than one factory, with productive systems configured as flow shop lines where the blocking constraint has to be considered. To the best of our knowledge, this variant of the distributed permutation flow shop scheduling problem has not been studied. In this paper, we propose some constructive heuristics that will solve the DBFSP and thus minimize the maximum completion time among the factories. The proposed procedures use two approaches that are totally different from those proposed for the distributed permutation flow shop scheduling problem (DPFSP). By taking the DPFSP procedures that we adapted to DBFSP and comparing them to the new approaches that were specifically designed for DBPFSP, we find that the latter perform considerably better.Postprint (published version

    Iterative beam search algorithms for the permutation flowshop

    Full text link
    We study an iterative beam search algorithm for the permutation flowshop (makespan and flowtime minimization). This algorithm combines branching strategies inspired by recent branch-and-bounds and a guidance strategy inspired by the LR heuristic. It obtains competitive results, reports many new-best-so-far solutions on the VFR benchmark (makespan minimization) and the Taillard benchmark (flowtime minimization) without using any NEH-based branching or iterative-greedy strategy. The source code is available at: https://gitlab.com/librallu/cats-pfsp

    New efficient constructive heuristics for the hybrid flowshop to minimise makespan: A computational evaluation of heuristics

    Get PDF
    This paper addresses the hybrid flow shop scheduling problem to minimise makespan, a well-known scheduling problem for which many constructive heuristics have been proposed in the literature. Nevertheless, the state of the art is not clear due to partial or non homogeneous comparisons. In this paper, we review these heuristics and perform a comprehensive computational evaluation to determine which are the most efficient ones. A total of 20 heuristics are implemented and compared in this study. In addition, we propose four new heuristics for the problem. Firstly, two memory-based constructive heuristics are proposed, where a sequence is constructed by inserting jobs one by one in a partial sequence. The most promising insertions tested are kept in a list. However, in contrast to the Tabu search, these insertions are repeated in future iterations instead of forbidding them. Secondly, we propose two constructive heuristics based on Johnson’s algorithm for the permutation flowshop scheduling problem. The computational results carried out on an extensive testbed show that the new proposals outperform the existing heuristics.Ministerio de Ciencia e Innovación DPI2016-80750-

    A speed-up procedure for the hybrid flow shop scheduling problem

    Get PDF
    Article number 115903During the last decades, hundreds of approximate algorithms have been proposed in the literature addressing flow-shop-based scheduling problems. In the race for finding the best proposals to solve these problems, speedup procedures to compute objective functions represent a key factor in the efficiency of the algorithms. This is the case of the well-known Taillard’s accelerations proposed for the traditional flow shop with makespan minimisation or several other accelerations proposed for related scheduling problems. Despite the interest in proposing such methods to improve the efficiency of approximate algorithms, to the best of our knowledge, no speed-up procedure has been proposed so far in the hybrid flow shop literature. To tackle this challenge, we propose in this paper a speed-up procedure for makespan minimisation, which can be incorporate in insertion-based neighbourhoods using a complete representation of the solutions. This procedure is embedded in the traditional iterated greedy algorithm. The computational experience shows that even incorporating the proposed speed-up procedure in this simple metaheuristic results in outperforming the best metaheuristic for the problem under consideration.Junta de Andalucía(España) US-1264511Ministerio de Ciencia e Innovación (España) PID2019-108756RB-I0

    An efficient hybrid iterated local search algorithm for the total tardiness blocking flow shop problem

    Get PDF
    This paper deals with the blocking flow shop problem and proposes an Iterated Local Search (ILS) procedure combined with a variable neighbourhood search (VNS) for the total tardiness minimization. The proposed ILS makes use of a NEH-based procedure to generate the initial solution, uses a local search to intensify the exploration which combines the insertion and swap neighbourhood and uses a perturbation mechanism that applies, d times, three neighbourhood operators to the current solution to diversify the search. The computational evaluation has shown that the insertion neighbourhood is more effective than the swap one, but it also has shown that the combination of both is a good strategy to improve the obtained solutions. Finally, the comparison of the ILS with an Iterated greedy algorithm and with a greedy randomized adaptive search procedure has revealed its good performance.Preprin

    An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem

    Full text link
    In the no-idle flowshop, machines cannot be idle after finishing one job and before starting the next one. Therefore, start times of jobs must be delayed to guarantee this constraint. In practice machines show this behavior as it might be technically unfeasible or uneconomical to stop a machine in between jobs. This has important ramifications in the modern industry including fiber glass processing, foundries, production of integrated circuits and the steel making industry, among others. However, to assume that all machines in the shop have this no-idle constraint is not realistic. To the best of our knowledge, this is the first paper to study the mixed no-idle extension where only some machines have the no-idle constraint. We present a mixed integer programming model for this new problem and the equations to calculate the makespan. We also propose a set of formulas to accelerate the calculation of insertions that is used both in heuristics as well as in the local search procedures. An effective iterated greedy (IG) algorithm is proposed. We use an NEH-based heuristic to construct a high quality initial solution. A local search using the proposed accelerations is employed to emphasize intensification and exploration in the IG. A new destruction and construction procedure is also shown. To evaluate the proposed algorithm, we present several adaptations of other well-known and recent metaheuristics for the problem and conduct a comprehensive set of computational and statistical experiments with a total of 1750 instances. The results show that the proposed IG algorithm outperforms existing methods in the no-idle and in the mixed no-idle scenarios by a significant margin.Quan-Ke Pan is partially supported by the National Science Foundation of China 61174187, Program for New Century Excellent Talents in University (NCET-13-0106), Science Foundation of Liaoning Province in China (2013020016), Basic scientific research foundation of Northeast University under Grant N110208001, Starting foundation of Northeast University under Grant 29321006, and Shandong Province Key Laboratory of Intelligent Information Processing and Network Security (Liaocheng University). Ruben Ruiz is partially supported by the Spanish Ministry of Economy and Competitiveness, under the project "RESULT - Realistic Extended Scheduling Using Light Techniques" with reference DPI2012-36243-C02-01 co-financed by the European Union and FEDER funds and by the Universitat Politecnica de Valencia, for the project MRPIV with reference PAID/2012/202.Pan, Q.; Ruiz García, R. (2014). An effective iterated greedy algorithm for the mixed no-idle flowshop scheduling problem. Omega. 44:41-50. https://doi.org/10.1016/j.omega.2013.10.002S41504
    corecore