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1. Introduction 

Distributed manufacturing is a common situation for large enterprises that compete in a 

globalized market. Due to the current globalization trends, production has shifted from single 

factory production to a multi-factory production network (Behnamian & Fatemi Ghomi, 2014). In 

this environment, the scheduling problems deal with the allocation of jobs to factories and the 

scheduling of jobs in each plant. Since the flow shop configuration is the most common processing 

layout, the flow shop scheduling problem has been studied greatly since the seminal paper of  

Johnson (1954).  However, its  extension to a multi-plant environment was first presented by 

Naderi & Ruiz (2010), referring to it as the Distributed Permutation Flow Shop Scheduling 

Problem (DPFSP). According to these authors, the DPFSP is defined as a set N of n jobs must be 

processed by set G of F identical factories. Each factory has the same set M of m machines. The 

processing times of all the tasks of a given job do not change from factory to factory. The 

objective is to minimize the maximum makespan among factories.   

After the publication of Naderi & Ruiz (2010), several authors ((Fernandez-Viagas & 

Framinan, 2014; Gao, Chen, Deng, & Liu, 2012; Gao, Chen, & Deng, 2013; Gao, Chen, & Liu, 

2012; Gao & Chen, 2012; Lin, Ying, & Huang, 2013; Liu & Gao, 2010; Naderi & Ruiz, 2014; 

Wang, Wang, Liu, & Xu, 2013; Xu, Wang, Wang, & Liu, 2013)) proposed various heuristics to 

solve this problem, but the blocking constraint has been considered in any of them. The blocking 

flow shop scheduling problem allows many productive systems to be modeled when there are no 

buffers between consecutive machines. In general, it is useful for those systems that have a 

production line without a drag system that forces a job to be transferred between two consecutive 

stations at pre-established time. Some industrial examples can be found in the iron and steel 

industry (Gong, Tang, & Duin, 2010); in the treatment of industrial waste and the manufacture of 

metallic parts (Martinez, Dauzère-Pérès, Guéret, Mati, & Sauer, 2006); or in a robotic cell, where a 

job may block a machine while waiting for the robot to pick it up and move it to the next stage 

(Sethi, Sriskandarajah, Sorger, Blazewicz, & Kubiak, 1992).  The blocking constraint tends to 

increase the completion time of jobs, because the processed job cannot leave the machine if the 

next machine is busy.  Therefore, the heuristics designed to schedule jobs in this environment have 

to consider this fact in order to minimize the idle time of machines due to possible blockage. The 

distributed blocking flow shop scheduling problem (DBFSSP) deals with the allocation and 

scheduling of jobs in a multi-factory production network with the blocking constraint present in 

the manufacturing system. To the best of our knowledge, no paper dealing with the distributed 

blocking permutation flow shop has been published until now. Hence, it is interesting to study this 

problem in order to design specific procedures, since the adaptation of those designed for the 

DPFSP probably perform worse than those procedures that consider its characteristics.  

In this paper we compare the performance of three variants of two types of heuristics; iterated 

greedy algorithm (IGA) and iterated local search algorithms (ILS). The variants of each algorithm 

consist of three constructive procedures to build the initial solution, two of them created 

specifically for the problem under consideration.   



2. Initial solution procedures 

The DBPFSP needs to deal with two related decisions: the allocation of jobs to factories and 

the sequence of jobs assigned to each plant. In this research we have used three constructive 

heuristics named TR2, HPF23 and RC1_m to generate the initial solution of the heuristics. Each 

constructive procedure uses a different approach to build the solution.  

The TR2 firstly generates a sequence of jobs by ordering them according to the trapezium rule 

(Companys, 1966), next the jobs are assigned to each plant according to the allocation rule (2) 

defined in Naderi & Ruiz (2010) that consist of assigning job j to the factory which completes it at 

the earliest time.  

The HPF23 generates the sequence according to the HPF2 rule (Ribas & Companys, 2015) and 

then the sequence is divided in F (number of factories) fractions by assigning a similar load (ΣPi/F) 

to each plant. Finally, the sequence of jobs assigned to each plant is improved by an insertion 

procedure similar to that used in the second step of NEH (Nawaz, Enscore Jr, & Ham, 1983). 

 Finally, in RC1_m instead of sequencing the jobs first and then allocate them to the plants, the 

jobs and factories are considered together. The first step is to select the first job to be assigned to 

each plant which is done according to the bicriteria index R(i), equation (1). This index considers 

the contribution of the job to the completion time (minimum sum of its processing times, Pi) and 

the front delay generated. The selected job is the one whose R(i) value is smaller.  
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Next, a factory is first selected in order to proceed with the other jobs. The factory selected is 

the one which has the last machine available sooner. After the plant is selected, a job is chosen 

according to index ind2(f,i), calculated as in (2), where f is one of the factories and f is the 

sequence of jobs already sequenced in plant f. 
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3. Heuristics for the DBFSP  

In this research we have designed an Iterated local Search algorithm (ILS) and an Iterated 

Greedy Algorithm (IGA) to solve the DBFSP. For each one, we have implemented three variants, 

each one uses one of the constructive procedures presented in the previous section.  

The ILS is composed of four components: the Initial Solution procedure, a Perturbation 

Mechanism that modifies the current solution σ leading to an intermediate solution σ’, a Local 

Search procedure that returns an improved solution σ’’, and an Acceptance Criterion that decides 

to which solution the next perturbation is applied. 

The Perturbation Mechanism implemented selects randomly a job, from one of the factories 

and inserts it in the best position of another plant again randomly selected. This procedure is 

repeated d times. 

The Local Search is divided in two parts; the first part a job is randomly selected from the 

plant which has the maximum makespan. This job is inserted in the best position of a plant 

randomly selected. If the maximum makespan among all plants has diminished the sequence is 

kept and the procedure is repeated with the plant that has now the maximum makespan; else a new 

job of the critical plant is selected and the process is restarted. This part is finished when all jobs of 

the critical plant had been selected or after a limited number of iteration is reached. The second 

part swaps two jobs, one from the critical plant and another from another plant selected randomly 

and if the maximum makespan among plant has diminished the change is kept. This process is 

repeated in the same way of the first part. These two parts are repeated while the maximum 

makespan improves.   

The Acceptance Criterion uses a procedure similar to the one used in the simulated annealing 

algorithm.  

The IGA has a similar outline than the ILS. The difference between both is the Perturbation 

Mechanism. In this algorithm, d jobs are selected and extracted from the plant to which are 



assigned. Next, each job is tried to be inserted in each plant and it is assigned to the plant which 

leads to the minimum makespan.   

3.1. Computational evaluation 

We compared the three versions of ILS and the three of IGA in order to analyze their behavior. 
We named each one with the name of the constructive procedure used to build the initial solution 
plus “_IGA” or “_ILS” respectively. The test was done on the Taillard’s (Taillard, 1993) instances 
adapted to the multi plant environment as in Naderi & Ruiz (2010).  

The performance was measured by the Relative Percentage Deviation (RPD) from the best 
solution (minimum makespan), which was obtained during the experiment using all combinations of 
values. Therefore, RPD is calculated as in (3): 
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where Cmax,k is the average makespan obtained in 5 runs on instance k and Bestk is the 
minimum Cmax obtained in this instance by any heuristic and run. 

We carried out a multifactorial ANOVA on the results of these heuristics and all instances. The 
response variable was the RPD, and the factors are the algorithm, n, m and F being all of them 
significant (p-value=0.00).  

Figure 1. Average RPD of each heuristic by number of factories 

To analyze the differences between heuristics, we built the corresponding mean plot with the 
confidence interval at 95% for the heuristic factor (Figure 1), which is the most significant. From 
this figure we can observe that the IGA_HPF23 is the one with best performance. The differences 
between the ILS and IGA that use RC1_m have similar performance. However, these algorithms 
with TR2 have a totally different behavior. From a more detailed analysis we saw that the number 
of factories has a great influence in the behavior of these heuristics, especially the IGA. The next 
step is to compare these algorithms against others proposed in the literature for the DPFSP adapted 
to the blocking case. 
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