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Abstract 

 
 We consider the NP-hard problem of scheduling n jobs in F identical parallel flow shops, 

each consisting of a series of m machines, and doing so with a blocking constraint. The applied 

criterion is to minimize the makespan, i.e., the maximum completion time of all the jobs in F 

flow shops (lines). The Parallel Flow Shop Scheduling Problem (PFSP) is conceptually similar 

to another problem known in the literature as the Distributed Permutation Flow Shop 

Scheduling Problem (DPFSP), which allows modeling the scheduling process in companies 

with more than one factory, each factory with a flow shop configuration. Therefore, the 

proposed methods can solve the scheduling problem under the blocking constraint in both 

situations, which, to the best of our knowledge, has not been studied previously. In this paper, 

we propose a mathematical model along with some constructive and improvement heuristics to 

solve the parallel blocking flow shop problem (PBFSP) and thus minimize the maximum 

completion time among lines. The proposed constructive procedures use two approaches that 

are totally different from those proposed in the literature. These methods are used as initial 

solution procedures of an iterated local search (ILS) and an iterated greedy algorithm (IGA), 

both of which are combined with a variable neighborhood search (VNS). The proposed 

constructive procedure and the improved methods take into account the characteristics of the 

problem. The computational evaluation demonstrates that both of them –especially the IGA– 

perform considerably better than those algorithms adapted from the DPFSP literature.  
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1  Introduction  

The parallel flow shop scheduling problem can be decomposed into two subproblems: first, 

assigning each job to one of the F flow shops; then, scheduling the jobs in each flow shop in 

order to minimize the maximum completion time of jobs, i.e., the global makespan. This problem 

was studied by He, Kusiak and Artiba (1996) for the purpose of applying it in the glass industry. 

The manufacturing environment under consideration was an F parallel flow shop with two 

machines in each. They proposed using mixed integer programming and an efficient heuristic to 

deal with the problem. Vairaktarakis and Elhafs (2000) analyzed the deterioration in the 

makespan performance when the two-machine hybrid flow shop problem is assimilated with a 

parallel two-machine flow shop problem. They concluded that the deterioration of the makespan 

performance was less than 3%, which, in the case studied, justified the design of a parallel flow 

shop (i.e., independent manufacturing cells) instead of a hybrid flow shop configuration, as the 

former is easier to manage. They proposed a O(nP
3
)-time dynamic programming algorithm for 

optimally solving 2 flow shops in parallel with two machines. (Cao & Chen, 2010) developed a 

mathematical model and a Tabu Search algorithm for the PFSP with two machines. Al-Salem 

(2004) proposed a polynomial-time algorithm to minimize the makespan in two-machine parallel 

flow shops with proportional processing time. Zhang and Van De Velde (2012) developed 

approximation algorithms with worst-case performance guarantees for scheduling jobs in 2 and 3 

flow shops that are in parallel with 2 machines. Notice that these papers only consider flow shops 

with two machines, which is the simplest case. 

However, the PFSP is conceptually similar to another problem that is known in the literature 

as the Distributed Permutation Flow Shop Scheduling Problem (DPFSP), which considers a 

multi-factory production network with a flow shop configuration in each factory. In this 

environment, the scheduling problem deals with the allocation of jobs to factories and the 

scheduling of jobs in each plant. The DPFSP was first presented by Naderi & Ruiz (2010). After 

this publication, several authors proposed various heuristics to solve this problem ((Fernandez-

Viagas & Framinan, 2014; Gao & Chen, 2012; Gao, Chen, & Deng, 2013; Gao, Chen, Deng, & 

Liu, 2012; Gao, Chen, & Liu, 2012; Lin, Ying, & Huang, 2013; Liu & Gao, 2010; Bahman 

Naderi & Ruiz, 2014; Wang, Wang, Liu, & Xu, 2013; Xu, Wang, Wang, & Liu, 2013)). In these 

papers, the number of machines in each plant (i.e., each flow shop) is not limited. Therefore, the 

methods proposed can be used to solve the PFSP with more than two machines in each flow 

shop. However, neither in the literature about the PFSP nor in that about the DPFSP is the 

blocking constraint considered. 

 The blocking flow shop scheduling problem allows many production systems to be modeled 

when there are no buffers between consecutive machines. In general, it is useful for those 

systems that have a production line without a drag system forcing a job to be transferred between 
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two consecutive stations at pre-established times. Some industrial examples can be found in the 

iron and steel industry (Gong, Tang, & Duin, 2010); in the treatment of industrial waste and the 

manufacture of metallic parts (Martinez, Dauzère-Pérès, Guéret, Mati, & Sauer, 2006); and in the 

use of robotic cells, where a job may block a machine while waiting for the robot to pick it up 

and move it to the next stage (Sethi, Sriskandarajah, Sorger, Blazewicz, & Kubiak, 1992).  The 

blocking constraint tends to increase the completion time of jobs, because the processed job 

cannot leave the machine if the next machine is busy. Therefore, the heuristics designed to 

schedule jobs in this environment have to consider this fact in order to minimize the idle time of 

machines due to possible blockage. The Parallel Blocking Flow Shop Problem (PBFSP) and the 

Distributed Blocking Flow Shop Scheduling Problem (DBFSP) deal with the allocation and 

scheduling of jobs in parallel flow shops and in a multi-factory production network with the 

blocking constraint included in the manufacturing system. It is interesting to study these 

problems in order to design specific procedures for them, since other procedures that have been 

adapted from PFSP and DPFSP probably perform worse as a result of not having been designed 

to minimize the blocking conditions.    

In this paper, we propose new constructive procedures that are built using two different 

approaches, and some improvement heuristics to solve these problems. The computational 

evaluation shows not only the good performance of the presented improvement heuristics –in 

particular the iterated greedy algorithm (IGA) combined with a variable neighborhood search 

(VNS)– but also the effectiveness of the proposed constructive procedures that help the heuristics 

achieve good solutions.  

2 Problem definition 

The problem is defined as follows: n jobs have to be scheduled in one of the F identical flow 

shops with m machines. Each flow shop (factory) is able to process all jobs. The jobs assigned to 

a flow shop have to be processed by all machines in the same order, from machine 1 to machine 

m. Each job i, i ϵ {1,2,. . .,n} requires a fixed non-negative processing time pj,i on every machine 

j, j ϵ {1,2,. . .,m}, which  does not change from line to line. Setup times are considered to be 

included in the processing time. The objective is to schedule the jobs to the different flow shops 

such that the maximum makespan (Cmax) among them is minimized. We denote σf as the 

sequence of the nf jobs assigned to flow shop f, and fmax as the flow shop with the maximum 

makespan. Therefore, a solution  is formed by the sequence of jobs in each flow shop (=( σ1, 

σ2, …, σf)).   

Next, we introduce additional notation in order to define the mathematical program associated 

with this problem: let cj,k,f  be the departure time of a job that occupies position k in machine j at 

flow shop f, and let Cmax be the maximum completion time of the last job processed in any of the 
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parallel flow shops.  Notice that, with the blocking constraint, a job cannot leave the machine 

until the next machine is free, even if it has finished its operation.  

Therefore, according to this notation, the mathematical program can be formalized as 

follows: 
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The decision variables are the binary variables xk,i,f ,which take value 1 if job i occupies 

position k in the sequence of flow shop f.  Other variables are the continuous variable cj,k,f  and 

Cmax . 

The objective function is set in equation (1). Constraint set (2) ensures that every job must be 

exactly at one position and only at one factory. Constraint set (3) ensures that only one job at 

most can be allocated to each position at a factory. Constraint set (4) defines the departure time 

of the job which occupies position k in the first machine at factory f. Constraint set (5) specifies 

the relationship between the departure times of each job in two successive machines at the 

assigned factory. Constraint set (6) calculates the departure time of a job under the blocking 

conditions by considering that the next machine has to be available. Constraint sets (7) and (8) 

are the initial conditions. Constraint set (9) defines the makespan. Finally, constraint sets (10) 

and (11) define the domain of the decision variables. 

Since the problem considered is NP-hard, exact procedures are able to solve only small 

instances. Therefore, the next sections propose heuristics procedures for solving large problems.  
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3 Constructive Heuristics 

As stated before, both the PBFSP and the DBFSP need to deal with two related decisions: the 

allocation of jobs to flow shops (factories) and the sequence of jobs assigned to each line (plant). 

To the best of our knowledge, no paper has been published regarding these problems, but some 

ideas can be taken from the DPFSP literature, particularly the constructive heuristics proposed in 

Naderi & Ruiz (2010), which consist of jobs being sequenced according to an ordering rule 

before they are assigned to a facility in accordance with an allocation rule. In this paper, we 

propose a new method for allocating and sequencing the jobs as well as three new procedures, 

each of which uses a different approach for solving the problem.  

The new allocation method consists of dividing the job sequences into F fractions by 

assigning a similar load (ΣPi/F) to each flow shop (line). Then, the sequence of jobs assigned to 

each line is improved by an insertion procedure similar to that used in the second step of NEH 

(Nawaz, Enscore Jr, & Ham, 1983).  

This allocation method has been combined with the following ten sequencing rules. Some of 

them are used in the Permutation Flow Shop Scheduling Problem (PFSP) and some others were 

specially designed for the Blocking Flow Shop Scheduling Problem: Shortest Processing Time 

(SPT), Largest Processing Time (LPT), Johnson’s rule (Johnson, 1954), Palmer’s heuristic 

(Palmer, 1965), CDS (Campbell, Dudek, & Smith, 1970), NEH (Nawaz et al., 1983), Trapeziums 

(TR) (Companys, 1966), PF (McCormick, Pinedo, Shenker, & Wolf, 1989), PW (Pan & Wang, 

2012) and HPF2 (Ribas & Companys, 2015). The resulting heuristics are named as the 

sequencing rule plus the number 3, following the notation used in (Naderi & Ruiz, 2010). 

Therefore, these heuristics are named SPT3, LPT3, Johnson3, Palmer3, CDS3, NEH3, TR3, PF3, 

PW3 and HPF23. 

In the TR rule, two indexes are calculated for each job (S1i and S2i), according to (12) and 

(13), respectively. Next, jobs are scheduled by applying the Johnson algorithm considering S1i as 

the processing time of job i in the first machine and S2i as the processing time of i in the second 

machine.   


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m
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It is worth noting that ordering jobs in increasing order of S3i=S1i-S2i obtains the sequence 

given by Palmer’s heuristic. 

The HPF2 procedure is divided into two steps. The first step selects a job to be the first job in 

the sequence, which minimizes the bicriteria index R(i) according to equation (14).  
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This index considers the front delay generated by the job (first term of equation) and its 

contribution to the completion time (second term). The consideration of the front delay is 

interesting for choosing the first job in the sequence because considering only the job with the 

minimum sum of its processing time is not always effective for minimizing the makespan. 

Consider the following 3-job, 3-machine problem where jobs J1, J2 and J3 have the following 

processing time on each machine: J1=(2,3,4), J2=(3,2,4) and J3=(4,3,2). The sum of the 

processing times for each job is 9, but the makespan of schedules {J1. J2, J3}, {J2, J1, J3} and 

{J3, J1, J2} is 38, 39 and 41, respectively. These differences are due to the front delay induced by 

the first job scheduled (grey parts in Figure 1). 
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Figure 1. Completion time of jobs J1, J2 or J3 when scheduled in the first position of a sequence 

The second step builds the remaining sequence to minimize the timeout of machines and the 

contribution of each job toward increasing the makespan. This is carried out with index ind1(i,k), 

which is calculated according to (15), where i denotes the job, k the position and  the partial 

sequence of the k-1 jobs that are already scheduled.  

))()*(()1())()*((),(1 1,,,1,
1

,  

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m

j
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Observe that in this equation the completion time of jobs cj,k () has only 2 indexes because 

the procedure generates only a sequence that is later divided into F parts. Notice also that the 

timeout can be due to idle time, blocking time or the sum of both (Figure 2). Therefore, the 

sequencing rule according to index ind1(i,k) is adequate when the blocking constraint is 

considered.     

  

 

 
 

      

 

  

       M1 a b  c   d 

   M2   a   b c d 

  M3   

 

a   b c d 

 M4       a   b c d 

Figure 2. Sequence for a 4-job, 4-machine blocking flow shop 
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Hence, HPF2 can be described as follows: 

 Step 1: Select the job with minimum R(i), calculated as in (14), and put it in the first 

position in sequence σ. Set k=1.  

 Step 2: While k<n, calculate index ind1(i,k) according to equation (15) for each 

unscheduled job i. Select the job with minimum ind1(i,k). In case of ties, select the job 

which leads to the partial sequence with minimum makespan. k=k+1. 

The new procedures designed specifically for this problem consider both the jobs and lines 

together. According to this philosophy, we have implemented three methods, which are named 

RC1_1, RC1_m and RC2. 

The RC1_1 and RC1_m procedures are also divided into two steps: the selection of the first 

job of each line and the building of the remaining sequence according to ind2(i,k,f), calculated as 

(16), where f  is the sequence of jobs already sequenced in line f. 




 
m

j
ijijffkjf

m

j
fkj ppcicfkiind

1
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1
,1, )1())()*((),,(2    (16)  

In this case, the line is first selected in step 2 in order to proceed with the other jobs. In 

RC1_1, the line selected is the one which has the first machine available earlier, whereas the line 

selected in RC1_m is the one which has the last machine available sooner.  

RC1_1 and RC1_m can be described as follows: 

 Step 1: For w=1 to F, select the job with minimum R(i) and put it in the first position in 

sequence σf. Set k=F.  

 Step 2: 

o (RC1_1): While k<n, select the line f which has the first machine available 

earlier. Calculate index ind2(i,k,f), as in equation (16), for each unscheduled job 

i. Select the job with minimum ind2(i,k,f). In case of ties, select the job which 

leads to the partial sequence with minimum makespan. k=k+1 

o (RC1_m): While k<n, select the line f which has the last machine available 

sooner. Calculate index ind2(i,k,f) as in equation (16) for each unscheduled job i. 

Select the job with minimum ind2(i,k,f). In case of ties, select the job which 

leads to the partial sequence with minimum makespan. k=k+1. 

Observe that ind2(i,k,f) weights the timeout with the workload of each job. Therefore, once 

the line is selected, choosing a job that minimizes this index is adequate for minimizing the 

makespan under the blocking constraint.  

In RC2, the first job assigned to each line is also selected with index R(i); but, to build the 

remaining sequence, the job and line are selected at the same time in order to minimize index 

ind3(i,k,f), which is calculated as in (17):  
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where f is one of the lines, f  is the sequence of jobs already sequenced in line f and c0 is the 

current minimum makespan of any line. 

Therefore, the RC2 procedure can be described as follows:  

 Step 1: For w=1 to F, select the job with minimum R(i) and put it in the first position in 

sequence σf. Set k=F.  

 Step 2: While k<n, select each unscheduled job one by one and calculate ind3(i,k,f) for 

each line, as in equation (17). Select the job and the line that leads to minimum 

ind3(i,k,f). In case of ties, select the job and line which leads to the partial sequence with 

minimum makespan. k=k+1. 

Observe that ind3(i,k,f) weights the timeout and the difference between the partial makespan 

(completion time obtained with the jobs already sequenced in this line) as well as the minimum 

partial makespan obtained in any of the lines. By trying to minimize the second term, the 

workload of the lines tends to be similar, which is adequate for minimizing the maximum 

makespan among lines. 

The third step in RC1_1, RC1_m and RC2 tries to improve the sequence of each line by using 

an insertion procedure similar to the one used in heuristic NEH.  

Notice that HPF2, RC1_1, RC1_m and RC2 have two parameters (λ and µ) that must be 

determined adequately. Their calibration is addressed in Section 5. 

4 Improvement Heuristics 

Two simple but effective heuristics for dealing with this problem are presented: an iterated 

local search algorithm (ILS) and an iterated greedy algorithm (IGA). Both algorithms have a 

similar scheme. They start with an initial solution, which is improved by applying to the 

sequence of each line a variable neighborhood search (VNS) based on swap and insert 

neighborhood structures –named LS1 and LS2, respectively– then, their order is randomly 

chosen. Next, the solution goes into the main part of the algorithm in order to iteratively apply 

three procedures that consist of: a Perturbation Mechanism, which modifies the current solution 

σ and leads to an intermediate solution σ’; an Improvement phase, which tries to improve the 

current solution by using two neighborhood structures based on the insert and swap movements 

of jobs between lines (Reassignment and Permutation functions, respectively); and, finally, an 

Acceptance function, which chooses the solution to which the next perturbation is applied. The 

general outline of these algorithms is shown in Figure 3. 
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In the following sections, we explain the different parts of these algorithms, whose main 

differences are found in the Perturbation Mechanism. The perturbation of IGA is more 

elaborated than the one used in the ILS, as we will explain later.  

 

Figure 3. Outline of the ILS and IGA algorithm 

4.1 Description of the VNS Procedure 

The VNS uses two local searches sequentially (named LS1 and LS2), which explore the swap 

and insert neighborhoods of the current sequence at each flow shop (factory). The neighborhood 

to be explored first is selected randomly. After exploring the neighboring solutions of current 

solution σf, the local optimum σf ′ is compared with σf. If the solution has improved, σf ′ replaces 

σf and the search continues in the other neighborhoods. This process continues until the current 

solution is no longer improved. Next, the local optimum σf ′ is compared with the best solution  

σf * in terms of the quality of the solution. If Cmax(σf ′) is less than Cmax(σf *), σf′ replaces σf *.  

The LS1 procedure is described as follows. For each job in the sequence, neighbors are 

generated by swapping a job with all jobs that follow it in the sequence. If the best neighbor (σf′) 

is better than the current solution (σf), it becomes the new current solution σf, and the process 

continues until all jobs have been considered. To prevent the neighborhoods from always being 

explored in the same order, the jobs are selected randomly. 

In contrast, LS2 functions as follows. For each job in the sequence, neighbors are generated 

by removing the job from its position and inserting it into all other possible positions. If the best 

neighbor (σf ′) is better than the current solution (σf), it becomes the new current solution σf, and 

the process continues until all jobs have been considered. As in LS1, jobs are selected randomly.  

Algorithm 

   : = Initial solution 

   Cmax*=Cmax(σfmax)    

     := VNS() 

     *:=  

      Cmax*=Cmax(σfmax) 

   flag=1 

   while stopping criterion is not met  do 

      ’ := Perturbation () 

      ’:= VNS(’)      

      ’ :=Reassignment (’, fmax, Cmax) 

      ’:=Permutation(’, fmax, Cmax) 

       if Cmax(σfmax’)<Cmax* then 

           *:= ’ 

          Cmax*=Cmax(σfmax’)         

       end if 

          := AcceptanceFunction(’) 

     end  

end 
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4.2 Perturbation Mechanism 

The implemented Perturbation Mechanism randomly selects a job from one factory and 

inserts it into the best position of another plant that has been randomly selected. This procedure is 

repeated d times. Figure 4 shows the outline of the procedure. 

                 Figure 4. Outline of the perturbation mechanism 

The perturbation mechanism of IGA goes deeper than the one used in ILS, since it tries to assign 

each job removed from its line to all the other lines in order to find the factory and position that 

leads to the minimum makespan among lines. The outline of this procedure can be seen in Figure 

5. 

 Figure 5. Perturbation mechanism of IGA  

4.3 Improvement Phase 

The Improvement Phase is a variable local search between lines (factories) based on two 

neighborhood structures that insert and swap movements of jobs between lines. They are referred 

to here, respectively, as reassignment and permutation.  

Perturbation Mechanism_ILS () 

for h=1 to d 

Select a job i randomly without repetition 

fold:= flow shop of job i 

fnew:= flow shop selected randomly 

Remove job i from fold 

Test job i in any possible position σfnew and place it 

in the position that leads to the lowest Cmax(σfnew) 

next h 

end 

Perturbation Mechanism_IG ()         

         Select d jobs randomly without repetition and put them in sequence  

         Remove the d jobs from their flow shop 

         for k=1 to d     

           i:= job of position k in  

            C0=infinite 

            for f=1 to F         

                insert i in the best position of f  

    calculate Cmax(f) 

                if Cmax(f)<C0 then 

                   C0= Cmax(f) 

                   f’=f 

    end 

   next f 

                   f=f’ 

             next k 

Calculate Cmax  

  end 
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The permutation procedure consists of selecting a job randomly from the plant which has the 

maximum makespan (fmax) and then inserting it into the best position of another randomly 

selected plant, i.e., the position that leads to a minimum makespan of this line. If the Cmax 

diminishes, the sequence is kept and the procedure is repeated again with the line that now has 

the maximum makespan. If the movement does not improve the Cmax, a new job from fmax is 

selected and the process begins again. This part finishes either when all jobs in the critical line 

have been selected or after a limited number of iterations (nlimit) are reached. The outline of this 

procedure is shown in Figure 6. 

Figure 6. Outline of permutation procedure. 

permutation (, fmax, Cmax) 

      do 
 flag = 0 

 h1=0 

 while h1< nintlim and h1<nfmax and flag=0 

  h1=h1+1  

 select i1 from fmax randomly without repetition 

 q=0 

 while q < F and flag=0 

                   q=q+1 

                   select a flow shop f randomly without repetition 

                  if  f different than fmax  

          h2=0 

  while h2<nintlim and h2<nf  and flag=0 

     h2=h1+1 

     select i2 from f randomly without repetition                                 

                                              remove i1 from fmax and insert i2 in the best position 

     remove i2 from f and insert i1 in the best position  

                             if Cmax(fmax)<Cmax and Cmax (f)<Cmax then 

    flag=1 

                                 else 

                               return i1 and i2 to their previous line and position 

                             end 

                      end 

                 if flag=0 then  

                      exit do 

                end 

                    Recalculate Cmax and detect fmax 

         loop 

    end 
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The reassignment procedure consists of swapping two jobs: one from fmax and another from 

another randomly selected line. If the maximum makespan among lines (Cmax) diminishes, the 

change is kept and the procedure is repeated with the line that now has the maximum makespan. 

In the same way as the permutation procedure, if the movement does not improve the Cmax, a new 

job from fmax is selected and the process begins again. The search finishes either when all jobs in 

the critical line have been selected or after a limited number of iterations (nlimit) are reached. 

Then the process iterates over each neighborhood to find improvements. The outline of this 

procedure is shown in Figure 7. 

Figure 7. Outline of the reassignment procedure 

4.4 Acceptance Function 

The Acceptance Function uses a criterion that is similar to the one used in the simulated 

annealing algorithm. In this case, we use a scheme that is similar  to the one used in (Fernandez-

Viagas & Framinan, 2014). 

5 Experimental Evaluation 

In this section, we show the computational evaluation of the constructive procedures and the 

heuristics methods presented.  

The first step was to calibrate and evaluate the constructive procedure in order to select the 

best performing method that would allow ILS and IGA to obtain the initial solution. Next, we 

built, calibrated and evaluated some variants of the ILS and IGA heuristics that had incorporated 

reassignment (, fmax, Cmax) 

      do 
 flag = 0 

 h=0 

 while h< nintlim and h<nfmax and flag=0 

  h=h+1  

 select i from fmax randomly without repetition 

 q=0 

 while q < F and flag=0 

                   q=q+1 

                   select a line f randomly without repetition 

                  if  f different than fmax  

                                  insert i in the best position of f  obtaining f’   

if Cmax(f’) < Cmax then 

    flag =1   

 end  

      end 

             if flag=0 then  

                   exit do 

             end 

              Modify  by changing f  for f’  and removing i from fmax 

                       Recalculate Cmax and detect fmax 

         loop 

    end 
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the selected procedures. We then analyzed the general performance of the heuristics by using a 

set of small-sized instances in which most of the optimal solutions had been found by the 

proposed mathematical model. Then, finally, we compared them with other adapted heuristics 

proposed for the DPFSP.  

5.1 Calibration of Constructive Procedures 

As stated before, HPF2, RC1_1, RC1_m and RC2 have two parameters that must be 

calibrated.  Parameters λ and µ of each heuristic were selected by measuring the performance of 

the algorithm, which itself was done by combining several λ and µ values. The values of λ and µ 

ranged from 0 to 1 in increments of 0.05. Therefore, we tested 21 values for each parameter. 

For this test, we used 600 generated instances. 100 instances were grouped into 20 sets of size 

n x m (5 instances per set), where n= {25, 50, 100, 200, 400} and m = {5, 10, 15, 20}. All these 

100 instances were considered with a different number of factories. We had F={2,3,4,5,6,7}, 

which gave us 600 instances in total.  

The performance was measured by the Relative Percentage Deviation (RPD) from the best 

solution (minimum makespan), which was obtained during the experiment using all 

combinations of values. Therefore, RPD is calculated as in (18): 

       100
max ,





k

kkh

Best

BestC
RPD        (18) 

where Cmaxh,k is the makespan obtained in instance k by heuristic h, which is the heuristic 

that results from combining given values of λ and µ; and Bestk is the minimum Cmax obtained in 

this instance by any combination of values. 

For each procedure, we conducted an Analysis of Variance by including the following terms 

in the model: F, μ, λ, and their interactions F*μ, F*λ and μ* λ. This allowed us to check the 

effects of the two parameters while also seeing via their interactions with F whether or not their 

best values were dependent on the number of factories. The result from the four cases indicated 

a dominating, very strong and highly significant effect of μ and significant but very weak effects 

of , λ, F*μ and μ* λ. As an example, Figure 8 shows the F*μ interaction for the whole range of 

μ. The dominating effect of μ is clear. To find the best μ value (0.7 in this case), a blown-up plot 

of the best region was produced (Figure 9).   
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Figure 8. F*μ interaction for the whole 

range of μ 

 

 
 

Figure 9. Blown-up plot of the F*μ 

interaction for μ>0.55 

 

In Figure 10, it can be seen that λ has a small effect (notice the scale) and also that the best 

value is 0.55, although it does not make a big difference. Figure 11 shows the really small effect 

of the μ* λ interaction; in fact, all lines seem parallel and, thus, the effect is imperceptible. 

 

 
 

Figure 10. λ main effect plot 
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Figure 11. Contour plot of the μ* λ 

interaction 

 

Although each procedure has different λ and μ values, the pattern is basically the same 

(especially the small influence of the F*μ interaction), and we were therefore able to find  the 

best values of λ and μ for each procedure (Table 1). 

 

Procedures 
Values of 

Parameters 

   

RC1_1 1 0.95 

RC1_m 0.85 1 

RC2 0.75 0.05 

HPF2 0.55 0.70 

Table 1. λ and µ values for each procedure 
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5.2 Computational Evaluation of Constructive Heuristics 

In this section, we compare the presented procedures against other constructive procedures 

proposed in the literature for the DPFSP. These procedures consist of combining the two 

allocation methods proposed in Naderi and Ruiz (2010) with six sequencing rules: Shortest 

Processing Time (SPT), Largest Processing Time (LPT), Johnson’s rule (Johnson, 1954), 

Palmer’s heuristic (Palmer, 1965), CDS (Campbell et al., 1970) and NEH (Nawaz et al., 1983). 

Therefore, the jobs are first ordered according to the sequencing rule, and they are then assigned 

to the factories according to the allocation method. The two allocation methods are: 

(1) Assign job j to the factory with the lowest current Cmax, not including job j. 

(2) Assign job j to the factory which completes it at the earliest time. 

These heuristics are identified by the name of the sequencing rule plus 1 or 2, depending on 

the allocation rule used. We have added the sequencing rules TR, PF, PW and HPF2 to these 

groups of heuristics. As a result, we implement 33 constructive procedures, 12 of which were 

presented in Naderi & Ruiz (2010): (SPT1, LPT1, Johnson1 (J1), Palmer1 (PA1), CDS1, NEH1, 

SPT2, LPT2, Johnson2 (J2), Palmer2 (PA2), CDS2, NEH2). Another 8 procedures resulted from 

combining the two allocation methods with the four added rules (TR1, PF1, PW1, HPF21, TR2, 

PF2, PW2 and HPF22). The remaining 13 procedures are those presented in this paper: SPT3, 

LPT3, Johnson3, Palmer3, CDS3, NEH3, TR3, PF3, PW3, HPF23, RC_1, RC_m and RC2. 

 All the algorithms were coded in the same language (QB64) and tested on the same 

computer, a 3 GHz Intel Core 2 Duo E8400 CPU with 2 GB of RAM.  

The comparison was made using the well-known Taillard’s benchmark (Taillard, 1993). 

These instances were generated to test algorithms for the permutation flow shop problem with 

makespan criterion, although they have also been used under other criteria and conditions. In 

particular, these instances were adapted to the DPFSP in Naderi nad Ruiz (2010) and used later 

in Fernandez-Viagas and Framinan (2014) and Naderi and Ruiz (2014) to test their algorithms 

for the same problem. The benchmark comprises 12 sets of 10 instances ranging from 20 jobs 

and 5 machines to 500 jobs and 20 machines, where n ϵ {20, 50, 100, 200, 500} and m ϵ {5, 10, 

20}, although not all combinations of n and m are available. In particular, sets 200x5, 500x5 and 

500x10 are missing. These 120 instances were augmented with six values of F ϵ {2, 3, 4, 5, 6, 

7}.  

The heuristic performance was measured by the Relative Percentage Deviation (RPD) 

calculated as in (18), where Cmaxh,k is the average makespan obtained by heuristic h in instance 

k in 5 runs, and Bestk is the best known solution (minimum makespan) obtained during this 

research. The values can be found at http://hdl.handle.net/2117/85477.  

http://hdl.handle.net/2117/85477
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 In order to perform a comprehensive analysis of the results, we separated the heuristics into 

groups. We first compared the procedures in each group, and then we selected from each group 

the two best algorithms in terms of minimum overall ARPD, which was done in order to 

compare them with the two best heuristics from the other groups.  

The first group consists of sequencing rules combined with allocation methods 1 and 2.  

Heuristics Number of Flow shops 

 
2 3 4 5 6 7 All 

SPT1 25.15 27.32 28.14 29.09 30.00 29.53 28.21 

LPT1 24.70 26.39 27.07 27.38 27.72 27.41 26.78 

JOHN1 17.92 17.62 17.50 17.50 17.24 17.10 17.48 

PAL1 21.52 21.24 20.89 21.57 21.06 20.29 21.10 

CDS1 15.95 16.85 17.19 17.64 18.07 18.07 17.30 

NEH1 14.63 17.36 18.79 19.89 20.39 20.70 18.62 

TR1 15.93 15.56 15.19 15.15 14.97 14.53 15.22 

PF1 22.91 27.19 28.61 30.35 31.46 31.75 28.71 

HPF21 23.05 27.15 29.25 30.53 31.52 32.05 28.93 

PW1 22.44 27.30 29.36 30.77 31.81 32.48 29.02 

SPT2 24.18 25.34 25.96 26.29 26.69 26.49 25.82 

LPT2 23.30 23.55 23.44 23.28 23.04 22.03 23.11 

JOHN2 16.65 15.63 14.63 14.22 13.66 13.11 14.65 

PAL2 20.25 19.23 17.83 17.33 16.53 16.09 17.87 

CDS2 14.86 14.87 14.47 14.07 13.66 13.46 14.23 

NEH2 13.72 15.57 16.34 16.50 16.65 16.28 15.84 

TR2 14.61 13.32 12.61 11.93 11.07 10.67 12.37 

PF2 22.52 25.99 27.92 28.32 28.65 28.33 26.96 

HPF22 22.94 26.59 27.63 28.42 28.51 28.34 27.07 

PW2 22.12 25.73 27.57 28.19 28.34 28.03 26.66 

Table 2. ARPD values by heuristic and number of factories in group 1 

Table 2 shows the ARPD calculated for each procedure and the number of flow shops. As can 

be seen, the best performing heuristic of this group is TR2, with an overall ARPD of 12.37 

(number in bold). Notice that NEH2 is better for F=2, but TR2 shows the best performance for 

the remaining number of lines. The second best heuristic in this group is CDS2. Observe that, by 

comparing the procedures one by one, allocation method 2 leads to better results than method 1, 

as was stated in Naderi and Ruiz (2010) for the DPSFP. 

On the other hand, we can observe in Figures 12 and 13 the behavior of these procedures with 

the size of the instance (nxm). Figure 12 shows the performance of the heuristics with allocation 

method 1, and Figure 13 shows the group of heuristics using allocation method 2. Notice that the 

most influential factor in both groups is the number of machines per flow shop (m). When m 

increases, the performance of the heuristics improves.  
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Figure 12. Behavior of heuristics with allocation method 1, with n x m 

 

 

Figure 13. Behavior of heuristics with allocation method 2, with n x m 

With respect to the heuristics using allocation method 3, Table 3 shows the ARPD for each 

heuristic and number of factories. Here, the best heuristic ranking has changed. Remember that, 

in this case, the sequence of jobs is divided into F parts, and each of these parts is assigned to one 

line. This situation is totally different from that which used the two allocation methods in the 

previous group. This explains the good performance of the three sequencing rules proposed for 

the blocking flow shop problem (PF, HPF2 and PW) as compared to the others proposed for the 

DPFSP. These methods sequence the jobs in order to minimize the idle time of machines, and 
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this order is maintained in the segment assigned to each line. From this group, we select PF3 and 

HPF23, which have similar performance. The overall ARPD is 10.50 and 10.55, respectively.   

Heuristics Number of Flow shops 

  2 3 4 5 6 7 All 

SPT3 9.51 12.26 13.01 14.16 15.54 15.60 13.34 

LPT3 9.84 11.86 13.21 13.92 15.11 14.88 13.14 

JOHN3 11.16 14.22 16.39 17.22 17.85 18.75 15.93 

PAL3 11.87 14.59 16.31 17.18 17.81 17.93 15.95 

CDS3 11.49 14.36 16.20 17.15 17.88 17.82 15.82 

NEH3 8.87 11.21 12.58 13.88 14.12 14.78 12.57 

TR3 12.09 14.98 16.80 18.19 19.00 18.96 16.67 

PF3 7.51 9.02 10.56 11.37 12.44 12.41 10.55 

HPF23 7.16 8.92 10.26 11.39 12.51 12.75 10.50 

PW3 8.61 10.46 11.82 13.30 13.81 14.15 12.03 

Table 3. ARPD values by heuristic and number of factories in group 2 

By analyzing the performance of this group of heuristics with respect to the size of the 

problem, we could see behavior that was similar to that in the heuristics with allocation methods 

1 and 2. Their performance was mostly influenced by the size of m. They performed better for 20 

machines than for 5, although we could also observe a slight effect of n, since their performance 

slightly improved when n increased.  

Finally, the ARPD of the last group of heuristics is shown in Table 4. As can be seen, 

heuristics RC1_1 and RC1_m perform better than RC2. In particular, RC1_m is the one with a 

smaller ARPD. This means that, during the allocation process of jobs, it is better to select the 

flow shop which has the last machine available sooner. 

Heuristics Number of Flow shops 

 
2 3 4 5 6 7 All 

RC1_1 7.71 10.63 12.14 13.58 14.27 15.13 12.24 

RC1_m 7.74 9.74 11.29 12.80 14.30 14.55 11.74 

RC2 9.72 11.76 13.06 13.73 15.77 16.21 13.38 

Table 4. ARPD values by heuristic and number of factories in group 3 

For this last group, in analyzing the performance of the heuristics with respect to the size of 

the problem, we saw behavior that was similar to that in the previous groups, except for the set of 

instance with n=100, where the performance is better for m=5 than for m=20. The improvement 

in this group when the number of jobs increases is more evident than in the other groups. 

It is worth noting that the RPD values obtained in this test are very high, which indicates that 

the solutions obtained by these procedures are far from the best solutions used in this research. 

However, these best solutions were obtained by the ILS and IGA heuristics presented in this 

paper, and they use the best constructive procedures from this evaluation to generate the initial 

solution. 
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Next, in order to compare the best two heuristics of each group, we carried out a 

multifactorial ANOVA on the results of these heuristics and all instances. The hypotheses of 

ANOVA were checked and satisfied. The response variable is the RPD, and the factors are the 

Heuristics, n, m and F. This test shows us that all factors were significant (p-value=0.00). 

To analyze the differences between heuristics, we built the corresponding mean plot with the 

confidence interval at 95% for the heuristic factor (Figure 14), which is the most significant. As 

can be seen, the best heuristics are PF3 and HPF23. There are no statistically significant 

differences between them, because their confidence intervals overlap; nor are there significant 

differences between RC1_m, RC1_1 and TR2. 

Figure 14.Interval Plot of compared heuristics at 95% confidence 

 

A second analysis is necessary for evaluating heuristic efficiency, and that concerns the CPU 

time required for reaching the solution. Table 5 shows the average CPU time in milliseconds for 

each procedure and number of factories. The algorithms that consume the least time are those 

that use allocation methods 1 and 2. Next is the RC1 group. Finally, the algorithms that consume 

the most time are those that use allocation method 3. Remember that, in this method, the segment 

of the original sequence is first assigned to each plant, and then the insertion procedures are 

applied in order to improve the sequence. This helps in obtaining a high quality solution, but the 

required CPU time increases considerably.  
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Heuristics Number of Factories 

  2 3 4 5 6 7 All 

TR1 2.6 2.6 2.5 3 3 3 2.7 

CDS1 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

TR2 3 3 2.9 2.9 2.9 2.9 2.9 

CDS2 7.2 7.2 7.2 7.2 7.2 7.2 7.2 

PF3 226 103 59.6 39.3 28.3 22.4 79.6 

HPF23 238 114 70.1 49.8 38.9 32.5 90.5 

RC1_1 10.2 10.1 10.5 44.8 34.2 27.1 22.8 

RC1_m 10.1 10.1 10.2 44.9 34.2 27.4 22.8 

Table 5. Average CPU time in milliseconds, by heuristic and number of factories. 

Hence, from the overall ARPD point of view, we could select HPF23 or PF3 as the best 

heuristics. However, RC1_m and TR2 cannot be discarded as initial heuristic solution 

procedures, because they obtain quite good solutions with less CPU time. Therefore, we 

implement three variants for each ILS and IG algorithm. Each variant uses HPF23, RC1_m and 

TR2, respectively. We denoted each variant with the name of the improvement heuristic plus the 

name of the constructive procedure used. 

5.2 Experimental Parameter Adjustment of ILS and IG Algorithms 

 

The proposed ILS and IGA have four parameters to be adjusted: the number of iterations in the 

Reassignment and Permutation functions (nintlim), the number of jobs extracted from the current 

solution in the Perturbation Mechanism (d), the Temperature in the Acceptance Function (Temp) 

and the initial solution procedure (solini).  

The instances used in this experiment were a subset of the instances used in the calibration of 

the constructive heuristics. In this case, we used 100 instances grouped into 20 sets of size n x m, 

5 instances per set, where n= {25, 50, 100, 200, 400} and m = {5, 10, 15, 20}. All these 100 

instances were considered with a different number of parallel flow shops F={2, 4, 6}, which gave 

us 300 instances in total.  

Both algorithms used the CPU time as the stopping criterion and limited it to 20•n
2
•m 

milliseconds. The performance of the algorithms was measured with the RPD index calculated as 

(18). In this case, Cmaxh,k is the average makespan obtained by heuristic h, which is the heuristic 

that results from combining given values of parameters, in 5 runs in instance k, and Bestk is the 

minimum  makespan obtained in this instance by any combination of parameters. 

At this point, there are 60 combinations of n (5), m (4) and F (3) to be considered, as well as a 

number of parameters to adjust and a lack of any previous knowledge about their behavior; 

therefore, we decided to adjust the parameter values by employing a sequential experimentation 

strategy (Box, Hunter, & Hunter, 2009) and using just two levels for each parameter. Further 
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experiments based on the results of this first one will allow better adjustment than when running 

a single macro experiment.  

Notice that –from the experiment’s point of view– n, m and F are basically blocking factors. 

We include them in the design because we want to get rid of the variability they introduce in the 

response when estimating the effect of the parameters. 

 For the initial experiment, we considered the following parameter levels for each algorithm 

(Table 6). 

 IGA  ILS 

Parameter Low level High level  Low level High level 

nintlim 50 75  50 75 

d 5 6  6 7 

Temp 0.4 0.6  0.4 0.6 

Solini HPF23 RC1_m  HPF23 RC1_m 

Table 6. Parameter level for the first design 

Given the 60 combinations of n, m and F, the 5 instances for each of combination and the 16 

combinations of the parameters of interest (four parameters at two levels), a full factorial 

experiment implies 4800 runs. 

For the IGA algorithm, the results can be summarized in the main effects plot in Figure 15. 

 

 

Figure 15. Main effects plot for IGA parameters 

Aside from n, m and F being significant (as expected), the initial solution procedure (solini) is the 

only factor with a large effect, and it is clear that HPF23 is much better than RC1_m. The effects 

of d and nintlim are also significant, although small; and Temp appears to be inert. The only 

significant interactions, again as expected, are the ones involving n, m and F with some of the 

parameters. However, there are no significant interactions among the parameters. This is an 

important finding for setting up the second experiment. 
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Figure 16. Main effects plot for ILS parameters 

A similar analysis for the ILS algorithm (Figure 16) provides the following conclusions: 

Again, aside from n, m and F, the initial solution (solini) is the only factor with a large effect and, 

again, it is clear that HPF23 is much better than RC1_m. This time, nintlim and Temp are inert, 

and d has a very small but significant effect. Again, there are no significant interactions among 

the parameters. 

Given that the first experiment provided very similar results for both algorithms, we decided 

to use the same follow-up design in both cases. The idea was to use the findings from the first 

experiment to design a new set of trials that will help optimize the algorithms further. To do so, 

we took into consideration that solini does not interact with other parameters and fixed it at the 

best level while Temp, which is clearly inert, was also fixed. d and nintlim were the two 

parameters that deserved further attention, as they were significant but with a small effect. Then, 

the idea was to test more levels (3) that were also farther apart in order to see whether this would 

allow us to obtain larger effects that help optimize the algorithm further. The new levels are 

shown in Table 7. 

 

Algorithm IGA ILS 

Parameter  Low Middle  High  Low Middle  High  

nintlim 30 40 50 30 40 50 

d 3 4 5 4 5 6 

Table 7. Parameter values for each algorithm 

 

The results for the IGA algorithm, which is summarized in Figure 17, show that nintlim is 

very significant (p-value = 0.000) while significance is not so clear for d (p-value = 0.069). The 

two parameters do not interact, and thus their levels can be fixed at 4 for d and 30 for nintlim. 

The interaction between n, d and nintlim is significant, although with a very small effect that does 

not affect the conclusions. 
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Figure 17. Main effects of nintlim and d. Second experiment. 

 

For the ILS algorithm, the results are simpler and contrariwise: d is highly significant (p-value 

= 0.000) and nintlim is not significant (p-value = 0.229). There is a significant interaction 

between n and d, but it does not affect the conclusion that d=4 is the best one for all n. Figure 18 

shows the results. 

  

Figure 18. ILS effects plot 

5.3 Computational Evaluation of the Heuristics  

In this section we evaluate the general performance of the algorithms on two sets of 

instances. The first set includes small-sized instances that were also solved by the mathematical 

model proposed in this paper. The second set allows us to test the general performance against a 

larger benchmark; in this case, we once again used the well-known Taillard benchmark. We 

implemented the MILP model in CPLEX 11.1 commercial solver. All of the algorithms were 

encoded in the same language (QB64) and were tested on the same computer: an Intel Core 2 

Duo E8400 CPU, with 2.5GHz and 2GB RAM memory.   

 

5.3.1 Evaluation of the algorithms in small-sized instances 

The general performance of the algorithms was evaluated with a set of small-sized instances 

that were generated ad-hoc. These instances were combinations of n={8,10,12, 14, 16}, m={2, 
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3, 4} and F={2, 3, 4}. There were 45 combinations of n, m, F. We generated 5 instances of each 

combination for a total of 225 instances. The processing time was uniformly distributed over [1, 

99], as is normally done in the scheduling literature.  

The model was run with a maximum CPU time of 5 hours, since our objective was to obtain 

the greatest number of optimal solutions in order to be able to compare the algorithms against 

them.  

The heuristics were encoded in the same language (QB64) and were tested on the same 

computer: an Intel Core 2 Duo E8400 CPU, with 2.5GHz and 2GB RAM memory. To make a 

fair comparison, all heuristics adopted the CPU time limit as a stopping criterion, which was 

fixed at 30•n
2
•m•10

-5 
s. In each test, 30 runs were carried out for each algorithm on all 225 

instances in order to see the differences between them. To analyze the experimental results 

obtained, we measured the RPD from the optimal solution if it was obtained by the model; 

otherwise, it was measured from the best known solution obtained by any of the algorithms in 

any run.  

We found the optimal solution for all instances with 8, 10, 12 and 14 jobs and any 

combination of m and F. However, the instances with 16 jobs were the hardest; hence, we could 

solve only 60% of the instances within the maximum CPU time given. Therefore, from the 225 

instances, we obtained 207 optimal solutions. 

Table 8 shows the main results of this test. Notice that we have summarized the 1350 results 

for each set of n (45 instances per set x 30 runs each instance). The rows labelled “# of non-

optimal” indicates the number of times the algorithm could not find the optimal solution. Those 

labelled “Mean RDP” are the average RPDs obtained in each set of 1350 results. Observe that, 

for the instances of 8, 10 and 12 jobs, almost all heuristics reach the optimal solution each time; 

and that it is for the instances with 14 and 16 jobs where we can see some differences between 

them. On top of the very high proportion of times in which the optimal solution was attained by 

all heuristics, it is worth noting the very low values of RPD obtained by those that did not reach 

the optimum.  

Moreover, although the differences between heuristics are small and at this point non-

significant, Table 8 also indicates that the IGA have a tendency to perform better than ILS. 
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n Legend 

IGA 

HPF23 

IGA 

RC1_m 

IGA 

TR2 

ILS 

HPF23 

ILS 

RC1_m 

ILS 

TR2  

8 # of non-optimal 0 0 0 0 0 0 

 

Mean RPD 0 0 0 0 0 0 

10 # of non-optimal 0 0 0 5 3 2 

 

Mean RPD 0 0 0 0 0 0.0015 

12 # of non-optimal 0 1 0 4 3 3 

 

Mean RPD 0 0 0 0.0002 0.0005 0 

14 # of non-optimal 18 11 9 34 26 40 

 

Mean RPD 0.0036 0.0013 0.0008 0.0055 0.0068 0.0077 

16 # of non-optimal 56 77 70 126 130 159 

 

Mean RPD 0.0277 0.0234 0.0150 0.0400 0.0261 0.0417 

All # of non-optimal 74 89 79 169 162 204 

  Mean RPD 0.0062 0.0049 0.0032 0.0092 0.0067 0.0102 

Table 8. Summarized results of heuristics for n 

 

5.3.2 Evaluation of the algorithms in large-sized instances 

Finally, we have analyzed the general performance of the heuristics with a set of large-sized 

instances. In this test, the heuristics were compared with two algorithms proposed for the 

DPFSP, which have been adapted to deal with the blocking constraint. They are the IGA 

proposed in Fernandez-Viagas and Framinan (2014) (named here IGA0) and the Scatter Search 

(SC) proposed in Naderi and Ruiz (2014). These algorithms were also coded in QB64 and were 

tested on the same computer. Once again, the comparison was made using the well-known 

Taillard’s benchmark. To make a fair comparison, all algorithms adopted the CPU time limit as 

a stopping criterion, which was fixed at k•n
2
•m•10

-5 
s, with k set to 15 and 30 in order to analyze 

the performance of these algorithms for two levels of CPU time. In each test, five runs were 

carried out for each algorithm on all instances. To analyze the experimental results obtained, we 

measured the RPD from the best known solution obtained during this research.  

Table 10 shows the average RPD for each algorithm and number of parallel flow shops (F) 

when k=15. Notice that these results are considerably better than those obtained with the 

constructive procedures (Tables 4, 5 and 6), which indicate the good performance of the 

improvement phase that leads to better solutions. From these results, we can see that the three 

presented IGA perform better than the ILS. Moreover, one can observe that these three ILS 

perform similarly, with a slight advantage being had by the one that uses the RC1_m procedure 

to generate the initial solution. However, the differences between the presented IGA are greater, 

with an advantage being had by the one that uses the HPF23 to generate the initial solution. 

Notice that any variant of the presented ILS and IGA performs better than the algorithms IGA0 

and SC that were proposed for the DPFSP, which we have further adapted in order to deal with 

the blocking constraint.  
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One of the main differences between the IGA0 and the IGA proposed here is the initial 

solution procedure. IGA0 uses NEH2, which did not show good performance for the blocking 

case when compared with the procedures that are presented here and which, in addition, take 

into account the characteristics of the problem. Another difference is that our IGAs use a 

variable neighborhood search to improve the sequence of jobs assigned to each line, not only 

when the initial solution is created but also after the perturbation mechanism is implemented, 

which helps to obtain a better solution. Finally, the type of search in the reassignment is also 

different. In IGA0, the local search is exhaustive, i.e., when it tries to insert a job into another 

factory, all positions are tested and the best is kept; whereas, with our method, the first position 

that leads to a better makespan is kept and the search begins again. The non-exhaustive search is 

more efficient when the time is limited, because it allows conducting more trials, which allows 

exploring a larger neighborhood area.  

 

F IGA0 
IGA 

HPF23 

IGA 

RC1_m 

IGA 

TR2 

ILS 

HPF23 

ILS 

RC1_m 

ILS 

TR2  
SC 

2 1.811 0.934 1.392 1.277 1.413 1.295 1.711 2.424 

3 1.798 0.861 1.203 1.118 1.313 1.167 1.383 2.677 

4 1.778 0.813 1.083 0.994 1.269 1.168 1.263 2.999 

5 1.404 0.765 0.932 0.845 1.214 1.122 1.135 3.063 

6 1.355 0.873 0.854 0.773 1.173 1.121 1.095 3.144 

7 1.326 0.818 0.809 0.691 1.143 1.105 1.047 3.160 

Average 1.579 0.844 1.046 0.949 1.254 1.163 1.272 2.911 

Table 9. Average RPD by algorithm and number of factories with k=15 

To confirm the results of Table 9 and to study the convergence of algorithms, we ran all the 

algorithms again while allowing more CPU time. In this case, we set it at k=30. Table 10 shows 

the obtained average RPD by number of factories. As can be observed, all of them improved 

their performance considerably, especially the presented IGAs. Notice that IGA_HPF23 has 

better performance with a lower ARPD; but when the number of lines to consider increases, its 

efficiency decreases slightly. This is the opposite of IG_TR2, which performs better with a 

larger number of parallel flow shops. 

 

F IGA0 
IGA 

HPF23 

IGA 

RC1_m 

IGA 

TR2 

ILS 

HPF23 

ILS 

RC1_m 

ILS 

TR2  
SC 

2 1.528 0.659 0.977 0.899 1.141 1.050 1.327 2.005 

3 1.502 0.596 0.815 0.779 1.053 0.942 1.095 2.279 

4 1.526 0.552 0.741 0.685 1.010 0.952 1.022 2.547 

5 1.128 0.517 0.616 0.588 0.986 0.926 0.912 2.644 

6 1.132 0.622 0.589 0.525 0.965 0.935 0.902 2.716 

7 1.160 0.572 0.536 0.484 0.949 0.928 0.865 2.805 

Average 1.329 0.587 0.713 0.660 1.017 0.955 1.021 2.499 

Table 10. Average RPD by algorithm and number of parallel lines with k=30 
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To perform a deeper analysis, the results were analyzed by means of a multiway analysis of 

variance (ANOVA), where n, m and F were non-controllable factors. To check the ANOVA 

model hypothesis (normality, homoscedasticity and independence), the standardized residuals 

were analyzed and no major departure from the assumption was found. The test showed us that 

n, m, F, Heuristics and their interactions were significant (p-value=0), which means that the 

heuristics do not have the same behavior for each group of n, m and F values, as we already saw 

in Tables 9 and 10.    

Figure 19 shows the main effects plot for ARPD. In this figure, we can see that the heuristics 

obtain better results on average. These results are close to the best known makespan for lower 

values of n and for larger values of m, which is a result already found in the permutation flow 

shop problem, i.e., where F=1. Moreover, as we see in Table 9 and 10, the heuristics perform 

better on average when F increases. This is probably due to each line having a lower number of 

jobs to schedule, which leads to a better solution even though the complexity increases during 

the search as a result of there being more lines to reassign the jobs during the improvement 

phase. 

 

Figure 19. Main effects plot for ARPD 

 

Finally, Figure 20 shows the confidence interval plot of RPD for the three IGAs presented in 

this paper. Remember that the only difference between them is the implemented initial solution 

procedure. Notice that the differences between the algorithms are significant. From these 

results, we can confirm that IGA_HPF23, whose initial solution was specifically designed for 

the problem on hand, is the best performing algorithm for this problem. This indicates that the 
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blocking constraint makes quite an important difference with respect to the permutation 

problem, which implies that the algorithms need to be designed especially for dealing with it. 

Figure 20. Interval plot for RPD by each IG variant. 

 

6 Conclusions 

This paper presents and compares some constructive procedures and heuristic algorithms for 

dealing with both the parallel blocking flow shop problem (PBFSP) and the distributed blocking 

flow shop problem (DBFSP). The procedures for solving these problems have to not only 

consider rules for sequencing the jobs, but also assign them to the parallel flow shops (factories). 

The implemented constructive procedures have allowed us to test three different strategies, two 

of them designed especially for dealing with the blocking. From the analysis of results, we have 

concluded that one good strategy is to generate a sequence of jobs by trying to minimize the front 

delay and the timeout of machines, and to then divide the sequence with segments that have a 

similar workload in order to assign each job to one of the factories (HPF23). Another strategy is 

to consider the job and the line at the same time in order to assign the job to the line with the last 

machine available before all the others (RC1_m).  

The heuristic procedures presented here are variants of an iterated greedy algorithm (IGA) 

and an iterated local search (ILS) algorithm, both of which are combined with a variable 

neighborhood search (VNS). The variants consist of different constructive procedures for 

generating the initial solution. In particular, we have selected three constructive procedures from 

among the ones that have been implemented, i.e., the best one from each strategy tested. As, to 

the best of our knowledge, this is the first attempt to propose heuristics for the PBFSP (DBFSP), 

we adapted two algorithms proposed for the DPFSP in order to compare our algorithms against 

them. The obtained results show that any variant of both the ILS and IGA presented in this paper 
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performs better than those algorithms from the literature. Furthermore, between the two sets of 

algorithms presented here, ILS is outperformed by the IGA especially the one that generates the 

initial solution with the HPF23 procedure. Additionally, we observed that it is advisable to use a 

variable neighborhood search with insertion and swap movements between flow shops 

(factories), as this improves the sequence of lines. 

Finally, as a future line of research, it would be interesting to consider a sequence-dependent 

setup time of jobs and other criteria such as the tardiness of jobs, as both require focusing on the 

problem in a different way. 
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