62 research outputs found

    Maya: multiple-dispatch syntax extension in Java

    Get PDF
    technical reportWe have designed and implemented Maya, a version of Java that allows programmers to extend and reinterpret its syntax. Maya generalizes macro systems by treating grammar productions as generic functions, and semantic actions on productions as multimethods on the corresponding generic functions. Programmers can write new generic functions (i.e., grammar productions) and new multimethods (i.e., semantic actions), through which they can extend the grammar of the language and change the semantics of its syntactic constructs, respectively. Maya?s multimethods are compile-time metaprograms that transform abstract syntax: they execute at program compile-time, because they are semantic actions executed by the parser. Maya?s multimethods can be dispatched on the syntactic structure of the input, as well as the static, source-level types of expressions in the input. In this paper we describe what Maya can do and how it works. We describe how its novel parsing techniques work and how Maya can statically detect certain kinds of errors such as hygiene violations. Finally, to demonstrate Maya's expressiveness, we describe how Maya can be used to implement the MultiJava language, which was described by Clifton et al. at OOPSLA 2000

    The preservation of the environment.

    Get PDF

    Late-bound code generation

    Get PDF
    Each time a function or method is invoked during the execution of a program, a stream of instructions is issued to some underlying hardware platform. But exactly what underlying hardware, and which instructions, is usually left implicit. However in certain situations it becomes important to control these decisions. For example, particular problems can only be solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors or computing clusters. We introduce a novel operator for hygienically reifying the behaviour of a runtime function instance as a syntactic fragment, in a language which may in general differ from the source function definition. Translation and optimisation are performed by recursively invoked, dynamically dispatched code generators. Side-effecting operations are permitted, and their ordering is preserved. We compare our operator with other techniques for pragmatic control, observing that: the use of our operator supports lifting arbitrary mutable objects, and neither requires rewriting sections of the source program in a multi-level language, nor interferes with the interface to individual software components. Due to its lack of interference at the abstraction level at which software is composed, we believe that our approach poses a significantly lower barrier to practical adoption than current methods. The practical efficacy of our operator is demonstrated by using it to offload the user interface rendering of a smartphone application to an FPGA coprocessor, including both statically and procedurally defined user interface components. The generated pipeline is an application-specific, statically scheduled processor-per-primitive rendering pipeline, suitable for place-and-route style optimisation. To demonstrate the compatibility of our operator with existing languages, we show how it may be defined within the Python programming language. We introduce a transformation for weakening mutable to immutable named bindings, termed let-weakening, to solve the problem of propagating information pertaining to named variables between modular code generating units.Open Acces

    GNU epsilon - an extensible programming language

    Full text link
    Reductionism is a viable strategy for designing and implementing practical programming languages, leading to solutions which are easier to extend, experiment with and formally analyze. We formally specify and implement an extensible programming language, based on a minimalistic first-order imperative core language plus strong abstraction mechanisms, reflection and self-modification features. The language can be extended to very high levels: by using Lisp-style macros and code-to-code transforms which automatically rewrite high-level expressions into core forms, we define closures and first-class continuations on top of the core. Non-self-modifying programs can be analyzed and formally reasoned upon, thanks to the language simple semantics. We formally develop a static analysis and prove a soundness property with respect to the dynamic semantics. We develop a parallel garbage collector suitable to multi-core machines to permit efficient execution of parallel programs.Comment: 172 pages, PhD thesi

    Lambda-Dropping: Transforming Recursive Equations into Programs with Block Structure

    Get PDF
    Lambda-lifting a functional program transforms it into a set of recursiveequations. We present the symmetric transformation: lambda-dropping.Lambda-dropping a set of recursive equations restores blockstructure and lexical scope.For lack of scope, recursive equations must carry around all theparameters that any of their callees might possibly need. Both lambda-liftingand lambda-dropping thus require one to compute a transitiveclosure over the call graph:- for lambda-lifting: to establish the Def/Use path of each freevariable (these free variables are then added as parameters toeach of the functions in the call path);- for lambda-dropping: to establish the Def/Use path of each parameter(parameters whose use occurs in the same scope as theirdefinition do not need to be passed along in the call path).Without free variables, a program is scope-insensitive. Its blocks arethen free to float (for lambda-lifting) or to sink (for lambda-dropping)along the vertices of the scope tree.We believe lambda-lifting and lambda-dropping are interesting perse, both in principle and in practice, but our prime application is partialevaluation: except for Malmkjær and Ørbæk's case study presented atPEPM'95, most polyvariant specializers for procedural programs operateon recursive equations. To this end, in a pre-processing phase,they lambda-lift source programs into recursive equations. As a result,residual programs are also expressed as recursive equations, often withdozens of parameters, which most compilers do not handle efficiently.Lambda-dropping in a post-processing phase restores their block structureand lexical scope thereby significantly reducing both the compiletime and the run time of residual programs.

    Formalizing Implementation Strategies for First-Class Continuations

    Get PDF
    We present the first formalization of implementation strategies for first-class continuations. The formalization hinges on abstractmachines for continuation-passing style (CPS) programs with a specialtreatment for the current continuation, accounting for the essence offirst-class continuations. These abstract machines are proven equivalentto a standard, substitution-based abstract machine. The proof techniqueswork uniformly for various representations of continuations. As a byproduct, we also present a formal proof of the two folklore theorems that onecontinuation identifier is enough for second-class continuations and thatsecond-class continuations are stackable.A large body of work exists on implementing continuations, but it is predominantly empirical and implementation-oriented. In contrast, our formalization abstracts the essence of first-class continuations and providesa uniform setting for specifying and formalizing their representation

    The Grace Programming Language Draft Specification Version 0.3.1261

    Get PDF
    This is a specification of the Grace Programming Language. This specification is notably incomplete, and everything is subject to change
    • …
    corecore