
B
R

IC
S

R
S

-99-51
O

.D
anvy:

F
orm

alizing
Im

plem
entation

S
trategies

for
F

irst-C
lass

C
ontinuations

BRICS
Basic Research in Computer Science

Formalizing Implementation Strategies for
First-Class Continuations

Olivier Danvy

BRICS Report Series RS-99-51

ISSN 0909-0878 December 1999

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Tidsskrift.dk (Det Kongelige Bibliotek)

https://core.ac.uk/display/233662185?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Copyright c© 1999, Olivier Danvy.
BRICS, Department of Computer Science
University of Aarhus. All rights reserved.

Reproduction of all or part of this work
is permitted for educational or research use
on condition that this copyright notice is
included in any copy.

See back inner page for a list of recent BRICS Report Series publications.
Copies may be obtained by contacting:

BRICS
Department of Computer Science
University of Aarhus
Ny Munkegade, building 540
DK–8000 Aarhus C
Denmark
Telephone: +45 8942 3360
Telefax: +45 8942 3255
Internet: BRICS@brics.dk

BRICS publications are in general accessible through the World Wide
Web and anonymous FTP through these URLs:

http://www.brics.dk
ftp://ftp.brics.dk
This document in subdirectory RS/99/51/

Formalizing Implementation Strategies

for First-Class Continuations ?

Olivier Danvy

BRICS ??

Department of Computer Science, University of Aarhus
Building 540, Ny Munkegade, DK-8000 Aarhus C, Denmark

E-mail: danvy@brics.dk
Home page: http://www.brics.dk/~danvy

Abstract. We present the first formalization of implementation strate-
gies for first-class continuations. The formalization hinges on abstract
machines for continuation-passing style (CPS) programs with a special
treatment for the current continuation, accounting for the essence of
first-class continuations. These abstract machines are proven equivalent
to a standard, substitution-based abstract machine. The proof techniques
work uniformly for various representations of continuations. As a byprod-
uct, we also present a formal proof of the two folklore theorems that one
continuation identifier is enough for second-class continuations and that
second-class continuations are stackable.

A large body of work exists on implementing continuations, but it is pre-
dominantly empirical and implementation-oriented. In contrast, our for-
malization abstracts the essence of first-class continuations and provides
a uniform setting for specifying and formalizing their representation.

1 Introduction

Be it for coroutines, threads, mobile code, interactive computer games, or com-
puter sessions, one often needs to suspend and to resume a computation. Sus-
pending a computation amounts to saving away its state, and resuming a sus-
pended computation amounts to restoring the saved state. Such saved copies may
be ephemeral and restored at most once (e.g., coroutines, threads, and computer
sessions that were ‘saved to disk’), or they may need to be restored repeatedly
(e.g., in a computer game). This functionality is reminiscent of continuations,
which represent the rest of a computation [22].

In this article, we consider how to implement first-class continuations. A
wealth of empirical techniques exist to take a snapshot of control during the
execution of a program (call/cc) and to restore this snapshot (throw): SML/NJ,
for example, allocates continuations entirely in the heap, reducing call/cc and
throw to a matter of swapping pointers [1]; T and Scheme 48 allocate con-
tinuations on a stack, copying this stack in the heap and back to account for

? Extended version available as the technical report BRICS RS-99-51.
?? Basic Research in Computer Science (http://www.brics.dk),

Centre of the Danish National Research Foundation.

call/cc and throw [16, 17];1 and PC Scheme, Chez Scheme, and Larceny allocate
continuations on a segmented stack [2, 4, 15]. Clinger, Hartheimer, and Ost’s re-
cent article [4] provides a comprehensive overview of implementation strategies
for first-class continuations and of their issues: ideally, first-class continuations
should exert zero overhead for programs that do not use them.

Our goal and non-goal: We formalize implementation strategies for first-class
continuations. We do not formalize first-class continuations per se (cf., e.g.,
Felleisen’s PhD thesis [12] or Duba, Harper, and MacQueen’s formal account
of call/cc in ML [10]).

Our work: We consider abstract machines for continuation-passing style (CPS)
programs, focusing on the implementation of continuations. As a stepping stone,
we formalize the folklore theorem that one register is enough to implement
second-class continuations. We then formalize the three implementation tech-
niques for first-class continuations mentioned above: heap, stack, and segmented
stack. The formalization and its proof techniques (structural induction on terms
and on derivation trees) are uniform: besides clarifying what it means to im-
plement continuations, be they second-class or first-class, our work provides a
platform to state and prove the correctness of each implementation. Also, this
platform is not restricted to CPS programs: through Flanagan et al.’s results [13],
it is applicable to direct-style programs if one represents control with a stack of
evaluation contexts instead of a stack of functions.

1.1 Related work

The four works most closely related to ours are Clinger, Hartheimer, and Ost’s
overview of implementation strategies for first-class continuations [4]; Flana-
gan, Sabry, Duba, and Felleisen’s account of compiling with continuations and
more specifically, their two first abstract machines [13]; Danvy and Lawall’s
syntactic characterization of second-class and first-class continuations in CPS
programs [8]; and Danvy, Dzafic, and Pfenning’s work on the occurrence of con-
tinuation parameters in CPS programs [6, 9, 11].

1.2 Overview

Section 2 presents our source language: the λ-calculus in direct style and in CPS,
the CPS transformation, and an abstract machine for CPS programs that will be
our reference point here. This standard machine treats continuation identifiers on
par with all the other identifiers. The rest of this article focuses on continuation
identifiers and how to represent their bindings – i.e., on the essence of how to
implement continuations.

1 This strategy is usually attributed to Drew McDermott in the late 70’s [19], but
apparently it was already considered in the early ’70s at Queen Mary and Westfield
College to implement PAL (John C. Reynolds, personal communication, Aarhus,
Denmark, fall 1999).

2

Section 3 addresses second-class continuations. In a CPS program with second-
class continuations, continuation identifiers are not only linear (in the sense of
Linear Logic), but they also denote a stackable resource, and indeed it is folk-
lore that second-class continuations can be implemented LIFO on a “control
stack”. We formalize this folklore by characterizing second-class continuations
syntactically in a CPS program and by presenting an abstract machine where
the bindings of continuation identifiers are represented with a stack. We show
this stack machine to be equivalent to the standard one.

Section 4 addresses first-class continuations. In a CPS program with first-
class continuations, continuation identifiers do not denote a stackable resource
in general. First-class continuations, however, are relatively rare, and thus over
the years, “zero-overhead” implementations have been sought [4]: implementa-
tions that do support first-class continuations but only tax programs that use
them. We consider the traditional strategy of stack-allocating all continuations
by default, as if they were all second-class, and of copying this stack in case
of first-class continuations. We formalize this empirical strategy with a new ab-
stract machine, which we show to be equivalent to the standard one.

Section 5 outlines how to formalize alternative implementation strategies,
such as segmenting the stack and recycling unshared continuations.

2 CPS programs

We consider closed programs: direct-style (DS) λ-terms with literals. The BNF
of DS programs is displayed in Figure 1. Assuming a call-by-value evaluation
strategy, the BNF of CPS programs is displayed in Figure 2. CPS programs
are prototypically obtained by CPS-transforming DS programs, as defined in
Figure 3 [7, 20, 21].

Figure 4 displays our starting point: a standard abstract machine imple-
menting β-reduction for CPS programs. This machine is a simplified version of
another machine studied jointly with Belmina Dzafic and Frank Pfenning [6, 9,
11]. We use two judgments, indexed by the syntactic categories of CPS terms.
The judgment

`CProg
std p ↪→ a

is satisfied whenever a CPS program p evaluates to an answer a. The auxiliary
judgment

`CExp
std e ↪→ a

is satisfied whenever a CPS expression e evaluates to an answer a. The machine
starts and stops with the initial continuation kinit, which is a distinguished fresh
continuation identifier. Answers can be either the trivial expressions ` or λx.λk.e,
or the error token.

For expository simplicity, our standard machine uses substitutions to imple-
ment variable bindings. Alternatively and equivalently, it could use an environ-
ment and represent functional values as closures [18]. And indeed Flanagan et
al. present a similar standard abstract machine which uses an environment [13,
Figure 4].

3

p ∈ DProg — DS programs p ::= e
e ∈ DExp — DS expressions e ::= e0 e1 | t
t ∈ DTriv — DS trivial expressions t ::= ` | x | λx.e
` ∈ Lit — literals
x ∈ Ide — identifiers

Fig. 1. BNF of DS programs

p ∈ CProg — CPS programs p ::= λk.e
e ∈ CExp — CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ CTriv — CPS trivial expressions t ::= ` | x | v | λx.λk.e
c ∈ Cont — continuations c ::= λv.e | k
` ∈ Lit — literals
x ∈ Ide — source identifiers
k ∈ IdeC — fresh continuation identifiers
v ∈ IdeV — fresh parameters of continuations
a ∈ Answer — CPS answers a ::= ` | λx.λk.e | error

Fig. 2. BNF of CPS programs

[[e]]DProg
cps = λk.[[e]]DExp

cps k – where k is fresh

[[e0 e1]]
DExp
cps c = [[e0]]

DExp
cps λv0.[[e1]]

DExp
cps λv1.v0 v1 c – where v0 and v1 are fresh

[[t]]DExp
cps c = c [[t]]DTriv

cps

[[`]]DTriv
cps = `

[[x]]DTriv
cps = x

[[λx.e]]DTriv
cps = λx.λk.[[e]]DExp

cps k – where k is fresh

Fig. 3. The left-to-right, call-by-value CPS transformation

`CExp

std e[kinit/k] ↪→ a

`CProg

std λk.e ↪→ a

`CExp

std ` t c ↪→ error

`CExp

std e[t/x, c/k] ↪→ a

`CExp

std (λx.λk.e) t c ↪→ a

`CExp

std e[t/v] ↪→ a

`CExp

std (λv.e) t ↪→ a `CExp

std kinit t ↪→ t

Fig. 4. Standard machine for CPS programs

4

3 A stack machine for CPS programs with second-class
continuations

As a stepping stone, this section formalizes the folklore theorem that in the ab-
sence of first-class continuations, one continuation identifier is enough, i.e., in
Figure 2, IdeC can be defined as a singleton set. To this end, we prove that in
the output of the CPS transformation, only one continuation identifier is indeed
enough. We also prove that this property is closed under arbitrary β-reduction.
We then rephrase the BNF of CPS programs with IdeC as a singleton set (Sec-
tion 3.1). In the new BNF, only CPS programs with second-class continuations
can be expressed. We present a stack machine for these CPS programs and we
prove it equivalent to the standard machine of Figure 4 (Section 3.2). Flanagan
et al. present a similar abstract machine [13, Figure 5], but without relating it
formally to their standard abstract machine.

3.1 One continuation identifier is enough
Each expression in a DS program occurs in one evaluation context. Correspond-
ingly, each expression in a CPS program has one continuation. We formalize
this observation in terms of continuation identifiers with the judgment defined
in Figure 5, where FC(t) yields the set of continuation identifiers occurring free
in t.

k 6∈ FC(t0) k 6∈ FC(t1) k |=Cont
2cc c

k |=CExp
2cc t0 t1 c

k |=Cont
2cc c k 6∈ FC(t)

k |=CExp
2cc c t

k |=CExp
2cc e

k |=Cont
2cc λv.e k |=Cont

2cc k

Fig. 5. Characterization of a second-class continuation abstraction λk.e

Definition 1 (Second-class position, second-class continuations). In
a continuation abstraction λk.e, we say that k occurs in second-class position
and denotes a second-class continuation whenever the judgment k |=CExp

2cc e is
satisfied.

Below, we prove that actually, in the output of the CPS transformation, all
continuation identifiers denote second-class continuations. In Figure 6, we thus
generalize our judgment to a whole CPS program.

Definition 2 (2Cont-validity). We say that a CPS program p is 2Cont-valid
whenever the judgment |=CProg

2cc* p is satisfied. Informally, |=CProg
2cc* p holds if and

only if all continuation abstractions λk.e occurring in p satisfy k |=CExp
2cc e.

Lemma 1 (The CPS transformation yields 2Cont-valid programs).
For any p ∈ DProg, |=CProg

2cc* [[p]]DProg
cps .

Proof. A straightforward induction over DS programs. 2

5

k |=CExp

2cc*
e

|=CProg

2cc*
λk.e

|=CTriv
2cc* t0 |=CTriv

2cc* t1 k |=Cont
2cc* c

k |=CExp

2cc*
t0 t1 c

k |=Cont
2cc* c |=CTriv

2cc* t

k |=CExp

2cc*
c t

|=CTriv
2cc*

` |=CTriv
2cc*

x |=CTriv
2cc*

v

k |=CExp

2cc*
e

|=CTriv
2cc*

λx.λk.e

k |=CExp

2cc*
e

k |=Cont
2cc*

λv.e k |=Cont
2cc*

k

Fig. 6. Characterization of a CPS program with second-class continuations

Furthermore, 2Cont-validity is closed under β-reduction, which means that it
is preserved by regular evaluation as well as by the arbitrary simplifications
of a CPS compiler [21]. The corresponding formal statement and its proof are
straightforward and omitted here: we rely on them in the proof of Theorem 1.

Therefore each use of each continuation identifier k is uniquely determined,
capturing the fact that in the BNF of 2Cont-valid CPS programs, one continu-
ation identifier is enough. To emphasize this fact, let us specialize the BNF of
Figure 2 by defining IdeC as the singleton set {?}, yielding the BNF of 2CPS
programs displayed in Figure 7.

p ∈ 2CProg — 2CPS programs p ::= λ?.e
e ∈ 2CExp — 2CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ 2CTriv — 2CPS trivial expressions t ::= ` | x | v | λx.λ?.e
c ∈ 2Cont — continuations c ::= λv.e | ?
` ∈ Lit — literals
x ∈ Ide — source identifiers
? ∈ Token — single continuation identifier
v ∈ IdeV — fresh parameters of continuations
a ∈ 2Answer — 2CPS answers a ::= ` | λx.λ?.e | error

Fig. 7. BNF of 2CPS programs

Let [[·]]CProg
strip denote the straightforward homomorphic mapping from a 2Cont-

valid CPS program to a 2CPS program and [[·]]2CProg
name denote its inverse, such that

∀p ∈ CProg, [[[[p]]CProg
strip]]2CProg

name ≡α p whenever the judgment |=CProg
2cc* p is satisfied,

and ∀p′ ∈ 2CProg, [[[[p]]2CProg
name]]CProg

strip = p′. These two translations are generalized
in Section 4 and thus we omit their definition here.

3.2 A stack machine for 2CPS programs
Figure 8 displays a stack-based abstract machine for 2CPS programs. We ob-
tained it from the standard machine of Section 2, page 4, by implementing the
bindings of continuation identifiers with a global “control stack” ϕ.

6

ϕ ∈ 2CStack — control stacks ϕ ::= • | ϕ, λv.e

The machine starts and stops with an empty control stack •. When a function
is applied, its continuation is pushed on ϕ. When a continuation is needed, it
is popped from ϕ. If ϕ is empty, the intermediate result sent to the continua-
tion is the final answer. We distinguish tail calls (i.e., function calls where the
continuation is ?) by not pushing anything on ϕ, thereby achieving proper tail
recursion.

• `2CExp
2cc e ↪→ a

`2CProg
2cc λ?.e ↪→ a ϕ `2CExp

2cc ` t c ↪→ error

ϕ `2CExp
2cc e[t/x] ↪→ a

ϕ `2CExp
2cc (λx.λ?.e) t ? ↪→ a

ϕ, λv.e′ `2CExp
2cc e[t/x] ↪→ a

ϕ `2CExp
2cc (λx.λ?.e) t λv.e′ ↪→ a

ϕ `2CExp
2cc e[t/v] ↪→ a

ϕ `2CExp
2cc (λv.e) t ↪→ a • `2CExp

2cc ? t ↪→ t

ϕ `2CExp
2cc e[t/v] ↪→ a

ϕ, λv.e `2CExp
2cc ? t ↪→ a

Fig. 8. Stack machine for 2CPS programs

N.B. The machine does not substitute continuations for continuation identifiers,
and therefore one might be surprised by the rule handling the redex (λv.e) t.
Such redexes, however, can occur in the source program.

Formally, the judgment

`2CProg
2cc p ↪→ a

is satisfied whenever a CPS program p ∈ 2CProg evaluates to an answer a ∈
2Answer. The auxiliary judgment

ϕ `2CExp
2cc e ↪→ a

is satisfied whenever an expression e ∈ 2CExp evaluates to an answer a, given a
control stack ϕ ∈ 2CStack.

We prove the equivalence between the stack machine and the standard ma-
chine by showing that the computations for each abstract machine (represented
by derivations) are in bijective correspondence. To this end, we define a “control-
stack substitution” over the state of the stack machine (i.e., expression under
evaluation and current control stack) to obtain the state of the standard ma-
chine (i.e., expression under evaluation). We define control-stack substitution
inductively over 2CPS expressions and continuations.

Definition 3 (Control-stack substitution for 2CPS programs). Given a
stack ϕ of 2Cont continuations, the stack substitution of any e ∈ 2CExp (resp.
c ∈ 2Cont), noted e{ϕ}2 (resp. c{ϕ}2), yields a CExp expression (resp. a Cont
continuation) and is defined as follows.

7

(t0 t1 c){ϕ}2 = [[t0]]2CTriv
name [[t1]]2CTriv

name (c{ϕ}2)
(c t){ϕ}2 = (c{ϕ}2) [[t]]2CTriv

name

(λv.e){ϕ}2 = λv.(e{ϕ}2)
?{•}2 = kinit

?{ϕ, λv.e}2 = λv.(e{ϕ}2)
Stack substitution is our key tool for mapping a state of the stack machine

into a state of the standard machine. It yields CExp expressions and Cont con-
tinuations that have one free continuation identifier: kinit.

Lemma 2 (2Cont-validity of stack-substituted expressions and contin-
uations).

1. For any e ∈ 2CExp and for any stack of 2Cont continuations ϕ, the judgment
kinit |=CExp

2cc* e{ϕ}2 is satisfied.
2. For any c ∈ 2Cont and for any stack of 2Cont continuations ϕ, the judgment

kinit |=Cont
2cc* c{ϕ}2 is satisfied.

Proof. By mutual induction on the structure of e and c. 2

Lemma 3 (Control-stack substitution for 2CPS programs).

1. For any e′ ∈ CExp satisfying k |=CExp
2cc* e′ for some k and for any stack of

2Cont continuations ϕ, [[e′]]CExp
strip {ϕ}2 = e′[?{ϕ}2/k].

2. For any e ∈ 2CExp, for any t′ ∈ CTriv satisfying |=CTriv
2cc* t′, for any iden-

tifier i in Ide or in IdeV, and for any stack of 2Cont continuations ϕ,
e[[[t′]]CTriv

strip /i]{ϕ}2 = e{ϕ}2[t′/i].

Theorem 1 (Simulation). The stack machine of Figure 8 and the standard
machine are equivalent:

1. For any 2Cont-valid CPS program p,
`CProg

std p ↪→ a if and only if `2CProg
2cc [[p]]CProg

strip ↪→ [[a]]Answer
strip .

2. For any CPS expression e satisfying k |=CExp
2cc* e for some k and for any stack

of 2Cont continuations ϕ,
`CExp

std [[e]]CExp
strip {ϕ}2 ↪→ a if and only if ϕ `2CExp

2cc [[e]]CExp
strip ↪→ [[a]]Answer

strip .

Proof. The theorem follows in each direction by an induction over the structure
of the derivations, using Lemma 3. Let us show the case of tail calls in one
direction.

Case E =

E1

ϕ `2CExp
2cc e[t/x] ↪→ [[a]]Answer

strip

ϕ `2CExp
2cc (λx.λ?.e) t ? ↪→ [[a]]Answer

strip

,

where E1 names the derivation ending in ϕ `2CExp
2cc e[t/x] ↪→ [[a]]Answer

strip .

By applying the induction hypothesis to E1, we obtain a derivation

E ′
1

`CExp
std e[t/x]{ϕ}2 ↪→ a

8

Since e[t/x] is a 2CPS expression, there exists a CPS expression e′ satisfying
k |=CExp

2cc* e′ for some k and there exists a CPS trivial expression t′ satisfying
|=CTriv

2cc* t′ such that e = [[e′]]CExp
strip and t = [[t′]]CTriv

strip .
By Lemma 3,

[[e′]]CExp
strip [[[t′]]CExp

strip /x]{ϕ}2 = [[e′]]CExp
strip {ϕ}2[t′/x]

= e′[?{ϕ}2/k][t′/x]
= e′[t′/x, ?{ϕ}2/k] – because t′ has no free k

and ϕ has no free x.
By inference,

`CExp
std e′[t′/x, ?{ϕ}2/k] ↪→ a

`CExp
std (λx.λk.e′) t′ (?{ϕ}2) ↪→ a

Now by definition of stack substitution,

(λx.λk.e′) t′ (?{ϕ}2) = [[(λx.λk.e) t k′]]CExp
strip {ϕ}2, – for some k′.

In other words, there exists a derivation

E ′
1

`CExp
std [[e[t/x]]]CExp

strip {ϕ}2 ↪→ a

`CExp
std [[(λx.λk.e) t k′]]CExp

strip {ϕ}2 ↪→ a

which is what we wanted to show. 2

3.3 Summary and conclusion

As a stepping stone towards Section 4, we have formalized and proven two folk-
lore theorems: (1) for CPS programs with second-class continuations, one identi-
fier is enough; and (2) the bindings of continuation identifiers can be implemented
with a stack for CPS programs with second-class continuations. To this end, we
have considered a simplified abstract machine and taken the same conceptual
steps as in our earlier joint work with Dzafic and Pfenning [6, 9, 11]. This earlier
work is formalized in Elf, whereas the present work is not (yet). The rest of this
article reports an independent foray. In the next section, we adapt the stack
machine to CPS programs with first-class continuations, thereby formalizing an
empirical implementation strategy for first-class continuations.

4 A stack machine for CPS programs with first-class
continuations

First-class continuations occur because of call/cc. The call-by-value CPS trans-
formation of call/cc reads as follows.

[[call/cc e]]DExp
cps c = [[e]]DExp

cps λf.f (λx.λk.c x) c – where f , x, and k are fresh.

On the right-hand-side of this definitional equation, c occurs twice: once as a
regular, second-class continuation, and once more, in λx.λk.c x. In that term, k
is declared but not used – c is used instead and denotes a first-class continuation.

9

Such CPS programs do not satisfy the judgments of Figures 5 and 6. And indeed,
Danvy and Lawall observed that in a CPS program, first-class continuations
can be detected through continuation identifiers occurring “out of turn”, so to
speak [8].

Because it makes no assumptions on the binding discipline of continuation
identifiers, the standard machine of Section 2, page 4, properly handles CPS
programs with first-class continuations. First-class continuations, however, dis-
qualify the stack machine of Section 3, page 7.

The goal of this section is to develop a stack machine for CPS programs with
first-class continuations. To this end, we formalize what it means for a contin-
uation identifier to occur in first-class position. We also prove that arbitrary
β-reduction never promotes a continuation identifier occurring in second-class
position into one occurring in first-class position. We then rephrase the BNF
of CPS programs to single out continuation identifiers occurring in first-class
position and their declaration. And similarly to Section 3, we tag with “?” all
the declarations of continuation identifiers occurring in second-class position or
not occurring at all, and all second-class positions of continuation identifiers
(Section 4.1). We then present a stack machine for these 1CPS programs that
copies the stack when first-class continuation abstractions are invoked. We prove
it equivalent to the standard machine of Figure 4 (Section 4.2).

4.1 One continuation identifier is not enough

Following Danvy and Lawall [8], we now say that a continuation identifier occurs
in first-class position whenever it occurs elsewhere than in second-class position,
which is syntactically easy to detect. We formalize first-class occurrences with
the judgment displayed in Figure 9.

k ∈ FC(t0)

k |=CExp
1cc t0 t1 c

k ∈ FC(t1)

k |=CExp
1cc t0 t1 c

k |=Cont
1cc c

k |=CExp
1cc t0 t1 c

k |=Cont
1cc c

k |=CExp
1cc c t

k ∈ FC(t)

k |=CExp
1cc c t

k |=CExp
1cc e

k |=Cont
1cc λv.e

Fig. 9. Characterization of a first-class continuation abstraction λk.e

Definition 4 (First-class position, first-class continuations). In a contin-
uation abstraction λk.e, we say that k occurs in first-class position and denotes
a first-class continuation whenever the judgment k |=CExp

1cc e is satisfied.

N.B. For any continuation abstraction λk.e, at most one of k |=CExp
1cc e and

k |=CExp
2cc e is satisfied.

10

In Section 3, we stated that 2Cont-validity is closed under β-reduction. Sim-
ilarly here, β-reduction may demote a first-class continuation identifier into a
second-class one, but it can never promote a second-class continuation identi-
fier into a first-class one. The corresponding formal statement and its proof are
straightforward and omitted here: we rely on them in the proof of Theorem 2.

For example, in
λk.(λx.λk′.k x) ` k

k occurs in first-class position. However, β-reducing this term yields

λk.k `

where k occurs in second-class position.
In Section 3, we capitalized on the fact that each second-class position was

uniquely determined. Here, we still capitalize on this fact by only singling out
continuation identifiers in first-class position.2

Introduction: For all continuation abstractions λk.e satisfying k |=CExp
1cc e, we

tag the declaration of k with λ1 and we keep the name k. Otherwise, we
replace it with ?.

Elimination: When a continuation identifier occurs, if it is the latest one de-
clared, we replace it with ?; otherwise, we keep its name.

The resulting BNF for 1CPS programs is displayed in Figure 10. The back and
forth translation functions are displayed in Figures 11 and 12. They generalize
their counterpart in Section 3.

Lemma 4 (Inverseness of stripping and naming).
∀p ∈ CProg, [[[[p]]CProg

strip]]1CProg
name ≡α p and ∀p′ ∈ 1CProg, [[[[p′]]1CProg

name]]CProg
strip = p′.

4.2 A stack machine for CPS programs with first-class continuations
We handle first-class continuations by extending the formalization of Section 3
with a new syntactic form:

c ∈ 1Cont — continuations c ::= λv.e | ? | k | swapϕ

The new form swapϕ makes it possible to represent a copy of the control stack
ϕ. It requires us to extend control-stack substitution as follows.

Definition 5 (Control-stack substitution for 1CPS programs). Given a
stack ϕ of 1Cont continuations, The stack substitution of any e ∈ 1CExp (resp.
c ∈ 1Cont), noted e{ϕ}1 (resp. c{ϕ}1), yields a CExp expression (resp. a Cont
continuation) and is defined as follows.

(t0 t1 c){ϕ}1 = ([[t0]]1CTriv
name [[t1]]1CTriv

name) (c{ϕ}1)
(c t){ϕ}1 = (c{ϕ}1) [[t]]1CTriv

name

(λv.e){ϕ}1 = λv.(e{ϕ}1)
?{•}1 = kinit

?{ϕ, λv.e}1 = λv.(e{ϕ}1)
k{ϕ}1 = k

(swapϕ′){ϕ}1 = ?{ϕ′}1
2 Andrzej Filinski suggested this concise notation (personal communication, Aarhus,

Denmark, summer 1999).

11

p ∈ 1CProg — 1CPS programs p ::= λ?.e | λ1k.e
e ∈ 1CExp — 1CPS (serious) expressions e ::= t0 t1 c | c t
t ∈ 1CTriv — 1CPS trivial expressions t ::= ` | x | v | λx.λ?.e | λx.λ1k.e
c ∈ 1Cont — continuations c ::= λv.e | ? | k
` ∈ Lit — literals
x ∈ Ide — source identifiers
k ∈ IdeC — fresh continuation identifiers
? ∈ Token — single continuation identifier
v ∈ IdeV — fresh parameters of continuations
a ∈ 1Answer — 1CPS answers a ::= ` | λx.λ?.e | λx.λ1k.e | error

Fig. 10. BNF of 1CPS programs

[[λk.e]]CProg
strip =

{
λ1k.[[e]]CExp

strip k if k |=CExp
1cc e

λ?.[[e]]CExp
strip k otherwise

[[t0 t1 c]]CExp
strip k = [[t0]]

CTriv
strip [[t1]]

CTriv
strip ([[c]]Cont

stripk)

[[c t]]CExp
strip k = ([[c]]Cont

strip k) [[t]]CTriv
strip

[[`]]CTriv
strip = `

[[x]]CTriv
strip = x

[[v]]CTriv
strip = v

[[λx.λk.e]]CTriv
strip =

{
λx.λ1k.[[e]]CExp

strip k if k |=CExp
1cc e

λx.λ?.[[e]]CExp
strip k otherwise

[[λv.e]]Cont
stripk = λv.[[e]]CExp

strip k

[[k′]]Cont
stripk =

{
? if k = k′

k′ otherwise

Fig. 11. Translation from CPS to 1CPS – stripping continuation identifiers

[[λ?.e]]1CProg
name = λk.[[e]]1CExp

name k – where k is fresh

[[λ1k.e]]1CProg
name = λk.[[e]]1CExp

name k

[[t0 t1 c]]1CExp
name k = [[t0]]

1CTriv
name [[t1]]

1CTriv
name ([[c]]1Cont

name k)
[[c t]]1CExp

name k = ([[c]]1Cont
name k) [[t]]1CTriv

name

[[`]]1CTriv
name = `

[[x]]1CTriv
name = x

[[v]]1CTriv
name = v

[[λx.λ?.e]]1CTriv
name = λx.λk.[[e]]1CExp

name k – where k is fresh
[[λ1x.λk.e]]1CTriv

name = λx.λk.[[e]]1CExp
name k

[[λv.e]]1Cont
name k = λv.[[e]]1CExp

name k
[[?]]1Cont

name k = k

[[k′]]1Cont
name k = k′

[[`]]1Answer
name = `

[[λx.λ?.e]]1Answer
name = λx.λk.[[e]]1CExp

name k – where k is fresh
[[λ1x.λk.e]]1Answer

name = λx.λk.[[e]]1CExp
name k

[[error]]1Answer
name = error

Fig. 12. Translation from 1CPS to CPS – naming continuation identifiers

12

• `1CExp
1cc e ↪→ a

`1CProg
1cc λ?.e ↪→ a

• `1CExp
1cc e[swap •/k] ↪→ a

`1CProg
1cc λ1k.e ↪→ a

ϕ `1CExp
1cc ` t c ↪→ error

ϕ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t ? ↪→ a

ϕ, λv.e′ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t λv.e′ ↪→ a

ϕ `1CExp
1cc e[t/x, swap ϕ/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t ? ↪→ a

ϕ, λv.e′ `1CExp
1cc e[t/x, swap (ϕ, λv.e′)/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t λv.e′ ↪→ a

ϕ′ `1CExp
1cc e[t/x] ↪→ a

ϕ `1CExp
1cc (λx.λ?.e) t (swap ϕ′) ↪→ a

ϕ′ `1CExp
1cc e[t/x, swap ϕ′/k] ↪→ a

ϕ `1CExp
1cc (λx.λ1k.e) t (swap ϕ′) ↪→ a

ϕ `1CExp
1cc e[t/v] ↪→ a

ϕ `1CExp
1cc (λv.e) t ↪→ a • `1CExp

1cc ? t ↪→ t

ϕ `1CExp
1cc e[t/v] ↪→ a

ϕ, λv.e `1CExp
1cc ? t ↪→ a

ϕ `1CExp
1cc swap • t ↪→ t

ϕ′ `1CExp
1cc e[t/v] ↪→ a

ϕ `1CExp
1cc swap (ϕ′, λv.e) t ↪→ a

Fig. 13. Stack machine for 1CPS programs

Figure 13 displays a stack-based abstract machine for 1CPS programs. This
machine is a version of the stack machine of Section 3 where the substitution
for continuation identifiers occurring in second-class position or not occurring
at all is implemented with a global control stack (as in Figure 8), and where
the substitution for continuation identifiers occurring in first-class position is
implemented by copying the stack into a swap form (which is new).

Calls: When a function declaring a second-class continuation is applied, its con-
tinuation is pushed on ϕ. When a function declaring a first-class continuation
is applied, its continuation is also pushed on ϕ and the resulting new stack
is copied into a swap form.

Returns: When a continuation is needed, it is popped from ϕ. If ϕ is empty,
the intermediate result sent to the continuation is the final answer. When a
swap form is encountered, its copy of ϕ is restored.

More formally, the judgment

`1CProg
1cc p ↪→ a

is satisfied whenever a CPS program p ∈ 1CProg evaluates to an answer a ∈
1Answer. The auxiliary judgment

ϕ `1CExp
1cc e ↪→ a

is satisfied whenever an expression e ∈ 1CExp evaluates to an answer a, given a
control stack ϕ ∈ 1CStack. The machine starts and stops with an empty control
stack.

13

We prove the equivalence between the stack machine and the standard ma-
chine as in Section 3.2.

Theorem 2 (Simulation). The stack machine of Figure 13 and the standard
machine are equivalent:

1. `CProg
std p ↪→ a if and only if `1CProg

1cc [[p]]CProg
strip ↪→ [[a]]Answer

strip .
2. `CExp

std [[e]]CExp
strip k{ϕ}1 ↪→ a if and only if ϕ `1CExp

1cc [[e]]CExp
strip k ↪→ [[a]]Answer

strip , for
some k.

Proof. Similar to the proof of Theorem 1. 2

4.3 Summary and conclusion

We have formalized and proven correct a stack machine for CPS programs with
first-class continuations. This machine is idealized in that, e.g., it has no provision
for stack overflow. Nevertheless, it embodies the most classical implementation
strategy for first-class continuations: the stack is copied at call/cc time, i.e.,
in the CPS world, when a first-class continuation identifier is declared; and
conversely, the stack is restored at throw time, i.e., in the CPS world, when
a first-class continuation identifier is invoked. This design keeps second-class
continuations costless – in fact it is a zero-overhead strategy in the sense of
Clinger, Hartheimer, and Ost [4, Section 3.1]: only programs using first-class
continuations pay for them.

Furthermore, and as in Section 3, our representation of ϕ embodies its LIFO
nature without committing to an actual representation. This representation can
be retentive (in which case ϕ is implemented as a pointer into the heap) or de-
structive (in which case ϕ is implemented as, e.g., a rewriteable array) [3]. In both
cases, swapϕ is implemented as copying ϕ. Copying the pointer yields captured
continuations to be shared and copying the array yields multiple representations
of captured continuations.

5 A segmented stack machine for first-class continuations

Coroutines and threads are easily simulated using call/cc, but these simulations
are allergic to representing control as a rewriteable array. Indeed for every switch
this array is copied in the heap, yielding multiple copies to coexist without
sharing, even though these copies are mostly identical.

Against this backdrop, implementations such as PC Scheme [2] segment the
stack, using the top segment as a stack cache: if this cache overflows, it is flushed
to the heap and the computation starts afresh with an empty cache; and if it
underflows, the last flushed cache is restored. Flushed caches are linked LIFO
in the heap.3 A segmented stack accomodates call/cc and throw very simply: at
call/cc time, the cache is flushed to the heap and a pointer to it is retained; and

3 If the size of the stack cache is one, the segmented implementation coincides with a
heap implementation.

14

at throw time, the flushed cache that is pointed to is restored. As for the bulk of
the continuations, it is not copied but shared between captured continuations.

It is simple to expand the stack machine of Section 4 into a segmented stack
machine. One simply needs to define the judgment

Φ ; ϕ `CExp
1cc′ e ↪→ a

where ϕ, e, and a are in Section 4 and Φ denotes a LIFO list of ϕ’s. (One also
needs an overflow predicate for ϕ.)

Thus equipped, it is also simple to expand the stack substitution of Section 4,
and to state and prove a simulation theorem similar to Theorem 2, thereby
formalizing what Clinger, Hartheimer, and Ost name the “chunked-stack strat-
egy” [4]. Another moderate effort makes it possible to formalize the author’s
incremental garbage collection of unshared continuations by one-bit reference
counting [5]. One is also in position to formalize “one-shot continuations” [14].

Acknowledgments: I am grateful to Belmina Dzafic and Frank Pfenning for our
joint work, which forms the foundation of the present foray. Throughout, and
as always, Andrzej Filinski has been a precious source of sensible comments and
suggestions. This article has also benefited from the interest and comments of
Lars R. Clausen, Daniel Damian, Bernd Grobauer, Niels O. Jensen, Julia L.
Lawall, Lasse R. Nielsen, Morten Rhiger, and Zhe Yang. I am also grateful for
the opportunity to have presented this work at Marktoberdorf, at the University
of Tokyo, and at KAIST in the summer and in the fall of 1999. Finally, thanks
are due to the anonymous referees for stressing the issue of retention vs. deletion.

References

1. Andrew W. Appel and David B. MacQueen. Standard ML of New Jersey. In
Third International Symposium on Programming Language Implementation and
Logic Programming, number 528 in Lecture Notes in Computer Science, pages 1–
13, Passau, Germany, August 1991.

2. David B. Bartley and John C. Jensen. The implementation of PC Scheme. In
Proceedings of the 1986 ACM Conference on Lisp and Functional Programming,
pages 86–93, Cambridge, Massachusetts, August 1986.

3. Daniel M. Berry. Block structure: Retention or deletion? (extended abstract). In
Conference Record of the Third Annual ACM Symposium on Theory of Computing,
pages 86–100, Shaker Heights, Ohio, May 1971.

4. William Clinger, Anne H. Hartheimer, and Eric M. Ost. Implementation strategies
for first-class continuations. Higher-Order and Symbolic Computation, 12(1):7–45,
1999.

5. Olivier Danvy. Memory allocation and higher-order functions. In Proceedings of
the ACM SIGPLAN’87 Symposium on Interpreters and Interpretive Techniques,
SIGPLAN Notices, Vol. 22, No 7, pages 241–252, Saint-Paul, Minnesota, June
1987.

6. Olivier Danvy, Belmina Dzafic, and Frank Pfenning. On proving syntactic prop-
erties of CPS programs. In Third International Workshop on Higher-Order Op-
erational Techniques in Semantics, volume 26 of Electronic Notes in Theoretical
Computer Science, pages 19–31, Paris, France, September 1999.

15

7. Olivier Danvy and Andrzej Filinski. Representing control, a study of the CPS
transformation. Mathematical Structures in Computer Science, 2(4):361–391, 1992.

8. Olivier Danvy and Julia L. Lawall. Back to direct style II: First-class continuations.
In Proceedings of the 1992 ACM Conference on Lisp and Functional Programming,
LISP Pointers, Vol. V, No. 1, pages 299–310, San Francisco, California, June 1992.

9. Olivier Danvy and Frank Pfenning. The occurrence of continuation parameters
in CPS terms. Technical report CMU-CS-95-121, School of Computer Science,
Carnegie Mellon University, Pittsburgh, Pennsylvania, February 1995.

10. Bruce F. Duba, Robert Harper, and David B. MacQueen. Typing first-class con-
tinuations in ML. In Proceedings of the Eighteenth Annual ACM Symposium on
Principles of Programming Languages, pages 163–173, Orlando, Florida, January
1991.

11. Belmina Dzafic. Formalizing program transformations. Master’s thesis, DAIMI,
Department of Computer Science, University of Aarhus, Aarhus, Denmark, De-
cember 1998.

12. Matthias Felleisen. The Calculi of λ-v-CS Conversion: A Syntactic Theory of Con-
trol and State in Imperative Higher-Order Programming Languages. PhD thesis,
Department of Computer Science, Indiana University, Bloomington, Indiana, Au-
gust 1987.

13. Cormac Flanagan, Amr Sabry, Bruce F. Duba, and Matthias Felleisen. The essence
of compiling with continuations. In Proceedings of the ACM SIGPLAN’93 Confer-
ence on Programming Languages Design and Implementation, SIGPLAN Notices,
Vol. 28, No 6, pages 237–247, Albuquerque, New Mexico, June 1993.

14. Christopher T. Haynes and Daniel P. Friedman. Embedding continuations in
procedural objects. ACM Transactions on Programming Languages and Systems,
9(4):582–598, 1987.

15. Robert Hieb, R. Kent Dybvig, and Carl Bruggeman. Representing control in the
presence of first-class continuations. In Proceedings of the ACM SIGPLAN’90
Conference on Programming Languages Design and Implementation, SIGPLAN
Notices, Vol. 25, No 6, pages 66–77, White Plains, New York, June 1990.

16. Richard A. Kelsey and Jonathan A. Rees. A tractable Scheme implementation.
Lisp and Symbolic Computation, 7(4):315–336, 1994.

17. David Kranz, Richard Kesley, Jonathan Rees, Paul Hudak, Jonathan Philbin, and
Norman Adams. Orbit: An optimizing compiler for Scheme. In Proceedings of
the 1986 Symposium on Compiler Construction, SIGPLAN Notices, Vol. 21, No 7,
pages 219–233, Palo Alto, California, June 1986.

18. Peter J. Landin. The mechanical evaluation of expressions. Computer Journal,
6:308–320, 1964.

19. Drew McDermott. An efficient environment allocation scheme in an interpreter for
a lexically-scoped Lisp. In Conference Record of the 1980 LISP Conference, pages
154–162, Stanford, California, August 1980.

20. Gordon D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theoretical
Computer Science, 1:125–159, 1975.

21. Guy L. Steele Jr. Rabbit: A compiler for Scheme. Technical Report AI-TR-474, Ar-
tificial Intelligence Laboratory, Massachusetts Institute of Technology, Cambridge,
Massachusetts, May 1978.

22. Christopher Strachey and Christopher P. Wadsworth. Continuations: A mathemat-
ical semantics for handling full jumps. Higher-Order and Symbolic Computation,
13(1/2), 2000. Reprint of the technical monograph PRG-11, Oxford University
Computing Laboratory (1974).

16

Recent BRICS Report Series Publications

RS-99-51 Olivier Danvy.Formalizing Implementation Strategies for First-
Class Continuations. December 1999. 16 pp. Appears in
Smolka, editor, Programming Languages and Systems: Ninth
European Symposium on Programming, ESOP ’00 Proceed-
ings, LNCS 1782, 2000pp. 88–103.

RS-99-50 Gerth Stølting Brodal and Srinivasan Venkatesh. Improved
Bounds for Dictionary Look-up with One Error. December
1999. 5 pp. Appears inInformation Processing Letters75(1–
2):57–59, 2000.

RS-99-49 Alexander A. Ageev and Maxim I. Sviridenko. An Approxi-
mation Algorithm for Hypergraph Maxk-Cut with Given Sizes
of Parts. December 1999. 12 pp. Appears in Paterson, edi-
tor, Eighteenth Annual European Symposiumon on Algorithms,
ESA ’00 Proceedings, LNCS 1879, 2000, pages 32–49.

RS-99-48 Rasmus Pagh.Faster Deterministic Dictionaries. December
1999. 14 pp. Appears in Shmoys, editor,The Eleventh Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’00 Pro-
ceedings, 2000, pages 487–493. Journal version inJournal of
Algorithms, 41(1):69–85, 2001, with the titleDeterministic Dic-
tionaries.

RS-99-47 Peter Bro Miltersen and Vinodchandran N. Variyam. Deran-
domizing Arthur-Merlin Games using Hitting Sets. December
1999. 21 pp. Appears in Beame, editor,40th Annual Sympo-
sium on Foundations of Computer Science, FOCS ’99 Proceed-
ings, 1999, pages 71–80.

RS-99-46 Peter Bro Miltersen, Vinodchandran N. Variyam, and Osamu
Watanabe. Super-Polynomial Versus Half-Exponential Circuit
Size in the Exponential Hierarchy. December 1999. 14 pp.
Appears in Asano, Imai, Lee, Nakano and Tokuyama, editors,
Computing and Combinatorics: 5th Annual International Con-
ference, COCOON ’99 Proceedings, LNCS 1627, 1999, pages
210–220.

RS-99-45 Torben Amtoft. Partial Evaluation for Constraint-Based Pro-
gram Analyses. December 1999. 13 pp.

