

University of Bath

PHD

The preservation of the environment.

Padget, Julian Alexander

Award date:
1984

Awarding institution:
University of Bath

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 12. May. 2019

The Preservation of the Environment

submitted by Julian Alexander Padget
for the degree of Ph.D.
of the University of Bath

1984

Attention Is drawn to the fact that copyright of this thesis rests with Its
author. This copy of the thesis has been supplied on condition that
anyone who consults It Is understood to recognise that Its copyright rests
with Its author and that no quotation from the thesis and no Information
derived from It may be published without the prior written consent of the
author.

This thesis may be made available for consultation within the University
Library and may be photocopied or lent to other libraries for the purposes
of consultation.

J A Padget

ProQuest Number: U347062

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a complete manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest.

ProQuest U 347062

Published by ProQuest LLC(2015). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States Code.

Microform Edition © ProQuest LLC.

ProQuest LLC
789 East Eisenhower Parkway

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Contents

Acknowledgements III
Summary Iv
Introduction v

Chapter 0 - History and Overview
Some history 0. 1
The first binding scheme 0 .3
Computational models 0 .4
The development of LISP 0 .6
The multiple environment problem 0. 8
Shallow binding 0. 10
LISP and AI application languages 0. 12
RerootIng 0 .14

Chapter 1 - Semantics of the Binding Process
Motivation 1. 1
Reflections on binding 1.4

Chapter 2 - Ancestry Functions
Tree labelling 2. 1
The bit string 2. 2
In order traversal 2. 3
A composite method 2. 4
The chosen method 2. 5

Chapter 3 - Practical Considerations
Development of the Implementation 3. 1
Cambridge LISP 3. 3
Binding and unbinding 3. 5
Value and reference caching 3. 6
Portable Standard LISP 3 .10
Yorktown LISP 3 .12

Chapter 4 - Compilation and Closures
Compiler strategy 4. 1
The Cambridge compiler 4. 2
The PSL compiler 4. 5
Compiler support for closures 4. 8
Appendix - PSL compiler modifications 4. 13

Chapter 5 - Performance
Performance In analysis and practice 5. 1
Analysis 5 .2
Deep binding 5 .3
Shallow binding 5. 5
The new model 5. 9
The effect of caching 5. 13
Empirical results 5. 14
The optimisation of the Implementation of the new model 5. 17
The Griss tests 5. 19
The Boyer test 5. 22
Compilation 5 .23
Reduce test 5. 24
Speed of context switch 5. 24
Appendix - context switch test programs 5. 26

Chapter 6 - Generalisations of environment labelling
Lambda calculus and scope 6. 1
Local and dynamic variables 6. 3
Outstanding problems 6. 8

Chapter 7 - Memory management
Garbage collection 7. 1
Implications for storage reclamation 7 .2
Relabelling the environment tree 7. 8
Future work in garbage collection 7.17

Chapter 8 - Applications
Use of continuation 8. 1
Algebra 8. 1
Database queries 8.10
Tree searching 8. 13
The object based model of programming 8. 15

Conclusion

References

Appendix 0
A Pure and Really Simple Initial Functional Algebraic Language

Acknowledgements

Many people have aided me In various ways during the past three years

and more. Consequently they have all had varying degrees of influence on the

work presented In this thesis. The conversation, insight, brow-beating,

understanding, coffee and encouragement of the following Is gratefully

acknowledged;

KC

JPff AMff MM

JKS JHD ACN RS IH

BWS JBH PJWI WG DHS

APPH CACG IBP

JEÂ JBM

ill

Summary

A new binding model which permits the capture of both dynamically

and statically scoped environments Is presented. The basis of the model

Is the technique of environment labelling.

The practical side of this work has been carried out in the context of

the programming language LISP. Various timing tests have been run and

the new scheme compares favourably with the existing environment

models and variations on them. To date the two main approaches to

environment representation, shallow and deep binding, have suffered

from each having Just one strength. Deep binding Is efficient at context

switching whilst shallow binding Is good at variable access. This new

model attempts to provide both these facilities at comparable efficiency.

Consequently, the user Is now given direct access to the environment

from the programming language allowing the construction of continuations

which radically enhances the expressive power available. Many

Interesting algorithms which were previously impossible because

environments were allocated on a stack are now opened to investigation.

The thesis finishes with a discussion of some suitable topics where this

approach may be applied.

Iv

Introduction

The long term aim of the work presented In this thesis Is to provide

a foundation for a reconsideration of the semantics of LISP

[McCarthy et al. 60]. The results of this research (environment labelling

and a new binding model) are general, but the majority of the practical

effort has been directed toward extending a particular Implementation of

LISP [Fitch & Norman 77].

During the evolution of LISP one major feature was sacrificed In the

cause of efficiency. That feature was the FUNARG. The main purpose

of this work has been to reinstate this facility as part of a wider Intention

to restore the original semantics of LISP. The next logical stage Is to

refine and extend the semantics by removing Inconsistencies and making

generalisations such as the addition of local variables in the Interpreter

and general scoping of data structures. Local variables have two

advantages: compilation (where this means a semantics preserving

program transformation process) may make those variables Into frame

locations, which is faster than named lookup, and secondly, lexical

closures are often sufficient for many applications (e .g . simple

generators). General scoping provides an ability to scope arbitrary

objects In conjunction with access and update functions which know how

to Interpret the scope Information. This Is useful both for security and

for context sensitive programs (e .g . AI knowledge bases).

The thesis Is that dynamic scoping Is too Important and too useful to

discard completely as has been suggested [Sussman & Steele 75]. Part

of the reason for the movement away from the dynamic scoping model

Including functional values Is the high toll In efflcency paid either all the

time or at an extortionate rate when the facility Is actually used. These

two points highlight the problem; the difficulty In providing a fast

Implementation. This should not be taken as reason enough to adopt

purely static scoping, rather a challenge to find a better solution. It Is

obvious that the provision of multiple environments must entail some cost

over a model that does not Include an environment component (e .g .

shallow binding as generally Implemented). That cost Is because the

binding Interrogation function must look up an Identifier with respect to an

environment rather than Just returning the contents of a single location

related to the Identifier.

The approach chosen determines where the cost will fall. There are

three ways of modeling multiple environments;

(I) interrogate an identifier with respect to an environment

(II) look up an environment with respect to an Identifier

(Ml) always look In the same place for the value of an Identifier, but

also record the differences between environments so that a

previous one may be reinstated.

The firs t and third of these schemes are well known as deep binding

and shallow binding respectively. This thesis develops and describes the

second. The first method allows for fast context switch at the expense of

variable Interrogation. The third advances the opposite philosophy,

where context switch Is very slow but binding lookup Is very fast. The

second Is an attempt at a unification of the two whilst tending to their

respective beneficial extremes. Context switch is the same cost as for

vi

the first model. Variable lookup Is harder to classify being. In theory,

unbounded In the same sense as deep binding but. In practice, the cost

is always small (Indeed bounded) for programs with stack-llke behaviour

and varies depending on the structure of the problem for programs which

context switch frequently.

The basis of the implementation of the new model is the technique of

environment labelling. This appears to be a very powerful handle on an

environment and for discovering the relationships between environments.

The scheme provides an easy method for handling both static and

dynamic scoping of Identifiers, indeed it Is generally applicable and may

be used to scope within arbitrary data structures such as trees, property

lists and vectors.

Chapter 0 contains a review of the work to date In this area: how the

problem arose and was compounded and recent attempts to solve It.

Chapter 1 Introduces the key Idea which lead to all of the work contained

herein and concludes with a detailed schema for the rest of the thesis.

Chapters 2 -4 discuss implementation matters. Chapter 5 contains cost

breakdowns and tim ings for the new model and Its rivals. Chapter 6 Is a

defence of dynamic scoping and a discussion of the wider Implications of

labelling. Chapter 7 considers the ramifications for garbage collection.

Finally, Chapter 8 goes on short excursions Into various fields

Investigating how continuations can be used.

vil

CHAPTER 0

History and Overview

Some history

The origin of the problem of Implementing dynamically scoped

closures dates back some twenty years. For this reason It Is pertinent to

give some history of how the problem arose, the consequences of

decisions taken in those early days, and what attempts have been made

In the Intervening period to resolve the difficulty. The distinction between

static' and dynamic' Is an Important one. In some respects the crux of

the problem, and Is discussed with respect to the alternative, lexical

scoping. In greater depth later In this chapter.

The practical side of the work presented In this thesis Is given In the

context of the language LISP. It should not be construed as being

restricted to LISP; the Ideas are general and applicable to any language.

What Is more Important Is that they are developed and expressed in

abstract concepts with strong mathematical foundations; formal semantics

(Chapter 1) and graph theory (Chapter 2).

The purpose of this chapter Is to provide some sort of context for the

work which will be presented In the following chapters. Because this

work Is Intimately bound up with the history of LISP, It Is also necessary

to relate some of the watersheds In Its development, and to explain some

of the rationale behind the various decisions. Events of Importance are:

deep binding; the recognition of the FUNARG problem; shallow binding;

the provision of multiple control environments; and attempts to recover

the functionality lost when accepting shallow binding.

— 0.1 —

It is appropriate at this stage to Introduce some of the terms which

will be used In the following discussion. A function Is taken to mean an

expression which may be applied to arguments. This means it must

either be a form whose first element is LAMBDA or it must be a member

of the distinguished set of datatypes known as code-pointers which are

primitive values created by the compilation of forms of the first category.

It does not Include any environmental Information; that Is only necessary

In a statically scoped language where functions have to be closed at the

of point declaration. The main concern of this thesis Is with the object

referred to above as a dynamically scoped closure. That Is probably the

most accurate phrase to use. but It Is long and tedious In repetition, and

on occasions, this may be truncated to ciosure. Synonymous terms are

environment or context, meaning the set of values bound to all the free

and local variables visible at a particular instant during the evaluation of

a program. An environment is of little use In Isolation, but must be

coupled with an expression. Similarly an expression has no concrete

meaning when regarded alone, only a mefa-meaning In that It describes

an abstract expression. To recover a meaning. It must be evaluated

with respect to an environment. Such a pairing may also be referred to

by several names, for example FUNARG, which Is an historical re lic

inherited from the language LISP, or continuation, which Is a more

recent Invention of the semantlclsts. Continuations themselves come in

two forms, the command continuation and the expression continuation.

The difference between the two will be explained later (see Chapter 1

and Chapter 6) , but we shall be concerned In the main with the latter.

The problem of the dynamically scoped closure arose during the first

implementlon of LISP [McCarthy 60] at the Massachussetts Institute of

- 0 .2 -

Technolgy (MIT) In 1958. Some detailed history is found in

[McCarthy 77]. LISP Is one of the only three languages (the others

being APL and SNOBOL) In widespread use which supports dynamic

scoping of variables. In brief, dynamic scoping says that the extent of a

variable includes all the functions called from the block In which the

variable Is bound. Consequently, the scope of a variable is controlled by

the name (Identifier) being rebound somewhere In the sequence of

function calls. By contrast, under lexical scoping, the extent of a

variable Is limited to the block In which It Is bound and any other blocks

which that block encloses textually. Hence the scope of a variable Is

limited by being rebound somewhere Inside the block nest. Consider the

diagram of a set of program contours shown In Figure 0 .0 . and then the

Interpretations beneath.

There Is clearly only one possible mapping between the contour

diagram and a piece of code given lexical scoping. There are many

mappings given dynamic scoping Including the lexical version, which

suggests that dynamic scoping in some sense subsumes lexical scoping.

This multiplicity of mappings Is the heart of the difficulty In Implementing

a dynamically scoped language. The Implicit restriction of lexical scoping

allows determination of the location of the value of a non-local Identifier

In the binding stack to be done at compilation time. That Is not possible

with dynamic scoping, since there can be no a p rio ri stack allocation for

free variables. A method Is needed to associate a name with a value

(Its b inding). A simple scheme for this will now be described.

The first binding scheme

The first technique developed Is generally known as deep binding. It

was originally conceived as a stack oriented method: the demand for

- 0 .3 -

lexical interpretation

A
V

(A B

(A D

(A C

dynamic Interpretation

m (A C e)c

d m (A D O

e m (A E . . .)

f m (A F . . .)

Figure 0. 0

FUNARG changed that. When starting the evaluation of a lambda

expression, the names given In the formal parameter list are paired with

the values just computed in the actual parameter list and pushed on to

the binding stack (also known historically as the a-stack for association

s ta ck '). When the evaluation of the lambda expression is complete the

set of bindings which were created for it are popped off the a-stack (see

Figure 0 .1) . To find the value of a variable, the binding stack is

searched from top to bottom, using the name as the search key. The

first pairing of that name encountered gives Its current value. This

method was employed in the first Implementation of LISP (LISP 1.0 on

the IBM 704). The result was a first order functional language with

dynamic scoping.

Computational models

LISP was conceived as a mechanical and Intentionally impure

evaiuator of lambda calculus expressions [Church 40]. It did not make

use of the reduction schemes described by Church and later by Rosser

[Rosser 35] despite their proven mathematical capabilities. In fact

reference to the description of the binding process above reveals the use

of applicative order (le ft to right) evaluation. Nor did the Implementors

take great heed of the normalisation or standardisation theorem

[Barendregt 81]. it had been shown that A-calculus has the diamond

property; to reduce an expression M to an expression M' where more

than one /3 reduction (substitution operation) is required, then those

reductions may be done In any order (see Figure 0 .2) . One such order

is known as applicative order, another is called normal order. However

the Standardisation Theorem states that if a canonical form exists, then

normal order evaluation will produce It. This cannot be guaranteed using

applicative order. Reasons for these decisions, apart from

— 0 .4 —

baz

bar 42

£00

<-- Top of stack during evaluation of

((A (foo bar baz) ...) 6 42 7)

<-- Top of stack before and after
evaluation

Figure 0.1

Figure 0. 2

impiementationai expediency, are unclear.

An alternative approach Is to discard variables entirely and use only

functions to encode A-expresslons as suggested In [Turner 79a, 79b].

These papers describe language Implementations based on functions

called comblnators [Schonflnkei 24] and the combinatory logic developed

by Curry [Curry 30] [Curry & Feys 58]. This has both advantages and

disadvantages, and Is currently a topic of much research. The ease

with which this scheme copes with h igh-order functions and multiple

environments Is particularly In Its favour. In fact the problem Is greatly

simplified as comblnator expressions contain no variables so there Is no

environmental Information to maintain. Indeed, the evaluation mechanism

Is normal order by nature with attendant advantages. This loss of

complexity must balanced against two things:

(I) a different execution strategy (graph reduction), which does not

map very well onto existing machine architectures. This

Incompatibility Is often said to be the lim iting factor In the

performance of such systems. Some specialist architectures

show promise however [Clarke et al. 80], [Stoye et al. 84].

(II) a purely functional programming language. Assignment cannot

be supported by this methodology. It Is yet to be shown

whether this Is a lim itation or an advantage In practice.

McCarthy did consider the use of comblnators, but concluded that

they were too simple in themselves leading to large and complex

expressions In practical applications. An example of the consequences

of their simplicity Is that It cannot be proven that two equivalent

— 0 .5 —

comblnator expressions are In fact equal e .g . both S K K and S S K

form the Identity function (known as I) , but combinatory logic cannot

show them to be equal, whereas the equivalent A-expresslons can be

proven equal within the rules of the lambda calculus. More recent

research [Turner 79a] [Burton 82a] has shown the second objection to be

less valid by producing more compact expressions through the judicious

addition of new comblnators [Turner 79b]. The basic S and K

comblnators are sufficient to encode any expression but only using them

leads to exponential growth. The new comblnators bring the bound down

to less than quadratic [Kennaway 82].

The development o f USP

LISP 1 .0 was not Intended to be the end of the story; two more

stages were envisaged. The first is LISP 1 .5 In which the destructive

functions such as SET, RPLACA and RPLACD, and the FUNARG object

were introduced. Finally LISP 2 .0 [Abrahams 66] was Intended to change

the syntax from the heavily parenthesized form to something not dissim ilar

to ALGOL 60 notation. LISP 2 .0 was never completed and remains

something of a singularity In the evolution of the language. It suffered

from the desire of the Implementors to make It all things to all men

(which has been the death knell of many an enhanced Implementation).

In addition LISP users were coding directly In the S-expresslon form

rather than MLISP, as used to present the m eta-clrcu lar Interpreter In

[McCarthy et al. 62], followed by manual translation as McCarthy had

Intended, which negated the greater part of the LISP 2 .0 effort.

LISP was orig inally Implemented to support research activity at MIT

Into recursion equations, recurrence relations and logic [McCarthy 73].

However It rapidly outgrew Its original conception as a pedagogic toy.

— 0 .6 —

other researchers found that the style and extensible nature of LISP was

well suited to such subjects as artlflcal Intelligence, robotics and

symbolic algebra, so demand turned It Into a general programming

language and caused the Introduction of features beloved of other less

soundly founded languages, such as assignment, sequencing, labels and

jumps.

Another consequence of this unexpected popularity was a demand for

greater efficiency. This had far reaching effects, especially clear now

that they can be considered with hindsight. In the earliest LISP systems,

functions (and user definitions) were global objects, but because of the

problem of functional arguments. It was still necessary to carry out a full

environment search when calling a function to check for a more recent

binding. Obviously this was slow: there Is a way round It, but It

changes the semantics of the language. There Is evidence

[McCarthy et al. 62] to suggest that the Implementors did not realise the

consequences of the ir actions. An atom consisted of a a print name and

a property list In these early days. The global value of an Identifier was

found under the 'APVAL (and latterly the VALUE) property and global

function definitions under the EXPR, FEXPR, 8UBR, F8UBR and

MACRO properties. This meant a name could have several function

bodies associated with It (o r even the same body under different

properties! - consider LI8T and EVLI8). The one selected for application

depended on the method employed to find the definition. Alternatively an

Identifier could be rebound and then applied by referencing the name In

the function position of a form. The latest binding would be found In the

course of the environmental search and used In the manner of an EXPR

definition; this would Indicate either a confusion as to the nature of

values to be used as functions, or that the difficulty was never really

- 0 .7 -

considered in depth. It also shows the folly of associating the function

with the type ('EXPR, 'FEXPR, 'MACRO), as happens with the property

list scheme, rather than the function with the type (e .g . LAMBDA Implies

evaluation of arguments and LAMBDAQ Implies quotation of argum ents).

The way to avoid the costly environmental lookup Is to evaluate the

function position of form In a different way from the rest of the

expression, by looking directly at the global binding. Hence the use of a

functional argument requires special treatment, so FUNCALL and APPLY*

(depending on dialect) were Introduced. For example

(de foo (bar baz) (bar beiz))

may or may not work depending on the global value of bar, but It Is

unlikely to have the Intended effect of applying the bound to bar function

to baz. If bar Is bound to the same value as the global function

definition of bar, then the behaviour will be as expected. If bar and Its

global function value are different then there will either be an e rror or

the function will not do what the programmer Intended. To overcome this

one must write

(de foo (bar baz) (| b&r baz))

This 'optim isation' Is accredited to D .G .Bobrow when he was

Implementing BBN LISP [Bobrow & Murphy 67] on the PDP1 In 1965.

The multiple environment problem

This became known In LISP circles as the FUNARG problem after a

paper which purported to explain It [Welzenbaum 681. The matter Is also

covered In some detail In [Moses 70]. The nub of the question Is how to

represent the environment (and manage the store which Implements It)

— 0 . 8 —

so that a particular environment may be preserved for use later. In the

discussion of FUNARGs, there are two types, those being passed as

arguments (downward) and those being returned as values (upward). In

many respects this distinction Is unnecessary. An environment Is an

environment wherever It Is. but because some LISP systems were not fully

general in their Implementation, they could only offer environments lower

down the stack and not those that have already been exited.

The first widely used complete LISP with FUNARGs was INTERLISP

[Teltelman et al. 72] which was developed from BBN LISP. Of course

environments cannot be entirely stack-allocated to provide upward

FUNARGs because the area beyond the top of stack might have to be

retained after control has left It. One simple way to manage the storage

of multiple environments Is to allocate out of heap and let the garbarge

collector recover function frames. This has several disadvantages:

(I) arguments must be stored In temporaries before being

transferred to the frame

(II) there Is a fairly fast turnover of quite large amounts of store,

hence garbage collection will be more frequent and more

Intrusive on a single processor non-lncremental system

(III) poor paging behaviour occurs becuase there Is no contiguity of

stack end

A closer analysis of the nature of the problem shows that some

features can be capitalised upon for a more efficient system. An

Instance of this Is the spaghetti stack model [Bobrow & Wegbrelt 73] used

- 0 .9 -

to implement both INTERLISP and YKTLISP [Blair 78]. In essence there Is

a separate heap for function frames, but because more Is known about

the behaviour of these objects It Is easier to return redundant space

explicitly to a free list. There Is still occasionally a need to garbage

collect and compact the space. The first INTERLISP system used deep

binding, but the results of searches were cached Into the function frame

(In fact pushed' on to the top of the frame) for faster subsequent

lookup. However still greater speed was sought, and the spaghetti stack

system was very complex to Implement. Both of these were causal

factors In the development of a scheme now known as shallow binding.

Shallow binding

One way to minimize the cost of variable Interrogation Is to ensure

that the current value can always be found In the same place. This

location Is often referred to as the value cell. This can be an extra slot

In the structure used to represent an atom wherein the current value is

kept, rather than on the property list. Some Implementations have used

the value cell to contain a pointer to the property list entry of the 'VALUE

property. When an Identifier Is bound (o r rebound), the old value (I.e .

the current contents of the value cell) Is saved Into the function frame,

and the new value Is placed In the value cell. The unbinding process Is

the reverse of the above; the value In the function frame Is put back Into

the value cell and the environment Is as before.

There Is a great price to be paid for this simplicity: context switches

are now overwhelmingly expensive. The Information held In the function

frames only reflects the changes that have taken place In the

environment. Nowhere Is It possible to get a direct handle on the

environment - It Is distributed everywhere, all that Is known Is how it was

— 0 . TO —

modified. This means that the process to restore another environment

must descend the tree toward the root undoing the changes until a frame

Is encountered which Is on the path to the root from the target

environment. From there It ascends the branch carrying out the changes

specified In the frame until the goal environment Is reached. Obviously

this could take a very long time, such that even If this feature Is part of

a system. It will only rarely be used. INTERLISP under TENEX on the

DEC PDP-10 and DEC-20 supports this method [Teltelman 78]. The

burning question Is how to find the firs t common frame. In INTERLISP

this Is done by tracing from the target environment to the root, leaving a

mark In each frame. Then the context switch operation descends the

tree from the source environment until It finds a marked frame, at which

It starts the ascent phase. It Is significant that the next Implementation

of INTERLISP (known as INTERLISP-D) on the Dorado [Lampson & Pier

80] reverted to deep binding (albeit using the function cell trick discussed

previously).

One further remark Is that, although the cost of lookup on any Item

was now bounded, this did not mean In general that the function context

would be treated In the same way as the rest of a form. From the

adoption of the function cell until the advent of shallow binding many

(and large) programs had been written which relied on that particular

questionable feature - using a name which was bound at the global level

to a function as a formal parameter Identifier In LAMBDA and PROG

expressions. This meant that the function Itself was still available If

needed, but that the same name used In an argument position had a

different value, for example

(de foo (list) (list list))
then (foo *(a b)> - ((a b))

- 0 .11 -

Consequently the cost of variable lookup (o r function lookup - are

they not the same?) becomes constant with shallow binding. To preserve

the above feature, the function cell was Invented (by analogy with the

value c e ll) , rather than let function values be kept In the value cell,

which would have reinstated the original semantics.

USP and Ai application languages

Artificial Intelligence research started realising that although It

needed the speed of shallow bound systems, the simple control

mechanism (firs t order functions) was a severe lim itation, particularly

with respect to searching trees of frames, and handling semantic

networks. Something more poweful was required: INTERLISP had some

of the flexibility but not the speed (a t this time the DEC-10 was the major

AI w orkhorse). This need was manifested In several research projects,

notably PLANNER [Hewitt 72], CONNIVER [Sussman & McDermott 72a] and

MDL [Galley & Pfister 75].

Both PLANNER and CONNIVER were very complex languages (such

that PLANNER was never completely Im plemented). A common feature of

these was the ability to backtrack; PLANNER took this too far In catering

for the possibility of backtracking all the time, whilst disregarding the

reason for the failure which could have been used to direct the search

more profitably. PLANNER adopted the view that If there was no clear

solution (e ither to the problem - or In the mind of the program m er),

then given a lot of methods and heuristics, a backtracking control

mechanism and a lot of computer time. It might arrive at a solution.

This approach was justifiably criticised [Sussman & McDermott 72b] and

helped crystallise the design of CONNIVER, which sought to remedy these

deficiencies. The principle of CONNIVER was that the facilities of

- 0 .12 -

PLANNER should be available to the programmer, but not automatically.

The reasons are twofold: one, to Improve efficiency and two, to

encourage a deeper analysis of the problem by the programmer. The

version of LISP described In this thesis subscribes to this view In that It

provides a means of constructing complex control mechanisms, but their

maintenance Is the responsibility of the user.

MDL was conceived at MIT between 1970 and 1975 as the next

generation of LISP. In particular, the designers had In mind the need

for more exotic control mechanisms, such as processes, coroutines and

generators. The environment was modelled using a modified form of

deep binding. The optimisation was that each Identifier had a value cell

In a standard location (like shallow binding) and an environment pointer.

On Interrogating an Identifier the value of the environment pointer Is

compared with the current environment, and If they are equal, the

contents of the value cell are used. If the two pointers are not the

same, the usual deep binding search method Is employed, except that

having found the appropriate binding, the value cell Is updated, and the

environment pointer changed to the current environment. The other

major Interesting feature of MDL Is the provision of processes and

multiple stacks, which formed the basis of the LISP machine LISP (LML)

stackgroups mechanism. In fact LML [Welnreb & Moon 81] has quite a

strong heritage In MDL In this and other rarely recognised ways.

The most fundamental difference between LML and MDL Is the

form er's use of shallow binding. This raises the question of how to do

context switches. The only possible way Is the one mentioned earlier In

the section on shallow binding, although that used a spaghetti stack

rather than the stackgroup mechanism found In LML. The method was

- 0 .13 -

described more formally In [Baker 78b], and will henceforth be referred

to as rerooting,

RerootIng

The method set out In [Baker 78b] constructs the chain of bindings In

the heap (although this could be adapted to fit Into the spaghetti stack

s truc tu re). The bindings are In the classical form of the association list

(henceforth a lls t) . It starts with the observation that all lookups are

trivial If the current environment Is the root of the evaluation tree (the

correct binding Is In the global value c e ll) . If the binding process can

can ensure that the newly created context becomes the root, then

subsequent lookups will also be trivial.

The rerootIng mechanism Is developed Inductively, that Is first

considering the necessary steps to 'move' the root from one node to an

adjacent node, and then generalising this to moving n nodes. The

current environment Is regarded as the root of the evaluation tree; to

change the root to an adjacent node, the link pointing from the target

node to the current environment Is reversed and then transversed,

exchanging the contents of the value cell and the saved binding. Now.

having arrived at the new root all the Identifiers have the correct values

(see Figure 0 .3) . Extension to rerootIng to a non-adjacent node is

straightforward: apply the rerootIng algorithm as for one node, then

repeat the process until the target node Is reached (see Figure 0 .4) .

Such a system Is called continuously shallow bound. An Interesting

consequence of this method Is that environmental extensions or context

switches can be made from the root without needing to re root the tree as

long as the variable Interrogation mechanism Is changed thus. If the

current environment Is the root, use the value cell, otherwise use the

— 0.14 —

a
b

((a . 3) (b . 5))

K —

NIL

((a . 2) (b . 1))

NIL
Figure 0. 3

(a . 2)

NIL

(a . 3)

-o<— initial state

(a . 2)

• > o - —

(a . 3)

■>o— f reverse links
NIL

(a . 1) (a . 3)

•>o—— — — ————-----—- ■- —> o~- — —— —— — ->o— I exchange one
NIL

(a . 1) (a . 2)

■>o— I exchange two
NIL

Figure 0. 4

standard deep binding lookup. This Is called casual rerootIng. Details

of a particular Implementation of continuous rerootIng are given In

Chapter 5.

Chapter summary

This chapter has tried to set out the knowledge of binding models

and their Implications which existed when the work presented In the

following chapters was started. The most Important features to remember

are the two major binding models developed over the last twenty years:

deep binding and shallow binding, their strengths and their weaknesses.

Attention Is also drawn to methods of Incorporating multiple access

environments Into shallow binding such as that found In INTERLISP-10

[Teltelman et al. 72] and latterly described In [Baker 78b] as rerooting.

- 0 .15 -

CHAPTER 1

Semantics of the Binding Process

Motivation

Why the interest In an efficient closure mechanism? It has long

been recognised that closures sometimes lead to either the only solution

or at least a more elegant solution for certain complex programming

problems. This Is largely because the abstract notion of a closure Is

more closely related to the physical situation being modelled than any

purely sequential form could be (fo r some examples of the situations

referred to see Chapter 8).

It took some time to recognise that the closure (o r the more

fundamental continuation) actually had a strong theoretical basis, which

goes, at least In part, toward explaining why It Is so generally useful, in

the late 1960s work on semantics was Just beginning. In particular there

was a group at Oxford University, comprised of amongst others

Christopher Strachey. Chris Wadsworth and Dana Scott. At the latter

end of the decade attention was turned to formalising the semantics of

Jumps and the use of labels. Few languages at that time supported the

concept of the label as a firs t-c lass object. although CPL

[Barron et al. 63] did consider the problem In more than passing detail.

CPL permitted the programmer to go to a label regardless of whether It

was presently In scope, the jumping process (re) Instantiating the

environment of the label as necessary. This Idea was generalised In PAL

[Evans 68]. which was concleved purely for the purpose of teaching and

experimenting with the semantics of complex control schemes.

— 1.1 —

The problem was how to express the semantics of two consecutive

statements. What was difficult about this was the power and the danger

of general jumping. It Is not guaranteed that the second statement will

be evaluated immediately after the first, since the first may jump

somewhere. What was needed was a way of describing what the

program would do next. Rather than just talking about the one following

statement, we can talk about the following group of statements, that Is

the rest of the program coming after the current statement. Of course

this conceptualisation works recursively; the rest of the program can be

divided Into a statement and the rest of the program etc. . However an

expression (o r statement) In Isolation Is only an abstract representation

of an algorithm or part of an algorithm (It only possesses

meta-meanIng) ; to have any concrete meaning It must be Interpreted

with respect to some environment. This notion is sim ilar to that of

situation and situatlon-type meaning [Barwise & Perry 83]. This Is the

substance of a continuation; It Is two objects: an expression and an

environment [Strachey & Wadsworth 74]. In fact there are two types of

continuation, command and expression. The former transfers control (o r

takes some sort of control decision) relative to a particular environment,

and the latter evaluates an expression In the given environment (which

may Include some sort of control In itia tive). In the formal notation used

In [Scott & Strachey 71]:

K; Env x Exp - Val expression

C: Env x Com - Val command

It shortly becomes apparent that all of the common (and Indeed the

not so common) control mechanisms can be cast semantically In terms

of continuations. In the same way that looping may be described using

- 1.2 -

recursion, recursion may be described with continuations. Coroutine and

generator operations are closely related to the concept which Is popularly

called lazy evaluation [Henderson & Morris 76] [Friedman & Wise 76].

Suspensions and continuations are one and the same; that Is an

expression (command) and an environment In which to evaluate It. The

process concept Is a little harder to characterise. It depends on the

position whence It Is considered. From Inside It appears to behave

autonomously except where It Is necessary to have some Interaction with

another process or protected resource. Externally It Is much as a

coroutine, but Is forcibly suspended and resumed by a scheduling

process (no this Is not recursive!) controlled by Interrupts. Therefore It

Is amenable to the same analysis as a coroutine. This can be seen as

a problem In resource management where the user processes are queued

up (selection and prioritisation are a separate matter) to use the CPU

(the protected resource). More detailed work Is required to ensure

fairness and prevent starvation (see Chapter 8). An alternative view Is
I

the Idea of engines [Fitch 82] [Haynes & Friedman 84]. A process Is

given a time slot and told to run until complete or the time Is exhausted

(when It returns a continuation). This relies on the process yielding

control as appropriate and so may create difficulties In attempting to

prove the properties above with regard to fairness and prevention of

starvation.

Having shown how continuations seem to form a complete foundation

for programming. It should also be said that they are not necessarily

always the most efficient way to provide a particular feature e .g . the

looping constructs. That Is a consequence of the features offered by

most hardware rather than Indictment of continuations themselves. As is

often the case in this subject the practice Is In advance of the theory.

- 1.3 -

Reflections on binding

The previous section attempted to make a case for why continuations

are useful; if that premise Is accepted, how can they be provided more

efficiently than Is apparently the case at present? The research

presented In this thesis Is concerned with the representation of the

access environment. The question of the management of the control

environment Is only discussed in passing for a variety of reasons;

(I) It Is only of secondary importance. Expression continuations

can handle all but a few of the problems to which multiple

environments are applicable (although a command continuation

may be more e ffic ie n t). Expression continuations are usable In

a single control environment system. but command

continuations require the existence of corresponding multiple

access environments.

(II) the problem has already been solved to a greater extent by the

spaghetti stack model [Bobrow & Wegbrelt 73] (that Is not to

say It does not warrant further Investigation).

The rest of this section considers how present binding schemes work and

shows how an analysis of them lead to the foundation of the new model.

The advantage of deep binding Is fast context-switching while the

strength of shallow binding Is fast variable Interrogation; can a

reasonable compromise between the two be found? Since variable lookup

Is more frequent than context switching, any potential solution must be

weighted so that this cost Is negligible when compared with the shallow

binding cost. One way of viewing deep and shallow binding In relation to

— 1.4 —

one another is that they are at opposite ends of a spectrum of binding

models. At one end deep binding keeps all Its associations In a single

list. At the other end shallow binding keeps each association separately.

This Is In fact simplified to a spectrum of hashing functions: the deep

scheme has a very simple function, the answer Is always the same, that

Is It always hashes to the same bucket. The shallow scheme Is In effect

a perfect hash: each value hashes to a unique bucket, that Is the

Identifier to which It has been bound. As one moves from one extreme

to the other variable lookup becomes easier and context switching

harder, because the environment component Is progressively filtered out

of the lookup process.

The last remark leads to another Interesting relationship between the

accepted binding methodologies and also puts the new scheme Into

context. The variable lookup process can be expressed abstractly using

denotatlonal semantics as before. Thus deep binding can be considered

as

V: Env - Id - Val (1)

Then V (e), e 6 Env, Is a function which takes an Identifier and

returns a value. In Implementation terms the function V Is uncurrled to

give a function (called ASSOC) and takes an a llst (the environment) and

an Identifier as arguments.

By a sim ilar analysis shallow binding Is expressed so:

V: Id - Val (2)

- 1.5 -

The shallow binding scheme has no environment Information, hence the

Interrogation function and Its semantics are very simple. The exact

means of discovering the value Is Implementation dependent, but It Is

generally done by Indlrecting through the Identifier.

It was remarked earlier that binding lookup Is more frequent than

context switching, so that although the latter must be efficient enough to

permit more than passing use of It, the primary concern Is speed of

lookup. The key to a particular value is the Identifier that Is used to

name It. The lookup process can be likened to form a lazy

/3-substltutlon In that the value of the free variable Is substituted' Into the

computation when It Is needed. Shallow binding keys one value to a

name In the current environment. Therein Is Its strength and Its

weakness. The value is strongly connected to the name, but has no

context - the environment Is modified, extended and discarded, but only

the changes are recorded. Deep binding on the other hand relates a

value and a name within a particular environment, so the environment

takes precedence over the value. Put another way the value Is

connected more strongly to the environment than to an Identifier.

Environmental extensions are truly that; a new set of bindings (I .e . the

extension) Is constructed and joined to the existing environment - the

whole structure Is designed for manipulating environments. Variable

lookup Is only a secondary consideration.

The main conclusion to be drawn from the above Is that to find a

new binding mechanism whose costs are weighted In favour of variable

lookup. It will be fruitful to consider a method where the values are

associated directly with the name, whilst environmental Information Is of

lesser Importance. To express this concept In semantic terminology:

— 1 . 6 “

V: Id - Env - Val (3)

This Is the converse of deep binding, V (l) , I e Id, Is a function

which takes an environment as an argument and returns a value. The

above function Is the key difference between this and other binding

models. The question now Is how to Identify an environment, and how

to pick the correct value for the current environment from the set of

values which may be bound to an Identifier. This Is the problem which

was hinted at In the previous chapter; now, unlike lexical scoping, the

context of a reference cannot be determined In advance. A particular

binding of a free variable can be Interrogated In any environment that Is

a descendant of the environment In which It was bound. The one piece

of Information that Is known Is the binding envlroment of the Identifier; to

find the correct value from amongst the set of possible values one needs

to know which values were bound In environments which are ancestors of

the current environment. The solution to this Is an heredity function.

The specification Is that given two environments. It returns true If the first

environment Is an ancestor of the second, and false otherwise.

The question of how to resolve this last matter Is dealt with In detail

In Chapter 2. Having established the theoretical basis for the model.

Chapter 3 builds on this and describes the development of the

Implementation. This Is followed. In Chapter 4, by a discussion of the

Implications for the compiler. The hope Is that the new model should

show performance sim ilar to shallow binding for simple programs and yet

have the flexibllty of deep binding for continuation programs. In order to

observe the behaviour several other binding models have also been

Implemented: deep, deep with the function cell trick, non-cached version

of the new model and continuous rerooting. These are analysed

- 1.7 -

statically (complexity analysis) and dynamically (benchmark programs) In

Chapter 5. Chapter 6 addresses a side Issue: the provision of local

variables In the Interpreter as a natural consequence of the new

mechansim and more generally how the environment labelling technique

can be used as a method of scoping arbitrary objects. Chapter 7

considers the effect of multiple environments on the garbage collection

process. The Important point here Is how the correct data structure can

have critica l consequences for the algorithm and overall efficiency.

Finally. In Chapter 8, some consideration Is given to how continuations

are useful, focussing on the areas of symbolic algebra, databases and

the Implementation of objects.

Chapter summary

This chapter describes the key Insight which lead to the majority of

the work presented In the rest of this thesis, namely, the Idea of trying

to find a way to associate a particular binding with an environment and a

set of these pairings with an Identifier. Deep binding exemplifies the

Inverse of this concept by associating the Identifier and the binding and

then grouping sets of these to construct environments. it seems

reasonable to suggest that the only other method of representing

Information about multiple environments Is the technique adopted In full

shallow bound systems (e .g . INTERLISP-10 and systems which support

the rerootIng opera tion), that Is, to record all the changes that have

taken place In the environment. The approach adopted here has not, to

the knowledge of the author, been tried before. In addition It would

seem that these three approaches comprise the total number of ways of

attacking the problem since If a variable Is to have different values In

different environments, there are only three possible forms for the

Interrogation function as laid out on the second section of this chapter.

- 1.8 -

CHAPTER 2

Ancestry Functions

Tree iabeiling

The evaluation process generates a tree of environments, where the

nodes of the tree are environmental extensions. Can a suitable method

be found to label such a tree, so that by comparing the respective labels

of two enviroments a relationship can be deduced? Desirable properties

of a label (o r tag) are

(I) finite representation, that Is the space for storing the tag to be

known In advance

(II) extensibility, that Is the labelling can be continued consistently

from what was previously a leaf

(III) cheap comparison

The labelling problem obviously lies In the province of graph theory,

but the author has been unable to find any suitable algorithms either In

the seminal work [Aho et al. 76] or In recent papers. Most research In

this field has been directed toward solutions of the nearest common

ancestor (nca) problem [Maler 79], [Sleator & Tarjan 83] and

[Harel & Tarjan 84]. This Is stated as: given two nodes x and y find

their nca. The problem given above Is In some sense a simplification of

this: given two nodes x and y. Is nca(x.y)=x? The dynamic nature of

the tree could create difficulties for the published methods. The cost of

the best of the above schemes [Harel & Tarjan 84] Is still unacceptably

- 2 . 1 -

high for the Intended application at

O(n-t-mlogn) per query, where n=node count and m=operatlon count

Of greater concern Is the amount of space taken. It Is classified as

0 (n) , but each vertex, v, maintains a list of all the children of v In the

same ply (the ir terminology) and an array of all the ancestors of v In the

same ply. This means that updating the relations of a vertex Is 0 (n) .

Consequently It has been necessary to develop new algorithms specifically

to solve this problem [Padget 83].

There are several schemes for labelling trees, although not all of

these satisfy all of the criteria set out above. All of the methods

considered will be explained In the order In which they were discovered.

For simplicity the descriptions will be limited to binary trees. The

straightforwardness of the extension to n-ary trees varies considerably.

The bit string

The first scheme Is largely due to Ian Holyer. The root node of the

evaluation tree Is labelled with zero. For each left branch taken a zero

Is appended to the string, and for each right branch a one Is appended.

It Is obvious that It Is simple to continue the labelling from a leaf In a

consistent manner, for the algorithm described above still applies. To

show the ancestry relationship between two tags It suffices to check that

the shorter label Is a substring (starting at the beginning) of the longer

label. An example of the mechanism In use Is given In Figure 2 .0 .

Unfortunately It falls short on two counts: the space for storing a label

cannot be determined a prio ri, and Indeed could become quite large.

Secondly, the cost of comparison has no upper bound for the same

- 2 .2 -

reasons. If the length of the bit string cannot be predetermined neither

can that of the substring; hence the cost of testing may vary widely.

Code Is as follows:

(de ancestorp (env1 env2)
(cond

((greaterp (strlnglength env l) (strlnglength env2))
nil)

(t (strlngcom pare
envl
(strlngsllce 1 (strlnglength env l) e n v 2)))))

In order traversal

The second scheme follows from a suggestion by Robin SIbson.

Each label consists of a pair of numbers constructed during an In order

traversal of the tree. Let there be a counter, whose Initial value Is

zero. As each arc Is traversed (In either d irection), the counter Is

Incremented. On the descent, the value of the counter at each node Is

taken for the first element of the pair. On the ascent, the counter value

Is taken for the second element of the pair, thus a labelling such as In

Figure 2.1 may be obtained. This looks more promising; the size of a

tag Is always two Integers. The comparison of two labels Is

straightforward: given and we wish to discover whether Ij. Is an

ancestor of fg : that fact Is supplied by the expression

first element of I j. < first element of iz < second element of

The major drawback Is that the method Is static. It Is not possible to

extend a leaf and yet preserve the Information needed. Code Is as

follows:

(de ancestorp (env l env2)
(andmd

(greaterp (sequence env2) (sequence e n v l))
(leq (sequence env2) (span e n v l))))

- 2 .3 -

00 01

000 001 010 o il

0000 0100 0101

The bit string labelling scheme

Figure 2. 0

(3

(O 19)

(9 18)

(10 15) (16 17)

(13 14)

The in -o rder traversal labelling scheme

Figure 2. 1

(10 15 0)

context
switch

(3 (11 12 0) (13 14 0)

(3 4 Oil)

The composite labelling scheme
(a lso showing the effect of a context switch)

Figure 2.2

A composite method

As the section title suggests this Is based on a combination of the bit

string and the in order traversal schemes. The evaluation tree is

labelled as described above, but to overcome the extensibility problem

the bit string Is brought Into play. Working on the assumption that the

extent of continuations of previously preserved environments are relatively

small, that is the tree is not likely to grow very much, it should be

efficient In terms of both space and speed to use the bit string to

establish ancestry. The basic label of each environment In the extension

Is that of the root of the particular subtree, which is where the new

growth is rooted. The third element of the tag is given by the bit string

of the Intermediate root. When new labels are created it is this third

part which Is modified as described In the first section. An example of

how the labelling works in this case can be seen in Figure 2 .2 where

there has been a context switch from (16 œ 0) to (3 4 0) and back.

The heredity test now takes on two stages;

(i) compare firs t element of with first element of < 2 and second

element of with second element of tz . if these are both

equal then ancestry Is proven by comparing the bit strings as

described in the first subsection.

(ii) perform the subrange test of the previous section

An example of this labelling scheme Is given In Figure 2 .2 . Code to

implement this is given over:

- 2 .4 -

(de ancestorp (env l env2)
(cond

((e q (extension en v l) (extension env2))
(and

(greaterp (sequence env2) (sequence e n v l))
(ieq (sequence env2) (span e n v l))))

((greaterp
(strlnglength (extension e n v l))
(strlnglength (extension env2)))

nil)
(t (strlngcompare

(extension env l)
(stringsiice 1

(strlnglength (extension env l) (extension env2))))))))

The weakest part of this idea is the assumption made about the depth of

a given tree extension. There are two specific criticisms:

(i) if the bit string tag is implemented by a single machine word

(o r even two or three e t c .) , the mechanism is severely

lim ited. Inevitably a case will arise with which the scheme

cannot cope.

(ii) the alternative is to implement a general bit string data type

and attendant functions. This must all but lose the efficiency

which is the sole reason for pursuing this scheme.

In conclusion, this particular form of the ancestry predicate seems to

create d ifficulties whichever way it is implemented.

The chosen method

This scheme is both a refinement and an extension of the second

one. Rather than refer to the first and second elements of the label the

names sequence and span will be used. Sequence denotes that a node

is the nth node created since the root node. Span denotes the highest

sequence number that occurred in the tree below that particular node.

— 2 .5 —

(3 3)

(9 9)

The refinement of in -o rder iabeiiing

Figure 2. 3

(11 12 1)(10 10 1)

(12 12 1)

(9 00 0)

In-order with generations
(also showing effect of context switch)

Figure 2. 4

First the refinement; this is implicit in the note about span above.

Observe that it is the sequence number that is used to check the

subrange and therefore that It is unnecessary to increment the counter

when ascending during the traversai. For a graphic representation of

this see Figure 2. 3. The heredity test remains exactly as before. The

worth of this change Is that the count only Increases by

n(total number of nodes)

rather than

n(2 X total number of nodes)

Further optimisations are feasible in practice, but since such detail would

obscure the discussion, their description will be omitted.

Of course this still does not solve the extensibility objection. The

solution changes the tag from a pair to a trip let, the third element being

called the generation. The generation Is an enumeration of each of the

subtrees that grows from the Initial tree. This enumeration can be

controlled by another counter. When It Is desired to extend the tree

from a previously closed leaf, the counter Is Incremented and Its value

taken to form the generation element of the tag. In the more frequent

case of expanding an open leaf, the generation is Inherited from the

previous node. As for the original basis of the tag, that Is the span and

sequence, these are constructed as before. Again an example of the

labelling process after a context switch is given (see Figure 2 . 4) . There

has been a context switch from (9 oo 0) to (3 3 0) and back. A new

definition of the heredity predicate is needed; the tests are as follows:

— 2 .6 —

(i) if generation f^ Is greater then generation as well as

revealing that the nodes are in different subtrees it also show

that < 1 cannot be an ancestor of fg . Why? Because a new

subtree can only ever be built on top of a tree of lower

generation, which is in turn because the generation counter

can only increase.

(II) If the generations of the tags are the same (which Implies they

are in the same subtree), then heredity Is given by

sequence Ij. < sequence < span Ij.

(Ill) thus generation must be less then generation fz . The

subtree containing < 2 Is connected to a tree of an earlier

generation by Its root and only by Its root. Therefore If Is

an ancestor of iz then must be an ancestor of root

which Is In a previous generation, hence the algorithm may

start over at case (II) above

An example of this labelling Is given In Figure 2 .4 and here follows the

code:

(de ancestorp (env l env2)
(cond

((eq (generation env l) (generation env2))
(and

(greaterp (sequence env2) (sequence e n v l))
(leq (sequence env2) (span e n v l))))

((greaterp (generation env l) (generation env2))
nil)

(t (ancestorp envl (root e n v 2)))))

This now has all the properties outlined at the beginning of this chapter:

- 2 .7 -

(i) representation Is fin ite ; the space required to store the label Is

three machine-sized integers

(ii) extensibility; by adding the Idea of generations, computation

can proceed from what were previously leaves in the evaluation

tree, whilst keeping the tagging consistent

(iii) comparison of tags is relatively cheap; when both tags are in

the same subtree, only a subrange test Is needed. Otherwise,

assuming the first tag Is in a subtree closer to the root than

the current subtree, then there Is the additional cost of finding

the appropriate ancestor of the second tag to compare against

In the next chapter details of LISP systems in which this method has been

incorporated are given.

Chapter summary

This chapter has addressed the question of how a tree may be

labelled in such a way that a simple test can be performed to check

whether given two nodes one Is an ancestor of the other. Having

established desirable criteria for both the test and the label some

possible solutions are developed and contrasted, concluding with a

description of the method Judged to be most suitable for this application.

- 2 .8 -

CHAPTER 3

Practical Considerations

Development of the implementation

In order to collect as much empirical evidence as possible regarding

the new binding model and on binding models in general. It was Intended

to produce three implementations built on different existing LISP systems,

namely Cambridge LISP, Portable Standard LISP (PSD and Yorktown LISP

(YKTLISP). Only the first of these can be called a complete

Implementation. The major part of the work on PSL was done during

summer 1983 at the University of Utah. Unfortunately it has not been

possible to obtain access to any machine capable of running PSL In the

meantime to permit the addition of optimisations as the research

progressed or to complete the garbage collector which was the one

matter left outstanding. Thus there are no results for that system,

although the work is largely complete. Administrative problems have

conspired to prevent even a start being made on a version for YKTLISP.

The majority of the work presented in this thesis Is of a practical

nature: In large measure the topic of the thesis Is also practical. It is

concerned with trying to find a better way to represent multiple

environments In dymanically scoped languages. This has lead to a

deeper comprehension of the relationship between the theory and

practicalities of the problem.

The first solution to the multipie environment problem, deep binding,

was not a consequence of a consideration of fundamental Issues. It was

done that way because it was the simplest way that the implementors of

- 3.1 -

LISP could see to achieve a form of, for want of a better phrase,

on-the-fly /3-reductlon In the Interpreter, whilst still providing a

mechanism for higher order functions. In a search for Improved

efficiency (and for no higher motive) shallow binding was developed. In

this way LISP was stripped of one of its most potent semantic features,

the FUNARG.

By appealing to semantics a concise behavioural description of the

two methods mentioned above can be given (see Chapter 1). Obviously

to have any chance of supporting multiple environments, the variable

lookup process must take advantage of some environmental Information.

The new proposal can be viewed as the converse of deep binding. The

semantic expression for the environmental interrogation process has

become:

V: Id - Env - Val

This means that the identifier is viewed as a function, which when

given an environment as argument, selects the appropriate value. The

bindings of an identifier can be regarded as a set of pairings of

environments and values. An Important caveat though Is the need for an

efficiently implementable environment labelling function which permits

ancestry validation. Several possible solutions to this problem were

described in the previous chapter, ending with the one chosen for

experimentation. Now that the toois for building a system as outlined

have been formulated, work can begin.

- 3 .2 -

Cambridge USP

Cambridge LISP was chosen to be the vehicle for the major part of

the research presented here, because of availability, a suitable machine

on which to run it and local expertise [Fitch & Norman 77]. The system

Is programmed in two languages. BCPL [Richards 69] is used for the

interpreter and base system. The rest, that is utilities and packages

such as the compiler, reader, printer, editor, break etc. are coded in

LISP Itself. Over the period of the project the system has undergone

tremendous changes, brought about either by a need for parameterisation

or improvement in the BCPL support environment.

In the early stages the LISP sources and the ASLISP (Aquae Sulis

LISP) sources were disjoint; it was quickly realised that this was a

mistake and the systems were rapidly getting out of step with one another

in the parts which were in fact common. The addition of a preprocessor

permitting conditional compilation alleviated many of these problems.

Now there Is only one source, but It supports seven binding mechanisms

and several combinations of operating system and machine. Although

conditional Inclusion was a big improvement, in many places the source

was very untidy largely because of the differences In accessing and

modifying variables between the various models. This has been solved

by the most recent changes to the front end of the BCPL compiler which

features manifest functions, which work by tree substitution. This means

that the same expression may be used to access or update variables

throughout the Interpreter, but that It is macro expanded from a definition

provided in an appropriate header file obtained by conditional Inclusion.

The first target was an Interpreter to support the new binding model.

The following areas were Identified as affecting this requirement:

- 3 .3 -

(i) interrogation and modification of variables

(ii) the binding/unbinding functions (LAMBDABINDER and

PROGBIND)

(iii) the allocation of space for and the initialisation of identifiers,

known as interning

(Iv) the garbage collector

The last matter is covered in detail In Chapter 7. Variable access is

naturally a less straightforward process than the existing system which

simply indirects through the pointer to the atom to find the current value.

It also needs to maintain more information about each atom, and the

logical place to keep this is with the atom. Accordingly the size of the

structure has been Increased. A graphic explanation Is given In

Figure 3.0. Because of the more complicated process Involved In

accessing and modifying variables two functions called INTERROGATE and

MODIFY were written. These are now called via macros In the BCPL

compiler. The names INTERROGATE and MODIFY are used everywhere in

every system where LISP variables interact with the base code and

macro-expanded to the appropriate form for the desired binding scheme.

Some sections are completely different, such as the binding and

unbinding of variables for lambda expressions and the program feature

and the creation of atoms (MKATOM). Others are entirely new. such as

the handling of closures In EVAL and APPLY.

— 3 .4 —

value property AVL AVL random print
cell list left right Info name

becomes
value

’̂ chain

cache
tag

cache
value

Figure 3. 0

backpointer o-

sequence

spcui

generation

reference count

binding vector

root

-> reference to previous
binding contour

the environment label

used to control unbinding

> bindings created this contour

> the root environment of
this subtree

Figure 3. 1

Binding and unbinding

The binding process has two sections:

(i) creation of a new environment descriptor

(il) binding of the variables to new values

The environment descriptor is a vector of seven elements as shown in

Figure 3.1. The value chain of an Identifier can be thought of as taking

the form of an association list in which the pairs are made of

environment descriptors and values. To bind the variables the program

descends the formal parameter list CONSing a new environment value

pair on to the existing value chain of the identifier. For lambda

expressions, the values are taken from the intermediate argument block.

Program variables are. of course, set to NIL.

Unbinding engenders a little more work. it also depends on the

reference count of the binding contour being exited. Given the existence

of closures, it cannot be guaranteed that the binding (<environment> .

<vaiue>) of an identifier will be at the top of the value chain, since other

branches of the evaluation tree may have been preserved on top of it

without requiring this binding necessarily remain. This situation could

arise in the Instance of a continuation being invoked from the main

strand of the computation, preserving a new environmental extension of

itself and then returning, where the same variable occurred in all three

contexts. Hence a search Is made for the appropriate pair and it is

spliced out of the list.

Adoption of a more suitable data structure than the obvious one

— 3 .5 —

described above pays dividends. A new datatype, caiied a binding vector

was introduced to the system. This vector contains four entries for each

variable to be bound (le. the same amount of space as previously used

by the CONS ceil m ode l). The first two are used to form the up/down

links of a doubly linked list and the second two are used to hold the

environment descriptor and the binding of the variable. The cache

reference (see next section) points at this second pair of locations. The

value chain can be searched by descending the CAR pointer (see

Figure 3 . 2) . The corresponding value is accessed by indexing off that

location rather than taking the CDAR of the value chain entry. The

advantage of this scheme is that binding and unbinding are both very

simple. in the first case the code runs a finger down the binding list

and the binding vector synchronously and modifies the up/down links of

the existing binding chain. In the second case the the code runs a

finger down the binding vector of the current environment undoing and

patching up the up/down links (compare Figures 3 .2 & 3.3)

Value and reference caching

To find the current value of a variable, the value chain is searched

looking for the first environment value pairing in which the environment is

an ancestor of the current environment. When found, the associated

value is returned, otherwise the variable is deemed unbound. Similarly

to assign to a variable, the value chain is searched using the

samecriterion. When the appropriate pair is found, the value part is

modified (eg. by RPLACD) to contain the new value. This is what

happens in the the non-cached implementation of the new strategy

(referred to as NC for b revity).

Early on in the implementation it was decided that the use of a

— 3 .6 —

atom

^ 1
o 6 ED value

q . . .

- > ■

ED value

ED value

Figure 3. 2

atcxn
1 ____________

“ T— ;—

T 1-
ED value

ED value

\ r
- j — I ” --j- ED value

Figure 3. 3

caching mechanism would be highly beneficial, and this was incorporated

in the lookup/assignment strategy from the beginning. Thus on

interrogation the value was also placed in the value cache, and the tag

cache set to reflect the environment in which the variable had last been

accessed, it is only possible to use an equality test on the cache tag to

check validity. it is important to mention this since it might seem

reasonable to apply the heredity test to the cache tag. That is not so.

except in the case of no preserved environments! The reason for this

surprising restriction arises from the case where a variable is bound in

two environments, one nested inside the other, and the outer one has

been passed down to the inner one. This might happen, say. in a

mapping operation; the continuation would be applied to an element of

the list being processed. That causes the cache of the variable to be

loaded. If an heredity test were used to access the cache value, that

binding would also be regarded as valid in the context in which the

continuation had been applied.

The cache tag is also beneficial in speeding up the interrogation of

variables which are bound in the global environment (such as functions),

when there are many closures between the lookup and the binding

environment. Recourse to the description of the ancestry test in the

previous chapter shows that it must follow the chain of environments,

through the root links, until one is found which is of the same

generation. An important observation is that if one of the environments

found during this search is equal to that held in the cache, then there

cannot have been any new binding of the variable between the lookup

environment and the one currently under investigation (the one that is

equal to the cache). That means that the value in the cache is valid,

and the search for further proof is unnecessary.

- 3 .7 -

So far only the use of a cached value has been mentioned. That

means variable access may take advantage of the cache, but that

assignment must go through the more laborious process of full lookup to

find the appropriate pair. That is potentially a great constraint on

performance, it would be advantageous if assignment could also use the

same cache. As has been observed before in computer science, an

extra level of indirection solves a lot of problems. in keeping with this

tradition, the above aim is achieved by caching a reference to the

current (<environment> . <vaiue>) pairing, so that variable access must

take the CDR of the cache for its result and modification may use

RPLACD on the cache. This change, as well as making the system

more consistent (by making the cost of access and modification equa l),

did make a significant improvement to performance (approximately 5%

according to several benchm arks).

instrumentation has shown that the caching is an important

performance factor. in running various programs, such as compiling

parts of the system, as well as some recognised test programs, the

frequency of cache hit when interrogating fluid variables was never below

65%. Obviously the higher the frequency of a cache hit. the faster the

program will run. Accordingly two possible sources of environmental

perturbation, which would affect this hit rate, have been identified.

These are garbage collection, which is discussed at length in Chapter 7.

and descending across a fluid contour (i . e . unbinding).

in the naive implementation of the garbage collector the cached tag

and reference were discarded and replaced by NIL. More recently, the

tag is checked to see if it is an ancestor of the current environment and

if so it is left untouched. Because of the state of the system it was not

- 3 .8 -

possible to take direct measurements of how this improved the cache hit

ratio, and more arms length' methods were employed, that is the

running of benchmark programs. These showed 2-3% relative

performance increases against the yardstick system (Shallow bound

Cambridge LISP).

in the first implementation of unbinding only the value chain was

modified to remove the ((environment) . <vaiue>) pairing; the cache was

left untouched. This means, of course, that on the next interrogation of

the variable (assuming it has not been rebound in the intervening period,

which would also reset the cache), the cache would be invalid, and so a

search is needed. Now the majority of programs are stack-iike in

behaviour, and hence, one can expect the binding of variables to behave

in a sim ilar way. Thus it is asserted that the next environment/value pair

on the chain is likely to be the one sought. This will not always be the

case, but it should happen sufficiently often to make the effort

worthwhile.

So. on unbinding, the cache reference is loaded with the next pair

from the value chain, and the cache tag Is set to the binding

environment of that value. it would not be correct to make the cache

tag the environment being returned to. because there is no guarantee

that the environment and that particular value are indeed related. Since

the object of cache reloading is to impose as little overhead on the rest

of the process as possible, a full scale lookup is not feasible. A simpler

alternative is to set the tag to the one environment in which the value is

known to be valid, that is its binding environment, it is not expected that

this will be of more than marginal utility in the interpreter, with compiled

code it is a different story, in interpreted code every LAMBDA and every

- 3 .9 -

PROG creates a new fluid contour, whilst for compiled code there is a

much greater gap between these boundaries (where the gap size may be

measured in function c a lls) . such that there is a greater iikiihood of the

reloaded tag and reference being valid. Tests indicated this was worth

3-4%.

Portable Standard USP

Portable Standard LISP (PSD Is a descendant of Standard LISP

[Marti et al. 79] and as such has a common heritage with Cambridge

LISP. it is of course designed to be ported easily - it has not entirely

achieved its aim in that respect (s till some 3 -4 man months are required

to move the system to a new m ach ine). Much work and research is

currently being done toward that end. A major consequence of

designing code for portability is that it is on the whole easy to modify,

being divided up Into functional sections, driven by parameterised

expressions, and heavily sprinkled with macros. The changes were, as

to be expected, in the same sections as listed at the beginning of this

section. One particular difference between the systems is that PSL is

entirely written in LISP, including the kernel, whereas it is in BCPL in

Cambridge LISP. Therefore before even the firs t test could be run it was

necessary to convert the compiler to the needs of the new scheme,

rather than consider that as a later problem as was done in Cambridge

USP.

Being the second implementation, the process was much easier and

faster, and it was possible in this system to take advantage of lessons

learnt in the construction of the first one. A detailed description of the

work involved would be tedious and unhelpful in the course of this thesis.

For further information see [Padget 84].

- 3.10 -

There is one major difference between the philosophies (if they can

be caiied such) of PSL and Cambridge LISP. it lies in the treatment

variables and their evaluation. That is to say: in PSL the function

position of a form is evaluated by a different technique from that used for

the argument positions. This has no theoretical basis and is

indefensible. The mechanism arose through a desire for greater speed

in early LISP systems (see Chapter 0). Although the reason for its

introduction has disappeared the anomaly remains, in the original deep

bound USP systems local variable lookup was reasonably quick. But

there was a considerable price to pay when accessing global' variables,

that is those bound at the outermost level, since in order to conform to

the semantics an environmental search must be made first. Functions

are very frequently bound at the outermost level and so the greater the

depth of function call (and hence binding cha in), the slower the system

becomes. That can to some extent be alleviated by declaring an

identifier global so the code to access them will go directly to the symbol

table entry. The way taken to circumvent this lethargic (ra ther than

iazyi) interpreter was to evaluate the function position of a form by always

accessing the global value, whilst the rest of the form was treated in the

canonical fashion. This is a dangerous semantic black hole because a

name has different values depending on its position in the expression

being evaluated. When shallow binding was developed there was no

longer a discrepancy between the cost of lookup for local and global

variables. Variable access became constant and therefore no reason

remained to prolong the inconsistency. As remarked back in Chapter 0.

expediency (and years of software effort) served to maintain the status

quo.

A consequence of the above is that function lookup in PSL does not

- 3.11 -

use the scoping mechanism at ail and prelim inary results suggest it is

marginally faster than Cambridge USP. it is hoped that this

implementation can be brought up to the level of the Cambridge system

in the near future.

Yorktown USP

Although no work has yet been done on this system the philosophy

and approach taken to its design have not been without influence on the

development of the Cambridge system [Biair 79]. in particular the strong

theoretical foundation tempered with pragmatism served as encouragement

to pursue solutions to the efficient provision of FUNARGS and highlighted

the importance of being true to the mathematics upon which it is based,

it is expected that a start will be made on YKTLiSP during the summer of

1984.

Chapter summary

This chapter recounts the development of the two implementations of

the new binding model and how dealing with the practioai question of

writing code to give physical form to an idea resulted in several

improvements in the process. Although Cambridge USP (CL) and PSL

share a common heritage in Standard USP they are very different

systems; CL was designed and built with one machine in mind whilst PSL

is intended from the beginning to be portable and easily modified. The

impact of using the system as a base for experimentation in USP

implementation has been greater on Cambridge USP, turning a

non-portable program into a very much more portable one. The exercise

also showed that PSL is not without shortcomings in ease of modification

but recent developments in the latest versions should do much to

circumvent these problems.

- 3.12 -

CHAPTER 4

Compilation and Closures

Compiler strategy

So far the changes have only been discussed with respect to the

interpreter and the base system (although these are sometimes closely

tied to the compiler as in PSL). The changes to the compiler are in

many ways less implementation-specific because ail USP compilers have

certain features in common, that is

(i) code to load and store free variables

(ii) code to bind and unbind free variables

Although there are other matters to consider such as register

allocation, bu ilt-in assumptions and stack/argum ent allocation, the four

cases above can generally be isolated and modified without interfering

with the rest of the compiler. The compiler in the Cambridge system

and the PSL com piler share a common heritage in the Portable USP

compiler [Griss & Hearn 81]; here the sim ilarity ends. The first is a

"one-and-a -ha if" pass com piler, while PSL takes a full three passes over

the code. Once the relevant sections of each compiler were identified,

producing new versions was relatively straightforward and so the matter is

not dwelt upon in great detail. The method of the portable compiler is to

convert the input expression into a list of macro operations for ian

abstract LISP machine (A LM). These instructions are then expanded by

the machine dependent part of the program into code for a particular

machine.

— 4.1 —

move.l 0(nilr,dn.l),d7
move.l 16(z,dn.l)/d6
cm p.l g-thisenv(g),d6
beq.s *+10
jsr loadcache
move.l 20(z,dn.l),d6
fmove.l 4(z,d6.1),dn
Imove. 1 dn,4(z,d6.1)

corresponding code for the shallow

move.l 0(nilr,dm.l),dm
(move. 1 0(z,dm.l),dm
Imove. 1 dn,0(z,dm.l)

The Cambridge compiler

The macro operations in questions are Instore. l*ioad, i*fiuidbind

and i*fiuidrestore. For loading and storing of fluids, the code generated

checks the cache tag of the identifier and if it is valid loads the cached

reference and then either takes the cdr of that, or rpiacd's the new

value, as appropriate, e .g .

*■ note that dm and dn are generic data registers

Indirect through quote cell
load cache tag
compare to current environment (ce)
make cache the value for ce
load the cache reference
I*load 1 load vcLlue
I*storeJ store value
bound system is

indirect through quote cell
l*load 1 load value
I*8torej store value

The above code is for the Motorola M68000, but the spirit translates to

other machines.

Binding of free variables is a little trick ier because new store is

required rather than saving the old values in the stack as was done in

the original system; the need for store may cause the garbage collector

to be invoked. The argument registers are not traced (and indeed would

be destroyed by the G O so these must be dumped into a safe region of

memory. There they will be traced and relocated by the GC process, and

can safely be reloaded afterwards. The compiler also assumes that

binding does not perturb the argument registers, and so the binding

routine must either avoid using them or save them whilst it does its Job.

The support for binding fluids is general purpose in the sense that it

- 4 .2 -

is utilised by functions with one, two, three or n arguments. The

arguments are passed on the stack and in the registers. it is not

possible to determine which of the argument registers contain legal

values (e .g . in the case of a function with less than three argum ents),

so as a prelude to calling the binding code those which might not be

valid are set to zero. in addition, because it might be necessary to

invoke GC (which is a real function ca ll, as opposed to the

binding/unbinding process which is invisible) the framesize of the

function requiring the binder must be loaded into a register so that the

stack is moved up by the correct amount. The amount of store required

for each fluldbind will vary proportionally with the number of variables

plus a fixed overhead for the environment descriptor. This quantity can

be computed easily at compilation time and so code is emitted io load

another register with the number of addressing units of store that will be

needed. Finally a third register contains the quote ceil offset (a lso

known as the SPiD) of the fluid bind vector (h istorica lly known as the

SPiD-iist i.e . a collection of variables to bind and the stack offset at

which to store the SPiD itself so that ERROR and CATCH can find it)

e. g.

* the fluid bind vector is of the form
* [varj_, va r* varn, stack-offset]
* this is an example from a one argument function

moveq.l #G,d2 ensure legality of register
moveq.l #0,d3 ditto
moveq.l #framesize,dO set framesize in case of GC
moveq.l *quote,d4 quote cell offset of vector
moveq.l #space,d5 amount of new space needed
]sr fluidbind

Unbinding of fluid variables only requires the quote ceil offset.

The other significant change is that it is no longer necessary to

allocate frame positions for each fluid variable in order to save the

— 4 .3 —

previous binding. On the surface this merely seems a way to reduce the

amount of stack used. It has a more profound effect though; if these

locations were still allocated, but left untouched because there is no

reason for the new model to use them, there is the potential for an

illegal value to persist and cause mayhem in the garbage collector.

Various other m inor improvements and modifications have been made

to the compiler. in particular a function call where the value of the

function was either held in a local, or was computed from an expression,

the form being compiled was transformed from

(e xp i expa . . . expp)

where expx might be a local variable or another expression, into

((lambda (l*unnam edi*) (i ” unnamed exp^ . . . expp)) exp^)

where i*unnamedi* is a system defined fluid variable.

in effect this piece of code was substituted for the original

expression. This is objectionable on two counts: an unnecessary new

fluid contour is created, and, more importantly, there is the danger of

name clash (a lbeit somewhat rem ote). An unseen consequence of this

is that implicit application and the use of functions passed as arguments

would impose an unsuspected overhead on the program. This has been

overcome by providing extra support code entrypoints for these cases and

making a few changes to the main part and the assembler stages of the

compiler. Consider the following (pathological) function:

— 4 .4 —

(de foo (bar baz quux) ((b a r baz) quux))

This used to compile to (in ALM)

(!*a iioc 5)
(l*s tn ii 5)
(l*s tn ii 4)
(!*store 3 3)
({"fluidbind ((("unnamed!") . 4)

((1 ("unnamed!") (2 baz) (3 quux)))
(("store 1 (f(u(d ("unnam ed!"))
(("load 1 (("reg 2))
(("i(nk ("unnamed!" 1)
(("flu ldrstr ((("unnam ed!") . 4)))
(("f(uldblnd ((("unnamed!") . 5)) ((1 ("unnam ed!")))
(("store 1 (f(uld ("unnam ed!"))
(("load 1 3)
(("(Ink ("unnamed!" 1)
(("f(uldrstr ((("unnamed!") .5)))
(("deailoc 5)

and assemb(es to a tota! of 184 bytes (M68000)

and now complies to

(("a lloc 4)
(("store 3 3)
(("load 1 (reg 2))
(("((nk 1 1)
(("store 1 4)
(("load 1 3)
(("(inke 4 1 4)

and assemb(es to a tota! of 36 bytes (M68000)

There is a considerable saving in complexity, run time and code size.

The PSL compiler

The phiiosphy of this compiler is now quite different from its

ancestor, because of the need to support SYSLiSP (essentially an

untyped LISP for writing systems level code) and the need to run on

many machines. Both of these factors have led to a much more

frequent use of macros in the first pass where the REFORM functions are

applied (a detailed description of the phases of the compiler is not

appropriate here, see [Griss & Hearn 81] and [Griss et al. 82]), so that

operations may be tailored to specific machines. The intention of PSL is

— 4 .5 —

to write the whoie system in USP (mixed with SYSLiSP). There is no

fixed code or assembler to interface with as in the Cambridge system.

Experience has shown this is both an advantage because the concept is

cleaner and a disadvantage because it is harder to isolate the

mechanisms to change.

As before, the matters to be addressed are loading and storing fluid

variables, and their binding and restoration. As part of the

data-machine description from which PSL works, there is macro used

explicitly in SYSLiSP code to access LISP variables caiied LiSPVAR (and

an inverse PUTLiSPVAR). When encountered in compilation

(LiSPVAR <var>) => (SYMVAL (IDINF <var>))

which is how the value ceil of an identifier is accessed. SYMVAL and

IDINF are compiler macros which expand to simple machine operations.

IDINF strips the tag bits off its argument, and SYMVAL uses that value as

an offset to indirect into a vector. This macro was changed to use the

interrogation strategy of the new mechanism so that

(LiSPVAR <var>)

=> (COND
((EQ THiSENV (SYMTAG (IDINF <var>)))

(CDR (SYMCHE (IDINF <var>))))
(T (INTERROGATE <var>)))

The SYMTAG compiler macro uses its argument as an offset into a

parallel array (containing the cached tag) to that used by SYMVAL. The

macro SYMCHE, which holds the current cache reference, works in a

sim ilar way. if that fails the full lookup function (INTERROGATE) is

invoked (o f. the example code generated by the Cambridge compiler

shown in the previous sec tion).

— 4 .6 —

The system now knows how to compile common variable references -

but not assignments. During the first pass in the standard compiler ail

references to non-iocai variables are embedded with the tag so

that a later pass will compile (SYMVAL (IDINF <var>)). This behaviour is

very deep in the structure of the compiler, but is not what is wanted.

Fortunately only one function creates the ($fiuid <var>) or ($ iocai <var>)

or ($giobai <var>) objects (l&PANONLOCAL), hence this can be modified

to return (LISPVAR <var>), which will expand as shown above. That is

not entirely sufficient since l&PASETQ (the reform function for SETQ)

uses l&PANONLOCAL. Normally the result o f i&PASETQ would be of the

form

(SETQ
($iocai <var>) 1 r($iocal <var>)
($fiuid <var>) I |($fiuid <var>)
($giobai <var>)J l($giobai <var>)

and the appropriate code could be generated. The above change to

l&PANONLOCAL could result in i&PASETQ producing forms such as

(SETQ (LiSPVAR <var>) <exp>)

which is not at ail what is intended; trying to assign to the value of a

fluid variable might have disastrous (as well as unintentional)

consequences. Thus i&PASETQ must also be modified to recognise that

the evaluation of its first argument must result in an L-vaiue (no t an

R-vaiue as immediately above). in particular if the variable to be

modified is fluid I&PASETQ compiles this form:

(PUTLiSPVAR <var> <exp>)

The second argument <exp> is expanded by l&PALiS which eventually

- 4 .7 -

invokes i&PANONLOCAL (o r even i&PASETQ) to resoive the expression.

PUTLiSPVAR wiii then be macro-expanded in a iater pass so

(PUTLISPVAR <var> <exp>)

=> (COND
((EQ THISENV (SYMTAG (IDINF <var>)))

(RPLACD (SYMCHE (IDINF <var>))
(T (MODIFY <var> <exp>)))

The likelihood of having to garbage collect is catered for explicitly.

The compiler is informed of the possibility by the use of a flag caiied

l"UNSAFEBINDER. For a complete listing of the changes made please

refer to the appendix following this chapter.

Compiler support for closures

The preceding two sections have described the specific changes

made to the compilers to make them support the new binding model.

This last part discusses the kind of additions which have been carried out

to aid the efficient use of closures in compiled code. There are two

ways in which a closure may be used:

(i) to perform a purely demand-driven style of evaluation

(controlled lazy evaluation) which is provided by CONTINUE in

the interpreter

(ii) to create high order functions (continuations), in which case

the object is applied to arguments (done by APPLY in the

interpreter)

it is overkill to compile these two uses as calls to the interpreter, i.e .

EVAL and APPLY. They are very general functions, not really suited to

such a specific purpose. Before describing a better strategy for handling

— 4 .8 —

continuations in compiled code solution to this, it is useful to discuss

how calls to the function CLOSURE itself are handled.

CLOSURE is a FEXPR function for the purposes of interpretation, so it

does not evaluate its argument (quite reasonable given its usage). The

argument to CLOSURE is an arbitrary USP expression, it may be atomic,

an expression or an anonymous function (ie . a LAMBDA expression).

The reason for this generality is related to the two different applications

of closure given above. if the expression designates a function, then

closure is being used in the second sense, otherwise it is the first

sense. The first sense can be regarded as a trivial function of no

arguments and compiled thus, and so, in compiled code the two

applications are unified. The current environment (the one that exists at

the invocation of CLOSURE) is the closure of the function passed as an

argument to CLOSURE (this name could lead to more confusion than

FUNCTION!). The result of CLOSURE Is a pair which is comprised of an

environment descriptor and a function. This corresponds directly to the

object described in Chapter 1 as an expression continuation. Compiled

calls to CLOSURE are handled by a specialised function

(c losure!. compfn) which checks the form of the argument and then

complies it as a secret function. The link to CLOSURE itself is compiled

open.

A new result is demanded of a stream (generator) by the function

CONTINUE. in the previous paragraph it was explained how ail

continuations can be regarded as high order functions (a lbe it of no

arguments on occasions). Thus

(CONTINUE <cont>)

— 4 .9 —

can be compiled as

(APPLY <cont> NIL)

The assembler support for compiled code linkage tests to check that

the function to link to is of the correct type; if it is not, then the

situation is passed to APPLY in the interpreter. This is how compiled

code calls interpreted code (o r how errors are detected and signalled).

Similarly an invocation of a continuation from compiled code would pass

through this route, it is straightforward to piggy-back another test on to

each of the entry points such that when the first comparison fails (ie .

not a code pointer of the expected typ e), it next checks for a

continuation, then if that fails passes on to APPLY. When the second

check succeeds, a dummy frame is built above the current frame. This

is used to hold the current value of the environment descriptor and a

special return address where the context switch wiii be undone. The

environment in the continuation is assigned to THiSENV (the global

variable which refers to the current environm ent). On return from the

continuation control is passed to the address in the pseudo stack frame

(which is a location in the fixed code) and the previous environment is

reinstated. The purpose of building the frame is specific to this

particular implementation. The frame is used to ensure that error

recovery switches back the context as the stack is unwound.

The upshot of ail this is that continuations are treated as first class

objects by the system. They have the same status as functions. The

implementation is still weighted toward the application of functions

because that is always likely to be more frequent than the application of

continuations. Continuations are a separate datatype with their own

— 4.10 —

distinguishing tag rather than being constructed from pairs with a special

atom on the front and cannot be taken apart other than with the special

selectors provided (CONTEXT - environment descriptor, BODY - function

p a rt),

Chapter summary

The nature and form of the changes to both the Cambridge and the

PSL compiler were very sim ilar. A particular problem to overcome was

catering for the possibility of garbage collection during fluid binding, in

the Cambridge compiler there is a strong built-in assumption that fluid

binding is an almost invisible operation that takes place at function entry

(and occasionally in the middle because of PROGs), which means it

expects the state to be the same before and after binding. The potential

need to garbage collect can make it diffcult to ensure that the state is

preserved. The code to access, modify, bind and restore fluid variables

is much more complicated in the new system (see example at the

beginning of this chap te r). An unusual usage of fluid binding arose in

the existing Cambridge com piler when the function position of a form was

neither a fluid variable nor a A-expression. Reconsideration of this

matter lead to much smaller simpler and more efficient code being

produced. The compilation of continuations and their support has not

created problems largely because they can be treated as special cases of

functions.

A less obvious consequence of this chapter is that it has

demonstrated that this quite complex model can be supported adequately

on a standard architecture machine. In the longer term It is intended to

implement this system on a particular machine caiied the Orion, which

permits the addition of user microcode. Specificaiiy, opoodes for fluid

— 4.11 —

load, fluid store, fluid bind and fluid restore wiii be written. This results

In simplification of the program t>ecause all that had to be explicit fo r,

say the Motorola 68000, wiii migrate down into the microcode and need

no longer t>e the concern of the compiler.

- 4 .12 -

Appendix to Chapter 4

The code shown below documents the changes made to the PSL
compiler to support the new binding model. I&PASETQ. I&PANONLOCAL.
I&PALAMBDA and l&PAPROG are all redefinitions of existing functions.
FREEP, l&PALCOULDBEFREEP and l&PALiSI-JAP are additions.

PROCEDURE FREEP X; GLOBALP X OR FLUiDP X;

PROCEDURE l&PASETQ(U. VBLS) ;
% PAIFN: Convert (SETQ XI Y1 X2 Y2 . . .) to (SETQ XI YD
% (SETQ X2 Y2) in a PROGN. Also check that XI is a MEM
% mode or $NAME
BEGIN SCALAR VAR. FN. EXP. LN;
LN := LENGTH CDR U
IF LN NEQ 2 THEN RETURN
« LN := DIVIDE(LN.2) ;

IF CDR LN NEQ 0 THEN
<< l&COMPERROR LiST("Odd number of arguments to SETQ", U) ;

U := APPEND(U, LIST NIL) ;
LN : = CAR LN + 1 >>

ELSE LN := CAR LN;
U : = CDR U;
FOR I : = 1 STEP 1 UNTIL LN DO
« EXP := IF FREEP CAR U THEN

LiST('PUTLISPVAR, CAR U,
IF FREEP CADR U THEN

LiST(LiSPVAR, CADR U)
ELSE CADR U) . EXP

ELSE LiST('SETQ, CAR U,
IF FREEP CADR U THEN

LiST(LISPVAR, CADR U)
ELSE CADR U) . EXP;

U : = CDDR U » ;
l&PAl ('PROGN . REVERSIP EXP, VBLS) » ;

% Should check that CONST's not SETQ'ed or BOUND
RETURN IF FREEP CADR U THEN
IF FREEP CADDR U THEN

l&PAl (LiST(PUTLISPVAR, CADR U, LiST(LiSPVAR, CADDR U)),VBLS)
ELSE

l&PAl (LiST('PUTLISPVAR, CADR U,CADDR U),VBLS)
ELSE IF FREEP CADDR U THEN

l&PAl (LIST('SETQ, CADR U, LiST(LISPVAR, CADDR U)) , VBLS)
ELSE IF l&PAI-COULDBEFREEP(CADR U.VBLS) THEN
IF l&PAI-COULDBEFREEP(CADDR U.VBLS) THEN

l&PAl (LIST(PUTLISPVAR, CADR U, LIST(LiSPVAR, CADDR U)),VBLS)
ELSE

i&PAl (LiST(PUTLiSPVAR, CADR U, CADDR U), VBLS)
ELSE IF l&PAI-COULDBEFREEP(CADDR U.VBLS) THEN

l&PAl (LiST(SETQ, CADR U, LIST(LISPVAR, CADDR U)) .VBLS)
ELSE
« VAR := l&PAl (CADR U.VBLS);

EXP := I&PA1V(CADDR U.VBLS, VAR) ;
U : = IF FLAGP(CAR VAR, VAR)

THEN LiST('l$NAME, VAR) ELSE VAR;
IF (NOT (FN := GET(CAR EXP,'MEMMODFN)))

OR NOT (LASTCAR EXP = VAR)
THEN LiST('SETQ, U.EXP)

- 4. 13 -

ELSE FN . U . REVERSIP CDR REVERSIP CDR EXP » ;
END;

PROCEDURE l&PAI-COULDBEFREEP(X. VBLS)
% check to sdee If X might get declared automatically as a fluid
% deeper in the recursion - need to catch it now to preserve sanity
% in l&PASET; i know the PROGN and T are not strictly necessary
% since l&MKNONLOCAL returns a non-NIL value, but the impimentation
% may change at some time, so play for safety.
ATOM X AND
NOTdSAWCONST X OR

CONSTANTP X OR
MEMQ(X.'(NIL T)) OR
NONLOCAL X OR
MEMQ(X.VBLS)) AND

« l&MKNONLOCAL X; T » ;

PROCEDURE l&PANONLOCAL(X. VBLS) ;
% Pass 1 processing of a non-iocai variable. The occurrence.
% embedded in an appropriate form e .g . ($ LOCAL X), is emitted.
% The variable must be an established (declared) non-iocai
BEGIN SCALAR Z;
RETURN

IF NOT IDP X OR NOT NONLOCAL X THEN
PAIERR LiST("non-iocai e rror".X)

ELSE IF NOT l*SCANNiNGI-ARGLiST THEN «
IF FLUIDP X OR GLOBALP X THEN

l&PAl (LIST('LISPVAR. X) .VBLS)
ELSE IF GET(X.'WVAR) THEN

IF X MEMBER VBLS THEN «
l&COMPWARN(LiST('WVAR.X. "used as local")) ;
LiST('l$LOCAL. X) »

ELSE LiST('WVAR.X)
ELSE IF WARRAYP X THEN LiST('WCONST. X)
ELSE PAIERR LiST("Unknown in PANONLOCAL".X) »

ELSE IF FLUiDP X THEN LiST('l$FLUiD,X)
ELSE IF GLOBALP X THEN LiS('l$GLOBAL.X)
ELSE IF GET(X.'WVAR) THEN

IF X MEMBER VBLS THEN «
l&COMPWARN(LiST('WVAR.X. "used as loca l")) ;
LiST('l$LOCAL.X) »

ELSE LIST('WVAR.X)
ELSE IF WARRAYP X THEN LiST(WCONST. X)
ELSE PAIERR LiST("Unknown in PANONLOCAL".X);

END;

PROCEDURE l&PALAMBDA(U.VBLS)
% PAIFN: Pick up new LAMBDA vars for VBLS, check im plicit PROGN
% Should maybe rename locals here?
« VBLS : = APPEND(CADR U.VBLS) ;

'LAMBDA . LIST(l&PALiSI-JAP(CADR U .VBLS.T),
l&PAl (l&MKPROGN CDDR U.VBLS)) » ;

PROCEDURE l&PAPROG (U.VBLS) ;
% PAIFN: Pick up PROG vars. Ignore labels.
« VBLS : = APPEND(CADR U.VBLS);

PROG . (l&PALiSI-JAP(CADR U.VBLS.T)
. l&PAPROGBOD(CDDR U.VBLS)) » ;

— 4. 14 —

PROCEDURE !&PALIS!-JAP(U.VBLS, !*SCANNING!-ARQLIST) ;
% Sneaky support for new binder to iet PANON LOCAL know who
% caiied it
!&PALiS(U.VBLS);

!*SCANNiNGI-ARGLiST := NiL;

— 4. 15 —

CHAPTER 5

Performance

Performance in analysis and In practice

This chapter presents an Informal analysis (a full complexity analysis

Is not possible because of the dynamic nature of the system). followed

by tim ings for several benchmark programs on various systems. In

particular It contains comparisons between systems with and without the

new binding mechanism. This Is an Important test because It gives some

Indication of the change In performance created by the machinery to

support full closures whilst running code which does not avail Itself of the

facility. In their existing guises, neither Cambridge LISP nor PSL

provided any capability for environment capture, being based on shallow

binding. It was therefore expected that the performance would be

degraded: this was borne out In practice, but the difference was

relatively small. It Is hoped that the YKTLISP version, which uses deep

binding with lookup caching for the access model and spaghetti stacks for

the control model, will show an Improvement over the existing system In

line with the results presented In this Chapter. It Is not sufficient simply

to Implement a new binding model and benchmark It against the existing

shallow bound system. Certainly such tests show what price Is being

paid for a more general environment model when executing programs with

stack behaviour, but the question of cost comparative to alternative

multiple environment models Is left open. To resolve this several

competing strategies have also been Implemented and tested, both on

standard programs and those Involving frequent context switch. These

schemes are pure deep binding, deep binding with the function lookup

modification, deep binding with cache cells, a non-cached version of the

— 5.1 -

new model, and environment rerootlng.

Analysis

There Is no point In presenting a cost breakdown for the new

scheme without providing some Information to judge It against. An

Informal analysis will also be given for shallow binding and deep binding

which should demonstrate why It Is reasonable to expect the new model

to exhibit the efficiency of shallow with the potency of deep. There are

three matters to consider In each case: variable access (and

m odifica tion). context-switching and the binding/unbinding process. In

the following sections these three questions are dealt with In turn.

Binding and unbinding Is split Into a consideration of the two cases

described In the next paragraph.

Comparing the cost of shallow against deep binding (and most other

systems for that matter) Is rather difficult, since the goals are hardly

equivalent. Therefore In the first Instance each system Isconsldered with

respect to a single binding stack to factor out the problems concerned

with managing multl-headed (cactus) stacks and then a consideration of

the more general multiple environment case follows. As always with this

sort of performance breakdown there must be some level at which further

overheads are disregarded; one such Is the management of the binding

stack (e .g . the cost of adjusting the stack pointer and the like). The

manipulation of the fluid binding list Is however Included (see Chapter

4) . because the differing formats are direct consequences of the

particular binding mechanisms. For future reference the structures are

as follows:

shallow - ((<varlable> . <stack offset>)* . <stack offset)

— 5 .2 —

the rest - [<varlable>* <stack offset)]

The fluid binding list (SPID-llst) Is more complex for shallow binding

since It also Includes Information about where to stack the current

binding on entry and where to recover the previous binding on exit. The

contents of the value cell of the <varlable) are saved Into the location at

the paired <stack offset) away from the current frame base. Finally a

reference to the list Itself Is stored In the last <stack offset) given In the

list. The other systems have different techniques for saving the existing

value of an Identifier and none of these use the stack (Indeed Is this not

the object of the exercise?). A reference to the SPID-llst Is stored at

the specified offset In the alternative schema.

Deep binding

There are two parts to the environment as It Is represented In this

model; the global environment (o r obllst) and the dynamic environment

which may conceptually be regarded as an allst (association lis t). To

discover the value of an Identifier In a particular situation the allst Is

searched for the first occurrence of the Identifier - the associated value

Is the one to use. If no pairing can be found, the value Is taken from

the entry In the obllst. Because the cost Is determined by a dynamic

structure. It Is difficult to put hard bounds on the complexity. The best

that can be done Is to give an Indication of the order of magnitude In

terms of bindings. Of course this Is also true for all the following

discussions. So In the worst case, to find the value associated with a

name cost Is

0 (* of bindings between here and the root environment + i)

— 5 .3 —

The 1 is to account for the global environment access. It Is obvious

from this why the function position evaluation strategy (o r more accurately

hack) Is attractive, since this transforms the cost for Interrogating some

names to 0 (1) . The cached version has the same worst case as pure

deep binding but average cost should be lower. Since access and

modification are symmetric, the costs above are equivalent for

assignment.

Preservation of an environment Is simply retaining a reference to the

association after the current environment (CE) pointer has discarded It.

Because a ll the necessary environmental Information Is kept on the allst,

a context switch Implies changing the CE pointer to refer to some other

association list. Henceforth (until the next context switch anyway)

expressions will be evaluated In the environment described by the allst.

it seems It would be fa ir to describe the operation of environment capture

as 0 (1) .

Turning to (u n)binding, the case of stack allocated environments Is

considered first. On entry to a new contour, the names and their new

values are pushed on to this stack. On exit they are popped off.

Therefore It seems that the cost is 3 memory operations (mops) per

variable - 1 to access the element of the fluid binding list, 1 to push the

name, and 1 to push the value. In total 3 x (# of variables).

in the second case the environment is heap aiiocated. A iist Is

used to simulate a stack, so new pairings are added by CONSIng, and

bindings are lost by assigning the CDR to the environment pointer. This

requires 2 CONS operations (to build and add the new binding) and 1

mop (to access variable) per variable for fluid binding. Each CONS

— 5 .4 —

operation (cop) Is assumed to require 2 mops. Unbinding Is 1 mop per

variable (le . to take the CDR of the current environment). There Is a 2

mop overhead for bind and unbind to reference the current value of the

environment and to update the environment. In total (2 x (# of

variables) + 2) mops + (2 x (if of variables)) cops which simplifies to (6

X (# of variables) + 2) mops. Note also the cost of the stack version of

deep binding can still apply In a multiple environment model, for example

INTERLISP-D.

Shallow binding

There Is only one environment structure - essentially a global

environment. By recording the changes In the environment, the global

environment Is used to hold values for particular envlronrnentai

extensions. To access these values costs the same as to access

Identifiers known to be global In the deep binding model, that Is 0 (1) .

The Important point Is that a// Identifiers can be accessed In 0 (1) .

The story Is somewhat less Impressive with regard to

context-sw itching. The environment structure Is large and nebulous;

there Is no single object to reference which could facilitate the capture of

the whole environment. Consider how the fluid binding/restoration

process works In this model: for each Identifier In the list of variables to

bind, the value Is taken from the value cell (I .e . the entry In the global

environment s truc tu re), and placed on a stack. The value cell Is then

set to the new binding. When leaving a fluid contour, again using the

list of fluid variables, the values are taken off the binding stack and

replaced In the appropriate value cells, thus restoring the previous

environment. This Is a little more complex than deep binding.

— 5 .5 —

The old values of the names are saved Into the specified stack

locations (re fe r to format and contents of fluid binding list shown In the

first section of this chapter) and the new bindings are stored In the

value ce ir of the Identifier. To bind requires 6 mops per variable (get

variable/offset pair, get variable, get present value, get offset, store

value Into offset, set new value). Unbinding takes 5 mops (get

variable/offset pair, get variable, get offset, recover value from offset,

restore old value). In total these operations need 11 x (* of variables)

mops. This Is considerably higher than the purely stacking version of

deep binding.

It Is obvious that the only way to switch context Is by repeated

application of the blndlng/unblnding process. If the environment to

restore Is In a path from the current environment to the root then It can

be done by unbinding. The general case of moving from one leaf of the

evaluation tree to another Is more complicated; first a node common to

paths from each leaf to the root must be determined, then one can

unbind down to this node and rebind up to the target leaf. The return

journey Is the reverse of this process. From this It can be seen that

context switch Is

0 (# of bindings between source node and target node)

Only one major lisp Implementation provides the FUNARG facility by this

means; INTERLISP-10. The outstanding problem Is how to discover the

first common node. In INTERLISP-10 this Is done by tracing down the

dynamic chain from the target environment to the root, then starting the

rebinding process from the source node until a marked environment Is

encountered, whence the upward trail commences having first unmarked

— 5 .6 —

the chain.

An alternative solution (but one which Is not fundamentally d iffe ren t).

Is described In [Baker 78b]. An outline of the method Is given In the

section on rerootlng In Chapter 0. A more detailed version Is now

appropriate to show the costs Involved. The scheme described above Is

a very complex form of context switch, but rerootlng Is a more accurate

term and Indicates how much effort Is required. Because there Is no

single object which captures the state of the environment at one moment,

context switching cannot be simply a matter of changing a single pointer.

The environment Is so deeply embedded Into the evaluation mechanism

that It cannot easily be abstracted; thus to move between relatively

disjoint environments requires a drastic structural modification. The only

Information about the environment Is the changes that have been placed

In It, so the way to describe the relationship between two environments Is

to describe the differences between those two environments. Hence to

move from one environment to another, those differences must be

Inverted (note that this operation Is of course reversible). Consider for

a moment the deep binding model: when at the root node of the

evaluation tree, all variable references can be satisfied by accessing the

global value cell. By binding one variable, the environment Is now one

step away from the global environment, and every variable lookup must

check this single binding before the global value Is taken. The effect of

shallow binding Is to move the root of the evaluation tree when binding or

unbinding, so that the value of the global cell Is always the correct one.

Now notice that If the name Is recorded with the value when changes are

made to the environment a reversed deep binding list Is constructed.

This reveals two options:

- 5 .7 -

(i) use this list to reinstate a previous environment (by exchanging

the values In the binding list with the contents of the value

cells)

(II) regard the list as the association list, as In a deep bound

scheme.

This ability to permit shallow or deep style variable Interrogation Is

known as casual rerootlng. There are some problems In the provision of

the casual system over the continuous shallow bound version, since each

free variable access must check what mode the system Is In before

committing Itself to either Indlrecting through the global value ce ll, or

searching the allst. This Is much easier to support In a soft machine

rather than one with a fixed Instruction set.

The key to the rerootlng system Is two pointers, CE (current

environment) and CE' (previous environment). To extend the

environment a new CONS cell Is created (which will be the new value of

CE). An allst Is constructed (by CONSIng on to this cell, the entries of

which are an Identifier and the current value of that Identifier (see

Figure 5 .0) . When the list of formal parameters Is exhausted, there

remains one more Identifier to save - CE'. In this way, for each new

fluid contour created, CE' Is rebound, so that on unbinding to the

previous environment, CE' recovers Its previous value, which Is of course

the preceding previous environment. The binding for CE' Is created In a

slightly different way: the cell which was referenced by CE Is RPLACAd to

point to the pairing (CE' . <value of CE '>), and then RPLACDd to point

to the allst constructed In the first part of the process (see Figure 5 .1) .

Now the binding Is complete.

— 5 .8 —

CE'
V

o 0P I ° - 4 - “ >1 î I ° “ h - -

CE
\ /

O 0

V
id i | V i ' l I idz]

Figure 5. 0

CE'

I— 1̂ î T °—[-•
 1

CE

9 j o I 1̂ o j o__

Y nK
id i | V i ' l I idzj Vj'

Figure 5. 1

CE'

4>— > o o

— = : Z L 1 I------------------------ -jlzrL_______

Q -s-ff-j l^nq ‘v7| Q Tq-;r

Figure 5. 2

CE'/CE

< »—̂
/
0 j 0

---------- j I r—-------
C E ' j ô I L> | ld j . j~ V j . I 1^1 I d ^ j

ï

o o

CE

VtÎ

Figure 5. 3

The restoration process takes two passes: the first reverses the aiist

between the source and target environments (see Figure 5 . 2) , then in

the second stage this iist is traversed exchanging the contents of the

bindings in the aiist with the contents of the respective vaiue ceils of the

identifiers (see Figure 5 . 3) . The reversai stage is the crux of the

model. The iist must be reversed in the case of a general rerooting

(such as when moving the tree more than one fluid contour from its

current pos ition). so that the environmental entropy is completely inverted

for the second pass. The second reason for the importance of the

reversal is that after traversing the iist undoing the modifications, that

list, when viewed from what was CE, now encodes the extension from the

target environment in the style of a deep bound system. It is this feature

which permits casual rerooting. The user is given access to a primitive

which changes what happens at rerooting, so that variable accesses can

be resolved either by the shallow lookup method or by ASSOC.

What Is the cost of rerooting? By reference to the diagrams

mentioned above, binding requires (2 x (# of variables) + 2) cops (one

each for new CE and the aiist entry for CE', and two for each variable

bound) and 2 x (t of variables) + 6 mops. These six break down into

one to access vaiue of CE', one to reset CE', one to access present

vaiue of CE, one to reset CE, two to set the CAR and CDR of the old CE

pair, one to access the present vaiue of each variable and one to set

the new vaiue. This totals (6 x (# of variables) + 10) mops.

The new model

The binding or rather bindings are stiii distributed like shallow

binding, but they are related indirectly by an environment descriptor

which is created at each new fluid contour. The atom structure contains

- 5 .9 -

a list of pairings of environments and values. The association of an

environment and a vaiue indicates that the identifier has that vaiue in the

specified environment, and by virtue of the inheritance property of the

iabeiiing scheme, the identifier will have that vaiue in ail environments

descended from the one in which it was bound, unless it be rebound.

By searching this iist, the first environment vaiue pairing which satisfies

the test that the environment Is an ancestor of the current environment is

taken to be the current vaiue. Thus the cost of the search is

0 (# of bindings of a particular variable)

In general it is reasonable to assert that this will be less than the

total number of bindings, which is the cost of deep binding. This

appears to be borne out in practice (especially running single context

programs) : see the timings for the non-cached version later in the

empirical results section. When the closure feature is not being used,

the current binding will always be the first pairing on the chain.

However, if many closures including different bindings of the same

variable exist, the cost of lookup could be considerably higher for that

particular variable than for deep binding. The point at which that cost

outweighs the considerable overhead of full environmental search for

everything as in pure deep binding is very difficult to determine and will

depend largely on the dynamic behaviour of the program. Although the

complexity bounds (worst case) stay the same for each system, this may

not work out in practice. This anomaly is best explained with reference

to a diagram (see Figure 5 .4) . it can be seen that in the deep bound

system, for each of the environments A through D, the variable n is the

first binding encountered. For the new model on the other hand,

because the environment does not have a direct reference to the

- 5 .10 -

NIL

n

n = 5 preserved
environments

current environment
((n . 5)
(n . 4)
(n . 3)
(n . 2)

)

NIL

n
(4 4 O)

preserved

current environment
(5 » 0)
n — ((<4 4 0> . 5)

(<3 4 0> . 4)
(<2 4 0> .3)
(<1 4 0> . 2))

environments

Figure 5. 4

particular binding in that environment, the search is potentially much

longer. For instance, the value in environment <1 4 0> will not be found

until after four comparisons. This can be reduced in the cache version

of the model by using the fact that if the cached tag is equal to one of

the environment descriptors found during the search, then no binding

can have taken place between the current environment and that

environment, and therefore the cache is valid.

The context switching operation is very simple, akin to deep binding.

Because all the environment relationships with respect to the current

environment can be established by the environment label only the current

environment descriptor need be changed. Henceforth all variable

Interrogations will be carried relative to the new environment, so context

switch Itself is 0 (1) .

There are two stages to the binding process:

(i) construction of a new environment

(ii) the binding of the variables in the new environment

The first part builds a vector, inserts the new environment label and

sets the reference count, the back link and the root pointer (root of

current subtree). That is 8 mops (an extra one is required to make the

vector header). The second stage entails 8 mops (one each to set

environment pointer and vaiue. one to access name in binding iist. one

to get existing vaiue chain, two to set the upward and downward links of

the new chain entry, one to set the upward link on the previous binding,

and one to set the new vaiue ch a in).

- 5 . 1 1 -

There are two possible strategies for unbinding:

(i) leave the bindings with the variable and only reset the current

environment pointer (s im ila r to deep binding when using a

frame structure rather than Just an aiist)

(ii) remove the bindings associated with this environment from the

vaiue chain

The first option is simple, but although It would make this operation

very fast, the effect on performance later may be undesirable because

the correct binding will move further and further down the environment

chain as control moves closer to the top level.

The second is more complex but worthwhile. In the first method It

does not matter whether the environment has been preserved or not. the

bindings are still extant. If they are no longer reachable, eventually the

garbage collector will remove them. In the second case It Is necessary

to know whether the bindings have been saved. The simplest method of

maintaining this information is by adding a reference count to the

environment descriptor. So the operation to remove the bindings Is

conditional on this vaiue. In the present version of the system the count

Is actually only used as a flag to control unbinding. In a later system It

may be feasible to use the count to collect downward FUNARGs on exit

from that frame (see also the section on future work in garbage

coilectlon in Chapter 7). To unbind a variabie. the particuiar

environment vaiue pair created on entering this contour has to be spliced

out of the value chain. The environment descriptor contains a pointer to

the binding vector, and so unbinding is a simpie matter of running down

- 5 .12 -

this structure resetting the up and down iinks of the entries (binding

vectors) above and beiow the contour being ieft (see Figure 3 .3) . This

means the cost of unbinding is 4 mops per variable (plus 1 mop

overhead to access the binding vector from the descrip to r).

The effect of caching

As mentioned in Chapter 3, in order to reduce the frequency of need

for search, vaiue caching was incorporated into the scheme. This is

oniy an impiementation optimisation and not fundamentai to the model. It

can equally well be applied to a deep bound system with sim ilar results.

Two additional slots are associated with each atom. These are used to

keep the cached vaiue or reference and the environment in which that

reference is valid. When an identifier is first bound the environment and

reference cache are changed to be valid in the current environment, in

general however the first interrogation of an identifier is likely to be of

the order given previously for each scheme. Subsquent enquiries in the

same environment will be satisfied in bounded time, that is 0 (1) . The

operations are:

(i) access environment cache

(ii) compare with current environment

(ill) take cached vaiue/reference

(iv) take/set value in reference

The above discussion mentioned both value and reference caching.

In the first impiementation which included caching, only values were

- 5 13 -

saved. As well as making SETQ a very much more expensive operation.

It Is also complicated in that the cache and the vaiue chain entry must

be updated. Such a strategy wouid preclude (o r at least greatly

complicate) the open-coding of assignment. Subsequently reference

caching was adopted, wherein a pointer to a location containing the

current vaiue is saved. This has the advantages of trading one extra

indirection for a unification of the access and update operations. Hence

SETQ takes the same time as a variabie access (see Chapter 4 regarding

com pila tion). and can be open-coded in a similar manner. Tests

Indicated a performance improvement of approximately 10%-15% as a

result of this change.

Empirical results

The foregoing sections have now set the scene for the actual results

of testing and running the various systems. As always benchmarking

systems Is a difficult process, open to both question and abuse. Before

presenting the tables of timings it is pertinent to describe what sort of

tests were carried out. the scope of the indivlduai tests, how general the

results may be claimed to be and how the figures should be Interpreted.

There has been a growing interest over the past two years regarding

the relative merits and efficiencies of various LISP systems.

Consequently a large number of programs have been developed and

widely distributed In an attempt to reduce the comparisons to a numerical

value. A potential criticism of such programs is that they are not truly

representative of applications programs and the figures thus indicated will

not be relevant in practice. For this reason some other, one hopes

more general, figures were recorded of the time taken to compile several

system modules, then a soak test was made in the guise of building the

- 5 .14 -

REDUCE algebra system [Hearn 831. This was followed by running the

REDUCE test file which is a suite of programs designed to display the

abilities of the system; as such it exercises many of its facilities, so it

could be regarded as a representative problem set, which gives

reasonable credence to the timing results obtained from it. Several of

the recognised "benchmark" programs exhibited severe deficiencies, such

that in some cases they were not measuring the features intended.

Appropriate remarks accompany the description of the offending

programs.

The test programs are taken from four sources: a suite now known

as the Griss tests which were collected by Martin Griss as a means of

comparing the relative efficiencies of various PSL implementations, a

theorem -prover developed by Boyer and Moore and the REDUCE system

and its test file. in particuiar, there is one feature that all these

programs have in common; they do not use FUNARGSs, therefore the

oniy conclusion that may be drawn from the running of these tests is

speed relative to a shallow bound system.

The efficiency of the system supporting the new model has been

charted frequently during its development to demonstrate the advantages

or disadvantages of various modifications as they were made. These are

presented and discussed first.

The systems are:

(i) deep binding (using aiists)

(ii) deep binding with function ceils

- 5 .15 -

(Hi) shallow binding

(iv) continuous shallow binding with rerooting (using aiists)

(v) new model

(vi) new model with caching

What are the Justifications for believing that the tests run and the

figures returned are a true representation of performance in practice?

Why were these tests chosen?

in moving from the Griss tests, through the Boyer test to compilation

and REDUCE, the programs are becoming more and more general. In

the first instance the tests exercise fairly specific areas of the system so

serving two purposes: to measure performance of the dominant feature,

and to highlight deficiencies. The other benefit of running recognised

tests is that figures exist for many other systems, so comparisons can be

made. In the end however. It is the speed of execution of user'

programs that matters. The difficulty is to find a representative user'

program. The only hope is to take a very large program with the

Intention that sheer size, generality and unpredictability will combine to

give a fa ir measure. For this reason the REDUCE algebra system was

selected. The first task is to compile this. Distributed with the REDUCE

system is a test file which is part example of the capabilities of REDUCE

and part system work-out. This then uses many features of REDUCE, so

although in itself it might not be considered as a user program, its

components are. Timings exist for the execution of this on several

systems and so an impression of relative performance is revealed.

- 5 .16 -

The optimisation of the Implementation of the new model

This section is not so out of place in this chapter as the heading

might suggest. The benchmark programs did much to highlight

inefficiencies and areas for further work during the development of the

system, in the first instance, as with any new idea, the highest priority

was to solicit the desired behaviour from the system, and direct effort at

performance improvement later. in keeping with this plan all the

peculiarities related specifically to the new model were identified and

coded in the base system which is written in BCPL. in this way It was

fairly easy to ensure that the correct algorithm was being applied

although it was only of moderate efficiency. These changes were

sufficient to generate an interpreter which satisfied the aims of the new

model. The next step was the modification of the compiler as discussed

in detail in Chapter 4.

There are five areas in which the needs of the compiler Impinge on

the new model;

(I) loading of fluid (common) variables

(ii) setting of fluid (common) variables

(ill) binding of fluid (common) variables

(iv) restoration of fluid (common) bindings

(v) function calling

Again initiaiiy the emphasis was on functionality abetted by caution.

- 5 .17 -

In the existing shallow bound model, these services are provided by open

coding in the first two cases and by pieces of fixed code (written in

assembler) for the rest. This technique, the register allocations for

calling the fixed code and the perturbation of certain registers over the

call are fundamentai to the structure of the compiler, so it was

inconceivable to change them. Thus in the first incarnation the

assembler mechanism was simply used as a linkage mechanism to the

existing BCPL code. As was to be expected the figures were somewhat

slow (see Table 5 .0) .

Sh£ÜLlOW new/1 new/II new/III %
emptytest 10000 220 220 240 240 —

slowemptytest lOOOO 1660 4240 2180 2120 27.7
cdrltest 100 2280 2260 2660 2660 16.6
cdr2test 100 2320 2260 2660 2660 14.6
cddrtest 100 1520 1520 1800 1780 17.1
llBtonlycdrtest1 13600 13600 15880 15860 16.6
listonlycddrtest1 18120 18040 21280 21160 16.7
listonlycdrtest2 13540 13580 15860 15780 16.5
listonlycddrtest 2 18120 18020 21280 21220 17.1
reversetest 10 1760 1740 2040 2000 13.6
myreverseltest 10 1760 1740 2040 2000 13.6
myreverse2test 10 1700 1680 1940 1920 12.9
lengthtest 100 3560 3780 4460 4460 25.2
arithmetlctest 1000 8780 10040 10020 9960 13.4
evaltest 10000 17720 25100 22320 21420 20.8
tax 18 12 6 3940 3900 4480 4460 13.1
gtaX 18 12 6 14820 29140 18640 18320 23.6
gtsta gO 67080 80060 81140 78780 17.4
gtsta gl 67460 80340 81520 79200 17.4
mkvect 1000 320 440 360 360 -

getv 10000 340 1880 480 480 41.1(*)
putv 10000 360 1900 500 500 38.8(*)
checked getv 10000 900 2440 1140 1120 24.4(*)
checked putv lOOOO 960 2500 1200 1160 20.8(*)
getv local 10000 280 - 320 320 -

putv local 10000 300 - 340 320 -

checked getv local 10000 840 - 980 960 14.2
checked putv local 10000 900 - 1020 1020 13.3

Table 5. 0

As the system was developed and improved this set of tests were run

again and again (whilst recognising their deficiencies) to show what

changes, if any, had been wrought. To put these figures in context a

- 5 .18 -

complementary set of figures for the shallow system and the final

percentage differentials are also given. in the initial stages oniy the

Griss suite was used as a performance measure, because it did not

seem worth running anything more complex until most bugs and

inefficiencies had been removed. Thus Table 5 .0 charts the coarse

honing of the system.

in some cases version i is faster than the existing system and than

any of its successors. This is because early versions of the compiler did

not produce checking of ca r/cd r access which is normally the default.

Many of the tests show no marked difference between the systems; this

is to be expected when there are no fluid variables in use and no

binding. New/i is the preliminary version of the system, where

assembler was oniy used as a linkage mechanism to BCPL code; new/li

has full assembler support; new /iii is the most recent version, which has

the revised data structure (orig inaiiy the value chains really were aiists)

and several optimisations on the cache operation. Blanks Indicate that

the difference is not worth measuring. The starred (*) times above are

of little or no consequence. The length of the test is so small as to

prevent a statisticaiiy significant result. Also note that clock resolution Is

fa irly coarse giving a latitude of *60msecs.

The Griss tests

These are made up of 24 small programs, each one evaluated many

times inside a loop to give a measurable time. The majority of the tests

show little or no difference between the systems, and indeed this is to be

expected in many cases, since the problems do not exercise anything to

do with the changes that have been made (except for function ca lls). In

many cases what may be written as a function call will be compiled open

- 5 .19 -

(e .g . lADDl) and so the test executes within a single body of code.

Table 5.1 shows the results of running the Griss tests on ail of the

different binding schemes.

X
(cache)

X reroot Shallow deep deep
(cheat)

en^ytest 10000 240 260 220 220 240 240
slowen^ytest lOOCX) 2120 2960 1620 1660 3160 1840
cdrltest 100 2660 2660 2360 2280 2680 2640
cdr2test 1(X) 2660 2640 2380 2320 2680 2640
cddrtest 100 1780 1780 1580 1520 1820 1780
listonlycdrtest1 15860 15840 13960 13600 16020 15800
listonlycddrtest1 21160 21080 18940 18120 21460 20900
listonlycdrtest2 15780 15860 14460 13540 16020 15780
listonlycddrtest 2 21220 21100 19480 18120 21460 209(X)
reversetest 10 2000 1940 1780 1760 2020 1940
myreverseltest 10 2(XX) 1940 1740 1760 2040 1940
myreverse2test 10 1920 1880 1680 1700 1940 1880
lengthtest 100 4460 4460 4060 3560 4500 4440
cirithmetictest lOOO1 9960 10360 8920 8780 10660 9820
evaltest 10000 21420 2S4O0 20420 17720 45660 26960
tak 18 12 6 4460 4440 4020 3940 4500 4400
gtak 18 12 6 18320 22860 14800 14820 24280 16500
gtsta go 78780 90480 76340 67080 139660 77880
gtsta gl 79200 90820 76720 67460 140020 78280
mkvect 1000 360 400 300 320 420 340
getv lOOOO 480 940 340 340 1020 980
putv 10000 500 960 360 360 1020 1000
getv check 10000 1120 1560 900 900 1680 1600
putv check 10000 1160 1620 960 960 1740 1660
getv local 10000 320 320 300 280 320 300
putv locaJ. 1(X)00 320 320 300 300 320 340
checked getv local 960 940 880 840 980 960
checked putv local 1020 1000 900 900 1040 1000

Table 5.1

There are some significant results amongst these:

(i) emptytest and siowemptytest; the first uses small integer

arithmetic, so that it contains no other function call and

everything has been open compiled; the second uses generic

functions and therefore must use fluid lookup for the function,

thus providing some indication of the cost of fluid interrogation

- 5 .20 -

in comparison with the yardstick system.

(ii) lengthtest involves a function call to length, but note that the

relative differences for the various systems are quite small

because length itself is recursive and the compiler applies an

optimisation in the se if-ca il in this case.

(ill) arithmetictest provides almost exactly the same information as

(i i) , except that a recursive factorial is substituted for length

(iv) evaltest is interesting in that it does give a reasonably true

indication of the relative speeds of the interpreters. The

relevance of this figure depends on the split between interpreted

and compiled code.

(v) tak and gtak provide one of the more significant results,

because although it is recursive and hence the se if-ca il

optimisation is incorporated, it does Involve frequent calls to

generic functions in the case of gtak.

(vi) gtsta gO and gtsta g l is rather sim ilar to the evaltest in that the

results hang on the efficiency of the interpreter, and so should

be seen in the same light.

(v ii) array access tests. in some respects, these are the most

misleading of ail - obviously a different binding mechanism

does not affect the time to access an element of a vector, but

there is a fairly large disparity in the figures. This is because

It becomes a test of the cost to access a fluid variable (the

- 5.21 -

vector) plus the cost of a generic function call (PUTV/GETV).

For this reason additional tests were made using a local binding

of the vector.

Some of the above tests seem to indicate that the non-cached

version is occasionally faster than the cached version: one factor in this

is clock resolution (which is between 20, 40 and 60 msec observed), it

is also known that performance varies with memory size (a consequence

of wait states, clocking and backplane speed).

The figures for the non-cached version are interesting since they

show the cost of the basic interrogation scheme. As might be expected

rerooting is about the same as shallow binding (note that none of the

tests actually involve binding fluid variab les). Deep binding is provided

because that has equivalent functionality to the new model: although the

Impiementation is simpie, the price is quite high. Deep binding with a

different lookup method for the function position serves two purposes;

(i) to show how the cost of function lookup dominates the cost of

deep binding

(ii) a reasonable comparison with the method employed In

INTERLISP

The Bover test

The code for this test is generally available, and is therefore not

given. it is part of a theorem prover developed by Boyer and Moore

[Boyer & Moore 79] to analyse a restricted class of LISP programs for

validity. It does not seem to offer a very general Indication of

- 5 22 -

performance, because the program structure is somewhat unusual. It is

recognised as having a very high frequency of function cali and CONSing

operations. The most heaviiy used function accesses and sets a fluid

variabie (profiling reveals it Is called approximately 500,000 tim es). This

variabie is strictly global since the test is semantically fiat and there is

no fluid binding or unbinding.

Shallow 87.22
X (cache) 94.60
X 124.38
Rerootlng 87.26
Deep 128.16
Deep (cheat) 95.71

Table 5. 2

Compilation

Speed of compilation is an interesting case to consider, not oniy

because the compiler is a reasonably large program making fairly heavy

use of fluids and fluid contours, but also because it is dependent on the

form of the program being compiled. This last feature should, given a

variety of inputs, mean that the results are generally applicable. Times

are given for building four packages which form part of the programming

environment of Cambridge LISP.

(I) reader and pretty printer

(ii) avi tree builder and manipulator

(ill) structure editor

(iv) disassembler

Finally, there are figures for building the REDUCE algebra system

- 5. 23 -

ft

which Is made up of 68 modules and about 30000 lines of code.

X X
(cache)

reroot Shallow deep deep
(cheat

In core 1431.48 1544.64 1160.50 1144.20 — —

Compiler 714.64 741.64 574.60 620.74 - 1984.74
Readprint 108.22 122.98 83.82 100.22 223.30 151.06
AVL-tree 25.86 29.23 19.48 23.60 52.38 35.14
Disasm 57.56 72.36 47.42 52.90 130.78 90.00
Editor 149.34 184.10 120.42 139.92 332.20 230.58
REDUCE 3297.28 — 2941.90 2882.16 — —

Table 5. 3

Reduce test

The justifications for this last test were outlined in the prologue to

this section and need not be reiterated.

Sheaiow 177.70
X (cache) 182.26
X
Rerooting 170.50
Deep -
Deep (cheat)

Table 5. 4

Speed of context switch

This leaves but one area uninstrumented: the very feature which Is

the object of this work, namely context switching. It Is rather difficult to

find any general programs to test this facility because so few widely

available systems provide it. In fact the only Implementations to support

It properly are YKTLISP and INTERLISP. Some small tests have been

devised, the results from which should probably be viewed In the same

light as those for the TAK function. The programs are Eratosthenes'

sieve for generating prime numbers, an exampie of possibilities ilsts.

taken from the iNTERLiSP manuai (1978 edition p12 .18). a program to

produce continued fraction approximations to square roots and a

tree-walking function to solve the same-fringe problem. The latter

- 5 .24 -

program is discussed In some detail In Chapter 8 In the section on

applications. The sieve was used to generate the first 100 prime

numbers, the possibilities iist to produce the first 2000 Fibonacci

numbers, the square root generator to produce the first 20

approximations for all the numbers with non-integral square roots up to

100 and the tree-waik was applied to compare two trees of 8192 leaves

with equal fringes. The code for some of the above Is given In an

appendix to this chapter.

X
(cache)

X reroot deep deep
(cheat)

Sieve 23.12 28.78 173.68 169.54 12.72
Fringe 20.34 22.62 34.92 25.52 15.36
Possibilities 7.64 9.32 8.54 11.98 9.62
Cent. Frac, sqrt 7.90 10.94 8.90 14.82 10.00

Table 5. 5

Chapter summary

The two parts of this chapter assess the analytical and the practical

measurement of several binding mechanisms. The results seem to

Indicate that the new model varies between 5% and 15% slower than the

original shallow bound Cambridge LISP system. This Is better than all

the other models bar rerooting which Is to be expected since in the face

of stack-like behaviour rerooting is equivalent to shallow binding. There

are several other benchmarks which have been collected Into a suite by

Richard Gabriel. It is intended to try to obtain these programs to

conduct further tests in the near future. Comparison of cost of context

switching is not so comprehensive but those examples which have been

run show the new model to good advantage and have been surprisingly

bad for rerootlng.

- 5 25 -

Appendix to Chapter 5

(I) Sieve of Eratosthenes program.

(de from (n) (conz n (from (add! n))))

(de filter (p x)
(cond

((ze rop (remainder (ca r x) p)) (filte r p (sdr x)))
(t (conz (ca r x) (filte r p (sdr x))))))

(de sieve (i) (conz (ca r i) (sieve (filte r (ca r I) (sdr I)))))

which is invoked by (sieve (from 2))

(ii) Tree walking program. See section on tree searching In Chapter 8.

(ill) Possibilities list program.

(dm possibilities (gfn)
(subst gfn gfn ' ((lambda (posslist) (poss l g fn)) n il)))

(de possl (g fn)
(closure

(prog (tmp)
(cond

((n u ll posslist)
(cond

((eq (catch nil (gfn)) 'finished)
(return 'f in is h e d)))))

(setq tmp (ca r posslist))
(setq posslist (cd r posslist))
(return tmp))))

(dm au-revoir () (throw au-revolr n il))

(dm adieu () (throw adieu fin ished))

(de note (x)
(cond

((n u ll posslist) (setq posslist (neons x)))
(t (nconc posslist (neons x)))))

(de fib (f l f2)
(closure

(progn
(note f l)
(note f2)
(setq f l (plus f l 12))
(setq f2 (plus f l f2))
(au-revo ir))))

which is invoked by (setq foo (possibilities (fib 0 1)))

(iv) Continued fraction square root approximation. See section on
algebra in Chapter 8.

(N.B. CONZ Is a form of CONS which suspens its second argument)

— 5 .26 —

CHAPTER 6

Generalisations of environment labelling

This chapter stands on its own; alone it can be viewed as a

Justification (a t ieast in part) for the work described in the other

chapters, or as an adjunct to the main theme. The primary task Is to

show the serendipitous benefits of the environment iabelling approach and

then to discuss how this can be used to clarify the semantics of LISP

systems.

Lambda calculus and scope

Lambda calculus did not contain any decree as to the scoping of

variables: it was not necessary. indeed the concept is meaningless in

that context because the calculus is a reduction language. There is only

one sense In which the language could be said to be (lexically) scoped;

that Is after all a-reductions and all /3-substltutlons have been made to

remove free variable references. If LISP Is to be lexically scoped, then

this view demands that programs either be represented as vast single

expressions or be split into manageable fragments with no free variables.

Put another way, this avoids /3-substltutions - but at the price of making

them the reponslbillty of the programmer. He must simulate the effect by

passing such variables down as extra arguments (essentially an

a-reduction) or by a global variable. This latter Is particularly messy

and dangerous since first the present value must be saved, then the new

value assigned before use. On exit the old value must be restored.

This reveals another problem, viz error exits; It is still likely to be

desirable to restore the previous value of the global In this case. This

means that ail possible return paths must be covered by an ERRORSET

— 6.1 —

followed by an assignment of the saved value to the global and then the

propagation of ERROR. Alternatively this may be hidden in a form called

UNWiND-PROTECT.

In the calculus, an idealised machine would replace a free variable

reference with a reference to the expression which would yield its value.

As a consequence of the reduction process (be it normal or applicative

o rd e r) , sooner or later the expression should be replaced by Its value

and thus the free reference is satisfied. Work by [Wadsworth 71] has

shown that either technology or computer architecture (o r both) are

Inadequate to Implement x-reductlon directly (I .e. the a, /3 and n

opera tions). Alternatively this may show the folly of trying to mimic a

mathematical concept too closely by machine and perhaps Indicates a

lack of a deeper understanding of the mechanics of reduction. Whatever

the pros and cons of this debate, McCarthy (e t al .) did not try to copy

the reduction process exactly in the first implementation of LISP. The

outcome was the use of dynamic scoping and applicative order

evaluation, both of which have received severe criticism over the past few

years.

The purpose of dynamic scoping is to provide an on -the-fly

D-substitutlon mechanism, so that a free variable reference is satisfied by

finding the value bound to that name, rather than by substituting an

expression for the name and waiting for the evaluation process to reduce

that. in some measure this explains the adoption of applicative order

evaluation despite the attractive characteristics of normal order. The

other reason, remarked upon in passing in the history. Is what was then

known as the FUNARG problem [Moses 70]. its development is charted

in greater detail in the latter part of Chapter 0. Normal order evaluation

— 6.2 —

could be provided by creating a closure of each actual parameter

defining expression and binding that to the formal parameter. Left at this

stage the solution corresponds to call by name semantics. Alternatively,

on the first interrogation of the parameter, the continuation could be

evaluated, and the result replace the present binding of the identifier

(known as call by need). Whatever the implementation scheme, the point

to be made is that dynamic scoping is a fundamental part of forming the

link between LISP and x-caicuius and its omission from the language is a

serious dilution of semantics and expressive power. Purely lexically

scoped LISPs are much weakened languages since the programmer must

find ways to effect the /3 substitutions required by other means as outlined

above.

Local and dynamic variables

The foregoing should not obscure the fact that many bound variables

are only locally (lexically) scoped In practice, that is they have only

been introduced to rename an expression (a -reduction). This

Information can be used advantageously to aid efficiency In compiled

LISP, when the bindings of such 'loca l' variables may be stored and

loaded from the function frame, rather than using the more complex

procedure associated with variables whose dynamic scope Is greater than

that of the x-expresslon in which they are bound. Indeed, It Is more

common for variables to be used locally than free. Dynamically scoped

variables are important because they permit an elegant method of

parameterising large bodies of code; in some sense they are used more

to direct rather than contribute to the computation. It is here that an

Interesting dichotomy arises; the mechanism used in compiled code to

provide free variable lookup is also the backbone of the interpreter (and

must be so to permit compiled and interpreted code to be interleaved) -

- 6.3 -

except that the interpreter uses the dynamic mechanism to bind all

variables. This means (with some notable exceptions [Blair 78]

[White 82]) that ail variables are treated as variables which might be free

elsewhere. The interpeter does this by default (because the classical

binding methods cannot take this into account) whilst the compiler must

be told whether a variable use is local or free and generates code

accordingly. This leave a semantic trap for the unwary, and more

importantly denies the definition of a compiler as a semantics preserving

program transformer. There are three solutions to this:

(i) treat all variables as if they would be used 'free ' when

compiling as is the case with INTERLISP [Teitelman et al. 72]

(ii) proclaim that the compiler and interpreter have different

semantics and that the programmer must beware! This is the

case with MACLISP [Moon 78] and most of the other widely used

dialects.

(ill) extend the interpreter to get it right

A feature which distinguishes the binding method developed here

from the others Is the availability of a direct handle on the environment

and on the relationships between the different environments. This makes

It possible to provide both local and dynamic scoping of identifiers in

multiple environments within the interpreter. As remarked earlier the

majority of variables are only used locally (i . e . within the x-expresslon

where they were bound), so it is reasonable to default to local binding

and only create it such that the binding is freely visible when expressly

requested. For pragmatic purposes this distinction must be known at

— 6 .4 —

binding time because the local and fluid bindings are kept in separate

structures. in addition, it must be done this way because the local

binding is only a function of the interpreter and must not impinge on the

efficiency of compiled code which already supports local variables by its

own method, whereas free (flu id) variables are shared between the two

parts. There is still one area of uncertainty arising when compiled code

calls the interpreter (EVAL). This question is discussed In greater detail

in the next section. The mechanism for variable access etc. is largely

unchanged, the only cost being in the overall speed of the Interpreter,

but this must be weighed against the semantic advantages of mixed

loca l/flu id declarations and in particular the very positive benefit of

ensuring that ail compilation does is make the program run faster, not

faster and differently!

Before explaining how the method will work there is one open

question which was passed over in the preceding paragraph; how to

determine whether a binding is local or free. The existing mechanism In

widespread use (and also adopted In Cambridge LISP) Is arranged by the

functions FLUID and UNFLUID (o r SPECIAL and UNSPECIAL depending on

the d ia le c t) . The semantics of these 'functions' are rather curious.

Their purpose is to communicate to the compiler that the variables in the

argument list are to be treated as free variables. UNFLUID removes this

Information. However, these functions cannot occur in the body of a

function as that would be compiled as an invocation of the function

(UN) FLUID to take place when executing the function in which the call

occurs. To acheive the desired effect the invocation must appear at the

outermost (i .e . global) level, hence their scope is global or Indefinite.

So, although their implementation is functional (in the impure sense),

the ir nature is declarative. Yet it should be necessary to consider this

— 6 .5 —

information only within the scope of a single function. Also, this global

usage may lead to other occurrences of the same variable unintentionally

being bound as fluid which raises two objections:

(i) the program (taken as a whole) may not be as efficient as it

could be

(i i) the program may not behave as predicted (and the bug is

somewhat more subtle to detect than a straightforward omission

of a FLUID declaration)

There seem to be two solutions to this problem:

(I) as used In MACLISP. LM-LISP and COMMON LISP, the

DECLARE statement is either embedded in a function or at top

level, e.g.

(DECLARE (SPECIAL FOO))

(II) describing the mode of a variable in the formal parameter list

as in LISP 370. e.g.

(LAMBDA ((FLUID FOO)) . . .)

it is reasonable to default to creating a local binding of a variable:

there are three reasons for this:

(i) usage as a local is more prevalent than as a free variable

— 6.6 —

(Ii) the fluid mechanism is more expensive (in compiled code that

is) and so it is beneficial to encourage the use of the cheaper

methos when the former Is unnecessary and, more Importantly,

unintentional

(ill) it is important that occurences of free bindings should be

significant and require positive action on the part of the

programmer rather than happen by accident.

Now to describe the binding process itself and the associated

variable access procedures. For each variable In the formal parameter

list, the first stage is to determine whether it is to be bound local or free

- this w ill, of course, depend on the mode declaration scheme chosen.

If the mode is free, the existing binding process is followed (see

Chapter 3) ; conceptually a new environment-vaiue pairing is joined to

the front of the value chain of an identifier. If the mode is local a new

environment-value pairing is constructed as previously, but It is Joined to

the front of the local value chain. Needless to say this will provide local

scoping in multiple environments unlike the method described in

[White 821.

Variable interrogation now first searches the local chain using the

criterion that the correct value is the one in the pair whose environment

Is equal (nay, even EQi) to the current environment. This implies a

search 0(n) where n is the number of local bindings of a name. In fact

this can be improved by the corollary that should any environment met in

the search be an ancestor of the current environment, then there is no

local binding of that name and so the free binding must be sought using

the existing algorithm. Note that the existing algorithm searches for the

— 6 .7 —

first equal or ancestor binding whilst local binding is checked by equal or

not ancestor. in some part this shows the power and flexibility of a

scheme in which relationships between environments (o r binding nodes)

are encoded explicitly, rather than using the im plicit relations existing in

an ordinary data structure. The actions for assignment and unbinding

can easily be deduced from their descriptions in the initial implementation

In Chapter 3.

A suitable notation for this is stiii under development as part of a

rationalised version of LISP called LIER (Padget & Fitch 84]. As always

the hardest part is finding the best compromise between convenience and

accuracy it is attractive to proclaim that a ll variable references will be

treated as local and that free variable references must be embedded in a

distinguishing form (hence any other free reference would be regarded

as an e r r o r) . This is a means of ensuring that the code is strictly

carrying out the programmer's intent. This attitude also possesses a

symmetry in that free variables must be distinguished both at the point of

declaration (binding) and use. It is not clear whether this imposes an

unreasonable burden. A particular consequence is that the CAR of most

forms would have to be embedded, since ail functions are fluid and this

therefore implies a free reference. Alternatively, one admits that the

usage of the function position of a form is generally different from the

argument positions and waives the embedding requirement.

Outstanding problems

Although this scheme tidies the semantics of LISP it stiii leaves two

problems: one is related to the function SET, which has always created

difficulties; the second is merely a deficiency in the underlying systems

(i .e . Cambridge LISP and PSL but not YKTLISP).

— 6.8 —

Firstly, the problem still remains that it is not possible to provide

named access to local variables in compiled code without abandoning the

use of frame locations to hold local values. Instead exactly the same

mechanism as employed in the interpreter must be used, rather than one

that appears the same in ail but this case. Consider the two following

(admittedly pathological) functions;

(setq X 2)

: ; named access to a local variable

(de foo (x)
(p rin t X)

((lambda (y) (prin t (eval y))) x)
(print X))

output after (foo 1) interpreted compiled
1 1
1 2
1 1

then evaluating x 2 2

: : named assignment to a local variable

(de bar (x)
(print X)
((lambda (y) (set y 5) (prin t x)) x)
(print X))

output after (bar 1) interpreted compiled
1 1
5 1
5 1

then evaluating x 2 5

In the absence of any guidance, the compiler has made x' a local

variable and the name 'x' has been lost, so that when It comes to be

accessed or modified the local 'x ' no longer exists by name, and the

free binding of x is used/updated, which is in conflict with the behaviour

of the intepreted function. Given that it is desirable to continue the

practice of compiling local variables and references to them away into

frame locations, how can these matters be reconciled? One course of

action would be to restrict SET to work only on fluid bindings (i .e .

ignoring locals) in the interpreter (a case for the réintroduction of

- 6 .9 -

CSET?). Then the second function in the above would at least be

consistent. Unfortunately the problems runs deeper. This solution

cannot of course be applied to EVAL, since it is the heart of the

Interpreter and is used to interrogate both local and fluid bindings, so

seeking to control this problem at the variable access/update level Is

incorrect, it would not be possible to write either of these functions (or

produce analogues of the cases they exemplify) without the QUOTE

function, or some means of proscribing evaluation (e .g . FEXPRS and

MACROS).

Having identified the source of the problem (le . delayed evaluation)

does not lead to a solution unfortunately - apart from the drastic measure

of excising such forms from the language. The better strategy Is to

avoid losing the names of local variables In compiled code by maintaining

Information about names and respective frame locations - in essence a

display. Naturally such a scheme will make compiled application of EVAL

(to atoms) and SET more complex, but given the relative infrequency of

use in this manner, performance is not likely to be unduly affected,

although it does increase the cost of building a frame.

The second matter alluded to above is more ironic than a major

cause for concern. A method has been described for implementing

mixed loca l/flu id variable bindings In multiple environments as an

extension of the new binding scheme presented herein. The Cambridge

LISP system (and indeed PSL) is based around a single control stack

(partly a consequence of BOPL), so that although multiple environments

using locai variabies wiii work interpreted, they wili not work complledi

The solution to this is obvious, but involves a lot of work and is presentiy

beyond the scope of this thesis. The necessary ideas for managing

— 6. 10 —

multiple control environments are quite weii understood [Bobrow &

Wegbreit 73], and couid be taken as a basis for future work. Initial

ideas suggest that a more thorough investigation of this problem (In

conjunction with consideration of garbage collection, in particular

stacking CONS) would be beneficial.

Chapter summary

This chapter is something of an oddity; it does not belong directly to

the main subject matter of the thesis and yet it is inltimately tied up with

it both as a pre-cursor (the section on x calculus and scoping) and as

a consequnce (the provision of local variables and general scoping). It

also sets out areas for further research into more rigourously formalised

dialects of LISP and the practical Issues that must be solved In order to

implement what could be viewed as a complete' system (e .g . multiple

control environments and named access to iocai variab les).

— 6 . 1 1 —

CHAPTER 7

Memory Management

Garbage collection

The matter of garbage collection is broken into two areas; first, the

ciassicai probiem of recycling redundant memory which arises in ail list

processing systems and second, a question that is particular to this

scheme, the recycling of environment labels. Environments are created,

used and discarded in the same way as other structures. The recovery

of the storage associated with them falls within the compass of the

existing garbage coiiection mechanism just as with the other muitlple

access environment modeis. in discarding an environment, an

environment label Is lost and Is also therefore a candidate for recyciing.

When an environment is discarded part of the tree labeiling has aiso

been thrown away, so although the tree is stiii self-consistent it is not as

compact as it might be. For this reason it is worth considering how the

evaluation tree might be reiabeiied. Although the rate of utilisation of

labeis is fairiy low In relation to the limit on the size of a label Imposed

by the immediate representation of integers. It Is reasonable to be

concerned about the approach of that limit.

The immediate representation of a LISP integer Is an object the same

size as a machine address in a tagged architecture (M68000, NS16032,

IBM 370 se rie s). This is not true in the case of an untagged

architecture (e .g . VAX), where the foiiowing observation does not hold.

As long as label usage Is dense (a property which can be maintained by

an extension of garbage collection, see the section on relabelling the

environment tree in this chap te r), the system must run out of memory

- 7. 1 -

(addressability) before it can run out of labels. The reasoning is that

because an environment descriptor, which is the only place an

environment label can occur, is a larger structure than an immediate

Integer and the maximum integer is aiso the highest address, then

memory must be exhausted before the lim it on the size of an integer is

reached. This lemma can only be preserved if there are no gaps in the

use of labels. An environment descriptor occupies eight words in the

present implementation. An immediate integer Is, of course, one word.

This suggests that only one eighth of the labels can be used before

reaching the top of memory. In practice this ratio will be smaller

because other data structures will also be filling up the heap. Altogether

this means that there is a large margin for overshoot in the utilisation of

labels. It is aiso worth remarking that because there is more than a

factor of two between the usage of labeis and the allocation of memory

there must be a garbage collection before the labels reach overflow.

Therefore if reiabeiiing is an integral part of garbage collection it is

Impossible for the labels to exceed their limit.

Implications for storage reclamation

Despite the fact that the various LISP systems to which this new

binding regime has been added have different garbage collection methods

(m ark and sweep in Cambridge LISP and stop and copy (In several

forms) In PSL) the strategic modifications have been very sim ilar. Over

the development of the new scheme two approaches have been taken to

effect the physical representation of the model. This experience has

served to highlight the importance of the form and connectedness of the

data structure (o r structures) used to model the environment, and how it

affects the cost of garbage coiiection.

- 7 .2 -

For the Initial system (and some long period of its development),

the physical representation was closely allied to the naive conceptual

model. That is. the environment was a chain of environment descriptors

as shown in Figure 3. 1 and the value chains were constructed as

association lists rooted in the identifier to which they referred. When

considering an identifier in garbage coiiection in the original system, the

practice was simply to mark the value ceil, but the value cell now

contains a more complex object; not ail of the entries In the value chain

may be accessible If they are bindings from a once preserved and now

discarded environment.

Laying aside the question of uninterned identifiers - since that would

only complicate the discussion - all the identifiers must be accessible

from the object list (ob iis t). Therefore by traversing this structure all the

value chains can be visited, but what are the criteria to decide which

elements of the value chain should be marked? If the binding

environment of a value is an ancestor of the current environment, then

clearly that pair can be marked. That however Is not sufficient; the

object of the whole exercise is to reintroduce environments as values

available for the use of the programmer, therefore some of the values

may themselves be environments. So a secondary condition Is that If the

binding environment itself has been marked, then the pair should be

marked. This creates yet another problem; a newly valid environment

structure may be found whilst scanning the obllst, which may

retrospectively make invalid bindings valid, so to ensure that everything

that should be marked Is marked, it is necessary to scan the obiist

repeatedly until there is a pass in which nothing is marked.

This implies a minimum of two scans and is potentially very

- 7. 3 -

expensive. An alternative but somewhat questionable strategy (which

could only work on virtual memory systems) takes advantage of the fact

that for housekeeping purposes, the environment descriptor contains a

list of the variables bound in that environment. Given this information,

the garbage co llector could mark the identifiers by recursing - of course

that could uncover more environment values and hence more recursion.

At this point in the development of the system, environment descriptors

were constructed from LISP vectors and were tagged as such which made

such a solution much more difficult to Integrate because of the

non-recursive marking routine. (That is when ascending a structure It Is

not possible to distinguish between an environment descriptor or a LISP

vector - neither can one use a flag to Indicate state because there Is no

recursion' to save It In the correct con text).

That constitutes the first part of tracing the obiist: marking has been

restricted to those environment/vaiue pairs whose environments are still

accessible. That means that the value chain of an identifier contains

some marked and some unmarked cells In the same structure; to rectify

this matter another pass Is made over the obllst (and any uninterned

Identifiers found on the way) appiying a function to clean the value

chains. This simpiy descends the chains, splicing out unmarked pairs,

leaving a structure in which aii the marks are correctiy and consistently

placed. Now it is safe to proceed with reiocation and compaction

phases.

As can be seen from the above, garbage coiiection in a multipie

environment system seems rather complicated - but it need not be so.

The process in deep binding is straightforward; there is a structure

rooted at the current environment. Every iive environment can be

— 7. 4 —

reached (and hence traced) from there. There are two reasons why

garbage collection got out of hand:

(i) a separate datatype was needed for environment descriptors

(ii) variabies and their binding environments were not explicitiy

linked. There was only an implicit relationship in the existence

of an environment/vaiue pairing on the value chain of an

Identifier. This aii points to a need for a better data

structure.

These observations iead to the construction of a new physical

representation of the environment (as described on Chapter 3) which had

the twin advantages of changing unbinding to constant cost per variabie

and making the whoie environment a properly connected structure, so

that just as with deep binding by tracing from the current environment,

everything which should be marked will be marked. At the same time

some new datatypes were Introduced Into the system: the environment

descriptor, the continuation and the binding vector. The continuation

and the environment descriptor were included largely for cosmetic

reasons, but the other was critical to the garbage collection strategy.

The binding vector contains all the bindings and the linkage

Information for a particular environment, and internally it has a rather

unusual format. The value chain of an identifier, rather than being

constructed from CONS ceils to make an association iist, becomes a

doubly linked iist, the adjacent ceil containing the environment value pair

(see Figure 3 . 2) . These four words (two links, environment and value)

are part of a vector containing all the Information about bindings made in

“ 7 . 5 —

that environment. The iinks in fact refer to positions inside other

(binding) vectors, but other bindings in the vaiue chain may no longer

be accessible (in the strict sense) so it is important to prevent

Information in such binding vectors from being marked. This is why it is

essential to have a separate datatype for binding vectors. Normally all

the entries in a LISP vector should be traced and marked; for a binding

vector only each fourth entry (the vaiue) need be marked. There is no

need to trace the environment pointer since that is how the binding

vector was reached in the first place, and the reasons for not touching

the up/down links have already been explained. The value chains still

need to be cleaned In a manner sim ilar to that described before, and so

some indicator must be left to show that a particular binding should be

retained in the vaiue chain structure. To this end, the code which

traverses a binding vector puts a mark in each of the downward iinks.

The unlinking process is notionaily as previously discussed with only some

detail changed. Thus overall garbage collection cost (as much as this

can be quantified) Is a little more than for existing multiple environment

systems, because of the need for an unlinking phase.

Although it is not usual to take account of garbage collection time

when running system benchmarks. In analysing a technique with such

fundamental effects, the question must be considered. A radical

improvement in execution speed cannot always recompense for profligate

use of space, since this wili increase the frequency of garbage collection

and could lead to an overall lengthening of the elapsed time for the

computation. Both space and time were a particular concern In the

Initial association list based system, not so much that there was a high

turnover of memory, but because the actual cost of garbage collection

was at ieast 2-3 times higher - and had no upper bound. The present

— 7. 6 —

version is much better in this respect being bounded and around 1.5

times as expensive.

This does not address the question of how frequently garbage

collection occurs. It is always a problem emulating multiple environments

within a system only intended to handle programs with a simple stack-like

behaviour. One must perforce use heap to allocate these environments

and yet frequently program behaviour wiii be stack-like, leading to a

higher rate of memory turnover where previously the space would have

been allocated and reclaimed by using a stack. There are two ways to

combat this:

(i) manage function frames in a separate heap [Bobrow &

Wegbreit 731

(ii) optimise allocation and réutilisation of certain structures, that Is

by maintaining freelists.

Eventually, some technique to support (i) is desirable, but not

always practicable, certainly in the short term, so to ameliorate the rate

of memory turnover, the second line of reasoning was pursued. Two

major sources of memory usage can be identified - environment

descriptors and binding vectors. Because of the variable nature of the

latter. It was decided that the overhead Involved In managing and using a

freelist of those objects would probably outweigh any advantage gained for

garbage collection. Environment descriptors however are fixed size

objects and hence easier to handle. The tactic Is very simple: on

leaving a contour, attach the environment descriptor (ED) to a freelist,

as long as the environment it describes has not been preserved. When

- 7 .7 -

creating a new contour, an ED is taken from the free chain if possible,

otherwise new memory is allocated at the same time as for the binding

vector. At garbage coiiection this freelist is discarded so that the space

can be recovered by the system.

Relabelling the environment tree

As remarked at the opening of this chapter there is a secondary

garbage collection' probiem peculiar to this model; because the

environment label is finite and preserved nodes will certainly be discarded

at some time it is important to have a technique for reclaiming the dead

nodes and so recycling their labels. In fact it does not strain the

analogy to compare the problem (and its solution) with the compacting

and relocating coiiection strategy. The terminal (leaf) nodes of the

evaluation tree are identified, then after setting the label generator back

to Its initial state, the whole tree is traversed and relabelled. Thus all

the labeis in the tree become compacted (that is, there are no unused

labeis) and in a sense the environments have been relocated to their

new labels, but of course the relationships between the environments

have been retained. This is a simplification of the process involved only

being intended to draw out the similarity between traditional garbage

collection and the relabelling problem.

In practice It seems some restrictions may have to be placed on

when it is feasible to relabel consistently, in particular there should only

be one open' leaf node. That implies that relabelling cannot be done

from inside a context switch. A little reflection reveals that this is to be

expected and quite reasonable because there is no consistent labelling

for a single tree which permits either of two nodes to be extended. So

providing this criterion is not violated, relabelling may take place as an

- 7.8 -

integral part of garbage collection.

Why is it even necessary to consider the relabelling problem?

Beside the points raised in the opening section of this chapter regarding

the limitations on label size there is one other important feature, if two

labeis are in the same subtree then the ancestry test is 0 (1) otherwise it

is 0 (n) as discussed in Chapter 2. Reiabeiiing results in a tree in

which aii the labels are in the same generation subtree and so leads to

an overall performance improvement.

Here is an informal description of a simple algorithm to relabel the

environment tree which assumes that there is only one currently active

leaf node as described above. During the mark phase of the garbage

collector all the currently iive environment descriptors wili be visited. A

list of ail the terminal nodes (distinguished by the sequence and span of

the label being equal) is constructed. This does not utilise any extra

store since the nodes can be Joined together using the generation entry

of the descriptor as a link field because that is now redundant

information. This list is ordered by the age of the leaf nodes with oldest

first. It Is a simple test, achieved by comparing the magnitude of the

sequence part of the label. At the end of this stage a thread has been

constructed from the left-m ost to the right-m ost terminal node of the

evaluation tree passing through ail the nodes in between in order. The

next job is to carry out the actual relabelling. The counters sequence

and generation are set to zero. The method is as follows:

for each terminal node

(I) descend to the root of the evaluation tree counting the

— 7. 9 —

nodes which have not yet been relabelled

(ii) ascend creating new labeis on the way

sequence is taken from the counter sequence which

Is then incremented

span is set to the value of sequence at the base of

the tree plus the count of unlabelled nodes

calculated in the descent phase

generation is set to zero

To help in the understanding of this scheme various stages of the

reiabeiiing of a tree are shown in Figure 7 .0 . It now only remains to

explain how to determine whether a node has been relabelled or not.

The obvious solution is some sort of marker bit but another pass over the

tree would be needed to remove them. An alternative method relies on

the observation that all environment descriptors have an entry to point at

the root of their subtree. In the relabelled tree this entry will have to be

the same for ail nodes and so by building a new root node (one can

ensure that there is enough space left in which to do this) and making

the descend and ascend code a little more careful the new root can be

used as an indicator. At present there is no facility in ASLISP for

relabelling the evaluation tree because the development of a more

general algorithm than the above is stiii sought. The purpose of this

section is to show that it can, in principle, be done, albeit with some

restrictions.

- 7. 10 -

(0 00 0)

(1 1 0)

(4 4 1) (5 5 1) (3 3

(2 00 O)

(a)

(1 2 0)

(5 5 1) (3 3(2 2 0)

(2 00 0)

(b)

(1 3 0)

(3 3 0) (3 3(2 2 0)

(2 00 0)

(C)

(0 00 O)

(1 3 0)

(5 5(3 3 0)(2 2 0)

(4 00 O)

(d)

Figure 7. 0

Future work In garbage collection

it is ciear from the second section of this chapter that muitipie

access environments Implemented within a single control environment

model imposes a not insignificant burden on both interpreter and garbage

collector, so It Is a matter of continuing research on how this can be

improved, if not resolved.

Of prime concern is to find how to take advantage of the frequent

stack-like behaviour and allocation of memory (Stallman 80] where It Is

used to maintain the access environments. This is closely tied up with

the allocation of control environments, which are also largely stack-llke

In behaviour and indeed in many systems are constrained to be so

because the control frames are built on a linear structure which does not

permit their retention. if the access environments were allocated out of

the same linear structure, they can be reclaimed immediately they are no

longer required. Of course this is no solution, but only a pointer in the

direction of where to look for one, since such a scheme does not admit

the preservation of access environments, which was the original purpose

of the exercise.

It seems advantageous to pursue the notion of allocating control and

access together because this provides a simple mechanism for the

recovery, or rather réutilisation, of memory. Once the machinery for

such a system exists, it is only a small step from this position to the

idea of making CONS create new pairs on top of this 's tack', so that all

structures caused by a particular function invocation are associated with

that invocation/environment. This has three potential benefits;

- 7.11 -

(I) locality of reference (o f real Importance on virtual memory

systems)

(II) retention of a context (and the structure within it) without

imposing a garbage collection overhead

(ili) deallocation of a context and the structure within it en masse

Points (ii) and (ill) are really two sides of the same coin, and

direct consequences of handling storage in larger blocks, rather than at

the granularity of the CONS cell. In this model, the physical

representation of a context is comprised of four elements;

(I) the environment descriptor

(ii) the control environment

(ill) the access environment

(iv) structure created by the current environment

This is much the same as existing implementations. The key is that

(iv) is identifiable as a single object rather than a collection of pointers

to various locations In ths store. If the local context can be Identified In

this way, it seems this may permit the garbage collector to ignore it in

some sense, because all the cells may be declared live (a t some cost of

retaining unreferenced cells within a context). In the same way when

leaving or discarding an environment, it may be possible to declare the

whole local structure dead and hence reclaim that space.

- 7 .12 -

A problem in both cases is the matter of external references: In the

firs t, references to external structure may be hidden In the local

structure, and so were the local context and the external context to be

relocated relative to each other, there might be some difficulty in

resolving these cross-context links. In the second, references Into local

structure may be retained by such means as assigning to a free variable

or by returning a result. Of course neither of these restrictions applies

In the case of assigning or returning an atomic value. The next question

is how to detect these intrusions; the simplest place would appear to be

at their creation, such as in the functions SET, SETQ, RPLACA and

RPLACD using reference counts on the function frame. Non-local values

can be recognised by virtue of the memory address, because the

addressing itself is organissed into segments (corresponding to a

function invocation) and pages within these segments, so that as a

particular Invocation requires more memory it is allocated to and

associated with It by address. The idea of reference counts on storage

blocks owes something to the garbage collector In Interllsp-D [Bobrow &

Clark 79] [Bobrow 80] (descended from the BYTELISP implementation on

the Alto [Deutsch 80] [Deutsch & Bobrow 76]) as indeed does the use of

local (in page) and non-local (out of page) address. The applications

however are somewhat different, their intention being the mangement and

collection of self referential list structure using reference counting. More

recently a sim ilar approach was suggested In (Llebermann & Hewitt 83] as

an extension of [Baker & Hewitt 77] and [Baker 78a], but this seems

overly complicated, places far too much responsibility on the microcoding

of primitive operations, makes many of the basic LISP functions relatively

expensive and above ail is merely a gedanken exercise.

- 7 .13 -

Chapter summary

The problems encountered during the extension of the original

garbage collector have been described. The initial approach was crude

and expensive, indeed no upper bound could be placed on the time

required to complete the process. A better understanding of the problem

lead to a fairly drastic revision of the underlying data structures, which in

turn transformed the process into one taking bounded time and only

marginally more costly than the original. A side effect was an

Improvement in the cost of unbinding.

The discussion then turns to the matter of collecting environment

labels. Although the question has been considered quite closely and an

interim solution developed (but not implemented), this is very much a

matter for further research. The (personal) objection to the Interim

scheme stems from the restrictions as to when it may be applied.

Informal Ideas suggest that these restrictions can be overcome at the

price of a little more complexity. An attractive possibility is the idea of a

continuous relabelling algorithm, that is one which is always relabelling

the tree In a manner sim ilar to an Incremental garbage collector. The

major problem with this is maintaining a consistent relationship In the

labelling all the time. This may be feasible by using negative and

positive labels by analogy with from - and to - space In copying

collectors.

- 7 .14 -

CHAPTER 8

Applications

Use of continuation

This chapter is divided into four major sections identifying the areas

which the author has investigated so far for algorithms which might

benefit from the use of continuations. These are computer algebra, data

base query evaluations, tree searching and. at a more abstract level,

the implementation of objects (in the Smalltalk [Ingalls 80] and Actor

[Hewitt et al. 79] sense). It should be stressed that this chapter

discusses potential applications of continuations. In all cases a small

amount of code has been written and tested (prototyped) to see if the

metaphor is suitable for the problem addressed. The programs are

purely exploratory and nowhere near approach the needs of production

systems.

Algebra

A large part of the material of this section appears in the paper of

Appendix 0 [Fitch & Padget 84]. but some additional commentary is In

order as is a discussion of some extensions of the ideas presented

there. The paper describes a medium sized algebra system supporting

rational polynomials, which is capable of solving several widely

recognised algebraic problems (f and g series [Sconzo et al. 65]. series

reversion [Hall 73] and the Y(2n) problem [Campbell 72]). It became

apparent that continuations used to provide lazy evaluation, or more

accurately directed lazy evaluation (an idea akin to the annotation

scheme in [Burton 8 2 b]). might be advantageous in some of the basic

algorithms for manipulating polynomials [Padget 82]. This was brought

- 8 . 1 -

about by considering the methods of Altran [Brown 73] and In particular

the sparse polynomial multiplication mechanism [Johnson 74]. A program

description of the algorithm is given in Figure 8 .0 below (simple

univariate ca se).

% multiply polynomials a and b
(de p i’* (a b)

(cond
((numberp a)

(cond
((numberp b) (times a b))
(t (pn l* b a))))

((numberp b) (pnl* a b))
(t (p!+ (tp l* (term a) b) (p i* (nterm a) b)))))

% multiply a term and a polynomial
(de tpl* (a p)

(cond
((numberp p) (cons (term a) (times (coeff a) p)))
(t (conz (t l* a (term p)) (tp l* a (nterm p))))))

% add polynomials a and b
(de pl+ (a b)

(cond
((numberp a)

(cond
((numberp b) (plus a b))
(t (conz (term b) (p!+ (nterm b) a)))))

((numberp b) (conz (term a) (pl+ (nterm a) b)))
((equa l (exp (term a)) (exp (term b)))

(conz (tl+ (term a) (term b)) (pl+ (nterm a) (nterm
b))))
((iessp (exp (term a)) (exp (term b)))

(conz (term b) (pl+ a (nterm b))))
(t (conz (term a) (p!+ (nterm a) b)))))

% where term - leading term of polynomial
% nterm - reductum of polynomial
% exp - exponent of a term
% conz - a semi-lazy cons which suspends the second

argument

Figure 8. 0

It Is useful to be able to compute the terms of the product in order

(where the ordering is system dependent, but either highest to lowest

degree or vice versa) for two polynomials P and Q;

- 8. 2 -

P (X) Q (X) E ai xi Q(x)
.1*0

where n is the leading degree of P and â x* is the ith term of P. in a

dense representation, this objective is realised quite straightforwardly:

all the individual products for summing lie along the diagonal of a matrix

as in Figure 8.1.

This is not the case, however, for sparsely represented polynomials.

The terms do not appear regularly. Consider Figure 8 .2 which shows

the matrix of products for two such polynomials and Is annotated to

indicate the order in which the terms should appear. Obviously this is

not regular or predictable as In the dense case and will depend on the

structure of the individual m ultip lier/m ultip licand. A naive solution would

be to generate all the terms of the solution and then to sort and merge

them. This is expensive in terms of both speed and space, not least

because terms can be produced which will later cancel (a phenomenon

known as intermediate expression sw e ll). Certain properties of the

computation can be deduced: each row (o r column) of the matrix

represents the products of a single term and a polynomial. The leading

term of

^ i- 1 X Q(x)

must be of lesser degree than that of

C i
X Q(x)

and indeed ail the terms of a single column are in order of descending

degree because they represent the polynomial:

- 8.3 -

Matrix for results of (dense) - (x® + Ox* + X + 1) (

. 4 5 6 71 X® 0 X 1

3 4 5 6Ox 0 0 0 0

X* K» " 0 ^ X' * X* "

X» X» ^ 0 ^ X* ^ X® *

X» Ox* X 1
Figure 8. 1

Matrix for results of (sparse) - (x̂ i + X® + X* + 1)

_ 8 . 10 _ 11 , 121 x^ X* X* 1

x^ x> ® X® ® X4 X* ^

X® X ® ^ x io 5 X® " X* ®

X^l xJ-e 1 Xi5 2 X ® 3 x-^ ^

y7 X* X* 1
Figure 8. 2

sum of products
4̂
+

+*

Figure 8. 3

C j

X Q(x) where aj x is the jth term of P(x).

The question Is how to merge these polynomials to form the final

product In such a way that the terms are generated In order? The

program given above constructs a tree of communicating processes

arranged as In the diagramof Figure 8.3. The * nodes are simple

demand driven generators which produce successive terms of the

Intermediate polynomials. Control Is really Invested In the + nodes which

arbitrate between the two streams fed to them, returning the higher

degree term (and demanding another of that stream) or adding the

leading term of each stream If they are of equal degree (and demanding

a new term of e a ch). The program also has the Intriguing behaviour

that a + node will splice Itself out of the tree (o r more likely remove

Itself from the head of the tree since those generators should be

exhausted earlier) when either of Its generators are exhausted. This

considerably complicates any formal cost analysis such that It Is only

possible to determine an upper bound which In practice would never be

reached. The methods described In [Johnson 74] use two schemes for

organising the Intermediate products, a heap (so that probe = 0 (n log

n)) and a list (probe = 0 (n)) . The program given here Is conceptually

equivalent to the latter. Interestingly Johnson reports that for all but the

most wildly unstructured polynomials, list Insertion performs better in

practice than the heap because of the extra overheads Involved.

A sim ilar technique can be applied to division, but a rather curious

dilemma arises because division returns two results: a quotient anda

remainder. Therefore the answer cannot be represented as a single

stream because, firstly. It would be difficult to distinguish the remainder

part when reached and secondly, many algebraic algorithms examine the

— 8.4 —

remainder before using the quotient. The primitives quotient and

remainder are quite easy to supply; It Is the transition between the two

that creates the problem. A naive definition of divide might be

(de p i/ (a b) (cons (pquo a b) (prem a b)))

but this Is extremely wasteful because calculating the remainder

necessitates the calculation of the quotient. The way round this seems

to be to generate all the quotient (I .e. eagerly), then leave the

remainder lazy as soon as It Is discovered, and return the pairing of one

completely evaluated object and one partially evaluated object.

More recently further features not documented In the paper have

been added to the system. These additions all have one thing In

common; the use of contlnuatlosn to provide an object-llke mechanism

(Includlnga means of describing m em o-functlons). Current research Is

directed at a more comprehensive use of objects throughout the system

based on the Ideas of [Norton & Marks 84], see also the last section of

this chapter.

One of the new facilities Introduced supports the description,

generation and manipulation of Infinite power series. Once defined (by

some set of Initial cond itions). the series may be treated like an object,

the messages sent to It being requests for the n^^ approximation. In this

first Implementation, the specification of the power series follows that

outlined In [Harrington 78] and shares some concepts with the system

built on top of Scratchpad [Qriesmer & Jenks 72] described In [Norman

75] In that (as Indeed must be the case for Infinite series) termsare only

calculated when needed. In the simplest cases a series could be

— 8.5 —

defined by naming an expansion variable and giving a coefficient

function, for example

GO

E
1=0 II

where the expansion variable Is x and the coefflcent function Is 1/11 This

presumes that all series start at zero which Is not the case and so a

normalisation function Is required to translate the origin In effect e.g.

00
- E x i *

X* 1=0 11

where the normalisation function Is 1/x^. The final generalisation

concerns the exponents of the terms of the approximation. At present

one Is constrained to Integral exponents Increasing by one for each form

of the expansion; clearly this Is too lim iting. The necessary generality

can be provided by one more parameter which will be taken as the

denominator of the power for each term; consider the power series

representation of sin x:

00
sin X - E (-1)1 x*^^*

1-0 (21+1)1

where the coefficient function is (-1) V (2 I+1)I and the denominator of the

power is 1/21+1.

Thus a power series is defined by four parameters:

(I) the expansion variable

(II) the coefficient function

— 8.6 —

(iii) the normalisation function

(Iv) the denominator of the power

The answer to a message sent to a series object is a polynomial

representing the approximation taken up to the nth term, where n was

the message. This work needs to be extended to consider actual

operations on the series themselves (such as addition, multiplication,

exponentiation and Inversion). rather than the minimal expansion facility

available at present.

Another mathematical object which Is d ifficult to handle because of

Its unbounded nature (and has therefore received little attention In the

symbolic algebra field) Is the continued fraction. Continued fractions

have long history, the first description being attributed to Lord

Brouncker. the first president of the Royal Society. In 1624. A

continued fraction expansion can provide a rational approximation to

fractions, roots and analytic functions amongst others. Such expressions

can be written for example

1 + 1
1 + 1

1 + 1
1 + 1

which also conveys how they can be computed, but conventionally they

are written so:

1 1 1 1
1 + 1 + 1 + 1 +

- 8 .7 -

This continued fraction approximates the Golden Ratio (V5 - 1)

2

For a given continued fraction expansion

bo + ^ ^ ±1
bj_ + bj. + bg +

which may also be written as

GO

+ K (&n/bn)

the term £n Is the nth partial approximant. The nth approximant can be
bn

computed by the following difference equations:

Initially 1, A©* b©# O, 1

“ bji An_i+ Â -g

®n “ bjj Bn—1+ ®n-z

Thus It can be seen that the state of an expression Is captured In

the variables Ap-j.. An-z and B n - i. Bn-z, and further approximants may

be computed assuming the existence of a function to compute an. bn

pairs. The strong relationship between the mechanism to support power

series and the mechanism to support continued fractions Is now more

obvious. As an example, consider the code In Figure 8 .4 which

constructs an expansion to generate approximations to square roots of

Integers (this code Is not optimal In the sense that It Is known that

continued fraction representations of square roots are pe riod ic). Also

note that the numerator of the partial approximant for the square root

- 8 . 8 -

approximation Is always unity, hence the optimisation In the computation

of the recurrence relation.

(de cfsqrt (n)
(prog (an bp rp Irootn A n - i B p - i A p-z Bn-z>

% Initialise the generators
(setq an (setq Irootn (Isqrt n)))
(setq rn (d ifference n (times an an)))
(setq bn (quotient (plus Irootn ap) r^))
(setq Ap-z 1)
(setq Bp-z 0)
(setq A p_ i Irootn)
(setq Bp_i 1)
% value Is a function which returns successively better
% approximations to Vn
(return (closure

(prog (Ap Bp)
% compute and roll the CF recurrence relation
(setq Ap (plus (times bp A p-^) A p -g))
(setq Bp (plus (times bp Bp-j,) Bp_z))
(setq Ap— 2 Ap—̂) (setq Ap—̂ Ap)
(setq Bp-z Bp-^) (setq B p - i Bp)
% then crank the partial approximant generator
(setq ap (difference (times bp rp) ap))
(setq rp

(quotient (difference (times ap ap)) rp))
(setq bp (quotient (plus Irootn ap) rp))
% the latest answer
(return (cons Ap B p)))))))

Figure 8. 4

Gauss employed continued fractions In extensions of the work by

Euler, Lambert and Lagrange In studying hypergeometrIc series and

ratios of such series. For example

arctan z - z z^ 4z* 9z*
1 + 3 + 5 + 7 +

Obviously the mechanism for computing the nth approximant (e ither

symbolically or numerically) remains unchanged from that used In the

square root code. Only the function to compute the partial approximants

Is different, which Is as might be expected. Representing such analytic

functions by symbolic rational approximation provides a sim ilar service to

that of the power series. It Is known [Jones & Thron 80] (p . 202) that

— 8.9 —

for numerical approximation continued fractions are very accurate and fast

because of very high rates of convergence. However, some questions

hang over their use In symbolic approximation: this Is largely due to

problems In computing the error bound when truncating and the

behaviour at poles and branches, particularly In the case of composition

of approximations.

A more general method of approximating power series was later

developed by Frobenlus and Fade, resulting In the Fade table, the

entries of which are known as Fade approximants. These are also

closely related to continued fractions but as yet no work has been done

on their Implementation using the above techniques (see [Geddes 79] for

other computational m ethods). It has been suggested [Czapor &

Geddes 84] that Fade approximants will be of use In the solution of the

differential equations which arise during the course of the Risch

integration algorithm [Risch 69].

Database queries

This subject has been the focus of much research over the last ten

years, especially the relational model propounded by E .F .C odd. A

particular example of the scheme with a novel control structure

mechanism Is CODD (Coroutine Driven Database) described In [King &

Moody 83] and In detail In [King 79]. The coroutine Implementation

follows that described In [Moody & Richards 80], whose operations have

recently been reiterated In [Haynes & Friedman 84].

A query In the command language of the DBMS Is broken Into

several smaller simpler steps, then In the compilation and subsequent

execution of the query each of these steps maps to an Individual

-8 .110 -

coroutine. The full chain of coroutines corresponds to the complete

query. This can be best explained by an example. Consider the

(Informal) request:

List all books
1

main clause

by Jane Austen
2

qualifier

published after Pride & Predjudice
3

qualifier

The query can be broken Into three distinct parts; a main clause and two

qualifiers as shown. To expose the nature of the solution consider those

three distinct parts as a generator and two filters; now the structure

becomes clearer:

DB —> books => Jame Austen —> after P & P => list
(d) (c) (b) (a)

The main clause Is rather like a filter as well since it ensures that

the tuple ejected from the database are book descriptors, but Its

operation Is somewhat more complex than the other two stages of the

pipeline and so the distinction should be preserved. It can now be

seen that there is a strong sim ilarity between the physical Implementation

of the query and a lazy evaluating stream. Given a demand to print an

answer, stage (a) requests a tuple from (b) which requests one from

(c) which requests one from (d) which extracts one from the database,

(c) checks that the tuple satisfies the condition that the author field

contains Jane Austen, If so It Is passed back to (b) . If It falls the test

another tuple Is demanded of (d) until the list Is exhausted or a tuple

passes the test. A sim ilar process takes place when (b) receives a

tuple; thus any tuple reaching the listing process must satisfy all the

conditions In the original query and so Is displayed or kept to make a

- 8.11 -

new relation.

The advantage of employing such an evaluation mechanism Is

(I) the simplicity and (perceived) elegance of the processing of

queries

(II) very few Intermediate results exist

(iii) (a corollary of (ID) efficient usage of main memory (no large

Intermediate data areas) and efficient usage of disk space

(large Intermediate results might have to be written to d isk).

The latter two points are not so significant In the first example but

are very Important In the case of projections, joins and computing

transitive closures of relations [King 79].

The control mechanism In the query described above Is quite simple

and fails naturally Into the style of LISP using recursive function calling.

This is significant when the query structure is tree-like , but this limitation

to a tree structure can severely affect performance In practical

applications. It Is observed In [King 79] that the compiled' queries

contained common subexpressions or, say. In computing two relations for

keeping, one was the complement of the other. Both of these cases

could give rise to a large amount of duplicate processing. By

Introducing the copy node and the two output lo in node considerable

Improvements In efficiency were made. Unfortunately this changes the

structure of the query from a tree to a directed acyclic graph which

precludes the use of recursive function calling to process It. Instead a

- 8 .12 -

genuine coroutine mechanism Is needed.

This can be provided by the primitive CONTINUEAS, which given a

continuation transfers the return address of the caller to the callee and

switches to the context specified In the continuation and evaluates the

body. This can be viewed as a combination of GOTO and a context

switch which brings us back to the question of full jumps discussed In

[Strachey & Wadsworth 74] and in Chapter 1. Until ASLISP Is augmented

with multiple control environments this operator cannot be supported.

Two other powerful features described In [King 79] are the collate

and build operations. These also serve to confound the desire for a tree

structured query; collate takes Input from several places In the pipeline

or pipelines, build (which acts like a daemon) Is used In the compilation

of the transitive closure of a relation and Is activated by a tuple reaching

the build node. It Is a disadvantage of the pipeline philosophy that the

tuples passing through must be In key order, because this means that In

constructing the transitive closure of a relation It Is not permlssable to

make a cycle In the query In order to pass those tuples which have not

yet satisfied the relation through the testing mechanism again. A

solution to this is found in build: it constructs a copy of a specified

section of the pipeline above its position In the pipeline (and puts

another build node at the head) and then lets the computation proceed.

Again these features cannot be Implemented simply via recursive function

call (that Is expression continuations) but demand an operation such as

was described In the previous paragraph.

Tree searching

This technique is at the heart of most artific ia l Intelligence and expert

- 8.13 -

system programs (although many applications arise outside this fie ld. Ai

Is probably the most extensive u se r).

Knowledge bases are generaly organised hierarchically, that Is as

n-ary trees. Without loss of generality this discussion can Ignore

questions such as the contents of the nodes of the tree and how the

links within the tree are represented. Using such a knowledge base

often Involves searching from one position until Information which fits the

requesting template Is found. It may be that this "first fit" is not deemed

sufficiently good by the procedure that Initiated the request and the "next

fit" Is required. Thus If the search Is programmed In such a way that It

can suspend Itself when a solution Is found, when It Is subsequently

resumed It Is easy to find the next solution. This technique is often

called backtracking search.

As an example of how continuations might be used In this kind of

application a small program Is presented In Figure 8 .5 which

demonstrates a suspending tree walk. In this case as part of a solution

to the well known question of whether two binary trees have the same set

of leaves (In order) I .e. the same fringe problem. The function leaves

acts as a kind of generator on the tree structure passed to it as

argument, remembering by means of a continuation every occasion on

which It Is forced to make a decision between two alternative paths. The

decision procedure in this case is trivial since the program Is designed to

make an In order traversal of the tree, but the principle remains the

same, and could be extended as outlined above. The other function

seqeq Is also generally applicable; it is simply Intended to compare the

contents of two streams for equality, so any two structures which can be

linearised using a generator can be compared with this function.

- 8.14 -

(de seqeq (s i s2)
(cond

((null (cd r s i))
(cond

((null (cd r s2)) (eq (ca r s i) (ca r s2)))
(t n i l)))

((eq (ca r s i) (ca r s2))
(seqeq (sd r s i) (sdr s2)))

(t n i l)))

(de leaves (tree cent)
(cond

((a tom tree) (cons tree co n t))
(t (leaves

(le ft tree)
(closure (leaves (righ t tree) c o n t))))))

Figure 8. 5

A more concrete application of continuations to control backtracking

search arises in augmented transition network (ATN) parsers. Such a

parser has been sketched, based on the description given in [Charnlak

9t al. 80], The program itself Is relatively small, but that Is as large as

it Is ever likely to be since that Implements the core of the ATN

interpreter. The breadth of the parser's capabilities is determined by the

number and complexity of grammar rules defined. This means the

system could be extended and enhanced just by adding more rules

because the whole process Is data driven. It Is hoped to pursue this

topic more actively In the near future.

The oblect based model of programming

A model of programming and program structuring which has recently

come to the fore Is known as object oriented programming. It has the

advantage of enforcing the kind of structuring Into programs and systems

which previously depended on the morals and standards of the

programmer. Another consideration Is the extra security provided. In

particular for non-prlm ltlve data types, where these are Implemented as

objects themselves.

- 8.15 -

There are three reasons which make the object abstraction valuable:

(I) structural Integrity

(II) modular Integrity

(iii) resource Integrity

These wiil be discussed in turn, following a brief description of the

FLAVOR system [Weinreb & Moon 81] and alternative implementation

schemes. Structural Integrity Is exemplified by the use of an object to

provide an abstract data type (In the example below, a stack). Because

the support mechanism and data structure of the stack are hidden It

cannot be Inadvertently or Intentionally abused - It Is secure. Modular

Integrity relates to how complex facilities (e .g . editors, compilers) which

are comprised of many functions can be viewed as objects with just a few

well defined entry points (methods) (e .g . editf, editv, editp or compile,

comprop) whilst the rest of the machinery remains Inaccessible to the

user. Resource Integrity refers to how an object can be used to protect

resources (e .g . disks, files, network nodes, etc In an operating

system). This bears a strong resemblance to structural Integrity, but Is

sufficiently different still to demand a separate heading. In the same way

that an object can be used to constrain operations on a data structure It

can also constrain the operations on a resource [Hewitt & Atkinson 79].

The programmer who avails himself of such an abstract data type

need not concern himself with any details of the physical representation

(Indeed It would be possible to change It without affecting the user's

program as long as the responses to external stimuli were the sam e).

- 8.16 -

This highlights how the modularity Inherent In the concept Is

advantageous; this modularity also ensures that there Is no chance

whatsoever of the user Interfering, either maliciously or accidentally, with

the functions and variables used to Implement the datatype. This last

sentence starts to reveal the connection between the Ideas of objects and

their provision using continuations, since a continuation Involves

environment capture; why should that environment not capture the set of

values which describes an Instance of some higher level data structure?

Then, to use a particular Instance of an object (which Is a c losure). It

Is applied to some argument (often referred to as message-passing)

which Is Interpreted by the object, some operation Is executed, and a

result returned. This view of objects using closures Is not new. Indeed

It has been considered In several systems (e .g . [Weinreb & Moon 81])

and rejected on grounds of efficiency.

The FLAVOR system in LISP m /c LISP Is somewhat static In nature,

and In particular the relationship between objects Is set In concrete once

they are compiled. This last restriction Is a consequence of the

compilation and message decoding schemes used; when compiling a

FLAVOR (in particular the message dispatch tab le), all the messages

which may be received by the FLAVORS this FLAVOR Inherits are collected

to form a single jump table. Thus, when handling a message, this table

Is used like a swltchon. case statement or a computed goto. This Is the

heart of the problem; once a FLAVOR (o r any of Its ancestors) has been

so compiled, the definition of new methods wiil not have any effect on It.

What Is needed Is a more general dispatching mechanism but of sim ilar

efficiency. The tags of the swltchon used In the FLAVOR system are

atoms, and so It might be thought that this would demand a linear

search (=> 0 (n) dispatch cost). However It Is generally possible to

- 8.17 -

establish some ordering on a set of atoms. This ordering could be

alphanumeric, but it is also reasonable to use relative position In store,

although a linearising compacting garbage collector Is necessary to

preserve the latter predicate. Given such an ordering the Jump table

may be scanned using binary search (=> Odog n) dispatch cost). It

cannot be expected to exceed this bound, but It can at least be

equalled. The existing scheme Is limited because of the linear data

structure, but fast because It Is sorted and can be viewed as a tree.

Can flexibility be found without sacrificing speed? Obviously a more

flexible structure Is an explicit tree, but that in itself cannot guarantee

the necessary performance, since that Is only obtained when the

branching factor Is regular, so the extra sophistication of the AVL-tree Is

adopted. Recent results [Gonnet 83] suggest that there may be better

methods than the AVL scheme for balancing trees; this will be

Investigated at a later date. The cost of adding a new method to a class

may now be higher since the tree must be rebalanced but such an

operation Is Infrequent relative to the Invocation of a method. Using the

AVL-tree, the time taken to decode a message is Odog n) . So in

summary: this Implementation of objects Instantiates an object by means

of a closure, so the nature of the object Is much closer to the rest of

the system, and uses AVL-trees to monitor the list of methods understood

by a class.

The use of a tree for storing the methods allows a class to be

enhanced at any time whether It Is complied or interpreted, but when

taken in conjunction with environment labelling an Interesting new

potential casn be seen; specialisation or refinement of a class. The

key to this Is apparent In the way In which environment labelling provides

- 8.18 -

a very powerful and simple handle on environments and the relationships

betwen them; the label can be used to scope arbitrary data structures

as long as the accessor functions know how to use that information.

Thus the method entries In the tree may be labelled according to the

context In which they were created; because refinements will only be

made In the context of an existing Instance, the methods will be added to

the tree and labelled with that context. The only Instances able to see'

those methods will be that which was originally refined and any further

Instances descended from It.

A provisional syntax has been developed and some examples of Its

use are given In Figure 8 .6 which defines a class called stack.

A class Is defined as follows

(defclass <name-of-class>
<instance-var-llst>
<class-propertles>
<method-deflnltlons>)

<name-of-class> Is self explanatory

<lnstance-var-llst> Is of the form

((<lnstance-var-l> <default-value-l>)

(<lnstance-var-n> <default-value-n>))

where <lnstance-var-l> Is a variable name and <default-value-l>ls Its

default Initial value at the creation of an Instance. This may be

overridden at creation time If the class has that property.

- 8 . 1 9 -

<class-properties> are specified as a list of atoms:

(I) get; generate methods to access the Instance variables

(II) set; generate methods to modify the Instance variables

(III) new; Instance variables may have new values assigned at

creation time

(iv) augment; methods may be added to this class (that Is there

will be a handler for the addmethod message)

(V) excise; methods may be removed from this class (that Is there

will be a handler for the remmethod message)

(vl) redefine; methods may be redefined (redefmethod message)

<lnherltance-llst> a list of classes from whom to Inherit methods

<method-definltlons> a list of methods.

This last argument Is optional. The messages (and their associated

methods) are defined at the declaration point of the class. This Is

particularly Important for highly secure classes which would normally

preclude the addition of methods. A sim ilar effect could be achieved by

removing the addmethod and remmethod facilities once the extra

definitions are complete.

- 8.20 -

(defclass
stack %name of class
(s (stackl-bottom)) %one Instance variable and Initial value
() %no extra properties (fo r security)
() %nothing to inherit
((empty

(lambda (s) (eq (ca r s) s tackl-bottom)))
(push

(lambda (s I)
(rp lacd s (cons (ca r s) (cd r s)>)
(rp laca s i)))

(pop
(lambda (s)

(cond
((eq (ca r s) stackl-bottom)

(e rro r . .))
(t (p rog i (rp laca s (cadr s)) (rp lacd s (cddr s)))))))

))

Figure 8. 6

Therefore the class stack has a single instance variable whose

default value Is the list (s tackl-bottom). It has no other properties so its

integrity cannot be violated. It is a basic structure and so has nothing to

Inherit. Finally the methods for the three known messages are defined

(In addition to DESCRIBE and CLASS which are generated automatically).

These are defined at the point of declaration of the class since It was

decided not to permit augmentation of the class for security reasons.

Thus an invocation of (stack) returns an object which is an instance of a

stack, and it is Initially empty. The only possible operations on this

object are DESCRIBE, CLASS, EMPTY, PUSH and POP; It can be shown

informally that those do not undermine the consistency of the data

struncture and thus we have structural Integrity. Initial Investigations

show that this mechanism lends Itself well to the description of algebraic

data structures such as polynomials, and handles well the question of

polynomials over different fieids and factorisation domains. In this

respect the scheme appears to share some features with SCRATCHPAD

[Jenks 84], though that Is an operator centred system whilst this is type

centred. A considerable amount of work In this direction has latterly

- 8.21 -

been published In reports on the NEWSPEAK system [Foderaro 83].

What all this serves to show is that objects provide a way of typing

structures. Although this Involves restricting operations on structures,

their use does not seem to be as obstructive to the programmer as the

strong lexical, and more recently, polymorphic scheme proposed In other

languages.

Large pieces of system software such as the LISP compiler are made

up of many separate functions, very few of which have any application

outside the needs (o r context) of the compiler Itself. Generally there

are a few well defined entry points to this morass of code e.g . compile

and comprop. The existence of all those functions raises two concerns:

(I) modification or redefinition of Internal functions (Intentional or

otherwise)

(II) the large proportion of the namespace occupied by functions

irrelevant to the user

A crude solution to this position Is to REMOB all but the functions to

which the user should have access. This Is not very attractive and again

raises the debate over Interned and unlnterned Identifiers. One attempt

to resolve the matter Is the concept of the block compiler In which the

set of functions comprising a module are compiled together with a

defined set of entry points. This causes all references to the Internal

functions to be 'compiled away', an Idea analogous to what often

happens to non-flu id variables in LISP compilation, so such functions do

not then exist as LISP objects. The drawback with both of these methods

- 8.22 -

is the removal of the name - which is in some sense what is wanted,

since it is what is perceived as the only way of controlling access to the

function - because that precludes tracing and debugging of the module.

The parallel starts to become clearer; the compiler is an object which

understands a few messages (com pile, com prop), the majority of Its bulk

is to be hidden so that It cannot interfere or be interfered with by users

programs. That mass can be obscured by ensuring those functions are

defined only in the context of the compiler, thus modular Integrity Is

obtained. This does not solve the second question, namely the density

of the symbol space, which with the above. Is still very much a topic for

further research. Some strategies worth Investigating are the scoping of

the oblist structure, and the use of local oblists (I .e. within objects).

The third case in which objects are useful Is In resource protection.

Consider the question of controlling access to a file or database.

Several programs may safely have concurrent read access but only one

writer (and no readers) may have access at one time (I .e. the standard

readers/writers prob lem). Applications programs view the resource as

an object to which to send read or write requests (messages). All the

queuing, fairness and starvation are dealt with Inside the object (Informal

proofs are possible [Hewitt & Atkinson 76]) and In fact the resource Is

never open' to the application program as Is the case In other

synchronisation and protection methods (e g monitors, critical regions,

path expressions). It Is this that makes It possible to prove that

starvation and lock-out are Impossible If the Implementation of the

operations within the object satisfy the aforementioned conditions. That

is not such a weak condition as it sounds, indeed It Is considerably

stronger than any of the other schemes can allow, because Inherent In

their design Is the granting of actual control over the resource for the

- 8 .23 -

desired period. Therefore It cannot be guaranteed that a pathological

process cannot usurp the resource. Hence objects can offer a high

degree of resource Integrity.

Chapter summary

Four application areas for continuations have been discussed:

algebra, databases, tree searching and the Implementation of objects.

There are many more. There has not been time as yet for a detailed

Investigation of the use of continuations, even in the domains outlined,

but the Initial response Is promising. In the near future It Is hoped to

spend time on using the results of the more fundamental research that Is

the basis of this thesis. Continuations provide a very powerful and

general means of control although one must beware of trying to apply

them inappropriately.

- 8.24 -

Conclusion

This thesis has identified and explored the feasibility of the only

untried method of managing multiple environments, to wit, the technique

of associating environment with bindings. Previously the binding was

buried in an environment structure (deep binding) or else the run-tim e

system kept track of the changes which took place In the environment In

order to be able to undo them at a later stage (fu ll shallow binding or

re roo ting).

This work is intended to try and solve a practical problem and so to

measure how well this aim is achieved several benchmark programs have

been run on the new system and on equivalent systems with alternative

binding models. The benchmark programs must consider two execution

styles: stack behaviour (i .e . simpiy using function call and return for

control and environment) and context switching (where the environment

plays an active part in the com putation). The results of the former may

be regarded as more significant because they are larger, more general

and widely used. They Indicate that the new model Is slower (In the

range 4%-15% for application programs) than shallow bound (both

without and with re roo tIng). This Is to be expected. The new model Is

faster than deep binding (and Its variants), although the function cell

trick sometimes approaches quite closely. That Is not significant though,

because the technique Is available to any scheme and Is therefore

applicable to the new model If one Is prepared to confuse the

semantics.

The continuation tests comprise a few simple programs by the author

(although the possibilities list program Is based on an example In the

INTERÜSP m anual). Deep binding with the function cell trick often came

out best here, but the new model was always second or even beat deep

binding with function cells. Rerooting was very bad in one of these tests

being even slower than deep binding. It may yet be too early on the

basis of these results to form a firm conclusion but It would seem that

the initial Intention of providing the context switching ability of deep

binding with the variable lookup speed of shallow binding has, to a large

measure, been achieved.

As the work presented here has progressed, it has become more

apparent how Important and how fundamental the continuation is both as

a programming technique for complex control regimes and for reasoning

about and understanding all control mechanisms. Continuations exist in

all programs and systems. The problem is that they are aimost always

implicit (return address on a stack or adjustment of a stack or frame

po in te r). In many respects this is an advantage; if the program is

straightforward in respect of control flow and evaluation context. It would

be tedious to write such things explicitly. Occasionally, however. It is

vital to have access to this Information and to vouchsafe complete

responsibility to the programmer. Here this has been done by explicit

continuations. This permits deceptively and surprisingly small programs

to be written to achieve operations which would either be extremely

complex and obscure or even Impossible without this facility. The tree

searching program is a good example.

The continuation need not be the province of a few esoteric

languages (such as those based on combinators and graph reduction),

nor is it necessary to discard to dynamic scoping in order to make the

closure problem simpler.

The generality of the labelling model leads to facilities which no other

scheme can provide (e .g . scoped property lists e tc .) which are

attractive features for AI programming. The system as It stands would

benefit from further work both to improve efficiency and to generalise the

implementation. Nevertheless It Is conclusive evidence that the

environment labelling method is a competitive binding method, combining

the advantages of deep and shallow binding with little of their

detractions.

References

[Abrahams 66]
P W Abrahams
The LISP 2 Programming Language and System
Proceedings 1966 Fall Joint Conf. pp661-676
AFIPS Press, NJ

[Aho et al. 76]
A E Aho. J E Hopcroft & J D Ullman
On Finding Lowest Common Ancestors in Trees
SIAM J. Comp 1976, Vol 5. No 1. pp l 15-132

[Baker 78a]
H G Baker
List Processing in Real Time on a Serial Computer
CACM April 1978. Vol 21. No 4. pp280-294

[Baker 78b]
H G Baker
Shallow Binding in LISP 1.5
CACM July 1978. Vol 21. No 7. pp565-569

[Baker & Hewitt 77]
H G Baker & C Hewitt
The Incremental Garbage Collection of Processes
SIGPLAN Notices. August 1977. Vol 12. No 8. pp55-59

[Barendregt 81]
H P Barendregt
The Lambda Calculus, its Syntax and Semantics
in Studies in Logic and The Foundations of Mathematics series
North Holland. New York. 1983

[Barron et al. 63]
D W Barron. J N Buxton. D F Hartley & C Strachey
The Main Features of CPL
The Computer Journal. Vol 6. July 1963. p p l34-143

[Barwise & Perry 83]
J Barwise & J G Perry
Situations and Attitudes
MIT Press. Cambridge. Mass. 1983

[Blair 78]
F W Blair
The definition of LISP 1.8 + 0.31
IBM Thomas J Watson Research Centre Internal Report

[Blair 79]
F W Blair
LISP/370 Concepts and Facilities
IBM Research Report RC 7771 (#33639). 1979

[Bobrow & Murphy 67]
D G Bobrow & D L Murphy
The Structure of a LISP System Using Two Level Storage
CACM March 1967. Vol 10. No 3. . ppl55-159

[Bobrow 80]
D G Bobrow
Managing Reentrant Structures using Reference Counts
TOPLAS July 1980. Vol 2. No 3. pp269-273

[Bobrow & Clark 79]
D G Bobrow & D W Clark
Compact Encodings of List Structure
TOPLAS October 1979. Vol 1. No 2. pp266-286

[Bobrow & Wegbreit 73]
D G Bobrow & B Wegbreit
A Stack Model and Implementation of Multiple Environments
CACM October 1973. Vol 16. No 10 pp591-603

[Boyer & Moore 79]
R S Boyer & J Strother Moore
A Computational Logic
Academic Press. New York, in ACM Monograph series

[Brown 73]
W S Brown
The ALTRAN User's Manual
Bell Laboratories. 1973

[Burton 82a]
F W Burton
A Linear Space Translation of Functional Programs to Turner

Combinators
University of East Anglia. Technical Report. 1982

[Burton 82b]
F W Burton
Annotations to Control Parallelism and Reduction Order

In the Distributed Evaluation of Functional Programs
University of East Anglia. Technical Report. 1982

[Campbell 72]
J A Campbell
SIGSAM Problem #2: The Y2n Problem
SIGSAM Bulletin 1972. Vol 6. pp8-9

[Charnlak Gt at. 80]
E Charnlak. J Riesbeck & J McDermott
Artificial Intelligence Programming
Lawrence Earlbaum Associates. New York. 1980

[Church 40]
A Church
The Calculi of Lambda Conversion
Annals of Mathematical Studies 6. Princeton University Press. 1941

[Clarke at al. 80]
T J W Clarke. P Gladstone. C MacLean & A C Norman
SKIM - The S. K. I Reduction Machine
Proceedings 1980 LISP Conference. pp l28-135

[Curry 30J
H B Curry
Grundiagen der kombinatorischen Logik
Amer. J. Math. 1930. Vol 52 pp509-536,789-834

[Curry & Feys 58]
H B Curry & R Feys
Combinatory Logic Vol I.
North Holland. Amsterdam. 1958

[Czapor & Geddes 84]
S R Czapor & K O Geddes
A Comparison of Algorithms for the Symbolic Computation

of Fade Approximants
Proceedings of EUROSAM 84. Springer Verlag (LNCS) 172

[Deutsch 80]
L P Deutsch
BYTELISP and Its ALTO Implementation
Proceedings 1980 LISP Conference. pp231-242

[Deutsch & Bobrow 76]
L P Deutsch & D G Bobrow
An Efficient. Incremental. Automatic Garbage Collector
CACM September 1976. Vol 19. No 9. pp522-526

[Evans 68]
A Evans Jr.
PAL - A Language Designed for Teaching Programming Linguistics
Proceedings ACM National Conf. 1968. pp395-403

[Fitch & Norman 77]
J P Fitch & A C Norman
Implementing LISP in a High-level Language
Software Practice and Experience 1977. Vol 7. pp713-725

[Fitch 82]
J P Fitch
Private Communication

[Fitch & Padget 84]
J P Fitch & J A Padget
A Pure and Really Simple Initial Functional Algebraic Language
Proceedings of EUROSAM 84. Springer Verlag (LNCS) 712

[Foderaro 83]
J Foderaro
The Design of a Language for Algebraic Computation Systems
PhD. Thesis. University of California (Berkeley). 1983

[Friedman & Wise 76]
D P Friedman & D S Wise
CONS should not evaluate Its arguments
Proceedings 3rd International Colloqulm on Automata. Languages and

Programming. 1976. pp257-284

[Galley & Pfister 75]
S Galley & G Pfister
The MDL Programming Language
MIT LOS Technical Report. 1975

[Geddes 79]
K O Geddes
Symbolic Computation of Pade Approximants
ACM TOMS June 1979. Vol 5. No 2. pp218-233

[Gonnet 83]
G H Gonnet
Balancing Binary Trees by Internal Path Reduction
CACM December 1983. Vol 26. No 12. ppl074-1081

[Griesmer & Jenks 72]
J H Griesmer & R D Jenks
The Scratchpad System
IBM Research Report RC 3925 (#17792). 1972

[Griss & Hearn 81]
M L Griss & A C Hearn
A Portable LISP Compiler
Software Practice and Experience 1981. Vol 11. pp541-605

[Griss et al. 82]
M L Griss. E Benson & G Q Maguire
PSL: A Portable LISP System
Proceedings of 1982 ACM Symposium on LISP and

Functional Programming. pp88-97. ACM. New York

[Hall 73]
A Hall
Solution to SIGSAM Problem #3
SIGSAM Bulletin 1973. Vol 26. p p l5-23

[Harel & Tarjan 84]
D Harel & R A Tarjan
Fast Algorithms for Finding Nearest Common Ancestors
SIAM J. Comp May 1984. Vol 13. No 2. pp338-355

[Harrington 78]
S Harrington
Methods for Generalized Infinite Power Series
Utah Technical Report UUCS-78-107

[Haynes et al. 84]
C T Haynes. D P Friedman & M Wand
Continuations and Coroutines: An Exercise in Meta-Programming
Proceedings of 1984 ACM Symposium on LISP and

Functional Programming. ACM. New York

[Haynes & Friedman 84]
C T Haynes & D P Friedman
Engines Build Process Abstractions
Proceedings of 1984 ACM Symposium on LISP and

Functional Programming. ACM. New York

[Hearn 74]
A C Hearn
A Mode Analyzing Algebraic Simplification Program
Proceedings ACM 74, pp722-724. ACM. New York

[Hearn 83]
A C Hearn
The REDUCE-3 Manual
Rand Corporation. Santa Monica. USA

[Henderson & Morris 76]
P Henderson & J H Morris
A Lazy Evaluator
Proceedings 3rd ACM Symposium on The Principles of Programming

Languages. 1976. pp95-103

[Hewitt 72]
C Hewitt
Description and Theoretical Analysis (using schemata) of PLANNER:

A language for proving theorems and manipulating models
In a robot

MIT Al Technical Report 258. 1972

[Hewitt & Atkinson 79]
C Hewitt & R E Atkinson
Specification and Proof Techniques for Serializers
IEEE Transactions on Software Engineering January 1979.

Vol 5. No 1. p p l0-23

[Hewitt et al. 79]
C Hewitt. G Attardi & H Lieberman
Specifying and Proving Properties of Guardians for Distributed Systems
in Semantics of Concurrent Computation. Springer Verlag (LNCS) 70

[Ingalls 78]
D H H Ingalls
The Smalltalk-76 Programming System; Design and Implementation
Proceedings 5th Symposium on Principles of Programming Languages.

pp9-16. ACM. New York

[Johnson 74]
S C Johnson
Sparse Polynomial Arithmetic
Proceedings EUROSAM 74. SIGSAM Bulletin 1974. Vol 8. pp63-71

[Jones & Thron 80]
W B Jones & W J Thron
Continued Fractions. Analytic Theory and Application
Vol 11 of The Encyclopedia of Mathematics and Its Applications.

Addison Wesley

[Kennaway 82]
J R Kennaway
The Complexity of a Translation of A-calculus to Combinators
University of East Anglia Technical Report 1982

[King 79J
T J King
The Design of a Relational Database Management System
PhD. Thesis. University of Cambridge. 1979

[King & Moody 83]
T J King & J K M Moody
The Design and Implementation of CODD
Software Practice and Experience 1983. Vol 13. pp67-78

[Lampson & Pier 80]
B W Lampson & K A Pier
A Processor for a High-performance Personal Computer
Xerox Corporation. PARC Technical Report. 1980

[Llebermann & Hewitt 83]
H Llebermann & C Hewitt
A Real-time Garbage Collector based on the Lifetimes of Objects
CACM June 1983. Vol 26. No 6. pp419-429

[McCarthy 60]
J McCarthy
Recursive Functions of Symbolic Expressions and their Computation

by Machine - Part I
CACM April 1960. Vol 3. No 4. pp l84-195

[McCarthy Gt al, 62]
J McCarthy. P W Abrahams. D J Edwards. T P Hart. & M E Levin
The LISP 1. 5 Programmer's Manual
MIT Press. 1962

[McCarthy 63]
J McCarthy
A Basis for a Mathematical Theory of Computation
In Computer Programming and Formal Systems.

(eds. P Braffort & D H Irschberg). pp33-70
North-Holland. Amsterdam

[McCarthy 77]
J McCarthy
The History of LISP
Proceedings Conf. on The History of Programming Languages
ACM. New York. 1977

[Maier 79]
D Maier
An Efficient Method for Storing Ancestor Information in Trees
SIAM J. Comp 1979. Vol 8. No 4. pp599-618

[Marti et al, 79]
J B Marti. A C Hearn. M L Griss. C Griss
The Standard LISP Report
SIGPLAN Notices. Vol 14. NolO. pp48-68

[Moody & Richards 80]
J K M Moody & M Richards
A Coroutine Mechanism for BCPL
Software Practice and Experience. 1980. Vol 10. pp765-771

[Moon 78]
D Moon
The MACLISP Manual
MIT, Cambridge, Mass.

[Moses 70]
J Moses
The Function of FUNCTION
SIGSAM Bulletin 1970. Vol 4. pp l3 -27

[Norman 75]
A C Norman
Computing with Formal Power Series
ACM TOMS 1975. Vol 1. No 4. pp346-356

[Norton & Marks 84]
A Norton & J O Marks
Private Communication

[Padget 82]
J A Padget
Escaping from intermediate Expression Swell: a Continuing Saga
Proceedings of EUROCAM 82. Springer Verlag (LNCS) 144

[Padget 83]
J A Padget
The Ecology of LISP, or

The Case for the Preservation of the Environment
Proceedings of EUROCAL 83. Springer Verlag (LNCS) 164

[Padget 84]
J A Padget
A New Binding Model for PSL
Utah Technical Report

[Padget & Fitch 84]
J A Padget & J P Fitch
The Rationale of LIER: a considered LISP
Proceedings of RSYMSAC 84. RIKEN. Tokyo

[Richards 69]
M Richards
BCPL - A Tool for Compiler Writing and System Programming
Proceedings of Spring Joint Conf. 1969. pp557-566

[RIsch 69]
R H Risch
The Problem of Integration in Finite Terms
Transactions American Mathematical Soc. 1969. Vol 139. pp l67-189

[Rosser 35]
J B Rosser
A Mathematical Logic without Variables
Annals of Mathematics 1935. Vol 36. pp l27-150

[Schonfinkei 24]
M Schonfinkei
Uber Die Baustelne Der Mathematischen LogIk
Mathematische Annalen, Vol 92. 1924. pp305-316

[Sconzo et al. 65]
P Sconzo. A le Shack & R Tobey
Symbolic Computation of f and g series by Computer
Astronomical Journal 1965. Vol 70. pp269-271

[Scott & Strachey 71]
D Scott & C Strachey
Toward a Mathematical Semantics for Computer Languages
Technical Monograph PRG-6. Oxford University. 1971

[Sleator & Tarjan 83]
D D Sleator & R E Tarjan
A Data Structure for Dynamic Trees
Journal of Computer and System Sciences 1983. Vol 26. pp362-391

[Stallman 80]
R M Stallman
Phantom Stacks
MIT Al-Memo 556. 1980

[Sussman & Steele 75]
G J Sussman & G L Steele
SCHEME: An Interpreter for Extended Lambda Calculus
MIT Al Memo 349. 1975

[Stoye et al. 84]
W Stoye. T J W Clarke & A C Norman
Some Practical Methods for Rapid Combinator Reduction
Proceedings of 1984 ACM Symposium on LISP and

Functional Programming. ACM. New York

[Strachey & Wadsworth 74]
C Strachey & C P Wadsworth
Continuations. A Mathematical Semantics for handling full jumps
Technical Monograph PRG-11. Oxford University. 1974

[Sussman & McDermott 72a]
G J Sussman & D V McDermott
The CONNIVER reference manual
MIT Al Memo 259. 1972

[Sussman & McDermott 72b]
G J Sussman & D V McDermott
From PLANNER to CONNIVER - A genetic approach
Proceedings 1972 Fall Joint Conf. pp l 171-1179
AFIPS Press. NJ

[Teltelman et al. 72]
W Teltelman. D G Bobrow. A K Hartley & D L Murphy
BBN-LISP TENEX Reference Manual
Bolt. Beranek and Newman. August 1972

[Teltleman 78]
W Teltelman
The INTERLISP manual
Xerox Corporation, 1978

[Turner 79a]
D A Turner
A New Implementation Technique for Applicative Languages
SWPE Vol 9. 1979. pp31-49

[Turner 79b]
D A Turner
Another Algorithm for Bracket Abstraction
The Journal of Symbolic Logic. Vol 44. No 2. pp267-270. 1979

[Wadsworth 71]
C P Wadsworth
Semantics and Pragmatics of the Lambda Calculus
DPhll Thesis. Oxford University. 1971

[Weinreb & Moon 81]
D Weinreb & D Moon
The LISP Machine Manual
Symbolics Corporation. 1981

[Weizenbaum 68]
J Weizenbaum
The FUNARG Problem explained
MIT. Cambridge, Mass. 1968

[White 82]
J L White
Constant Time Interpretation for Shallow Bound Variables

in the Presence of Mixed SPECIAL/LOCAL Declarations
Proceedings of 1982 ACM Symposium on LISP and

Functional Programming. pp l96-200. ACM. New York.

Appendix 0

A Pure and Really Simple Initial Functional Algebraic Language

J P Fitch & J A Padget

published in Springer Verlag (LNCS) 174

A Pure and Really Simple Initial Functional Algebraic Language

J. P. Fitch & J. A. Padget.

School of Mathematics.

University of Bath.

Claverton Down

Bath. England.

Abstract

A medium sized algebra system supporting rational functions and some elementary

functions, which is written In the purely functional subset of LISP Is described. This is

used to Investigate the practicability of writing systems in a no-side effect, no property

list, pure style. In addition, using the experimental LISP system in Bath that allows for

full environment closures, ways have been discovered in which eager (applicative)

evaluation and lazy (normal) evaluation strategies can be applied to computer algebra.

The system Is demonstrated on some well known sample programs.

Introduction

Since the early days of computer algebra, systems have been written in LISP.

However in general, they have employed the extended version of LISP that is known as

LISP 1.6 [Quam & Diffie68] and its descendants. One feature of all these programs Is

their use of side effects with both global and fluid variables, and the object-oriented

use of the property list. In this way the programming language used has become

divorced from the mathematical model of lambda calculus which bore It. More recently,

and especially after the Turing lecture by Backus [Backus781. there has been a revival

of interest in the pure functional, zero assignment and single assignment languages.

Evidence of this is the rise of projects such as SKIM [Clarke et al. 80]. ALICE

[Darlington & ReeveSl]. AMPS [Keller et al. 79] on the hardware side, engendered by

the work of [Turner79] and [Burton & Sleep82]. A particular reason for this Interest Is

that in this programming style new architectural concepts of reduction machines and

parallelism are immediately applicable. This is an alternative to the approach of [Marti

& FitchB3).

An open question which has hung over the future of these elegant schemes is

whether it is practical to write large systems whilst still remaining within the constraints

imposed by functional purity. Viewed from a mathematical standpoint there is no doubt

that it is feasible, if only by writing a Turing machine simulator, but the concern of

this paper is with the pragmatics of such programs. We wish to discover the practical

problems in writing a system with the functional paradigm, both in the resulting

efficiency of the code, and the intellectual effort required on our part.

In writing such a demonstration system, the authors had a choice of base

language. By building on the ASLISP dialect of LISP (a compatible extension of

Cambridge LISP [Fitch & Norman771) [Padget83] [Padget841. it Is possible to delay the

decision of whether to use normal order or applicative order evaluation. ASLISP is an

experimental system that provides an efficient Implementation of full environment

closures by a method of environment labelling [Padget & Fitch]. With this new tool we

can experiment with mixed eager and lazy evaluation (by explicit closures) in the same

program. This is equivalent to the node labelling techniques of Burton [Burton82] in a

practical context. Another benefit of the availability of closures is that high order

functions can be applied in a sophisticated manner to overcome the self imposed

discipline of programming style to provide an elegant solution to problems which do

not lend themselves easily to the functional metaphor.

Throughout this paper we have used a MC68000 based computer running the

Tripos operating system, both for our new system and for the implementation of

REDUCE we use for comparisons [Fitch831.

In order to test the system and compare various evaluation strategies, the now

old set of test programs, the f and g series [Sconzo et al. 65]. the Y(2n) problem

[Campbell721 and the series reversion problem [Hall73] have been coded and run.

System Design and' Implementation

In a previous paper Fitch and Marti [Fitch & Marti82] described NLARGE, a small

algebra system for use on a microcomputer which manipulates rational forms based on

multivariate polynomials. As described in that paper. NLARGE is written in a functional

style but not completely pure. It uses a polynomial representation to contruct rationals

which it makes canonical by always dividing out the greatest common divisor, and

ensuring that the denominator is positive. This system was taken as a starting point for

the new functional system and a large number of modifications were made to remove

ali assignments and the destructive use of the property list of atoms. This involved

extensive use of embedded lambda expressions to give the effect of assign-once

variables, the passing of functions as arguments and of course a heavy reliance on

the compiler for the removal of tail recursions. For the majority of the functions of

NLARGE this modification was straightforward. The main areas of difficulty arose in the

parsing of the Input language, and a section below is devoted to this part of the

system. Apart from this, the form used for looping constructs was rather contorted and

was hard to follow. As an example we present In figure 1 the function for raising a

polynomial to an integer power.

The basic data structure used for polynomials Is the same as that in NLARGE,

that is the REDUCE variant of the recursive data structure, but extended to allow

elementary functions as kernels. This common data structure is obviously well suited for

a functional programming style, which to a large extent can be seen In the current

REDUCE sources.

The fundamental algorithms of the algebra system are addition, multiplication,

subtraction and division. A simple Implementation of all these can follow the NLARGE

code except where there is a need for the calculation of a gcd. This is the first place

in our system where we consider a non trivial algorithm. As the system handles

rational forms in canonical representation the gcd algorithm Is fundamental to the

system. This function in NLARGE was the furthest from the required pure style, and so

the opportunity was taken to improve the algorithm used, the reduced PRS algorithm in

NLARGE, to the subresultant algorithm in Parsifal (as the new system is called). It is

with pleasure that we can report that the functional implementation of the subresultant

algorithm is shorter in code than the procedural reduced polynomial remainder

sequence (as would be expected), but also took less time to write, and considerably

less time to debug.

In this main algebraic part of Parsifal we encountered the first problem. When

running interpretively all was well, but when we attempted to compile the system some

deficiencies in the compiler were noted. The compiler we use is a descendent of the

Portable Lisp compiler [Griss & Hearn81]. which deals well with lambda expressions In

the function position of a form, and compiles a separate function for lambda

expressions as arguments. There are circumstances when the compiler should be

forced to declare some variables FLUID, but for good local reasons does not notice. In

fact the code shown in figure 1 is such a case; consider the status of the variable

fn. This Indicates the need for a return to the local functions of LABEL, or some

variant of this.

It is apparent that for efficient use of space we are going to need the compiler

to be smart about tail recursions. In the simple cases there is no difficulty, but when

fluid variables are involved the compiler seems to be over cautious.

In order to make a true algebra system there are a number of other algebraic

functions that are needed. So far the only one of these that we have implemented Is

substitution, which is fairly straightforward, apart from the minor confusion introduced by

substituting a rational form into a polynomial.

Parsing and Printing in a Functional Style

Initially it was expected that this would be one of the most difficult tasks, since

the use of READ admits side-effects. Of course, sooner or later in any applicative

system some form of I/O must be done. It is a question of how well the functional

part is insulated from this (i.e. the degree of integration of I/O at the implementation'

level, or the degree of abstraction viewed at the functional level), and how much of

the implementation may be written in a functional style. The obvious model is the

stream: however this requires lazy evaluation (explicit coroutining is unacceptable), and

hence can only be considered in the second stage system. In the first instance, the

programming style is voluntarily limited to being first order functional. This restriction

leads to a compromise between purity and expediency.

The solution chosen also serves as some explanation of the remark above

regarding insulation/integration. The top-level system driver reads in tokens until a

delimiter is encountered. These tokens are constructed into a list and this is

handed over to the parser. Hence the parser itself never has to read, and so

manages to remain side-effect free. The parser Is a straightforward recursive descent

method, only complicated slightly by the need to 'read' tokens from the list which is

passed down as an argument to each level, and returned as part of the result with

the requisite tokens nibbled off. In this way. the non-functional reading process Is kept

as far removed from the main body of the code as possible.

The system to which we are moving makes extensive use of the closure facility in

ASLISP. This is to great advantage in the parsing process. Being able to demand' a

new token of the input stream permits a more natural style of coding, although it is

still necessary to bind the ciosure at each level or return the continuation as part of

the result to ensure that the correct suspension is evaluated. It is altogther more

satisfactory that reading is now even further removed from the body of the system;

being hidden inside a stream generator.

The general approach to printing has been similar to reading, where at one level

the printer generates a stream of characters, which are printed separately. However we

have noticed that as we moved to a lazy evaluation system that in order to preserve a

natural print style it seems necessary to evaluate the answer in full before it can be

formatted.

Results of Initial System

The system we have so far described is capable of running the f and g series,

and SIGSAM examples 2 and 3. For these we present In figures 2. 3 and 4 the user

level programs, and in table 1 the timing results, and comparisons with REDUCE. Whiie

being considerabiy slower than REDUCE for the recursive function style, for larger

iterative programs it performs credibly. These results are preliminary, as we have not

yet attempted any extensive optimization of the system. We expect to make some gains

from improved algorithms, but wili sustain some loss as Parsifal becomes more general.

We have determined that in the present implementation a large overhead results from

the macro expansion, for example of for loops and blocks, during evaluation.

Use of Normal Order Reduction

One of the advantages claimed for the pure applicative programming style Is that

one can use normal order reduction, that is. lazy evaluation. The work of Turner on

KRCL ITurnerSOl makes a major point of the freedom of algorithm that lazy evaluation

allows, and the perceived performance of SKIM-1 [Clarke et al. 801 is a clear Indicator

that we should consider whether the system wouid benefit from judicious use of normal

order evaluation. In a previous paper Padget [Padget821 indicated that the use of

closures gives access to improved algorithms. Such an algorithm is polynomial

multiplication. Despite other aigorithms with asymptotically good performance, the best

practical multiplication algorithm is Johnson's algorithm [Johnson74]. The basic principle

of this aigorithm is to delay the production of the terms of the product untii there is

reason to behove that the term may contribute to the answer chain at the end.

Described in this way it is clear that Johnson's algorithm is a suitable starting point

for the inclusion of some lazy evaluation. The implementation of this aigorithm using

closures is given in Appendix 1. In Table 2 comparisons are given for some of our

simple problems using the lazy Johnson algorithm and the more normal algorithm. At

present the timings are a littie disappointing, but this may weli be due in part to our

inexperience in programming with explicit closure, and in part to poor compilation of

context switching. In addition since only the multiplication phase has been coded lazy,

there is a fair overhead in conversion between the two forms and very few of the

advantages of the method have a chance to become apparent.

There are a number of other places in the system where laziness can be usefully

applied. We have already mentioned the parser, and we can see other sections of

code where we intend to experiment. Division presents an interesting dilemma; the

divide function is expected to return a quotient and a remainder, but when evaluted

lazily, the remainder would only appear after all the terms of the quotient have been

consumed. It is often the case that an algorithm calls for one expression to divide

another exactly (done by checking that the remainder is zero), and then make use of

that quotient, which will by then have all been evaluated, thus It must be reconverted

into the lazy form. Quotient and remainder by themsleves create no particular problems.

Extended Functional Programming

The pure functional style advocated in this paper is of course iimited to the

programmer. When the functions are compiled we can expect for the time being that

the usual von Neumann machine is being used, and the code will involve assignment

to registers and goto instructions. In an analogous way we can contemplate an

extended pure style in which we allow certain object style functions to exist as an aid

to efficiency without affecting the overall purity. Indeed the outlawing of side effects

makes one of the main extended forms possible. We refer to memo functions.

if whenever a function is evaluated in a environment the result is remembered,

for example on an association list connected to the function, it is possible to

interrogate this memory before evaluating the function body to see if the value in this

environment has been calculated already. It is well known that the use of a memo

function can modify the expected computational time in a non-trivlal way: for example

consider the Fibonacci numbers by the naive program or the f and g series where we

will be able to convert the recursive times to the iterative ones.

Conclusions

This paper has presented an experimental pure functional algebra system written

In a dialect of LISP that supports functional closure. While there are many experiments

outstanding we have already seen that once one has learnt the style it is possible to

write reasonably efficient programs in a fairly short time. The use of some normal

order reduction gives us a wider means of expression that we have not yet fully

exploited. The system is of medium size, amounting to 20 pages of LISP, and so we

cannot yet answer the question on the practicability of writing large programs, although

we have noticed a marked shortening of the function based code. To write a REDUCE

replacement, for example, would take considerably more time and intellectual effort, but

we feel that we have learnt lessions that make us hopeful that such a task is not

impossible.

Among the plans we have for continuing to develop Parsifal are to make a fully

lazy version, and to implement it under Miranda. Turner's most recent version of his

combinator-based language. We have given some thought to the problems introduced by

a pattern matching capability, and forsee this as an exciting area for research.

We wish to acknowledge our debt to Dr J B Marti for allowing us such free

access to the latest version of NLARGE, and Dr A C Norman who first raised the

question of the practicability of the functional style.

Figures

(De P-' (a n)
(Cond
((MinusP n) (P" (PI/ a) (Minus n)))
(t ((Lambda (fn) (fn (PCreate 1) 0))

(Lambda (aa 1)
(Cond
((Eq 1 n) aa)
(t (fn (P* aa a) (Addl i)))))))))

Figure 1: Raising a polynomial to a power

U : - 3 * mu * slg;
V : eps - 2 * sigT2;
W : - eps * (mu + 2*eps);
DbyDt(x) : U*(x DF mu) + V*(x DF sig) + W*(x DF eps);
f(n) Î If (n=0, 1, DbyDt(f(n-1)) - mu*g(n-l));
g(n) : If (n=0, 0, Db^t(g(n-1)) + f(n-1));
f(12);
End;

Figure 2: Program for the f and g series (recursively)

v[0] : 1;
g[0] : 1;
for(m, 1, 4,

<< v[m] : Sigma(
Sigma(f[k-s,s] * a^s * c*(k-s)

♦ Sub(gg, b«s+2«(k-s), g[m-k]),
s, 0, k),

k, 1, m),
g[m] : Sigma(((gg+l)*k-m)*v[kl*g[m-k], k, 1, m)/m«
ans[n] : Sub(gg, -2*b, g[m]) >>);

ans[4];
end;

Figure 3: Program for SIGSAM Problem 2

dlff(a, n) :
3um(e[i]«(a DF e[i-l]), i, 1, n);

wfac(a, b, c, d) :
if (a=b,

if(b=c,
if(c=d, 1, 4),
if(c=d, 6, 12)),

if(b=c,
if(c=d, 4, 12),
if(C=d, 12, 24)));

y2[0) : 1;
y2[l) : e[0)/2;
sum2[l] : O;
for(n, 2, 4, <<

3um2[n] : Sigma(y2[a]*y2[n-a], a, 1, n-l)/2,
3um4[n] : Sigma(

Sigma(
Signa(if ((n-b-c-d)<0,0,

if (b < (n-b-c-d), O,
-wfac(n-b-c-d,b,c,d) * y2[n-b-c-d]
* y2[b] * y2[c] * y2[d]/2)),

b, 0, c),
c, 1, d),

d, 1, n-1),
y2[n] : 3um2[n] + 3um4[n] + e[0]

* (3um2[n-l]+y2[n-l]) - diff(diff(y2[n-l], n), n)/4
- diff(diff(3um2[n-l], n), n)/4 + (5/8)
* Sigma(diff(y2[a], n)*diff(y2[n-l-a], n), a, 1, n-2)

>>) ;
end;

Figure 4: Program for SIGSAM Problem 3

y2[l] : (2*e[0]"3 + 6*e[2]*e[0] + 5*e[l]"2)/32
y2[2] : (- 5*e[0]"4 - 30«e[2]*e[0]"2 + (- 50*e[l]*2 - 4*e[4])*e[0]

- 28*e[3)*e[l] - 19*e[2]"2)/128
y2[3] : (14*e[0]"5 + 140*e[2]*e[0]"3 + (350*e[l]*2 + 4O*e[4])*e[0]"2

+ (392*e[3]*e[l] + 266*e[2]"2)«e[0] + 442*e[2]*e[l]"2
+ 36*e[5]*e[l] + 96*e[4)*e[2] + 69*e[3]"2)/512

y2[4] : (- 42*e[0]"6 - 630*e[2]*e[0]^4 + (- 2100*e[l]*2
- 280*e[4])*e[0]*3 + (- 3528*e[3]*e[l] - 2394*e[2]^2
- 32*e[6])*e[0K2 + (- 7956*e[2]*e[l]"2 - 720*e[5]*e[l]
- I784*e[4]*e[2] - 1242*e[3]"2)*e[0] - 1105*e[l]"4
- 1488*e[4]*e[l]^2 - 5564*e[3]*e[2]*e[l] - 1262*e[2]"3
- 168*e[6)*e[2] - 366*e[5]*e[3] - 234*e[4]*2)/2048

Figure 5: Output for SIGSAM Problem 3

Parsifal REDUCE
£ and g
(Recursive) 8 58.72 46.66

12 972.88 757.46
(Iterative) 8 13.18 14.98

12 81.92 97.50
18 576.82 730.26

Y(2n)
6 6.50 6.64
8 14.32 9.84

10
Series Reversion

29.22 15.86
(Recursive) 4 202.00 89.52
(Iterative) 4 55.06 46.92

Table 1: Timing Results

References

[Backus781
J Backus
Can Programming be liberated from the von Neumann style?
Comm ACM 2% p613-41

[Burton82]
F W Burton
Annotations to Control Paralleism and Reduction Order Control In
the distributed evaluation of Functional Programs
(Preprint)

[Burton & Sleep82]
F W Burton and M R Sleep
Executing Functional Programs on a Virtual Tree of Processors
Proc. Conf. Functional Programming Languages and Computer
Architecture

[Campbell721
J A Campbell
SISGAM Problem #2: The Y2n Problem
SIGSAM Bulletin 22 p8-9

[Clarke et al. 80]
T J W Clarke. P J S Gladstone, C D McLean and A C Norman
SKIM - The S. K, I Reduction Machine
Proc. 1980 LISP Conference p i 28-135

[Darlington & Reeve81]
J Darlington and M Reeve
ALICE: A multiprocessor reduction machine for the parallel evaluation of
applicative languages
Proc. ACM Conf. on Functional Programming Languages and
Computer Architecture, 1981

[Fitch & Martl821
J P Fitch and J B Marti
NLARGEIng a Z80 Microprocessor
Proc. Eurocam 82, Lecture Notes In Computer Science 144 p249-55

[Fltch83]
J P Fitch
Implementing REDUCE on a Microcomputer
Proc. Eurocal 83, Lecture Notes In Computer Science 162 p i 28-136

(Fitch & Norman77j
J P Fitch and A C Norman
Implementing LISP in a high level language
Software - Practice and Experience, p713-25

[Johnson741
S C Johnson
Sparse Polynomial Arithmetic
Proc. EUROSAM 74, SIGSAM Bulletin 8 p63-71

[Keller et al. 79]
R M Keller, G LIndstrom and S Patll
A Loosely-Coupled Applicable Multl-Procesor System
NCC AFIP V ^ P613-22

lHall731
A Hall
Solution to SIGSAM Problem #3
SIGSAM Bulletin 26 p i5-23

[Griss & Hearn 81]
A C Hearn and M R Griss
The Portable LISP Compiler
Software - Practice and Experience JJ_ P541-605

[Marti & Fltch83]
J B Marti & J P Fitch
The Bath Concurrent LISP Machine
Proc. Eurocal 83. Lecture Notes In Computer Science 162 p78-90

[Padget82]
J A Padget
Escaping from Intermediate Expression Swell: A Continuing Saga
Proc. Eurocam 82. Lecture Notes In Computer Science 144 p256-62

[Padget83]
J A Padget
The Ecology of USP. or
The case for the preservation of the environment
Proc. Eurocal 83. Lecture Notes in Computer Science 162 p91-100

[Padget841
J A Padget
PhD Thesis. University of Bath (In preparation)

[Padget & Fitch]
J A Padget & J P Fitch
Closurize and Concentrate
(In preparation)

[Quam & Diffie68]
L Quam & W Diftie
Stanford LISP 1.6 Manual
Stanford AI Laboratory Operating Note 28.7

[Sconzo et al. 65]
P Sconzo. A Le Shack and R Tobey
Symbolic Computation of f and g series by Computer
Astronomical Journal 70 pp269-71

[Turner79]
D A Turner
A New Implementation Technique for Applicative Languages
Software - Practice and Experience 9 p31-49

[Turner80]
D A Turner
Recursion Equations as a Programming Language
CREST-ITG Advanced Course on Functional Programming and its Applications.
Cambridge University Press (ed. Darlington, Henderson and Turner) p l-28

Appendix: Lazy Johnson's Aloorithm (univariate case)

% in the following code some functions require explanation:
% term - leading term of polynomial
% nterm - reductum of polynomial
% exp - exponent of a term
% cons - cons which suspends the second argument
% add polynomials a and b
(de pl+ (a b)
(cond
((numberp a)
(cond
((numberp b) (plus a b))
(t (conz (term b) (p!+ (nterm b) a)))))

((numberp b) (conz (term a) (p!+ (nterm a) b)))
((equal (exp (term a)) (enqp (term b)))
(conz (11 + (term a) (term b)) (pit (nterm a) (nterm b))))
((lessp (exp (term a)) (exp (term b)))
(conz (term b) (pl+ a (nterm b))))
(t (conz (term a) (p!+ (nterm a) b))))))

% multiply polynomials a and b
(de pi* (a b)
(cond
((numberp a)
(cond
((numberp b) (times a b))
(t (pnl* b a))))

((numberp b) (pnl* a b))
(t (p!+ (tpl* (term a) b) (pi* (nterm a) b)))))

% multiply term and a polynomial
(de tpl* (a p)
(cond
((numberp p> (cons (term a) (times (coeff a) p)))
(t (conz (tl* a (term p)) (tpl* a (nterm p))))))

Parsifal REDUCE
f and g
(Iterative) 5 12.20 4.34

8 102.38 20.54
Series Reversion
(Iterative) 3 206.88 13.88
Y(2n)

6 43.56 6.64
8 118.16 9.84

10 307.14 15.86
Table 2: Timing Results with Lazy Multiplication Algorithm

