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1 Introduction

Implementing programming languages is a non-trivial endeavor. A typical language
processing pipeline consists of several possibly interdependent components. Thus,
if an existing programming language is extended with a new construct, its tooling
has to be extended accordingly. A case in point could be adding an async/await
mechanism to a Java-like language. This would imply that all the processors of this
language will need to be extended to consider the new constructs. It is therefore
desirable that one could reuse the implementation of existing processors, extending
them in a modular fashion.

However, this kind of language extension poses a number of challenges. For
instance, a newly introduced feature can demand different context information than
the one assumed by the existing processors, or it can interact with the existing features
in intricate ways. These scenarios show how complex is to achieve true modular
language extensibility. In this thesis we develop techniques to reduce this complexity,
contributing to make the implementation of modular languages a reality.

The results of this dissertation contribute to the idea of language-oriented pro-
gramming [Dmi��; FFF+��; War��], a vision that puts programming languages at the
center of the software development practice. Instead of using one general-purpose
programming language (GPL), the idea is to represent the diversity of domains
that crosscut traditional software development using specialized Domain-Specific
Languages (DSL) [Fow��; vDKV��]. This allows programmers to concentrate on
the elements of the domain and their interactions instead of the details about their
representation.

In language-oriented programming it is essential to have tools and practices that
make the development of new languages less costly. In particular, in this thesis we
exploit linguistic reuse [Kri��] by means of better modularity. We consider linguistic
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�. Introduction

reuse as the application of the principles of software reuse to the domain of language
development.

According to Krueger [Kru��], “Software Reuse is the process of creating software
systems from existing software rather than building software systems from scratch”. A
canonical example of reuse is library-based development. In fact, in McIllroy’s
seminal paper on software reuse he presents the vision of a library of reusable
components [McI��]; software can be thus developed by assembling such components.
A software library is a collection of interrelated functions, classes or modules that
cover a particular domain or application concern (e.g., accessing the database) and is
intended to be reused as is.

The main motivation of this thesis is to provide new mechanisms to implement
libraries of language fragments. A language fragment is the specification of a language
that might or might not be usable on its own, but can be composed with others to form
increasingly complex languages. In other words, a language fragment is a module
that represents the implementation of part of a language. The essential question that
follows is how to define modular and extensible language fragments.

One of the keys of the success of object-oriented programming is its support for
extensibility via inheritance [Ald��]. Statically typed object-oriented languages such
as Java or C# support static safe incremental extensibility which enables modular
development. In this work we posit the question of how to use object-oriented
techniques to implement reusable language fragments.

The object algebra pattern [OC��], encoded with standard object-oriented features,
is a technique in that direction, as it enables incremental extensibility along two axes
that fit the language development scenario: to develop a language we can both extend
its syntax and add new semantic interpretations.

In this thesis we exploit the object algebra pattern to develop modular language
components that form libraries of language fragments. We focus our attention on two
kinds of libraries. On the one hand, we want to develop extensions of an existing
GPL using object algebra-based language fragments, in the spirit of “Growing a
Language” [Ste��]. On the other hand, we want to assemble several object algebra-
based language fragments that can help us to build different languages from scratch,
as if these fragments were language LEGO blocks.

The next section provides an overview of the idea of language libraries and
component-based language specifications, alongside the background on related
techniques for language extensibility and language modularity. Section �.� introduces
the central technique that we make use of: object algebras, while Section �.� describes
how we have applied object algebras to develop language libraries, introducing our
research questions and how they correspond to the chapters in this thesis. Furthermore,
related work that is specific to each research question is also discussed. In Section �.�
we list our contributions in terms of peer-reviewed publications. Section �.� presents
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�.�. Language Libraries

the software artifacts produced in the context of this thesis. Finally Section �.�
describes the structure of this dissertation.

�.� Language Libraries

The idea of component-based language development has originated work in different
communities. In [TSC+��], for example, the authors coin the concept of “Language as
Libraries” and illustrate it with the Racket language. Racket programmers can write
language modules that reuse the base-level meta-infrastructure by having access to a
well-defined interface to the static semantics. These modules themselves are written
in Racket supporting the argument that writing a language is equivalent to writing a
library in the base language, instead of more complex approaches such as extensible
compilers [NCM��].

Another embodiment of the idea of language libraries is SugarJ [ERK+��], a
Java-like language in which libraries are just like regular Java libraries together with
syntactic sugar definitions to cater for extensible syntax.

On the more formal side, Bergstra et al. propose an axiomatic algebraic calculus of
modules to dissect the essence of composition [BHK��]. More pragmatically, Heering
and Klint consider a library of reusable semantic components as an essential element
of Language Design Assistants [HK��].

In [CMS+��; CMT��] Churchill et al. propose fundamental constructs (fun-
cons), a fixed set of reusable components of semantic specifications defined using
I-MSOS [MN��], an improved, modular variant of Structural Operational Semantics.
Using funcons as basic building blocks, one can specify arbitrary compositions that
provide the specification of complex general-purpose languages.

In this dissertation, a language library is a library of language fragments written in
an object-oriented host language. The basic mechanism for implementing the idea of
language libraries is language composition. It is therefore necessary to establish some
basic terminology in this regard.

In algebraic terms, if we have two modular definitions for language fragments
LA and LB, we want to have a composition operation � such that LA � LB gives us
LA+B. But, of which nature is this � operation? In order to answer this question
and clarify some terminology, Erdweg et al. [EGR��] have characterized five cases of
language composition based on the idea of unchanged reuse, i.e., reusing language
components without modifying them (known as black-box reuse in traditional Soft-
ware Engineering terminology): language extension, language restriction, language
unification, self-extension (including language embedding), and extension composi-
tion. In particular, in this dissertation we are interested in language extension and
language embedding.
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�. Introduction

e := . . .
| unless(e, e, e)

Figure �.�: Abstract syntax of an unless extension to an expression-based language

Language extension. A language LB is an extension of a base language LA if LA can
be reused without changes when implementing LB. Some language-development
systems supporting this property are Lisp with macros (such as Racket) or SugarJ.
For example, a Racket language definition implementing a state machine language
consists of a series of macros. This state machine language extends Racket via its
macro mechanism, without altering Racket’s implementation.

Language embedding. A language LB is embedded in a language LA if a program
PB written in LB is also a valid LA program. The converse does not hold. In other
words, programs of the embedded language LB are nothing but calls to an API written
in the host language LA. The Akka framework, for instance, allows programmers
to write distributed applications in Scala (or Java) using an actor model. An Akka
program is simply a Scala (or Java) program.

These two kinds of composition differ in which kind of abstraction they enable.
While language extension provides syntactic abstraction, language embedding reuses
the host language mechanism for procedural abstraction. In other words, a language
extension allows programmers to use new syntax (with respect to the host language)
for expressing specific concepts captured by the extension. A language embedding,
on the other hand, uses the abstraction mechanisms of the host language to support
the higher-level concepts captured by the embedding, just as a well-designed API.

Next, we review related work on language libraries in the light of the two
aforementioned forms of language composition and discuss the challenges for modular
language development. As an illustrative artifact, we will use a running example of a
simple unless extension to an expression-based language, whose abstract syntax can
be found in figure �.�. The unless expression extends the syntactic case for expressions
e and it has three sub-expressions. The first sub-expression is a condition that in case
of being successful leads to the execution of the third sub-expression, or otherwise to
the execution of the second sub-expression.

�.�.� Related Work in Language Extension

Language extension enables customization by means of syntactic abstraction. Already
in the ��s, early Lisps provided mechanisms to specialize the language for specific
tasks within the language, defining in consequence custom “special forms”. Of
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�.�. Language Libraries

these mechanisms, macros have persisted to this day. Macros [McI��] are syntactic
transformations that can automate common patterns of use. They are expanded at
compile-time, and therefore were regarded as an optimal way of customizing the
language. Programmers (acting as de facto metaprogrammers) write macros that
capture a specialized pattern, and these macros can be invoked in a program. Lisp
together with a set of macros is thus an enriched, extended Lisp.

A contemporary Lisp descendant is the aforementioned Racket language. Racket
has been designed to support language extensions inheriting the tradition of using
macros as the internal mechanism to extend the base language, though benefitting
from several advancements in macro technology such as hygiene and lexical macros.
This is complemented with a module system and a rich interface to the internals of
the base language.

The following snippet shows the encoding of the unless extension as a Racket
macro:

(define-syntax-rule (unless c e1 e2)

(if (not c) e2 e1))

After defining this macro, we can write expressions such as (unless (> x y) 0 1)

as if they were part of Racket’s built-in syntactic forms. Each occurrence of an unless

call is statically expanded to an if-expression.
Macros have inspired ideas such as Generative Programming, whose vision consists

of configurable components that form system families which can be customized for
different domains [CE��]. C++ template-based metaprogramming and Intentional
Programming [SCC��] are examples of Generative Programming techniques.

The aforementioned SugarJ also falls in the category of systems for language
extension, as it allows programmers to create libraries of syntactic extensions. The
syntax of an extension is defined using the syntax definition formalism SDF [HHK+��;
Vis��] while the desugaring of an extension into Java-like code is defined using
transformations, written in the transformation language Stratego [VB��]. Hence,
a reusable language fragment consists of a syntax definition plus a transformation
describing how to desugar a program using the extended syntax into plain GPL code.

�.�.� Related Work in Language Embedding

An embedded language is a domain-specific API encoded in a host language. Programs
of the embedded language are calls to this API and, therefore, also valid programs in
the host language. Figure �.� shows the encoding of the unless extension as a Java
static method.

The main difference with the previous (macro) example is that in this case there
is no syntactic abstraction. In order to model lazy evaluation of the consequent and
the alternative we needed to resort to an internal host-language mechanism, in this
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class Unless {
public static <T> T unless(boolean c, Supplier<T> e1, Supplier<T> e2) {

if (c) return e2.get(); else return e1.get();
}

}

Figure �.�: An encoding of the unless extension in Java

case, Java closures represented by the Supplier interface. The next expression uses the
unless extension:

Unless.unless(x > y, () ! 0, () ! 1);

Such expressions are just regular Java expressions (no static expansion is performed
whatsoever). Since Java does not feature lazy evaluation, the use of the unless

abstraction needs to consider the accidental complexity of deferring the evaluation,
and it is therefore verbose.�

A common object-oriented pattern to embed languages are fluent inter-
faces [Fow��], which attempt to improve the readability of the embedded programs
by using method chaining.

In functional programming, there is a long tradition of language embedding. In
particular, Hudak focuses the discussion on the modularity of the embeddings. In
a series of articles where he presents various language interpreters using Haskell,
he refers to the embedded languages as Domain-Specific Embedded Languages
(DSEL) [Hud��; Hud��; LHJ��]. Hudak’s modular interpreters are extensible in three
dimensions, as seen in the definition of the evaluation function interp:

interp :: Term -> InterpM Value

The three components of this function are configurable: Term corresponds to the
syntax of the language, Value corresponds to the domain of values, and InterpM is
a monad representing the nature of the computations involved in the evaluation.
The former two components can be extended by using open unions� – also known
as extensible union types – while the computations can be extended using monad
transformers.

Unfortunately, the introduction of new variants to any of these components implies
a full recompilation; programs using the not yet extended components need to be

�The discussion about the tradeoff between the syntactic convenience of language extension and the
implementation convenience of language embedding goes beyond the extent of this dissertation. Taking
this tradeoff into consideration, it is the language engineer who decides to implement a DSL using a
syntactic extension or an embedding.

�For instance, the open union OR allows us to represent the disjoint union of two types a and b as
data OR a b = L a | R b.
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�.�. Language Libraries

recompiled to take the extensions into account. Hudak’s embeddings showcase the
complexity of modular language development, the subject of next section.

�.�.� Challenges of Modular Language Development

Modularity fosters reuse, and reuse has the potential to improve language engineering.
In order to objectively assess language modularity solutions, a characterization of the
requirements of a modular language implementation is needed.

Since the idea of language embedding is well-known in the context of functional
programming languages, let us introduce the modularity problem in that specific
context. The gist of the idea of language modularity has been expressed as a problem
of extensibility known as the Expression Problem [Wad��]. The Expression Problem
poses the question of how to extend a datatype definition along two axes: adding new
variants and adding new operations. In its original formulation, Wadler specifies four
requirements for possible solutions, while Zenger and Odersky [ZO��] introduce an
additional one, listed in the last place:

• Extensibility in both dimensions: Both new variants and new operations can be
added.

• Strong static type safety: An operation cannot be applied to a variant that is not
permitted by the static checker.

• No modification or duplication: The extended code cannot be modified or dupli-
cated, in other words, it must be reused “as is”.

• Separate compilation and type checking: Safety checks or compilation steps must
not be deferred until linking or runtime. In other words, an extension must be
compiled and type checked, only depending on the interface of the code being
extended, but not on its implementation.

• Independent extensibility: Two independently developed extensions can be com-
posed in order to be used together.

To explain why the Expression Problem is relevant to the language modularity
challenges, we first point out that datatype definitions are analogous to definitions
of the abstract syntax of a language, and operations are analogous to language
processors, such as interpreters, type checkers, compilers, etc. Furthermore, the listed
requirements cater for modular definitions: The first four ones require the solution
to be incrementally extensible, while the last requirement results in even stronger
modularity: independently-developed extensions can also be composed. The related
work we discuss below considers mostly the earlier formulation of the expression
problem, i.e., without taking into account independent extensibility.

In [Swi��], Swierstra consolidates the ideas of catamorphisms (folds over arbitrary
data structures) and open unions to provide a solution to the Expression Problem.
However, there is no discussion of the composition of interpreters with different
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context requirements or “computations”, a matter that Hudak and Liang’s interpreters
address with monad transformers .

Also in the context of functional programming, Hinze introduced the encoding
of datatypes as Haskell type classes [Hin��]. Later, Oliveira et al. showed that
similar type-class based encodings are extensible and therefore solve the expression
problem [dSHL��]. Similar techniques were used in [CKS��] to introduce Tagless
Interpreters, presented as a solution to the Expression Problem where Haskell type
classes or OCaml modules are used to encode syntax. Different semantics to syntax
encoded this way can be provided as many times as desired, accounting for different
operations.

In the context of object-oriented programming languages some solutions to the
Expression Problems have been presented too. Torgersen [Tor��] discusses � solutions
of which � use advanced features such as recursive F-bounds or wildcards while the
last one, being non type-safe, does not comply with all the aforementioned minimal
requirements of the Expression Problem.

Polymorphic Embeddings in Scala [HOR+��], on the other hand, are analogous to
finally tagless interpreters, where traits are used as typeclasses and the types of the
operations performed on the syntax are left abstract using type members. Another
recent solution to the Expression Problem in the context of object-oriented languages
does not require the language to feature parametric polymorphism, but instead,
covariant type refinement of return types [WO��].

In this work we use a solution to the Expression Problem that imposes minimal
requirements on the host object-oriented language: Object algebras.

�.� Object Algebras

Object algebras [dSHL��] were introduced as a simple mechanism to solve the expres-
sion problem in object-oriented programming languages, requiring only inheritance
and generics (parametric polymorphism). The pattern is based on algebraic specifica-
tion of abstract datatypes [GH��] and encodes the basic elements of this formulation
using an object-oriented embedding.

An object algebra interface corresponds to an algebraic signature, specifying
syntactic cases. Consider an arithmetic expression-based language that features
literals and addition. This is its object algebra interface, in Java:

interface Arith<E> {

E lit(Integer n);

E add(E e1, E e2);

}

For each syntactic case, we define a method signature. The interface has one type
parameter E known as the carrier type of the algebra. Implementing this interface as
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Arith ... Arith + Neg

Evaluation class EvArith
implements Arith<Integer> {

Integer lit(Integer n) {
return n;

}
Integer add(Integer e1, Integer e2)
{

return e1 + e2;
}

}

... class EvNeg extends EvArith
implements Neg<Integer> {

Integer neg(Integer n) {
return -n;

}
}

...
...

...
...

Pretty-
printing

class PPArith
implements Arith<String> {

String lit(Integer n) {
return n.toString();

}
String add(String e1, String e2) {

return e1 + " + " + e2;
}

}

... class PPNeg extends PPArith
implements Neg<String> {

String neg(String n) {
return "-(" + n + ")";

}
}

Figure �.�: Extensibility along two dimensions with object algebras

many times as desired over different concrete carrier types accounts for extensibility of
operations. For example a class implementing this interface over carrier type Integer

can serve to represent the “evaluation” operation, while one over carrier type String,
“pretty-printing”, and so on.

On the other hand, extending the object algebra interface with more abstract
methods accounts for syntactic extensibility. For instance, a new interface could
extend Arith by adding the new method definition neg that corresponds to a new
syntactic case representing negation:

interface class Neg<E> extends Arith<E> {

E neg(E e);

}

Figure �.� illustrates the different kinds of extensibility supported by object al-
gebras. Along the vertical axis, new operations can be added by providing new
implementations of the object algebra interface. The first column shows two imple-
mentations of the interface Arith: the one on the top row is implemented over carrier
type Integer representing the operation “evaluation”, and the one on the bottom row
over carrier type String, representing the operation “pretty-printing”. This kind of
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extension enables reuse of specifications via multiple implementations. For instance,
classes EvArith and PPArith reuse the specification of the Arith algebra by implementing
the corresponding interface.

Along the horizontal axis, the classes implement the extended object algebra
interface that account for the new syntax (in this case, Neg). In the right column we
see the implementations of the new evaluator and pretty-printer that now consider
the “negation” syntactic case, added by the object algebra interface Neg. This kind
of extension enables reuse of implementations via inheritance. For example, class
EvNeg reuses the implementation from class EvArith, adding only the new behaviour
corresponding to the syntactic extension represented by interface Neg.

The bottom-right frame showcases both kinds of extensibility relative to the top-left
frame, adding a new kind of operation “pretty-printing” and a new syntactic case
“negation”.

The simple idea of object algebra has been extended with other mechanisms in order
to give answers to other requirements, such as independent extensibility [OvdSL+��]
or the support for attribute grammars [RBO��]. Also, the pattern has been applied in
scenarios such as extensible languages [GPS��] or to “scrap boilerplate” in language
processors [ZCO+��]. Besides the application of object algebras in the context of
programming languages, Leduc et al. have studied how to adapt the object algebra
pattern to support modular extensibility of executable metamodels [LDC+��].

This thesis explores to which extent we can use object-oriented techniques, in
particular object algebras, to address some of the aforementioned challenges of
language-oriented programming, with a focus on the construction of modular and
reusable language components that can serve as the foundation for an ecosystem of
language libraries.

�.� Language Libraries with Object Algebras

Object algebras are a natural candidate to structure modular language components
using an object-oriented general-purpose programming language. The simple exam-
ples of the preceding section show simple language processors for an arithmetic DSL.
In this thesis we want to explore the capability of object algebras to act as supporting
technology for language-driven development. In particular, we exploit the object
algebra pattern in various ways in order to improve the reuse of OO-based language
definitions, leveraging the idea of object-oriented language libraries. This motivation
is reflected in our research questions, which we discuss in the following section.
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�.�.� Modular Extension of a General-purpose Programming Language
using Object Algebras

Syntactic extensions to a GPL enable notations that adjust more to diverse domains
(e.g., asynchronous computations), without abandoning the host language. Recent
examples of GPL extension are Scala-Virtualized [RAM+��] and F# computation
expressions [PS��]. In both cases, a number of constructs of the host-language syntax
can be virtualized in order to accommodate arbitrary semantics, which are specified
in the host-language as well.

However, in both cases, the set of syntactic constructs that can be virtualized
is fixed. It would be desirable to generalize this to support arbitrary semantics for
arbitrary syntactic constructs. In the light of language libraries, this would enable
the distribution of arbitrary syntactic and semantic extensions to a GPL as libraries.
These libraries would extend a language like Java in a plug-and-play fashion. The
object algebra pattern can be applied to provide the semantics for this sort of syntactic
extensions. This leads to our first research question.

Research Question � (RQ�): How can object algebras facilitate modular language
extension of a General-purpose Programming Language?

Results. We have designed Recaf, a lightweight tool to modularly extend Java. Recaf
uses a syntactic transformation that generically transforms designated method bodies
to code that is parametric on an Object Algebra that provides its runtime semantics in
Java, enabling thus a form of “virtualization” of the Java syntax. A modular language
extension consists of a class that extends the object algebra implementation of the
base Java semantics with added methods that specify the semantics of the syntactic
extensions. The Recaf system is discussed in Chapter �.

�.�.� Tracing Program Transformations

Program transformations are pervasive in language-oriented programming. In fact
Recaf, the tool we have just introduced as a product of the research associated to RQ�,
also relies on a syntactic transformation. A well-known problem in systems that
depend on syntactic transformations is how to provide adequate IDE support, for
instance, in terms of debuggability or error-marking. Since the high-level abstractions
used by programmers go away at the moment of execution since they are transformed
into GPL code, it is difficult for the programmers to relate the code that actually runs
with the mental model they had in mind when programming.

Various techniques have been proposed to mitigate this, such as origin track-
ing [vDKT��], a mechanism to trace the output of the transformations back to its
source, along a chain of transformations; macro debugging [CF��]; and resugaring [PK��],
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a technique to compute reduction steps executed in the target language in terms of
the high-level surface syntax.

Traceability, in particular, presents a series of benefits in terms of debuggability
(as we can trace errors in the generated code back to its origin), understandability of
code (as we can, if needed, look at the generated code in order to understand what
the high level code means), etc.

In the context of language libraries, it is desirable that if any code generation
takes place, as in the case of Recaf, the link between the input and output programs
is explicit. Language extensions shipped as libraries would gain in usability if the
programmers can relate the extended language code back to the plain GPL code that
is generated behind the scenes. The benefits that traceability brings to Language-
oriented development, in particular in the spirit of lightweight tools such as Recaf,
motivate our second research question.

Research Question � (RQ�): How to trace program transformations in a
lightweight, language-agnostic manner?

Results. String origins are a lightweight, generic and portable technique, inspired
by origin tracking, that enables to establish a tracing relation between the input
and the output of a textual program transformation, such as the one employed by
Recaf, by linking each generated character to its origin. The technique works by
reimplementing the standard string operations used by transformations, allowing
them to keep the links to the original input and thus to propagate these links through
the entire transformation pipeline. String origins are presented in depth in Chapter �.

�.�.� Composing Interpreters with Different Context Requirements

Object algebras are a natural technique to implement modular language processors,
in the object-oriented programming landscape. This is posited in [GPS��] where
the authors also present a simple annotation-based technique to link the language
processors to concrete syntax. By doing so, object algebras support the complete
modular definition of external DSLs.

Still there are, however, a number of open challenges and opportunities in applying
object algebras to modular language development. If we have modular language
definitions we want to make sure that we can compose them in all possible scenarios.
If two independently developed language components assume the same requirements
in terms of semantic context (also known as semantic entities), for instance, that an
environment mapping variable names to values is present, then composition is trivial
as the context parameters of both components are compatible. In the case of object
algebras, the composition consists of creating a new algebra that extends the two
modules that need to be composed.
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However, if the context requirements differ, simple composition using object-
oriented extension is not possible. If there are two language components A and B,
where B requires one more context parameter than A, there are two options. It is
possible to develop a new component A’ that duplicates all the code in A just to thread
the extra context parameter. This alternative implies no reuse whatsoever. The other
alternative, in case we want to develop a language component once and for all, is
to anticipate all the possible context requirements at the moment of writing such
language component. If we aim at using languages as libraries, this is an unacceptable
constraint, as it implies a closed world in which all the context requirements need to
be known before composition time. This leads to our third research question.

Research Question � (RQ�): How to compose modular interpreters with differ-
ent context-requirements using object algebras?

Results. We present Implicit Context Propagation for object algebra-based modular
interpreters. The technique relies on a lifting from base (context oblivious) interpreters
to interpreters that have an extended signature accepting an arbitrary number of new
context parameters. These additional parameters are implicitly propagated through
the evaluation of the base interpreter. Context parameters (representing semantic
entities) inherit the host-language semantics; for instance, to represent mutable state
we use a mutable data structure from the host language.

This question is the subject of Chapter � and the scientific output is summarized
in Section �.�.�.

�.�.� Built-in Effect Handling in an Object-Oriented Language

In Implicit Context Propagation using Object Algebras, the context parameters reuse
the native mechanisms of the host language to implement side-effects. As a result,
the language developer cannot control the interaction between the side-effects. For
example, assuming that a backtracking context is implemented using exceptions and
a stateful context using mutable data structures, what happens if we want to compose
a component that requires backtracking with one that requires state? How does the
native exception mechanism of the host language interact with the native support for
mutation?

There are several solutions to this problem presented in the community of func-
tional programming, such as monad transformers [LHJ��] or algebraic effects [PP��;
Pre��]. In particular, algebraic effects have gained traction in the last years (e.g.
[Lei��; LMM��]) thanks to their desirable properties in terms of modularity and
flexibility. An algebraic effect acts as an interface that defines effectful operations,
leaving the actual implementation open. Handlers provide the concrete semantics
to these operations in a custom, pluggable manner. Considering the limitations
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of Implicit Context Propagation in terms of explicit side-effect interaction, we are
interested in a similar embodiment of the idea of algebraic effects and handlers, but in
the context of object-oriented programming. This interest leads to our final research
question.

Research Question � (RQ�): How to integrate effect handling in an object-
oriented Language?

Results. JEff is a Java-like language where effects and handlers are defined natively;
the former as so-called effect interfaces, and the latter as classes that implement such
interfaces. This integration of effect handling and object orientation allow user-defined
effects to benefit from interface polymorphism. We introduce the dynamic and static
semantics of JEff by means of a core calculus dubbed Featherweight JEff. The dynamic
semantics is inspired by traditional algebraic effect systems found in functional
programming, while the static semantics is given by a type and effect system that
assign types to programs. The typing relation is parameterized by a set of effect
privileges that are declared using method-level annotations. JEff is presented in depth
in Chapter �.

�.� Origins of the Chapters

The work associated with our research questions has resulted in five peer-reviewed
publications. I am the main author of four of them, while in one of them I have
contributed as a second author. This section provides the details about these
publications.

�.�.� Research Question � (Chapter �)

A. Biboudis, P. Inostroza, and T. van der Storm. “Recaf: Java Dialects
As Libraries”. In: Proceedings of the ���� ACM SIGPLAN International
Conference on Generative Programming: Concepts and Experiences. GPCE
����. Amsterdam, Netherlands: ACM, ����, pp. �–��

Recaf allows programmers to define extensions to Java. Being Java a statement-
and expression-based language, extensions can be defined both at the level of
statement-like syntax, or expression-like syntax. My technical contribution
as a second author is the implementation of expression virtualization. I also
contributed to the writing and discussion of the ideas reported in the paper, during
the visit of Aggelos Biboudis to CWI, in ����.
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�.�.� Research Question � (Chapter �)

P. Inostroza, T. van der Storm, and S. Erdweg. “Tracing Program
Transformations with String Origins”. In: Theory and Practice of Model
Transformations - �th International Conference, ICMT ����, Held as Part of
STAF ����, York, UK, July ��-��, ����. Proceedings. Ed. by D. D. Ruscio and
D. Varró. Vol. ����. Lecture Notes in Computer Science. Springer, ����,
pp. ���–���

�.�.� Research Question � (Chapter �)

P. Inostroza and T. van der Storm. “Modular Interpreters for the
Masses: Implicit Context Propagation Using Object Algebras”. In: Proc. of
the ���� ACM SIGPLAN International Conference on Generative Programming:
Concepts and Experiences. GPCE ����. Pittsburgh, PA, USA: ACM, ����,
pp. ���–���

P. Inostroza and T. van der Storm. “Modular interpreters with Implicit
Context Propagation”. In: Computer Languages, Systems & Structures ��
(����). Special Issue on the ��th International Conference on Generative
Programming: Concepts & Experiences (GPCE’��), pp. ��–��

�.�.� Research Question � (Chapter �)

P. Inostroza and T. van der Storm. “JEff: Objects for Effect”. In:
Proceedings of the ���� ACM SIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software. Onward! ����.
Boston, Massachussets, USA: ACM, ����

�.� Software Artifacts

In the context of this thesis a number of software artifacts were produced and shared
as online open source repositories, facilitating the reproducibility of our techniques
in the scientific community.

Recaf The Recaf repository� contains the framework for creating extensions as libraries
in Java. The framework consists of, on one hand, the generic transformation that
desugars programs in the customized Java into regular Java code, and on the other
hand, the object algebra-based interpreters implementing the default Java semantics
to facilitate the development of extensions. The user can extend these interpreters

�https://github.com/cwi-swat/recaf
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(possibly overriding parts of their behavior) in order to implement the desired custom
semantics. For the transformation, the framework requires the library containing the
interpreter of Rascal [KSV��], a metaprogramming language for source code analysis
and transformation.

String Origins String Origins have been implemented as an experimental feature of
the Rascal metaprogramming language and made available as a separate branch in
the official Rascal repository.� The applications and the example code discussed in
Chapter � have all been prototyped in the String Origins-enabled Rascal and made
available in their own repository.� Rascal extended with String Origins has also been
used in [EvdSD��].

Implicit Propagation The lifting presented in order to implicitly propagate the
context parameters has been encoded as a Scala macro and made available online.�
This repository also contains examples of modularly defined base interpreters for
subfeatures of Featherweight Java [IPW��]. These features can be combined after the
automatic macro-based lifting of the base interpreters.

JEff The grammar, dynamic semantics and type system of JEff’s core calculus,
Featherweight JEff, have been encoded using PLT Redex [KCD+��], an embedded
domain-specific language for modeling the semantics of programming languages.
The source code of the models is available online.� In order to execute the models, it
is necessary to install Racket (PLT Redex’s host language). Besides the PLT Redex
model, the repository also hosts a Rascal transformation that allows users to write
FJEff programs using a syntax that is closer to the one introduced in Chapter �. Such
FJEff programs are transformed into the PLT Redex syntax in order to be executed.
This transformation can be invoked using an executable JAR.

�.� Dissertation Structure

The coming four chapters of this thesis provide answers to research questions RQ�,
RQ�, RQ� and RQ�, respectively. Finally, Chapter � summarizes the conclusions
reached in each chapter and discusses open challenges and possibilities for future
work.

�https://github.com/usethesource/rascal/tree/string-origins
�https://github.com/cwi-swat/string-origins
�https://github.com/cwi-swat/implicit-propagation
�https://github.com/cwi-swat/jeff-model
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2 Recaf: Java Dialects as
Libraries

Mainstream programming languages like Java have limited support for
language extensibility. Without mechanisms for syntactic abstraction, new
programming styles can only be embedded in the form of libraries, limiting
expressiveness.

In this chapter, we present Recaf, a lightweight tool for creating Java dialects;
effectively extending Java with new language constructs and user defined seman-
tics. The Recaf compiler generically transforms designated method bodies to code
that is parameterized by a semantic factory (Object Algebra), defined in plain
Java. The implementation of such a factory defines the desired runtime semantics.

We applied our design to produce several examples from a diverse set of
programming styles and two case studies: we define i) extensions for generators,
asynchronous computations and asynchronous streams and ii) a Domain-Specific
Language (DSL) for Parsing Expression Grammars (PEGs), in a few lines of code.

This chapter is based on the following published article: A. Biboudis, P. Inostroza, and T. van der Storm.
“Recaf: Java Dialects As Libraries”. In: Proceedings of the ���� ACM SIGPLAN International Conference on
Generative Programming: Concepts and Experiences. GPCE ����. Amsterdam, Netherlands: ACM, ����,
pp. �–��.
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�.� Introduction

Programming languages are as expressive as their mechanisms for abstraction. Most
mainstream languages support functional and object-based abstractions, but it is
well-known that some programming patterns or idioms are hard to encapsulate
using these standard mechanisms. Examples include complex control-flow features,
asynchronous programming, or embedded DSLs. It is possible to approximate such
features using library-based encodings, but this often leads to code that is verbose
and tedious to maintain.

Consider the example of a simple extension for automatically closing a resource
in Java:�

using (File f: IO.open(path)) { . . . }

Such a language feature abstracts away the boilerplate needed to correctly close an IO
resource, by automatically closing the f resource whenever the execution falls out of
the scope of the block.

Unfortunately, in languages like Java, defining such constructs as a library is limited
by inflexible statement-oriented syntax, and semantic aspects of (non-local) control-
flow. For instance, one could try to simulate using by a method receiving a closure, like
void using(Closeable r, Consumer<Closeable> block). However, the programmer can
now no longer use non-local control-flow statements (e.g., break) within the closure
block, and all variables will become effectively final as per the Java � closure semantics.
Furthermore, encodings like this disrupt the conventional flow of Java syntax, and
lead to an atypical, inverted code structure. More sophisticated idioms lead to
even more disruption of the code (case in point is “call-back hell” for programming
asynchronous code).

In this work we present Recaf�, a lightweight tool� to extend Java with custom
dialects. Extension writers do not have to alter Java’s parser or write any transformation
rules. The Recaf compiler generically transforms an extended version of Java, into code
that builds up the desired semantics. Hence, Recaf is lightweight: the programmer
can define a dialect without stepping outside the host language.
Recaf is based on two key ingredients:

• Syntax extension: Java’s surface syntax is liberated to allow the definition of new
language constructs, as long as they follow the pattern of existing control-flow
or declaration constructs. (For instance, the using construct follows the pattern
of Java’s for-each.) A pattern that is used, drives a corresponding transformation
that Recaf performs.

�similar to C#’s using construct, or Java’s try-with-resources
�As in recaffeinating coffee which describes the process of enhancing its caffeine content [CV��].
�The code is available at https://github.com/cwi-swat/recaf.
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• Semantics extension: a single, syntax-directed transformation maps method
bodies (with or without language extensions) to method calls on polymorphic
factories which construct objects encapsulating the user-defined or customized
semantics.

The factories are developed within Java as Object Algebras [OC��], which promote
reusability and modular, type-safe extension of semantic definitions.

The combination of the two aforementioned key points enables a range of applica-
tion scenarios. For instance, Recaf can be used to: extend Java with new syntactic
constructs (like using), modify or instrument the semantics of Java (e.g., to imple-
ment aspects like tracing, memoization), replace the standard Java semantics with
a completely different semantics (e.g., translate Java methods to Javascript source
code), embed DSLs into Java (e.g., grammars, or GUI construction), define semantics-
parametric methods which support multiple interpretations, and combine any of the
above in a modular fashion (e.g., combine using with a tracing aspect). Developers
can define the semantics of new and existing constructs and create DSLs for their
daily programming needs. Language designers can experiment with new features,
by quickly translating their denotations in plain Java. In other words, Recaf brings
the vision of “languages as libraries” to mainstream, object-oriented programming
languages.

The contributions of this chapter are summarized as follows:
• We present a transformation of Java statement Abstract Syntax Trees (ASTs) with

extended syntax to virtualize their semantics, and we show how the semantics
can be defined as Object Algebras (Section �.�).

• We generalize the transformation to virtualize Java expressions, widening the
scope of user defined semantics (Section �.�).

• We describe the implementation of Recaf, and how it deals with certain intricacies
of the Java language (Section �.�).

• We evaluate the expressiveness of Recaf with two case studies: i) providing
language support for generators and asynchronous computations and ii) creating
a DSL for parser combinators (Section �.�).

The results of the case studies and directions for future work are discussed in
Section �.�.

�.� Overview

�.�.� Recaffeinating Java with Recaf

Figure �.� gives a bird’s eye overview of Recaf. It shows how the using extension is
used and implemented using Recaf. The top shows a snippet of code illustrating
how the programmer would use a Recaf extension, in this case consisting of the
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Recaf

recaf Using<String> alg = new Using<String>();
recaf String usingUsing(String path) {
using (File F : IO.open(path)) {
. . .

}
}

class Using<R> extends FullJavaDirect<R> {
public <U extends AutoCloseable>
IExec Using(ISupply<U> r, Function<U, IExec> body) {
return () ! {
U u = null;
try { u = r.get(); body.apply(u).exec(); }
finally { if (u != null) { u.close(); } }

};
}

}

Using<String> alg = new Using<String>();
String usingUsing(String path) {
return alg.Method(

alg.Using(() ! IO.open(path),
(File f) ! { . . . }));

}

Figure 1. High-level overview of Recaf

tains the details on the implementation, including a discussion of
implementation trade-offs, details regarding support of the full Java
language, and IDE features.

To assess the expressiveness and flexibility provided by Re-
caf, Section 7 presents four case studies. The first case study ex-
tends Java with Dart’s generators, asynchronous computations and
reactive streams [20]. Then we show two DSL embeddings, one
for GUI construction and one for Parsing Expression Grammars
(PEGs, [11]). Finally, we show how a subset of Java syntax can be
reappropriated and mapped to a third-party constraint solver. We
discuss the results of case study and outline directions for future
work in Section 8.

2. Overview
2.1 Recaffeinating Java with Recaf
Figure 1 shows a graphical overview of Recaf. It shows how the
using extension is used and implemented using Recaf. The right-
hand side of the diagram represents the user perspective of Re-
caf. The top-left quadrant, is our implementation of Recaf which
is needed to perform the virtualization of statements and expres-
sions. The bottom-left quadrant, shows what a user of an extension
would write to use the using extension introduced in Section 1. The
programmer write an ordinary method, annotated with the keyword
recaf to trigger the source-to-source transformation. To provide the
custom semantics, the user also declares a recaf field, in scope of
the recaf method. In this case, the field alg is initialized to be a
Using object, defined over some (concrete) type T.

The Using class provides the semantics for using and is shown
in the top-right quadrant. Using extends BaseJava which captures
the ordinary semantics of Java, and defines a single method, also
called Using. The Using method defines the semantics of the using

construct, by returning a closure of type IExec. The signature Using

states that it accepts two arguments: an expression conforming to
the standard Java interface AutoCloseable, and a function, represent-
ing the block following the using keyword. The body of the closure,
evaluates the expression (r.get()), and passes the result to the sec-
ond argument (b). The whole evaluation is wrapped in a try-finally
construct to close the resource u, when the body completes (either
normally, or abnormally).

The Using class is developed in plain Java. The user code on
the left, and the the implementation of Using are tied together, by
the source-to-source transformation of Recaf. This is illustrated in
the bottom-right quadrant: it shows the translated code, where each
statement in the user code is transformed into calls on the alg ob-
ject. The using construct itself is mapped to the Using method. The
using block is translated to a closure accepting the resource (File
f), and the initializer is passed as the first argument. Note that the
transformation is generic: it does not know about using specifically.
The transformation employs a naming convention where the iden-

tifying keyword (e.g., using) is mapped to a method with the same
(but capitalized) name (e.g., Using).

Note that the extension developer does not have to worry about
concrete syntax matters. The using constructs is parsed automati-
cally by Recaf’s extended Java parser, because using follows the
structure of Java’s foreach-statement. Recaf caters for many kinds
of extensions, by liberating the ordinary statement syntax of Java.
Section 3 provides more detail; for the full extent of Recaf’s syn-
tactic flexibility, see Section 6.

In addition to using a recaf-annotated field to specify the se-
mantics of a recaf-annotated method, it is also possible to annotate
a formal parameter of a method with the recaf modifier. This al-
lows binding of the semantics at the call site of the method itself.
Thus, Recaf supports three different binding times for the seman-
tics of a method: static (using a static field), at object construction
time (using an instance field), and late binding (method parameter).

Recaf makes the distinction between statement-only virtualiza-
tion and full virtualization. In the latter case, expressions are vir-
tualized too. This mode is enabled by using the recaff keyword,
instead of recaf. Section 4 provides all the details regarding the
difference.

2.2 Object Algebras
The encoding used for the Using class in Figure 1 follows the
design pattern of Object Algebras [22], which can be seen as
an object-oriented encoding of tagless interpreters [5]. Instead of
defining a language’s abstract syntax using concrete data structures,
it is defined using generic factories: a generic interface declares
generic methods for each syntactic construct. Implementations of
such interfaces define a specific semantics by creating semantic
objects representing operations like pretty printing, evaluation, and
so on.

Object Algebras are a simple solution to the expression prob-
lem [31]. As such they provide type-safe, modular extensibility
along two axes: adding new data variants and adding new opera-
tions over them without changing existing code. For instance, the
Using algebra extends the base Java semantics with a new syntactic
construct. On the other hand, the generic interface representing the
abstract syntax of Java can also be implemented again, to obtain a
different semantics. Notice that we define the algebras using Java
8 interfaces, that admit default methods. These methods enable an
even more powerful mechanism to combine independently devel-
oped extensions: using interface inheritance with default methods
results in stateless trait composition. The resulting modular flexi-
bility is a crucial aspect of Recaf. We explore the modular extensi-
bility in depth in Section 5.

3. Virtualizing Statements
In this section we describe the first level of semantic and syntactic
polymorphism offered by Recaf, which restricts virtualization and
syntax extension to statement-like constructs.

3.1 µJava
µJava is a simplified variant of Java used for exposition in this pa-
per. In µJava all variables are assumed to be final, there is no sup-
port for primitive types nor void methods, all variables declaration
have initializers. Figure 2, shows the abstract syntax of µJava state-
ments and method bodies in the form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.
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recaf Using<String> alg = new Using<String>();
recaf String usingUsing(String path) {
using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends BaseJava<R> {
<U extends AutoCloseable>
IExec Using(ISupply<U> r, Function<U, IExec> body) {
return () ! { U u = null;
try { u = r.get(); body.apply(u).exec(); }
finally { if (u != null) u.close(); } };

}
}

Using<String> alg = new Using<String>();
String usingUsing(String path) {
return alg.Method(alg.Using(() ! IO.open(path), (File f) ! { . . . }));

}

Figure 2. High-level overview of Recaf

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {
S Exp(Supplier<Void> e);
<T> S Decl(Supplier<T> e, Function<T, S> s);
<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);
S If(Supplier<Boolean> c, S s1, S s2);
S Return(Supplier<R> e);
S Seq(S s1, S s2);
S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract syntax of
µJava method bodies and statements.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod mediates
between the denotation of statements (S) and the return type R of
the virtualized method. The programmer of Recaf method needs to
ensure that R returned by Method corresponds to the actual return
type declared in the method.

The MuJava interface assumes that expressions are represented
using the standard Java Supplier type, which represents thunks.
Java expressions may perform arbitrary side-effects; the thunks
ensure that evaluation is delayed until after the semantic object are
created.

The constructs For-each and Decl employ higher-order abstract
syntax (HOAS [24]), to introduce local variables. As a result, the
bodies of declarations (i.e., the statements following it, within the
same scope) and for-each loops are represented as functions from
some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between the
syntax-driven transformation of Recaf and the implementation of
the actual semantics. In other words, the transformation expects
the methods corresponding to ordinary Java statements to conform
to the signatures of MuJava and MuJavaMethod. Note, however, that
R does not have to be bound to the same concrete type in both
MuJavaMethod and MuJava. This means that the return type of a
virtualized method can be different than the type of expressions
given to Return. Section 3.5 below describes a language extension
that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and consists of
two transformation functions M and S , respectively transform-
ing method bodies, and statements. The transformation folds over
the syntactic structure of µJava, compositionally mapping each
construct to its virtualized representation. Both functions are sub-
scripted by the expression a, which represents the actual algebra
that is used to construct the semantics. The value of a is determined
by recaf annotated fields or formal parameters.

MaJSK = return a.Method(SaJSK);

SaJe;K = a.Exp(() ! {e; return null;})

SaJif (e) S1 else S2 K = a.If(() ! e, SaJS1K,SaJS2K)
SaJfor(T x: e) SK = a.For(() ! e, (T x) ! SaJSK)

SaJT x = e; SK = a.Decl(() ! e, (T x) ! SaJSK)
SaJS1; S2K = a.Seq(SaJS1K, SaJS2K)

SaJreturn e;K = a.Return(() ! e)
SaJ;K = a.Empty()

SaJ{ S }K = SaJSK

Figure 4. Virtualizing method statements into statement algebras.

for (Integer x: l)
if (x % 2 == 0)
return x;

else ;
return null;

return a.Method(
a.Seq(
a.For(() ! l, (Integer x) !

a.If(() ! x % 2 == 0,
a.Return(() ! x),
a.Empty())),

a.Return(() ! null)));

Figure 5. Example method body (left) and its transformation into
algebra a (right).

As an example consider the code shown in Figure 5. The for-
loop on the left iterates over a list of integers to return the first
even number (or null if none exists). The right side shows how the
code is transformed into the algebra a. The semantics of the code is
now virtualized via the algebra object a. If a implements the same
semantics as ordinary Java, the behavior of executing the code on
the right will be the same as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the existing
control-flow statement syntax of Java. Informally speaking, wher-
ever Java requires a keyword (e.g., for, while etc.), Recaf allows the
use of an identifier. This identifier will then, by convention, corre-
spond to a particular method with the same name in the semantic
algebra.

The following grammar describes the syntax extensions of state-
ments (S) for µJava:

S ::= x! e ; Return-like
| x (T x: e) S For-each like
| x (e) {S} While-like
| x {S} Try-like
| x T x = e; Declaration-like

This grammar defines a potentially infinite family of new language
constructs, by using identifiers (x) instead of keywords. Each pro-
duction is a generalization of existing syntax. For instance, the first
production, follows syntax of return e, with the difference that an
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User code

Generated

Library

recaf Using<String> alg = new Using<String>();

recaf String usingUsing(String path) {

using (File F : IO.open(path)) {

. . .
}

}

class Using<R> extends BaseJava<R> {

<U extends Closeable>

IExec Using(ISupply<U> r, Function<U, IExec> body) {

return () ! { U u = null;

try { u = r.get(); body.apply(u).exec(); }

finally { if (u != null) u.close(); } };

}

}

Using<String> alg = new Using<String>();

String usingUsing(String path) {

return alg.Method(alg.Using(() ! IO.open(path), (File f) ! { . . . }));

}

Figure 2. High-level overview of Recaf

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {

S Exp(Supplier<Void> e);

S If(Supplier<Boolean> c, S s1, S s2);

<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);

<T> S Decl(Supplier<T> e, Function<T, S> s);

S Seq(S s1, S s2);

S Return(Supplier<R> e);

S Empty();

}

Figure 3. Object Algebra interfaces defining the abstract
syntax of µJava method bodies and statements.

3.1 µJava
µJava is a simplified variant of Java used for exposition in
this paper. In µJava all variables are assumed to be final,
there is no support for primitive types nor void methods, all
variables declaration have initializers. Figure 3, shows the
abstract syntax of µJava statements and method bodies in the
form of Object Algebra interfaces.

Both interfaces are parametric in two generic types R and S.
R represents the return type of the method, and S the semantic
type of statements. The method Method in MuJavaMethod medi-
ates between the denotation of statements (S) and the return
type R of the virtualized method. The programmer of Recaf
method needs to ensure that R returned by Method corresponds
to the actual return type declared in the method.

The MuJava interface assumes that expressions are repre-
sented using the standard Java Supplier type, which represents
thunks 1. Java expressions may perform arbitrary side-effects;
the thunks ensure that evaluation is delayed until after the
semantic object are created.

The constructs For and Decl employ higher-order abstract
syntax (HOAS [27]) to introduce local variables. As a result,
the bodies of declarations (i.e., the statements following it,
within the same scope) and for-each loops are represented as
functions from some generic type T to the denotation S.

Interfaces like the ones shown in Figure 3 mediate between
the syntax-driven transformation of Recaf and the implemen-
tation of the actual semantics. In other words, the transforma-

1 We use the term thunk to refer to an anonymous function that has no
parameters.. It represents an unevaluated expression

MaJSK = return a.Method(SaJSK);

SaJe;K = a.Exp(() ! {e; return null;})

SaJif (e) S1 else S2 K = a.If(() ! e, SaJS1K,SaJS2K)
SaJfor(T x: e) SK = a.For(() ! e, (T x) ! SaJSK)

SaJT x = e; SK = a.Decl(() ! e, (T x) ! SaJSK)
SaJS1; S2K = a.Seq(SaJS1K, SaJS2K)

SaJreturn e;K = a.Return(() ! e)
SaJ;K = a.Empty()

SaJ{ S } K = SaJSK

Figure 4. Virtualizing method statements into statement
algebras.

tion expects the methods corresponding to ordinary Java state-
ments to conform to the signatures of MuJava and MuJavaMethod.
Note, however, that R does not have to be bound to the same
concrete type in both MuJavaMethod and MuJava. This means that
the return type of a virtualized method can be different than
the type of expressions given to Return. Section 3.5 below
describes a language extension that exploits this flexibility.

3.2 Transforming Statements
The transformation for µJava is shown in Figure 4, and con-
sists of two transformation functions M and S , respectively
transforming method bodies, and statements. The transforma-
tion folds over the syntactic structure of µJava, composition-
ally mapping each construct to its virtualized representation.
Both functions are subscripted by the expression a, which
represents the actual algebra that is used to construct the
semantics. The value of a is determined by recaf annotated
fields or formal parameters.

As an example consider the code shown in Figure 5. The
for-loop on the left iterates over a list of integers to return
the first even number (or null if none exists). The right side
shows how the code is transformed into the algebra a. The
semantics of the code is now virtualized via the algebra object
a. If a implements the same semantics as ordinary Java, the
behavior of executing the code on the right will be the same
as the behavior of the code on the left.

3.3 Polymorphic Statement Syntax
Polymorphic statement syntax is based on generalizing the
existing control-flow statement syntax of Java. Informally
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Figure �.�: High level overview of Recaf

using construct. The programmer writes an ordinary method, decorated with the
recaf modifier to trigger the source-to-source transformation. To provide the custom
semantics, the user also declares a recaf field, in scope of the recaf method. In this
case, the field alg is initialized to be a Using object, defined over the concrete type
String.

The downward arrow indicates Recaf’s source-to-source transformation which
virtualizes the semantics of statements by transforming the Recaf code fragment to
the plain Java code at the bottom. Each statement in the user code is transformed into
calls on the alg object. The using construct itself is mapped to the Using method. The
Using class shown in the call-out, defines the semantics for using. It extends a class
(BaseJava) capturing the ordinary semantics of Java, and defines a single method, also
called Using. This particular Using method defines the semantics of the using construct
as an interpreter of type IExec.

In addition to using a recaf field to specify the semantics of a recaf method, it
is also possible to decorate a formal parameter of a method with the recaf modifier.
This allows binding of the semantics at the call site of the method itself. Thus, Recaf
supports three different binding times for the semantics of a method: static (using
a static field), at object construction time (using an instance field), and late binding
(method parameter). Recaf further makes the distinction between statement-only
virtualization and full virtualization. In the latter case, expressions are virtualized
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�.�. Statement Virtualization

too. This mode is enabled by using the recaff keyword, instead of recaf. Section �.�
provides all the details regarding the difference.

�.�.� Object Algebras

The encoding used for the Using class in Figure �.� follows the design pattern of
Object Algebras [OC��] which has already been applied to numerous cases in
the literature [BPF+��; IvdS��; OvdSL+��]. Object Algebras can be seen as an
object-oriented encoding of tagless interpreters [CKS��]. Instead of defining a
language’s abstract syntax using concrete data structures, it is defined using generic
factories: a generic interface declares generic methods for each syntactic construct.
Implementations of such interfaces define a specific semantics by creating semantic
objects representing operations like pretty printing, evaluation, and so on.

Object Algebras are a simple solution to the expression problem [Wad��]. As such
they provide type-safe, modular extensibility along two axes: adding new data
variants and adding new operations over them without changing existing code. For
instance, the Using algebra extends the base Java semantics with a new syntactic
construct. On the other hand, the generic interface representing the abstract syntax of
Java can also be implemented again, to obtain a different semantics. In the remainder
of this chapter we define the algebras as Java � interfaces with default methods to
promote additional flexibility for modularly composing semantic modules.

�.� Statement Virtualization

In this section we describe the first level of semantic and syntactic polymorphism
offered by Recaf, which restricts virtualization and syntax extension to statement-like
constructs.

�.�.� µJava

µJava is a simplified variant of Java used for exposition purposes. In µJava all variables
are assumed to be final, there is no support for primitive types nor void methods, and
all variable declarations have initializers. Figure �.�, shows the abstract syntax of
µJava statements and method bodies in the form of Object Algebra interfaces.

Both interfaces are parametric in two generic types, R and S. R represents the return
type of the method, and S the semantic type of statements. The method Method in
MuJavaMethod mediates between the denotation of statements (S) and the return type R

of the virtualized method. The programmer of a Recaf method needs to ensure that
R returned by Method corresponds to the actual return type declared in the method.
Note that R does not have to be bound to the same concrete type in both MuJavaMethod
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�. Recaf: Java Dialects as Libraries

interface MuJavaMethod<R, S> { R Method(S s); }

interface MuJava<R, S> {
S Exp(Supplier<Void> e);
S If(Supplier<Boolean> c, S s1, S s2);
<T> S For(Supplier<Iterable<T>> e, Function<T, S> s);
<T> S Decl(Supplier<T> e, Function<T, S> s);
S Seq(S s1, S s2);
S Return(Supplier<R> e);
S Empty();

}

Figure �.�: Object Algebra interfaces defining the abstract syntax of µJava method bodies and
statements.

and MuJava. This means that the return type of a virtualized method can be different
than the type of expressions expected by Return.

The MuJava interface assumes that expressions are represented using the standard
Java Supplier type, which represents thunks. Java expressions may perform arbitrary
side-effects; the thunks ensure that evaluation is delayed until after the semantic
object are created.

The constructs For and Decl employ higher-order abstract syntax (HOAS [PE��]) to
introduce local variables. As a result, the bodies of declarations (i.e., the statements
following it, within the same scope) and for-each loops are represented as functions
from some generic type T to the denotation S.

�.�.� Transforming Statements

The transformation for µJava is shown in Figure �.�, and consists of two transformation
functions M and S, respectively transforming method bodies, and statements. The
transformation folds over the syntactic structure of µJava, compositionally mapping
each construct to its virtualized representation. Both functions are subscripted by
the expression a, which represents the actual algebra that is used to construct the
semantics. The value of a is determined by the recaf modifier on a field or formal
parameter.

As an example consider the code shown on the left of Figure �.�. The equivalent
code after the Recaf transformation is shown on the right. The semantics of the code
is now virtualized via the algebra object a. The algebra a may implement the same
semantics as ordinary Java, but it can also customize or completely redefine it.
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MaJSK = return a.Method(SaJSK);

SaJe;K = a.Exp(() ! {e; return null;})

SaJif (e) S1 else S2 K = a.If(() ! e,SaJS1K,SaJS2K)
SaJfor(T x: e) SK = a.For(() ! e, (T x) !SaJSK)

SaJT x = e; SK = a.Decl(() ! e, (T x) !SaJSK)
SaJS1; S2K = a.Seq(SaJS1K,SaJS2K)

SaJreturn e;K = a.Return(() ! e)
SaJ;K = a.Empty()

SaJ{ S } K = SaJSK

Figure �.�: Virtualizing method statements into statement algebras.

for (Integer x: l)
if (x % 2 == 0)
return x;
else ;

return null;

return a.Method(
a.Seq(
a.For(() ! l, (Integer x) !

a.If(() ! x % 2 == 0,
a.Return(() ! x),
a.Empty())),

a.Return(() ! null)));

Figure �.�: Example method body (left) and its transformation into algebra a (right).

�.�.� Statement Syntax

Statement syntax is based on generalizing the existing control-flow statement syntax
of Java. Informally speaking, wherever Java requires a keyword (e.g., for, while

etc.), Recaf allows the use of an identifier. This identifier will then, by convention,
correspond to a particular method with the same name in the semantic algebra.

The following grammar describes the syntax extensions of statements (S) for µJava:

S ::= x! e ; Return-like
| x (T x: e) S For-each like
| x (e) {S} While-like
| x {S} Try-like
| x T x = e; Declaration-like

This grammar defines a potentially infinite family of new language constructs, by
using identifiers (x) instead of keywords. Each production is a generalization of
existing syntax. For instance, the first production, follows syntax of return e, with the
difference that an exclamation mark is needed after the identifier x to avoid ambiguity.
The second production is like for–each, the third like while, and the fourth follows the
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SaJx! e;K = a.x(() ! e)
SaJx (T y: e) SK = a.x(() ! e, (T y) !SaJSK)
SaJx T y = e; SK = a.x(() ! e, (T y) !SaJSK)

SaJx (e) SK = a.x(() ! e,SaJSK)
SaJx { S }K = a.x(SaJSK)

Figure �.�: Transforming syntax extensions to algebra method calls.

pattern of if without else. Finally, the last production supports custom declarations,
where the first identifier x represents the keyword.

Transforming the extension into an algebra simply uses the keyword identifier x as
a method name, but follows the same transformation rules as for the corresponding,
non-extended constructs. The transformation rules are shown in Figure �.�.

�.�.� Direct Style Semantics

The direct style interpreter for µJava is defined as the interface MuJavaBase, implement-
ing it using default methods and is declared as follows:

interface MuJavaBase<R> extends MuJava<R, IExec> { ... }

The type parameter R represents the return type of the method. S is bound to the type
IExec, which represents thunks (closures):

interface IExec { void exec(); }

The algebra MuJavaBase thus maps µJava statement constructs to semantic objects
of type IExec. Most of the statements in µJava have a straightforward implementa-
tion. Non-local control-flow (i.e., return), however, is implemented using exception
handling.

The method Method ties it all together and mediates between the evaluation of the
semantic objects, returned by the algebra, to the actual return type of the method:

default R Method(IExec s) {

try { s.exec(); }

catch (Return r) { return (R)r.value; }

catch (Throwable e) { throw new RuntimeException(e); }

return null;

}

Since the mapping between the statement denotation and the actual return type of a
method is configurable it is not part of MuJavaBase itself. This way, MuJavaBase can be
reused with different Method implementations.
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Example: Maybe As a simple example, similar to the using extension introduced
in Section �.�, consider a maybe construct, to unwrap an optional value (of type
java.util.Optional). In a sense, maybe literally overrides the semicolon, similar to the
bind operator of Haskell. Syntactically, the maybe operator follows the declaration-like
syntax. It is defined as follows:

interface Maybe<R> extends MuJavaBase<R> {

default <T> IExec Maybe(Supplier<Optional<T>> x, Function<T, IExec> s) {

return () ! {

Optional<T> opt = x.get();

if (opt.isPresent()) s.apply(opt.get()).exec();

};

}

}

The Maybe method returns an IExec closure that evaluates the expression (of type
Optional), and if the optional is not empty, executes the body of maybe.

�.�.� Continuation-Passing Style Semantics
The direct style base interpreter can be used for many extensions like using or maybe.
However, language constructs that require non-local control-flow semantics require a
continuation-passing style (CPS) interpreter. This base interpreter can be used instead
of the direct style interpreter for extensions like coroutines, backtracking, call/cc etc.
It also shows how Object Algebras enables the definition of two different semantics
for the same syntactic interface.

The cps style interpreter is defined as the interface MuJavaCPS, similarly to MuJavaBase:
interface MuJavaCPS<R> extends MuJava<R, SD<R>> { ... }

The MuJavaCPS algebra maps µJava abstract syntax to CPS denotations (SD), defined
as follows:

interface SD<R> { void accept(K<R> r, K0 s); }

SD<R> is a functional interface that takes as parameters a return and a success continu-
ation. The return continuation r is of type K<R> (a consumer of R) and contains the
callback in the case a statement is the return statement. The success continuation is of
type K0 (a thunk) and contains the callback in the case the execution falls off without
returning.

To illustrate the CPS interpreter, consider the following code that defines the
semantics of the if-else statement:

default SD<R> If(Supplier<Boolean> c, SD<R> s1, SD<R> s2) {

return (r, s) ! { if (c.get()) s1.accept(r, s);

else s2.accept(r, s);}; }
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interface Backtrack<R>
extends MuJavaCPS<R>, MuJavaMethod<List<R>, SD<R>> {

default List<R> Method(SD<R> body) {
List<R> result = new ArrayList<>();

body.accept(ret ! { result.add(ret); }, () ! {});
return result;

}
default <T> SD<R> Choose(Supplier<Iterable<T>> e, Function<T, SD<R>> s) {

return (r, s0) ! {
for (T t: e.get()) s.apply(t).accept(r, s0);

};
}

}

Figure �.�: Backtracking Extension

Based on the truth-value of the condition, either the then branch or the else branch is
executed, with the same continuations as received by the if-then-else statement.

Example: Backtracking The CPS interpreter serves as a base implementation
for language extensions, requiring complex control flow. We demonstrate the
backtracking extension that uses Wadler’s list of successes technique [Wad��] and
introduces the choose keyword. As an example, consider the following method which
finds all combinations of integers out of two lists that sum to �.

List<Pair> solve(recaf Backtrack<Pair> alg) {

choose Integer x = asList(1, 2, 3);

choose Integer y = asList(4, 5, 6);

if (x + y == 8) {

return new Pair(x, y);

}

}

In Figure �.� we present the extension for µJava. Note that Method has a generic
parameter type in the MuJavaMethod interface. In this case we change the return type of
method to List<T> instead of just T. The result is the list of successes, so the return
continuation should add the calculated item in the return list, instead of just passing it
to the continuation. Choose simply invokes its success continuation for every different
value, effectively replaying the execution for every element of the set of values.

��



�.�. Full Virtualization

interface MuStmJava<S, E> {
S Exp(E x);
<T> S Decl(E x,Function<T,S> s);
<T> S For(E x,Function<T,S> s);
S If(E c, S s1, S s2);
S Return(E x);
S Seq(S s1, S s2);
S Empty();

}

interface MuExpJava<E> {
E Lit(Object x);
E This(Object x);
E Field(E x, String f);
E New(Class<?> c, E...es);
E Invoke(E x, String m, E...es);
E Lambda(Object f);
E Var(String x, Object it);

}

Figure �.�: Generic interfaces for the full abstract syntax of µJava.

�.� Full Virtualization

The previous section discussed virtualization of declaration and control-flow state-
ments. In this section we widen the scope of Recaf for virtualizing expressions as
well.

�.�.� Expression Virtualization

Until know we have dissected the MuJava interface of Figure �.�. That interface still
does not support virtualized expressions since it requires the concrete type Supplier

in expression positions. To enable full virtualization, we have to use the algebraic
interfaces shown in Figure �.�, where expressions are represented by the generic
type E. MuExpJava specifies the semantic objects for µJava expressions. The interface
MuStmJava is similar to MuJava, but changes the concrete Supplier arguments to the
generic type E.

Compared to full Java, the expression sub language of µJava makes some additional
simplifying assumptions: there are no assignment expressions, no super calls, no array
creation, no static fields or methods, no package qualified names, and field access
and method invocation require an explicit receiver. For brevity, we have omitted infix
and prefix expressions.

To support expression virtualization, the transformation of statements is modified
according to the rules of Figure �.�. The function E folds over the expression structure
and creates the corresponding method calls on the algebra a. Consider, for example,
how full virtualization desugars the µJava code fragment for (Integer x: y) println(x

+ 1);:

a.For(a.Var("y", y), Integer x !
a.Exp(a.Invoke(a.This(this), "println",

a.Add(a.Var("x", x), a.Lit(1)))));
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SaJe;K = a.Exp(EaJeK)
SaJif (e) S1 else S2 K = a.If(EaJeK,SaJS1K,SaJS2K)

SaJfor(T x: e) SK = a.For(EaJeK,(T x) !SaJSK)
SaJT x = e; SK = a.Decl(EaJeK,(T x) !SaJSK)
SaJreturn e;K = a.Return(EaJeK)

EaJvK = a.Lit(v)
EaJxK = a.Var("x",x)

EaJthisK = a.This(this)
EaJe.xK = a.Field(EaJeK,"x")

EaJe.x(e1, ..., en)K = a.Invoke(EaJeK,"x",EaJe1K, ...,EaJenK)
EaJnew T(e1, ..., en)K = a.New(T.class,EaJe1K, ...,EaJenK)
EaJ(x1, ..., xn)! SK = a.Lambda((x1, ..., xn) !SaJSK)

Figure �.�: Transforming statements (modified) and expressions.

Note how the HOAS representation of binders carries over to expression virtualization,
through the Var constructor. The additional String argument to Var is not essential,
but provides additional meta data to the algebra.

Recaf does not currently support new syntactic constructs for user defined ex-
pression constructs. We assume that in most cases ordinary method abstraction
is sufficient.� The examples below thus focus on instrumenting or replacing the
semantics of ordinary µJava expressions.

�.�.� An Interpreter for µJava Expressions

Just like statements, the base semantics of µJava expressions is represented by an
interpreter, this time conforming to the interface MuExpJava, shown in Figure �.�. This
interpreter binds E to the closure type IEval:

interface IEval { Object eval(); }

As IEval is not polymorphic, we do not make any assumptions about the type of the
returned object. The interpreter is fully dynamically typed, because Java’s type system
is not expressive enough to accurately represent the type of expression denotations,
even if the Recaf transformation would have had access to the types of variables and
method signatures.

The evaluation of expressions is straightforward. Field access, object creation (new),
and method invocation, however are implemented using reflection. For instance, the
following code defines the semantics for field lookup:

�The only situation where a new kind of expression would be useful is when arguments of the
expression need to evaluated lazily, as in short-circuiting operators.

��



�.�. Full Virtualization

default IEval Var(String x, Object v) {
return () ! {

System.err.println(x + " = " + v);
return MuExpJavaBase.super.Var(x, v).eval();

};
}

Figure �.�: Intercepting field accesses for tracing.

default IEval Field(IEval x, String f) {

return () ! {

Object o = x.eval();

Class<?> clazz = o.getClass();

return clazz.getField(f).get(o);

};

}

The class of the object whose field is requested, is discovered at runtime, and then,
the reflective method getField is invoked in order to obtain the value of the field for
the requested object.

Example: Aspects A useful use case for expression virtualization is defining aspect-
like instrumentation of expression evaluation. The algebra methods of the base
interpreter are overridden, they implement the additional behavior, and delegate to
the parent’s implementation with the super keyword. As an example, consider an
aspect defining tracing of the values of variables during method execution. The algebra
extends the base interpreter for Java expressions and overrides the Var definition, for
variable access. Figure �.� shows how the overridden Var method uses the variable
name and the actual received value passed to print out the tracing information, and
then calls the super implementation.

Example: Library embedding In the following example we demonstrate library
embedding of a simple constraint solving language, Choco [PFL��], a Java library for
constraint programming. Choco’s programming model is heavily based on factories
nearly for all of its components, from variable creation, constraint declaration over
variables, to search strategies.

We have developed a Recaf embedding which translates a subset of Java expressions
to the internal constraints of Choco, which can then be solved. The Solve algebra
defines the var extension to declare constraint variables. The solve! statement
posts constraints to Choco’s solver. This embedding illustrates how the expression
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virtualization allows the extension developer to completely redefine (a subset of)
Java’s expression syntax.

recaf Solve alg = new Solve();

recaff Iterable<Map<String,Integer>> example() {

var 0, 5, IntVar x;

var 0, 5, IntVar y;

solve! x + y < 5;

}

�.� Implementation of Recaf

All Recaf syntactic support is provided by Rascal [KSV��], a language for source
code analysis and transformation. Rascal features built-in primitives for defining
grammars, tree traversal and concrete syntax pattern matching. Furthermore, Rascal’s
language workbench features [EvdSV+��] allow language developers to define editor
services, such as syntax highlighting or error marking, for their languages.

�.�.� Generically Extensible Syntax for Java

Section �.�.� introduced generic syntax extensions in the context of µJava, illustrating
how the base syntax could be augmented by adding arbitrary keywords, as long as
they conform to a number of patterns, e.g. while- or declaration-like. We implemented
these patterns and a few additional ones for full Java using Rascal’s declarative syntax
rules. These rules modularly extend the Java grammar, defined in Rascal’s standard
library using productions for each case that we identify as an extensibility point:
return-like, declaration-like, for-like, switch-like, switch-like (as a for) and try-like.

�.�.� Transforming Methods

Recaf source code transformation transforms any method that has the recaf or recaff

modifier. If the modifier is attached to the method declaration, the algebra is expected
to be declared as field in the enclosing scope (class or interface). If the modifier
is attached to a method’s formal parameter, that parameter itself is used instead.
Furthermore, if the recaff modifier is used, expressions are transformed as well.

The transformation is defined as Rascal rewrite rules that match on a Java statement
or expression using concrete-syntax pattern matching. This means that the matching
occurs on the concrete syntax tree directly, having the advantage of preserving
comments and indentation from the Recaf source file. As an example, the following
rule defines the transformation of the while-statement:
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Expr stm2alg((Stm)`while (<Expr c>) <Stm s>`,Id a,Names ns)

= (Expr)`<Id a>.While(<Expr c2>, <Expr s2>)`

when

Expr c2 := injectExpr(c, a, ns),

Expr s2 := stm2alg(s, a, ns);

This rewrite rule uses the actual syntax of the Java while statement as the matching
pattern and returns an expression that calls the While method on the algebra a. The
condition c and the body s are transformed in the when-clause (where := indicates
binding through matching). The function injectExpr either transforms the expression
c, in the case of transformations annotated with the recaff keyword, or creates closures
of type Supplier otherwise. The body s is transformed calling recursively stm2alg.

The ns parameter represents the declared names that are in scope at this point in
the code and is the result of a local name analysis needed to correctly handle mutable
variables. Local variables introduced by declarations and for-loops are mutable
variables in Java, unless they are explicitly declared as final. This poses a problem
for the HOAS encoding we use for binders: the local variables become parameters
of closures, but if these parameters are captured inside another closure, they have
to be (effectively) final. To correctly deal with this situation, variables introduced by
declarations or for-loops are wrapped in explicit reference objects, and the name is
added to the Names set. Whenever such a variable is referenced in an expression it
is unwrapped. For extensions that introduce variables it is unknown whether they
should be mutable or not, so the transformation assumes they are final, as a default.
In total, the complete Recaf transformation consists of ��� SLOC.

�.�.� Recaf Runtime

The Recaf runtime library comes with two base interpreters of Java statements, similar
to MuJavaBase and MuJavaCPS, and an interpreter for Java Expressions. In addition
to return, the interpreters support the full non-local control-flow features of Java,
including (labeled) break, continue and throw. The CPS interpreter represents each of
those as explicit continuations in the statement denotation (SD), whereas the direct
style interpreter uses exceptions.

The main difference between MuExpBase and the full expression interpreter is
handling of assignments. We model mutable variables by the interface IRef, which
defines a setter and getter to update the value of the single field that it contains.
The IRef interface is implemented once for local variables, and once for fields. The
latter uses reflection to update the actual object when the setter is called. In addition
to the Var(String,Object) constructor, the full interpreter features the constructor
Ref(String,IRef<?>) to model mutable variables. The expression transformation uses
the local name analysis (see above) to determine whether to insert Var or Ref calls.
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Since the Recaf transformation is syntax-driven, some Java expressions are not
supported. For instance, since the expression interpreter uses reflection to call
methods, statically overloaded methods are currently unsupported (because it is only
possible to dispatch on the runtime type of arguments). Another limitation is that
Recaf does not support static method calls, fields references or package qualified
names. These three kinds of references all use the same dot-notation syntax as
ordinary method calls and field references. However, the transformation cannot
distinguish these different kinds, and interprets any dot-notation as field access or
method invocation with an explicit receiver. We consider a type-driven transformation
for Recaf as an important direction for future work.

�.� Case Studies

�.�.� Spicing up Java with Side-Effects

The Dart programming language recently introduced sync*, async and async* methods,
to define generators, asynchronous computations and asynchronous streams [MMB��]
without the typical stateful boilerplate or inversion of control flow. Using Recaf, we
have implemented these three language features for Java, based on the CPS interpreter,
closely following the semantics presented in [MMB��].

Generators. The extension for generators is defined in the Iter class. The Iter class
defines Method to return a plain Java Iterable<R>. When the iterator() is requested, the
statement denotations start executing. The actual implementation of the iterator is
defined in the client code using two new constructs. The first is yield!, which produces
a single value in the iterator. Its signature is SD<R> Yield(ISupply<R>).� Internally, yield!
throws a special Yield exception to communicate the yielded element to a main iterator
effectively pausing the generator. The Yield exception contains both the element,
as well as the current continuation, which is stored in the iterator. When the next
value of the iterator is requested, the saved continuation is invoked to resume the
generator process. The second construct is yieldFrom! which flattens another iterable
into the current one. Its signature is SD<R> YieldFrom(ISupply<Iterable<R>> x) and it is
implemented by calling ForEach(x, e! Yield(() ! e)). In the code snippet below, we

�ISupply is a thunk which has a throws clause.
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present a recursive implementation of a range operator, using both yield! and yieldFrom!:

recaf Iterable<Integer> range(int s, int n) {

if (n > 0) {

yield! s;

yieldFrom! range(s + 1, n - 1);

}

}

Async. The implementation of async methods also defines Method, this time returning
a Future<R> object. The only syntactic extension is the await statement. Its signature is
<T> Await(Supplier<CompletableFuture<T>>, Function<T, SD<R>>), following the syntactic
template of for-each. The await statement blocks until the argument future completes.
If the future completes normally, the argument block is executed with the value
returned from the future. If there is an exception, the exception continuation
is invoked instead. Await literally passes the success continuation to the future’s
whenComplete method. The Async extension supports programming with asynchronous
computations without having to resort to call-backs. For instance, the following
method computes the string length of a web page, asynchronously fetched from the
web.

recaf Future<Integer> task(String url) {

await String html = fetchAsync(url);

return html.length();

}

Async*. Asynchronous streams (or reactive streams) support a straightforward
programming style on observables, as popularized by the Reactive Extensions [Mei��]
framework. The syntax extensions to support this style are similar to yield! and
yieldFrom! constructs for defining generators. Unlike the yield! for generators,
however, yield! now produces a new element asynchronously. Similarly, the yieldFrom!
statement is used to splice one asynchronous stream into another. Its signature
reflects this by accepting an Observable object (defined by the Java variant of Reactive
Extensions, RxJava�): SD<R> YieldFrom(ISupply<Observable<R>>). Reactive streams offer
one more construct: awaitFor!, which is similar to the ordinary for-each loop, but
“iterates” asynchronously over a stream of observable events. Hence, its signature
is <T> SD<R> AwaitFor(ISupply<Observable<T>>, Function<T, SD<R>>). Whenever, a new
element becomes available on the stream, the body of the awaitFor! is executed again.
An async* method will return an Observable.

�https://github.com/ReactiveX/RxJava
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Here is a simple method that prints out intermediate results arriving asyn-
chronously on a stream. After the result is printed, the original value is yielded, in a
fully reactive fashion.

recaf <X> Observable<X> print(Observable<X> src) {

awaitFor (X x: src) {

System.out.println(x);

yield! x;

}

}

�.�.� Parsing Expression Grammars (PEGs)

To demonstrate language embedding and aspect-oriented language customization
we have defined a DSL for Parsing Expression Grammars (PEGs) [For��]. The
abstract syntax of this language is shown in Figure �.��. The lit! construct parses
an atomic string, and ignores the result. let is used to bind intermediate parsing
results. For terminal symbols, the regexp construct can be used. The language
overloads the standard sequencing and return constructs of Java to encode sequential
composition, and the result of a parsing process. The constructs choice, opt, star, and
plus correspond to the usual regular EBNF operators. The choice combinator accepts a
list of alternatives (alt). The Kleene operators bind a variable x to the result of parsing
the argument statement S, where the provided expression e represents the result if
parsing of S fails.

The PEG language can be used by considering methods as nonterminals. A PEG
method returns are parser object which returns a certain semantic value type. A simple
example of parsing primary expression is shown in Figure �.��. The method primary

returns an object of type Parser which produces an expression Exp. Primaries have two
alternatives: constant values and other expressions enclosed in parentheses. In the
first branch of the choice operator, the regexp construct attempts to parse a numeric
value, the result of which, if successful, is used in the return statement, returning
an Int object representing the number. The second branch, first parses an open
parenthesis, then binds the result of parsing an additive expression (implemented in
a method called addSub) to e, and finally parses the closing parenthesis. When all three
parses are successful, the e expression is returned. Note that the return statements
return expressions, but the result of the method is a parser object.

Standard PEGs do not support left-recursive productions, so nested expressions
are typically implemented using loops. For instance, additive expression could be
defined as addSub ::= mulDiv (("+"|"-") mulDiv)*. Here’s how the addSub method could
define this grammar using the PEG embedding:
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S ::= lit! e; Literals
| let T x = e ; Binding
| regexp String x = e ; Terminals
| S ; S Sequence
| return e ; Result
| choice{C+} Alternative
| opt T x = (e) S Zero or one
| star T x = (e) S One or more
| plus T x = (e) S Zero or one

C ::= alt l: S+ Alternative (l = label)

Figure �.��: Abstract syntax of embedded PEGs.

recaf Parser<Exp> primary() {
choice {
alt "value":

regexp String n = "[0-9]+";
return new Int(n);

alt "bracket":
lit! "("; let Exp e = addSub(); lit! ")";
return e;

}
}

Figure �.��: Parsing primaries using Recaf PEGs.

recaf Parser<Exp> addSub() {

let Exp l = mulDiv();

star Exp e = (l) {

regexp String o = "[+\\-]";

let Exp r = mulDiv();

return new Bin(o, e, r);

}

return e;

}

The first statement parses a multiplicative expression. The star construct creates
zero or more binary expressions, from the operator (o), the left-hand side (e) and the
right-hand side (r). If the body of the star fails to recognize a + or � sign, the e will be
bound to the initial seed value l. The constructed binary expression will be fed back
into the loop as e through every subsequent iteration.
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The (partial) PEG for expressions shown above and in Figure �.�� does not support
any kind of whitespace between elements of an expression. Changing the PEG
definitions manually to parse intermediate layout, however, would be very tedious
and error-prone. Exploiting the Object Algebra-based architecture, we add the layout
handling as a modular aspect, by extending the PEG algebra and overriding the
methods that construct the parsers.

For instance, to insert layout in between sequences, the PEG subclass for layout
overrides the Seq as follows:

<T, U> Parser<U> Seq(Parser<T> p1, Parser<U> p2) {

return PEG.super.Seq(p1, PEG.super.Seq(layout, p2));

}

Another concern with standard PEGs is exponential worst-case runtime perfor-
mance. The solution is to implement PEGs as packrat parsers [For��], which run in
linear time by memoizing intermediate parsing results. Again, the base PEG language
can be modularly instrumented to turn the returned parsers into memoizing parsers.

�.� Discussion

Static Type Safety The Recaf source-to-source transformation assumes certain type
signatures on the algebras that define the semantics. For instance, the transformation
of binding constructs (declarations, for-each, etc.) expects Function types in certain
positions of the factory methods. If a method of a certain signature is not present on
the algebra, the developer of a Recaf method will get a static error at the compilation
of the generated code.

The architecture based on Object Algebras provides type-safe, modular exten-
sibility of algebras. Thus, the developer of semantics may enjoy full type-safety in
the development of extensions. The method signatures of most of the examples and
case-studies accurately describe the expected types and do not require any casts.

On the other hand, the statement evaluators represent expressions as opaque
closures, which are typed in the expected result such as Supplier<Boolean> for the
if-else statement. At the expression level, however, safety guarantees depend on the
denotation types themselves. More general semantics, like the Java base expression
interpreter, however, are defined in terms of closures returning Object. The reason
is that Java’s type system is not expressive enough to represent them otherwise
(lacking features such as higher-kinded types and implicits). As a result, potentially
malformed expressions are not detected at compile-time.

Another consequence of this limitation is that the Supply-based statement inter-
preters described in Section �.� cannot be combined out-of-the-box with expression
interpreters in the context of Full Virtualization, as both interpreters must be defined
in terms of generic expressions. Fortunately, the Supply-based statement interpreters
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can be reused by applying the Adapter pattern [VHJ+��]. In the runtime library, we
provide an adapter that maps a Supplier-based algebra to one that is generic in the
expression type. As we have discussed earlier, this is unsafe by definition. Thus,
although we can effectively integrate statement and expression interpreters, we lose
static type guarantees for the expressions.

To conclude, Recaf programs are type-correct when using Statement Virtualization,
as long as they generate type-correct Java code. However, in the context of Full
Virtualization, compile-time guarantees are overridden as the expressions are fully
generic, and therefore, no static assumptions on the expressions can be made.

Runtime Performance. The runtime performance depends on the implementation
of the semantics. The base interpreters are admittedly naive, but they serve to illustrate
the modularity and reusability enabled by Recaf for building language extensions on
top of Java. The Dart-like extensions, reuse the CPS interpreter. As such they are too
slow for production use (closure creation to represent the program increases heap
allocations). But these examples illustrate the expressiveness of Recaf’s embedding
method: a very regular syntactic interface (the algebra), may be implemented by an
interpreter that completely redefines control flow evaluation. On the other hand, the
constraint embedding case study only uses the restricted method syntax to build up
constraint objects for a solver. Solving the constraints does not incur any additional
overhead, the DSL is used merely for construction of the constraint objects.

Further research is still needed, however, to remove interpretive overhead in order
to make extensions of Java practical. One direction would be to investigate “compiler
algebras”, which generate byte code or (even native code) at runtime. Frameworks like
ASM [BLC��] and Javassist [Chi��] could be used to dynamically generate bytecode,
which could then be executed by the Method method.

�.� Related Work

Syntactic and semantic extensibility of programming languages has received a lot of
attention in literature, historically going back to Landin’s, “Next ��� Programming
Languages” [Lan��]. In this section we focus on work that is related to Recaf from the
perspective of semantic language virtualization, languages as libraries, and semantic
language customization.

Language Virtualization. Language virtualization allows the programmer to re-
define the meaning of existing constructs and define new ones for a programming
language. Well-known examples include LINQ [MBB��]) that offers query syntax
over custom data types, Haskell’s do-notation for defining custom monadic evalua-
tion sequences, and Scala’s for-comprehensions. Scala Virtualized [RAM+��] and
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Lightweight Modular Staging (LMS) [RO��; RO��] are frameworks to redefine the
meaning of almost the complete Scala language. However, these frameworks rely
on the advanced typing mechanisms of Scala (higher-kinded types and implicits) to
implement concrete implementations of DSL embeddings. Additionally, compared to
Scala, Java does not have support for delimited continuations so we rely on a CPS inter-
pretation to mitigate that. Recaf scopes virtualization to methods, a choice motivated
by the statement-oriented flavor of the Java syntax, and inspired by how the async,
sync* and async* modifiers are scoped in Dart [MMB��] and async in C# [BRM+��].

Another related approach is the work on F#’s computation expressions [PS��]
which allow the embedding of various computational idioms via the definition of
concrete computation builder objects, similar to our Object Algebras. The F# compiler
desugars ordinary F# expressions to calls into the factory, in an analogous way to the
transformation employed by Recaf. Note that the semantic virtualization capabilities
offered by computation expressions are scoped to the expression level. Both, Recaf
and F# support custom operators, however in F# they are not supported in control
flow statements [Sym��]. Carette et al. [CKS��] construct CPS interpreters among
others. In Recaf we use the same approach to enable control-flow manipulation
extensions.

Languages as Libraries. Recaf is a framework for library-based language extension.
The core idea of “languages as libraries” is that embedded languages or language
extensions exist at the same level as ordinary user code. This is different, for instance,
from extensible compilers (e.g., [NCM��]) where language extensions are defined at
the meta level.

The SugarJ system [ERK+��] supports language extension as a library, where new
syntactic constructs are transformed to plain Java code by specifying custom rewrite
rules. The Racket system supports a similar style of defining libary-based languages
by transformation, leveraging a powerful macro facility and module system [TSC+��].
A significant difference to Recaf is that in both SugarJ and Racket, the extension
developer writes the transformations herself, whereas in Recaf the transformation is
generic and provided by the framework.

Language Customization. Language extension is only one of the use cases sup-
ported by Recaf. Recaf can also be used to instrument or modify the base semantics of
Java. Consequently, Recaf can be seen as specific kind of meta object protocol [KDB��],
where the programmer can customize the dynamic semantics of a programming
language, from within the host language itself. OpenC++ [Chi��] introduced such a
feature for C++, allowing the customization of member access, method invocation
and object creation.
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�.� Conclusion

In this chapter we have presented Recaf, a lightweight tool to extend both the syntax
and the semantics of Java methods just by writing Java code. Recaf is based on two
techniques. First, the Java syntax is generalized to allow custom language constructs
that follow the pattern of the regular control-flow statements of Java. Second, a
generic source-to-source transformation translates the source code of methods into
calls to factory objects that represent the desired semantics. Furthermore, formulating
these semantic factories as Object Algebras enables powerful patterns for composing
semantic definitions and language extensions.
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3 Tracing Program
Transformations with

String Origins

Program transformations, such as the one employed in Recaf, play an important
role in domain-specific languages and model-driven development. Tracing
the execution of such transformations has well-known benefits for debugging,
visualization and error reporting. In this chapter, we introduce string origins, a
lightweight, generic and portable technique to establish a tracing relation between
the textual fragments in the input and output of a program transformation.
We discuss the semantics and the implementation of string origins using the
Rascal meta programming language as an example. We illustrate the utility of
string origins by presenting data structures and operations for tracing generated
code, implementing protected regions, performing name resolution and fixing
inadvertent name capture in generated code.

This chapter is based on the following published article: P. Inostroza, T. van der Storm, and S. Erdweg.
“Tracing Program Transformations with String Origins”. In: Theory and Practice of Model Transformations - �th
International Conference, ICMT ����, Held as Part of STAF ����, York, UK, July ��-��, ����. Proceedings. Ed. by
D. D. Ruscio and D. Varró. Vol. ����. Lecture Notes in Computer Science. Springer, ����, pp. ���–���.
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�.� Introduction

Program transformations play an important role in domain-specific language (DSL)
engineering and model-driven development (MDD). In particular, DSL compilers are
often structured as a sequence of transformations, starting with an input program and
eventually generating code. It is well-known that origin tracking [vDKT��] and model
traceability [ANR+��; Jou��; ON��; OO��; RPK+��] provide valuable information
for debugging, error reporting and visualization.

In this chapter, we focus on traceability for transformations that generate (fragments
of) text. We propose string origins, a lightweight technique that links each character
in the generated text to its origin. A string either originates directly from the input
model, occurs as a string literal in the transformation definition, or is synthesized
by the transformation (e.g., by string concatenation or substitution). We represent
string origins using a combination of unique resource identifiers (URIs) and offset
and length values that identify specific text fragments in a resource. We propagate
string origins through augmented versions of standard string operators, such that the
propagation is fully transparent to transformation writers. In particular, parsing and
unparsing retains string origins for text fragments that appear in the AST, such as
variable names.

Through applications of string origins we further confirm the usefulness of
model traceability by realizing generic solutions to common problems in program-
transformation design. First, string origins allow us to link generated elements back
to their origin. In Section �.�.�, we show how this enables the construction of editors
with embedded hyperlinks to inspect generated code. Second, we present an example
of attaching additional information to generated code via string origins. Section �.�.�
describes how this enables protected regions in generated code. Third, string origins
can be interpreted as unique pointers that identify subterms. In Section �.�.�, we
use the origins of symbolic names (variables, type names, method names, etc.) to
implement name resolution. Finally, string origins can be used to systematically
replace fragments of the generated code that have the same origin. In Section �.�.�,
we show a generic solution for circumventing accidental variable capture (hygiene) by
systematic renaming of generated names.

In Section �.�, we discuss the implementation of string origins in the context of
Rascal [KSV��]. Overall, we found that string origins have a number of important
benefits that can improve the design of program transformations and transformation
engines:

• Totality: Unlike existing work in origin tracking and model traceability [ON��],
string origins induce an origin relation which is total. That is, the origin relation
maps every character in the output text of a transformation back to its origin.
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• Portability: Since the origin relation is based on string values and string
operations instead of inferred from transformation code, the structure or style of
the transformation language is largely irrelevant. As a result, string origins are
portable across transformation systems, transformation styles, and technological
spaces. Even in the case of graphical modeling languages, embedded strings (e.g.,
names, labels, etc.) could be annotated with their location in the serialization
format used to store such models.

• Universality: String origins are independent of the source or target language,
since they only apply to the primitive type string. In particular, origin propaga-
tion is independent of the AST structure or meta model.

• Extensibility: String origins are automatically propagated as annotations of
substrings. As such, string origins can serve as general carriers of additional,
domain-specific information. Marking certain subsstrings as protected (Sec-
tion �.�.�) is an example of this.

• Non-invasiveness: Transformation languages that support string manipulation
during program transformation can support string origins by modifying the
internal representation of strings, without changing the programming interface
of strings. The only visible change is at input boundaries where strings are
constructed.

We have implemented string origins as an experimental feature of Rascal, a meta
programming language for source code analysis and transformation [KSV��]. The
applications and example code presented in this chapter have all been prototyped
in Rascal. The full code of the examples can be found online at https://github.com/
cwi-swat/string-origins.

�.� String Origins

We illustrate the basic idea of string origins in Figure �.�. The code in the middle shows
a simple transformation which converts name and email address specifications to the
VCARD format. Arrows and shading indicate the origin relation. The white-on-black
substrings in the output are introduced by the transformation; their origins point
to the string template in the transformation code in the middle. In contrast, the
substrings with gray backgrounds (name and email) are copied over from the input
to the output, and hence point back to the input model. The substrings in the result
are partitioned according to the origin relation: a fragment originates in either the
input, or the transformation.

Note that the transformation processes the input by splitting the string. It is
important to realize that this does not break the origin relation, but instead makes it
more fine-grained: the output fragments “Pablo Inostroza” and “pvaldera@cwi.nl”
have distinct origins pointers to the exact corresponding substrings in the input.
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BEGIN:VCARD
VERSION:4.0
N:Pablo Inostroza
EMAIL:pvaldera@cwi.nl
END:VCARD

str toVCARD(str input) = 
       "BEGIN:VCARD
       'VERSION:4.0
       'N:<name>
       'EMAIL:<email>
       'END:VCARD"
       when [name, email] :=
               split("\n", input);

Pablo Inostroza
pvaldera@cwi.nl

Input model
pablo.txt

Transformation
ToVCARD.rsc

Output model
pablo.vcard

origin

origin

Figure �.�: Example of a simple Rascal transformation with trace links

�.�.� Representing String Origins

Many transformations take text files as input and, eventually, produce text files as out-
put. Moreover, the transformations themselves are expressed often as transformation
code that is stored in text files as well. String origins exploit this fact by representing
origins as source locations. Conceptually, a source location is a tuple consisting of a
URI identifying a particular resource and an area identifying a text fragment within
the resource. We represent an area by its start offset and length.

In the context of Rascal, source locations are represented by the built-in loc data
type. To give an example, |file:///etc/passwd|(�, ��) identifies the first �� characters
in the file /etc/passwd, starting at offset �. Rascal’s source locations also represent
begin and end line and column numbers, but for the remainder of this chapter we will
abstract from this technical detail. Although source locations are built into Rascal,
they are easily implemented in any other transformation system.

The propagation of string origins is transparent: The transformation writer can
fully ignore their presence and simply uses standard string operations such as
concatenation or substitution. We discuss the details of the propagation in Section �.�.
Here, we want to highlight how to build generic tools on top of origin information. To
this end, we provide an API for accessing locations and origins of substrings. First, we
provide a function for decomposing a string into its atomic substrings (called chunks):

alias Index = rel[loc pos, str chunk];

Index index(str x, loc output);

Function index constructs an Index by collecting the atomic substrings of a string at a
given location (e.g., a file path). The type Index is defined as a binary relation from
the location of a substring to the corresponding chunk. The relation type rel is native
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in Rascal and is equivalent to a set of tuples. Second, each of the chunks in an Index

has an associated origin which can be retrieved with the function origin.

loc origin(str x); // require: x is a chunk

For example, we can call index on the generated VCARD shown in Fig. �.�. Assuming
the output location is |file:///pablo.vcard|, we get the following index:

{<|file:///pablo.vcard|(0,28), "BEGIN:VCARD\nVERSION:4.0\nN:">,

<|file:///pablo.vcard|(28,14), "Pablo Inostroza">,

<|file:///pablo.vcard|(42,7), "\nEMAIL:">,

<|file:///pablo.vcard|(49,14), "pvaldera@cwi.nl">,

<|file:///pablo.vcard|(63,9), "\nEND:VCARD">}

Applying the origin function on any of the chunks retrieves the location where
that particular chunk of text was introduced. Combining both functions gives us the
origin relation, modeled by the Trace data type, which relates output locations to their
corresponding origins:

alias Trace = rel[loc pos, loc org];

Trace trace(str s, loc out) = {<l, origin(chunk)> | <l, chunk>  index(s, out)}

Function trace maps function origin over all chunks of the index. Considering again
the example of Fig. �.�, the trace relation of the generated VCARD looks as follows:

{<|file:///pablo.vcard|(0,28), |file:///ToVCARD.rsc|(28, 28)>,

<|file:///pablo.vcard|(28,14), |file:///pablo.txt|(0,14)>,

<|file:///pablo.vcard|(42,7), |file:///ToVCARD.rsc|(66, 7)>,

<|file:///pablo.vcard|(49,14), |file:///pablo.txt|(15,14)>,

<|file:///pablo.vcard|(63,9), |file:///ToVCARD.rsc|(86, 9)>}

Note that the URIs in the origins distinguishes chunks originating in the input
(pablo.txt) from chunks introduced by the transformation (ToVCARD.rsc). Both the
index and trace relations are the stepping stones for the generic tools developed in
the subsequent section.

�.�.� String Origins in M�T and M�M Transformations

The previous example illustrates the use of string origins for text-to-text transforma-
tions. However, string origins are also useful in model-to-text and model-to-model
transformations. More specifically, when parsing text into an AST, the string frag-
ments that appear as leaves of the AST have string origins attached, pointing to
the corresponding text fragment in the input file. Model-to-model transformations
preserve the origins of strings copied from the input model and generate new origins
for synthesized string fragments. Similarly, unparsing and other model-to-text trans-
formations preserve the origins of strings in the AST. Again, the origin propagation
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state opened
close => closed

end
state closed

open => opened
lock => locked

end
state locked

unlock => closed
end

(a) An example state machine

controller(
[ ... /* event declarations */ ... ],
[state("opened"@{|input|(62,6)}, [],

[transition("close"@{|input|(70,5)},

"closed"@{|input|(79,6)})]),
state("closed"@{|input|(100,6)},[],

[transition("open"@{|input|(108,4)},

"opened"@{|input|(116,6)}),
transition("lock"@{|input|(124,4)},

"locked"@{|input|(132,6)})]),
state("locked"@{|input|(152,6)},[],

[transition("unlock"@{|input|(160,6)},

"closed"@{|input|(170,6)})])])

(b) Parsed AST of the state machine

prog([
fdef("opened"@{|input|(62,6)},[],val(nat(0))),
fdef("closed"@{|input|(100,6)},[],val(nat(1))),
fdef("locked"@{|input|(152,6)},[],val(nat(2))),
... // dispatch functions per state
fdef( // main dispatch
"main"@{|meta|(1280,13)},
["state"@{|meta|(1307,5)},
"event"@{|meta|(1316,5)}],
cond(equ(var("state"@{|meta|(1515,5)}),

call("opened"@{|input|(62,6)},
[])),

call("opened-dispatch"
@{|meta|(1565,9),|input|(62,6)},

[var("event"@{|meta|(1583,5)})]),
cond(equ(var("state"@{|meta|(1515,5)}),

call("closed"@{|input|(100,6)},[])),
call("closed-dispatch"

@{|input|(100,6),|meta|(1565,9)},
[var("event"@{|meta|(1583,5)})]),

cond(equ(var("state"@{|meta|(1515,5)}),

call("locked"@{|input|(152,6)},[])),
call("locked-dispatch"

{|meta|(1565,9),|input|(152,6)},
[var("event"@{|meta|(1583,5)})]),

val(error("UnsupportedState"
@{|meta|(1375,16)}))))))], [])

(c) Generated AST of the compiled state machine

Figure �.�: The names in the state machine code (a) end up as strings in the AST (b), the origins
of which are propagated to the compiled AST (c). State machine input is represented by URI
input, the transformation definition by URI meta.

is transparent to transformation writers, parsing and unparsing because origins are
propagated through standard string operators.

Tracing origin information for string fragments in an AST is often useful. For
example, variable names typically occur as string fragments in an AST. Figure �.�
illustrates tracing of variable names in the context of a DSL for state machines.
Figure �.�(a) shows the source code of a state machine. Parsing the state machine
produces an abstract syntax tree (AST), which is shown in Figure �.�(b). Note that all
strings in this AST are annotated with their origin, using the pseudo-notation “@”. The
AST is then translated to an imperative program which is shown in Figure �.�(c). Some
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strings have input origins (e.g., “opened”), some are introduced by the transformation
and have meta origins (e.g., “main”), and some strings have origins in both the input
and transformation because of concatenation (e.g., “opened-dispatch”).

�.� Applications of String Origins

�.�.� Hyperlinking Generated Artifacts

One of the foremost applications of string origins is relating (sub)strings of the
output back to the input of a transformation [KRP+��; ON��]. Applications of
this information include embedding links back to the source program in generated
code, inspectors, debuggers (e.g., using SourceMaps [Sed��]), or translating back
errors produced by further transformations (e.g., general-purpose language compiler
errors). In this section we show an example of inspecting the result of a program
transformation where the output is shown in an editor with embedded hyperlinks to
the input or transformation code.

To display hyperlinks for parts of the generated code, the offsets of the chunks
in the generated code must be mapped back to the origin associated with each
corresponding chunk. Fortunately, the trace relation introduced in Section �.�.�
contains exactly this information. The hyperlinks are created by finding the location
of a click in the Trace mapping and moving the focus and cursor to the corresponding
editor.

A demonstration of this feature is shown in Fig. �.�. The screenshot shows three
editors in Rascal Eclipse IDE. The first column shows generated Java code. The
substrings highlighted in red are the substrings originating from the input, a textual
model for state machines (shown in the middle). The other substrings (in black) are
introduced by the code generator, which is shown in the right column. Clicking
anywhere in the first column will take you to the exact location where the clicked
substring originated.

�.�.� Protecting Regions of Generated Code

In many cases, a model-to-text transformation is intended to generate just a partial
implementation that has to be completed by the programmer. Normally, if the
transformation is re-run, the manually edited code is overwritten. In general, this
problem is addressed by explicitly marking certain zones of the generated text as
editable. The MOF Models to Text Standard [Obj��], for instance, introduces the
unprotected keyword at the transformation level to specify whether a region can be
editable by the end programmer or not. Another traditional solution is the generation
gap pattern [Fow��], in which the generated code and the code that is expected to be
handwritten are related by inheritance. This, however, demands that the generated
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�. Tracing Program Transformations with String Origins

Figure �.�: Three editors showing (�) generated code with embedded hyperlinks (�) the input
state machine model and (�) the transformation code. Fragments of the generated code that
originate from the input are in bold red.

code is written in a language that features inheritance and also that the writer of the
transformation encodes this design pattern in the transformation.

String origins allow us to tackle this problem in a language and transformation
design agnostic way. Since locations correspond to extended URIs, they can be
enriched with meta data in the form of query string parameters. We provide three
functions tagString(key,value), getTagValue(key) and isTagged(key), as an abstract inter-
face to these query strings. The tagString function could be used in a transformation
to tag regions of text as editable. For instance, the following code snippet marks a
substring as being editable in the code generator for a state machine language:

str command2java(Command command) =

"private void <command.name>(Writer output) {

' output.write(\"<command.token>\\n\");

' <tagString("// Add more code here", "editable", command.name)>

'}";

The function tagString transparently marks the origin of the inserted string ("// Add

more code here") to be an editable region and names it as the name of the command
input to command2java.
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Figure �.�: Editor featuring highlighted editable regions.

To provide editor support for editable regions, the marked substrings need to
be extracted from the generated code. The function extract constructs a map from
output location to region name using the index function introduced in section �.�.�.

alias Regions = map[loc pos, str name];

Regions extract(str s, loc l) =

(l: getTagValue(x, "editable") | <l, x>  index(s, l), isTagged(x,

"editable") );

From the index computed on the generated code s and the target location l, the
function extract collects all locations which have an associated string value that is
tagged as editable. An editor for s can then use the locations in the domain of this
map to allow changes to the regions identified by the locations. In fact, it maintains
another map, this time from region name (range of the result of extract) to the contents
of each region.

When the code is regenerated, the edited contents of the regions need to be
plugged back into the newly generated code, to restore the manual modifications.
The function plug performs this task:

alias Contents = map[str name, str contents];

str plug(str s, loc l, Contents c) = substitute(s, extract(s, l) o c);

The Contents type captures the edits made in the editable regions. The function plug

uses a generic substitution function (substitute) which receives a map from location
to string and performs substitution based on the locations. To obtain this map, plug
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// Event handlers for DSL editors
void onSave(TreeL1

p.L1) {

str s = L1toL2(p.L1);
Regions r = extract(s);
if (exists(p.regions))
r = merge(read(p.regions));

write(p.regions, r);
write(p.L2, s);

}

// Event handlers for generated code editors
TreeL2

onEdit(str p.L2) {

return decorate(parse(p.L2),
read(p.regions));

}

void onSave(TreeL2
p.L2) {

write(p.regions, lookup(p.L2));
}

Figure �.�: Managing editable regions across edit sections

composes the map returned by extract with the contents c, where the map composition
operator o is similar to relational composition.

As a proof of concept, we have added a feature to the Rascal editor framework that
uses the presented infrastructure in order to provide consistent editing of generated
artifacts with editable areas. When a transformation that produces editable regions is
executed, a file with information about the editable offsets is generated as well. When
the user opens a generated file, the editor checks if the region information is available.
If so, the editor restricts the editing of text just to the regions marked as editable,
ensuring that the fixed generated code stays as it is. Fig. �.� shows a screenshot of the
editor with highlighted editable regions.

�.�.� Resolving Symbolic Names
Textual DSLs or modeling languages employ symbolic names to encode references, for
instance from variables to declarations. As a result, DSL compilers and type checkers
require name analysis to resolve references to referenced entities, in fact imposing
a graph structure on top of the abstract syntax tree (AST) of the DSL. The names
themselves cannot be used as nodes in this graph, since then different occurrences
of the same name will be indistinguishable. A solution to this problem is to assign
unique labels to each name occurrence in the source code. Since no two names can
occupy the same location in the source code, string origins are excellent candidates to
play the role of such labels.

Figure �.�(a) shows the abstract syntax of the state machine language used in
Fig. �.�. Note that states, events and transitions contain strings. Each of these
strings will be annotated with an origin by the state machine parser as in Fig. �.�b.
Figure �.�(b) shows the generic type Ref for reference graphs: a tuple consisting of
the set of all name occurrences (names), and a relation mapping uses of names to
declarations. The function resolve computes a reference graph by first constructing
two relations mapping names of states and events to declarations of states and events,
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data Controller

= controller(list[Event] events,

list[State] states);

data State

= state(str name,

list[Transition] trans);

data Event

= event(str name, str token);

data Transition

= transition(str event, str state)

(a) AST data type of state machines

alias Ref = tuple[set[loc] names,

rel[loc use, loc def] refs];

Ref resolve(Controller ctl) {

sds = { <x, origin(x)> | state(x, _)  ctl.states };

eds = { <x, origin(x)> | event(x, _)  ctl.events };

v = range(sds) + range(eds);

e = { <origin(e),ed>, <origin(s),sd>

| /transition(e, s) := ctl,

<e, ed>  eds, <s, sd>  sds};

return <v, e>;

(b) Name resolution for state machines

Figure �.�: Implementing name resolution for state machines

respectively (sds resp. eds). The last comprehension uses the deep matching feature
of Rascal (/) to find transitions arbitrarily deep in the controller ctl. Each transition
then contributes two edges to the relation e.

Reference graphs such as returned by resolve have numerous generic applications
in the context of DSL engineering. For instance, reference graphs can be used to
implement jump-to-definition hyperlinking of editors: when the user clicks on the
use of a name, the reference graph can be used to find the location of its declaration.
Another application is rename refactoring: given a reference graph, and the locations
of a name occurrence, it is possible to track other names that reference it or are
referenced by it and consistently rename them. Finally, if Ref is slightly modified to
distinguish uses from declarations in the names component, reference graphs can be
used to report unbound names or unused declarations.

�.�.� Enforcing a Same Origin Policy for References

A common problem with code generation is that names used in the input (source
names) which pass through a transformation and end up in the output might interact
with names introduced by the transformation (introduced names). For instance, the
declaration of a name introduced by the transformation might capture a reference to
a source name, or vice versa. This is the problem that is traditionally solved in the
work on macro hygiene [CR��].

The problem of inadvertent name capture is best illustrated using an example.
Figure �.�(a) shows the simple state machine used earlier in Fig. �.�(a), but this time
the last state is named current. The code generator of state machines – partially shown
in Fig. �.�(b) – introduces another instance of the name current to store the current
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state opened
close =>
closed

end

state closed
open => opened
lock =>
current

end

state current
unlock =>
closed

end

(a) Input

str controller2run(Controller ctl) =
"void run(Scanner input, Writer output) {
' int current = <ctl.states[0]>;
' while (true) {
' String tk = input.nextLine();
' <for (s  ctl.states) {>
' <state2if(s)>
' <}>
' }
'}";

str state2if(State s) =
"if (current == <s.name>) {
' <for (transition(e, s2)  s.transitions) {>
' if (<e>(tk)) current = <s2>;
' <}>
' continue;
'}";

(b) Excerpt of state machine compiler

static final int current = 2;
void run(...) {

int current = opened;
...
if (current == current) {

if (unlock(tk)) current = closed;
continue;

}
...

}

(c) Incorrect input

static final int current0 = 2;
void run(...) {

int current = opened;
...
if (current == current0) {

if (unlock(tk)) current = closed;
continue;

}
...

}

(d) Repaired input

Figure �.�: Example of repairing name capture: the input (a) contains the name current, but
this name is introduced in the transformation as well (b). Consequently, the introduced variable
in the output shadows the constant declaration (c). The fix function renames all occurrences of
current originating in the input to current0 so that capture is avoided (d). The arrows in (c)
and (d) link variable uses to their declarations.

state in the generated Java implementation of the state machine. As a result, the
declaration of this current captures the reference to the state constant current.

The reference arrows in Fig. �.�(c) show that both current variables in the if-
condition are bound by the current state variable declaration. However, the right-
hand side of the equals expression should be bound by the constant declaration
corresponding to the state current. Moreover, the Java compiler will not signal an
error: even though the code is statically correct, it is still wrong.

To avoid name capture, the algorithm described below renames the source names
in the output of a transformation if they are also in the set of non-source names. The
result can be seen in Fig. �.�(d): the source occurrences of current are renamed to
current0, and inadvertent capture is avoided. Effectively, the technique amounts to
enforcing a same origin policy for names, similar to how a same origin policy avoids
cross-site scripting attacks in Web application security�: names originating from
different artifacts should not reference each other.

In [EvdSD��] the authors showed how string origins proved to be instrumental in
automatically repairing the problem of unintended variable capture. In this section

�http://en.wikipedia.org/wiki/Same-origin_policy
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we present a technique that is simpler but also more conservative: it might rename
more identifiers than is actually needed. Whereas the method of [EvdSD��] is
parameterized in the scoping rules of both source and target language, the technique
of this section is language agnostic, and does not require name analysis of the source
or target language.

The key observation is that whenever name capture occurs it involves a source
name and a name introduced by the transformation. This difference is reflected in the
origins of the name occurrences in the output: the origins’ source locations will have
different URIs. The same origin policy then requires that for every reference in the
generated code from x to y, both x and y originate from the input or neither. The same
origin policy is enforced by ensuring that the set of source names is disjoint from the
set of names introduced by the transformation. This can be realized by consistently
renaming source names in the generated code when they collide with non-source
names.

To formalize the same origin policy, let t = f (s) be the result of some transformation
f on input program s, inducing a trace relation ⌧ 2 Trace, and let Gs = hVs,Esi,
Gt = hVt,Eti be the reference graphs of the source s and target t, respectively. The
same origin policy then requires that

8hl1, l2i 2 Et, hl1,o1i 2 ⌧, hl2,o2i 2 ⌧ : o1 2 Vs, o2 2 Vs

To enforce the same origin policy, one more assumption on reference graphs is needed,
namely that the locations in every reference edge point to the same textual name. In
other words: every use is bound by a declaration with the same name. For instance,
the reference edges drawn in Fig. �.�c and Fig. �.�d satisfy this invariant since variable
uses l1, l2, l3 point to occurrences of the name current, which is also the name used in
the declaration l0.

If we assume that the same name invariant is true for Et , then the same origin
policy is satisfied if the set of source names is disjoint from the set of names introduced
by the transformation. The same name invariant ensures that for every hl1, l2i 2 Et , we
have that l1 and l2 point to the same name. Consequently, it is not possible that one
name originates from the input (e.g., through o1) but the other does not (e.g., through
o2) because that would contradict disjointness of names.

The code for restoring disjointness is shown in Fig. �.�. The function fix has three
parameters: the generated code gen, the index names capturing the names occurring in
gen, and a source location identifying the input program inp. The latter is used by the
predicate isSrc to determine whether a name x is a source name by checking if the
path in the origin of x is the input path.

The for-loop iterates over the index names that represents all names in the generated
string gen. If such a name x originates in the source and is also used as an other name,
an entry is created in the substitution subst, mapping location l to a new name. The
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str fix(str gen, Index names, loc inp) {
bool isSrc(str x) = origin(x).path == inp.path;
set[str] other = { x | <_, x>  names, !isSrc(x) };
set[str] allNames = { x | <_, x>  names };
map[loc,str] subst = ();
map[str,str] renaming = ();
for (<l, x>  names, isSrc(x), x in other) {

if (x notin renaming) {
<y, allNames> = fresh(x, allNames);
renaming[x] = y;

}
subst[l] = renaming[x];

}
return substitute(gen, subst);

}

Figure �.�: Restoring disjointness by fixing source names.

new name is retrieved from the renaming map which records which source names
should be renamed to which new name. The function fresh produces a name that
is not used anywhere (i.e., it is not in allNames). The variable allNames is updated by
fresh to ensure that consecutive renames do not introduce new problems.

Note that fix could also be parameterized with an additional set of external names
which might capture or be captured by source names. External names could include
the reserved identifiers (keywords) of the target language or (global) names that are
always in scope (e.g., everything in java.lang). The only required change is to add the
external names to other.

�.� Implementation

The implementation of string origins requires changes to the internal representa-
tion of strings used by the transformation engine. In this section we discuss the
implementation of string origins in Rascal.

As Rascal is implemented in Java, we have implemented string origins in Java
as well. Rascal string values (of type str) are internally represented as objects
conforming to the interface IString. We have reimplemented this interface to support
string origins, changing only the internal representation. Instances of IString are
constructed through a factory method IString string(java.lang.String) in the Rascal
factory interface for creating values (IValueFactory).

To ensure that the propagation of string origins is complete, every created string
now needs a location to capture its origin. We have extended IValueFactory with
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|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

|file:///foo.txt|(2,3) |file:///bar.txt|(0,2)

|file:///foo.txt|(0,5) |file:///bar.txt|(0,4)

substring (    , 2, 7)

concat (    ,    )  

C : E U R N L 0 3

C : E U R N L 0 3

E U R N L

Figure �.�: The concat and substring operations defined on origin strings

another factory method IString string(java.lang.String, ISourceLocation) to support this.
Calls to the original string(...) method were changed to the new one, everywhere in
the Rascal implementation. The locations where changes have been made correspond
to the following three categories:

• Input: any function that reads a resource into a string must be modified to
install origins on the result. In Rascal, these are built-in library functions like
readFile(loc), readLines(loc), parse(loc), etc.

• String literals: constant string values that are created as part of a Rascal program
get the origin of the string literal in the Rascal file. Whenever a string literal is
evaluated, its location is looked up in its AST and passed to the factory method.
This category also covers interpolated string templates.

• Conversions: converting a value to a string in Rascal is achieved through string
interpolation. For instance, "<x>" returns the string representation of x. If x

evaluates to a string, the result of the conversion is that string itself (including
origin); otherwise, the newly created string gets the locations of the expression
x in the Rascal source.

String origins are propagated through all string operations. As a result, all
operations provided in the IString interface have been reimplemented. The two most
important operations are concat and substring. Their semantics is illustrated in Fig. �.�.
The top two string values are annotated with source locations |file:///foo.txt|(0,5)

and |file:///bar.txt|(0,5). Concatenating both strings (middle row) produces a new,
composite string, where the original arguments to concat are still distinguishable,
and have their respective origins. Finally, the substring operation computes a new
composite string with the origin of each component updated to reflect which part
of the original input is covered. Besides concat and substring, all common string
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operations such as indexOf, replaceAll, split etc. can be defined on strings with origins,
with full propagation.

Internally, Rascal strings with origins are represented as binary trees. A string is
either a chunk object which has a source location attached to it, or it is a concat object
which represents two concatenated strings. A string represented as a binary tree can
be flattened to a list containing elements with a string value and source location for
each chunk object at the leaves. This list is the basis for the functions index and origin

introduced in Section �.�.�.
Although in our experience the performance penalty introduced by representing

strings as binary trees is acceptable in practice, further benchmarking is needed to
assess the overall impact. In particular, it will be interesting to see how the choice
of representation affects different use cases. For instance, when generating code,
concatenation is one of the most frequently executed string operations. The binary tree
representation is optimized for that: concatenation is an O(1) operation. On the other
hand, analyzing strings (e.g., substring, parsing, matching) is much more expensive
if a string is a binary tree. But then again, the penalty will be most significant if
these operations apply to strings resulting from concatenation in the first place. We
consider investigating these and other aspects of performance an important area for
further research.

�.� Related Work

String origins are related to previous work in origin tracking, taint propagation and
model traceability in model-driven engineering. Below we discuss each of these areas
in turn.

Origin tracking. The main inspiration of string origins is origin tracking [vDKT��].
In the context of term-rewriting systems, this technique relates intermediate subterms
matched and constructed during a rewriting process. Origin tracking was proposed as
a technique to construct automatic error reporting, generic debuggers and visualization
in program transformation scenarios. String origins are related in that the result is
a relation between input and output terms. However, for string origins, only string
valued elements are in this relation. Furthermore, the origin relation of [vDKT��]
is derived from analyzing rewrite rules. As a result the transformation writer is
restricted to this paradigm. With string origins, a transformation can be arbitrary
code.

Taint propagation. In Web applications, untrusted user input might potentially end
up as part of a database query, a command-line script execution or web page. Malicious
input could thus compromise the system security in the form of code injection attacks.
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Taint propagation [HCF��] is a mechanism to raise the level of security in such systems
by tracking potentially risky strings at runtime. It consists of three main phases: mark
certain sources of strings as tainted, propagating taint markers across the execution
of the program, and disallowing the use of tainted strings at certain specific points
called sinks. The propagation is achieved by annotating the string values themselves
and making sure that string operations propagate taintedness.

Although in general the taint information is coarse-grained: any string that is
computed from any number of tainted strings is tainted as well. A finer granularity
is employed in character-based taint propagation [CW��]. String origins are very
similar to this approach in that the origin is known for each character in a string.
On the other hand, string origins can be considered more general, because origins
capture more information than just taintedness. In fact, taint propagation could easily
be realized using string origins by considering certain input locations as tainted.

In [DMS+��], the authors present an application of taint propagation to the
domain of model-to-text transformations, specifically, to support debugging of
failures introduced in a transformation. Their approach consists in instrumenting the
transformation in order to add so-called tainted marks to each identifiable element of
the input. On the other hand, the user of the transformation has to identify erroneous
sections in the output. Since the taints from the input are consistently propagated by
the instrumented transformation, it is possible to relate the errors in the output to
specific elements of the input. In this work, the input is an XML document and the
transformation, an XSLT file. The granularity of this technique is at the level of XML
nodes, which provides quite precise information for the error tracking analysis.

Traceability in model-driven engineering. In model-driven engineering, models
are refined through transformations to produce executable artifacts. In [ANR+��],
the authors argue for the need for automatic generation of trace information in such
a setting. Several endeavors towards this goal have been reported in the context of
different model transformation systems, such as ATL, MOF, and Epsilon.

For instance, ATL transformations can be manually enriched with traceability
rules that conform to a traceability metamodel [Jou��]. Besides the target models,
the enriched transformations will also automatically produce trace models when
executed. In order to avoid the manual work of adding these specifications to existing
transformations, the authors present a technique for automatically weaving the trace
rules into the transformation. Unlike string origins, this approach relies on the
structure of the ATL rules to derive the trace links, and such links just relate a subset
of the elements in the target model to certain elements in the source model, but not to
the transformation itself.

Another approach to address traceability is the MOF Models to Text Transformation
Language standard [Obj��]. In this specification, transformations can be decorated
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with a trace annotation so when the transformation is executed, a relation between
its output and its input is constructed. As in the case of [Jou��], the transformation
conveys the traceability information explicitly. To overcome this, [ON��] and [OO��]
introduce an alternative technique for managing traceability in MOFScript, a language
for defining model to text transformations based on the MOF standard. In this case,
“any reference to a model element that is used to produce text output results in a trace
between that element and the target file”. Like string origins, this technique provides
implicit propagation and fine-grained tracing. However, no relation between the
output and the text fragments coming from the transformation is created. Just as
in the case of ATL, MOFScript depends on the structure of the rules to analyze the
transformation and generate trace information.

Finally, The Epsilon Generation Language (EGL) is a model-to-text transformation
language defined at the core of the Epsilon Platform [RPK+��]. EGL provides an API
to construct a transformation trace. However, this API is coarse-grained (file-level).

�.� Conclusion

String origins identify the exact origin of a fragment of text. By annotating string
values with their origins, the origins are automatically propagated through program
transformations, independent of transformation style or paradigm. The result is that
for every string valued element in the output of a transformation, we know where
it came from, originating in the input program or introduced by the transformation
itself.

String origins have diverse applications. They address traditional model trace-
ability concerns by linking output elements to where they were introduced. We have
shown two applications in this space, namely hyperlinked editors for generated code
and protected regions. Moreover, string origins can be used to uniquely identify sub
terms, which is instrumental for implementing name resolution, rename refactoring,
jump-to-definition services and error marking. Finally, we have shown that by distin-
guishing source names from introduced names, accidental name capture in generated
code can be avoided in a reliable and language agnostic way.

The implementation of string origins is simple and independent of any specific
meta-model, transformation engine or technological space. Any transformation
system or programming language that manipulates string values during execution
can support string origins by changing the internal representation of strings. The
standard programming interface on strings remains the same. As a result, code that
manipulates strings does not have to be changed, except for the code that creates
strings in the first place. Although conceptually simple, we have shown that string
origins, nevertheless, provide a powerful tool to improve the understandability and
reliability of program transformations.
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4 Modular Interpreters
with Implicit Context

Propagation

Modular interpreters are a crucial first step towards component-based language
development: instead of writing language interpreters from scratch, they can be
assembled from reusable, semantic building blocks. As Recaf showcased, object
algebras are a suitable technique to encode modular interpreters, which in the case
of Recaf correspond to modular Java (and extended Java) interpreters.

Unfortunately, traditional language interpreters can be hard to extend because
different language constructs may require different interpreter signatures. For
instance, arithmetic interpreters produce a value without any context information,
whereas binding constructs require an additional environment.

In this chapter, we present a practical solution to this problem based on implicit
context propagation. By structuring denotational-style interpreters as object
algebras, base interpreters can be retro-actively lifted into new interpreters that
have an extended signature. The additional parameters are implicitly propagated
behind the scenes, through the evaluation of the base interpreter.

Interpreter lifting enables a flexible style of modular and extensible language
development. The technique works in mainstream object-oriented languages, does
not sacrifice type safety or separate compilation, and can be easily automated,

The content of this chapter was first published at the GPCE���� conference, and later extended to
a COMLAN journal publication. This chapter is based on the latter: P. Inostroza and T. van der Storm.
“Modular interpreters with Implicit Context Propagation”. In: Computer Languages, Systems & Structures
�� (����). Special Issue on the ��th International Conference on Generative Programming: Concepts &
Experiences (GPCE’��), pp. ��–��.

��



�. Modular Interpreters with Implicit Context Propagation

for instance using macros in Scala or dynamic proxies in Java. We illustrate
implicit context propagation using a modular definition of Featherweight Java and
its extension to support side-effects, and an extensible domain-specific language
for state machines. We finally investigate the performance overhead of lifting
by running the DeltaBlue [FM��] benchmark program in Javascript on top of a
modular implementation of LambdaJS [GSK��], and a dedicated micro-benchmark.
The results show that lifting makes interpreters roughly twice as slow because of
additional call overhead. Further research is needed to eliminate this performance
penalty.

�.� Introduction

Component-based language development promises a style of language engineering
where languages are constructed by assembling reusable building blocks instead
of writing them from scratch. This style is particularly attractive in the context
of language-oriented programming (LOP) [War��], where the primary software
development artifacts are multiple domain-specific languages (DSLs). Having a
library of components capturing common language constructs, such as literals, data
definitions, statements, expressions, declarations, etc., would make the construction
of these DSLs much easier and as a result has the potential to make LOP much more
effective.

Object algebras [OC��] are a design pattern that supports type-safe extensibility
of both abstract syntax and interpretations in mainstream, object-oriented (OO)
languages. Using effect handlings, the abstract syntax of a language fragment is
defined using a generic factory interface. Operations are then defined by implementing
these interfaces over concrete types representing the semantics. Adding new syntax
corresponds to modularly extending the generic interface, and any pre-existing
operation. New operations can be added by implementing the generic interface with
a new concrete type.

Object algebras can be seen as extensible denotational definitions: factory methods
essentially map abstract syntax to semantic denotations (objects). Unfortunately, the
extensibility provided by object algebras breaks down if the types of denotations
are incompatible. For instance, an evaluation component for arithmetic expressions
might use a function type ()! Val as semantic domain, whereas evaluation of binding
expressions requires an environment and, hence, might be expressed in terms of the
type Env! Val. In this case, the components cannot be composed, even though they
are considered to represent the very same interpretation, namely evaluation.

In this chapter we resolve such incompatibilities for object algebras defined over
function types using implicit context propagation. An algebra defined over a function
type T0⇥ ...⇥Tn!U is lifted to a new algebra over type T0⇥ ...⇥Ti⇥S⇥Ti+1⇥ ...⇥Tn!U.
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The new interpreter implicitly propagates the additional context information of type S
through the base interpreter, which remains blissfully unaware. As a result, language
components do not need to standardize on a single type of denotation, anticipating
all possible kinds of context information. Instead, each semantic component can be
defined with minimal assumptions about its semantic context requirements.

We show that the technique is quite versatile in combination with host language
features such as method overriding, side effects and exception handling, and can
be naturally applied to interpretations other than dynamic semantics. Since the
technique is so simple, it is also easy to automatically generate liftings using a simple
code generator or dynamic proxies [Ora��a]. Finally, two case studies concerning a
simple DSL and a simplified programming language illustrate the flexibility offered
by implicit context propagation in modularizing and extending languages.

The contributions presented throughout this chapter can be summarized as
follows:

• We present implicit context propagation as a solution to the problem of modu-
larly adding semantic context parameters to existing interpreters (Section �.�).

• We show the versatility of the technique by elaborating on how implicit context
propagation is used with delayed evaluation, overriding, mutable context
information, exception handling, continuation-passing style, languages with
multiple syntactic categories, generic desugaring of language constructs and
interpretations other than dynamic semantics (Section �.�).

• We present a simple, annotation-based Scala macro to generate boilerplate
lifting code automatically and show how lifting can be implemented generically
using dynamic proxies in Java (Section �.�).

• To illustrate the usefulness of implicit context propagation in a language-oriented
programming setting, we provide a case study of extending a simple language
for state machines with � new kinds of transitions (Section �.�).

• The techniques are furthermore illustrated using an extremely modular imple-
mentation of Featherweight Java with state [FKF��; IPW��]. This allows us
to derive ��� hypothetical variants of the language, out of � given language
fragments (Section �.�).

• Interpreter lifting introduces additional runtime overhead. We investigate this
overhead empirically by running the DeltaBlue [FM��] benchmark in Javascript
on top of a modular implementation of LambdaJS (�JS) [GSK��]. The results
show that a single level of lifting makes interpreters roughly twice as slow.
Executing a dedicated loop-based micro-benchmark shows that additional call
overhead is the prime cause of the slow down (Section �.�).

Implicit context propagation using object algebras has a number of desirable properties.
First, it preserves the extensibility characteristics provided by object algebras, without
compromising type safety or separate compilation. Second, semantic components can
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be written in direct style, as opposed to continuation-passing style or monadic style,
which makes the technique a good fit for mainstream OO languages. Finally, the
lifting technique does not require advanced type system features and can be directly
supported in mainstream OO languages with generics, like Java or C#.

�.� Background

�.�.� Problem Overview

Table �.� shows two attempts at extending a language consisting of literal expressions
with variables in a traditional OO style.� The first row contains the base language
implementation and the second row shows the extension. The columns represent two
styles characterized as “anticipation” and “duplication” respectively. In each column,
the top cell shows the “base” language, containing only literal expressions (Lit). The
bottom cell shows the attempt to add variable expressions to the implementation.

The first style (left column) captures the traditional OO extension where a new AST
class for variables (Var) is added. The extension is successful, since the base language
anticipates the use of the environment. Unfortunately, the anticipated context
parameter (env) is not used at all in the base language. Furthermore, anticipating
additional context parameters, such as stores, leads to more unnecessary pollution
of the evaluation interface in the base language. The main drawback of this style
is that it breaks open extensibility. At the moment of writing the base language
implementation, the number of context parameters is fixed, and no further extensions
are possible without a full rewrite.

The second style (right column) does not anticipate the use of an environment,
and the implementation of Lit is exactly as one would desire. No environment is used,
and so it is not referenced either. To allow the recursive evaluation of expressions in
the extension, however, the abstract interface Exp needs to be replaced to require an
environment-consuming eval. Consequently, the full logic of Lit evaluation needs to
be reimplemented in the extension as Lit2. If more context parameters are needed
later, the extended classes need to be reimplemented yet again. In fact, in this style,
there is no reuse whatsoever.

To summarize, the traditional OO style of writing an interpreter supports extension
of syntax (data variants), but only if the evaluation signatures are the same. As a
result, any context parameters that might be needed in future extensions have to be
anticipated in advance to realize modular extension. In the next section we reframe

�All code examples are in Scala [OAC+��] (http://www.scala-lang.org). We extensively use Scala traits,
which are like interfaces that may also contain method implementations and fields. We also assume an
abstract base type for values Val and a sub-type for integer values IntVal; throughout our code examples
we occasionally elide the specification of some implicit conversions for readability.
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�.�. Background

Anticipate Duplicate
Base
Language

trait Exp { def eval(env: Env): Val }

class Lit(n: Int) extends Exp {
def eval(env: Env) = n

}

class Add(l: Exp, r: Exp)
extends Exp {

def eval(env: Env) =
l.eval(env) + r.eval(env)

}

trait Exp { def eval: Int }

class Lit(n: Int) extends Exp {
def eval = n

}

class Add(l: Exp, r: Exp)
extends Exp {

def eval = l.eval + r.eval
}

Extended
Language

class Var(x: String) extends Exp {
def eval(env: Env) = env(x)

}

trait Exp2 {
def eval(env: Env): Val

}

class Lit2(n: Int) extends Exp2 {
def eval(env: Env) = n

}

class Add2(l: Exp2, r: Exp2)
extends Exp2 {

def eval(env: Env)
= l.eval(env) + r.eval(env)

}

class Var(x: String) extends Exp2 {
def eval(env: Env) = env(x)

}

Table �.�: Two attempts at adding variable expressions to a language of addition
and literal expressions. On the left, the Lit and Add classes anticipate the use of an
environment, without actually using it. On the right, the semantics of Lit and Add

need to be duplicated.

��



�. Modular Interpreters with Implicit Context Propagation

the example language fragments in the object algebras [OC��] style, providing the
essential ingredient to solve the problem using implicit context propagation.

�.�.� Object Algebras
Using object algebras the abstract syntax of a language is defined as a generic factory
interface. For instance, the base language abstract syntax of Table �.� is defined as the
following trait:

trait Arith[E] {

def add(l: E, r: E): E

def lit(n: Int): E

}

Because the trait Arith is generic, implementations of the interface must choose a
concrete semantic type of Arith expressions. In abstract algebra parlance, the factory
interface corresponds to an algebraic signature, the generic type E is a syntactic sort,
and implementations of the interface are algebras binding the generic sort to a concrete
carrier type. Carrier types can be any type supported by the host language (i.e. Scala),
but in this text we only consider function types.

An evaluation algebra for the Arith language could be implemented as follows:
type Ev = () => Val

trait EvArith extends Arith[Ev] {

def add(l: Ev, r: Ev)

= () => IntVal(l() + r())

def lit(n: Int)

= () => IntVal(n)

}

The type alias Ev defines a carrier type consisting of nullary functions returning a
value of type Val. Terms over the algebra are constructed by invoking the methods of
the algebra:

def onePlusTwo[E](alg: Arith[E]): E = alg.add(alg.lit(1), alg.lit(2))

val eval = onePlusTwo(new EvArith {})

println(eval()) // => 3

The generic function onePlusTwo accepts an algebra of type Arith and constructs a term
over it. Invoking this function with the evaluation algebra EvArith gives an object of
type Ev which can be used to evaluate the expression add(lit(1), lit(2)).

Now let us extend Arith with variable expressions, as was attempted in Table �.�.
First the abstract syntax is defined using a generic trait:
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trait Var[E] { def vari(x: String): E }

The syntax for both fragments can be combined using trait inheritance:

trait ArithWithVar[E] extends Arith[E] with Var[E]

For evaluating variables, we can implement the interface over a carrier type EvE which
accepts an environment:

type EvE = Env => Val

trait EvVar extends Var[EvE] {

def vari(x: String) = env => env(x)

}

Unfortunately, this trait cannot be composed with EvArith because the carrier types
are different: EvArith is defined over Ev whereas EvVar is defined over EvE. In order to
compose the two syntactic interfaces, both carrier types have to be the same. In this
case, however, the evaluation semantics of the language fragments require different
context information, which prevents the components from being combined. We
actually observe the same problem as shown in Table �.�!

Fortunately, object algebras also support modular extension with new operations.
This means that it is possible to modularly define a trait for a different interpretation
of the same syntax:

trait EvEArith extends Arith[EvE] {

...

}

This trait defines arithmetic expressions over the carrier type EvE instead of Ev.
Internally this trait will delegate to the original EvArith which was defined over the
type Ev. In the next section we describe this pattern in more detail.

�.� Implicit Context Propagation

We have seen how the incompatibility between object algebras defined over different
function types precludes extensibility. In this section we introduce implicit context
propagation as a technique to overcome this problem, by first extending the Arith

language to support variable binding, and then generalizing the pattern to support
the propagation of other kinds of the context information.

�.�.� Adding Environments to Arithmetic Expressions

The language fragment of expressions that require environments is shown in Figure �.�.
The Binding language defines four constructs: lambda (functions), vari (variables), apply
(function application) and let (binding). The carrier type is EvE, a function from
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trait Binding[E] {
def lambda(x:Str, b:E): E
def vari(x:Str): E
def apply(e1:E, e2:E): E
def let(x:Str, e:E, b:E): E

}

type EvE = Env => Val
type Env = immutable.Map[Str,Val]

class Clos(x:Str,b:EvE,e:Env) extends Val {
def apply(v: Val): Val = b(e + (x -> v))

}

trait EvEBinding extends Binding[EvE] {
def lambda(x: Str, b: EvE)
= env => new Clos(x, b, env)

def vari(x: Str): EvE = env => env(x)

def apply(e1: EvE, e2: EvE)
= env => e1(env).apply(e2(env))

def let(x:Str, e:EvE, b:EvE)
= env => b(env + (x -> e(env)))

}

Figure �.�: A language fragment with binding constructs

add(• , •) () => •()+•()

lit(1) lit(2) () => 1 () => 2

env => base.add(() => •(env), () => •(env))()

env => base.lit(1)() env => base.lit(2)()

() => •() + •() 

() => 1 () => 2

Figure �.�: The left column shows how the expression add(lit(1), lit(2)) is mapped to
its denotation by EvArith; the nodes in the tree are of type Ev (() => Val). On the right, the
result of lifting the denotation produced by EvArith to the type EvE (Env => Val) to propagate
environments. The dotted arrows indicate evaluation of Scala expressions; the solid arrows
represent references.

environments to values. To support lambdas, the Val domain is extended with closures
(Clos). The interpreter on the right evaluates lambdas to closures. Variables are looked
up in the environment. Function application expects that the first argument evaluates
to a closure and applies it to the value of the second argument. Finally, let evaluates
its third argument in the environment extended with a variable binding.

We now discuss the implementation of the environment-passing interpreter for
the Arith language using implicit context propagation. As described in Section �.�,
two object algebra interpreters can be combined if they are defined over the same
carrier type. In this case, this means that EvArith needs to be lifted to an EvEArith

which is defined over the carrier type EvE, i.e., Env => Val:

trait EvEArith extends Arith[EvE] {

private val base = new EvArith {}
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def add(l: EvE, r: EvE): EvE = env => base.add(() => l(env), () => r(env))()

def lit(n: Int): EvE = env => base.lit(n)()

}

Instead of reimplementing the semantics for the arithmetic operations, the code
for each variant delegates to the base field initialized with EvArith. The interpreter
EvEArith shows the actual propagation of the environment in the method for add.
Invoking add on the base algebra requires passing in arguments of type Ev. This is
achieved with the inline anonymous functions. Each of these closures calls the actual
arguments of type EvE (l and r). Since both these arguments expect an environment,
we pass in the original env that corresponds to the argument of the closure denoted
by add.

In order to visualize lifting, Figure �.� shows the evaluation of add(lit(1), lit(2))

over EvArith (left) and over the lifted algebra EvEArith. On the left the result is a tree of
closures of type Ev. The right shows how each closure is lifted to a closure of type
EvE. Note that each of the closures in the denotation on the left is also present in the
denotation on the right, but that they are connected via intermediate closures on the
right.

The two languages can now be combined as follows:

trait EvEArithBinding extends EvEArith with EvEBinding

The following client code shows how to create terms over this language:

def makeLambda[E](alg: Arith[E] with Binding[E]): E = {

import alg._

lambda("x", add(lit(1), vari("x")))

}

val term: EvE = makeLambda(new EvEArithBinding {})

The method makeLambda provides a generic way of creating the example term
lambda("x", add(lit(1), vari("x"))) over any algebra defining arithmetic and binding
expressions. Invoking the method with an instance of the combined interpreter
EvEArith-Binding creates an object of type EvE.

�.�.� Generating Implicit Context Propagation Code

The general pattern for generating context propagating code is shown in Figure �.�.
The template is written in pseudo-Scala and defines a trait Alg(T,U⇤))V , implementing
the language interface Alg over the function type (T, U*) => V. The asterisks indicate
splicing of formal parameters. For instance, U* capture zero or more type parameters
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trait Alg(T ,U⇤))V extends Alg[(T, U*) => V] {

val base = new AlgU⇤)V {}

def Ci(f1: (T, U*) => V, ... , fn: (T, U*) => V):
(T, U*)=> V =

(t, u*) => base.Ci((u1*) => f1(t, u1*), ..., (un*) => fn(t, un*))(u*)

· · ·
}

Figure �.�: Template for generating lifted interpreters that propagate environment-like context
parameters.

in the function signature (T, U*) => V. The same notation is used on ordinary formal
parameters, as shown in the closure returned by constructor method Ci .

As shown in Figure �.�, the base algebra is instantiated with an algebra over
function type U* => V, which accepts one fewer parameter than the carrier type of
Alg(T,U⇤))V . For each constructor, Ci , the lifting code follows the pattern as shown. For
presentation purposes, primitive arguments to Ci are omitted, and only arguments of
the function types are shown as fj , for j 2 1, ...,n.

This template concisely expresses the core mechanism of lifting. Notice, however,
that it assumes that the added parameter is prepended at the front of the base
signature. A realistic generation scheme would consider permutations of parameters.
The macro-based code generator discussed in Section �.� supports inserting the
parameter anywhere in the list.

�.� Working with Lifted Interpretations

The example languages we have discussed so far only considered expressions in a
purely functional framework. In this section, we discuss how implicit context propa-
gation can be used for introducing delayed evaluation, semantics overriding, mutable
parameters to model side-effects, exception handling for non-local control, lifting of
continuation-passing style interpreters, many-sorted languages, implementation by
desugaring, and interpretations other than dynamic semantics.

�.�.� Delaying Evaluation

The interpreter for arithmetic expressions introduced in Section �.�.� is defined in
terms of the carrier type () => Val. Accordingly, the algebra produces closures that
need to be applied in order to obtain the final result. In this case, however, the
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denotations could have simply had the type Val, as there is no need for delayed
evaluation in this language module.

In a certain sense using the carrier type () => Val for arithmetic expressions
represents a form of anticipation: it is expected that arithmetic expressions will be
used together with expressions that do require delayed evaluation. For instance,
defining conditional expressions in an eager host language like Scala requires delayed
evaluation, otherwise both branches of the conditional are evaluated. This is clearly
not intended, especially in the presence of side effects.

It turns out, however, that lifting can be used to delay evaluation on top of an
algebra that computes results eagerly. Consider the following implementation of
Arith expressions:

trait ValArith extends Arith[Val] {

def add(l: Val, r: Val) = IntVal(l + r)

def lit(n: Int) = IntVal(n)

}

The carrier type is simply Val and expression evaluation is “immediate”: when
expressions are constructed over this algebra, they are actually immediately evaluated
without creating any intermediate closures. ValArith can now be lifted to produce
thunks instead of values, as follows:

trait DelayedValArith extends Arith[Ev] {

private val base = new ValArith {}

def add(l: Ev, r: Ev): Ev = () => base.add(l(), r())

def lit(n: Int): Ev = () => base.lit(n)

}

This version of arithmetic evaluation corresponds to the original EvArith introduced
in Section �.�.� and can be composed with, for instance, implementations of condi-
tional expressions. Lifting was characterized as interleaving the construction of the
expressions on the base algebra with evaluating them. In this case, one can see that
construction and evaluation actually coincide.

�.�.� Overriding Interpretations: Dynamic Scoping

The propagation of environments presented in Section �.� obeys lexical scoping
rules for all implicitly-propagated parameters. Some context information, however,
should not be lexically scoped, but dynamically scoped. Typical examples include
the binding of self or this in OO languages, dynamic contexts in context-oriented
programming [HCN��], or simply dynamically scoped variables [HP��].

Consider the following language fragment for introducing dynamically scoped
variables, similar to fluid-let in Scheme [Han��]:
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trait DynLet[E] { def dynlet(x: String, v: E, b: E): E }

The construct dynlet binds a variable x to a value in both the lexical and dynamic
environment. The dynamic variable can then be referenced in the scope of dynlet

using the ordinary vari of the Binding fragment (cf. Figure �.�).
As an example of the dynamically scoped propagation, consider the following

example term defined over the combination of Arith, Binding, and DynLet. The left
column shows the abstract syntax, the right column shows the same program in
pseudo concrete syntax:

dynlet("x", lit(1),

let("f", lambda("_", add(vari("x"), lit(1))),

dynlet("x", lit(2),

let("z", dynlet("x",

lit(3),

apply(vari("f"), lit(1))),

add(vari("z"), vari("x"))))))

dynlet x = 1 in

let f = � _ . x + 1 in

dynlet x = 2 in

let z = (dynlet x = 3 in f(1)) in

z + x

This program dynamically binds x to �, in the scope of the let which defines f

as a lambda dynamically referring to x. The value of x thus depends on the dynamic
scope when the closure f is applied to some argument. Nested within the let is
another dynamic let (dynlet) which overrides the value of x. The innermost let then
defines a variable z with the value of applying f to �. This application is itself inside
another dynamic let, yet again redefining x. So the result of this application will be
�, as the innermost dynamic scope defines x to be �. In the body of the innermost
normal let, however, the active value of x is �, so the final addition z + x evaluates to
�.

The implementation of dynlet is straightforward by using an extra parameter of
type Env representing the dynamic environment.

type EvEE = (Env, Env) => Val

trait EvEEDynLet extends DynLet[EvEE] {

def dynlet(x: String, v: EvEE, b: EvEE)

= (env, denv) => {

val y = v(env, denv); b(env + (x -> y), denv + (x -> y))

}

}

Notice that since the static and the dynamic environment both have the same
type, the signature of the carrier type makes the interpretation order-dependent. We
discuss strategies for disambiguation in these scenarios when presenting automated
lifting in Section �.�.
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To combine the lexically scoped Binding fragment with the dynamically scoped
DynLet fragment, EvEBinding (cf. Figure �.�) needs to be lifted so that it propagates
the dynamic environment. Implicit propagation can be used to obtain EvEEBinding.
Unfortunately, the dynamic environment is now inadvertently captured when lambda

creates the Clos object.
To work around this problem, the implementation of lambda and apply in EvEEBinding

should be overridden, to support the dynamic environment explicitly:
class DClos(x: String, b: EvEE, env: Env) extends Val {

def apply(denv: Env, v: Val): Val

= b(env ++ denv + (x -> v) , denv) // denv shadows env

}

trait EvEEBindingDyn extends EvEEBinding {

override def lambda(x: Str, b: EvEE): EvEE

= (env, denv) => new DClos(x, b, env)

override def apply(e1: EvEE, e2: EvEE): EvEE

= (env, denv) => e1(env, denv).apply(denv, e2(env, denv))

}

The closure class DClos differs from Clos only in the extra denv parameter to the
apply method. The supplied dynamic environment denv is added to the captured
environment, so that a dynamically scoped variable x (introduced by dynlet) will
shadow a lexically scoped variable x (if any).

Although the existing lambda and apply could not be reused, one could argue that
adding dynamically scoped variables to a language is not a proper extension which
preserves the semantics of all base constructs. In other words, adding dynamic
scoping literally changes the semantics of lambda and apply.

�.�.� Mutable Parameters: Stores
The previous section showed how the lexical scoping of propagated parameters
was circumvented through overriding the semantics of certain language constructs.
Another example of context that should not be lexically scoped is a store for modeling
side effects. In this case, however, the parameter should also not obey stack discipline
as it did for the dynamic environment. Instead, we achieve this by propagating
mutable data structures. Consequently, all interpreter definitions will share the same
store, even when they are captured when closure objects are created.

Consider a language Storage which defines constructs for creating cells (create),
updating cells (update) and inspecting them (inspect):

trait Storage[E] {

def create(): E

��



�. Modular Interpreters with Implicit Context Propagation

def update(c: E, v: E): E

def inspect(c: E): E

}

The simplest approach to implement an interpreter for such expressions is to use
a mutable store as a parameter to the interpreter. For instance, the following type
declarations model the store as a mutable Map and the interpreter as a function from
stores to values:

type Sto = mutable.Map[Cell, Val]

type EvS = Sto => Val

The interpreter for Storage could then be defined as follows:�

trait EvSStorage extends Storage[EvS] {

def create() = st => ...

def update(c: EvS, v: EvS) = st => ...

def inspect(c: EvS) = st => ...

}

To compose the Arith language defined in Section �.�.� with Storage, the EvArith

interpreter needs to be lifted in order to propagate the store. Since Sto is a mutable
object, side-effects will be observable even though the propagation follows the style
of propagating environments.

Unsurprisingly, perhaps, mutable data structures are an effective way of supporting
side-effecting language constructs. It is interesting to contemplate whether it is possible
instead to lift interpreters that thread an immutable store through the base evaluation
process, without depending on mutation. We have experimented with a scheme that
uses a private mutable variable, local to the traits containing the lifted methods.

The following example is a failed attempt at lifting EvArith to thread an immutable
store (represented by the type ISto). Since the store is immutable, the carrier type
EvS2S takes an ISto and produces a tuple containing the return value and the (possibly)
updated store.

type ISto = immutable.Map[Cell,Val]

type EvS2S = ISto => (Val, ISto)

trait EvS2SArith extends Arith[EvS2S] {

private val base = new EvArith {}

private var _st: ISto = _

def add(l: EvS2S, r: EvS2S)

= st => { _st = st;

(base.add(() => {val (v1, s1) = l(_st); _st = s1; v1},

�For brevity, we have elided the actual, straightforward implementation of the storage constructs.
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class Fail extends Exception

trait Choice[E] {
def or(l: E, r: E): E
def fail: E

}

trait EvChoice extends Choice[Ev] {
def or(l: Ev, r: Ev): Ev

= () => try { l() } catch { case _:Fail => r() }

def fail(): Ev = () => throw new Fail
}

Figure �.�: Implementing local backtracking with exception handling.

() => {val (v2, s2) = r(_st); _st = s2; v2})(),
_st)

}

...

}

At every evaluation step, the private variable _st is synchronized with the currently
active store returned by sub expressions; since the current value of _st is also passed to
the subsequent evaluation of sub terms, side effects are effectively threaded through
the evaluation.

Unfortunately, this scheme breaks down when two different lifted traits have their
own private _st field. As a result, expressions only see the side-effects enacted by
expressions within the same lifting, but not the side-effects which originate from other
lifted traits. It would be possible to share this “current store” using an ambient, global
variable, allowing different traits (lifted or not) to synchronize on the same store.
Such a global variable, however, compromises the modularity of the components
and would complicate the code generation considerably, especially in the presence of
multiple store-like context parameters.

Since simulating mutable context information by threading immutable data breaks
modularity and modularity is key to our approach, we instead depend on the support
for mutable data structures in the host language in order to represent side-effects in
the object language.

�.�.� Exception Handling: Backtracking

Many non-local control-flow language features can be simulated using exception
handling. A simple example is shown in Figure �.�, which contains the definition of
a language fragment for (local) backtracking. The or construct first tries to evaluate its
left argument l, and if that fails (i.e., the exception Fail is thrown), it evaluates the
right argument r instead. Note that EvChoice does not require any context information
and is simply defined over the carrier type Ev.
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If EvChoice is lifted to EvEChoice to implicitly propagate environments, the exception
handling still provides a faithful model of backtracking, because the environments are
simply captured in the closures l and r. In other words, upon backtracking – when
the Fail exception is caught – the original environment is passed to r.

trait EvEChoice extends Choice[EvE] {

private val base = new EvChoice {}

def or(l: EvE, r: EvE): EvE = env => base.or(() => l(env), () => r(env))()

def fail() = env => base.fail()()

}

For instance, evaluating the following term using this algebra, results in the correct
answer (�):

let("x", lit(1), or(let("x", lit(2), fail()), vari("x")))

Notice, however, that we face a limitation if we want to compose backtracking with
mutable context, e.g., the store. Since the store inherits the mutable semantics from
the host language, it is not trivial to customize the interaction with the backtracking
behavior. For instance, in order to support transaction-reversing choice we might
naively assume that we just need to lift EvChoice to EvSChoice (an interpreter that
accepts the store). Unfortunately, the resulting interpreter has the wrong semantics.
It does not rollback the transactions upon failure, because the captured stores are
mutated at the level of the host language. An alternative is to override the semantics
of the Choice interpreter in order to keep track of mutable stores at each choice point
(like dynamic let required overriding lambda and apply). This leads to a contrived
implementation that works around the limitations of the host language semantics.
Moreover, in the case there are interactions with more mutable parameters, all of
them must be considered, leading to more overriding. In summary, lifting does not
automatically handle the interaction between non-local control flow extensions and
extensions that require mutable parameters.

�.�.� Continuation-Passing style

In the introduction, we argue that one of the benefits of our approach to language
modularity is that the semantic components can be written in direct style (as opposed
to continuation-passing style or monadic style). However, some language features
might in fact require a different formulation of interpreters. For instance, not all
non-local control flow features are conveniently expressed using exception handling.
One case in point is Scheme’s call-with-current-continuation (callcc) [ADH+��], which
allows arbitrary capturing of the “remainder of a computation” (the continuation).
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type EvK = (Val => Unit) => Unit

trait EvKArith extends Arith[EvK] {
def add(l: EvK, r: EvK): EvK = k => l(v1 => r(v2 => k(IntVal(v1+v2))))
def lit(n: Int): EvK = k => k(IntVal(n))

}

Figure �.�: CPS evaluator for arithmetic expressions.

We show that interpreter lifting can still be applied if all interpreters are coded in
continuation-passing style (CPS) [Rey��].

Consider, for instance, CPS evaluators for the Arith language shown in Figure �.�.
The carrier type EvK is defined as a function from a continuation (a function consuming
a value) to the unit type (Unit in Scala). CPS interpreters never return a value, but
always call the given continuation to continue evaluation. For instance, add is defined
by a call to the l argument, passing a new continuation, which, when called, invokes
the r argument with yet another continuation. If that continuation is invoked, the
original continuation k is invoked with the result of the addition. The key aspect of
CPS interpreters is that all forms of sequencing are made completely explicit in terms
of function composition.

Assuming that we want to propagate an environment through the evaluation of
EvKArith evaluator in order to combine it with binding expression, then the propagating
strategy is the same as the one we have already observed:

trait EvEKArith extends Arith[EvEK] {

private val base = new EvKArith {}

def add(l: EvEK, r: EvEK): EvEK =

(e, k) => base.add(k_ => l(e, k_), k_ => r(e, k_))(k)

def lit(n: Int): EvEK = (e, k) => base.lit(n)(k)

}

The base add function receives functions of type EvK which call the original l and r

propagating the environment e.
Note that the current continuation (k) acts just like any other context parameter.

It is therefore tempting to think that lifting could be used to convert a direct style
interpreter into a CPS interpreter. Unfortunately, direct style interpreters depend on
the host language for their evaluation strategy. As a result, it is impossible to recover
the implicit sequencing going on in base interpreters and make it explicit using CPS.
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�.�.� Many-sorted Languages: If-Statements

Up till now, the language components only have had a single syntactic category, or
sort, namely expressions. In this section we discuss the propagation in the presence
of multiple syntactic categories, such as expressions and statements.

In the context of object algebras, syntactic sorts correspond to type parameters of
the factory interfaces. For instance, the following trait defines a language fragment
containing if-then statements:

trait If[E, S] { def ifThen(c: E, b: S): S }

The ifThen construct defines a statement, represented by S, and it contains an
expression E as a condition.

The interpreter for ifThen makes minimal assumptions about the kinds of expres-
sions and statements it will be composed with. Therefore, E is instantiated to Ev

(() => Val; see above), and S is instantiated to the type Ex:

type Ex = () => Unit

trait EvIf extends If[Ev, Ex] {

def ifThen(c: Ev, b: Ex): Ex = () => if (c()) b()

}

The type Ex takes no parameters, and produces no result (Unit). The ifThen construct
simply evaluates the condition c and if the result is true, executes the body b.

A first extension could be the combination with statements that require the store,
like assignments. Statements that require the store are defined over the type ExS =

Sto => Unit. As a result, EvIf needs to be lifted to map type Ex to ExS. Since the only
argument of ifThen that has type Ex is the body b, lifting is only applied there. In the
current language, expressions do not have side-effects, so they do not require the
store, and consequently do not require lifting:

type ExS = Sto => Unit

trait ExSIf extends If[Ev, ExS] {

private val base = new EvIf {};

def ifThen(c: Ev, b: ExS) = st => base.ifThen(c, () => b(st))()

}

Note that the argument c is passed directly to base.ifThen.
An alternative extension is to add expressions which require an environment.

In Section �.�.� such expressions were defined over the type EvE = Env => Value. In
this case, EvIf needs to be lifted so that ifThen can be constructed with expressions
requiring the environment. In other words, c: Ev needs to be lifted to c: EvE. However,
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since an actual environment is needed to invoke a function of type EvE, the result sort
Ex also needs to be lifted to accept an environment:

type ExE = Env => Unit

trait EvEIf extends If[EvE, ExE] {

private val base = new EvIf {}

def ifThen(c: EvE, b: ExE) = env => base.ifThen(() => c(env), () => b(env))

}

In this lifting code, the invocation of c requires an environment, and thus the
closure returned by ifThen needs to be of type ExE to accept the environment and pass
it to c.

The context parameters propagate outwards according to the recursive structure of
the language. At the top level, the signature defining the semantics of a combination
of language fragments will accept the union of all parameters needed by all the
constructs that it could transitively contain.

�.�.� Desugaring: Let

Desugaring is a common technique to eliminate syntactic constructs (“syntactic sugar”)
by rewriting them to more basic language constructs. As a result, the implementation
of certain operations (like compilation or interpretation) becomes simpler because
there are fewer cases to consider.

Desugaring in object algebras is realized by directly calling another factory method
in the algebra. Note that methods in traits in Scala do not have to be abstract.
As a result, desugarings can be generically implemented directly in the factory
interface. The same, generic desugaring can be reused in any concrete object algebra
implementing the syntactic interface.

As an example, recall the Binding language of Figure �.�. It defines a let constructor
which was implemented directly in the right column of Figure �.�. Instead, let can be
desugared to a combination of lambda and apply:

trait Let[E] extends Binding[E] {

def let(x:Str, e:E, b:E) = apply(lambda(x, b), e)

}

This trait generically rewrites let constructs to applications of lambdas, binding
the variable x in the body b of the let. Since the desugaring is generic, it can be reused
for multiple interpreters, including the ones resulting from lifting. If EvEBinding

(Figure �.�) is lifted to propagate the store, for instance, the desugaring would
automatically produce lifted lambda and apply denotations.
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type EvES = (Env, Sto) => Val

trait EvESBinding extends Binding[EvES] {

... // store propagation code

}

trait EvESBindingWithLet extends EvESBinding with Let[EvES]

Generic desugarings combined with traits (or mixins) provide a very flexible way
to define language constructs irrespective of the actual interpretation of the constructs
themselves. Keeping such desugared language constructs in separate traits also makes
them optional, so that may remain unexpanded (such as for pretty printing).

�.�.� Multiple Interpretations: Pretty Printing
Object algebras support the modular extension of both syntax and operations. Thus,
implicit propagation can be applied to interpretations of a language other than
dynamic semantics. Examples include type checking, other forms of static analysis,
and pretty printing.

Consider the example of pretty printing. Here is a pretty printer for Arith

expressions, PPArith, defined over the carrier type PP (() => String):
type PP = () => Str // "Pretty Print"

trait PPArith extends Arith[PP] {

def add(l: PP, r: PP) = () => l() + " + " + r()

def lit(n: Int) = () => n.toString

}

Pretty printing of arithmetic expressions does not involve the notion of indentation.
However, to pretty print the ifThen construct of Section �.�.� we would like to indent
the body expression. This is realized with a context parameter i that tracks the current
indentation level:

type PPI = Int => Str

trait PPIIf extends If[PPI,PPI] {

def ifThen(c: PPI, b: PPI) = i => "if " + c(0) + "\n" + " " * i + b(i + 2)

}

Both modules can be combined after lifting PPArith to propagate the parameter
representing the current indentation:

trait PPIArith extends Arith[PPI] {

private val base = new PPArith {}
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def add(l: PPI, r: PPI) = i => base.add(() => l(i), () => r(i))()

def lit(n: Int) = i => base.lit(n)()

}

�.� Automating Lifting

We have introduced implicit context propagation and illustrated how the liftings work
in diverse scenarios. Although the liftings can be written by hand, they represent
a significant amount of error-prone boilerplate code. We first introduce a Scala
macro-based code generator for single-sorted algebras, which generates the lifting
code automatically. Second, we describe how dynamic proxies in Java can be used to
perform lifting at runtime.

�.�.� Lift using a Scala Macro
The code generator is invoked by annotating an empty trait. In the compiled code, the
code generator fills in the required lifting methods for this annotated trait. Here is an
example showing how to lift the EvArith interpreter to propagate the environment
and the store:

@lift[Arith[_], ()=> Val, EvArith, (Env, Sto) => Val]

trait EvESArith

The @lift annotation receives four type parameters: the trait that corresponds to
the generic object algebra interface representing the language’s syntax (Arith), the
carrier type of the base implementation (()=>Val), the trait that provides the base level
implementation (EvArith), and finally, the target carrier type ((Env,Sto)=>Val).

The annotated trait produces an implementation for the lifted trait that extends
the factory interface instantiating the type parameter to the extended carrier type.
The compiled code will contain the lifted methods that delegate to the specified
base implementation. Note that the code generation does not break independent
compilation or type safety: the generator only inspects the interfaces of the types that
are specified in the annotation without needing access to the source code where these
types are defined.

The @lift annotation is implemented as a Scala macro annotation [Bur��]. Macro
annotations are definition-transforming macros that can be used to generate boilerplate
code at definition level. Figure �.� shows the implementation of the @lift macro anno-
tation. The class extending StaticAnnotation defines a macro annotation and defines a
method macroTransform that contains the logic of the compile-time transformation. The
companion object contains the impl method referenced by macroTransform. This method
receives as arguments a collection of annottees that represents all the definitions in
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the scope of the annotation. First, the four annotation arguments are extracted as
trees and then type checked in order to obtain their types. Then, an intermediate
representation is created from these types using a custom InternalImporter. The
annottees are then pattern-matched in order to get the trait’s name. The crucial step
is calling the liftTraitTo method on the representation of the trait that corresponds to
the algebra interface (instance of the class Trait, not shown). This method receives the
name of the trait being transformed, the source carrier type, the trait corresponding
to the base algebra implementation, and the target carrier type, and performs all the
necessary transformations in order to return the representation of the lifted trait. This
resulting trait is then serialized, concluding the transformation process.

The code generator does not simply prepend a new parameter at the front of
the parameter list (as in the template of Figure �.�), but performs the necessary
permutations to appropriately lift the base signature to the target. This permutation
logic is encoded in the already mentioned method liftTraitTo. This is important for
components that need to be “mutually lifted”. Consider a component which is lifted
from Sto=>Val to (Env,Sto)=>Val. To combine this component with a component of
type Env=>Val, the latter should be lifted to (Env,Sto)=>Val as well, but in this case, the
parameter is added at the end.

The current version of @lift does not disambiguate parameters with the same type.
It is always possible to create artificial wrapping types to distinguish between two
context objects of the same type. It is, however, also conceivable to implement this by
requiring the user to provide the disambiguation information in the annotation. This
is an opportunity for future work.

�.�.� Dynamic Lifting in Java

The Scala macro approach generates method implementations for a trait introduced
by the programmer. Java does not have macro facility that supports a similar style of
code generation. One would think the Java annotation processing framework [Ora��b]
could be used for this, but, unfortunately, annotation processing only allows the
generation of new classes or types, but not filling in the implementations of existing
(abstract) classes or interfaces. As a result, client code becomes dependent on
generated types which, in turn introduces temporal dependencies within the build
cycle of the code.

Fortunately, it is also possible to perform lifting dynamically using the concept
of dynamic proxies [Ora��a]. Since Java �, function types are represented using
functional interfaces: interfaces with a single method that acts as the “apply” method
of functions. Dynamic proxies can be used to provide a generic implementation of
such interfaces. Thus, instead of generating methods that encode the lifting of an
interpreter, the context parameters are implicitly propagated at runtime.
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class lift[ALG, FROM, BASEALG, TO] extends StaticAnnotation{
def macroTransform(annottees: Any*) = macro lift.impl

}

object lift{

def impl(c: whitebox.Context)(annottees: c.Expr[Any]*) = {
import c.universe._

// Get the annotation arguments as trees
val (algAST: Tree, srcFunAST: Tree, baseAlgAST: Tree, tgtFunAST: Tree)

= c.macroApplication match{
case q"new lift[$a, $from, $baseA, $to].macroTransform($_)" =>

(a, from, baseA, to)
case _ =>

c.abort(c.enclosingPosition, "Invalid type parameters")
}

// Get the types of the annotation arguments
val (algType: Type, srcType: Type, baseImplType: Type, tgtType: Type)

= Checker.typeCheck(c)(algAST, srcFunAST, baseAlgAST, tgtFunAST)

// Create importer that allows to create intermediate representations of traits and
// function types based on the annotation arguments
val (alg: Trait, srcFun: FunType, baseImpl: Trait, tgtFun: FunType)\newline

= InternalImporter.importTypes(c)(algType, srcType, baseImplType, tgtType)}

// At least one annottee must be a trait
annottees.map(_.tree) match {
case (q"$mods trait $name") ::Nil => {

// This is the code that triggers the lifting on the intermediate representations
val lifted: Trait = alg.liftTraitTo(name.decoded, srcFun, tgtFun, "base"+alg.name)

// Serialize the lifted trait and return it as the result of the transformation
val result: Expr[Any] = Render.serialize(c)(mods, lifted, alg, baseImpl, srcFun)
result

}
case _ => c.abort(c.enclosingPosition, "Invalid annottee")

}
}

}

Figure �.�: The lift macro annotation for lifting object algebra at compile time
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interface ExpAlg<E> {
E lit(int n);
E add(E l, E r);

}

@FunctionalInterface
interface IEval {

int eval();
}

interface EvalExp extends ExpAlg<IEval> {
default IEval lit(int n) {

return () ! n;
}

default IEval add(IEval l, IEval r) {
return () ! l.eval() + r.eval();

}
}

Figure �.�: Arithmetic expression evaluation using Java � functional interfaces and default
methods

Figure �.� shows a simple expression evaluator in object algebra style using Java �
functional interfaces and interface default methods. Note how the closure notation
automatically creates objects that are instances of the IEval interface.

Of course, another language fragment could require additional context parameters,
which are not reflected in the type IEval. For instance, denotations requiring a
environment could be represented by the following interface:

@FunctionalInterface

interface IEvalEnv {

int eval(Env env);

}

We need an implementation of ExpAlg over the carrier type IEvalEnv. Figure �.�
shows a slightly contrived implementation of expression evaluation with dynamic
environment propagation using dynamic proxies. If this code would be implemented
by hand there would be no need for dynamic proxies: the implementation would
simply follow the pattern of the manual Scala lifting in Section �.�.�. However, the
example illustrates how dynamic proxies can be used to simulate functions in Java.

The lifting is realized using the helper methods lift and lower. Both methods
return proxies created using java.lang.reflect.Proxy::newProxyInstance. This method
takes a class loader, an array of interfaces the proxy is supposed to export, and
an instance of the java.lang.reflect.InvocationHandler interface to handle method
requests on the proxy. Since InvocationHandler is a functional interface in Java �, one
can directly provide closures as invocation handlers. The returned object will behave
as an instance of all the provided interface types, but all method invocations will be
routed to the invocation handler.

The lift method takes a function from the extra parameter (Env) to IEval and uses
it to create proxy objects of type IEvalEnv. The returned proxy object provides the
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interface EvalExpEnv extends ExpAlg<IEvalEnv> {
static final ExpAlg<IEval> base = new EvalExp() {};

default IEvalEnv lit(int n) {
return lift(env ! base.lit(n));

}

default IEvalEnv add(IEvalEnv l, IEvalEnv r) {
return lift(env ! base.add(lower(l, env), lower(r, env)));

}

static IEvalEnv lift(Function<Env, IEval> f) {
return (IEvalEnv) Proxy.newProxyInstance(IEvalEnv.class.getClassLoader(),
new Class<?>[] { IEvalEnv.class }, (p, m, as) ! f.apply((Env) as[0]).eval());

}

static IEval lower(IEvalEnv e, Env env) {
return (IEval) Proxy.newProxyInstance(IEval.class.getClassLoader(),
new Class<?>[] { IEval.class }, (p, m, as) ! e.eval(env));

}
}

Figure �.�: Manually lifting arithmetic expression evaluation in Java to propagate environments

extra argument (as[0]) to the closure f to obtain an IEval object and then calls eval()

on it. The lower function has the inverse effect of lift: it turns objects of a “larger” type
(e.g., IEvalEnv) into objects of a smaller type (e.g., IEval), again using proxies.

The closure f provided to lift abstracts over how to turn a base interpreter into
the lifted type given the extra parameter which should be propagated. For instance,
in the case of add, the provided function to lift calls the base.add constructor with
lowered versions of l and r. Lowering is realized by the helper method lower, which
turns IEvalEnv objects into IEval objects. Whenever eval is called on such an IEval, it
delegates back to the original IEvalEnv providing the extra parameter env that was
captured when lower was invoked.

The interface EvalExpEnv can be composed with other interfaces over the same
carrier type, similar in style to Scala trait inheritance. However, the propagation code
is specific for two carrier types (i.e. IEval and IEvalEnv). This problem is solved by
introducing yet another level of dynamic proxies, this time at the level of the algebras
themselves.

Since signatures of object algebras are represented by Java interfaces, dynamic
proxies can also be used to simulate object algebras themselves. The following lifter

method creates such “lifting” algebras automatically:
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static <F, S, T> F lifter(Class<F> ialg, Class<S> source, Class<T> target,

F base) {

return (F) Proxy.newProxyInstance(ialg.getClassLoader(), new Class<?>[] {ialg},

new Lifter<>(source, target, base));

}

Intuitively, this method turns an object algebra of type F<S> into an algebra of type
F<T>, assuming that both S and T are functional interfaces, where the single method
in T has one extra parameter. Method invocations on the resulting algebra of type
F<T> are handled by the invocation handler Lifter which will create proxy objects
delegating to the base algebra (of type F<S>) and propagating the extra parameter
behind the scenes.

The Lifter class is shown in Figure �.�. The entry point of the Lifter class is always
an invocation of a factory method (e.g., add, lit, etc.) which will be handled by the
invoke method from Java’s InvocationHandler interface. The invoke method receives
the current proxy object, the called method and the method’s arguments (kids). It
immediately returns the result of calling lift which produces the desired target type
T.

The lift method follows the same pattern as the lift method of Figure �.�. The
main difference is that the argument f now accepts both a method object representing
the method supporting the extra parameter in addition to the extra argument itself.
Whereas the closure provided to lift in Figure �.� directly called the appropriate
factory method, in this case the base interpreter is created using reflection, and the
arguments are lowered using a loop in lowerKids: for every constructor argument in
kids that is an instance of the target type T, a proxy is created in the lower method.
This proxy will call the method extEval on the original T object (kid), extending the list
of arguments with the extra argument originally received in the closure provided to
lift; the extend helper method creates a copy of args with the extra object appended
to it.

After the evaluator object is obtained from the f closure in lift, the corresponding
method in type S is looked up using reflection on source. We simply look for a method
with the same name, but with one fewer parameter, and then invoke it on the base
evaluator ignoring the extra parameter. Finally, this eval method is invoked on the base
evaluator object, ignoring the last element of the extended argument array (extArgs).

Using the lifter method any object algebra F<S> defined over a functional interface
interface S { U m(C1 c1, ..., Cn cn); } can now be converted to an algebra F<T> defined
in terms of interface T { U m(C1 c1, ..., Cn cn, Cn+1 cn+1); }. The extra parameter cn+1
will be dynamically propagated.

Implicit context propagation using dynamic proxies operates at the level of runtime
objects, whereas the Scala macro operated at the trait level. In other words: the
result of lifter is a runtime object, not a trait or class. As a result, it is not possible
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class Lifter<S, T, F> implements InvocationHandler {
private final Class<S> source;
private final Class<T> target;
private final F base;

Lifter(Class<S> s, Class<T> t, F base) {
this.source = s;
this.target = t;
this.base = base;

}

public T invoke(Object proxy, Method constructor, Object[] kids) {
return
lift((extEval, extra) !

(S)constructor.invoke(base, lowerKids(extEval, kids, extra)));
}

private T lift(BiFunction<Method, Object, S> f) {
return proxy(target, (p, extEval, extArgs) ! {

S evaluator = f.apply(extEval, extArgs[extArgs.length - 1]);

// Get the method in S corresponding to extEval in T
Method eval =

source.getMethod(extEval.getName(),
Arrays.copyOf(extEval.getParameterTypes(), extArgs.length - 1));

// Invoke it on the base interpreter ignoring the extra parameter.
return eval.invoke(evaluator, Arrays.copyOf(extArgs, extArgs.length - 1));

});
}

private S lower(Method extEval, T kid, Object extra) {
return proxy(source, (p, eval, args) ! extEval.invoke(kid, extend(args,

extra)));
}

private Object[] lowerKids(Method eval, Object[] kids, Object extra) {
Object lowered[] = Arrays.copyOf(kids, kids.length);
for (int i = 0; i < kids.length; i++)
if (target.isInstance(kids[i]))

lowered[i] = lower(eval, (T)kids[i], extra) ;
return lowered;

}
}

Figure �.�: The Lifter class for lifting object algebra using dynamic proxies
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anymore to compose language fragments using trait/interface inheritance. Once
again, dynamic proxies can be used to mitigate the problem.

The following code defines a union combinator which multiplexes method invoca-
tions from a single object algebra interface between actual implementations of subsets
of the interface (see [GPS��; OvdSL+��] for similar incarnations of this idea):

static <T> T union(Class<T> ialg, Object ...algs) {

return

(T) Proxy.newProxyInstance(

ialg.getClassLoader(),

new Class<?>[] { ialg },

(x, m, args) ! {

for (Object alg: algs)

try { return m.invoke(alg, args); }

catch (Exception e) { continue; }

throw new UnsupportedOperationException("no such method"); });

}

Let’s assume we have two language fragments, the simple arithmetic expressions
and a language for binding constructs. At the interface level these fragments can be
combined using interface extension:

interface ExpBindAlg<E> extends ExpAlg<E>, BindAlg<E> { }

The dynamically lifted version of EvalExp can now be combined with an implementation
of the binding fragment (say, EvalBind):

ExpAlg<IEvalEnv> evalExp = lifter(ExpAlg.class, IEval.class, IEvalEnv.class,

new EvalExp() {});

BindAlg<IEvalEnv> evalBind = new EvalBind() {};

ExpBindAlg<IEvalEnv> evalExpBind = union(ExpBindAlg.class, evalExp, evalBind);

The algebra evalExpBind can now be used to create expressions just like any ordinary
algebra.

�.�.� Discussion

We have presented two approaches to automate lifting: Scala macros and Java dynamic
proxies. As the macro transformation is a compile-time mechanism, all the type
information is available when generating the code for the lifted algebras, and thus all
the generated code is type safe. On the other hand, in the case of the dynamic proxies,
the lifting is realized at runtime and requires casts in order to make the proxied object
conform to the lifted interfaces. All the code at the points where explicit casting occur
(e.g., the cast that returns a proxied lifted object from the lifter method) is unsafe.
Having said that, this unsafety is limited to code that is provided by the framework as
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a reusable mechanism for dynamic lifting. Provided that the framework is correctly
implemented, the end user is not affected by it.

�.� Case study �: Extending a DSL for State Machines

In this section we present a case study, based on an extensible DSL for state machines,
inspired by the example DSL introduced in [Fow��]. The exploration of this DSL is
motivated by the following considerations.

First, state machines emphasize the DSL perspective: state machines are different
from expression-oriented or even statement-oriented programming languages. The
contexts involved are not just environments or stores, but may contain arbitrary
interfaces to some unspecified outside world.

Second, whereas the examples of Section �.� are mostly single sorted expression
languages, state machines are inherently many sorted, since such a language typically
involves at least the syntactic categories of state machines, states and transitions. Thus,
this case study illustrates more clearly that adding context parameters to nested AST
types requires lifting surrounding AST types, similar to how statement interpreters
required lifting in Section �.�.�.

Third, the state machine example strongly illustrates that implicit context prop-
agation can be seen as a form of “scrapping your boilerplate” [LP��]. In a sense,
implicit context propagation supports the creation of structure shy [Lie��] language
extensions: adding language features deep down within the syntactic structure does
not require to change the definitions of the semantics of surrounding, context unaware
node types. Similar concerns were addressed, for instance, by implicit parameters (as
described in [LLM+��]): many cases in the definition of a recursive function do not
use the context information, but some leaves of the recursion need the information.

Finally, instead of building upon the assumption that a language is constructed
by assembling the smallest possible building blocks, the state machine case study is
presented from the perspective of language extension. Given an existing definition
of a state machine language, we will extend it with three new types of transitions:
conditional transitions, transitions with token output, and conditional transitions
with token output.

�.�.� State Machines
A state machine consists of a list of named state definitions. Each state contains a list
of outgoing transitions. A transition fires on an event (a string) and transitions to a
target state (identified by name). The abstract syntax of the state machine language is
shown in Figure �.��.

An interpreter for the base language is shown in Figure �.��. The carrier type
EvM captures functions from the current state and event to the next state, if any. A
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trait Stm[M, S, T] {
def machine(name: String, states: Seq[S]): M
def state(name: String, transitions: Seq[T]): S
def transition(event: String, target: String): T

}

Figure �.��: The abstract syntax of the state machine language

type EvM = (String, String) => Option[String]

trait EvalStm extends Stm[EvM, EvM, EvM] {
override def machine(name: String, states: Seq[EvM]): EvM
= (st, ev) => states.map(_(st, ev)).find(_.isDefined).flatten

override def state(name: String, transitions: Seq[EvM]): EvM
= (st, ev) =>

if (name == st) transitions.map(_(st, ev)).find(_.isDefined).flatten else None

override def transition(event: String, target: String): EvM
= (st, ev) => Option(if (ev == event) target else null)

}

Figure �.��: A simple interpreter for state machines. The carrier type EvM captures functions
from current state and event to next state (if any).

machine simply finds the first state with a firing transition. A transition may fire if
it is defined in the state we are in (st), and if the event ev matches the event in the
transition. If a transition fires, the target state is returned.

As an example, consider a simple state machine controlling the opening and
closing of doors:

def doors[M, S, T](alg: Stm[M, S, T]): M =

alg.machine("doors", Seq(

alg.state("closed", Seq(alg.transition("open", "opened"))),

alg.state("opened", Seq(alg.transition("close", "closed")))))

This state machine can be used as follows:

val stm = doors(new EvalStm {})

val Some(st1) = stm("closed", "open")

println(st1);

val Some(st2) = stm(st1, "close")

println(st2);

Executing the code will print out:
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trait TokenTrans[T] {
def transition(event: String, target: String, tokens: Set[String]): T

}

trait CondTrans[E, T] {
def transition(cond: E, event: String, target: String): T

}

trait CondTokenTrans[E, T] {
def transition(cond: E, event: String, target: String, tokens:

Set[String]): T
}

Figure �.��: Three language extensions defining the abstract syntax transitions with token
output, transitions with conditions, and transitions with both token output and conditions.

opened

closed

�.�.� Modular Extension of State Machines

The abstract syntax of the three state machine extensions is shown in Figure �.��.
Each extension is defined in its own trait. TokenTrans defines transitions that output a
set of tokens. CondTrans defines conditional transitions, introducing an additional E
sort representing expressions. Finally, CondTokenTrans, combines both extensions to
support conditional transitions with token output.

Transitions with Token Output The definition of transitions with token output is
as follows:

type EvTT = (String, String, Writer) => Option[String]

trait EvalTokenTrans extends TokenTrans[EvTT] {

def transition(event: String, target: String, tokens: Set[String]): EvTT

= (st, ev, w) => if (ev == event) {

tokens.foreach(t => w.append(t + "\n")); Some(target)

}

else None

}

The type EvTT describes that transitions with token output require another context
parameter, in this case a Writer object that the output tokens will be written to. The
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transition method then returns a function that outputs the given tokens whenever the
transition fires.

To combine this language extension with the base interpreter of state machines
shown in Figure �.��, the latter has to be lifted to propagate the Writer parameter. The
lifted version of EvalStm has the following structure:

trait LiftEvalStm extends Stm[EvTT, EvTT, EvTT] {

private val base = new EvalStm {}

def machine(name: String, states: Seq[EvTT]): EvTT

= (st, ev, w) => base.machine(...)

def state(name: String, transitions: Seq[EvTT]): EvTT

= (st, ev, w) => base.state(...)

def transition(event: String, target: String): EvTT

= (st, ev, w) => base.transition(...)

}

Note that all three type parameters of Stm (M, S, T) are bound to the extended signature
EvTT since the writer object needs to be provided from the top in order to be propagated
down to the level of transitions.

Given the syntax traits Stm and TokenTrans, state machines may now contain
transitions that declare tokens that will be output upon firing:

def doorsTokens[M, S, T](alg: Stm[M, S, T] with TokenTrans[T]): M =

alg.machine("doors",

Seq(

alg.state("closed",

Seq(alg.transition("open", "opened", Set("TK1OP", "TK2OP")))),

alg.state("opened",

Seq(alg.transition("close", "closed", Set("TK1CL", "TK2CL"))))))

To execute such extended state machines, the interpreters LiftEvalStm and
EvalTokenTrans need to be combined:

val stm = doorsTokens(new LiftEvalStm with EvalTokenTrans {})

val w = new StringWriter()

val Some(st1) = stm("closed", "open", w)

...

Printing out the contents of the writer object w will contain the tokens as sequentially
output by the new kind of transitions.

Conditional Transitions The extension with conditional transitions follows a similar
pattern as the extension with transitions outputting tokens. In this case, however,
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the extension introduces a new syntactic category for expressions. As a result,
this extension also requires a separate language fragment defining the syntax and
semantics of expressions. We assume this language is defined in its own trait Cond and
that its interpreter EvalCond is defined over the type EvE = Env => Boolean. As a result,
the propagated context parameter is the environment used to evaluate a transition’s
condition.

The semantics of conditional transitions are then defined as follows:
type EvET = (Env, String, String) => Option[String]

trait EvalCondTrans extends CondTrans[EvE, EvET] {

override def transition(cond: EvE, event: String, target: String): EvET

= (env, st, ev) => Option(if (ev == event && cond(env)) target else null)

}

Creating state machines with conditional transitions is now defined over the
algebra interfaces Stm, Cond and CondTrans. Executing such state machines combines the
lifted base interpreter to propagate the environment, with EvalCond and EvalCondTrans.

Conditional Transitions with Token Output The final extension combines both
conditions and token output in transitions. Although this extension can be considered
in isolation, it makes intuitively more sense to allow this kind of transition to coexist
with the two extensions described above. As a result, adding conditional transitions
with token output requires two-level lifting of the base interpreter. In other words, one
of the lifted interpreters for the previous extensions is lifted once again to propagate
the additional context (i.e. writer object or environment).

Additionally, to combine this extension with the previous extensions, both in-
terpreters EvalTokenTrans and EvalCondTrans need to be lifted. EvalTokenTrans needs to
propagate the environment, and EvalCondTrans needs to propagate the writer object.
Note however, that the interpreter for conditions (EvalCond) does not require lifting.

The only code that remains to be written is the interpreter for the new kind of
transitions itself:

type EvETT = (Env, String, String, Writer) => Option[String]

trait EvalCondTokenTrans extends CondTokenTrans[EvE, EvETT] {

override def transition(cond: EvE, event: String, target: String,

tokens: Set[String]): EvETT

= (env, st, ev, w) => if (ev == event && cond(env)) {

tokens.foreach(t =>w.append(t + "\n"))

Some(target)

}

else None

}
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Figure �.��: Modular extension of a state machine DSL with conditions and/or token output.
Rectangles define syntactic constructs. Rounded rectangles are interpreters; dotted borders
indicate lifted interpreters. Solid arrows represent trait inheritance and dashed arrows represent
delegation inherent in lifting. Each circle represent an executable composition of modules.

Note that this definition duplicates the logic of ordinary transitions, conditional
transitions and transitions with token output. This may seem unfortunate, but under-
standable: the new kind of transition represents feature interaction between transition
firing, condition evaluation and token output, which can never be automatically
derived from the given interpreters.

Summary To summarize, given the manually written language modules EvalStm,
EvalTokenTrans, EvalCondTrans and EvalCondTokensTrans and an additional module defin-
ing conditional expressions (EvalCond), we can derive the following � language variants:

�. Stm

�. Stm with CondTrans

�. Stm with TokenTrans

�. Stm with CondTokenTrans

�. Stm with TokenTrans with CondTokenTrans

�. Stm with CondTrans with CondTokenTrans

�. Stm with CondTrans with TokenTrans with CondTokenTrans
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Compositions �, �, �, and � make the most sense and are depicted graphically in
Figure �.��. Each solid rectangle defines a syntactic trait, the semantics of which
is implemented in the rounded rectangles (interpreters); the solid arrows represent
trait inheritance or extension. The dashed rounded rectangles represent liftings of
interpreters, and the dashed arrows represent delegation to the base language. The
circles represent compositions of language fragments.

�.� Case Study �: Modularizing Featherweight Java

To examine how implicit context propagation helps in modularizing a programming
language implementation, we present a second case study using Featherweight Java
(FJ) [IPW��]. The case study consists of a modular interpreter for FJ and its extension
to a variant that supports state (SFJ), inspired by [FKF��].

The case study addresses two questions:
• What is the flexibility that implicit context propagation provides to support the

definition of languages by assembling language fragments?
• How much boilerplate code is avoided by implicit context propagation?

In this section, these questions are answered by analyzing the number of hypothetical
languages that can be defined from the combination of SFJ fragments, and by counting
the possible liftings.

�.�.� Definition of FJ and SFJ

FJ was introduced as a minimal model of a Java-like language, small enough to admit
a complete formal semantics. In FJ, there are no side-effects and all values are objects;
it supports object creation, variables, method invocation, field accessing and casting.
To study how to extend a language to a variant that requires more context information,
we introduce SFJ, which also features field updating and sequencing.

We have modularly implemented FJ and its extension to SFJ defining one lan-
guage module per alternative in the abstract grammar. Each language construct is
represented as a single object algebra interface to allow for maximum flexibility. As
a consequence, the semantics of each construct is defined in its own trait assuming
only the minimal context information necessary for the evaluation of that particular
construct.

A complete definition of SFJ requires four kinds of context information:
• An Obj that represents the object being currently evaluated (i.e., this). In FJ, the

Obj simply contains the object’s class name and the list of arguments that are
bound to its fields.
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Syntax Signature
FJ Field access e.f CT=>Obj

Object creation new C(e,...) ()=>Obj

Casting (C) e CT=>Obj

Variables x (Obj,Env)=>Obj

Method call e.m(e,...) (Obj,CT,Env)=>Obj

SFJ Sequencing e ; e ()=>Obj

Field assignment e.f = e (CT,Sto)=>Obj

Object creation new C(e,...) (CT, Sto)=>Obj

Variables x (Obj,CT,Env,Sto)=>Obj

Table �.�: Signatures per (S)FJ language construct

• The class table CT which contains the classes defined in an FJ program. The
classes contain the meta information about objects, in particular, how the
ordering of constructor arguments maps to the object’s field names.

• The environment Env which maps variables to Objs.
• The store Sto modeling the heap (just needed in the case of SFJ).

As shown in Table �.�, six different signatures are used to implement nine
constructs. For presentation purposes, we solely focus on the expression constructs:

• Object creation does not require any context information.
• Field access and casting only require the class table to locate fields in objects by

offset.
• Variables require the current object to evaluate the special variable this, and the

environment to lookup other variables.
• Method calls require the class table to find the appropriate method to call; the

current object is needed to (re)bind the special variable this and the environment
is needed to bind formal parameters to actual values.

• Sequencing does not depend on any context parameters.
• Field assignment uses the class table to locate fields and the store to modify the

object.

Notice too that the cases for object creation and variable referencing had to be
redefined in SFJ over the signatures(CT,Sto) => Obj and (Obj,CT,Env,Sto) => Obj in
order to allocate storage for the newly created object and inspecting the referenced
object in the store, respectively. In particular, variable referencing needs all the context
parameters as it needs to “reconstruct” the object structure by inspecting the store
and finding the information about the order of arguments in the class table.
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@lift[Field[_], CT => Obj, EvCT2ObjField, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjField

@lift[New[_], (CT, Sto) => Obj, EvCtSt2ObjNew, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjNew

@lift[Cast[_], CT => Obj, EvCt2ObjCast, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjCast

@lift[Call[_], (Obj, CT, Env) => Obj, EvSlfCtEnv2ObjCall, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjCall

@lift[Seq[_], () => Obj, Ev2ObjSeq, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjSeq

@lift[SetField[_], (CT, Sto) => Obj, EvCtSt2ObjSetField, (Obj, CT, Env, Sto) => Obj]
trait EvSlfCtESt2ObjSetField

Figure �.��: Automatic lifting of SFJ language components using the @lift macro annotation

For implementing FJ, four of the base interpreters (for variables, field access, object
creation and casting) are lifted to the function type (Obj,CT,Env)=>Obj. Combining
these lifted interpreters results in an implementation of basic FJ.

In order to obtain a full implementation of SFJ, the FJ interpreters need to be lifted
to also propagate the store and the stateful fragments need to be lifted to propagate
the environment, class table and current object, where needed. The result is a set
of interpreters defined over the “largest” signature (Obj,CT,Env,Sto) => Obj. We have
implemented the lifting using the @lift macro annotation discussed in Section �.�.�.
The relevant code is shown in Figure �.��.

�.�.� Analyzing Hypothetical Subsets of SFJ

The previous subsection detailed how the implementation of a complete language, in
this case FJ and SFJ, can be constructed from assembling language fragments. Here
we discuss hypothetical subsets of such languages. Even though these subsets might
not (and probably will not) be meaningful in any practical sense, they illustrate the
flexibility that implicit context propagation promotes.

Table �.� shows how many interpreters can be derived per interpreter signature
using implicit context propagation. The second column lists the number of given
base interpreters over a specific signature. The third column indicates the number
of lifting opportunities. Finally, the last column shows the total number of possible
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Signature Base Liftings Derived Total
CT=>Obj � O/E/S 14 ��
(Obj,Env)=>Obj � C/S 3 �
(Obj,CT,Env)=>Obj � S 1 �
()=>Obj � C/O/E/S 30 ��
(CT,Sto)=>Obj � O/E 6 �
(Obj,CT,Env,Sto)=>Obj � 0 �

��

Table �.�: Number of Base interpreters per signature, possible Liftings (C = CT, O =
Obj, E = Env, S = Sto), number of possible Derived interpreters and Total number of
possible interpreters.

interpreters, including the base interpreters. Note that the next-to-last row shows
two base interpreters because the interpreter for object construction needed to be
rewritten to allocate storage.

Lifting opportunities are described using a shorthand indicating which types of
parameters could be added to the signatures using implicit context propagation (C =
CT, O = Obj, E = Env, S = Sto). For instance, the string “O/E/S” in the first row means
that an interpreter over CT=>Obj can be lifted to any of the following � signatures:

(Obj,CT)=>Obj, (Env,CT)=>Obj, (Sto,CT)=>Obj, (Obj,CT, Env)=>Obj,
(Obj,CT, Sto)=>Obj, (Env,CT,Sto)=>Obj, (Obj,Env,CT,Sto)=>Obj

The number of possible lifted interpreters given n base interpreters can be computed
using the following formula n⇥ (2k �1), where k represents the number of possibly
added context parameters. Since there are n = 2 base interpreters in the first row for
which k = 3, 7 opportunities apply to each of them, and thus the total number of
derivable interpreters is 14.

Summing the last column in Table �.� gives an overall total of �� possible
interpreters, of which only � are written by hand. The other �� can be derived
automatically using implicit context propagation. Thus, our technique eliminates
considerable amount of boilerplate when deriving new variants of languages from
base language components.

The �� interpreters include � over the “largest” signature (Obj,CT,Env,Sto) =

> Obj for each of the � language constructs. These � fragments allow 27 � 1 = 127
combinations representing hypothetical subsets of SFJ (excluding the empty language).
The interpreter for full SFJ is just one of these 127 variants. This gives an idea of the
flexibility that implicit context propagation provides in defining multiple language
variants from assembling the different language modules.
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�.� Performance Overhead of Lifting

A lifted interpreter exhibits more runtime overhead than its equivalent non-lifted
version. This is because the lifting works creating new closures at runtime to adapt
the signatures of the arguments and adds additional call overhead to go from one
closure to the other.

�.�.� Benchmarking Realistic Code: Executing the DeltaBlue Benchmark

In order to have an idea of the impact of lifting, we performed an experiment using
the DeltaBlue benchmark [FM��]. DeltaBlue represents an incremental constraint
solver and is used to benchmark programming languages. DeltaBlue was originally
developed in Smalltalk; in our experiment we use the Javascript version.� To execute
the benchmark we developed a modular interpreter of �JS, based on the semantics
described in [GSK��].

Using the desugaring framework published at [GSK��] the DeltaBlue Javascript
code was desugared to �JS and input to our interpreter. To assess the performance
impact of lifting we ran the benchmark using two interpreters: one that employed
lifting, and one that propagated the context parameters explicitly, i.e., written in the
“anticipation style” discussed earlier.

The interpreter that propagates all the context information explicitly represents
our baseline, as we consider it to be a straightforward implementation that follows
the interpreter pattern [GHJ+��] (except it uses closures as AST objects).

In order to make the comparison as fair as possible regarding to the impact of
lifting, both interpreters were modularized in logically-related units representing
sublanguages of �JS, namely: Binding, Control, Mutability, Core, and Exceptions. This
means that both styles of interpreters have the same trait inheritance structure.

In the case of the lifted interpreter, each module is defined using carrier signatures
that consider only the needed context. For the non-lifted interpreter, however, every
module is defined over the maximal signature, anticipating all required context
information even though not all of it is required in each and every module. For
instance, the Control module does not need any context because it only deals with
syntactic forms that represent control flow. While the lifted interpreter’s carrier type
()->Val reflects this, the non-lifted version is defined over the largest signature: the
signature with both environment and store as context parameters ((Sto, Env)->Val).

Table �.� shows the signatures of the carrier type that corresponds to expressions,
in the base components of the �JS implementation that depends on lifting. Since there
is no single module defined over the largest signature, all modules have to be lifted to
either propagate the store or to propagate the environment, or both. As a result, all

�See https://github.com/xxgreg/deltablue
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Component Expression Carrier Type
Binding Env => Val
Control () => Val
Core Sto => Val
Exceptions Env => Val
Mutable Sto => Val

Table �.�: Signatures of expression carrier types for the base components of the �JS
implementation that depends on lifting

modules exhibit some level of lifting, and thus all nodes created by the desugared
DeltaBlue program will be affected by the performance overhead of lifting.

The benchmarks were executed on a MacBook Pro with OS X Yosemite (version
��.��.�) and � GB RAM, running on an Intel Core i� CPU (�.� GHz). We use Oracle’s
JVM (JDK �u��), executed in server mode. The DeltaBlue benchmark can be run for
a variable number of constraint solving iterations. We executed the program for an
increasing number of iterations from � to �� in steps of �, taking �� time measurements
per number of iterations using Java System.nanoTime().

Figure �.�� shows a box plot of the execution times. For each number of iterations,
we show the execution time for the non-lifted interpreter (white fill) and the lifted
interpreter (gray fill). Calculating the difference in slowdown relative to the size, we
observe that the slowdown is in the range of ��% and ��% with a median of ��.��%.
We conjecture that the slowdown is due to the allocation of new closures at runtime
and additional call overhead between the lifted closure and base closures. To zoom
in on these effects, we now describe a micro-benchmark that partially confirms this
hypothesis.

�.�.� Micro-benchmark: Executing Lifted Interpreters in a Loop

To isolate the effect of lifting we created a micro-benchmark based on a simple
expression language, containing literals, addition and a sum construct. The sum
construct receives an integer n and an argument expression and sums the evaluated
arthis progument n times in a loop. For n 2 [0...1,000,000] with step size 10,000 the
benchmark executes the expression sum(n, add(lit(1), lit(2))). We report the average
running time measured using System.nanoTime() over ��� executions per n.

The benchmark is executed for three versions of the expression interpreter: one
without lifting (explicitly propagating an environment), one that is lifted to implicitly
propagate and environment, and an optimized lifted interpreter that we discuss
below.

The benchmark results are shown in Figure �.��. It is immediately clear from
Figure �.�� that lifting does incur significant overhead. The non-lifted interpreter
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Figure �.��: Runtime of the lifted interpreter compared to the baseline interpreter.

is about twice as fast as the lifted versions, and gets even faster as soon as the JIT
compiler kicks in (around ���,���). This is because the non-lifted interpreter involves
one call per expression evaluation, whereas the lifted interpreters always involve two.

The “fast” lifting results show a small improvement over vanilla lifting. The
optimization in fast lifting is based on moving the creation of new closures outside
of dynamic expression evaluation, and using side-effects to bind the propagated
parameter. As a result, all additional closures are created once and for all when
the expression itself is created. For instance, the optimized lifting of the addition
construct is defined as follows:

def add(l: EvE, r: EvE): EvE = {

var env: Env = null

val lw = () => l(env)

val rw = () => r(env)

val add = base.add(lw, rw);

e => { env = e; add() }

}
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Figure �.��: Executing sum(n, add(lit(1), lit(2))) without lifting, with vanilla lifting, and
with “fast” lifting.

Instead of creating the lowered argument closures lw and rw within the body of the
returned closure, they are hoisted to the level of add itself. Similarly, the call to base.add

is also hoisted, avoiding additional runtime overhead. To ensure that the environment
is propagated correctly, the returned closure assigns the received environment e to
the mutable variable env.

The results of the micro-benchmark confirm the observed slowdown in the
DeltaBlue benchmark. However, the primary cause seems to be additional call
overhead, and not the allocation of closures, since that accounts for only a small part
of the slowdown. Further research is needed to investigate ways of optimizing lifting
interpreters.
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�.� Related Work and Discussion

In this section we discuss related work and then provide a qualitative assessment of
implicit context propagation as a technique.

�.�.� Related Work

We discuss the related work in three categories: modular interpreters, component-
based language development, and, finally, other techniques to implicitly propagate
context.

Modular Interpreters
In this section, we present other approaches to modular interpreters. We first elaborate
on the concept of monad transformers since this technique is the most well-known
approach for defining modular interpreters. We then discuss some limitations of the
original presentation of monad transformers and existing work that addresses them.
Finally, we review other functional programming approaches to modular interpreters.

Monad transformers The use of monads to structure interpreters is a well-known
design pattern in functional programming. Monads, as a general interface for
sequencing, allow idioms such as environments, stores, errors, and continuations
to be automatically propagated. However, monads themselves do not allow these
different effects to be combined. Liang et al. [LHJ��] consolidated much of the earlier
work (e.g., [Esp��; Ste��]) on how monad transformers (MT) can be used to solve this
problem. The complete presentation of modular interpreters in their work exposes a
monadic interpretation function whose signature is interp :: Term -> InterpM Value.
This interpreter is extensible because all three components – the term type, the value
type and the monad – can be composed from individual components. Both the term
and the value types can be modularly defined and later extended/composed using
extensible unions, while the monad InterpM can be defined using monad transformers.

To illustrate modular interpreters in monadic style, the left column of Table �.�
shows the Arith, Binding and Storage languages introduced in Section �.� in Haskell.
For reference, the object algebra implementations are shown in the right column. The
monadic interpreters are defined as instances of the type class InterpC, where the
interp operation is defined. The code fragments assume that extensible unions are
used to combine the syntactic data types of each language module and the resulting
Value data type used in InterpM Value. As a result, the algebraic data types in Table �.�
recurse on the open type Term. For instance, the Arith and Binding modules can be
combined using the Either type constructor and a newtype definition of Term to “tie the
knot”:

type ArithBinding = Either Arith (Either Binding ())
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newtype Term = Term ArithBinding

The extensible Value is defined similarly, and requires auxiliary functions for
injecting values into and projecting values out of the value domain. The functions
returnInj and bindPrj are helper functions representing the monadic return and bind

functions performing injection and projection. For instance, the Arith language injects
integers into the value domain. Similarly, Binding and Storage require closures and
locations to be part of the domain, respectively. Here, however, we focus on the
modular effects part of the presentation.

The key observation about Table �.� is that the interp functions return monadic
values in the type InterpM, but each module imposes different constraints on the actual
defintion of this type. For instance, the Arith module does not make any assumptions
on InterpM except that it is a monad. The Binding module, however, requires that
the monad supports the functions rdEnv and inEnv in order to obtain the current
environment and evaluate an expression in a particular environment, respectively.
Finally, the Storage language requires allocating, inspecting and updating locations.

To support both environments and a store for side effects, InterpM should be defined
as a stack of monad transformers, each of which allows lifting the operations from
one kind of monad into another one. For example, the following definition of InterpM
suffices for the composition of the Arith, Binding and State interpreters (notice that at
the bottom of the stack we have the identity monad Id):

type InterpM = EnvT Env (StateT Store Id)

Given a composition of the syntactic data types representing Arith, Binding and
Storage the interpreters can be composed where “effect oblivious” code propagates
the environment and store as defined in the monad transformers EnvT and StateT.

Note that the definition of InterpM is a global definition for all interpreter modules,
which defines the set of effects and their composition once and for all. This means
that the ordering of the effects and their interaction is defined and fixated at this point;
it is not possible to change the interaction on a per module basis. Furthermore, any
change to the InterpM type definition requires re-typechecking each module. As such,
this formulation does not support separate compilation. It is also impossible to reuse
a composition of interpreters as a black box component in further compositions.

Monad transformers are defined in a pair-wise fashion. This means that if there
are feature interactions between two monads, they have to be explicitly resolved.
With implicit context propagation, however, the interactions between effects are
implicit, as they depend on the behavior of the context objects in the host language.
Note however, that inadvertent feature interactions can always be explicitly resolved
in our case by overriding lifted interpretations. An example of this is preventing
capture of the dynamic environment as discussed in Section �.�.�. Nevertheless, when
the interactions are more complex (e.g., when the host language does not natively

���



�.�. Related Work and Discussion

Monad transformers in Haskell Implicit context propagation in
Scala

data Arith
= Lit Int
| Add Term Term

instance InterpC Arith where
interp (Add l r) = interp l `bindPrj` \i

-> interp r `bindPrj` \j
-> returnInj ((i+j)::Int)

interp (Lit n) = returnInj n

type Ev = () => Val

trait EvArith extends Arith[Ev] {
def add(l: Ev, r: Ev)

= () => IntVal(l() + r())

def lit(n: Int)
= () => IntVal(n)

}

data Binding
= Lambda Name Term
| Vari Name
| Apply Term Term

instance InterpC Binding where
interp (Lambda x b) = rdEnv >>= \env

-> returnInj $ Clos x b env
interp (Vari x) = rdEnv >>= \env

-> case lookupEnv x env of
Just v -> v

interp (Apply e1 e2) = interp e1 `bindPrj` \f ->
case f of
Clos x e env ->
inEnv
(extendEnv (x, interp e2) env)
(interp e)

type EvE = Env => Val

trait EvEBinding extends Binding[EvE] {
def lambda(x: Str, b: EvE)

= env => new Clos(x, b, env)

def vari(x: Str)
= env => env(x)

def apply(e1: EvE, e2: EvE)
= env => e1(env).apply(e2(env))

}

data Storage
= Create
| Update Term Term
| Inspect Term

instance InterpC Storage where
interp (Create) = do loc <- allocLoc

updateLoc (loc, returnInj (0::Int))
returnInj loc

interp (Update c v) = interp c `bindPrj` \loc
-> interp v >>= \val
-> updateLoc (loc, return val) >>

return val
interp (Inspect c) = interp c `bindPrj` lookupLoc

type EvS = Sto => Val

trait EvMStorage extends Storage[EvS] {
def create()

= st => {
val c = new Cell(st.size + 1)
st += c -> IntVal(0); c

}
def update(c: EvS, v: EvS)

= st => {
val c1: Cell = c(st)
val v1 = v(st)
st += c1 -> v1; c1

}
def inspect(c: EvS)

= st => {
val c1: Cell = c(st) ; st(c1)

}
}

Table �.�: Arithmetic, Binding and Storage language building blocks implemented in
Haskell with monad transformers (on the left) and in Scala using object algebras (on
the right).
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Monad transformers [LHJ��] This work
Syntactic modularity Extensible unions Trait composition
Value extensibility Extensible unions (with inj/prj) Subtyping (with casts)
Context propagation Monad transformers Implicit propagation
Interpreter style Monadic Direct
Part of signature Return type Formal parameters
Purely functional Yes No
Type safe Yes Yes
Separate compilation No Yes
Effect interaction Explicit Implicit
Scope of interaction Global, fixed Locally overridable
Compositional propagation No Yes

Table �.�: Comparing characteristics of modular interpreters using monad transform-
ers vs. implicit context propagation

support the effects being modeled), the overriding code can be quite involved (cf.
Section �.�.�).

As a summary, Table �.� provides a qualitative appraisal of using monad trans-
formers vs. implicit context propagation as presented in this chapter, in terms of a
number of meta level characteristics. The table shows that both approaches have
different strengths and weaknesses. The most apparent feature of monad transform-
ers is that they represent a purely functional approach to modular interpreters; no
side-effects are needed. Implicit context propagation, on the other hand, emphasizes
extensibility and simplicity, at the cost, perhaps, of sacrificing purity and explicitness.
In particular, implicit context propagation supports compositional propagation: a
lifted interpreter can be lifted yet again, to propagate additional context. The lifting
operation is oblivious as to whether the interpreter to be lifted is a base interpreter or
has been lifted earlier. This is a crucial aspect for incremental, modular development
of languages.

Extensible syntax and multiple interpretations Monad transformers in their origi-
nal presentation do not feature separate compilation. Although we can define the
language components in a modular fashion, at the moment of composition all the type
synonyms (e.g. the type InterpM) who are referred by each module, must be resolved
and therefore, the compilation is monolithic. Similarly, syntax definitions are not truly
extensible either: adding data types to the extensible union requires recompilation
of the existing interpreter code. To overcome these problems, Duponcheel [Dup��]
extended the work of [LHJ��] by representing the abstract syntax of a language as
algebras, and interpreters as catamorphisms over such algebras to cater for extensible
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syntax. Additionally, this style support extensible operations as well, similar to the
object algebra style employed in this text.

Other approaches to modular interpreters A different approach to extensible in-
terpreters was pioneered by Cartwright and Felleisen [CF��]. They present extended
direct semantics, allowing orthogonal extensions to base denotational definitions. In
this framework, the interpreters execute in the context of a global authority which
takes care of executing effects. A continuation is passed to the authority to continue
evaluation after the effect has been handled. In extended direct semantics, the
semantic function M has a fixed signature Exp! Env! C where C is an extensible
domain of computations. The fixed signature of M allows definitions of language
fragments to be combined.

Kiselyov et al. [KSS��] generalized the approach of [CF��], allowed the admin-
istration functions to be modularized as well, and embedded the framework in
Haskell using open unions for extensible syntax, and free monads for extensible
interpreters. This approach to define modular interpreters excels at the definition of
imperative embedded languages, where the monad sequencing operator is reused for
the sequencing operators of the embedded language.

Component-Based Language Development
The vision of building up libraries of reusable language components to construct
languages by assembling components is not new. An important part of the Language
Development Laboratory (LDL) [HLR��] consisted of a library of language constructs
defined using recursive function definitions. Heering and Klint considered a library
of reusable semantic components as a crucial element of Language Design Assis-
tants [HK��]. Our work can be seen as a practical step in this direction. Instead of
using custom specification formalisms, our semantic components are defined using
ordinary programming languages, and hence, are also directly executable.

More recently, Cleenewerck investigated reflective approaches to component-
based development [Cle��; Cle��]. In particular, he investigated the different kinds
of interfaces of various language aspects and how they interact. Implicit context
propagation can be seen as a mechanism to address one such kind of feature interaction,
namely the different context requirements of interpreters.

Directly related to our work is Mosses’ work on component-based seman-
tics [CMS+��; CMT��]. Languages are defined by mapping abstract syntax to
fundamental constructs (funcons), which in turn are defined using I-MSOS [MN��],
an improved, modular variant of Structural Operational Semantics (SOS) which also
employs implicit context propagation. The modular interpreters of this chapter can be
seen as the denotational, executable analog of I-MSOS modules. In fact, our implicit
context propagation technique was directly inspired by the propagation strategies of
I-MSOS.
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Finally, first steps to apply object algebras to the implementation of extensible
languages have been reported in [GPS��]. In particular, this introduced Naked object
algebras (NOA), a practical technique to deal with the concrete syntax of a language
using Java annotations. We consider the integration of NOA to the presented modular
interpreter framework as future work. In particular, we want to investigate designs to
support multiple concrete syntaxes for an abstract semantic component.

Implicit Propagation
Implicit propagation has been researched in many forms and manifestations. The
most related treatment of implicit propagation is given by Lewis et al. [LLM+��], who
describe implicit parameters in statically typed, functional languages. A difference to
our approach is that implicit parameters cannot be retro-actively added to a function: a
top-level evaluation function would still need to declare the extra context information,
even though its value is propagated implicitly.

Another way of achieving implicit propagation in functional languages is using
extensible records [Lei��]. Functions consuming records may declare only the fields
of interest. However, if such a function is called with records containing additional
fields, they will be propagated implicitly.

Implicit propagation bears similarity to dynamic scoping, as for instance, found in
CommonLisp or Emacs Lisp. Dynamic scoping is a powerful mechanism to extend or
modify the behavior of existing code [HP��]. For instance, it can be used to implement
aspects [Cos��] or context-oriented programming [HCN��].

Another area where implicit propagation has found application is in language
engineering tools. For instance, [Vis��] introduced scoped dynamic rewrite rules
to propagate down dynamically scoped context information during a program
transformation process. Similarly, the automatic generation of copy rules in attribute
grammars is used to propagate attributes without explicitly referring to them [Kas��].

Finally, the implicit propagation conventions applied in the context of I-
MSOS [MN��], have been implemented in DynSem, a DSL for specifying dynamic
semantics [VNV��]. In both I-MSOS and DynSem, propagation is made explicit by
transforming semantic specifications.

�.�.� Discussion

Although most of the code presented throughout this chapter, as well as the code of
the case studies, is written in Scala, it is easy to port implicit context propagation to
other languages. For instance, Java � introduces default methods in interfaces, which
can be used for trait-like multiple inheritance. These interfaces were used in the
discussion of using dynamic proxies for automating lifting in Section �.�.�. Without
a trait-like composition mechanism, the technique can still be of use, except that
extensibility would be strictly linear. This loses some of the appeal for constructing a
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library of reusable semantic building blocks, but still enjoys the benefits of type safety
and modular extension.

As we could conclude from the analysis of existing work on modular interpreters,
the main strength of implicit context propagation is its simplicity. For context
information other than read-only, environment-like parameters, we depend on the
available mechanisms of the host language. For instance, read-write effects (stores)
are modeled using mutable data structures (cf. Section �.�.�). Other effects, such as
error propagation, local backtracking (Section �.�.�), non-local control flow (break,
continue, return, etc.), and gotos and coroutines [All��] can be simulated using the
host language’s exception handling mechanism. Support for concurrency or message
passing can be directly implemented using the host language’s support for threads or
actors (cf. [HO��]).

A limitation of implicit context propagation is that certain complex feature
interactions may occur when simulating propagation patterns that are not native to
the host language (such as transaction-reversing choice). There is always the option
to override semantic definitions to resolve the interaction manually, but this can be
quite involved. Semantic feature interactions are more explicitly addressed in the
work on monad transformers or effect handlers.

Another drawback of implicit context propagation is that, even though the
boilerplate code can be automatically generated, the user still has to explicitly specify
which liftings are needed and compose the fragments herself. Instead of using the
annotations, it would be convenient if one could simply extend a trait over the right
signature and have the actual implementation completely inferred. For instance,
instead of writing the @lift annotation described in Section �.�, one would like to
simply write:

trait Combined extends EvEBinding with Arith[EvE]

The system would then find implementations of Arith[_] to automatically define
the required lifting methods right into the Combined trait. If multiple candidates
exist, it would be an error. This is similar to how Scala implicit parameters are
resolved [OAC+��]. We consider this as a possible direction for future work.

Another open challenge is the disambiguation of parameters with the same type
when automating lifting. For instance, in the case of the Dynamic Scoping example
(Section �.�.�), one wants to explicitly indicate on the lifted carrier type (Env, Env) =>

Val which Env corresponds to the dynamic environment, and which one to the static
one. In our current implementation, there is no way to specify this either with the
macro approach or with dynamic proxies. When there are two parameters with the
same type, the behavior of the @lift is currently undefined. In order to work around
this, additional metadata (e.g., via annotations) should be provided in order to guide
the disambiguation of same-type parameters and produce the right lifting.
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�.�� Conclusion

Component-based language engineering would bring the benefits of reuse to the
construction of software languages. Instead of building languages from scratch, they
can be composed from reusable building blocks. In this work we have presented a
design for modular interpreters that support a high level of reuse and extensibility.
Modular interpreters are structured as object algebras, which support modular, type
safe addition of new syntax as well as new interpretations. Different language
constructs, however, may have different context information requirements (such as
environments, stores, etc.), for the same semantic interpretation (evaluation, type
checking, pretty printing, etc.).

We have presented implicit context propagation as a technique to eliminate this
incompatibility by automatically lifting interpretations requiring n context parameters
to interpretations accepting n+1 context parameters. The additional parameter is
implicitly propagated, through the interpretation that is unaware of it. As a result,
future context information does not need to be anticipated in language components,
and opportunities for reuse are increased.

Implicit context propagation is simple to implement, does not require advanced
type system features, fully respects separate compilation, and works in mainstream
OO languages like Java. We have shown how the pattern operates in the context of
overriding, mutable context information, exception handling, continuation-passing
style, languages with multiple syntactic categories, generic desugaring and interpre-
tations other than dynamic semantics. Furthermore, the code required for lifting can
be automatically generated using a simple annotation-based code generator or lifting
can be generically performed at runtime using dynamic proxies. We have illustrated
the usefulness of implicit context propagation in an extensible implementation of a
simple DSL for state machines. Our modular implementation of Featherweight Java
with state shows that the pattern enables an extreme form of modularity, bringing the
vision of a library of reusable language components one step closer.

Since lifting is based on creating intermediate closures, lifted interpreters can
be significantly slower than directly implemented base interpreters. Running the
well-known DeltaBlue benchmark on top of a modular interpreter for LambdaJS
shows that lifting makes interpreters almost twice as slow. Further research is required
to explore techniques to eliminate the additional call overhead during evaluation.
One possible direction would be light-weight modular staging (LMS) [RO��; RO��]
in Scala, although this approach would compromise separate compilation of base
interpreters.

Other directions for further research include the integration of concrete syntax
(cf. [GPS��]), and the application of implicit context propagation in the area of DSL
engineering. We expect that DSL interpreters require a much richer and diverse set of
context parameters, apart from the standard environment and store idioms. Finally,
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we will investigate the design of a library of reusable interpreter components as a
practical, mainstream analog of the library of fundamental constructs of [CMS+��;
CMT��].
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5 JEff: Objects for Effect

Modular interpreters with Implicit Context Propagation represent context
using the side-effect facilities of the host language. This limits their composability
as the feature interaction between the different effects is not explicit.

Effect handling is a way to structure and scope user-defined side-effects which is
gaining popularity as an alternative to monads in purely functional programming
languages. Languages with support for effect handling allow the programmer to
define idioms for state, exception handling, asynchrony, backtracking etc. from
within the language. Functional programming languages, however, operate within
a closed world assumption, which prohibits certain patterns of polymorphism
well-known from object-oriented languages. In this chapter we introduce JEff, an
object-oriented programming language with native support for effect handling,
to provide first answers to the question what it would mean to integrate OO
programming with effect handling. We illustrate how user-defined effects could
benefit from interface polymorphism, and present its runtime semantics and type
system.

This chapter is based on the following published article:P. Inostroza and T. van der Storm. “JEff:
Objects for Effect”. In: Proceedings of the ���� ACM SIGPLAN International Symposium on New Ideas, New
Paradigms, and Reflections on Programming and Software. Onward! ����. Boston, Massachussets, USA: ACM,
����.
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�.� Introduction

Effect handlers [PP��; PP��] are a programming language mechanism to structure,
scope, and compose side-effects in purely functional languages. Languages that
support effect handling natively, such as Koka [Lei��], Eff [BP��], Frank [LMM��],
allow side effects (state, IO, exceptions, coroutines, asynchrony, etc.) to be defined
within the programming language, as libraries. Effect handlers have been touted
as a simpler and more composable way of programming with effects than other
techniques, such as, for instance, monads. As a result, perhaps, existing research on
effect handling has mainly focused on functional programming languages.

Functional programming languages, however, operate on a closed world assump-
tion [Coo��]. As a result, certain patterns of modularity and reuse well-known in
object-oriented languages do not apply. Yet the huge success of object-orientation
in practice [Ald��] seems to suggest these mechanisms are valuable programming
tools. This raises the question: what would it mean to integrate effect handling with
object-oriented programming?

interface StdOut { eff Unit print(String s) }

class MyStdOut<T>(List<String> o) implements
StdOut, Handler<Tuple<List<String>, T>, T> {...}

class Main() {
Unit hello()@StdOut = StdOut::print("Hello world!")

Tuple<List<String>, Unit> main() =
with (new MyStdOut<Unit>([])) { this.hello() }

}

Figure �.�: Skeleton of a simple JEff program

In this chapter we present first steps towards answering this question in the form
of JEff, an object-oriented Java-like language without side-effects or inheritance, but
with built-in support for programming with effect handlers. As a simple example,
consider the code snippet shown in Figure �.�. It defines an effect interface StdOut

declaring a single effect method print for printing to the console. The class MyStdOut

implements the interface and also marks itself as being a Handler; we defer the details
of implementing handlers to Section �.�. The StdOut interface is used in the hello

method, which declares it as a required effect using @. In its body it calls the print

method. Finally, the main method – which is pure – installs a MyStdOut handler with
the with-construct, providing the printing capability to hello. Since MyStdOut models
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the console as a list of strings, this, together with a trivial unit value, will be the result
of main.

The example already highlights the most important aspect of JEff, namely that
the declaration of an effect is decoupled from its implementation by a handler
through interfaces. For instance, the StdOut interface can be implemented by multiple
handler classes like MyStdOut, but encapsulating different internal representations.
Nevertheless, the hello method only refers to the effect interface, and hence can be
executed over any such implementation. JEff thus leverages dynamic dispatch and
interface-based encapsulation (two of the corner-stones of OO programming) for
defining effects.

The contributions of this chapter can be summarized as follows:
• We present JEff, the first object-oriented language with native support for effect

handling (Section �.�).
• We illustrate how common effects like exception handling (Section �.�.�) and

state (Section �.�.�) are realized in JEff, thus providing an object-oriented
introduction to effect handling, and how effect handling facilitates structuring
interpreters (Section �.�.�).

• We present the formal semantics of a core language of JEff, called Featherweight
JEff (FJEff) (Section �.�).

• We present the formal type system of FJEff and discuss its soundness properties
(Section �.�).

The syntax and semantics of FJEff have been modeled using PLT Redex [KCD+��],
an embedded domain-specific language for mechanizing programming languages.
The source code of the models is available online. �

The chapter is concluded with a discussion of open problems and directions
for further research. We hope that JEff can contribute to a better understanding of
effectful programming in the context of object-oriented languages without built-in
notions of state, identity, or inheritance [Coo��].

�.� JEff: Programming with Objects and Effects

�.�.� Introduction

JEff is a Java-like language where custom effects can be defined as effect interfaces.
The implementation of these effects is provided by handler classes. In this section we
will explore the main characteristics of JEff using some illustrative scenarios.

Like Java, JEff features both classes and interfaces. It has multiple inheritance of
interfaces, and it features both subtyping and parametric polymorphism (generics).
To focus on the core aspects of combining object-orientation with effect handling,

�https://github.com/cwi-swat/jeff-model
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JEff does not feature implementation inheritance for classes. � Furthermore, JEff is a
side-effect free language: there is no mutation, I/O, exceptions, etc. These effects are
to be provided by libraries of effect handlers that simulate such effects. Programmers
can design and implement their own custom effects, and provide new handlers for
existing ones.

Effect interfaces can be used to define the signature of the effect methods, such as
print in the introduction. Effect methods are implemented in handler classes which
provide the effect semantics. Effect methods can resume execution, transferring
control back to the point where the effect method was called, using the special context
variable there which denotes a special object conforming to the predefined interface
Resume that defines a single method resume. If an effect method does not resume, the
current execution stack is ignored and execution proceeds at the point where the
handler was installed using the with-construct. The with-construct thus acts as a
delimiter of the dynamic context in which effect invocations are handled. In order
to specify what to do with the value that is produced after executing the body of
the with-expression – in the manner of a wrapper – handler classes must implement
the predefined Handler interface, whose single return method acts as the required
wrapper.

JEff features a type and effect system that assigns types to expressions, methods,
interfaces and classes. A method whose body calls an unhandled operation needs to
be annotated with a type that declares the called effect method. The client of that
method must, therefore, provide at some point a handler for that particular effect,
similar to how checked exception declarations propagate in Java.

We now illustrate effectful progamming in JEff using the standard examples of
exception handling and state.

�.�.� Effectful Programming in JEff: Exception Handling

In JEff, an effect type is defined by declaring an effect interface. For instance, the
following effect interface (indicated by the keyword eff on the effect method raise)
defines the effect of raising an exception:

interface Raise { eff Nothing raise(String s) }

The Raise effect interface declares the effect method raise, as indicated by the eff

keyword. This operation receives a string as an argument and returns an object of
type Nothing (which represents the bottom type). In this case in particular, this return
type signifies that the raise method will never return.

�As a reference, in [ALZ��] authors report that the interaction between exceptions, a particular case of
effects, and inheritance is non-trivial.
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The following code illustrates how the raise effect is triggered:

Int divide(Int x, Int y)@Raise = if (y != 0) x / y else

Raise::raise("Division by zero")

The method signature of divide reflects its required effects in its signature through
the Raise annotation. If the divisor is equal to zero, the method divide throws the
exception. The syntax to call operations is the name of the type corresponding to the
effect interface followed by two colons, the name of the operation, and the arguments.

The code above shows how to trigger an effect, but not how to handle it. In order
to provide an interpretation to the raise effect, a handler object must be installed using
the with-construct. This handler object must be an instance of a class that implements
the Raise interface. For instance, the following expression installs a handler h to handle
the effects triggered by divide:

with (h) { divide(4, 0) }

The with-expression acts as a dynamic scoping construct so that the raise invocation
becomes a method call on the handler object h.

Since all the effects invoked in the code within the context of a with-construct are
eventually handled, the body of the with-construct evaluates to a value. Handlers
may capture this value and transform it before it is returned as the result of the
with-expression itself. This is realized by the requirement that all handler objects must
be instances of classes that implement the predefined Handler interface:

Definition � (Handler)

interface Handler<Out, In> { Out return(In in) }

The Handler interface declares a single return method that captures the result of the
with-construct when no more effects are triggered in its body. The two type parameters
In and Out capture the type of the body of the with expression, and the type of the with

expression itself, respectively. There is nothing special about the Handler interface; it
simply functions as the interface between the with-construct and its body and context,
similar to how the Iterable interface interacts with the for-construct in Java. Note
however, that the return method must be pure, since it has no effect annotations.

Now let’s look at a potential implementation of a handler for Raise. The following
DefaultRaise class defines a handler for the raise effect which simply returns a default
value in case of an exception. The default value is provided when the class is
instantiated through the x field. This default value is used as the value of the with

expression in case its body raises an exception.
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class DefaultRaise<T>(T x) implements Raise, Handler<T, T> {

T return(T t) = t

eff Nothing raise(String s) = this.x

}

In that case, both type parameters of Handler coincide and correspond to the type
parameter T. This means that if an object of class DefaultRaise is used as a handler in
a with expression, both the handled body of the expression and the with expression
should have the same type. The return method, in this case, is the identity function.
Hence, if the body does not raise an exception, as in with (new DefaultRaise<Int>(-1))

{ divide(4, 2) }, the return method of the handler object will be called with the value
returned by the body. In this case the value of the with expression will therefore be 2.

Looking closely at the implementation of raise, however, makes it clear that effect
methods are special, since the type of their body does not match the declared return
type at all. In fact, in this case, the return type is Nothing, whereas the type of the body
expression is T! The reason for this is that the declared return type corresponds to
the type of value that will be sent back to the calling context upon resumption using
resume. The type of the body of an effect method should always correspond to the Out

type parameter of the Handler interface. Since in this case, the raise method does not
resume, it simply returns a value of that type, the default value.

The divide method only refers to the Raise effect interface, so it can be run in
the context of any number of handler implementations of the Raise interface. For
instance, here is another implementation of the Raise interface, where the result of a
computation is wrapped in a Maybe (option) type:

class MaybeRaise<T>() implements Raise, Handler<Maybe<T>, T> {

Maybe<T> return(T t) = new Some<T>(t)

eff Nothing raise(String s) = new None()

}

In MaybeRaise, the In type parameter corresponds to T but the Out type parameter, that
is, the one that corresponds to the type of the with-expression, is Maybe<T>. In this case,
the return method wraps the value resulting from the evaluation of the with-body in
a Some object. Dually, the raise method produces the empty value new None(). Note
again that the None object will be the result of the with-expression.

We have seen that the Nothing return type of raise means that the method will
never “return”, in other words, that it will never transfer control back to the point
of invocation. In the next section we illustrate the scenario in which effect methods
resume execution at the point where they were called.
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�.�.� Resuming After Handling: State

When the raise effect is triggered in the body of a with expression, the normal flow of
computation is aborted and evaluation proceeds at the level of the with expression.
Most effects, however, require resuming execution at the point where the effect was
invoked, after handling. JEff realizes resumption through the special variable there.
The there object is implicitly brought in scope when an effect method executes, just
like this is available in all method executions.

The type of there is defined by the Resume interface:

Definition � (Resume)

interface Resume<T, Out, In> { Out resume(T x, Handler<Out, In> h) }

The resume method accepts two arguments. The first argument represents the value
that is sent back to the calling context as the result of the effect invocation. The second
argument represents the (possibly new) handler to install for the remainder of the
execution. The concrete types for the type parameters are inferred from the context,
but note that the second argument always needs to be a Handler.

Figure �.� shows how the state effect can be defined in JEff. The State effect
interface (left) defines two operations: get, to retrieve the state, and put to update the
state. The interface is generic in what is stored, and it abstracts from how state itself is
represented.

The right-hand side of the figure shows the handler class TupleState, which
implements the State interface and the Handler interface. Both get and put resume
the computation using the there object. The method get resumes execution with the
current state this.s, within the context of the current handler object this. Alternatively,
put resumes with the unit value (), and installs a new handler by constructing a new
TupleState object with the updated state x. Note how the type of the first argument
to the resume method always corresponds to the declared return type of the effect
methods. Finally, TupleState defines the return method from the Handler interface,
wrapping the current state this.s and result of the with-body x in a tuple.

The State effect and the TupleState handler can be used as follows:

Unit countDown()@State<Int> =

Int i = State<Int>::get();

if (i >= 0) {

State<Int>::put(i - 1);

this.countDown();

}

with (new TupleState<Int,Unit>(2)) {

this.countDown()

}

// evaluates to Tuple(�, ())
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interface State<T> {
eff T get()
eff Unit put(T x)

}

class TupleState<T,U>(T s) implements State<T>,
Handler<Tuple<T,U>,U> {
eff T get() = there.resume(this.s, this)
eff Unit put(T x) = there.resume((), new TupleState(x));
Tuple<T,U> return(U x) = new Tuple<T,U>(this.s, x)

}

Figure �.�: The State effect interface (left), and a handler implementation TupleState using
tuples (right)

The method countDown requires the State effect over integers, as witnessed by the
annotation. It simply decreases the stored value until it is zero. This method can then
be invoked by bringing TupleState handler in scope using with, as shown on the right.

Note again that countDown is independent from any implementation of state, and
only depends on the effect interface State, in the same way that the divide method was
only dependent on the effect interface Raise, and not on any particular implementation.
Decoupling the interface of effect operations from handler operations allows client
code to be independent of concrete handlers.

For instance, consider the following handler for state, which maintains a history
of updates:

class LogState<T, U>(List<T> log) implements State<T>,

Handler<Tuple<List<T>, U>, U>> {

eff T get() = there.resume(this.log.last(), this)

eff Unit put(T x) = there.resume((), new LogState<T,U>(log.append(x)));

Tuple<List<T>, U> return(U x) = new Tuple<List<T>, U>(this.log, x)

}

Note that the State interface is still implemented over type parameter T, but the
handler itself now uses List<T> as its representation to save the history of values
that have been assigned to the state. Calling countDown in the context of a LogState

handler, as in with (new LogState<Int, Unit>(2)) { countDown() }, will evaluate to the
value Tuple([2, 1, 0], ()).

�.�.� Structuring Effectful Interpreters

One of the benefits of object-oriented programming is open extensibility of data
types [Coo��]. Given an interface defining a data type, (third-party) programmers can
add new representation variants to the type without changing (or even recompiling)
existing code. One use case where this is valuable is extensible AST-based interpreters.
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interface Exp {
Val eval()@Store,Env

}

class Lit(Val v)
implements Exp {

Val eval() = this.v
}

class Var(String x)
implements Exp {

Val eval()@Env =
Env::get().lookup(this.x)

}

class Deref(Exp cell)
implements Exp {

Val eval()@Store =
Store::get(cell.eval())

}

class Assign(Exp loc, Exp val) implements Exp {
Val eval()@Store =

Store::put(this.loc.eval(),
this.val.eval())

}

class Let(String x, Exp v, Exp b) implements Exp {
Val eval()@Env =

with (Env::get().extend(x, v.eval())){
b.eval()

}
}

Figure �.�: Modular interpreters

Figure �.� shows the definition of an Exp data type with five classes realizing
different kinds of expressions. The Exp interface defines a single eval method,
annotated with Store and Env (environment) effect types. Figure �.� shows example
implementations of Env and Store. Notice that both the Env and the Store classes are
a data structure and a handler at the same time. In particular, they represent a
domain-specific type of handler, that in this case is suitable for the "interpretation of
expressions" domain. Because of this, we have fixed the incoming type of the handler
to Val, which brings as consequence that any with-expression installing these handlers
will enclose a value-producing expression. In this manner, domain-specific handlers
can make code enclosed by with-expressions domain-specific.

Coming back to Figure �.�, each concrete class implements the Exp interface.� The
eval method in Lit does not use any effect, since it simply returns the field v. The
Var class, however, requires Env reader effect to lookup bindings for variables. The
classes Deref and Assign use the Store effect (similar to State of Figure �.�) to realize cell
dereferencing and assignment, respectively. Finally, the Let class models a lexically
scoped binding construct, by first obtaining the current environment, extending it
with a binding for x, and providing it as context for the evaluation of the body b.

Even though the Exp interface fixes the effect privileges of all interpreters, the effect
handling mechanism of JEff makes it unnecessary to accept and propagate stores and
environments explicitly, which would be needed in, e.g., Java, even when they are

�The effect annotations in the implementation classes specify only the effects that are actually used in
their body. This is valid due to JEff’s definition of overriding.
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class Map<T, U>() {
U get(T t)@Raise = ...
Map<T, U> put(T t, U u) = ...

}

class Env(Map<String,Val> map = new Map<String,Val>()) implements Handler<Val, Val> {

eff Env get() = there.resume(this, this)
Val return(Val v) = v
Val lookup(String x) = with (new DefaultRaise<Val>(new Nil())) { this.map.get(x) }
Env extend(String x, Val v) = new Env(this.map.put(x, v))

}

class Store(Int id = 0, Map<Val,Val> map = new Map<Val,Val>())
implements Handler<Tuple<Store, Val>, Val> {

eff Val get(Val c) =
there.resume(with (new DefaultRaise<Val>(new Nil())) { this.map.get(c) }, this)

eff Val put(Val c, Val v) = there.resume(v, new Store(this.id, this.map.put(c, v)))
eff Val alloc() = {

Cell c = new Cell(this.id);
there.resume(c, new Store(this.id + 1, this.map.put(c, new Nil())))

}
Tuple<Store, Val> return(Val v) = new Tuple<Store,Val>(this, v)

}

Figure �.�: This code provides implementations of the Env and Store types. Both Env and Store
use an immutable Map class. Note how both Env and Store use the DefaultRaise handler to deal
with missing keys. To make client code less unwieldy, JEff features default values for fields
as notational short-hand; since object construction is always pure in JEff, the only allowed
expressions as default values are object constructor calls with new or literals.

not used. Note also that the set of effect privileges on eval must be recursively closed,
since eval methods might call effectful methods on dependencies. In this example
all dependencies receiving method calls (i.e., cell, loc, val, v, and b) are Exp objects
themselves, so this is trivially satisfied.

The AST classes of Figure �.� could then be used with the following run method:
Tuple<Store<Val>,Val>

run(Exp<Val> exp) =

with (new Store<Val>()) {

with (new Env<Val>()) {

exp.eval()

}

}

run(

new Let<Val>("x", new Cell(0),

new Assign<Val>(

new Var<Val>("x"),

new Lit<Val>(new Num(42)))))

// evaluates to
// Tuple(Store(�, Map(Cell(�) �> Num(��))), Num(��))

The run method receives an expression and evaluates exp in the context of a fresh store
and environment. The result will be a tuple of the store and the result. Note that
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run is pure, since all effects of eval are handled. Note further that Store and Env act
both as handlers for their respective effects as well as data containers for cell-value
and name-value pairs respectively; it is perfectly fine for JEff effect handlers to have
ordinary methods as well.

Although the effect signature of eval is not extensible itself, it is still possible to
extend the code of Figure �.� with new AST classes, without changing any of the
existing classes, and without having to modify run. Achieving the same at the level of
effects remains an open research question (see, e.g., [IvdS��], for a discussion and
non-effectful solution).

�.�.� Ad Hoc Overloading of Effects

A key feature offered by JEff’s effect system is that dispatch of an effect invocation hap-
pens through both subtype polymorphism and parametric polymorphism (generics).
This means that multiple handlers for the same effect interface can be in scope for a
fragment of code, and, more importantly, they can be distinguished as well, since the
effect invoking code explicitly qualifies the invoked effect.

This unique feature of JEff is illustrated in Figure �.�. The left-hand side shows a
ToStr effect, which allows converting some value of type X to be converted to a string.
Without going into details of implementing handlers for this effect, the left-hand side
shows three specializations of this effect: two sub-interfaces (IntToStr and IntToHex)
representing different ways of converting an integer to a string, and a specialization
for converting booleans to strings (BoolToStr).

The right-hand side of Figure �.� shows two methods invoking ToStr effects. The
method main1, requires abstract ToStr effects, instantiated for both Int and Bool; it
returns the concatenation of converting both method parameters to string. So the
same effect interface is required to be in scope, instantiated over different argument
types.

Assuming we have handler implementations AnIntToStr, and ABoolToStr, the main1

can be invoked as follows:

with (new AnIntToStr<String>())) {

with (new ABoolToStr<String>()) {

this.main1(42, true)

}

} // ) "�� true"

The invocation toString(n) will dispatch to AnIntToStr, because AnIntToStr is a subtype
of ToString<Int>. Similarly, toString(b) will dispatch to ABoolToStr, because ABoolToStr

is a subtype of ToString<Bool>. Note, however, that main still only refers to ToString, so
still benefits from subtype polymorphism. For instance, an handler implementation
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interface ToStr<X> {
eff String toString(X x);

}

interface IntToStr extends
ToStr<Int> { }

interface IntToHex extends
ToStr<Int> { }

interface BoolToStr extends
ToStr<Bool> { }

// same effect, different type parameter
String main1(Int n, Bool
b)@ToStr<Int>, ToStr<Bool>
= ToStr<Int>::toString(n) + " "
+ ToStr<Bool>::toString(b)

// same effect, same type parameter
String main2(Int n)@IntToStr, IntToHex
= IntToStr::toString(n) + ": "
+ IntToHex::toString(n)

Figure �.�: ToStr effects

of IntToHex (Figure �.�) could also be installed to adapt the behavior of main1 from the
outside.

Figure �.� shows three interfaces specializing the ToStr effect interface. This allows
us to go even one step further, and distinguish between different handlers over the
same effect interface and argument type(s). This is illustrated in main2 on the right of
Figure �.�.

In this case, the method prints out a single number using different presentations,
the default one (IntToStr), and another one, in this case IntToHex. Again, assuming two
handler implementations of these respective interfaces, allows main2 to be invoked as
follows:

with (new AnIntToStr<String>()) {

with (new AnIntToHex<String>()) {

this.main2(42)

}

} // ) "��: �A"

Again, the combination of subtyping and generic type instantiation provide additional
flexibility in effectful programming.

�.� Dynamic Semantics

In this section we present the semantics of Featherweight JEff (FJEff), a core calculus
focusing on JEff’s more distinctive semantic characteristics.
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�.�.� Syntax

T, S,U,V,W ::= X | N

N,P,Q ::= C<T>

L ::= class C<X /N>(T f ) / N {M } | interface C<X /N> / N {H }
� ::= N

H ::= [eff ]<X /N>T m(T x )@�
M ::= H=e

e, d ::= x | e.f | e.<T>m(e) | new N(e) | N ::<T>m(e) | with (e) { e }
v,w ::= new N(v) | new Resume {resume(x, x) = e}

Figure �.�: FJEff syntax

The grammar of FJEff is shown in Figure �.�. Metavariables B, C and D range over
class and interface names; f and g over field names; m over method names; X and Y
over type variables; and finally x and y over variables, including the special variables
this and there. Comma-separated sequences are represented by overlined symbols,
for example M represents a sequence of method declarations. Consecutive sequences
represent sequencing tuples of elements as in C f for field declarations.

Types can be either type variables X or non-variable types N. A type definition L
can be either a class or an interface definition. Class definitions consist of the class’s
name, an optional list of bounded type parameters X / N , followed by a possibly
empty list of fields, and an optional list of implemented interfaces (preceded by /),
and finally a list of methods. An interface declaration follows the same structure,
but does not feature fields and may only contain method headers. An effect set ⌅ is
syntactically a list of non-variable types where order is irrelevant. Method headers H
may be marked as being an effect method using the keyword eff and consist further
of the return type T, the method name m, a list of formal parameters C x, and an
optional sequence of effect annotations ⌅. Method definitions M consists of a header
and a body expression e.

Expressions e can be a variable, field reference, method invocation, object instanti-
ation, effect method invocation, or a with-expression. The first four are standard. An
effect method call consists of the type of an interface or class that defines the effect
method, followed by two colons and then the name of the method and the arguments.
The handling expression with contains two sub-expressions. The first one corresponds
to the (handler) object that will handle (some of) the effects that will be be triggered
during execution of the body. Finally, objects v, w correspond to a fully-evaluated
instantiation expressions with new, or resumption object containing a definition of the
resume method as defined by the Resume interface (see Definition �).
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E ::= [] | E.f | E.<T>m(e...) | v.<T>m(v...Ee...) | new N(v...Ee...) | N ::<T>m(v...Ee...)
| with (E) {e } | with (v) {E }

XN ::= [] | XN .f | XN .<T>m(e...) | v.<T>m(v...XN e...) | new N(v...XN e...) | N ::<T>m(v...XN e...)
| with (XN ) {e } | with (new Q(v...)) {XN } when• `Q 6<: N

Figure �.�: Evaluation contexts for reduction semantics

fields(N)=T f

new N(v).fi �! vi
�_�����

mbody(m<V>,N)=x.e
new N(v).<V>m(w) �! [new N(v)/this,w/x]e

�_ ����

new Resume {resume(xv, xh) = e}.resume(v1, v2) �! [v1/xv, v2/xh]e
�_������

with (new N(v)){v} �! new N(v).return(v) �_������

• ` Q<:N mbody(m<V>,Q)=x.e
vk = new Resume {resume(xv, xh)=with (xh) {XN [xv] } }

with (new Q(v)) {XN [N::m<V>(w)] } �! [new Q(v)/this, vk/there,w/x]e
�_���_ ����

Figure �.�: Reduction rules

�.�.� Reduction Semantics

We present the operational semantics of FJEff using Felleisen-style evaluation con-
texts [WF��]. We use two evaluation contexts, E and XN , shown in Figure �.�.

Figure �.� shows the evaluation rules of FJEff. The semantics uses two auxiliary
lookup functions fields (to map field names to field indices) and mbody (to obtain the
body of a method); their definition can be seen in Figure �.�.

The E context is the usual context for call-by-value evaluation, while the XN

context is used for the context that a handler delimits. It follows the same structure
as E except that it matches with-expressions so that the body XN does not contain
with-expressions which handle effect N . In other words, it captures the nearest
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Field lookup:

class C<X/N>(S f ) /P {...}
fields(C<T>) = [T/X]S f

�_�����

Method type lookup:

class C<X/N>(S f ) /P {M } [eff]<Y/Q>Um(U x)@⌅m=e 2 M

mtype(m,C<T>) = [eff] [T/X](<Y/Q>U!U@⌅m)
��_�����

Method body lookup:

class C<X/N>(S f ) /P {M } [eff]<Y/Q>Um(U x)@⌅m=e 2 M

mbody(m<V>,C<T>) = x.[T/X,V/Y]e
��_�����

Figure �.�: Auxiliary definitions

enclosing with-expression that is able to handle effect N . The side-condition ensures
this by disallowing Q to be a subtype of N .

Rule �_����� defines field lookup. It maps a field name to its position in the
sequence of values in an object using the fields lookup function. Rule �_ ���� defines
the semantics for ordinary method invocation by obtaining the body of the method m
using the mbody lookup function. The expression then reduces to the method body e
with substitutions applied for this and the formal parameters x. The rule �_������
is similar to �_ ���� but works on synthesized resumption objects.

There are two cases for with-expressions. The first one, �_������, deals with the
case in which the body expression has been fully evaluated to a value. In that case
the expression reduces to a return invocation expression on the handler object.

The second rule �_���_ ���� applies when with-bodies contain remaining effect
method invocations, and thus implements effect dispatch. The context XN ensures
that the Q object is the directly enclosing handler servicing the effect N . The effect
method m is looked up in the Q object, and the with-expression is reduced to its body
e with substitutions applied for this, there, and the formal parameters x. The special
variable there is substituted for a resumption object vk whose resume method installs
the handler xh and continues execution of context XN with xv plugged in as the result
of the effect method. As a consequence, the value of an effect method invocation at
the call site will be xv whenever the effect method resumes.

Compared to other calculi for effects and handlers that are of functional nature,
e.g. [Lei��; LMM��], FJEff’s rule for effect dispatch is special in that the syntax for the
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Bound of type:
bound�(X) = �X bound�(N ) = N

Subtyping:

� `T <:T
�_����

� ` X<:�(X) �_���
� ` S<:T � `T <:U

� ` S<:U
�_�����

class C<X/N>(...) /P {...} Q 2 P
� `C<T><: [T/X]Q

�_�����_�

interface C<X/N> /P {...} Q 2 P
� `C<T><: [T/X]Q

�_ �����

Well-formed types:

� ` Object ok
��_������ X 2 dom(�)

� ` X ok
��_���

class C<X/N>(...) /P {...} � `T ok � `T<:[T/X]N
� `C<T> ok

��_�����

interface C<X/N> /P {...} � `T ok � `T<:[T/X]N
� `C<T> ok

��_ �����

Predefined interfaces:

interface Object { }

interface Handler<Out, In> { Out return(In in) }

interface Resume<T, Out, In> { Out resume(T x, Handler<Out, In> h) }

Valid method overriding:

mtype(m, N ) = <Z/Q>U!U0@⌅0 implies P,T = [Y/Z](Q,U) and T0 = [Y/Z]U0

and Y<:P ` [Y/Z]⌅0 � ⌅
override(m, N, <Y/P>T!T0@⌅)

Figure �.��: Subtyping and type well-formedness rules

���



�.�. Type System

invocation includes an effect qualifier N that enables effect selection using subtyping
and parametric polymorphism, as it has been discussed in the pretty-printing example
of Section �.�.�. In �_���_ ����, it is clear that the handler Q that is selected among
those in the runtime stack, is the one that is a subtype of the type specified by qualifier
N . The pretty-printing example illustrates the consequences of this language design
and the opportunities that become available in terms of new patterns for structuring
effectful code, unavailable in functional languages with effects.

�.� Type System

�.�.� Introduction

JEff is a statically typed language with a nominal type system, where both classes and
interfaces introduce types, arranged in a subtype lattice. In this section we present
the type system of the simplified core language FJEff. The type system of FJEff is
mostly standard, except that it ensures that JEff methods are effect-safe: whenever an
effect is triggered it is either handled using a syntactically enclosing with-construct, or
the enclosing method is annotated with a type defining the effect. The type system
further makes use of the Handler and Resume interfaces for checking effect method
declarations, and the with-construct itself. The definitions for method, method header,
class and interface typing are shown in Figure �.��. The rules are similar to the typing
rules used in Featherweight Generic Java [IPW��] and employ auxiliary definitions
for subtyping, well-formedness and overriding, shown in Figure �.��.

Below we describe in detail the type rules for method definitions and expressions.

�.�.� Method Typing

Figure �.�� shows the two typing rules for method definitions in classes. The rule
�_����_��� checks the validity of ordinary, non-effect method declarations. The
body of the method e0 is type checked in context of the effect set ⌅m, the type variable
environment � (derived from the type parameters of the method and class), and an
initial type environment defining the type of this. The set ⌅m can be seen as the set of
effect privileges available in the body of m. A method declaration is then valid if its
header is valid and the type of e0 is a subtype of the declared return type T .

The second rule defines the type correctness of effect methods in a similar fashion.
The first difference, however, is that, in this case, C needs to implement the Handler

interface. Second, the initial type environment also defines the type of the there

variable in terms of the Resume interface. Finally, since the return type of an effect
method corresponds to the type of the value used in resumptions, in this case the
derived type of e0 (S) must be a subtype of Tout , the return type of the return method
defined by C.
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Method typing:

� = X<:N,Y<:P ⌅m ; � ; x:T, this:C<X> ` e0 : S � ` S<:T

<Y/P>T m(T x)@⌅m OK IN C<X/N>

<Y/P>T m(T x)@⌅m = e0 OK IN C<X/N>
�_����_���

• `C<X><:Handler<Tout,Tin> � = X<:N,Y<:P

⌅m ; � ; x:T, this:C<X>, there:Resume<T,Tout,Tin> ` e0 : S � ` S<:Tout

eff<Y/P>T m(T x)@⌅m OK IN C<X/N>

eff<Y/P>T m(T x)@⌅m = e0 OK IN C<X/N>
�_����_���

Method header typing:

class C<X/N>(...) /Q1...Qn {...} X<:N,Y<:P `T, T, P, ⌅m ok

override(m,Q1, <Y/P>T!T@⌅m) ...override(m,Qn, <Y/P>T!T@⌅m)
[eff]<Y/P>T m(T x)@⌅m OK IN C<X/N>

�_������_�����

interface C<X/N> /Q1...Qn {...} X<:N,Y<:P `T, T, P, ⌅m ok

override(m, Q1, <Y/P>T!T@⌅m) ...override(m,Qn, <Y/P>T!T@⌅m)
[eff]<Y/P>T m(T x)@⌅m OK IN C<X/N>

�_������_ �����

Class and interface typing:

X<:N ` N, T, P ok M OKIN C<X/N>

class C<X/N>(T f ) /P {M }
�_�����

X<:N ` N, P, ok H OKIN C<X/N>

interface C<X/N> /P {H }
�_ �����

Figure �.��: Method, class and interface typing rules
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⌅;�;� ` x : �(x) �_���

⌅;�;� ` e0 :T0 fields(bound�(T0)) =T f

⌅;�;� ` e0. fi :Ti
�_�����

� ` N ok fields(N ) =T f ⌅;�;� ` e : S � ` S<:T
⌅;�;� ` new N (e) : N

�_���

⌅;�;� ` e0 :T0 mtype(m, bound�(T0)) = <Y /P>U!U@⌅m � ` ⌅ � ⌅m
� `Vok � `V<:[V/Y]P ⌅;�;� ` e : S � ` S<:[V/Y]U

⌅;�;� ` e0.m<V>(e) : [V/Y]U
�_ ����

mtype(m, N ) = eff<Y /P>U!U@⌅m � ` ⌅ � ⌅m � ` ⌅ � N

� `Vok � `V<:[V/Y]P ⌅;�;� ` e : S � ` S<:[V/Y]U
⌅;�;� ` N ::m<V>(e) : [V/Y]U

�_���_ ����

⌅;�;� ` e0 :T0 mtype(return, bound�(T0)) =Uin!Uout bound�(T0),⌅;�;� ` e1 :T1
� ` bound�(T0)<:Handler<Uout,Uin> � `T1<:Uin

⌅;�;� ` with (e0) {e1 } :Uout
�_����

Figure �.��: Expression Typing

�.�.� Expression Typing

The rules for expression typing are shown in Figure �.��. Here we highlight the
most salient differences with respect to those used in Featherweight Generic Java.
First of all, there are two different rules for checking method invocation: �_ ���� for
regular method invocation and �_���_ ���� for effect method invocation. These
rules enforce that effect methods can only be called using normal method invocation
syntax, and regular methods only via effect call syntax by requiring that the method
type returned by the mbody metafunction has the right effect annotation. Also, next
to the type variable environment and the type environment, expressions are typed
in the context of an effect privilege set ⌅, as introduced by the method typing rules
shown in Figure �.��.

For instance, the rule for ordinary method invocation �_ ���� checks that the
declared effects of m (⌅m) are included in the privilege set ⌅ using the condition
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� ` ⌅ � ⌅m. The rule for effect invocation �_���_ ���� performs the same check, but
additionally enforces that the requested effect C is also in the privilege set ⌅. Dually,
the rule for with-expressions (�_����) extends the privilege set for e1 with the type of
e0 (T0).

The relation � defines a preorder between two sets of types, and intuitively extends
subtyping over sets of types. It is defined by first defining � :

� ` ⌅ � T ⌘ 9T 0 2 ⌅ : � ` T 0 <: T (A type in ⌅ handles type T) (�.�)

The full relation is then obtained as follows:

� ` ⌅1 � ⌅2 ⌘ 8T 2 ⌅2 : � ` ⌅1 � T (⌅1 handles all types in ⌅2 ) (�.�)

This relation is used in determining whether a privilege set is powerful enough to
handle all effects requested by a certain expression. The relation is further used
in checking the validity of method implementations, where the effect annotations
of method definitions in a class may be less demanding according to � than the
declared annotations in a declaring interface. In plain language this means that the
effect payload of a method, i.e. the effects it might invoke, may be less than what is
declared. Note in particular that pure method implementations (i.e. without any
effects) conform to well-typed interface method declarations with arbitrary sets of
effect annotations, because ⌅ � •.

�.�.� Soundness

Soundness is often stated as “well-typed programs cannot go wrong”. We sketch the
proof of soundness using progress and preservation.

For progress, we make a distinction by considering that expressions in normal
form are not only values but also expressions XN [N::m<V>(e)] whose next evaluation
step requires the handling of an operation call. By pairing the latter with a constraint
to a set of effect privileges ⌅, we have a new class of expressions that we do not
consider stuck.

Definition � (Normal Form) An expression e is in normal form with respect to ⌅ if either
(a) is a value v, or (b) is an expression of the form XN [N::m<V>(e)] such that • ` ⌅ � N .

Definition � (Non-stuckness) An expression e is non-stuck with respect to ⌅ if either (a)
is in normal form with respect to ⌅, or (b) there is an e0, such that e! e0.

Lemma �.�.� (Progress) If ⌅;•;• ` e : T , then e is non-stuck with respect to ⌅.
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Proof sketch. By induction on the structure of type derivations, with a case analysis
on the last rule used. The interesting case is �_����, in particular when e is with

(new Q(v)){e1}. By rule �_����, we have Q,⌅;•;• ` e1 : T1 for some T1. Then, by
hypothesis, e1 is non-stuck, thus, it is either (a) a redex, in which case e progresses; (b)
a value, in which case rule �_������ applies; or (c) of the form XN [N::m<V>(e)],
such that • `Q,⌅ � N , in which case, by the definition of � (cf. section �.�.�), either:
(c.�) Q <: N , which implies that rule �_���_ ���� applies; or (c.�) Q 6<: N , which
implies that ⌅ � N ; and because of this together with the fact that no reduction rules
apply, e fits in the definition of a context XN , being of the form XN [N::m<V>(e)], and
thus, is in normal form with respect to ⌅ (therefore non-stuck with respect to ⌅).

Lemma �.�.� (Preservation) If ⌅;�;� ` e : T and e! e0, then ⌅;�;� ` e0 : T 0 for some
T 0 such that � ` T 0 <: T .

Proof sketch. By induction over the reduction rules. A number of necessary lemmas
are needed, such as that (�) term and (�) type substitution preserve typing, that (�)
subtyping preserves method typing, and that (�) method bodies conform to declared
return types. Their proofs are similar to those found in [IPW��]. The replacement
lemma (�) states that if there is a deduction D ending in � ` C[e] : T , where C is a
context; and there is a sub-deduction D0 ending in �0 ` e : T 0, and � ` e0 : T 0, then
� ` C[e0] : T (proof is similar to replacement in [WF��]).

The interesting cases are rules �_���_ ����, �_������ and �_������. The
crucial facts for �_���_ ���� are:

(a) We know by �_���� that XN [N::m<V>(v)] has type T1 for some T1. We also
know trivially that N::m<V>(v) has type S for some S. By letting variable xv have
type S and plugging xv inside context XN [] in place of the effect method call,
we obtain expression XN [xv], that by (�) retains type T1. By letting xh have type
T0 for some T0<:Handler<Uout,Uin>, we know that expression with(xh){XN [xv]}
in the body of the built resumption object has type Uout and then resumption
object vk conforms by construction to interface Resume<S,Uout,Uin>, as required
by the specification of resumption objects.

(b) By premise • `Q <: N and (�) together with (�), we know that the expression im-
plementing an effect method call N::m<V>(v) is to be found in the corresponding
method m in handler class Q.

Rule �_������ relies on the fact that resumption objects are not expressible and
are only introduced via substitution of there in �_���_ ����. From (a), we know that
the resumption object is well-typed to Resume<S,Uout,Uin> for some S, Uin and Uout ,
and then the argument continues as the one for standard method invocation.

In case of �_������, since N<: Handler<Uout,Uin> for some Uout and Uin, and
Handler defines return to have the type Uin!Uout , both the with expression and the
result of invoking return have the same type.
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�.� Discussion & Related Work

�.�.� Objects for Effect
According to Cook the essence of objects is encapsulation and dynamic dis-
patch [Coo��]. These are precisely the aspects that we have leveraged in JEff for
supporting effectful programming. This can be seen from the fact that, apart from the
with-construct, all other parts of effect handlers are realized by calling methods, all of
them defined in interfaces or classes.

Effect operations are defined as methods with ordinary type signatures, but
with bodies typed according to the Handler interface. Effect resumption is method
invocation on the special there object, which is typed by the ordinary Resume interface.
The with-construct brings Handler objects into dynamic scope, and when its syntactic
body has evaluated to a value, the result is passed through the ordinary return method
as required by Handler. Both the Resume and Handler interfaces are not special, but
simply part of JEff’s standard library. Like Java’s Closeable and Iterable, they merely
provide the interface between certain language features (in JEff’s case with and there)
and the objects defined by the programmer.

�.�.� Effect Polymorphism
Effect polymorphism refers to the ability of code to operate on objects with varying
effect surfaces, where the actual effectfulness of code derives from dependencies such
as method parameters or fields. In JEff, all method declarations – both in interfaces
and classes – need to be annotated with concrete effect types for unhandled effects.
As a result, JEff does not support effect polymorphism.

Consider the two interfaces below, Function and List:

interface Function<T,U> {

U apply(T t) // pure
}

interface List<T> {

<U> List<U> map(Function<T,U> f) // pure
}

Both the applymethod in Function, and map in Listhave no effect annotations. As a result,
implementations of these methods are required to be pure. Another consequence is
that the argument to map must be pure as well, and hence map is effect monomorphic:
it only applies pure functions to the list. Since it is not possible to abstract over the
effect signature of a (set of) method(s), different maps are needed for Functions with
different effect payloads.

A similar effect can be observed in the modular interpreters presented in Sec-
tion �.�.�. Although new Exps can be defined in a modular fashion, the allowed effects
of the eval method are determined and fixed in the Exp interface. With a mechanism
for effect polymorphism, this could potentially be made more flexible, where the eval
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in Exp would be polymorphic, and each implementation would carry its own effect
signature.

Supporting effect polymorphic methods in a language like JEff is challenging.
Existing languages like Frank [LMM��] and Koka [Lei��] support effect polymorphic
functions but have significantly different type systems than JEff. For instance, Koka’s
row polymorphism allows the effect payload of a function to be left partially open;
unification is then used to add rows to the types during type inference. It is however
unclear how to port this kind of inference to object-oriented languages.

A possible middle-ground solution is presented by Toro and Tanter [TT��] in the
form of a gradual polymorphic effect system for Scala. By giving up some static
guarantees about the effectfulness of code, the use of higher-order functions like map

can be made more flexible. In this case both apply and map would be annotated with
the special @unknown annotation (denoted as ¿ in [BGT��]), which signifies that there is
no static information about the effects of map. Implementations of such methods can
provide the missing information with concrete annotations. The type system can then
derive more specific effect payloads at concrete call sites; if it cannot, then dynamic
checks ensure that the effect will be handled correctly.

�.�.� Propagation of Annotations

JEff’s effect propagation mechanism is similar to Java checked exceptions and, as such,
suffers from the same problems. Programmers need to annotate each method with its
allowed effects which is verbose and makes the code less flexible. An interface method
declares a number of effects but the corresponding method in a class implementing
this interface might require a new effect. In that case the annotations of the parent
interface should be modified to incorporate the new effect, and consequently, all
classes implementing it.

The lack of flexibility of checked annotations has been addressed in the work on
anchored exceptions, where method call dependencies are taken into account when
propagating exceptions in throws-clauses [vDS��]. Based on this work and in the
context of Scala, Ritz proposes Lightweight Polymorphic Effects (LPE) [ROH��] as
an attempt to generalize the annotation-based style of checked exceptions to a wider
range of effects. LPE allows programmers to annotate effectful Scala code with effect
annotations, where effects are defined using a customizable effect lattice, inspired
by [MM��]. We consider incorporating a similar mechanism to JEff as future work.

�.�.� Related Work

Algebraic effects [PP��; PP��] are a mechanism to represent effects in functional
languages. An effect defines the signature of a set of operations. The actual semantics
of an effect is provided by handlers, dynamically scoped constructs that implement
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the behavior for each operation. In JEff, the effect interface is analogous to the
effect signatures, while handler classes correspond to their implementation. The
handler abstraction is further discussed in [KLO��], where a formal definition together
with library-based implementations in several languages is presented. This work
also introduces the distinction between deep and shallow handlers. Deep handlers
automatically wrap the continuation within the current handler. Shallow handlers
assume no handling by default, and therefore require the programmer to install a new
handler manually if so desired. JEff is closer in spirit to the latter, since we require a
handler object as the second argument to there.resume.

Besides the handler libraries presented in [KLO��], there are several other library-
based encoding of effects and handlers [BS��; KI��; KSS��; WSH��]. Compared to
library-based encodings, the built-in effects in JEff have the following advantages:

• Reducing the boilerplate caused by the accidental complexity of the effects
embedding.

• Having a clearer computation model of the interaction between OO concepts
and effects. For instance, the Effekt library [BS��] encodes algebraic effects
using sophisticated Scala features, such as implicit function types. In JEff, the
interactions are clear and rely on a limited number of concepts captured by the
FJEff calculus.

• Opening the door to domain-specific compiler optimizations taking into account
the native representation of effects. For example, in [Lei��], Leĳen shows an
efficient compilation of his row-based effects using a type-directed selective CPS
translation.

Besides the library-based approaches, in section �.�.� we have discussed a number
of functional languages that provide native support for handlers and effects, using
however different mechanisms for effect propagation. Koka [Lei��], for example,
features an effect inference system that requires minimal annotations from users by re-
lying on the polymorphic row types discussed in the previous section. Frank [LMM��],
on the other hand, treats function application as a special case of a more generic
mechanism of operators that act as interpreters of effects. Rather than accumulating
effects outwards via type inferencing as in Koka, effects are propagated inwards using
an ambient ability, similar to the privilege sets ⌅ used in JEff.

�.� Conclusion

Effect handlers are a technique to define, scope and modularize side-effects in pro-
gramming languages that do not support them natively. While originally introduced
and explored in the context of (purely) functional programming languages, it is
an open question how effect handling could be supported first-class in an object-
oriented programming language. In this chapter we presented first steps towards
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answering this question, in the form of JEff, a purely object-oriented language with
built-in support for effectful programming. Effects are defined using effect methods
which obey special typing rules and have access to the current continuation for
resuming computation. Handler objects are brought into dynamic scope using the
with-construct; effects that are not handled need to be declared at the method level,
similar to Java’s throws-clause.

We showed how common effects, like exception handling and state, can be defined
within JEff, and how effects can be used to structure extensible interpreters. Also,
using a pretty-printer as illustrative device, we showed how the type qualifier of effect
invocations enable ad hoc overloading of effects. The semantics of JEff are formalized
based on a core subset FJEff, including a type system that ensures that all effects are
properly handled or propagated. Finally, we provided intuitions that show that the
type system is sound with respect to the semantics.

As directions for further work, we consider mechanizing the soundness proof,
implementing the language, and exploring extending JEff with support for (implemen-
tation) inheritance. In particular, support for super-calls would allow programmers to
customize effect handlers. The biggest open question, however, is how to reconcile
the open-world assumptions of object-orientation with effect handling. Modular
extensibility of both data types and operations has been solved by solutions to the
expression problem [Wad��]; the next question is how to realize the same at the level
of effects. JEff represents the first steps towards better understanding this question
from the perspective of object-oriented programming.
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6 Conclusion

The implementation of programming languages is complex, as it involves different
artifacts that need to interact with each other in order to process programs written in
these languages. Since so much effort is put into developing new language artifacts, the
language engineering practice can benefit from the availability of reusable language
components that can be assembled in order to build new languages. This thesis has
introduced new object-oriented techniques to modularly implement programming
languages as Language Libraries.

In the remainder of this chapter, we summarize the conclusions of previous
chapters, by describing how they answer the main questions of this dissertation.
Thereafter we discuss in depth the benefits and limitations of the introduced object-
oriented techniques together with open challenges and opportunities for future
work.

�.� Recapitulation of Research Questions

Research Question � (RQ�): How can object algebras facilitate modular language
extension of a General-purpose Programming Language?

RQ� is answered in Chapter � by means of Recaf, a tool that provides lightweight
host language extension. Recaf extends Java by relying on a generic transformation
that processes programs in a customized Java extended with new arbitrary keywords,
and outputs a standard Java program that delegates the newly introduce keywords to
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invocations on object algebras, thus admitting arbitrary definitions of the semantics
of such keywords.

The syntax of the customizable Java was generalized in order to admit new
keywords that conform to certain predefined syntactic patterns, e.g., foreach-like
keywords. Moreover, since the semantics of the keywords is provided by object
algebras, the definition of the extensions inherits object algebras’ modularity benefits
and can be deployed as libraries of modular language components.

As illustrative examples, we have extended Java with asynchronous control flow,
Parsing Expression Grammar definitions, among other extensions, each of which can
be modularly deployed as a library. The libraries consist of object algebra classes that
encode the respective semantics.

The combined strategy of a generic transformation plus modular semantic com-
ponents encoded as object algebras enables the lightweight definition of modular
extensions to a general-purpose programming language, without altering the compiler
and just requiring a generic pre-processing step, written once and for all.

Research Question � (RQ�): How to trace program transformations in a
lightweight, language-agnostic manner?

RQ� is answered in Chapter �. String origins is a technique that allows textual
transformations to preserve the link between each string in the output and its origin.
The key idea is to instrument each string-related operation used in the transformations
(e.g., appending) in order to preserve the origins of the strings being processed. Since
the technique abstracts over operations at the string level, it is language-agnostic and
lightweight.

String origins represent a step towards extension-aware tool support, facilitating
the development of extension-based language libraries.

Research Question � (RQ�): How to compose modular interpreters with differ-
ent context-requirements using object algebras?

RQ� is answered in Chapter �. We have defined interpreters for embedded
languages using object algebras whose carrier types are functions from semantic
context requirements to values. These interpreters are composable if their context re-
quirements coincide. However, if two interpreters have different context requirements,
they cannot be composed since the signatures of their carriers differ.

In this setting, we have defined a lifting that allows new arbitrary context pa-
rameters to be implicitly propagated in automatically derived interpreters. This
automatic derivation is realized via a syntactic transformation (using macros) or
runtime reflection (using Java proxies). The interpreters with an extended signature
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can be composed with existing interpreters that have the same signature, providing
an answer to RQ�.

Implicit context propagation of object algebra-based interpreters thus enable better
composability without anticipation.

Research Question � (RQ�): How to integrate effect handling in an object-
oriented language?

RQ� is answered in Chapter �. We have introduced JEff, an object-oriented
language that features built-in effect definitions, enabling a more reliable and flexible
handling of effects: reliable by declaring the effects that a method is allowed to
execute using a mechanism similar to checked exceptions, and flexible by using object
orientation, and thus, modular extensibility. The key point of the integration was
the use of well known object-oriented structures for defining effect-related concepts:
interfaces define effect signatures, while classes implementing such interfaces define
handlers.

The combination of objects and effects creates opportunities for new patterns and
idioms to encode user-defined effects, like, for instance, effectful interpreters, in the
spirit of the interpreters of Chapter �.

�.� Discussion

The central topic of this dissertation is investigating object-oriented abstractions, in
particular object algebras, as a mechanism to implement libraries of modular language
components.

The literature on object algebras [GPS��; OC��; OvdSL+��] shows that object
algebras are a good technique to implement extensible languages. Since language
extensibility is fundamental for library-based language development, object algebras
are a natural choice to structure language components. However, the referred works
have considered only some scenarios of language development using object algebras.
In this thesis, our goal was to explore more challenging and realistic language
implementations and therefore we have added new requirements to the extensibility
in two-dimensions that object algebras support. These new requirements are:

• syntactic extensibility of general-purpose programming languages (Recaf)
• modular implementation of language interpreters in presence of different context

requirements (Modular interpreters with Implicit Context Propagation)
In this thesis, object algebras have proven to be a versatile technique for addressing

these requirements. By having investigated how to address these requirements using
object algebras, the limits of what this mechanism provides in terms of linguistic
abstraction have been explored. Now, we discuss what we have learned from this
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experience by presenting the benefits and limitations of this particular technological
choice for implementing language libraries.

�.�.� Key Benefit: Unanticipated Extension and Composition

The fundamental technique of object-oriented programming is dynamic dispatch,
which allows programmers to write code assuming behavioral interfaces but not
the implementation of such interfaces [Coo��]. A message sent to an object gets
only dispatched at runtime. This characteristic of object-oriented programming
enables modular extensibility [Ald��], as client code makes no assumption of the
actual implementation of the objects typed by the interfaces they call to. In other
words, at the moment of writing an abstraction, there is no need for anticipating
knowledge about the extensions (namely, interface implementations) of the types that
the abstraction interacts with.

Object algebras take the intrinsic extensibility of object orientation one level further,
by exploiting inheritance and parametric polymorphism from the host object-oriented
language. An object algebra can then support the addition of unanticipated operations
(using a combination of subtype and parametric polymorphism) and the addition of
unanticipated data variants (using inheritance).

The improved extensibility provided by the aforementioned characteristics of object
algebras have been fundamental for designing Recaf and the Modular interpreters
with Implicit Context Propagation, as different instantiations of the idea of language
libraries.

In Recaf, the flexibility of unanticipated extension and composition brings the
following benefits for creating Java dialects as libraries:�

• Multiple implementations of the base Java semantics (unanticipated host-
language interpreter implementation). We have, for instance, showed a
continuation-passing style Java interpreter, and a direct-style one, both us-
ing reflection. In order to improve on reflection’s performance overhead, one
could think of alternative, more optimal implementations at the bytecode
level. The object algebra interface representing the Java base syntax admits an
open-ended number of interpreters.

• Extension of Java with new keywords (unanticipated syntactic extensions).
Syntactic extensions for asynchrony, parsing, or other domain-specific con-
cerns can be implemented by extending the object algebras (using inheritance).
Naturally, multiple implementations for the newly introduced keywords are
admitted.

�The use of Java’s default methods in Recaf adds more trait-like flexibility to the object algebra pattern.
This is not further discussed as it is not fundamental to the benefits being discussed.
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These benefits allow Recaf to support the development of independent language
extensions, forming libraries of Java dialects. A Recaf library can contain a different
implementation of the Java interpreter (more sophisticated than the reflection-based
one) by providing an alternative implementation of the base Java object algebra
interface, or some new syntactic extensions by providing extensions to a particular
Java interpreter, extensions that know how to interpret the newly-introduced keywords.
One can even think of overriding the meaning of an existing Java construct by using
simple method overriding on an extended Java interpreter.

In the case of Modular Interpreters with Implicit Context Propagation, where
language components correspond to interpreters, the flexibility of unanticipated
extension and composition brought by object algebras� was key to the lifting-based
solution. Interpreters were represented as object algebras with carrier types corre-
sponding to a function type from context parameters to values. These interpreters
were naturally composed by inheritance, as long as their carriers coincide. In this
case, one could write a language interpreter for a language fragment A unaware of a
future extension B that would add more language features. However, since the carrier
types needed to coincide, the pattern did not capture another kind of anticipation:
anticipation of context.

Nevertheless, object algebras provide the basic foundation to our lifting-based
solution. Since the language components were already supporting unanticipated
composition, their liftings are also independent and can be generated at composition
time. The liftings are per-component, modular, and admit separate compilation.
Thus, all the benefits brought by object algebras were retained. In this manner, object
algebras support the development of independent modular language interpreters,
without requiring context anticipation.

The Recaf and the Implicit Context Propagation scenarios show that object algebras
are flexible enough to support new scenarios of language composition, besides the
ones illustrated by the existing literature on object algebras. Moreover, the pattern
brings some benefits as compared to similar techniques in non-OO settings.

The lack of anticipation that is fundamental to object orientation fosters modularity
and reuse, and enjoys separate compilation. Other techniques to compose language
interpreters lack this characteristic. Monad Transformers [LHJ��], for instance, rely
on composition via liftings that require global recompilation if new components are
added, hampering modular reuse.

By contrast, since both the Java dialects developed with Recaf and the Modular
Interpreters with Implicit Context Propagation enjoy modular extensibility, they can
be compiled and distributed in binary form, enabling black-box reuse. This essential

�Implicit Context Propagation has been presented in Scala, using traits. The use of traits adds more
flexibility to the object algebra pattern. This is not further discussed as it is not fundamental to the benefits
being discussed.
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characteristic of object orientation, and in particular of object algebras, is fundamental
to our vision of library-based language development.

�.�.� Limitations: Host-level Dependency

Object algebras are an embedding technique. As such, the abstractions that they
enable are encoded in a host language. This can impose some restrictions to the
expressiveness of object algebra-based abstractions, and in particular, in the scenario
of library-based language implementation.

In Recaf, for instance, we faced some restrictions when expressing virtualization
of expressions. Java is a statement- and expression-based language. Hence, full
virtualization of Java programs using Recaf implies that new keywords can be
introduced both at the expression and the statement level. Unfortunately, at the
expression level the code that the Recaf transformation can generate does not provide
static guarantees. Recall that the expression algebra was along the lines of the
following definition:

interface MuExpJava<E> {

E IntLit(Integer x);

E StrLit(String x);

E Mul(E e1, E e2);

...

}

A possible carrier for an expression algebra, would be the closure type IEval:

interface IEval { Object eval(); }

The problem of this encoding is that a type-incorrect expression such as
alg.Mul(alg.StrLit("a"), alg.IntLit(1)) cannot be detected statically, since the Java
type system does not allow us to represent these type constraints properly. For
example, if alg’s carrier type is IEval, the result of the aforementioned expression
(and its sub-expressions) will be always the thunk IEval, that will eventually produce
Object. As there is no way to relate the argument types of the variants to the carrier
type, the denotations of expressions produced by the algebra are untyped (or better
said, dynamically typed). As an illustration, the IEval only ensures that Objects are
produced, hence, it gives no static guarantees.

In an ideal setting, we would like to express that IEval is parametric on the object
being returned, such as:

interface IEval2<T> { T eval(); }

To use such carrier, the definition of the expression algebra would need to be written
in a language supporting type constructor polymorphism, such as Scala [MPO��].
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The following snippet is written in a fictional Java-like language supporting this
feature:

interface MuExpJava2<C<T>> {

C<Integer> IntLit(Integer x);

C<String> StrLit(String x);

C<Integer> Mul(C<Integer> e1, C<Integer> e2);

...

}

If an expression using this algebra is type incorrect, such as
alg.Mul(alg.StrLit("a"), alg.IntLit(1)), the type error would be detected statically.

As said before, the listing above (MuExpJava2) would only work if Java supported
type constructor polymorphism. This shows that in Recaf, the expressiveness of the
host language can limit the static guarantees provided by the dialects created with
Recaf.

In Modular Interpreters with Implicit Context Propagation, the different kinds of
context were represented using host-level side-effects. This is problematic as it hides
the true nature of the feature interactions between different contexts, for instance, if
one wanted to integrate state with backtracking.

This limitation precludes true independent development of extensions as the
context interaction could be problematic in unforeseen ways. The initial motivation
behind JEff is to design an object-oriented language that supports our object algebra
style of library-based language development, but making the effects (and thus their
interaction) explicit.

Object algebras’ limitations in terms of their dependency on the host language lead
to the conclusion that even though object algebras impose very minimal requirements
on the host language, namely inheritance and parametric polymorphism, as long as
one wants to express more sophisticated linguistic features, e.g. by using built-in
effects or type-constructor polymorphism, the host language needs to be accordingly
complex.

In the case of Recaf, possible directions for overcoming these limitations include
a Java encoding of type constructor polymorphism [BPF+��] or using another host
language that features this kind of polymorphism, such as Scala. Changing the host
language to one that supports type constructor polymorphism is only the first step in
the direction of providing static guarantees to Recaf. Making full virtualization safer
under this schema is a clear opportunity for future work.

In the case of Implicit Context Propagation, in order to circumvent the feature
interaction problem a possible direction is to use a host language with explicit effect
declarations in order to encode the modular interpreters. Even though JEff is a
natural candidate, this is not yet achievable in its current form. Hence, this limitation
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represents our main opportunity for future work in the direction of advancing our
vision of OO library-based language development.

�.�.� Future work: Towards Effectful Modular Interpreters in JEff

The initial motivation behind JEff is to overcome the limitations observed in the
Modular Interpreters with Implicit Context Propagation, in terms of feature interaction.
The semantics of the composition of the interpreters with different context parameters
is sometimes involved and unpredictable, since these parameters are implemented
using the host-level representation of effects. By featuring built-in effect definitions,
JEff makes these interactions explicit in an object-oriented setting.

However, it is not yet possible to write modular effectful interpreters in JEff. In
Chapter � we have shown an example of effectful interpreters for a simple expression-
based language, in the style of the interpreter pattern. Interface Exp represents some
language’s expressions:

interface Exp { Value eval@Store,Env }

Even though, object algebra-based interpreters are modular along the syntactic
and semantic dimensions, there is a third dimension at play here, which corresponds
to the effect privileges observed in the annotations of the eval method. As illustrated
by the Exp interface, in JEff the effects need to be determined ahead of time at the
method declaration level, and therefore language engineers need to anticipate the
required effects at the moment of defining the interface of the language. Moreover,
listing all the potential effects is verbose.

This situation is not scalable and unveils opportunities for future work in order to
improve the declaration of effects for enabling true modularity:

• Effect polymorphism: Method eval in interface Exp should actually be effect-
polymorphic, but this cannot represented in JEff. Investigating effect polymor-
phism in JEff is a clear line for future work. Relevant related work has been
presented in the context of integrating effects with gradual typing [BGT��;
TT��], or in the context of lightweight polymorphic effects in Scala [ROH��].

• Removing explicit annotations: In order to make the notation for method-level
effect declaration more lightweight, the effect annotations could be derived by
performing effect inference on the method bodies, in the spirit of Koka [Lei��].

These improvements, in particular effect polymorphism, together with the addition
of other relevant OO features, such as inheritance, could make JEff an ideal host
language for structuring effectful modular interpreters, providing true modularity
along the syntactic, the operational, and the effectful axes. In our vision of library-
based language development, this will imply that language components could be
written without anticipating along any of these three dimensions.

���



�.�. Conclusion

�.� Conclusion

This dissertation has demonstrated how the object algebra pattern supports the defini-
tion of modular semantic components in the context of object-oriented programming
languages. This has been done in two particular settings: language extensions (with
the aid of a generic syntactic transformation) and modular interpreters (addressing
the challenge of how to compose interpreters with different context requirements).
Our modular interpreters represent context using the host language’s side effects,
which hides the true nature of the context interaction. Inspired by this challenge, this
thesis also introduces JEff, a new object-oriented language with built-in support for
effect definition. JEff enables new OO idioms to structure effectful code, which can
bring us closer to modular effectful interpreters.

In sum, this thesis has investigated the definition of language components using
object-oriented techniques such as object algebras, concluding that the object-oriented
paradigm, and object algebras in particular, provides a fertile foundation for the vision
of library-based language development.
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Summary

Structuring Languages as Object-Oriented Libraries

The development of programming languages is challenging because the typical
language processing toolchain consists of different artifacts interacting with each
other. The ideal scenario for engineering languages is one closer to traditional software
engineering, where reuse, in the form of frameworks and libraries, has optimized
development times.

However, in the case of the engineering of programming languages, there is a
tension between admitting the evolution of the syntax of languages and at the same
time the addition of new processors (or operations). In the literature of programming
languages, this tension in terms of extensibility is concisely summarized in the
Expression Problem: implement a language for which both new syntactic cases and
new processors can be added modularly, without altering the existing code.

Object Algebras solve the Expression Problem in the context of object-oriented
programming, requiring only inheritance and parametric polymorphism from the host
language. This thesis postulates that, given their advantages in terms of modularity
and extensibility, Object Algebras are a suitable technique for structuring libraries
of languages from which programming languages can be composed. The ultimate
goal is to make reuse a central practice in the implementation of programming
languages. This dissertation thus introduces applications of the Object Algebra
pattern for implementing language libraries.

First, we introduce Recaf, a framework for creating extensions to Java. In Recaf,
a combination of syntactic extensions (supported by a generic transformation) and
semantic extensions (provided by an Object Algebra-based embedding) allows us to
define libraries of Java dialects.

Motivated by the challenge of improving the usability of transformation-based
approaches such as Recaf, we propose String Origins, a technique to trace the results of
program transformations back to their origins. Thanks to this technique, for example,
the error messages of Recaf-based tools can be greatly improved.
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�. Summary

As another application of Object Algebras, inspired by libraries of semantic
components, we introduce Modular Interpreters with Implicit Context Propagation.
This technique is based on lifting Object Algebra-defined interpreters in order to
implicitly propagate context, with the aim of composing modular language interpreters
with different context requirements. These modular interpreters can be distributed as
libraries of executable semantic specifications.

In Modular Interpreters with Implicit Context Propagation, context is represented
using the side-effect facilities of the host language. The lack of control over the inter-
action between these effects complicates certain scenarios of composition. Motivated
by this problem, we introduce JEff, a language that integrates object orientation with
effects and handlers, as a first step towards an object-oriented language that could
host effectful modular interpreters.

The results described in this dissertation show that object orientation, and Object
Algebras in particular, provides a fertile foundation for the vision of library-based
language development.
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Samenvatting

Het Structureren van Programmeertalen als Objectgeoriënteerde
Bibliotheken

De ontwikkeling van programmeertalen is uitdagend omdat de typische gereed-
schapsketen voor de verwerking van programmeertalen bestaat uit onderdelen die
vaak een sterke invloed op elkaar hebben. Het ideale scenario voor het ontwerpen van
talen ligt daarom dichter bĳ traditionele software engineering, waarbĳ hergebruik, in
de vorm van frameworks en bibliotheken, de ontwikkelingstĳd van software heeft
gereduceerd.

In het geval van de engineering van programmeertalen is er echter een spanning
tussen het toelaten van de evolutie van de syntax van talen en het tegelĳkertĳd
toevoegen van nieuwe gereedschappen (of operaties). In de literatuur van program-
meertalen is deze spanning in termen van uitbreidbaarheid bondig samengevat als
het Expressieprobleem: implementeer een taal waaraan op modulaire wĳze zowel
een nieuwe expressie of een nieuw gereedschap kan worden toegevoegd zonder
bestaande code aan te passen.

Object Algebra’s lossen het expressieprobleem op in de context van objectgeori-
ënteerd programmeren. Hierbĳ wordt alleen gebruik gemaakt van overerving en
parametrisch polymorfisme uit de gasttaal. Dit proefschrift stelt dat, gezien hun
voordelen in termen van modulariteit en uitbreidbaarheid, Object Algebra’s een
geschikte techniek zĳn voor het structureren van bibliotheken van programmeertalen
waaruit programmeertalen kunnen worden samengesteld. Het uiteindelĳke doel is
om hergebruik centraal te stellen bĳ de implementatie van (nieuwe) programmeertalen.
Dit proefschrift introduceert kortom toepassingen van het Object Algebra-patroon
voor het implementeren van programmeertaalbibliotheken.

Allereerst introduceren we Recaf, een framework voor het maken van uitbreidin-
gen van Java. In Recaf kunnen we bibliotheken van Java-dialecten definiëren door
een combinatie van syntactische extensies (ondersteund door een generieke transfor-
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�. Samenvatting

matie) en semantische extensies (geleverd door een op Object Algebra’s gebaseerde
inbedding).

Om de bruikbaarheid van transformatie-gebaseerde benaderingen (zoals Recaf) te
verbeteren stellen we String Origins voor, een techniek om de resultaten van program-
matransformaties te herleiden tot hun oorsprong. Hiermee kunnen, bĳvoorbeeld,
foutmeldingen van met Recaf gemaakte gereedschappen sterk verbeterd worden.

Als een tweede toepassing van Object Algebra’s en geïnspireerd door bibliotheken
van semantische componenten, introduceren we modulaire evaluators die hun execu-
tiecontext impliciet doorgeven. Deze techniek is gebaseerd op het liften van met Object
Algebra gedefinieerde evaluators met als doel modulaire evaluators te combineren
die verschillende eisen aan hun context stellen. Deze modulaire evaluators kunnen
worden gedistribueerd als bibliotheken van uitvoerbare semantische specificaties.

In modulaire evaluators die hun executiecontext impliciet doorgeven wordt de
context geïmplementeerd met behulp van de (neven)effecten die in de gasttaal beschik-
baar zĳn. Het gebrek aan controle over de interactie tussen deze effecten compliceert
sommige compositiescenario’s. Gemotiveerd door dit probleem introduceren we JEff,
een taal die objectoriëntatie en programmeerbare afhandeling van effecten integreert,
als een eerste stap op weg naar een objectgeoriënteerde taal om modulaire evaluators
met effecten te kunnen uitdrukken.

De in dit proefschrift beschreven resultaten laten zien dat objectoriëntatie en
met name Object Algebra’s een vruchtbaar uitgangspunt vormen voor de visie van
bibliotheek-gebaseerde ontwikkeling van programmeertalen.
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