
Imperial College of Science, Technology and Medicine

Department of Computing

Late-bound code generation

Matthew Robert Taylor

Submitted in partial fulfilment of the requirements for the degree of
Doctor of Philosophy in Computing of Imperial College London, November 2022





Abstract

Each time a function or method is invoked during the execution of a program, a stream of

instructions is issued to some underlying hardware platform. But exactly what underlying

hardware, and which instructions, is usually left implicit. However in certain situations it

becomes important to control these decisions. For example, particular problems can only be

solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors or

computing clusters.

We introduce a novel operator for hygienically reifying the behaviour of a runtime function

instance as a syntactic fragment, in a language which may in general differ from the source

function definition. Translation and optimisation are performed by recursively invoked, dynam-

ically dispatched code generators. Side-effecting operations are permitted, and their ordering

is preserved.

We compare our operator with other techniques for pragmatic control, observing that: the

use of our operator supports lifting arbitrary mutable objects, and neither requires rewriting

sections of the source program in a multi-level language, nor interferes with the interface to

individual software components. Due to its lack of interference at the abstraction level at

which software is composed, we believe that our approach poses a significantly lower barrier to

practical adoption than current methods.

The practical efficacy of our operator is demonstrated by using it to offload the user interface

rendering of a smartphone application to an FPGA coprocessor, including both statically and

procedurally defined user interface components. The generated pipeline is an application-

specific, statically scheduled processor-per-primitive rendering pipeline, suitable for place-and-

route style optimisation.

To demonstrate the compatibility of our operator with existing languages, we show how it

may be defined within the Python programming language. We introduce a transformation for

weakening mutable to immutable named bindings, termed let-weakening, to solve the problem

of propagating information pertaining to named variables between modular code generating

units.
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'''(lambda c: eval(c))(\'\'\'(lambda c, _:

"(lambda c: eval(c))(" + "'"*3 + c[:158] +
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Chapter 1

Introduction

1.1 Motivation

Whilst all imperative programming languages have an operator for invoking functions, not all

have an operator for analysing functions. We describe and demonstrate a novel operator acting

upon a runtime function instance (closure) which allows the behaviour of its operand to be

examined, optimised, and deployed for execution on heterogeneous local or non-local hardware.

Each time a function or method is invoked during the execution of a program, a stream of

instructions is issued to some underlying hardware platform. But exactly what underlying

hardware, and which instructions, is usually left implicit. Such details are typically abstracted

by the programming language. However in certain situations it becomes important to control

these decisions—to affect pragmatic control. For example particular problems can only be

solved in real-time when scheduled on specialised accelerators, such as graphics coprocessors

or computing clusters. Yet it is generally not possible for a running program to exert dynamic

control over the execution policy of the function’s invocation operator itself. Specifically by the

term “pragmatic control” we mean the control of aspects of a program’s execution which do not

bear on the correctness of the values which it produces: for instance controlling which hardware

unit is used to execute a particular section of the program, which machine instructions are used

to implement a particular operation, or how instructions are scheduled in time.

1



2 Chapter 1. Introduction

Various solutions to this problem have been formulated, many of which rely upon obtaining

some reified representation of the function. This might be accomplished by (i) augmenting the

programming language with additional introspection and reification operators, (ii) modifying

the function definition such that it is complicit in disclosing its behaviour, for instance returning

a representation of its implementation when invoked, or (iii) implementing the function non-

natively, for instance as a data structure. By the term “reification” we mean to make some

aspect of a program’s behaviour or state accessible to the program itself, typically as a runtime

value. For example, a section of a program’s behaviour might be reified as list of machine

instructions, or the state of a particular scope might be reified as a dictionary from strings to

values. Once an explicit representation of the function’s behaviour has been obtained, it may be

programmatically computed upon, analysed, translated and issued for execution on arbitrary

hardware.

In general, solutions of form (ii) and (iii) suffer from the major disadvantage that the syntax

of the analysed function definition must be modified, or at the very least its type signature or

interface definition must be changed. These modifications are usually peculiar to the analysis

framework used, and so pose serious challenges to reuse and integration of software components

which have been modified in this way. For these reasons, we take the approach of form (i).

Traditional solutions of form (i) typically focus on reification of the function definition’s source

syntax, although facilities for scope reification are not uncommon. Whilst in theory reifying

both a function’s source syntax and closure scope provide a sufficient foundation for solving

the problem as stated, there is considerable complexity involved in generating optimised or

translated forms of the reified function when starting from this basis.

We introduce our novel operator for late-bound code generation, named “translate”, which in

contrast to conventional operators for syntactic reification: (a) returns a fragment which in gen-

eral differs from the syntax of the source function definition, whereby all names are hygienically

bound via explicit reference to the closing scope, or otherwise inlined; (b) returns a fragment

in any arbitrary language, not necessarily the language of the source function definition, such

that encapsulation of the source implementation may be preserved; (c) constructs the resulting

fragment by means of dynamic dispatch, delegating preferentially to (overridable) code gener-
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ators associated directly with the function instance, its type, or other related metadata. For

a glossary of related terms, see Appendix A. From a technical perspective, compared to previ-

ous approaches of form (i)—such as Template Haskell [SJ02]—translate supports “lifting” a

broader class of objects into generated code, including arbitrary mutable objects.

Unlike solutions of form (ii) and (iii), using translate neither requires rewriting sections of

the source program in a multi-level language, nor interferes with the interface to individual

software components. Due to its lack of interference at the abstraction level at which software

is composed, we believe translate poses a significantly lower barrier to practical adoption in

situations where pragmatic control over the execution of a program is required.

1.2 Contributions

• We describe “late-bound code generation”, our novel approach to code generation, capable

of translating the behaviour of side-effecting function instances at runtime for execution

on heterogeneous targets, which neither requires the function to be implemented in a

multi-level language, nor interferes with the function interface or type-signature.

• We demonstrate late-bound code generation by applying it to the problem of offloading

the rasterisation of a smartphone user interface to an FPGA coprocessor. This consists

of two independent sub-contributions:

– First, we define an application-specific object-processor pipeline rendering architec-

ture, suitable for execution within an FPGA coprocessor.

– Second, we apply our code generation system to a source program written in terms

of contemporary user interface abstractions, offloading its rasterisation according to

our architecture, and featuring both standard and programmatically defined user

interface components.

• We show how translate, our operator for late-bound code generation, may be imple-

mented in the Python programming language. We introduce a transformation for weak-
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ening mutable to immutable named bindings, termed let-weakening, to solve the problem

of propagating information related to named variables between code generators.

1.3 Structure

The order of Chapters 2 and 3 within this thesis departs from convention: our discussion of

the relevant literature is delayed until Chapter 3, and is preceded by a characterisation of our

approach in Chapter 2. This departure was intentional, being motivated by the need to clarify

the topic of the thesis, before and in order to properly frame our discussion of the related work.

A brief summary of the structure of the thesis follows.

• In Chapter 2 we characterise “late-bound code generation”, our novel approach to code

generation. We start by introducing the fundamental concept underlying late-bound code

generation, termed “syntactification”. Immediately following this broad, abstract descrip-

tion of our approach, we narrow our focus in order to be more concrete: describing the

particulars of its central translate operator. To motivate our discussion we give a simple,

but non-trivial, application of translate—using it to offload work from an interpreter

for the Python programming language to an interpreter for the Scheme programming

language. A “toy” implementation for the translate operator in Python is sketched, in

order to address certain key concepts—in Chapter 5 we return to the question of how

translate might be integrated into Python, in detail.

• In Chapter 3 we survey the literature which relates most closely to late-bound code

generation. Broadly speaking we limit our discussion to approaches whereby control

over where, when and how a program’s computation is performed is encoded within the

program itself, rather than within some external system. We characterise the related work

into one of three informal categories, specifically based upon: directives, reification, and

explicit construction of target syntax. Late-bound code generation most closely aligns

with other approaches based upon reification, and so we explore that category in the

greatest depth. In particular, we discuss the closely related languages Template Haskell
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[SJ02] and Converge [Tra05] in section 3.3.4, and how our approach goes beyond their

existing capabilities.

• In Chapter 4 we test the practicality of our approach by using it to offload the rendering of

a smartphone user interface to an FPGA coprocessor—the objective being to reduce the

energy consumed due to graphical rasterisation. Although our primary motivation behind

this experiment is to assess if our approach is capable of accomplishing the task (whether

or not our energy objective is met) we detail the various opportunities for reducing energy

expenditure, and evaluate our experimental results. Our reflections on this experiment

focus on the degree to which our application’s source code either had to be modified or

annotated, in order to achieve a feasible circuit.

• In Chapter 5 we demonstrate the possibility of performing late-bound code generation

in a general purpose programming language, by designing and implementing ReiPy: a

late-bound code generation system for Python. We build upon Python’s inherent intro-

spection facilities, in order to simulate the translate operator as an ordinary function,

without any need to modify the language or interpreter itself. In this chapter we only

consider Python-to-Python translations, and do not attempt to translate the full lan-

guage. Some omissions include the lack of support for: early function return; throwing

or catching exceptions; coroutines or generators; variable shadowing; and non-positional

arguments. One notable challenge to supporting late-bound code generation in a lan-

guage with mutable variable bindings, is in propagating static information between code

generators corresponding to the definition and the use of named variables. We intro-

duce a solution to this problem, which selectively weakens assignments to let-bindings: a

transformation which we call “let-weakening”.

• In Chapter 6 we critique some of the theoretical and technical shortcomings of late-bound

code generation. We also include a detailed comparison of our approach with the closely

related system Lancet, described by Rompf et al. [RSB+14]. We delay our comparison

with Lancet to this final chapter, since it involves a number of technical details which

have only been established by this point in the thesis. Finally, we suggest a number of
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interesting directions for future work: in particular, we suggest replacing ReiPy’s current

direct style metacircular interpreter with a continuation-passing style interpreter, in order

to support translating terms in the full Python language.

1.4 Statement of originality

The work contained in this thesis has not been previously submitted to meet requirements for

an award at this or any other higher education institution. To the best of my knowledge and

belief, the thesis contains no material previously published or written by another person except

where due reference is made.

1.5 Copyright declaration

The copyright of this thesis rests with the author. Unless otherwise indicated, its contents are

licensed under a Creative Commons Attribution 4.0 International Licence (CC BY). For the

full terms of this license refer to: https://creativecommons.org/licenses/by/4.0/.

Under this licence, you may copy and redistribute the material in any medium or format. You

may also create and distribute modified versions of the work. This is on the condition that:

you credit the author.

When reusing or sharing this work, ensure you make the licence terms clear to others by naming

the licence and linking to the licence text. Where a work has been adapted, you should indicate

that the work has been changed and describe those changes.

Please seek permission from the copyright holder for uses of this work that are not included in

this licence or permitted under UK Copyright Law.

https://creativecommons.org/licenses/by/4.0/


Chapter 2

Late-bound code generation

2.1 Introduction

Late-bound code generation, the primary contribution of this thesis, is a runtime technique

for translating the behaviour of function instances (closures) to code fragments in some spec-

ified target language. It builds upon our underlying approach to translation, which we term

“syntactification”—see Appendix A for a glossary of related terms. We first describe syntactifi-

cation, and then how late-bound code generation makes use of this conceptual approach. Since

our resulting translations are not opaque, and so may be inspected, they provide an interme-

diary for pragmatic control over the execution of a function. Instead of invoking a function

directly, its translation may be first obtained, analysed, and optimised, prior to being explicitly

issued for execution on either local or non-local hardware.

Syntactification is an approach to translation whereby translations are progressively refined

from simpler less elaborate forms, to complex more elaborate forms. During the elaboration

process, more information is made manifest in the translation, which was previously left abstract

and implicit. Late-bound code generation is one particular method for performing syntactifi-

cation, whereby individual elaboration steps are performed by modular code generators—the

application of a particular code generator to the translation is selected by dynamic dispatch.

Code generator modularity, and the use of dynamic dispatch for selecting the next refinement

7
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to the translation, are both defining characteristics of late-bound code generation.

2.2 Syntactification

Consider a programmer wishing to translate some portion of a program, perhaps even a running

program, into a different language. The target language for this translation might be the

machine language for a particular piece of hardware, or perhaps another high-level programming

language. Furthermore, the translated program could be intended either for execution locally,

or on some remote machine accessible over a network. How might they achieve this objective?

Semantically speaking, this problem has a trivial solution. Suppose the source program is

written in Python, and the translation target is Java: first create a closure abstracting the

portion of the program for which a translation is sought, for example:

def f():

image = take_photograph()

face = detect_face(image)

if face.id in permitted_personnel:

open_door()

One possible translation of f into Java is:

g.invoke();

provided that within the context of execution g has been bound to a proxy for f. This proxy

might necessarily need to communicate over a network, to reach the process within which the

closure instance for f resides. Invocation of the proxy g simply forwards the command to the

original Python process, and executes f there. Here we have a rather general solution, since

this singular Java translation equally serves not only for this definition of f, but for many other

possible definitions!
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However, such a translation might appear rather unsatisfactory. Perhaps the following fragment

might better align with typical expectations for what an acceptable translation looks like:

Image image = take_photograph();

Face face = detect_face(image);

if (permitted_personnel.contains(face.id)) {

open_door();

}

Supplementary Java translations for detect_face and perhaps also permitted_personnel

might be supplied, compiled, linked, and executed within the target process. This is clearly a

possibility if detect_face is a pure function, since the entire behaviour of the function can be

simply reformulated with respect to Java primitives. Similarly if permitted_personnel is a

constant list its contents may be serialised and attached to our translation.

In contrast however, take_photograph and open_door pose a more significant challenge. In this

example both require access to a physical resources, a camera and an electronically controlled

door, respectively—there are not necessarily any equivalent cameras or doors against which

to rebind, without altering the system’s semantics. Our trivial proxy based solution may

be deployed again, but here to just a subset of the program: both take_photograph and

open_door must be bound to proxy objects in the Java process, which delegate to the pair of

identically named functions in the original Python process.

Other, more sophisticated solutions also exist. For example the behaviour of take_photograph

and open_door might be split into parts, depending and not depending on the singular resource.

That part not depending on the resource could still be included in the translation. Another

possibility is that another route directly from the Java process to the resource could exist, and

be substituted to remove any indirection through the Python process.

Furthermore, if instead permitted_personnel were mutable, and we insist on our translation

remaining semantically sound, this object would need to be proxied also, leaving only the
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invocation of detect_face, the attribute access of face.id, and the conditional if operation

to execute within the Java process.

Although our second more satisfactory translation has not removed all need for proxy objects,

it has arguably reduced their use to some kind of minimum. In many other, common scenarios

the minimum number of proxies required often happens to equal precisely zero. But, even

if only detect_face can execute within the target process, this could offer material benefits:

the face detection algorithm might be implemented using a neural net, for which the machine

hosting the target process could have specialised hardware acceleration, not available to the

Python process.

Why then should we be more satisfied with the latter translation, when it is semantically

equivalent to our trivial solution, and similarly relies on proxy objects? As we alluded to above,

it has to do with the extent to which operations are executed within the process executing the

translated program, as opposed to simply delegated for execution within the original process.

A necessary requirement for an operation to execute within a particular process is to encode

that operation syntactically within that process state—after all the physical processor must

eventually consume a syntactical representation of the operation in its native machine language.

Briefly put, this latter translation is more syntactically elaborate.

From this perspective, the aspect of translation which is non-trivial is the process of dis-

covering binding and behavioural information about bound objects, and representing that

syntactically—typically inline within the translation. In short: transforming information from

scope to syntax. This process we call syntactification.

Syntactification may be performed progressively, as a kind of reduction. For instance, we might

start with our initial translation, and perform a series of discrete syntactification steps in order

to arrive at our final translation:

(1) g.invoke();

(2) c = x.invoke();



2.2. Syntactification 11

if (c) {

open_door();

}

(3) Face face = y.invoke();

if (permitted_personnel.contains(face.id)) {

open_door();

}

(4) Image image = take_photograph();

Face face = detect_face(image);

if (permitted_personnel.contains(face.id)) {

open_door();

}

Each progressive translation is equally valid, yet improves on the former in the sense that it is

syntactically more explicit.

Adopting this reductive perspective on translation is not simply an esoteric thought experi-

ment, but a perfectly reasonable basis from which to build a compiler. The translation system

introduced herein is founded upon this very concept of progressive syntactification. Each trans-

lation problem is framed with respect to its default translation—corresponding to the trivial

proxy-based solution above—and improved upon by a set of modular code generators. The full

system that we describe also supports proxies that take arguments.

One notable consequence of this approach is that the intermediate representation language for

the translation is the same as the target language itself, although translations may be performed

explicitly to target any synthetic language, constructed to act as a convenient intermediary

if desired. During the course of a translation, many proxies which are introduced during

early syntactification steps are subsequently found to be unnecessary, upon completion of later

syntactification steps. In certain situations all proxies can be eliminated, leading to a separable
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translation.

Precisely how a particular code generator is selected to perform the next syntactification step

is a question of design, since many serviceable possibilities exist. In the system we present,

code generators are selected by means of dynamic dispatch, with the ability for more specialised

code generators to dynamically override less specialised code generators, as advocated within the

design philosophy of object-oriented languages and systems. This novel, dynamically dispatched

approach to syntactification we term: late-bound code generation.

* * *

The task of a late-bound code generator is to discern both binding and behavioural properties

of the proxies it is applied to, and generate a faithful representation of that behaviour in

the syntax of the target language. This is typically accomplished by further delegation, and

indirect mutual recursion between the set of code generators. From the perspective of the code

generator, we often refer to the proxy objects they act upon not as proxies, but more generally

as providers.

Late-bound code generators are typically associated with a particular source function, or limited

class of functions, and also with the target language for which they are capable of generating

code. This allows highly specialised code generators to be supplied, in order to generate op-

timised code for that specific function and target language combination—often implementing

some kind of domain specific optimisation. Completely generic code generators are occasionally

useful, however as we shall explore in Chapter 5, seemingly generic code generators, such as

those for the source language’s primitive operators, may typically be associated with an ap-

propriate specific procedure, for instance methods of a metacircular evaluator for the source

language.

What gives late-bound code generation its characteristic flavour is that the object under ma-

nipulation during translation can be thought of as a syntactic closure [BR88], expressed in the

target language, but closing over the source process. It is this very property which allows for
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a semantically sound, yet trivial, translation by default, and for the syntactification process to

safely halt after any step, without invalidating the translation.

Given the modular nature afforded by this dynamically dispatched design, code generators must

all conform to a common interface. In the following sections we briefly outline the form of this

unified interface, and the operator used to pose translation problems to our system.

2.3 Introducing translate

We introduce translate, our novel operator for performing late-bound code generation: translate

acts on function instances taking operands dictating the target language and also information

related to any formal arguments, and returns a syntactic closure in the given target. This

returned fragment implements the invocation behaviour of the source function, in the target

language.

The ubiquitous invoke operator—available for calling a function in almost all contemporary

programming languages—usually offers the following familiar interface:

> invoke(Function function, List<>> arguments)

where > denotes the universal type (refinements of this interface are of course possible). It

is usually applied not as an function, since that would lead to infinite regress denotationally,

but using syntax built into the language grammar. In contrast the interface of the translate

operator is defined as follows:

Target translate(

type Target,

Target function_provider,

List<Target> argument_providers,

> mandate

)
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Whereas the invoke operator takes a function instance and a list of argument values, performs

an allowably side-effectful computation with those arguments, and returns a single value, the

translate operator does not issue any of the function’s side-effects when applied. Instead it

is an operator for the compilation of a function’s behaviour to the given language: Target.

The value returned by translate is a term in the target language representing all computation

entailed upon an invocation of the provided function—precisely how the function is provided is

explained next. Note that translate requires the target language to be identified via its type

(or class) such that instances of type Target correspond to terms in the target language.

Providers

To directly contrast translate with invoke: whilst invoke takes a list of argument values,

translate takes instead a list of argument providers. An argument provider represents how the

argument value is to be delivered to the translated term—we note that the providers supplied

to translate are always terms in the target language. For example, when targeting a register

machine an argument provider might be a single instruction to load a register with a value from

memory. When targeting a hardware description language, an argument provider might instead

be the output buffer of a multiplexer. Since a provider is a full term in the target language,

the argument might even be computationally derived within the provider. If an argument is

required by the computation, its provider will usually be incorporated (at least once) as a

sub-term of the term returned by translate.

Given that translate is an operator acting on functions, it might appear curious that the

function itself is not a direct operand to translate. This is a necessary consequence of its

role as an operator for compilation. Within a compilation context there is not always enough

information available to fully instantiate every function being compiled. For example it is quite

common that the syntax of the function’s implementation is known, but its lexical scope is

immaterial (perhaps only some partial template is known, or some concrete ancestor). Hence,

in general the function is supplied to the translate operator as a term in the target language,

in exactly the same way as its arguments: specifically a term which within the context of the
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translation provides the function instance.

Fortunately, in many common cases the function is already instantiated at the point of com-

pilation, in which case it may be supplied as an immediate provider, and accessed directly

during translation as one might expect. This naturally raises the question of how to deal with

situations when some amount of useful information is known about the function, but not fully

what is required to supply an immediate provider—we delay this important discussion to later

sections.

Mandate

The fourth and final operand to translate is an optional value which we refer to as the mandate.

The mandate offers an opportunity to transfer information about the dynamic compilation

context to the underlying code generator. The mandate is a compile-time dynamic variable,

and is usually superfluous—however in certain situations it is indispensable, as we shall discover

later.

2.3.1 An example

To build an intuition for the behaviour and utility of the translate operator, consider the

following short Python program:

def fahrenheit(celsius):

print(celsius * 9 / 5 + 32)

fahrenheit(22.5)

mandate = { 'python_builtins_binding': 'const', 'shared_stdout': True }

translation = translate(
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Scheme,

immediate(Scheme, fahrenheit, mandate),

[ Scheme('input') ],

mandate

)

Running this program causes the following to be printed to the console:

72.5

As expected, invocation of function fahrenheit first causes the computation converting the

argument in Celsius to Fahrenheit to be issued to the underlying hardware platform—exactly

how is implicit. Then the result of the calculation is printed to the console, using the side-

effecting function print.

Applying translate to the function fahrenheit on the other hand has quite different be-

haviour, in particular nothing is printed to the console. Instead a term representing the be-

haviour of fahrenheit under invocation is generated, in the requested language, and returned

to the caller. Consequently, before the program exits, a representation of the term in the

Scheme programming language

( let ( ( v0 ( + ( * input ( / 9 5 ) ) 32 ) ) )

( begin

( display v0 )

( newline )

)

)

is bound to the global variable translation. We will discuss exactly how this term is generated

in later sections. For comparison, the default translation, before syntactification is as follows:

( ( origin-proxy #x7f7ddcbf2fc0 "ctypes.py_object" ) input )
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Here origin-proxy simply constructs a proxy for the Python object fahrenheit in the origi-

nating interpreter, located at virtual address 0x7f7ddcbf2fc0. This translation, whilst trivial,

requires the connection between both interpreter processes to remain active, in order for the

translation to be executable. It is also required that a valid implementation of origin-proxy

is present. In contrast, the eventual result of the translation is separable: enough information

has been syntactically elaborated, such that the translation is executable without any form of

interaction with the originating process.

Once represented as a data structure, this Scheme term representing the behaviour of fahrenheit

may be computed upon arbitrarily. It might be reorganised, issued to some local coprocessor

selected by the program, or even distributed for execution on an array of remote machines.

We have thus attained pragmatic control over the execution of fahrenheit. For example, we

might issue the translation for execution under a lower priority subprocess—which would be

considerably more useful if fahrenheit entailed a long-running computation:

import subprocess

subprocess.run(['nice', '-n', '10', 'guile', '-c',

'( let ( ( input 22.5 ) ) ' + str(translation) + ' )'

])

It is worth noting that this data structure, representing the Scheme term, was generated without

any need to modify the interface of fahrenheit—for example, it was not passed as the function’s

return value, as would be required in MetaOCaml or LMS. Neither was it required to rewrite

fahrenheit in a multi-level language—whereby the function definition includes names bound

only at some future stage, and only operations which depend on them are delayed in their

effects.

The operands in detail

The four operands of our example warrant further explanation. The first operand Scheme is the

type, or—equivalently in this example—class, representing the target language of the transla-
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tion. The value returned by translate is guaranteed to be an instance of Scheme, representing

a term in the Scheme programming language. This resulting term should faithfully implement

the behaviour of fahrenheit under invocation. The target Scheme has been designed such

that evaluation of the translated term (according to the semantics of the Scheme program-

ming language) performs an equivalent computation to the invocation of the provided Python

function.

The second operand is supplied with the assistance of the function immediate, which simply

generates a term to proxy the given object in the target language. These proxies serve the

purpose which we outlined in Section 2.2, and are often elided from the eventual translation,

as in our example above.

The third operand is a list of argument providers. An argument provider describes how the

argument value will be delivered to the translated term. In this example we have arbitrarily

decided to provide the one and only argument to the translated term as a lexical binding of the

Scheme symbol input. The contract we are establishing with translate is that the translated

term will be, and will only be, evaluated within a lexical scope in which the symbol input

is bound. Furthermore we are guaranteeing that the binding resolves to a Scheme number,

a number representing the argument in degrees Celsius. This provider may be used zero or

more times within the translated term, but is strictly valid only in the context which directly

interfaces with the translated term—the translated term may shadow the binding and so must

arrange to evaluate any providers exterior to the shadowing scope. The question of hygiene in

translation is a very interesting one, which we shall return to again in future sections. By the

term “hygiene” we mean ensuring that name bindings never resolve to an unintended value:

splicing a code fragment which assigns to a temporary variable via a name shared with the

surrounding code is an example of hygiene violation, since subsequent surrounding uses of that

name would be rebound to the unintended temporary value. Hygiene may be maintained either

manually by the programmer, or automatically within the language system.

For purposes of demonstration we chose to name the Scheme symbol input rather than celsius

to hint at the manner in which translate preserves hygiene. Names for bindings are never
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automatically transferred from source terms to translated terms, which beyond being a po-

tential hazard to hygiene would fail to be well defined for certain target languages. Instead

bindings in the target language are always explicitly supplied. However, supplying names in

an undisciplined manner is also a hygiene violation in the waiting—throughout the remainder

of this thesis we will use an automatic name generator, which guarantees full binding hygiene.

The fourth and final operand supplies the mandate of the translation. In this example the man-

date is a simple dictionary, which asserts that (i) names resolving to Python’s builtin functions

should be treated as constant references to those functions, and that (ii) the translation may

assume that the translated term will be evaluated in a process sharing the “standard output”

file of the Python interpreter—this is indeed the case in our example of a Scheme interpreter

forking the Python process. Together these statements allow the invocation of the Python func-

tion print to be translated into applications of the Scheme functions display and newline.

Evaluating this translated term in a process not sharing a standard output file would not be

equivalent to invoking the original fahrenheit function, since the converted temperature would

be written to a different file or console.

We did not choose to enable optimisations within our example mandate. Had the mandate

instead enabled optimisations:

mandate = {

'optimise': True,

'python_builtins_binding': 'const',

'shared_stdout': True

}

then the division of constants 9 and 5 could have been folded to produce the translation:

( let ( ( v0 ( + ( * input 1.8 ) 32 ) ) )

...

)
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where the dividend and divisor have been constant folded at translation time.

Having seen a simple example of applying the translate operator, a few questions surely come

to mind. The first of which is likely: how exactly is the translation performed? So far we

have neglected to mention any detail of the translate operator’s implementation, and focused

exclusively on its application and interface. Schematically, the implementation of translate

is our topic for the following section.

2.3.2 Implementing translate

The most basic implementation of translate is rather trivial: the applied operands are simply

dispatched to a code generator associated with the provided function (or another appropriate

abstraction in the case of non-immediate functions, as we shall see later). Consider again our

example:

translation = translate(

Scheme,

immediate(Scheme, fahrenheit, mandate),

[ Scheme('input') ],

mandate

)

Let us imagine that our language implementation, for example the Python interpreter, main-

tains a table relating function instances with programmer-supplied code generators:

Function Target Code Generator

fahrenheit Scheme translate_fahrenheit_to_scheme

print Scheme translate_print_to_scheme

fahrenheit Verilog translate_fahrenheit_to_verilog

. . . . . . . . .
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These code generators each target one particular language: for instance some code generator

named translate_fahrenheit_to_scheme might be responsible for generating a representa-

tion of fahrenheit in Scheme. Note that despite appearances we are not implying a textual

association here, but instead a table associating function instances and target types with code

generator instances.

Given such a table, the translate operator may be implemented to simply delegate to the

relevant code generator, given the required target language. It is then the responsibility of

the code generator to perform the requisite translation. The job of the translator is simplified

however, since its task is specialised to one function and one target language.

This requires that the programmer writes, or at least installs, a code generator for each function

to be translated. Therefore such a simple, table-based implementation of translate is not

particularly useful, but it serves as a basic model for understanding code generators in their

simplest form—indirection via such a runtime table serves as a minimal mechanism for our

dynamically dispatched operator. We shall return later to refine this basic mechanism in

Chapter 5, including extensions for performing translation by means of reification.

Assuming our table-based design, translate might be implemented in Python as follows:

def translate(Target, function_provider, argument_providers, mandate):

assert function_provider.is_immediate() # Assume the function is immediate

function = function_provider.immediate_reference()

code_generator = translation_table.lookup(Target, function)

translation = code_generator(

function,

argument_providers,

mandate

)

return translation

Notice that here we are suggesting how translate might be simulated within a Python program,
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rather than how the Python language might be extended to include the operator natively. In

many cases it is possible to simulate translate in this manner, but it is not true in general,

specifically in those cases where the host language does not provide sufficient introspective and

reflective facilities for a full simulation: this is why we generally refer to translate as an

operator, rather than a function.

Clearly the interface presented by the code generator is similar to that of translate. In our

example the interface to the code generator translating fahrenheit to Scheme is as follows:

Scheme translate_fahrenheit_to_scheme(

Function function,

List<Scheme> argument_providers,

> mandate

)

The most important question therefore is not how translate is implemented, but how the

code generators it dispatches to are implemented.

Code generators

Returning to our example, how might the underlying code generator be implemented? Since this

code generator is specialised to the semantics of the function fahrenheit it can be expressed

quite simply:

def translate_fahrenheit_to_scheme(_, argument_providers, mandate):

celsius_provider = argument_providers[0]

proform = generate_unique_symbol(mandate)

print_term = translate(

Scheme, immediate(Scheme, print, mandate), [ proform ], mandate

)

return Scheme.Let(
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[ ( proform, Scheme.Add(

Scheme.Multiply(celsius_provider, Scheme('( / 9 5 )')),

Scheme('32')

) ) ],

print_term

)

The translated term is constructed imperatively by concatenating each sub-term of the trans-

lation. The first thing to notice about this code generator is that is delegates some part of its

translation, via a recursive application of translate. This is idiomatic of the style we adopt

throughout when programming with translate: dynamically dispatched mutual recursion be-

tween code generators.

Specifically, our code generator for fahrenheit does not directly generate the terms for begin,

display and newline which appear in that translation. These are generated by the code

generator for print, to which the application of translate dispatches. Instead only the Scheme

terms for the temperature conversion are generated here. The major challenges which arise

with this approach, in which the task of translation is divided into sub-tasks each dynamically

dispatched to their own code generator, are how to permit sufficient communication between

sub-term generators, and how to compose the translated sub-terms correctly dealing with side-

effects.

Side-effects & let-insertion

The possibility of unbounded side-effects requires that the evaluation order of translated sub-

terms mirrors precisely the evaluation order of the source sub-terms. However, if bounds can

be placed on the range of side-effects that may be issued by the function, then this rule can

potentially be relaxed, or even elided. When writing code generators for Scheme we generally

preserve the requisite ordering, as we have done in this example, by means of let-insertion

[Rom16].
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Let-insertion is a technique for systematically composing two terms into a single term, within

which the side-effects of the two sub-terms are strictly ordered under evaluation, and whereby

the second sub-term can depend on the result of evaluating the first. The preceding sub-term

appears at the site of a let binding’s value expression, and the succeeding sub-term within the

body of the let expression. Within the translation, the result of evaluating the first sub-term is

bound to an intermediate term which we refer to as the proform. The proform is a special case

of a provider, used within the second translated sub-term to represent the result of evaluating

the first sub-term.

Generating code strictly according to this pattern of let-insertion results in translations in a

simple variant of administrative normal form (ANF) [Rom16]. Binding hygiene is maintained

by ensuring that each generated proform is unique within the evaluation context of the trans-

lated term. The extent of this context may be customised by the mandate: for instance if the

result of the translation is intended for composition with terms generated by an other inde-

pendent Python processes, the mandate might ensure uniqueness by prefixing each proform

with some string unique to each process. By systematically generating the name of every bind-

ing within the translated term using generate_unique_symbol, and never otherwise inventing

or reusing names from the source term, hygiene-preserving code generators may be written

straightforwardly.

Clearly in our example all of the arithmetic operations are side-effect free, and thus let-insertion

was not strictly required. We wrote our code-generator conservatively, using let-insertion,

to demonstrate the general case where side-effects are unbound. Given this observation,

translate_fahrenheit_to_scheme may be simplified to:

def translate_fahrenheit_to_scheme(_, argument_providers, mandate):

celsius_provider = argument_providers[0]

return translate(

Scheme, immediate(Scheme, print, mandate),

[ Scheme.Add(

Scheme.Multiply(celsius_provider, Scheme('( / 9 5 )')),
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Scheme('32')

) ],

mandate

)

whereby we have supplied the temperature conversion calculation within the argument provider

to print, which according to the semantics of translate may appear zero or more times within

the translated term. With this generator the resulting translation will be free of the unnecessary

let-insertion:

( begin ( display ( + ( * input ( / 9 5 ) ) 32 ) ) ( newline ) ).

Generator registration

We have yet to address the question of how code generators are declared to the translate

operator. There is substantial design freedom in implementing this mechanism. Given our

basic table-based implementation of translate, all code generators must be registered in one

global table, the translation_table. In this case, registration is simply a matter of appending

a row to the table:

def register_code_generator(Target, function, code_generator):

translation_table.append(Target, function, code_generator).

Registration of translate_fahrenheit_to_scheme is performed thus:

register_code_generator(

Scheme,

fahrenheit,

translate_fahrenheit_to_scheme

)
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Whilst this registration mechanism is perfectly sufficient for translations involving only imme-

diate function providers, code generator registration is quite a bit more complex in general.

Later we will return to this issue, describing a registration mechanism built upon dynamic

dispatch rather than a global table.

Soundness of the translation

Since translate performs all translation by means of delegation to arbitrary code-generating

functions, there are no guarantees whatsoever as to the soundness of the translation. In principle

each code-generator might supply a soundness proof alongside every translated term, however

this idea is not explored further within this thesis.

Further abstraction

For purposes of exposition, we applied the translate operator directly in our example of

translating fahrenheit to Scheme. Whilst this is perfectly legitimate, we expect that in most

cases, users of the translate operator would use it as a basis for building further abstractions

for pragmatic control. For instance, applications requiring offload of computation to the cloud

might define a function offload_to_cloud(function, argument_0, ...) implemented using

translate, but which presents an interface more convenient to the application domain.

Alternatively an application requiring considerable domain-specific optimisation for graphics

rendering might define a function render(canvas, draw_function), which first translates

draw_function with respect to those optimisations, before installing the optimised translation

into the requisite rendering hardware. This latter use case is expanded upon extensively in

Chapter 4.
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2.4 Conclusion

In this chapter we introduced late-bound code generation, a dynamically dispatched approach

to translation based upon syntactification. Translation by syntactification always proceeds

from a trivial seed: whereby any function invocation is simply translated to an invocation

of a proxy in the target fragment. Technically this is achieved by representing the result of

the translation as a syntactic closure, with its closing scope establishing the link back from

the proxy to the proxied function. The translation is progressively elaborated, transforming

(constant) behavioural and structural information about objects bound in the syntactic closure

scope into terms of concrete or abstract syntax. The elaboration may safely halt at any point,

and in those particular cases where all proxies are eliminated from the translation, this is known

as a separable translation. Within syntactification, separable translations are a special case,

and correspond to the traditional, purely syntactic notion of a translation.

We introduced late-bound code generation as a technique for performing syntactification,

whereby individual elaboration steps are performed by dynamically dispatched code generator

functions, associated directly with their proxied function (or in general, some class of proxied

functions). Typically these code generators delegate particular sub-translations to other code

generators: translation therefore proceeds by mutual recursion within the set of applicable code

generators. To achieve this effect, code generators must all share a common interface, which

we defined.

The principal operator of late-bound code generation, translate acts on (providers of) function

instances, returning a syntactic closure in the target language, which implements the invoca-

tion behaviour of the provided function. The translate operator acts simply as a dispatcher,

delegating translations to code generators according to its prioritisation policy. Invocations of

the provided function may issue side-effects, the ordering of which is preserved in the trans-

lated fragment, typically by restricting target fragments to administrative normal form. We

described the operands of translate, specifically the target language, the function and argu-

ment providers, which are syntactic closures, and the mandate, which pertains to the transla-

tion unit, for instance defining the optimisation level. We outlined how translate might be
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implemented, although discussion of the details is delayed until Chapter 5.



Chapter 3

Background and related work

3.1 Survey scope

Since late-bound code generation is a technique for programs to affect pragmatic control over

their own execution, we limit the scope of related work surveyed herein to intra-program tech-

niques for pragmatic self-control of program execution. By the term “pragmatic self-control”

we mean that a program is exerting pragmatic control over its own execution—see Appendix

A for a glossary of related terms. Specifically that excludes all techniques whereby pragmatic

statements about the program’s execution are asserted externally from the program text. Of

primary interest are intra-program pragmatic statements which assert: where a particular com-

putation must occur spatially; when a particular computation may occur in temporal relation

to another; and which optimisations should be applied to a particular fragment of computation.

In contrast to intra-program techniques, extra-program techniques for pragmatic control are

generally more familiar and widely adopted. Common extra-program techniques include com-

piler flags, manual deployment using remote access tools such as ssh, and more recently or-

chestration tools, notably Kubernetes [Ber14]. These tools typically operate upon program

files—either source code files or object code files.

Directives, also known as “pragmas”, are perhaps the most familiar intra-program technique

29
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known to professional programmers. A directive might apply to a single statement, a loop

block, a function definition, or even an entire translation unit. The subject of a directive is

typically dictated according to some lexical relation to the statement, and they are often used

to control certain kinds of optimisation, such as whether or not a loop is unrolled or a function

is inlined. Directives are typically informational, and convey advisory preferences for how a

particular program fragment should be executed, to some meta-system. This meta-system

ultimately affects the pragmatic control advised by the program.

In principle, however, any program which is capable of performing general input and output

operations has the capacity to affect pragmatic control over itself—the program may explicitly

issue commands to local or non-local hardware to perform any subset of its own computation.

Explicitly issuing its own operations naturally affords a program completely general pragmatic

control, as opposed to the limited range of control offered by directives, since it may fully

customise the schedule and optimisations applied to the computation it issues. Although this

ability is latent in all programming languages, it is not typically used, and in most applications

almost all computation is implicitly issued for execution on the hardware into which the object

program was loaded. Scheduling is often delegated at least in part to an external compiler

or interpreter. Some common exceptions to this trend include 3D graphics engines, which

preferentially issue geometric and rasterisation operations explicitly to a specialised accelerator,

and object-relational mapping (ORM) libraries, which typically issue data relational operations

explicitly for execution within a database system.

We refer to this phenomenon as “self-issuance”: by which we mean when a program explicitly

issues instructions to hardware for performing its own computation, rather than implicitly rely-

ing on the language system to issue hardware instructions on its behalf. Although it is unclear

why explicit self-issuance of computation is not more widely adopted, it is worth noting that

whilst issuing operations is relatively trivial, the task of collating and representing the oper-

ations to issue is substantially more challenging. In most applications it would be relatively

straightforward to send some object code file for execution on a remote server, compared to the

difficulty of constructing the object code file itself—at least when setting aside concerns related

to security. Consequently, those tools and research projects which do focus on the self-issuance
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of computation pay considerable attention to the primary challenge of constructing the syntac-

tical representation of the issued operation. Obtaining this explicit syntactical representation

of a program’s own behaviour is a problem of reification.

In practice, when programmers do seek to explicitly issue computation, but convenient solutions

for reifying the program’s behaviour are wanting, they often resort to programming within an

embedded programming language, rather than expressing that part of the program natively. For

example, a Java programmer without access to an ORM library might express their database

queries as SQL terms embedded as character strings within their Java program, rather than as

methods operating on Java objects. Written in this way, the meaning of the query can no longer

be determined given Java’s semantics and the relevant class definitions. In general we refer to

this approach as embedded heterogeneous programming—in contrast to expressing a program

within one language, namely homogeneous programming. This is analogous to either the deep

or shallow embedding of a domain specific programming language [GW14]. Several embedded

heterogeneous programming techniques exist, exhibiting various degrees of sophistication and

safety. Unavoidably, when expressing the behaviour of a program in separate fragments, each

in a different programming language, the compositionality of these fragments becomes a major

concern.

To summarise, intra-program techniques for pragmatic self-control typically fall into one of

three (informal) categories:

• Type I: Directive-based control;

• Type IIa: Self-issued computation from a reified lexically homogeneous program;

• Type IIb: Self-issued computation from a lexically embedded heterogeneous program.

Specifically we refer to the lexical homogeneity or heterogeneity of the program, since the

runtime state of type IIa and type IIb programs typically both contain objects which denote

terms in two or more languages.

In the following sections we take each category in turn, and illustrate its character by means
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of a number of examples. We emphasise here that these categories are thematic, and not

formally delineated—they are intended only to emphasise certain pragmatic control patterns—

and individual approaches or technologies can, and often do, span more than one category.

We intentionally do not include within our survey technologies for macros, or domain-specific

languages. Macro technologies have typically focused on compile-time semantic abstraction,

whereas within this thesis we are primarily focused on run-time methods for pragmatic control.

To the extent that macros have been employed for pragmatic control—as opposed to seman-

tic abstraction—we believe that multi-stage programming languages present a comparable and

more general run-time technique for code generation. Technologies for domain-specific lan-

guages are again typically focused on programming abstraction, although they might support

directives, which we survey in Section 3.2, or they might be implemented on top of principled

technologies for pragmatic control, such as multi-stage programming languages, surveyed in

Section 3.3.2 and Section 3.3.3.

3.2 Type I: Directive-based control

One common method for affecting pragmatic control over the execution of a program involves

the application of directives within the program text. Directives typically take the form of

statements—otherwise known as pragmas—which annotate regions of the program with prag-

matic requirements or preferences, and are orthogonal to the program’s semantics. There are

various kinds of directive, notably including those for controlling parallelism and optimisation.

3.2.1 Directives for controlling parallelism

One notable class of directives for controlling parallelism are those defined within the OpenMP

standard. Originally specified for the Fortran programming language, and subsequently ex-

tended to include C and C++, OpenMP is an application programming interface (API) for writ-

ing shared-memory parallel programs for execution within a multiprocessing context [DM98].
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OpenMP gives programmers control over the extent to which sections of their program execute

in parallel, the degree to which data is shared between concurrent threads of execution, and

primitives for synchronising control and data between those threads.

When using OpenMP the programmer typically defines a directive, lexically preceding the

fragment to which it applies, specifying some pragmatic requirement for the execution of that

fragment. For example, the following C program contains an OpenMP directive specifying that

iterations of the for loop should execute in parallel.

#include <math.h>

int main(void) {

float results[256];

#pragma omp parallel for

for (int index = 0; index < 256; index++) {

results[index] = sinf(index * M_PI / 128);

}

return sum(results);

}

Executing this program causes some number of threads, which may in general be determined

at runtime, to be scheduled in parallel, each executing the loop body for some range of in-

dices. Various supplementary clauses may be supplied, to specify more precisely aspects of the

parallelism—such as the scheduling policy, or how shared variables are combined when threads

eventually join.

Furthermore OpenMP provides a range of other kinds of directive, including those for controlling

the atomicity of operations as observed by other threads, duplication and visibility of shared

state, and also synchronisation barriers.

Several broadly similar APIs to OpenMP also exist, making use of pragmas to affect pragmatic

control over C programs, but which instead focus on offloading computation to heterogeneous



34 Chapter 3. Background and related work

hardware accelerators such as GPUs and FPGAs: most notably OpenACC [NCPC11] and

HMPP [DBB07].

3.2.2 Directives for applying optimisations

A particularly interesting class of directives for controlling the application of compiler optimisa-

tions can be found within high-level synthesis (HLS) tools. A diverse array of HLS technologies

have been developed historically—within both academia and industry—a number of which

have employed directives for controlling the exploration of the combinatorially large design

space [CGMT09, MS09].

Xilinx, a contemporary leading vendor of field-programmable gate array (FPGA) devices, pro-

vide HLS tools for their FPGA products. Their compiler suite Vitis HLS accepts a number

of directives for controlling the synthesis process [Xil21]. In addition to typical directives for

enabling and disabling the inlining of functions, many of Xilinx’s directives are specifically tai-

lored towards exploiting the particular advantages of FPGA devices. For instance, the following

pragma specifies a target latency for loop iterations:

float reduce(float values[256]) {

float result = 0.0f;

#pragma HLS latency min=10 max=20

for (int index = 0; index < 256; index++) {

result += values[index] * project(index * M_PI / 128);

}

return result;

}

If the compiler is able to synthesise an implementation of this loop body with less than 10

clock cycles of latency, then it will attempt to trade a reduction in resource utilisation for

a higher latency. For example, sharing the same floating-point multiplication unit for both
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multiplication operations would reduce the physical footprint of the implementation, at the

expense of increased latency, when compared to an implementation using duplicated multipli-

cation units. Alternatively, moving computation from digital signal processing (DSP) blocks,

which some FPGAs provide for accelerating numerical operations, to non-DSP blocks would

reduce resource utilisation of one kind of scarce resource for an increase in another less scarce

resource, again at the expense of increased latency.

On the other hand, if the synthesis of the loop body initially exceeds 20 clock cycles, the compiler

will attempt to iterate the implementation in order to achieve lower-latency. In principle this

might be achieved by selecting lower latency functional units for the implementation, or by

adjusting placement decisions to mitigate the need for buffers. Typically latency can be reduced

by duplicating resources, reversing the trade-off described above for increasing latency—in this

example the latency of the implementation could be reduced with an implementation comprising

two multiplication units, compared to one.

Another of Vitis HLS’s notable directives is the stream pragma. Functions that take arrays

as parameters are by default synthesised using a random-access memory (RAM) interface,

with dedicated slots allocated for each element of the array. It is however quite common for

functions consuming an array to access the array in a structured manner, typically to read each

element only once and in order. In these cases, and additionally when the elements of the array

are written sequentially, the stream pragma may be applied. The consequence of applying this

directive is to eliminate the RAM storage at the function interface, and replace it with a shorter

FIFO queue, through which the values of the array are delivered to the function in a streaming

fashion.

Other powerful directives are also available, including the pipeline and dataflow pragmas,

which offer control over the pipelined parallel execution of loop iterations and function invoca-

tion, subject to loop carried and dataflow dependencies.
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3.2.3 Directives for defining optimisations

Beyond simply controlling the application of optimisations, directives can also be used for

defining novel optimisations. For example, Haskell provides a sophisticated directive, called

RULES, for specifying rewrite-based optimisations to the compiler [PJTH01]. Using Haskell’s

RULES pragma, programmers may specify application-specific identities over terms, which might

be profitably applied by the compiler. This allows the programmer to extend the compiler with

certain classes of domain-specific optimisation. The body of the rule consists of an equation,

asserting an identity without proof—the compiler takes the validity of the identity as implicit.

The rules language includes syntax for universally quantifying variables that appear within the

rule, allowing for some degree of control over how bindings within the rule are resolved. By

convention, the right-hand side of the rule’s equation is considered preferable, and the compiler

will attempt to rewrite instances of the left-hand side to this preferred form.

Although there are certain constraints on the form of legal rules, it is expressive enough to

define a range of powerful and practical optimisations: for instance, list-fusion optimisations to

eliminate the allocation of intermediate lists in functional applications, and specialisation op-

erations to replace applications of generic functions with applications of faster type-specialised

versions [PJTH01].

Besides the limitations inherent to rewrite-based optimisations, whereby programmatic analysis

is limited to defining rules ahead-of-time, there are important practical issues encountered

by Haskell’s rewrite system. The foremost of which is rewrite ordering. Various competing,

elaborate systems exist for programmatically defining rewriting strategies, notably Visser’s

System S [Vis99], such that the precise ordering of rule application can be controlled. In

contrast, Haskell adopts a simple phase-based solution, allowing programmers to annotate

rules with a phase-control specification, typically encoded as a number. This number dictates

within which predefined internal phase of the Haskell compiler the rule should be applied. Such

phase ordering is considerably less precise when compared to System S, which limits the range

of optimisations that can be practically expressed. Furthermore, since phase-control numbers

directly relate to the internal architecture of the compiler, the practical efficacy of a rule is not
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necessarily stable between different compiler implementations.

3.2.4 Directives for language subsetting

One less common application of directives involves language subsetting, whereby the directive

proclaims that the fragment to which it applies is restricted to a particular named subset of the

programming language. This restriction might be purely syntactic in nature, purely semantic,

or both. When combining syntactic and semantic restrictions it can occasionally be arranged

that the joint restriction can be verified only via syntax analysis: an example of this can be

found in JavaScript, and its "use asm" directive [HWZ14].

The primitive datatype operations of the JavaScript programming language have in general

relatively complicated semantics compared to those of C or Java. For instance, all numerical

operations have floating-point semantics, and collections can in general hold values of mixed

types, and both grow and shrink dynamically. Despite the fact that any given program or

function might not exercise all such aspects of the language’s semantics, it is left to the compiler

to determine whether or not operations can be specialised. This task might rely on static

analysis, information gathered by dynamic profiling, or both. Since the compilation cost of this

analysis must be considered and limited, there are necessarily situations in which optimisation

could legitimately be performed, but is not.

To help guide JavaScript compilers toward profitable and tractable opportunities for opera-

tion specialisation, a peculiar directive was proposed and widely implemented: "use asm".

Functions prefixed by this directive notify the compiler that the following function definition

conforms to a strict subset of the JavaScript language known as asm.js. This language subset is

restrictive enough to make type inference statically tractable, including sub-types such as the

32-bit integral sub-type implicit within JavaScript’s floating-point numeric type. Upon encoun-

tering a "use asm" directive, the compiler first validates that the function definition conforms

to the asm.js language subset. If this validation passes then the compiler can be certain that

the application of various kinds of aggressive optimisation to this function definition, which

could not be practically applied in all contexts, are valid and are likely to be profitable.
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The following illustrative function definition conforms to the asm.js language subset, announced

by the "use asm" directive:

function sum(x, y) {

"use asm";

x = x | 0;

y = y | 0;

return (x + y) | 0;

}

Note the presence of bitwise-or operations, coercing all values to 32-bit integers, according to

JavaScript’s semantics. This coercion allows the compiler to statically infer the type of x, y

and the return value as a 32-bit integer, and therefore implement the + operation simply using

machine native integer addition (assuming this is available).

Writing code directly in asm.js is typically rather cumbersome, and it was primarily envisioned

as an intermediate target language for compilation, rather than a practical language subset di-

rectly for use by programmers. Most other languages enable the kinds of optimisation intended

by asm.js through a combination of literal type declarations and compiler flags, rather than

directives. However the general approach of selectively subsetting a programming language, via

the application of directives, is a noteworthy and powerful mechanism for guiding the efforts of

an optimising compiler.

3.3 Type IIa: Self-issued computation from a reified lex-

ically homogeneous program

3.3.1 Syntactic quasiquotation

Plain syntactical quotation, and its later extension to quasiquotation, was first developed within

the context of the Lisp programming language [Baw99]. The key idea is to introduce an operator
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into the language, applicable to literal terms within the program’s definition, which suppresses

evaluation of the applied term and instead returns the syntax of that term as a data structure.

In principle the returned structure might be explicitly issued for execution on local or non-

local hardware, perhaps after translation, optimisation or other forms of analysis. In practice

however, quasiquotation often received considerable attention as a technique for defining macro

transformations—with the goal of achieving abstraction—rather than primarily as a mechanism

for pragmatic control [CW20].

Quasiquotation differs from plain quotation in that certain sub-terms within the quoted term

may be annotated to escape from that quotation: the evaluation of those escaped sub-terms is

not suppressed, and the result of their evaluation is then inlined into the quoted term, replacing

the unevaluated sub-term.

One major perceived advantage of quotation and quasiquotation, over explicit syntax construc-

tion which we discuss later in Sections 3.4.1 and 3.4.2, is that the reified term is denoted in

exactly the same manner as any other source term—although this fact naturally limits quota-

tion to the type IIa homogeneous context.

When applying quotation or quasiquotation as a technique for pragmatic control, whereby

analyses of the quoted term are required, as opposed to the simple syntactical transformations

required by macros, one must address the question of how terms that are free within the

quotation are bound. In general, other metaprogramming facilities, or static assumptions,

could be called upon to resolve this issue. Alternatively, and perhaps more commonly, the

quoted term is analysed without context, whereby all free sub-terms are left unbound.

3.3.2 Annotation-directed multi-stage programming

Multi-stage programming languages provide a mechanism for explicitly delaying code execution,

known as staging. Staging a term prevents its computation from happening in the current

evaluation context, instead providing the delayed term as a code value which can be either

explicitly executed at some subsequent point in the program execution, or composed with
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additional code values to form more complex code values. Staging differs from both purely

syntactic reification and functional abstraction, although it shares similarities with each. The

programming language MetaML [TS00] and its more recent counterpart MetaOCaml [CTHL03]

are both examples of annotation-directed multi-stage programming languages.

Syntactic reification, either plain quotation or quasiquotation, does not in and of itself preserve

hygiene—see Appendix A for the definition of hygiene used within this thesis. Names used

within the quoted term are detached from their lexical scope at the point of reification, and

so risk becoming rebound to semantically different values or variables when the reified term

is evaluated. Consequently the burden is placed on the programmer to ensure that hygiene

is preserved (to at least the requisite extent) when employing quotation. Whilst multi-stage

programming languages do typically provide an operator superficially similar to quotation,

whereby the operator reifies the applied term, this staging operator enforces and automates

the preservation of hygiene. Consequently, the reified term is not simply syntactic, since it

preserves the lexical scope of any names free within the term, closing over its lexical scope

similarly to a function closure.

Characterising multi-stage programming languages

From a semantic perspective, staging is strikingly similar to functional abstraction. The oper-

ator for functional abstraction (λ, lambda or in ML fun) also delays the computation of the

applied term, providing a value for subsequent and explicit invocation, to affect the delayed

computation. Furthermore λ also preserves hygiene by closing any free names over the lexical

scope of the definition. Two significant differences between functional abstraction and stag-

ing are that: (i) unlike closures staged code values do not typically accept formal arguments

on execution; (ii) multi-stage programming languages often include an operator for escaping

sub-terms within a staged term. This second point requires further examination—consider the

following MetaOCaml program:

let square z = z * z

let polynomial a b x y =
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(square a) * x + (square b) * y

let lift v = .<v>.

let specialised_polynomial_code a b =

.< fun x y .~(lift (square a)) * x + .~(lift (square b)) * y >.

let polynomial_5_6_code = specialised_polynomial_code 5 6

let polynomial_5_6 = Runcode.run polynomial_5_6_code

let slower = polynomial 5 6 10 20

let faster = polynomial_5_6 10 20

First we define the function polynomial which computes the degree-one polynomial a2x+ b2y,

where a2 and b2 are considered coefficients of the polynomial, and x and y its indeterminates.

Suppose this polynomial is to be evaluated several times, each against different values of x and

y, but for the same values of a and b. Rather than computing the square of a and b repeatedly

for each evaluation, it would be more efficient to precompute these squares once, ahead of time.

To this end we define a function specialised polynomial code which returns a code object

for defining a polynomial function, specialised to these constant coefficients. When we apply

specialised polynomial code to 5 and 6 we obtain a code object equivalent to the term:

fun x y -> 25 * x + 36 * y

This is achieved by employing two of MetaOCaml’s three staging operators: brackets and

escape. MetaOCaml’s staging brackets, written .< ... >., delay the evaluation of the enclosed

term and evaluate to a lexically closed code value, analogous to lambda abstraction. Inversely

the escape operator written .~ ... may only appear within staging brackets, and escapes from

the staged terms causing the applied term to evaluate within the context of the current stage,

not within the delayed context of the staged term.

Enclosing our function definition within staging brackets delays the definition of our specialised
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polynomial function to some subsequent stage. However, application of the escape operator

allows us to compute the values of a2 and b2 ahead of time, within the current stage. The need

for the application of lift to the precomputed value is because the escape operator requires

the applied term to evaluate to a code object, and not an integer as returned by square z—this

code object is then hygienically inlined into the enclosing term. Consequently we must lift this

object to the future stage, using lift which returns a code object representing the given value.

The third and final MetaOCaml operator, written occasionally in the literature as .!, but

invoked as Runcode.run above, evaluates code objects using the MetaML or MetaOCaml in-

terpreter or compiler.

Comparison with functional abstraction

Whilst staging brackets behave analogously to λ, there is no corresponding analogy for the es-

cape operator. We could consider defining such an operator—for example consider the following

program written in an imagined extension of Python:

def square(z):

return z * z

def specialised_polynomial(a, b):

return lambda x, y: (escape square(a)) * x + (escape square(b)) * y

polynomial_5_6 = specialised_polynomial(5, 6)

result = polynomial_5_6(10, 20)

Here our imagined escape operator allows expressions to be evaluated at the point the function

is defined, and their resulting values implicitly incorporated into the function definition via

anonymous bindings in the closure scope. Hence from this perspective the major innovation

of multi-staged programming appears to be within the escape operator, rather than within the

staging operator itself.
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Notably, the effect of the escape operator can be simulated when using functional abstrac-

tion, by moving the evaluation of those terms outside of and before the function definition.

Applied to our example, this could be achieved by simply using an alternative definition of

specialised polynomial thus:

def specialised_polynomial(a, b):

square_a = square(a)

square_b = square(b)

return lambda x, y: square_a * x + square_b * y

Whilst this particular example might lead to the impression that multi-stage programming

languages do not afford any additional facilities beyond those already inherent in function ab-

straction, this is demonstrably not the case. Our definition of specialised polynomial code

above, although perfectly legitimate and legal MetaOCaml, does not represent the style of

programming encouraged by multi-stage programming languages—a more canonical definition

might instead be written:

let canonical_specialised_polynomial_code a b x y =

let square_a = square a in

let square_b = square b in

.< square_a * .~x + square_b * .~y >.

let also_polynomial_5_6_code =

.< fun v0 v1 -> .~(canonical_specialised_polynomial_code 5 6 .<v0>. .<v1>.) >.

In this case, the definition of the polynomial function is made with respect to all four arguments,

rather than as a function that takes coefficients and returns a function of indeterminates, as

before. Consequently if all of the staging annotations were to be removed from this definition, it

would read naturally as an unstaged definition of our polynomial function. It is for this reason

that multi-stage programming languages refer to their staging operators as annotations, not
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to suggest the idea that they are purely informational and may be optionally heeded (which

is not the case) but instead to suggest the idea that if they were to be removed an equivalent

unstaged definition may be obtained.

Consider how canonical specialised polynomial code is invoked. Here we arrive at the

most notable aspect of this example, which illustrates an important characteristic of multi-

stage programming languages: observe that the binding structure of v0 and v1 has no faithful

analog when taking our analogy with functional abstraction. Here v0 and v1 are formal argu-

ments to a staged function definition, whose bindings are related to the names quoted within

the escaped term due to their lexical scope. That the semantics of this binding form are well-

defined distinguishes multi-stage programming languages from languages lacking such staging

operators. Clearly any näıve attempt to refactor the escaped term outside of and before the

function definition leads to v0 and v1 falling outside of their scope. In our second Python def-

inition of specialised_polynomial above, we offered one particular solution to this problem,

by binding these values using the formal arguments of the returned closure. Kameyama et al.

have formalised a translation from staged code to typed closures [KKS08] which allows staged

programs restricted to two stages to be translated automatically to an unstaged functional

program—notably this translation preserves both typing and hygiene, and is also conjectured

to preserve termination and evaluation order.

Restrictions, guarantees and safety properties

In MetaOCaml all staged code is opaque, and the semantics of the language forbid any intro-

spection facility that could reveal the syntactical structure of code values. This is motivated

by a concern that such capabilities would void important compiler optimisations, by weakening

the theory of the language’s semantics [TN03]. As a consequence, all staged code must be

generated strictly via composition. Although this precludes many common code generation

optimisations, such as peephole optimisation, it has been demonstrated for some applications

that well optimised code can be formed under this restriction [KST04].

Furthermore, multi-stage programming languages enforce the inlining of terms which are in-
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corporated into staged code using the escape operator. This is in contrast to closures, which

typically do not, and in the presence of unbounded recursion cannot commit the compiler or

interpreter to a full-inlining strategy. Therefore when composing terms in a multi-stage pro-

gramming language, the programmer is assured that any overhead due to defining the staged

code in a modular fashion, using several separate generic functions, is only incurred during the

execution of the current stage, and factored out of the future stage.

Whilst modern JIT compilers such as the OpenJDK’s HotSpot are capable of fully inlining

deeply nested closures, for instance 15 or more levels deep, such aggressive inlining is not

performed by default and it must be enabled using specific compiler flags. Even so, a JIT

compiler will typically not guarantee that all overhead due to abstraction will be removed,

and might decide to retain certain indirections within the optimised code if they reduce the

footprint of the generated machine code—given the finite size of typical CPU instruction caches

this decision might improve both execution speed and memory footprint, but the lack of a

guarantee as to the compiler’s decision gives rise to a source of performance non-determinism.

One particularly important aspect of MetaML and MetaOCaml lies within the type safety

properties guaranteed by their compilers. A staged program which type-checks correctly at

compile time is guaranteed to only generate code free of certain type errors at runtime. This

is no trivial undertaking, and a substantial amount of theory has been established in order to

provide such guarantees [TS00].

An interesting kind of type error peculiar to multi-staged programming languages is scope

extrusion [KKS09, WRI+10]. Scope extrusion occurs whenever a variable which is defined in

a subsequent stage is used in a preceding stage. In the following fragment of MetaOCaml the

variable x is subject to scope extrusion, and thus the program is meaningless. Type systems

capable of detecting all cases of scope extrusion at compile time have been developed, for

example by Kameyama et al. in [KKS09].

let foo = .< fun x -> .~(bar x) >.

Finally, another interesting safety property relevant to multi-stage programming languages is
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the issue of cross-stage persistence. Cross-stage persistence is using a value from staged code

which was defined or computed within an earlier stage of the program. In our definition of

canonical specialised polynomial code above, the values square a and square b must be

persisted between stages for this reason. Since in MetaML and MetaOCaml the generated pro-

gram must be executed within the same process as generated it, these values may be persisted

on the process heap, similarly to a closure—if MetaML were to support code serialisation then

the operational mechanism for cross-stage persistence would be a more complicated issue. Cer-

tain safety properties for cross-stage persistence are guaranteed by the compiler, in particular

that: any value used in a subsequent stage will be persisted, and resolved according to a lexical

scoping discipline; and also any value defined in a subsequent stage cannot be used from an

earlier stage, an issue called “scope extrusion” [TS00].

3.3.3 Type-directed multi-stage programming

In contrast to annotation-directed multi-stage programming languages, Lightweight Modular

Staging (LMS) is a type-directed approach to multi-stage programming [RO10], implemented as

a library for the Scala programming language. Whilst Scala itself is not natively a multi-stage

programming language, LMS extends Scala with support for multi-stage programming.

In many ways, LMS is similar to multi-stage programming languages such as MetaML and

MetaOCaml, sharing their support for cross-stage persistence, lexical scoping of names within

staged terms, compile-time type-safety guarantees, and enforcing the opacity of staged code

from (most of) the program. However, LMS departs from traditional multi-stage programming

languages in a number of important ways, most notably:

• Staged code is not denoted via syntactical staging annotations, but instead using types.

• The order of computation (including imperative control-flow) within blocks of staged

code is automatically preserved—based on Scala’s native evaluation order—rather than

managed manually via syntactic composition.
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• Access to the structure of staged code is permitted to certain components within the pro-

gram, allowing for serialisation and computation offloading, as opposed to being opaque

to the program entirely.

• The language in which generated code is represented need not match the source program,

but may instead be represented in any language (for example in languages as diverse as

JavaScript or SQL).

• Common subexpression elimination is performed automatically by the staging system.

• Optimisations can be declared in a modular fashion, building on Scala’s powerful traits

system, and included or composed at the discretion of the source program author.

Whilst most of these departures are fairly self explanatory, a number of these points require

further elaboration.

Staging using the Rep[T] type

As we described in section 3.3.2, MetaML-like languages denote at which stage fragments of the

program are executed using syntactical staging annotations, namely using staging brackets and

the escape operator. In contrast staging code in LMS is directed by the type system—consider

the following Scala definition:

trait Polynomial { this: Arith =>

def polynomial(a: Int, b: Int, x: Rep[Int], y: Rep[Int]): Rep[Int] =

(a * a) * x + (b * b) * y

}

The body of this function definition contains no syntax to indicate at which stage the various

arithmetical operators should be executed. Nonetheless this is a multi-stage program, whereby

the coefficients a * a and b * b are computed at the current stage and the remaining arith-

metic is staged. This is achieved solely by the means of the type declarations: examining the
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type declarations for the function arguments we find that a and b are declared to have integer

type Int, however the types of x and y are declared to be of type Rep[Int]. These type

declarations direct LMS to stage all operations within the function body for which the result

depends on the integer value of x and y.

The generic type Rep[T] is named to suggest its interpretation as a representation for objects

of some type T. By representation it is meant that an object of type Rep[T] at the current

stage represents an object of type T within the subsequent stage.

Since our declaration of x and y as having type Rep[Int] implies that their integer values are

not available at the current stage, and consequently LMS stages any computation depending

on those values—the result of the function depends on this staged computation it must be

declared as returning type Rep[Int] similarly. The available staging operators, policies and

optimisations to be applied by LMS are controlled via the type declaration for this, which

here requires the Arith trait (or subclasses thereof) providing support for staged arithmetic

operations.

Within its implementation, LMS makes extensive use of language virtualisation. In this exam-

ple, the Arith trait provides the concrete Rep type, and overloads its infix + and * operators.

This allows LMS to generate the requisite staged code when the function polynomial is in-

voked, simply as an ordinary Scala function invocation. Through extensive use of operator

overloading, and mandating the manual modification of various variable type declarations, the

approach coerces native Scala functions into disclosing fragments of their behaviour to the LMS

library when invoked.

Preservation of computation order

Näıvely one might expect that LMS separately records the definition of each staged value,

such that in our example the return value of the function would simply be defined as the

product and sum of its constituents, without any specification of the order in which each of

the independent multiplications must be computed. However, LMS automatically preserves
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the relative order in which operations are computed within staged code, precisely following

Scala’s own evaluation order. This ordering is then enforced within generated code, typically

by generating code in administrative normal form (ANF) whereby each operation is ordered

formally as a sequence. The ANF generated code for our polynomial invoked with 5 and 6 for

a and b would be equivalent to the following fragment:

val v0 = 25

val v1 = v0 * a0

val v2 = 36

val v3 = v2 * a1

val v4 = v1 + v3

v4

The specific technique of inserting named bindings for each intermediate value in the computa-

tion is referred to as let insertion [RO10]. Let insertion is a discipline for maintaining the order

of side-effects, and reducing re-computation in generated code, by inserting “let” bindings, in

order to bring the code into administrative normal form (ANF). For a detailed introduction

to this technique see [Rom16]. Here we assume this generated code will be executed within a

context binding a0 and a1 to the concrete values of x and y respectively, and it is apparent that

the multiplication by a2 happens before the multiplication by b2. Multiplication of integers in

Scala is side-effect free, so preserving the order of computation is immaterial for our example,

but given that LMS preserves the relative computation order of operations, it is safe to use

side-effecting operations within staged code.

This ordering property of LMS stands in contrast to multi-stage programming languages like

MetaML, in which staged code is spliced in a syntactic fashion. Whilst a syntactic approach

supports various powerful code generation patterns, it arguably requires more discipline from

the programmer. In offering staging operators that abstract away the issues of effect ordering

and code duplication, LMS frees the programmer from addressing such concerns manually

[Rom12].
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Inspection and representation of staged code

In systems like MetaML where staged code is opaque and cannot be inspected, its representa-

tion is immaterial to the programmer: since the staged code can only be composed or executed,

the formal representation of that code could be encoded in any language supporting the req-

uisite composition and execution operators. In LMS however, the underlying representation of

staged code may be exposed selectively, for inspection within certain nominated scopes. The

programmer is advised to prevent the parts of the program which are themselves the subject

of staging to access their own representation, since that would allow for their behaviour to

depend on structural properties of their own representation, and in turn invalidate any staging

optimisations that preserve semantics, but do not preserve structural equality of the staged

code.

Having made the representation of the staged code accessible, certain possibilities are immedi-

ately evident. The ability to inspect staged code offers various opportunities for pure analysis,

but also the possibility of offloading execution to heterogeneous or remote hardware by serial-

ising its representation. Although the issues of representation and inspection are potentially

separable, it is often advantageous to select a representation which supports tractable inspection

for the kinds of analysis or serialisation desired.

Common subexpression elimination

Although the automation of common subexpression elimination (CSE) within LMS might ap-

pear as simply a pleasing optimisation, its presence bears directly upon the category of pro-

grams which are staged effectively and efficiently. Similarly to how the presence of tail-call

optimisation allows for programs to be written in tail-recursive style (which would otherwise

be disregarded as impractical) the presence of CSE within LMS avoids the need for certain

programs to be written in continuation-passing or monadic style, which would otherwise give

rise to staged programs which involve an impractical degree of recomputation.
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Applications

LMS has been applied to various problems in which the choice of representation for staged code

constituted an important part of the solution. The domain-specific language (DSL) framework

Delite [BSL+11], which builds on top of LMS, has been used to implement a DSL for machine

learning, OptiML [SLB+11]. The OptiML compiler performs domain-specific analyses and

optimisations on its intermediate representation language, before translating to CUDA code

suitable for execution on a GPU.

Other notable applications of LMS include: (i) optimisation and translation of SQL queries to

C [SKK18]; (ii) enabling higher-level abstraction over contemporary FPGA high-level synthesis

tools [GLN+14]; (iii) affecting domain-specific optimisations for mathematical linear transforms,

for example the discrete Fourier transform [ORS+13]; (iv) implementing DSLs capable of gen-

erating code optimised for execution on heterogeneous computing environments [SGB+13]; (v)

accelerating distributed data processing queries [ETD+18]; and (vi) generating C code that is

accompanied with annotations supporting certain kinds of verification, including the verification

of memory safety properties [AR17].

The most directly relevant application of LMS to this thesis can be found in Lancet, a frame-

work based on LMS, which Rompf et al. introduced for “surgical precision” JIT compilation

[RSB+14]. Lancet encapsulates the multi-level language front-end presented by LMS behind

a staged metacircular bytecode interpreter, thus providing many of the benefits of LMS to

ordinary, single-level programs. Furthermore, they introduce “JIT macros” to allow the com-

pilation of individual methods to be arbitrarily and separately defined. Lancet’s approach is

so closely related to ours that we delay its comparison until after we have properly defined

late-bound code generation, in Section 6.3.

3.3.4 Multi-stage programming with abstract syntax

In this section we will explore two programming languages, Template Haskell [SJ02] and Con-

verge [Tra05], which whilst following in the multi-stage programming tradition, depart in their
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representation of code values. Both represent code values as abstract syntax trees, data struc-

tures which may be programmatically constructed and inspected—we return to this idea again

later, within an hererogeneous context in Section 3.4.2. Although continuing to support tra-

ditional staging annotations, additional operators for reification are also introduced, which do

not require any modification to the interface or syntax of the reified function definition.

Characterising Template Haskell

Template Haskell is a metaprogramming system for the Haskell programming language [SJ02],

which provides a superficially similar code generation front-end to MetaML and MetaOCaml.

Despite this superficial similarity, Template Haskell differs substantially from these earlier sys-

tems.

First and foremost, Template Haskell is a strictly compile-time code generation system, meaning

that code can only be generated and spliced into a module whilst it is being compiled. This

is in contrast to MetaOCaml, which performs type-checking at compile-time in order to verify

the absence of certain type errors within any generated code, yet performs all code generation

itself at run-time. Furthermore, quasi-quotation in Template Haskell is simply one method

for generating code—intended as a convenience, rather than as a foundational part of the

system—whilst within MetaML derived systems quasi-quotation serves as the only constructor

for code values. Code values in Template Haskell are represented as ordinary algebraic data

types, reflecting the structure of their abstract syntax, and can be constructed programmatically

as well as by quotation. There are a number of important consequences to Template Haskell’s

use of algebraic data types for representing code, which we will now explore.

Firstly, a wider range of code generators are immediately supported, when compared to MetaML-

like languages. There are particular code generation functions which are difficult or impossible

to write using quasi-quotation alone. For instance, Sheard and Peyton Jones [SJ02] note that

generating code which pattern matches against an n-tuple (where n is parametric) is impossible

just using Template Haskell’s quasi-quotation mechanism:
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\n -> [| \values -> case values of (v_0, v_1, ..., v_n) -> v0 + v1 |] -- Invalid!

Although we might hope to write the above quasi-quote, it is invalid. Neither the ellipsis, nor

the fanciful parametric subscript—supposedly bound to the lexically scoped variable n—are

features of Template Haskell. Special provision in the language would be required to support

them. The intended term can, however, be readily generated via programmatic composition of

its abstract syntax.

Secondly, code values are no longer opaque, as they are in MetaML derived systems. It is

therefore possible to pattern match against Template Haskell’s code values, in order to analyse

or translate their syntax or behaviour. This enables a wide range of rewrite-based transforma-

tions which may be applied to reified or generated code, such as code motion and peephole style

optimisations. Although it is occasionally possible to write optimal code generators without

recourse to optimisation via post-processing [KST04], it is often exceptionally convenient to be

able to apply such optimisations via rewriting of the generated code. In Template Haskell there

are, however, a couple of disadvantages to composing code values via data type constructors: (i)

the verbosity of the code generator tends to increase substantially, and (ii) the lexical scoping

of identifiers is no longer enforced, as it is within quasi-quotes.

This ability to pattern match against code values attains even more power when coupled with

Template Haskell’s additional reification facilities, an ability which neither MetaML nor MetaO-

Caml possess, and to which we turn our attention now.

Reification without annotations or interference

Template Haskell provides a selection of additional reification operators: reifyDecl for reifying

the syntax of a value declaration, reifyType for reifying the compile-time type of a value, and

also reifyFixity, reifyLocn, and reifyOpt for reifying the fixity of an operator, the current

source code location, and command-line options respectively. The first of these reifyDecl is

of particular relevance to this thesis. The ability to reify the declaration of a function, without

any need to annotate or otherwise modify the declaration itself, allows the metaprogrammer
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to generate code deriving from properties of ordinary function definitions, by pattern matching

against the reified declaration. In short, Template Haskell makes it possible for ordinary func-

tion declarations to be arbitrarily and programmatically analysed at compile-time, in order to

generate translated or optimised definitions, which are then embedded or spliced back into the

compiled module. Whilst this combination of capabilities offers much potential, it is neither

unique to Template Haskell, nor wholly sufficient, when generalising these capabilities to a

run-time context.

For example, Python similarly offers the ability to reify the definition of an ordinary function,

although at run-time: a capability we make extensive use of in Chapter 5. When reifying a

run-time function—which is in general a closure of the function definition’s over the scope in

which it was defined—it is also necessary to reify its closure scope, in order to properly analyse

the function’s behaviour. This ability to reify the closure scope of a function instance is also

present in Python—which we build upon in Section 5.4.1—although it is not explored within the

literature on Template Haskell, due to its exclusive focus on compile-time metaprogramming.

Furthermore, these reification capabilities simply serve as a basis for the analysis, optimisation

and translation of functions. The task of performing the translation itself is left unaddressed,

as an orthogonal concern. This important task is, however, a primary concern within our

late-bound code generation approach.

Notably, later versions of Template Haskell appear to have retired support for reifying the

syntax of value declarations. The literature around Template Haskell tends more towards a

generative, rather than introspective, approach to metaprogramming. Presumably due to lack

of interest and adoption, this specific capability was finally deprecated. As such, there is a

lack of research exploring the potential inherent within Template Haskell’s original reifyDecl

facility.

Influence of type checker soundness on design

One major factor which influenced Template Haskell’s design was a requirement to support

a sound compile-time type checking system. Whilst it is trivial to implement a sound type
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checker for Template Haskell—by simply applying Haskell’s existing sound type checker to the

module after code generation has completed—this approach does not lead to type errors being

discovered and reported at the earliest opportunity, albeit at compile-time. Furthermore, it is

not immediately obvious which code generator is in error when presented with some erroneously

generated fragment. For this reason Sheard and Peyton Jones compromised the power of

Template Haskell in order to enable more prompt type checking: checking quasi-quotations

themselves, as well as their eventually spliced terms.

Later versions of Template Haskell [Jon10] explored even further restrictions, by introducing

type declarations to code values. At this point the power of the system was sufficiently com-

promised that a decision was made to bisect it into two independent versions: (i) a maximally

permissive system, even more powerful than Sheard and Peyton Jones’ original, which only type

checks a module after code generation has terminated, and (ii) a heavily restricted, promptly

type checked version, that includes code value type declarations.

Converge as an imperative generalisation of Template Haskell

Because Template Haskell operates within a purely functional context, this introduces a number

of technical difficulties into the code generation process. For example implementing “gensym”,

Template Haskell’s facility for generating unique names during a code generation phase, requires

something akin to stateful effects in order to maintain a history of previously generated names.

In characteristic style, Sheard and Peyton Jones solve this by using a monadic device: the

“quotation monad”. From our perspective these technical difficulties are irrelevant, since we are

not restricting ourselves to a purely functional setting. Tratt has explored a metaprogramming

system similar to Template Haskell, but embedded within the context of his imperative language

Converge [Tra05]. He achieves a similarly powerful metaprogramming system as Template

Haskell, whilst doing away with the complications of the quotation monad, and hence making

the results of Sheard and Peyton Jones relevant to users of other imperative languages such as

Python and JavaScript. Like Template Haskell, Converge represents code values with data types

which structurally encode their abstract syntax, and thus supports programmatic construction
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and inspection of staged fragments. Furthermore, Converge is an inherently more general

metaprogramming system than Template Haskell, since it supports code generation not only

at compile-time, but also at run-time, thus allowing for code to be specialised to run-time

information.

More recently Berger et al. have provided a formalism for relating various homogeneous gener-

ative metaprogramming systems [BTU17], encompassing not only Template Haskell and Con-

verge, but also MetaML, MetaOCaml and others. This provides a rigorous basis not only

for formally comparing aspects of various compile-time or run-time systems within their own

category, but also for comparing aspects of compile-time systems to run-time systems, whilst

remaining within the same formal framework.

When comparing Template Haskell and Converge directly to the approach described in this

thesis, we note that within these former systems, the kinds of object which are possible to

“lift” into generated code are relatively restricted. Only certain specific kinds of value may

be lifted within Template Haskell and Converge: in particular, neither systems support lifting

mutable objects within generated code. However, such objects are possible to lift using late-

bound code generation, an ability which we explore extensively in Chapter 4.

3.4 Type IIb: Self-issued computation from a lexically

embedded heterogeneous program

3.4.1 Explicit construction of concrete syntax

The most obvious pattern for self-issuing computation, when dealing with more than one lan-

guage, is simply to embed fragments of concrete syntax for one language in the other. Those

parts of the program which are required to execute within another process—be it an abstract

process such as a server thread, or a concrete process such as a physical machine—have their

behaviour coded directly in the concrete syntax accepted by that process, and embedded as a

string value within the issuing process.
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Perhaps the most common, well studied example of this pattern occurs in programs which

access persistent data managed by a relational database management system (RDBMS). In

this section we describe the motivation, character and challenges presented when applying the

pattern in this context.

Programs interacting with an RDBMS typically communicate using a query-based interface.

The objective of performing the computation of the query within the management system,

rather than within the issuing process, is often a pragmatically motivated: since the RDBMS

is typically co-located with the data store, yielding lower round-trip latency, and furthermore

obviates the need to communicate any more information over a network than strictly necessary.

Where the query to perform is a constant of the program, many straightforward and safe

solutions for providing the query to the database system are available, including defining the

query persistently within the RDBMS itself, in which case it is known as a stored procedure.

When using stored procedures the query can be simply invoked in a manner similar to remote

procedure invocation, with only serial forms of the queries parameters and results flowing over

the channel connecting the program to the RDBMS. In such situations the interaction of the

program with the database systems is no different in nature from that with any other networked

service, exposing a data-oriented application programming interface (API).

Conversely, in situations where the structure of the query is not a constant of the program,

perhaps depending on user input or other runtime information, the form of the query must be

generated and communicated with the database dynamically. Queries are typically represented

as strings of concrete syntax in some query language, for instance in the ubiquitous “structured

query language” (SQL) and exchanged with the RDBMS in this textual form. Although query

languages are not necessarily Turing complete, they generally provide operations acting on the

database which can violate security properties of the software system they support, for example

deletion of data, or reading of arbitrary data, which a particular user is not authorised to access.

As such the dynamic generation of queries poses the risk that the generated query might violate

important security or safety properties of the system that, which are not immediately apparent

from static analysis of the program definition, although fortunately in some cases the requisite
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static analysis is tractable [WGSD07].

How these risks arise in practice is illustrated by the following Python fragment. The query is

built using a string of concrete SQL syntax, dependent on a dynamic dictionary of key-value

pairs, which filter the results obtained.

predicate = get_dynamic_predicate() # e.g. { 'City': 'London', 'Country': 'UK' }

query = 'SELECT Address FROM Customers WHERE ' + ' AND '.join(

[key + ' = "' + value + '"' for key, value in predicate.items()]

) + ';'

cursor.execute(query)

for result in cursor.fetchall():

process_address(result)

Depending on the provenance of the dictionary returned by get_dynamic_predicate, the pro-

gram is vulnerable to a SQL injection attack. For example if an attacker were able to control

the values contained in this dictionary, which might be trivial if they were directly copied from

the fields with an HTTP request, then they could easily pass malicious strings such as:

'UK"; DROP TABLE Customers; --'

Give a sufficiently permissive database configurations this could cause the database to improp-

erly delete important data. Other malicious strings might instead attempt to return more data

to the attacker than they are properly authorised to access.

Typically an attack as simple as our illustration is well mitigated in practice, but more subtle

variants exist. The practically observed risk of SQL injection attacks, coupled with the technical

challenge of generating well-formed query strings, has given rise to a diverse array of mitigations

and solutions [HVO+06], of which those language-based solutions range from simple validation

and escaping of concatenated strings, to metaprogramming-based code generation solutions

comparable to the multi-stage systems described in section 3.3.2 and 3.3.3, for example Cook

and Rai’s “Safe Query Objects” approach [CR05].
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In those cases where the dynamic query is composed in the syntax of another language, as in our

example above, we consider this to be an instance of pragmatic control via self-issued compu-

tation, from a lexically embedded heterogeneous program, where in many cases the motivation

to perform computation within the database can be attributed to pragmatic concerns.

Whilst heterogeneously encoding part of the program’s behaviour as SQL strings has historically

been a popular approach—since most RDBMS products natively support execution of SQL—

somewhat more recently alternative approaches which make use of embedded heterogeneous

query languages have been popularised, such as HQL, JDOQL and JPQL [Roo02, GM10,

Vas08]. Libraries which automatically translate queries written in these alternative languages

to SQL are typically available, for use with a conventional RDBMS. We note that this diversity

of embedded query languages does not give rise to a wider range of pragmatic control, beyond

that of embedded SQL, but are rather motivated by support for various convenient semantic

abstractions: the pragmatic principle is invariably to execute the computation inherent to the

query string within the RDBMS, and return any resulting data to the issuing program.

3.4.2 Explicit construction of abstract syntax

The practice of programmatically constructing abstract syntax (outside of compiler implemen-

tation) has a long history, extending back to the early days of Lisp. Common practice within

Lisp was often constrained to a strictly homogeneous context, within the implementation of

macros. In large part this practice was later superseded by quasiquotation, which offers a

simpler yet less flexible metaprogramming abstraction [Baw99]. The ad-hoc construction of

heterogeneous abstract syntax has in all likelihood a similarly long history, although more re-

cently it has been characterised and formalised within the study of domain specific languages

(DSLs) as the category of deeply embedded DSLs [GW14].

An interesting and popular contemporary application of this technique can be found within the

TensorFlow machine learning library [ABC+16]. Users of the first version of the TensorFlow

library must explicitly construct a computation graph, which may be viewed as a form of higher-

order abstract syntax (HOAS) [PE88], which represents their desired numerical computation.
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For example, consider the following Python program:

import tensorflow

a = tensorflow.constant(2.0)

b = tensorflow.constant(21.0)

c = a * b

print(c) # Prints 'Tensor("mul_1:0", shape=(), dtype=float32)'

config = tensorflow.ConfigProto(device_count={ 'CPU': 1, 'GPU': 0 })

with tensorflow.Session(config=config) as session:

result = session.run(c)

print(result) # Prints '42.0'

Although intended primarily for training and executing machine learning models, here we are

using TensorFlow simply as a floating-point calculator.

At first glance the statement c = a * b might appear to be numerically multiplying the vari-

ables a and b, but it is an overloaded version of the standard Python multiplication operator:

overloaded to act upon and generate computation graphs. The values of a and b are explicitly

constructed as graph nodes which represent constant values in the deeply embedded DSL. The

overloaded multiplication operator then combines two subgraphs, joining them with a multipli-

cation node to form a larger computation graph. Calling print on the value of c reveals that

it is not Python number, but instead an abstract term of the TensorFlow embedded DSL.

In order to execute the computation graph on the local CPU (of the Python process) a Session

is configured and instantiated, within which the graph up to and including the multiplication

node is run. The result is automatically converted to a NumPy floating-point number and

returned—where NumPy is a common Python library for numerical computation—which when

printed renders 42.0 as expected.

If we wished to execute the graph on a local GPU, a configuration of { 'CPU': 0, 'GPU': 1 }

could be supplied instead. Finer-grained control of the execution target is also supported,
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including to specific named CPU or GPU units, and remote and distributed systems. This is a

form of abstract pragmatic control, whereby the computation is explicitly issued, yet the target

processor is defined in part declaratively: 'GPU': 1 specifies explicitly that only one GPU must

be employed, but which local GPU if several are available is not specified.

TensorFlow computation graphs are not only subject to optimisation and translation, typically

to vectorised CPU or GPU code for execution, but also serve as a basis for other kinds of

analysis. An important algorithm in machine learning known as backpropagation requires the

computation of mathematical derivatives for the embedded program. The computation graph

is analysed to provide these derivatives using a technique known as automatic differentiation, a

numerical method—not to be confused with numerical differentiation—which relies on a non-

standard interpretation (with respect to execution) of the computation graph [BPRS18].

Another notable property of TensorFlow computation graphs is their support for variable nodes.

Nodes defined using the constructor tensorflow.Variable are mutable nodes within the HOAS

graph. Graph computations can mutate the value of these variable nodes, with those mutations

persisting between individual executions of the graph. This can be understood as a kind of

self-modifying code within the embedded DSL, specifically as a mechanism for implementing

static variables.

The laborious nature and conceptual difficulty (for the programmer) of explicit graph con-

struction have been perceived as usability issues within the TensorFlow community. These

issues in part motivated the development of subsequent versions of the TensorFlow library, the

second version of which introduced AutoGraph and its accompanying tensorflow.function

decorator [MDW+19, AMP+19]. Simultaneously, the default semantics of the graph operators

were changed to immediately perform their corresponding operation, rather than construct a

graph encoding their computation, hence departing from the approach of explicitly constructing

abstract syntax, and moving towards an imperative style.

This imperative approach is known as ‘eager mode’ in the TensorFlow community, and corre-

sponds to a shallow embedding in DSL terminology [GW14]. AutoGraph uses reification of the

function definition’s concrete syntax, amongst several other techniques, to recover the requisite
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computation graph for functions defined in this manner—transitioning to a type IIa system.

The originators of AutoGraph contrast their approach to a complementary progression in the

programming model of the PyTorch machine learning library, and its corresponding TorchScript

[MDW+19]. Given the extensive user-base for TensorFlow, its evolution provides an interesting

case-study for the mainstream acceptance, refinement and subsequent withdrawal of the deeply

embedded DSL approach.

3.5 Conclusion

In this chapter we surveyed the background context for this thesis—namely existing intra-

program techniques for pragmatically controlling the execution of sub-program fragments. We

informally categorised these various techniques into types I, IIa and IIb.

Type I techniques, which are perhaps the most popular, are based on directives. Given the

unbounded potential for pragmatic control which is afforded by a directive, we illustrated this

category by means of a number of examples: specifically directives for controlling parallelism,

applying and defining optimisations, and for language subsetting. Although many other kinds

of directive have been defined, we believe that these four examples characterise the domain

within which directive-based control has been explored and applied.

Type IIa and IIb techniques are based on self-issued computation, where the former relies

on reifying a fragment of the homogeneously defined program, and the latter on explicitly

constructing the heterogeneous syntax for the fragment. The division between type IIa and

type IIb techniques is imprecise, even more so than the division between type I and II. To

a large extent it is subjectively dependent on one’s definition of the language semantics in

question. For instance, the categorisation of LMS depends on whether LMS is considered a

language itself (extending the Scala programming language) or simply a conventional set of

objects defined within a Scala process. Nonetheless, we believe that the division between type

IIa and IIb captures an important distinction for the programmer: if the illusion that the

entire meaning of their program is defined in one language is broken, then the technique is
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better characterised as type IIb. In many practical circumstances, programmers may have an

aversion to multi-language based solutions, since they typically pose a challenge to tooling and

integration—for example, consider the problem of how exception stack traces might propagate

across language boundaries.

We again illustrated our informal type IIa category by means of examples, including three

different approaches based upon quasiquotation, annotation-directed multi-stage programming,

and type-directed multi-stage programming. Finally we gave examples of type IIb techniques,

based on both the construction of concrete syntax and abstract syntax, the two principal

approaches for defining executable forms.



Chapter 4

Low-power user interface rendering

4.1 Introduction

In this chapter we explore in detail one particular application of late-bound code generation:

applying it to the problem of offloading the user-interface rasterisation of a smartphone ap-

plication to a field-programmable gate array (FPGA) coprocessor. We aim to organise our

rasterisation circuit architecture in a form well suited to place-and-route style optimisation, in

an attempt to reduce its energy consumption. Our intent is to explore how well late-bound code

generation—as a technique—fares when applied to such a problem, having externally defined

constraints and objectives.

We describe a method for transforming the user interface rasterisation procedure of a smart-

phone application, defined in terms of both standard and programmatically defined components,

to an application-specific statically scheduled pipeline, suitable for execution within a FPGA.

The state of the application is synchronised with that of the pipeline via a serial channel. We

apply our method to a test application, and estimate the power consumed by the generated

pipeline. The potential for our approach to reduce the power consumed within a mobile device

is evaluated, along with its inherent limitations.

Since the semiconductor industry no longer enjoys the benefits of Dennard scaling [Boh07],

64
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we must look toward architectural solutions if we wish to reduce the power consumed by

electronic devices such as smartphones. Reducing power consumption might be motivated by

(i) an application feature which requires significantly more computation to be performed, (ii)

to reduce the battery charge cycle frequency, (iii) to reduce the weight or cost of the power

supply, or (iv) any combination of these factors. In order to approach the problem we must

first understand how energy is typically dissipated within a device.

Within a smartphone there are various key components, logical and physical, which together

dissipate the majority of its energy. Typically these key components include the radio module,

fixed-function display hardware, the user-interface rendering process and finally miscellaneous

application-processing operations [CH10]. Depending on the usage scenario any of these four

categories can dominate. For example, in an area of poor reception the radio module might

contribute most to the power consumption of the device. When operating the device outdoors,

the fixed-function display hardware—which includes the hardware for illuminating the screen—

might dominate instead. Alternatively, using a mobile device indoors with good radio reception

to a nearby wireless router, can result in the user interface rendering becoming the single largest

contributor to the power consumed. It is this final scenario which is of primary interest in this

chapter, and in particular how the requisite rendering computations might be optimised or

offloaded to minimise the total power consumed.

4.2 Contributions

• We describe a method for obtaining an application-specific object processor pipeline for

rasterising the user interface of a smartphone application, derived from a source program

written in terms of contemporary abstractions, and featuring both standard and custom

user-interface components.

• We describe how any parameters within the pipeline that depend upon application state

may be discovered and synchronised with the application runtime.

• We provide an account for the power consumed during execution of this pipeline on a
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commercially available field-programmable gate array (FPGA).

4.3 Background

Before we can make an hypothesis for reducing the energy consumed during rendering, it is

necessary to understand first the logical and physical rendering architecture of a contemporary

smartphone, and then which aspects of that architecture dissipate energy unnecessarily.

4.3.1 Logical rendering architecture

Consider the rendering architecture for the Android operating system [LtAOSP22]: we take this

as our reference architecture throughout this chapter. On Android, rendering begins with view

objects—the user interface of an application is composed entirely of views. Views are objects

that represent components of the user interface, and are organised hierarchically as a tree. The

view abstraction encapsulates several user interface concerns, just one of which is rendering—

for example, views also manage the interaction capabilities of the component, mutable state

particular to the component type, and layout strategies for aligning the component within the

available screen space.

Any view may be rendered by calling its draw method. Calling draw on a view which has

children will normally dispatch further calls, recursively drawing each child. The method takes

just one argument, the canvas onto which the view must be drawn. The canvas represents a

two dimensional surface, the appearance of which is manipulated via its various methods, such

as drawLine or drawOval. There is considerable freedom in the implementation of the canvas.

For instance a particular implementation might directly mutate the state of an underlying

bitmap image. Alternatively it might represent the state of the canvas symbolically, for example

mutating the elements of a vector graphic.

Early versions of Android implemented their Canvas class by immediately dispatching com-

mands, such as drawLine, to an underlying rasterisation library called Skia [LI22]. In these
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early versions, only one CPU-based bitmap rasteriser for Skia was available. As the platform

evolved, motivated primarily by the desire for greater performance, the Android developers

introduced another canvas implementation: the RecordingCanvas. Unlike the original Skia-

based canvas, RecordingCanvas does not perform rasterisation immediately when its draw

methods are invoked, but instead appends each graphical operation symbolically, along with its

parameters, to a display list. This idea of a display list did not originate in Android however,

and may be traced back at least to the 1979 ANTIC coprocessor for the first Atari console

[AI82].

Populating this (symbolic) display list is computationally cheap compared to the rasterisation

of each command. Only after the display list has been fully populated, the canvas may be

rasterised in batch. The purpose of introducing the RecordingCanvas was in part to sup-

port offloading the rasterisation process to a GPU accelerator: the display list populated by a

RecordingCanvas serves as an intermediate representation for the state of the canvas, which

may then be optimised by reordering and batching operations, before translation to an equiv-

alent series of OpenGL commands to be dispatched to the GPU. It is worth emphasising that

each time the screen is updated, up to 60 times per second, the display list is at least in part

re-generated, re-optimised, re-translated, and re-issued to the GPU. Portions of the display list

are opportunistically cached, along with bitmap regions of the canvas, but the major class of

optimisations enabled by the display list abstraction are intra-frame optimisations.

This application of intra-frame optimisation, in combination with the increased parallelism of

the GPU architecture, allows for a significant reduction in the time taken for Android to render

each user interface frame.

From an energy perspective however, there are outstanding inefficiencies, in both the original

CPU-based approach and the latter GPU-based approach. CPUs and GPUs are fetch/execute

machines which dynamically multiplex their various resources, communicating intermediate

results to and from register files and caches, which involves energy wastage. Furthermore,

the employment of display lists introduces additional computation due to re-optimising and

re-programming the GPU whenever the frame is updated—the energy cost of which might be



68 Chapter 4. Low-power user interface rendering

reduced if it were amortised over several frames.

4.3.2 Accounting for energy expenditure

The internal physical structure of a computer must be understood in order to account for

the energy consumed during its operation. Contemporary computers, including most micro-

processors, graphics accelerators and certain application-specific integrated circuits, are typi-

cally implemented as fetch/execute machines, fabricated using a complementary metal-oxide-

semiconductor (CMOS) process. In a fetch/execute architecture, separate physical regions are

set aside within the silicon wafer for the storage of instructions, for the storage of data such as

register files, and further regions for performing arithmetic and logic calculations (ALU). The

processor operates in a cyclic manner, processing instructions approximately one after another,

inspecting each instruction to determine what data must be read, what calculation to issue to

the ALU, and finally where the result must be written. Certainly many modern computers are

somewhat parallel in their operation, in that they are able to process several instructions at the

same point in time, for example utilising pipelines or duplication of the fetch/execute engine,

but from an energy perspective there are inefficiencies inherent to their physical organisation.

To understand this we must inspect the fetch/execute cycle in more detail.

Each fetch/execute instruction by design requires information to be physically transferred be-

tween the computer’s instruction cache, register file, and ALU, and then back again, every

cycle. On certain occasions this excursion might be shortcut, due to forwarding of values be-

tween stages of the processor’s instruction pipeline, but this is an opportunistic optimisation.

In either case the ALU acts as a shared resource multiplexed between different instructions.

This strict partitioning of silicon between data storage and calculation was quite necessary his-

torically, since on older silicon processes the physical area required to implement an ALU was

far from negligible. However the area saved by multiplexing a small number of ALUs between

a larger number of instructions is traded for an increase in data movement. If instead the ALU

was massively replicated, with the output of one fed directly into the input of another, perhaps

each ALU dedicated to one individual program instruction, the amount of data communication
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would be significantly reduced: for it is communication which costs considerable energy in a

CMOS computer.

Communication costs energy because CMOS processors dissipate energy whenever current flows

though their transistors. That current can be broken down into leakage current and switching

current. The leakage current per transistor is approximately constant for a given CMOS process

and supply voltage, and can only be lessened by reducing the area of the silicon wafer receiving

voltage bias, or by improving the silicon process itself (also a prerequisite for reducing the

voltage). Switching current on the other hand occurs whenever the input to a transistor is

inverted. The amount of charge which flows, and so its cost in terms of energy, is proportional

to the capacitance at the transistor’s output. The longer or larger the output traces are,

the larger the capacitance—in other words the further the output of the transistor must be

communicated the larger the energy cost. Thus, there are fundamentally two ways to reduce

the power consumed due to switching, reduce the total number or frequency of signal inversions

(i.e. perform fewer or simpler macro- or micro-operations) or, reduce the length over which

transistors must communicate.

It so happens that in contemporary processors the amount of energy spent communicating data

between caches and register files vastly outweighs that expended switching, at least for most

ALU operations. For instance on a 45 nm CMOS computer only approximately 0.14% of the

energy consumed by a 32-bit integer addition is spent inside the ALU, whereas some 40% is

spent on cache and register file access [Hor14]. A significantly more complex operation such

as a 32-bit floating-point multiplication still expends only about 5% of the total instruction’s

energy within the ALU. This assumes that the data is in the register file or data cache—if

there is a cache miss the requisite access to dynamic read-only memory (DRAM) likely further

reduces these percentages, by at least a factor of 10.

But still, this leaves less than 50% of the energy accounted for. We must also address where

the majority of the energy is spent. According to Horowitz [Hor14] the majority of the energy

spent executing an instruction is dissipated in control logic. This might be anything from the

simple logic which controls an in-order scalar processor pipeline, to the elaborate speculation
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logic found in modern out-of-order super-scalar processors—they do not elaborate, but we

suspect the latter. Nevertheless a good deal of energy is potentially spent on the task of

dynamically multiplexing CPU resources, such as the ALU, in addition to that spent on internal

communication.

In summary there are four primary categories of inefficiency when accounting for energy ex-

pended in a CMOS based computer, be it a CPU, a GPU or any competing ASIC architecture:

• Static leakage current (smaller transistors / fewer power domains implies more waste)

• Internal communication of information (greater distance implies more energy dissipated)

• Dynamic organisation of resources (for example multiplexing shared ALU / speculation)

• Unnecessary computation (algorithmic inefficiency or failure to remove abstraction)

4.4 Hypothesis

Given our abstract characterisation of Android’s rendering architecture, and this fundamental

appreciation for energy dissipation with a CMOS device, where might energy be wastefully

dissipated in contemporary smartphones, specifically when rendering their user interface?

By observing how the user interface changes from frame to frame, it is manifestly apparent that

in typical applications the variability is relatively constrained. Often frames share exactly the

same selection of user interface components, thus the same views, and consequently the same

underlying graphical primitives: each frame is largely a rearrangement of the previous frame,

sharing the same primitives, but with different coordinates and parameters.

This means that the control-flow of the rendering process is, to a large extent, static. In

certain cases the extent to which the control-flow is static is a literal consequence of certain

terms within the application source code, whereas in other cases it is implicit: for instance a

particular view might always draw three lines, explicitly witnessed by three statements calling
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drawLine on the given canvas, within its draw method; alternatively a particular container

view might support dynamic removal and addition of children over time, but two specific views

are only ever added during construction. In this latter case the static extent of the control-flow

is implicit in the application source program.

If this observation holds, at least for the major proportion of frames based on typical usage

patterns, then it would follow that the energy spent performing dynamic control-flow within

the silicon device is largely wasted. It is not necessary to dynamically multiplex the input and

output of the ALU within the CPU or GPU every cycle, nor to store intermediate values within

register files, since the flow of values from one operation to the next is predetermined. The

energy dissipated in both the control-flow circuitry and the additional current sourced / sunk

driving high-capacitance lines to common storage could in principle be eliminated.

If a (pure) data-flow graph for the rendering process, specialised to a given application, could

be obtained, then a radically more efficient circuit with fixed control-flow could be constructed,

to take over from the GPU when applicable. This circuit must be specialised to the applica-

tion in order to be efficient, since the control flow for the rendering process is typically static

only within the context of a given application, and not between applications: when switching

between applications the set and draw-order of primitives making up the user interface changes

significantly. It is of course true that most applications display several distinct modes of user

interface presentation within themselves, which for simplicity we are ignoring, but the approach

of specialising a circuit to an application applies equally to sub-modes of an application.

4.4.1 Object-oriented rasterisation

Within the computer graphics literature, rasterising an image in the manner just described

is referred to as object-oriented rasterisation, and more specifically as processor-per-polygon

rasterisation [GGSS89]. The specific term processor-per-primitive pipeline [FvDFH96] also well

describes the architecture we employ, and we follow Schneider [Sch88] in using the term object-

processor pipeline (OPP) to identify the circuit which carries out the rendering process. Early
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examples of processor-per-primitive pipelines were motivated less by their potential power-

saving advantages, but instead their increased parallelism and reduced silicon area requirements

compared to framebuffer-based techniques: they are capable of delivering a pixel per clock-

transition, and on demand, without the need for voluminous buffer circuitry.

The basic idea is that within an OPP each individual primitive to be rasterised is allocated

(although not necessarily permanently) to a particular region of the circuitry. The sub-circuits

allocated to each primitive are physically connected together in a draw-ordered linear sequence,

and a stream of raster-ordered pixel values are pipelined through the circuit to produce the pixel

stream of the rasterised image. Pixel values typically consist not solely of colour information,

but also geometric information such as raster coordinates and other miscellaneous symbolic

metadata.

Whilst implementing a generic OPP directly in silicon confers many of the benefits of a

processor-per-primitive pipelined architecture, a generic implementation negates many of its

potential power-saving advantages by failing to elide much of the dynamic control-flow cir-

cuitry. This is particularly acute if more than one type of primitive is supported by the

pipeline, since the pixel signals must be driven and routed around unused processor units.

In contrast to previous implementations of processor-per-primitive pipelines, we instead syn-

thesise an application-specific OPP from within the application runtime, and implement the

pipeline on an FPGA. The advantage of this approach is that the synthesised OPP contains

minimal control-flow circuitry and explicit data-flow dependence.

The explicit data-flow graph presented by the synthesised OPP may be consequently fed into

a place-and-route algorithm, in order to minimise the energy dissipated in the circuit due to

communication: the place-and-route algorithm is capable of optimising the physical circuit

layout in order to reduce the wire length between connected circuit components. This not

only minimises the capacitance and thus power dissipated due to the interconnect, but also

maximises the allowable clock frequency, which as we shall see later, also leads to a reduction

in static power dissipation.

Although this approach results in an OPP with minimal control-flow overhead, and is amenable
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to place-and-route optimisation for low power—the cost of which might be amortised over many

thousands of frames—our decision to implement it within an FPGA introduces a considerable

quantity of multiplexing transistors into the final circuit. Because of their reconfigurability,

implementing a circuit within an FPGA is mediated by transistors which would otherwise be

absent within a fixed-function ASIC. This necessarily results in not just higher capacitance on

the output terminals of the switching transistors, compared to an equivalent circuit synthesised

to an ASIC, but also considerably higher static leakage current due to the biasing of the

transistors inherent to the FPGA fabric.

The immense opportunities within place-and-route optimisation are tempered by the inherently

high cost of performing such optimisations, and so must be amortised over a correspondingly

large number of executions. This leads to the major challenge of obtaining a useful OPP:

although the OPP must be specialised to the application, it must be generic enough to describe

the rendering process for a long enough sequence of frames to marginalise the place-and-route

optimisation cost. Since the variability within the frame sequence is a function of application

state, the OPP circuit must present a port through which certain internal registers may be

synchronised with the state of the application.

Since such an OPP must render its view in not simply one specific state, but rather within a

particular domain of the states, this yields what is a metaprogramming challenge—the generic

behaviour of the view’s draw method must be captured within a context of certain indeterminate

variables or bindings.

4.5 Object-processor pipeline architecture

The application-specific OPP generated by the method we present is architecturally an acyclic

graph. In general, nodes within the OPP do not share a common interface, but all nodes

directly responsible for rasterisation of the pixel stream must at least extend the raster node

interface. The output node of the OPP is always a raster node.

For illustration, a Verilog module for rasterising an axis-aligned filled rectangle, conforming to
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the raster node interface, is given as follows:

module FillAlignedRectangle(

input Clock,

input Clip,

input [55:0] InputPixel,

input signed [15:0] VertexX,

input signed [15:0] VertexY,

input signed [15:0] Width,

input signed [15:0] Height,

input signed [15:0] FillR,

input signed [15:0] FillG,

input signed [15:0] FillB,

output reg [55:0] OutputPixel

);

wire signed [15:0] ApertureX = InputPixel[55:40];

wire signed [15:0] ApertureY = InputPixel[39:24];

wire [7:0] InputR = InputPixel[23:16];

wire [7:0] InputG = InputPixel[15:8];

wire [7:0] InputB = InputPixel[7:0];

wire InsideRectangle =

ApertureX >= VertexX &&

ApertureY >= VertexY &&

ApertureX < (VertexX + Width) &&

ApertureY < (VertexY + Height);

wire [7:0] WorkingR = (InsideRectangle && !Clip) ? FillR[9:2] : InputR;

wire [7:0] WorkingG = (InsideRectangle && !Clip) ? FillG[9:2] : InputG;
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wire [7:0] WorkingB = (InsideRectangle && !Clip) ? FillB[9:2] : InputB;

wire [55:0] WorkingOutputPixel =

{ApertureX, ApertureY, WorkingR, WorkingG, WorkingB};

always @(posedge Clock) begin

OutputPixel <= WorkingOutputPixel;

end

endmodule

All raster nodes take as input: (i) an edge-triggered clock shared between all nodes; (ii) a

rasterisation clipping signal; and (iii) an input pixel stream. They produce as output a (regis-

tered) pixel stream. The input pixel stream delivers pixels of the image onto which the node

rasterises its primitive. The output pixel stream delivers the image, which has been compos-

ited with the primitive of the node, to further raster nodes—unless the node in question is the

ultimate output node of the OPP. Raster nodes may also take additional node-specific inputs

and outputs, such as in this example parameters which define the geometry and colour applied

to the rectangle. All nodes within the OPP must have a static latency between the input pixel

stream and output pixel stream: this particular node has been designed with a fixed latency

of 1 cycle. This fixed latency constraint is the primary reason that our OPP circuit can elide

control-flow logic, since it allows the computation to be fully statically scheduled.

The pixel stream is a 56-bit wide data-path, which delivers a single pixel of the image every

clock cycle. The lower 24 of those 56 bits represent the colour of the pixel using 3 bytes, one

for the red, green and blue colour channels. For simplicity we elide an alpha channel from the

pixel stream, but that does not prevent each node from internally alpha blending the results

of their rasterisation with the input pixel stream. The upper 32 bits represent the coordinates

of the pixel as a pair of signed fixed-point numbers, enabling rasterisation within 16 sub-pixel

regions.



76 Chapter 4. Low-power user interface rendering

Implementing an axis-aligned rectangle rasteriser according to this interface is quite simple,

as shown above. Each clock edge delivers a new pixel to the input of the node, which is

destructured into its coordinates and colour channels. These values are then fed into adders

and comparators to determine whether the pixel lies inside or outside the rectangle. If this

condition is true, and that part of the rectangle is not clipped (invisible) then the fill colour of

the rectangle replaces the colour of the input pixel, otherwise the pixel is unchanged. These

calculations are allowed one clock period, minus the setup time of the output pixel register, to

settle. On the rising edge of the next clock transition, the output pixel value is captured by the

output register, and held for subsequent nodes to compute upon. It is more efficient to register

the outputs of a node rather than its inputs such that branches in the OPP do not introduce

redundant registers.

Implementing nodes for other graphical primitives might involve more complex logic, but the

task is well defined, and without the fixed latency constraint is clearly possible, if not necessarily

maximally efficient with respect to other rasterisation architectures. Primitives which require

unbounded iteration pose a challenge in assigning a static worst-case latency, but such primitives

are not typical within user interface rasterisation. In such cases where an OPP is not suitable

for rasterising the entire image, it can be composited with a complementary image generated

by another processor, such as a CPU or GPU.

As well as performing place-and-route optimisations, the synthesis tool which implements this

register-transfer level (RTL) description of the OPP into the FPGA fabric may also perform

aggressive constant propagation and folding optimisations on the circuit. For instance in this

example of an axis-aligned rectangle, if the vertex coordinates are given by a literal value within

the OPP then the comparators may be specialised to that value, leading to potentially far fewer

transistors in the implemented circuit. This is another form of optimisation which is enabled

by the OPP representation that can reduce the power consumed by the rendering process.

In the simplest of OPPs the raster nodes form a linear graph, with the output pixel stream of

one node fed directly into the input pixel stream of the other. Parameters to the raster nodes are

supplied by various value nodes within the OPP, which feed directly into each raster node. Any
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parameters which are defined constant within the RTL are typically folded into the raster node

during circuit synthesis. Parameters which are not constant, but depend on the state of the

application runtime, are supplied by registers which are synchronised with the application state

during the inter-frame period. The specifics of this synchronisation mechanism are discussed

later in Section 4.8.2.

More complex OPPs involve branching graphs, where the pixel stream is fed into several down-

stream nodes, to be later combined. This is especially common when primitives are clipped

within a region defined by a mask. The nodes responsible for clipping computations culminate

in the production of a boolean signal which controls the requisite clip input to all raster nodes.

This signal is used to selectively disable a node’s effect on a per-pixel basis.

In order to allow values to diverge and combine in a statically scheduled pipeline, care must

be taken to ensure that when values from different paths combine at a common node, the

values are synchronised with each other. Failure to do this, whereby values pertaining to

different pixels collide at a single node, usually results in corruption to the raster image. We

introduce fixed-latency queues into our OPP to ensure that this cannot happen. The algorithm

is straightforward: when building the OPP, which as we shall see is assembled recursively from

fragments, the maximum latency across each input fragment is calculated (taken back to the

origin of the pixel stream) and then queues are inserted before each input to ensure that the

latencies are exactly equal. Queuing circuitry is the price paid for static scheduling, and we

hypothesise that the energy expended on the queue transistors is lower than what would be

spent on dynamic control-flow circuitry.

4.6 Experiment

In order to test our hypothesis we created a simple smartphone application, from which an

OPP was generated and implemented on a commercial FPGA. The user interface of this test

application is simpler than typical for a smartphone application, yet contains challenges rep-

resentative of the state of the art in user interface design: specifically the central feature of
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our test application is what is known in Android as a recycler view. A recycler view is one of

the most complex standard components provided on Android. It contains a notionally infinite

sequence of child views, laid out either vertically or horizontally, clipped within a rectangular

region. Users scroll through the contained views, usually by swiping their finger repeatedly,

to bring obscured views into the visible region whilst pushing other views out. In practice the

entire sequence of views, both visible and hidden, are not materialised within the runtime, but

as views disappear, becoming fully clipped, they are recycled as incoming views, an implemen-

tation detail from which the recycler view gets its name. This optimisation is effective since

the child views of a recycler views are often all instances of the same class, but just differing

in the contents of various fields. Furthermore views within the recycler view are typically in-

stantiated dynamically, whereby data required to instantiate each child is loaded just before it

becomes visible. This subtle combination of dynamism, heavy reliance on clipping, and careful

optimisation makes the recycler view an interesting test case for proving the capabilities of our

OPP architecture.

For these reasons our test application contains a prominent recycler view, along with a title

view and one other kind of view known as a “floating action button”, which partially covers the

recycler view. All of the children of the recycler view are instances of the same class: a custom

view consisting of two text views. Due to the recycler optimisation, only four instances of

this class are ever instantiated, the maximum number which could ever be visible concurrently:

these four instances form a pool from which the children are recycled, as the user scrolls through

the content. A screenshot of this test application is given in Figure 4.2.

4.6.1 View definitions

This hierarchy of views comprising the top-level of our application is defined, as in Android,

within an XML document:

<?xml version="1.0" encoding="utf-8"?>

<ConstraintView



4.6. Experiment 79

Left="0" Top="0" Right="640" Bottom="1152" Background="#E0E0E0"

FixedDimensions="true" FixedBackground="true">

<TextView

ID="MainTitle" Text="My I/O"

Left="32" Top="50" Right="608" Bottom="148" Background="#00E4FF"

FixedBackground="true">

</TextView>

<RecyclerView

ID="MainRecycler"

Left="32" Top="198" Right="608" Bottom="1086" Background="#FFFFFF"

FixedBackground="true"

UniformChildView="ScheduleItemView" MaximumChildCount="4">

</RecyclerView>

</ConstraintView>

The custom view ScheduleItemView is defined separately, again in XML, as:

<?xml version="1.0" encoding="utf-8"?>

<ConstraintView

Background="#F0F0F0"

FixedBackground="true" FixedChildSignature="true">

<TextView

ID="SlotTitle" Text="Loading..."

Left="32" Top="50" Right="544" Bottom="148" Background="#1CE8B5"

FixedBackground="true">

</TextView>

<TextView

ID="SlotDescription" Text="Loading..."

Left="32" Top="148" Right="544" Bottom="246" Background="#E0E0E0"

FixedBackground="true">
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</TextView>

</ConstraintView>

There are several attributes within these XML definitions which make use of features not

available in standard Android. We introduced these extensions to enable automatic and efficient

generation of the OPP. The novel attributes are as follows:

• FixedDimensions

• FixedBackground

• UniformChildView

• FixedChildSignature

• MaximumChildCount

The first two attributes are simple constancy annotations: they allow the user interface designer

to convey that the dimensions (width and height) and background colour of a particular com-

ponent are constant respectively. Hence the dimensions and colour of the view may be inlined

and constant folded within the OPP during synthesis, and hence do not require synchronisation

with the application runtime, conserving both time and energy.

The UniformChildView and FixedChildSignature annotations on the other hand are a kind

of type annotation. The former allows the user interface designer to state that all the children

added (perhaps dynamically) to a parent view will have a particular concrete class. The latter

annotation states that the list of each child’s concrete class is constant, but not necessarily

uniform. Finally MaximumChildCount places an upper bound on the number of child views

which may be added to the given parent view.

Without these additional annotations to the view definitions it would not be possible to au-

tomatically generate an efficient OPP. The default behaviour of an Android RecyclerView

permits any type of view to be added as a child at any time. Without foreknowledge the gen-

erated OPP must necessarily accommodate any such possibility. In general this is not possible
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within a statically scheduled pipeline—and even if a generous and speculative upper-bound

were placed on the latency, the complexity of the general purpose circuitry required would

likely negate the power savings intended. Hence it is important when generating the OPP to

have some bound on the type of views which may be present within the recycler view. The

simplest bound, which we use in our example, is the singleton set: we constrain the recycler

view in our test application to children with exactly the concrete class of ScheduleItemView, a

custom application-specific view class. For the same reason it is important to place a bound on

the number of children, which in our example is manually set to four. This bound might have

instead been inferred automatically, if sufficient dimensions pertaining to the recycler view and

its children were defined constant.

Consequently the section of the OPP responsible for rendering the recycler view need only

contain four copies of the OPP fragment for rasterising a ScheduleItemView, which may be

selectively disabled via their clipping signal whenever fewer than four children are concurrently

visible.

The FixedChildSignature annotation on the recycler view’s children might initially appear

redundant, but is required for the same reason as the annotations on the recycler view itself.

This is because the XML definition of a view in Android is only a template for constructing the

view, a process known as inflation, not an atemporal definition. In general views may be arbi-

trarily mutated after inflation, to the extent permitted by their methods. Consequently these

annotations are employed not solely as compile time metadata, but are enforced at runtime—

any attempt to mutate the state of a view in such a way as to violate the annotation leads

to an immediate runtime exception being raised within the offending method. Without the

FixedChildSignature annotation it would not be possible during the generation of the OPP

to rely upon the fact that each recycled child consists of exactly two text views. Furthermore

views need not be constructed from XML, even in the first instance, but might originate from

procedural code. Nevertheless views which originate procedurally can be constrained by calling

similarly named methods which correspond to these annotations, for example a FixBackground

method might stand in for the FixedBackground annotation.
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4.6.2 Data dependence

In Android the XML description of an application’s user interface does not completely define

its appearance and behaviour. This is because the appearance of custom views can be defined

within the application program by overriding their draw method. An additional complication

which must be handled is that views which depend on application state are typically mutated

from time to time, as the application evolves. In our example the recycler view depends on ap-

plication state in two different ways. First the scroll position of the view depends on interrupt

driven interactions from the user, and second the text displayed within each ScheduleItemView

depends on data acquired by the application, perhaps over a network connection. These de-

pendencies are not even specified within the XML definition of the user interface, but are

established within the application program.

When generating an OPP specialised to an application, these kinds of state dependence must

be discovered and synchronised with the application as the state evolves. Given that a single

frame of the user interface pertains to a single instant in time, there is no need to synchronise

state with the OPP whilst the pipeline is executing. Instead the state of the OPP may be

updated only between frames, when the pipeline is inactive.

The approach taken is to add each view which forms part of the user interface, during OPP

generation, to a set known as the preemption set. All objects within the preemption set are

candidates for state dependence: objects within the preemption set are serialised just before

a frame is rendered, and the serialised forms are transmitted to the OPP in the inter-frame

idle period. The set is termed a “preemption” set since the state of the object is bound earlier

than it would be when rendering the same view natively on the CPU. Therefore there is a

danger that this could lead to an incorrect rasterisation result: if the state of a preempted

view changes in the intervening time, namely during the rasterisation process, then attributes

of the preempted state could differ from the correct value. Although mutation of views during

rasterisation is informally discouraged within Android applications, the possibility still remains.

Therefore during the code analysis performed during OPP generation we mitigate the hazard

by formally checking that no state mutation operations occur during rasterisation.
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It is of course possible for the OPP to also have a state dependency which is not via a view

object of the user interface: in this case the object is included in the preemption set and

synchronised in exactly the same manner as a view object.

4.6.3 Circuit synthesis

Having supplied annotations to the user interface definition, which place bounds on its vari-

ability, and having a strategy to discover its dependencies of application state, an OPP for

the application may be generated from its top-level view object. Exactly how this is done is

discussed fully in Sections 4.7 and 4.8, but abstractly the process proceeds as follows.

When the top-level view of the application’s user interface is bound to its window, the OPP

is immediately generated and installed into the FPGA. This binding usually occurs just once,

when the window is created, and so one OPP installation serves for the entire lifetime of the

application. In order to obtain a specialised pipeline, the behaviour of this top-level view’s draw

method is translated into an acyclic graphical representation of the OPP. This representation

might be thought of as a RTL intermediate representation for the target circuit: it comprises

the logic of each circuit component, and their relations, but does not commit to a specific

FPGA block-level implementation, or any placement decisions. This graph is trivially cast to a

netlist, in either Verilog or VHDL, since both representations are at essentially the same level

of abstraction—our graphical representation simply consists of additional metadata over the

underlying Verilog form.

This intermediate representation for the OPP, whilst not committing to a particular gate-

level implementation, does commit to a particular timing schedule. This is motivated by our

explicit aim of removing all dynamic control-flow from the resulting circuit—by fully inlining

all method calls during OPP generation, we explicitly obtain a statically scheduled pipeline.

This naturally prohibits unbounded iteration and recursion within the rendering process, but

their presence within the rasterisation process is discouraged in any case, since the process must

complete within a fixed interval. It is not uncommon for application developers to write what
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is effectively bounded iteration using an unbounded form: the annotation mechanism described

previously allows for these implicit bounds to be supplied to the generation process.

Wherever values converge in the OPP, queues are inserted as necessary, such that all nodes

need take only one control signal: the common pipeline clock. Additionally to the rendering

pipeline, the OPP contains an interface for controlling its execution and receiving its output.

This interface includes:

• An input signal for the pipeline’s clock;

• Input signals for the raster scan coordinates stream;

• Output signals for the raster scan coordinates and pixel stream;

• The pipeline latency (measured in clock periods);

• An interface for updating the pipeline state from the serialised preemption set.

Having cast our OPP representation to Verilog, it is possible to delegate the task of imple-

menting the FPGA circuit to one of several third-party tools. Most FPGA vendors provide

custom tool-chains for implementing a circuit within their products, operating from a definition

in Verilog.

This process consists of several sub-operations, including but not limited to: synthesising logic

gates from the RTL description; mapping and packing gates into the vendor’s fixed-size lookup

tables (LUTs) and flip-flops; placing individual LUT instances within the FPGA fabric; routing

connections between blocks; and performing timing analyses to determine bounds on both the

maximum clock frequency and power consumption. In particular the time taken to place

and route the circuit for the FPGA is often in excess of minutes, even approaching hours.

Fortunately the OPP generated by our method is typically stable between instances of the

same application, and thus the substantial energy and time cost of running this tool-chain

could in principle be shared between application instances, via either a local or remote cache.

Due to the large number of transistors used within any FPGA to implement the reprogrammable

circuitry, they usually exhibit considerably higher static consumption than an equivalent circuit
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implemented in an ASIC. Whereas a simple gate within an ASIC design might require less than

a dozen transistors, and with direct wiring employed for its fan-out connections, the same gate

implemented within an FPGA might be implemented by writing state into a static random-

access memory (SRAM) LUT with indirect connectivity via the FPGA matrix.

The static power consumed by the FPGA transistors can be considerably reduced in two ways:

LUT technology selection, and effective power gating. Most commercial FPGAs use SRAMs

to implement their LUTs, but there are alternative products which use Flash memory as their

LUT technology. Flash memory based FPGAs can consume several orders of magnitude less

static power [MTIMPP22]. This is due in part to their non-volatility and reduced transistor

count. Power gating is another highly effective mitigation for static power. The challenge in

applications such as rendering, where calculation phases occur with some tens of milliseconds

periodicity, is in powering the accelerator down and back up again within the available idle

window, and furthermore without expending so much power during the power transition as to

negate any benefit. For this reason we selected an FPGA manufactured by Microsemi, from

their “PolarFire” range—a series of Flash based devices which can enter and leave their power

gated state within approximately 200 microseconds [MTIMPP19]. This amounts to less than 2%

of the inter-frame period for a 60 Hz refresh rate, a small enough fraction for it to be practicable

to power the FPGA up and down every frame. Microsemi’s power gating technology, marketed

as “Flash*Freeze”, does not fully power down the FPGA, but gates power to the majority of

the device in order to reach a compromise between static power reduction and the latency of

the power gate.

To minimise the average power consumed by the FPGA it is potentially necessary to pipeline

individual nodes within the OPP, increasing their latency in cycles whilst reducing the length

of the circuit’s critical path, so attaining the highest possible frequency and thus the longest

possible operation interval with the power gate open.

Figure 4.1 shows a schematic for the OPP generated by our experimental application, described

in section 4.9. Whilst the precise details are not important at this point, it can be understood

from a high-level perspective as globally clocked pixel pipeline (with associated metadata)
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flowing from top to bottom. Pixel coordinates are fed into the top-end of the pipeline, one

{x, y} pair every clock cycle. Rasterised pixels then emerge from the bottom-end of the pipeline

after some latency, one pixel per clock cycle.

4.7 Late-bound pipeline generation

It is tempting to imagine that an OPP for rendering the user interface of an application could

be simply generated directly from an XML definition. But as we have seen in Android, the

XML definition serves only as a set of construction parameters, lacking any information about

how the user interface evolves with application state and the user’s interactions. Furthermore

since the user interface might contain programmatically-defined custom views, it is necessary

to generate the OPP from the object structure of the program itself.

Whilst it might be possible in principle to generate an OPP solely from a set of view class

definitions—much as the Java compiler operates upon application source code to produce byte-

code for the Java virtual machine—doing so would prevent us from taking advantage of the

wealth of information available within the application’s runtime context. The same contextual

advantage is sought by the just-in-time compiler frequently deployed within the Java runtime,

however in our case we are also seeking sufficient context to implement a specific fragment of

the process as a completely statically scheduled pipeline.

A particular view instance will often have constant bindings to other view objects and values

supplied through its constructor, which are simply impossible to infer from the static context

of the class alone. These bindings are crucial to our aim, since we achieve static scheduling by

fully inlining the implementation of the top-level view’s draw method. With instance bindings

available within our code generation context, and thus concrete classes immediately resolvable,

it is possible to fully inline the necessary method invocations, reducing the implementation to

constant time operations acting directly upon the canvas abstraction.

Hence we invoke the code generators for our OPP within the runtime context of the application,

and furthermore within the encapsulated context of the object instance, both characteristic
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Figure 4.1: Schematic of the generated rasterisation pipeline. The dense clusters of closely
connected nodes represent components within the pipeline and their associated inputs, derived
either from constants or registers which are synchronised with the application state. The
long edges are primarily queues for propagating values calculated earlier in the pipeline to
later nodes, including clipping information. Nodes perform a variety of different operations
including: (i) providing constant or mutable data values; (ii) computing fixed-point arithmetic;
(iii) computing boolean values; (iv) transforming pixel coordinates; and (v) clipping and shading
pixels.
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elements of late-bound code generation. There are three senses in which this code generation

process is late bound: first the delegate generators are polymorphically bound via dynamic

dispatch; secondly the context within which the code generator is invoked is under control of

the source program; and finally the bindings of that application context are available to the code

generator itself. Importantly this implies that, by delaying code generation to an appropriate

point in the process evolution, the presence of certain bindings within the runtime context may

be ensured.

To illustrate the process of generating an OPP from a user interface in detail, we will first

describe the translation of a trivial example: an application presenting just two immutable

rectangles. Subsequently we will return to the example application of our experiment, and

describe how the additional complexities of this more realistic example are handled.

4.7.1 Minimal example

Consider the following trivial view definition:

class TrivialView(View):

def on_draw(self, canvas):

return canvas.fill_rect(10, 10, 10, 10, 0, 255, 255) \

.fill_rect(10, 50, 20, 20, 255, 0, 255)

We will describe how an OPP for this view is generated by means of the translate operator

which we introduced in Chapter 2. We have deliberately simplified various aspects of this

process in order to avoid distraction away from the essential details. A full presentation is

made in Section 4.8.

Our trivial user interface consists of just one view object, simply presenting a pair of filled

rectangles, one cyan and the other magenta. We have defined this view class in Python, despite

the fact that Python is not officially supported on Android, since it serves as our primary

language for performing late-bound code generation, for reasons justified in Section 4.10.2.
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In addition to diverging from the Android standard with respect to language, our API also

differs slightly, instead adopting a functional interface for draw methods on view objects, and

similarly methods on the canvas. Furthermore we have provided various methods for filling

regions without explicit “paint” objects. Whilst not strictly necessary for OPP generation,

these departures were taken to simplify both exposition and implementation. We discuss the

rationale and implications of this decisions in greater detail in Section 4.10.2.

Strictly speaking, views on Android are drawn by invoking their draw method, and not on draw,

which is protected. This is because draw dispatches to child views of the instance, amongst

several other responsibilities. In this minimal example there is no observable difference between

the two methods.

Hence, in order to generate an OPP for the rasterisation of TrivialView we must translate the

behaviour of on draw to our OPP intermediate representation, for subsequent synthesis of that

RTL-level description into the binary format accepted by our FPGA. To translate the behaviour

of this method we use the translate operator, to perform late-bound code generation of the

OPP:

mandate = None

top_level_view = TrivialView()

initial = BlankPixelSizedApertureCanvasNode()

pipeline = translate(

OPP,

immediate(OPP, TrivialView.on_draw, mandate),

[ immediate(OPP, top_level_view, mandate), OPP([initial], [], initial) ],

mandate

)

We have supplied None for the mandate since it is not used in this trivial translation. The result

of the translation “pipeline” is an instance of the OPP class, an RTL representation of the

behaviour of the method TrivialView.on draw. Let us break down all of the steps performed
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during this translation, one by one.

1. An instance of BlankPixelSizedApertureCanvasNode is created to serve as the initial

node of the OPP. It is a node that acts as a variable within the OPP, in the same way

that an unbound name “x” would if we were targeting our translation to Python. In

contrast it is annotated with a concrete type PixelSizedApertureCanvas, hence this

node is type-restricted to represent an aperture to the notional canvas upon which the

application draws, measuring just 1 pixel wide and 1 pixel high. The idea is to translate

the process of drawing just one pixel of the canvas, leaving the horizontal and vertical

position of that aperture unbound. Within the FPGA, since the OPP is pipelined by

construction, we render the full canvas by streaming the list of pixel coordinates though

the OPP in raster order, emitting one pixel per clock cycle from the end of the pipeline.

2. We represent the method on draw on the class TrivialView as a term in OPP using the

immediate function. This is necessary, since the translate operator assembles fragments

only in terms of the target language.

3. An OPP term is constructed containing our instance of BlankPixelSizedApertureCanvasNode,

the second argument provider for on draw providing the argument canvas. This serves

as the initial pipeline instance from which the eventual pipeline is grown by composing

further nodes onto the end of the pipeline (instances of OPP are immutable). The first

argument to the OPP constructor is a list of nodes within the graph; the second a list of

connections describing which node outputs flow into which node inputs; and finally the

third argument denotes the output node of the pipeline. Pipelines have exactly one out-

put node, and all nodes have exactly one output connection also, hence when composing

pipelines there is no ambiguity when combining the output of one pipeline with the other:

implementing composition operators for pipelines is thus straightforward.

4. The translate operator is invoked, passing OPP as the target language, along with terms

in OPP representing the method whose behaviour is to be translated and its two argument

providers we have just constructed.
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5. After checking various preconditions on its arguments, such as that all given terms are

terms in OPP, translate enumerates all candidate code generators applicable to the

provided function, and delegates to the most specific generator, the ordering of which we

detail in Chapter 5. There are two possible code generator candidates for this example:

a code generator attached directly to TrivialView.on draw; or a generic code generator

attached to the OPP class, capable of generating OPP terms from any Python function, by

means of reification. The former takes priority if it exists, whereas the latter saves the

programmer from having to explicitly define code generators for each of their functions.

The ability to attach code generators directly to functions is primarily intended to allow

for customisation of the code generation process, but since it is far simpler to describe this

particular branch of the translation process, we assume that the following code generator

has been explicitly attached to TrivialView.on draw before the invocation of translate:

def trivial_view_on_draw_to_OPP(_, argument_providers, mandate):

canvas_provider = argument_providers[1]

with_rect = translate(

OPP,

immediate(OPP,

canvas_provider.result_node()['output_class'].fill_rect,

mandate

),

[ canvas_provider, immediate(OPP, 10, mandate),

immediate(OPP, 10, mandate), immediate(OPP, 10, mandate),

immediate(OPP, 10, mandate), immediate(OPP, 0, mandate),

immediate(OPP, 255, mandate), immediate(OPP, 255, mandate) ],

mandate

)

return translate(

OPP,

immediate(OPP,
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with_rect.result_node()['output_class'].fill_rect,

mandate

),

[ with_rect, immediate(OPP, 10, mandate),

immediate(OPP, 50, mandate), immediate(OPP, 20, mandate),

immediate(OPP, 20, mandate), immediate(OPP, 255, mandate),

immediate(OPP, 0, mandate), immediate(OPP, 255, mandate) ],

mandate

)

This laboriously written code generator might be associated with the TrivialView.on draw

method by assigning it to the “well-known” attribute translate invoke to OPP of the

method object:

setattr(TrivialView.on_draw,

'_translate_invoke_to_OPP',

trivial_view_on_draw_to_OPP

)

The presence of this attribute is tested by translate when enumerating the candidate

code generators for TrivialView.on draw.

6. Next translate delegates to our code generator, forwarding the argument providers and

mandate. Therefore canvas provider is bound to OPP([initial], [], initial). As

is typical when implementing late-bound code generators, sub-tasks within the translation

are further dispatched via recursive calls to translate. In this case we rely on obtain-

ing an immediate reference to fill rect in order to translate its behaviour, although

in more complex scenarios the delegate method might not have been (fully) instanti-

ated. We cannot statically assume the concrete class of the provided canvas, namely

PixelSizedApertureCanvas, but instead resolve it at code generation time by inspect-

ing the meta-data attribute ‘output class’ on the result node of the canvas provider.

Since all of the arguments to fill rect are constants, providers for each are constructed
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by means of the immediate function.

7. The code generator for fill rect is in turn invoked, and returns the pipeline with rect,

comprising the initial node and a node for rasterising the rectangle, specialised to

the provided arguments. This code generator for fill rect is attached directly to the

PixelSizedApertureCanvas class. A practical implementation of our OPP generation

system within Android would likely involve several parties, each delivering different soft-

ware components. Since the canvas abstraction is generic to all Android applications

we imagine that for practical deployments of the system described, code generators for

canvas operations would be supplied by a small number of vendors for use by the larger

set of application developers. Hence an application developer might reasonably take the

availability of the fill rect code generator for granted. Nevertheless its implementation

might be given by the following method:

def aperture_canvas_fill_rect_to_OPP(_, argument_providers, mandate):

queues = equalise_latency(argument_providers)

rasteriser = FillRectNode(PixelSizedApertureCanvas)

translation = concatenation(queues).concatenate(

OPP(

[rasteriser],

[Connection(queues[port], rasteriser, port) for port in range(0, 8)],

rasteriser

)

)

return translation

We have elided the logic for clipping the pixel stream from this implementation, for

simplicity—in the following Section 4.8.4 we describe how clipping is handled in general.

This code generator simply generates a circuit which appends a FillRectNode to the

pipeline. FillRectNodes, as we saw in Section 4.5 previously, take eight inputs and pro-

duce one output, namely the resulting pixel stream. Along with the input pixel stream
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the other seven inputs comprise the coordinates and fill properties of the rectangle. Each

of the eight inputs are connected to the FillRectNode by the connection objects in-

stantiated in the list comprehension: here we take advantage of the fact that by design

the order of arguments to the canvas API match the order of inputs to the OPP node.

The appended FillRectNode is annotated as the output node of the returned OPP by

passing it as the third argument to the OPP constructor. The only subtlety within this

code generator is found in the call to equalise latency. Here we insert fixed latency

queues to delay the arrival of arguments values, such that each arrives at the same time.

The function equalise latency performs this task, taking a list of OPP instances against

which it interrogates each members’ latency, returning a list of similar OPP instances each

delayed to present equivalent latency. It is worth noting that we represent all circuitry

for delivering arguments as OPP instances, whether they are canvas arguments, numeric

arguments, or any other kind of value: a property that we rely upon heavily during the

pipeline generation process.

8. This intermediate pipeline is composed similarly with the node for rasterising the second

rectangle, to obtain the final pipeline.

The resulting OPP is bound to pipeline, and consists of two rendering nodes connected in

series, with a miscellany of supporting nodes delivering various constants to the pipeline:

Subsequent synthesis is performed by casting this pipeline to Verilog, which just discards various

metadata held by our intermediate representation, similar to the phenomenon of “type erasure”

during the compilation of Java programs. When implementing the pipeline for a specific FPGA,

each vendor provides their own tool-chain, typically accepting Verilog as a source language.

Depending on the nature of the hardware target, various signals exposed by our pipeline must

be linked with the requisite hardware: at the very least the global clock and the pixel output

stream. Such linkage declarations are handled in either an ad hoc manner for each target,

or alternatively according to a standardised API for integrating rasterisation pipelines into a

hardware system. We do not attempt to define the latter within this thesis.
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4.8 Practical pipelines

Whilst generating the pipeline for our trivial example faithfully illustrated the essential archi-

tecture of our code generation system, more realistic applications typically involve considerable

additional code generation complexity. These complicating factors must be properly accom-

modated in order to generate an OPP specialised to any non-trivial application. Those factors

which we shall address in detail within this section include:

• Use of constancy and bounding annotations to restrict the variability of the canvas,

• Preemption and synchronisation of application state with the pipeline,

• Code generation by means of reification,

• Coordinate transformations and clipping of rasterised regions.

Finding a solution for each of these issues was necessary in order to correctly generate a pipeline

for the view synthesised in our experiment detailed in Section 4.6. Here we take each factor in

turn, and describe how it was solved within the context of our application.

4.8.1 Employment of annotations

Whilst there often exists a statically scheduled OPP for rendering the user interface for many

applications, that pipeline is not always tractably inferred from its formal representation. Typ-

ically the formal description permits a greater degree of variability in the user interface than

is either necessary or utilised: variables are often assigned only once yet not declared con-

stant, and lists are left unbounded yet only ever populated with at most half a dozen elements.

Generating an OPP, for execution on an FPGA, with respect to an under-constrained user in-

terface is either impractically wasteful of the FPGAs resources, or worse, infeasible to statically

schedule. In Section 4.6.1 we defined a set of annotations to allow the application developer

to formally declare certain kinds of constraint, respected by their application’s user interface.

Where these constraints bear upon the tractability and practicality of the OPP generation, a
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mechanism must be available by which those relevant annotations can influence the generation

of the pipeline. There is considerable design freedom in devising this mechanism, which we

broadly refer to as annotation steering.

In our example we chose to implement a mechanism which extends the “view inflation” process,

already native to Android applications. As we have already seen, Android applications define

a blueprint for their application’s views in XML, from which the Android system automati-

cally instantiates view objects: this process is known as inflation. Many view objects may be

instantiated from the same XML blueprint.

To convey any annotations applied to the blueprint, we opted to insert a second phase into the

view inflation process. Firstly each XML blueprint is inflated into a runtime class, subclassing

its nominal view class but adorned with overriding members, methods and code generators

which respect the annotated constraints. Secondly each view instance is instantiated from this

dynamically generated subclass.

This two-phase inflation scheme simplifies the process of translating non-immediate views.

Even though a particular view instance might not be available at translation time, at least the

constraints necessary to generate its OPP are available via bindings on its concrete class. In

short, we use dynamic class generation as a technique for binding-time separation in the OPP

compiler.

Consider for example the following XML blueprint, for a recycler view:

<RecyclerView

ID="MainRecycler"

Left="32" Top="198" Right="608" Bottom="1086" Background="#FFFFFF"

FixedBackground="true"

UniformChildView="ScheduleItemView" MaximumChildCount="4">

</RecyclerView>

This blueprint is adorned with three annotations: FixedBackground, UniformChildView and

MaximumChildCount. During phase one of view inflation we create a runtime subclass of
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RecyclerView, extended with an implementation of the static method is background colour fixed

which returns True, and fixed background colour which returns the colour #FFFFFF. This is

sufficient to support efficient OPP generation, since the default code generator on the View par-

ent class was defined to respect the results of these static methods. Subsequently this dynamic

class is further subclassed in order to incorporate the constraints on its children. In particular

we generate a subclass which instantiates the list holding all of the recycler view’s children

from a specialised list class. This specialised list class is also dynamically generated in a similar

fashion: a class is generated at runtime which implements the generic list interface, but has

static bindings for the maximum number and concrete type of its members. Attempting to add

members to lists instantiated from this specialised class, not adhering to these two constraints,

will raise a fatal exception.

Consequently code generators for methods of this list are defined, which annotate the ‘output class’

of their result node with the given statically bound concrete class, in this case ScheduleItemView.

Hence the inflated recycler view, and its list of children, need not be instantiated at OPP gen-

eration time for the pipeline to be efficiently generated, since the constraints are all bound

statically against the class structure, albeit at runtime.

It is precisely in this manner that all type information is propagated from annotations, and

between code generators, at translation time.

4.8.2 Preemption and synchronisation of application state

The user interface of our trivial example was constant—it did not evolve its appearance over

time or due to interactions from the application’s user. This is rather contrived, since most

application user interfaces evolve as the state of the application changes, as does the user

interface of our experimental application proper.

Since the generated OPP is intended to serve over the entire lifetime of the view object, it

must necessarily contain mutable variables which are updated when the state of the applica-

tion changes. It would be rather expensive to synchronise the state of all the application’s
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variables with the OPP, since most do not directly impact on the appearance of the user in-

terface. Instead we describe a mechanism by which the state synchronisation interface may be

delineated automatically during OPP generation. This involves a novel abstraction known as

the preemption set, introduced previously in Section 4.6.2.

In general we populate the preemption set whenever a mutable object is represented in the

OPP via application of the immediate function: capturing the fact that the state of this object

must be synchronised with the OPP. For example if a code generator represents some mutable

object foo within the OPP by calling immediate(OPP, foo, mandate), then foo is added to

the preemption set attached to the mandate: mandate.preemption set.include(foo). This

can be done either explicitly, or automatically provided that all candidate objects consistently

annotate whether they are mutable or immutable (inferred mutability is a conservative default).

In general it is possible for the OPP to depend on mutable objects which are not yet instanti-

ated at translation time. This scenario occurs within our experiment, whereby view instances

which are dynamically added and removed from the recycler view during scrolling are not im-

mediate during OPP generation. Whilst this scenario is complicated to handle in general, the

hierarchical structure of views in Android presents a simple solution.

The solution is thus: despite the fact that some views are not immediate, since we perform

OPP generation at the point the top-level view instance is bound, then at least one ancestor of

all views in the user interface is certainly immediate. This immediate ancestor view is added to

the preemption set, and thus represents the state of both itself and all of its potential children.

In our experiment the recycler view itself was immediate, and so during OPP generation the

recycler view instance was added to the preemption set. By virtue of the view hierarchy, the

recycler view can be unambiguously considered to own its children, and so the variability of its

child views are notionally factored into its own state.
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Preemption example

Consider again our trivial example, but with a modification that the x-coordinate of the filled

rectangles depend upon an attribute of the TrivialView instance:

class TrivialView(View):

def on_draw(self, canvas):

return canvas.fill_rect(self.offset, 10, 10, 10, 0, 255, 255) \

.fill_rect(self.offset, 50, 20, 20, 255, 0, 255)

Since the object is mutable, it must be added to the preemption set at the point it is represented

in the pipeline. This requires overriding the default behaviour of immediate, since by default

it merely represents objects in the target language by reference, resulting in non-synthesisable

nodes within the OPP intermediate representation (note that since the state of immutable

objects are always inlined, a non-synthesisable node is elided in those cases). We employed the

following override to immediate, for all mutable objects involved in our experiment:

def represent_mutable_object_in_OPP(self, mandate):

return mandate.preemption_set.include(self)

This override is attached to the class via an attribute represent in OPP, which is delegated

to preferentially when calling immediate against the OPP target:

setattr(TrivialView, '_represent_in_OPP', represent_mutable_object_in_OPP)

The instance of TrivialView which is bound to self is thus added to the mandate’s preemption

set. Including an object in the preemption set generates an OPP object which acts as a provider

for the included object. To generate this provider, the preemption set delegates to the class of

the included object, calling its preemption interface method. In our experiment this method

simply returns a single node pipeline fragment, which delivers a registered bit-string, and is

annotated as providing an object of the given class. Each class can override this method for
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serialising its own state to a bit-string: the only constraint when targeting OPP is that the

(maximum) length of the bit-string must be defined at translation time.

The salient point here is that the preemption set maintains a link between the included object

and the node representing that object within the pipeline. By iterating though the members of

the preemption set, serialising their state and assigning the resulting bit-strings into the registers

of the associated nodes in the pipeline, allows the state of applications to be synchronised with

the pipeline periodically.

As we discussed in Section 4.6.2, Android development “best practice” states that any mutable

application state which interacts directly with the rasterisation process should not be modified

whilst the user interface is being drawn, since doing so could lead to visual corruption of frames.

Consequently, in our experiment we relied upon this property to schedule our synchronisation

with pipeline: a snapshot of the state of all objects in the preemption set is taken just before

each frame is rasterised, a binary comparison of the serialised state is taken against the previous

frame’s snapshot, and any changes are sent to the FPGA, so synchronisation occurs at most

once per frame.

Whilst we might simply assume that the states of objects in the preemption set are not mutated

during rasterisation, given that we are translating the rasterisation process, this provides a

convenient opportunity to verify this assumption, at least with respect to some other more

basic assumptions. If we assume that the runtime objects which represent the user interface,

including all views and their dependent objects, are only mutated from the main Android thread

responsible for rasterisation, then we can conservatively verify the absence of state mutation

during rasterisation, by raising a translation exception if any operation entailed by calling draw

on the top-level view cannot be determined to be free of mutating effects. Since the analysis

required to perform this verification is very similar to the analysis required for the translation

itself, we interwove the verification and translation processes together. This is only possible

since we perform full inlining of all methods called within the rasterisation process, and so can

easily check each operation involved is free of mutating side-effects.
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4.8.3 Code generation by means of reification

In previous sections we described the process of OPP generation using explicit code generators,

attached manually to every function or method involved in rasterising the user interface. Whilst

it might be necessary to write explicit code generators for some finite set of primitive operations,

an OPP for any user interface built using those primitives could in theory be obtained by

composition of those primitive generators. To expect an application developer to manually

write a code generator for each method defined within their application would largely defeat

the purpose of code generation—they might instead more simply define the OPP explicitly,

rather than generatively. One portion of the OPP generated in our experiment was formed by

means of reification, specifically the “floating action button”, shown in Figure 4.2.

When an application developer defines their user interface in Android they do so using im-

perative code, at least in the most general case. Hence we must be able to compose OPP

fragments corresponding to those primitive operations on canvas objects, by inspecting the

source definitions and runtime environment of the application.

In short, we must allow translate to reify aspects of the source function, and use these reified

forms to compose the method’s translation without recourse to an explicit code generator

for every function. This better aligns with what might be expected of an operator called

translate—an operator which takes terms in some source language and emits equivalent terms

in some target language. However, translate remains an operator which acts upon function

providers—target terms which evaluate a function closure—and thus provide access in general

to not only the function’s source syntax, but also the scope over which the syntax is closed, in

addition to other miscellaneous details of its runtime context.

Chapter 5 describes in detail how translate performs translation by means of reification.

Summarily, the syntax of the function body, or method body, is reified to a term accepted by

some meta-circular interpreter. Since evaluation of that term by the meta-circular interpreter

would effect invocation of the function, translate simply recurses, forming its result by trans-

lating the evaluation function of the interpreter given the reified syntax of the function and an
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appropriate scope provider. Infinite regress is avoided by attaching an explicit code generator

to the interpreter, which thus serves as a single generic generator for any reifiable function.

The only substantial subtlety here has to do with provision for the scope. Whilst the syntax of

any immediate function is necessarily immediate, the same cannot be said for the scope within

which that syntax is ultimately evaluated, since certain function arguments might be unbound

at translation time. Furthermore if that scope is mutable, it must be instantiated separately

for each function invocation.

Instead a term is formed which nominally instantiates the scope instance at runtime, analogous

to the instruction sequence for a typical CPU which manipulates the stack pointer to establish

a new stack frame. Various metadata are attached to the provider, recording any information

which is immediately available that pertains to the provided scope, for instance the closest

immediate ancestor of the scope, if it is known. In the context of our experiment, all translated

functions happened to be immediate, so their closest immediate scope ancestor was the lexical

scope of their definition.

Provision for any argument bindings was accomplished by means of contextual generators,

which we described later in Section 5.6.4. Briefly, contextual generators are code generators

attached to a provider, which generate terms valid within the same context as the provider, but

not necessarily within a wider context. As such a contextual generator for each argument was

constructed, such that resolution of that name at translation time would return the fragment

of the OPP providing that value directly, rather than via runtime lookup, which is not possi-

ble to schedule statically, nor would it be particularly efficient. These contextual generators

and immediate ancestor scopes are used preferentially by all delegate code generators, when

translating the evaluation of names within the function’s syntax.

In our experiment the scope providers formed in this manner were non-synthesisable, but given

that in all cases bindings accessed via the scope were resolved either to constants through an

immediate ancestor, or arguments via a contextual generator, then all scope providers within

the OPP were ultimately left disconnected from the pipeline and safely elided before casting

to Verilog. Had this not been the case then the state of certain mutable bindings would have
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needed synchronisation with the pipeline in a manner described in Section 4.6.2, or worse

resulted in failure to generate a statically scheduled pipeline.

In general one might attempt to translate the behaviour of non-immediate functions to OPP

terms, for example functions for which the syntax is immediate but the lexical scope closing

the function definition is not, or possibly even cases in which the syntax is not fully immediate.

Such translation challenges were not encountered within this experiment, and are outside the

scope of this chapter.

Having outlined the procedure by which we generate code by means of reification, it is perhaps

instructive to compare our approach to the well known technique of specialising an interpreter to

achieve compilation, since there are superficial similarities. Specialising (partially evaluating)

an interpreter to a given source program yields a translation of the source program in the

implementation language of that interpreter—this is known as the first Futamura projection

[Fut99]. Although related, this is quite distinct from the approach taken here. Whilst we

do apply the translate operator to the evaluation function of an interpreter, that of our

application’s source language, the language of the resulting translation bears no relation to the

implementation language of the interpreter. Furthermore the first Futamura projection implies

that the translation is generated by means of reifying the implementation of the interpreter:

from our perspective this is an implementation detail—it is not important whether or not

the interpreter is adorned with explicit code generators, relies on code generators supplied by

its own implementation language, or perhaps makes use of even further indirection. Since

within our experiment we wrote an explicit code generator for the evaluation function of our

metacircular-interpreter, which itself was not implemented in OPP, the approach we took in this

chapter is more closely related to conventional compilation than to compilation by means of

the first Futamura projection.

4.8.4 Coordinate transformations and clipping of rasterised regions

The operations supported by Android’s canvas API extend beyond those for simply drawing

geometric primitives on to the canvas. Notably there are also operations for applying coordinate
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transformations and setting clipping regions. Both of these kinds of operations were necessarily

used in our experiment.

Typically when a child of a recycler view is drawn, the method of the child view which draws

the child’s content does not explicitly perform translation and clipping of its own drawing

commands. The content of the child is drawn in a relative coordinate system, in which the

child view is aligned to the origin of its canvas. The drawing commands are issued in this

relative coordinate system, and are applied to the underlying canvas, which is shared by various

views, under a coordinate transformation matrix. The transformation matrix is set up by the

parent view when delegating drawing operations to any of its children (in a recursive manner)

based upon the relative position of the child within the parent. Similarly a clipping region

is established to prevent drawing operations performed by the child from affecting regions of

the canvas outside the bounds assigned to the child. As such, each child of a recycler view

simply draws itself in full at the origin of the canvas supplied, leaving it to the recycler view’s

transformation matrices and clipping regions to ensure that the correct subregion of the view

is rasterised at the appropriate offset, and within the bounds of the recycler view.

In order to implement these necessary transformation and clipping operations within our OPP

we devised a couple of techniques, both of which introduce additional nodes into the pipeline,

and so materially increase its ultimate latency.

Transformation nodes

Transformation operations applied to the canvas are directly translated into transformation

nodes within the pipeline. Since the coordinates of each pixel are part of the datapath in

our OPP architecture, transformations to the canvas’ coordinates are affected by appending

nodes to the pipeline which consume and emit pixels unchanged, except for their horizontal and

vertical coordinates, which are mapped into the relative coordinate system. Android permits

arbitrary linear transformations to the canvas in general, which require a matrix multiplication

to be performed within the pipeline. However, in many cases the transformation may be

determined during OPP generation to be a pure geometric translation, in which case a simpler
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specialised node consisting solely of adders is appended preferentially.

When delegating translation to a child view, the code generator for the parent must insert

transformation nodes into the pipeline before and after the fragment returned by the delegate,

in order to both map the pixel stream into the coordinate system of the child, and map back

again.

Clipping nodes and the window stack

Unlike canvas transformations, clipping operations cannot be implemented in the pipeline us-

ing a pair of opposing operations which act solely on the OPP datapath. Android manages

restoration of the clipping region in unison with restoration of the transformation matrix, using

a stack maintained within the canvas instance. We refer to this stack as the window stack.

Frames can be pushed and popped from the window stack in order to save and restore the state

of the coordinate system and current clipping region.

In our experiment we found it sufficient to represent this stack implicitly within the pipeline,

using metadata attached to each OPP node, rather than explicitly within the runtime state

of the pipeline. Since we adapted the canvas API to a functional interface—the implications

of which are discussed further in Section 4.10.2—the state of the window stack is simply an

immutable value associated with the canvas instance. All canvas operations which act upon

the window stack push or pop an immediate number of frames, and so the stack depth may be

maintained as a metadata attribute on each node in the pipeline, provided that stack manip-

ulating operations are applied unconditionally, which was indeed the case in our experiment.

The frames of the stack themselves are not immediate, since the corresponding transformation

and clipping regions are data dependent. Hence the frames of the stack are represented using

OPP fragments, which provide the requisite values.

We decided to represent clipping regions using a binary canvas, itself generated by an OPP

fragment. Consequently in the presence of clipping, the resulting pipeline consists of several

fragmentary pipelines which are joined together at clipping nodes. Since our OPP represen-
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tation is simply an acyclic graph of nodes, this is straightforward to represent, and naturally

supports the representation of arbitrarily shaped clipping regions.

As the pipeline is constructed, the window stack metadata property is populated with frames

consisting of pipeline fragments, which provide the clipping and transformation parameters.

These pipelines, which are initially just metadata, do not form part of the OPP graph until the

window stack is popped. Popping a frame from the window stack links these pipeline fragments

into the graph: transformation nodes and clipping nodes are appended to the result node of

the pipeline, taking their various inputs from the pipeline fragments which were popped from

the window stack.

When this linkage occurs, as with all cases of pipeline composition, care must be taken to ensure

that values arriving at different input ports of the same node have equal latency. Since the

point at which clipping parameters are computed within the pipeline often differs substantially

from the point at which they are used—typically the latency of computing the complete nest

of sub-views intervenes—clipping can contribute a considerable number and depth of queue

nodes to the generated OPP. In Section 4.10.1 we discuss the degree to which is issue might

be mitigated, and to what extent it is necessary given our imposition of a static schedule upon

the pipeline.

4.9 Results

The rendering pipeline for our experimental scenario was generated, synthesised, and placed

& routed for a Microsemi PolarFire MPF100T device, in order to quantify its utilisation. The

vendor’s power estimation tool [MTIMPP21] was then used to calculate the power consumed

by our pipeline under a range of different loads, from static image generation to a complete

rasterisation every frame.
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Type Used Available

Global clock networks 1 24
D-type flip-flops 13260 108600
4-input LUTs 14594 108600
SRAM blocks 245 1008
DSP blocks 11 336

IO pins 72 318

Table 4.1: Pipeline resource utilisation summary. Only one global clock network is used, since
every node of the pipeline shares a common clock. D-type flip-flops are typically used to register
the results of nodes, and their utilisation is hence closely correlated with the number of look-up
tables (LUTs) used. All of the combinational logic for the pipeline is implemented using 4-input
LUTs. SRAM blocks are typically used to implement the FIFOs for synchronising signals at
node input ports. IO pins are allocated for both the inputs and outputs of the pipeline, in
addition to its state synchronisation interface.

4.9.1 Device utilisation

A schematic of the experimental pipeline is shown in Figure 4.1 and its device utilisation,

broken-down by resource type, summarised in Table 4.1. All of the nodes within the OPP

are clocked by the same global clock, and the number of SRAM blocks largely depend on the

number of synchronisation queues within the pipeline. The longest of these queues can be

seen clearly within 4.1, corresponding to the long vertical edges uninterrupted by nodes. These

queues are employed to delay the use of values which are computed at early stages of pipeline,

and consumed both at early and late stages of the pipeline—typically such values are windowing

and clipping parameters, the use of which ‘surrounds’ the windowed or clipped sub-image.

The majority of the computation is performed within the FPGA’s 4-input lookup tables (LUT),

with a minority of operations taking advantage of the digital signal processing (DSP) blocks

for integer multiplication. The heavy use of D-type flip-flops is due to the latching of results

between each node of the pipeline, in an attempt to reduce the circuit’s maximum combinatorial

logic delay, therefore enabling a higher clock frequency. This is in turn motivated by the

observation that the faster the circuit is clocked, the greater the percentage of time which can

be spent in an inactive power state having lower static power consumption.

The number of IO pins exceeds the minimal output number of 24, for delivering one 24-bit pixel

value per clock cycle, since the pipeline must be fed with per-cycle x and y raster coordinates,
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Parameter Value

FPGA product range Microsemi PolarFire
FPGA part code MPF100T
Pipeline depth 21 visible objects

Rasterisation resolution 1156 pixels × 640 pixels
Rasterisation refresh rate 60 frames / second

Colour depth 24-bit (RGB888)
Target clock frequency 225 MHz

Target maximum active duty cycle 20% (otherwise in Flash*Freeze state)
Flash*Freeze state power consumption 15 mW

Core voltage 1.0 V
Junction temperature 25 ◦C

Table 4.2: Device and experimental parameter summary. The user interface of our experiment
consists of 21 visible objects, rasterised at a maximum frame rate of 60 Hz to an 18 Mbit canvas,
resulting in a total output bandwidth of just over 1 Gbit / second. If the FPGA is clocked
at our target frequency of 225 MHz then for the majority of the time (80%) it remains idle,
transitioning in and out of a low-power (Flash*Freeze) state. Nominal voltage and temperature
parameters are assumed.

and also periodically synchronised with the state of the application. It is clear from these

utilisation numbers that a more complicated user interface could potentially be rasterised within

this device: when utilising a larger fraction of the device the percentage of power consumed

due to static leakage would therefore be lower.

4.9.2 Device and experimental parameters

Table 4.2 summarises the various device and experimental parameters, with respect to which

we estimated the power consumed by the pipeline. The pipeline contains nodes for rendering

21 visible objects of fixed type, specialised to the applications. Whilst objects might in general

correspond to shaded ellipses, rounded rectangles or even blocks of text, in our experiment all

objects were rectangles, either flat shaded or shaded with a repeating two-colour sequence. A

screenshot of this experimental application is shown in Figure 4.2. Given the inherent utilisa-

tion cost of the pipeline infrastructure, the incremental cost of substituting more complicated

geometry or shading patterns is not necessarily overwhelming.

The raster resolution, colour depth and refresh rate were chosen to represent the minimum

specification necessary to deliver a contemporary smartphone user experience. The device’s
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Figure 4.2: Screenshot of our experimental application. The various coloured regions correspond
to different views and sub-views within the user interface. Regions shaded with black diagonal
lines correspond to text views, which are not rasterised within our pipeline, and require external
compositing. Although this user interface is extremely simple, observe the central recycler view
consisting of similar, but non-identical green entries, clipped within a rectangular bounding
box. The contents of these green entries depend upon application data, reflected by the differing
widths of the text views. The four squares at the bottom right represent the operating system’s
“floating-action button”, which partially overlays the recycler view. The recycler view depends
not only upon application data for its text content, but also for its scroll position: all such
mutable state is represented and reflected within the rasterisation pipeline using externally
accessible registers. This image was generated by executing the Verilog RTL representation of
the pipeline within an FPGA simulation environment based upon Verilator [Ver21].
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Type Value / mW

Static overhead 43 (16%)
Clock network 30 (11%)
Logic blocks 70 (26%)
DSP blocks 9 (3%)

SRAM blocks 34 (13%)
IO switching 50 (19%)
IO current 32 (12%)

Total 268

Table 4.3: Device power consumption breakdown (in active state). Nearly half (47%) of the
total 268 mW consumed by the pipeline is due to static leakage currents and IO signalling—
fixed properties of the FPGA device, and the pipeline interface respectively. A further 29%
of the power consumption can be attributed to computation, specifically within the FPGA
logic and DSP blocks. The remaining 24% is dissipated within the clock distribution network
(control signalling) and SRAM queues (synchronisation).

Flash*Freeze state consumes 15 mW of power, and provides a lower-bound on the power con-

sumed by our pipeline, since we do not consider fully powering down the device between frames.

In order to minimise the mean power consumed by the pipeline, the amount of time the FPGA

spends in this state must be maximised. Within this low-power state the device can perform

no useful computation, but simply retains any state necessary to return to an active state when

a frame must be redrawn.

The core voltage of 1.0 V is standard for the device, and the junction temperature for our

power model assumes the device is not subject to considerable self-heating. The temperature

in a real device would depend heavily on the thermal dissipation system surrounding it, and

also the ambient temperature of its environment.

4.9.3 Estimated power consumption

A breakdown of the power consumed by the pipeline whilst active, estimated using the FPGA

vendor’s power estimation tool [MTIMPP21], is given in Table 4.3.

We observe that 47% of the total 268 mW consumed during rasterisation is due to a combination

of static current leakage and operating the requisite input / output signalling (IO). Therefore

almost half the power dissipated is not spent directly on computing the rasterised image itself,
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but in supporting the computation environment. Notably the 42 mW consumed due to static

leakage is almost three times greater than the total power consumed within the Flash*Freeze

state.

Approximately 29% of the total active power consumed is spent on core computation, namely

within the FPGA’s logic blocks and DSP blocks. The remaining 24% is spent on computational

overhead, namely the clock network to synchronise the control path, and delaying values within

SRAM to synchronise the data path.

If the device is called upon the render a full frame 60 times per second it would necessarily

spend at most only 20% of the time in this active state—since a full frame can be delivered

in about 3.3 ms given our resolution and clock frequency, with one pixel delivered per rising

edge—spending the remaining 80% of the time in a low-power (Flash*Freeze) state consuming

only 15 mW. This results in a maximum mean power consumption of (0.2×268+0.8×15) = 65.6

mW. Given that power consumption scales linearly with the mean percentage of frames being

redrawn, the relationship between redraw rate and power consumption is given in Figure 4.3.

Assuming a user-interaction pattern representative of typical applications, where every frame

does not require a full redraw, we conclude that our experimental application’s rasterisation

pipeline would consume approximately 30 mW during use, when executed within this MPF100T

FPGA device.

4.9.4 Estimation accuracy

Subsequent timing analysis revealed that a minority of sub-circuits were insufficiently pipelined

to meet timing at 225 MHz—a critical path within the rendering pipeline included too many

gates between its bounding registers, such that the combinational logic would not reliably

settle within one clock period at this target frequency. Additional pipeline stages would be

needed in order to meet our timing objective, necessitating a refinement to the design of certain

rendering components. It is not expected that these design modifications would radically affect

the power values quoted above, but an increase in the order of 20% would not be surprising,
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Figure 4.3: Power consumed by our experimental pipeline with respect to redraw rate. This
graphical relationship was generated from estimated values, calculated using our FPGA ven-
dor’s power estimation tool [MTIMPP21]. The power estimator provides power consumption
values corresponding to different FPGA states. The redraw rate corresponds to the duty cycle
of a single active state, versus a single inactive state, giving rise to this linear relationship. The
power consumed due to state switching has not been included, as it is assumed to be negligible.

and so an error of this magnitude is attributed to our estimate. Although the vendor’s power

estimator [MTIMPP21] did not provide explicit error bounds to the above values, we would

similarly not be surprised to find that in practice these theoretical numbers differ from practical

measurements by 10% or more. Combined we conclude that our power estimation error is at

least 30%, and we would not be confident in claiming an accuracy of any better than 50%.

4.10 Evaluation

The aims of our experiment were twofold: (i) to demonstrate a candidate low-power rendering

architecture for contemporary smartphones, and (ii) to generate instances of that architecture

from smartphone applications defined in terms of contemporary abstractions. In this section

we will evaluate the extent to which our objectives were met.
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4.10.1 Low-power rendering architecture

As discussed in detail within Section 4.4, the object-processor architecture we selected for low-

power implementation was justified on the basis of three principles: firstly that the pipeline

processors could be specialised precisely to those required by the current application; secondly,

due to the specialisation achieved, the resulting pipeline would admit a static schedule; and

finally that the physical arrangement of the resulting pipeline would be amenable to place-

and-route optimisation, in order to reduce the energy cost of of communication. Whilst our

implementation faithfully adhered to each of these principles, it is unclear whether the resulting

pipeline consumes less power than contemporary solutions, such as performing rasterisation

within a GPU.

Static power

The availability of integrated circuits admitting place-and-route optimisation within their phys-

ical structure (spatial computing platforms) are fairly limited, at least for mobile computing,

compared to the vast array of tradition fetch/execute computing solutions. FPGAs are cur-

rently the only widely available category of such device, although that may be set to change in

light of recent developments in the space of AI accelerators [RMJ+21].

Since the granularity at which FPGAs may be programmed is at the level of individual bits, or

small collections of bits, rather than bytes or larger words, the physical area of the FPGA which

is given over to the gates and routing switches which support its reprogrammability is relatively

large. For reasons described in Section 4.3.2 this gives rise to a considerable leakage current

through the device, and consequently a larger static power consumption than would be necessary

at a coarser level of granularity. Nevertheless since all spatial computing platforms necessarily

distribute their programmability across the silicon chip, instead of restricting command words

to a few select registers, there is likely an inherent increase in static power associated with this

approach, at least when comparing implementations built using the same silicon process node.

In our experiment, despite using a Flash-based FPGA equipped with a power gate to its matrix,
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the average power dissipated due to leakage alone was at least 15 mW, within a typical average

power consumption of 30 mW. Without context, it is difficult to properly evaluate this figure,

but given the simplicity of the application rendered in our experiment, and the overall power

budget of any handheld device limited to perhaps a few watts of dissipation, it is substantial

enough to raise concerns about the feasibility of achieving low-power OPP rasterisation on this

kind of spatial computing platform.

Power consumption in context

Unfortunately, we were unable to compare our power consumption results with those of a

contemporary smartphone. In addition to such figures being commercially sensitive, with device

vendors disinclined to make this information public, it could be rather difficult to make a fair

comparison. Since we are particularly interested in static power contributions, it is unclear

which current within any given complex device would be the right one to attribute solely to

the rasterisation circuitry. Carroll and Heiser [CH10] did perform a comprehensive study of

an Android smartphone commercially released in 2008, which was made possible by the public

availability of the device’s schematics. Despite this unusual degree of transparency with respect

to the device’s design, they still had to resort to some “combination of direct and subtractive

measurements” to quantify the power consumed in the graphics subsystem.

In one of their benchmarks, of an email-centric use case, they estimated that approximately

80 mW of power in total was dissipated in the graphics circuity, a number which did not vary

considerably across their other benchmarks, other than video playback. This perhaps suggests

that the major part of that figure is accounted for by the static power consumption of the GPU,

with the dynamic power accounting for the order of 10 mW variation between the scenarios

they tested. This is highly speculative, and probably quite unlikely.

Furthermore it is unclear to what extent their figures reflect those of contemporary devices,

with over a decade of research and development separating contemporary devices from their

specimen. Finally the rendering complexity of our experiment is certainly significantly simpler

than any of the use cases they investigated, so a direct comparison of our figures to theirs is
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not particularly informative.

Programming duration and memory fatigue

The use of Flash as a storage medium within an FPGA trades a reduction in static power for

an increase in programming duration and the rate of device deterioration on reprogramming.

The type of Flash memory adopted by Microsemi for the PolarFire MPF100T which we used

in our experiment has a programming duration of several seconds [MTIMPP19]. This alone

does not preclude dynamic reconfiguration of the device, since the CPU or GPU could be used

to rasterise a user interface for the first few seconds of use, switching over to the FPGA once

the programming is complete.

More pernicious is the fatigue suffered by the Flash memory when modified, since the particular

technology used in the PolarFire MPF100T is only rated for approximately one thousand erase

and write cycles [MTIMPP19]. This places a practical limit for reconfiguration of the FPGA

to at most once per day for a typical smartphone’s lifetime.

Consequently in order to use a PolarFire MPF100T for OPP rasterisation, either a predeter-

mined set of pipelines would need to be selected and programmed into the FPGA, perhaps on

each software update, or alternatively profiling the most frequently used views could allow for

the set of programmed OPPs to adapt to usage patterns, with a daily cadence. Given this

deployment strategy the energy cost of generating and optimising the OPP is amortised over

at least one day. If a more dynamic strategy were to be adopted it would become increasingly

important to also account for the energy spent on OPP generation, and within the FPGA

compiler toolchain—something we did not attempt within our experiment.

Numeric representation

It was only possible to accommodate our pipeline within this FPGA device by adopting a

fixed-point numeric representation. Had we selected an IEEE 754 floating-point representation

instead, such as is widely used in CPUs and GPUs, the pipeline would have not only exceeded
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the space available in our experimental device, but also incurred a substantially higher power

consumption, had a large enough FPGA been substituted. This is simply because the power

consumed by an FPGA of the same type is always larger given a larger device, or a greater

number of internal units toggling per clock transition. We found that a 16-bit fixed-point

representation, with just 2 fractional bits, was sufficient for our experiment. FPGAs have the

advantage that any number of bits can be used to represent numbers, and power and space are

saved for each bit elided. This representation scheme was chosen manually, and no attempt

was made to infer the minimum numeric representation automatically from the application. It

is an open question whether this same representation would satisfy the requirements for other

applications, or whether our approach would require the application developer to define the

representation for each different user interface.

Queueing overhead

Our hypothesis, stated in Section 4.4, that the elimination of dynamic control-flow circuitry

within the rasterisation pipeline would result in reduced power consumption, can now be ex-

amined. The argument used to justify this hypothesis supposed that if a static schedule could

be found for the pipeline, then both the static and dynamic power which would otherwise be

expended in the dynamic control-flow logic could be saved. Whilst our experimental OPP did

admit a static schedule, the static schedule we implemented required several deep queues, in

order to delay values arriving at nodes by the requisite number of cycles. After synthesis using

the FPGA vendor’s toolchain, a considerable fraction of the device’s resources were allocated

to queuing. Many of the longest queues, seen in Figure 4.1, were introduced as a consequence

of view transformations and clipping. This is because intermediate values pertaining to the

transformation and clipping of sub-views tend to straddle the portion of the pipeline respon-

sible for rasterising the sub-view—for instance the same transformation coordinates must be

applied before the sub-view fragment of the pipeline as subtracted afterwards. Those for the

outermost sub-views of the user interface can become particularly long, approaching the total

length of the pipeline itself.
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In light of this observation we might re-examine the justification we give for our hypothesis.

Since the imposition of a static schedule upon the pipeline in our experiment required a non-

negligible amount of queueing circuitry, it is unclear whether the dynamic control-flow circuitry

we avoided would have been less efficient. Naturally there are many dynamic control-flow

implementations which would suffice for our application: in future work it would be interesting

to select one reasonably efficient implementation and evaluate quantitatively how it compares.

Doing so would help establish the degree to which dynamic control-flow is well motivated from

an efficiency perspective.

The schedule we used in our experiment is certainly not the only static schedule admitted

by the application, in certain scenarios nodes could be rearranged to displace latency around

the pipeline, reducing the total proportion of the pipeline dedicated to queuing. Occasionally

shared intermediate results might also be recalculated more economically than delaying the

value calculated by earlier nodes. For these reasons it is possible that a lower power static

schedule could still be found, perhaps by performing various such post-processing optimisations

on the OPP representation.

Temporary storage

Historically, one of the primary advantages motivating research into object-oriented rasterisa-

tion, within which processor-per-primitive techniques are just one approach, was their economy

with respect to temporary storage—in Section 4.11 we refer the reader to literature outlining

the historical context, and certain notable architectures which have been presented. Having

presented a method for object-processor pipeline generation for an Android application, it is

worth considering if this historical advantage is still relevant to contemporary devices. Whilst

smartphones typically have more than enough memory for allocating graphics buffers, and ad-

ditionally require such large memories for other purposes, such as video decoding and storing

third-party application data, there are potentially other classes of portable device, which for

reasons of cost or specialisation, might not reasonably include such large memories. If such a

class of device were to exist, or emerge, then our approach would provide a mechanism for de-
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livering high-resolution user interface rasterisation, without the need for megabytes of memory

for video buffers, since each pixel can be generated on-demand and in rasterisation order, for

direct consumption by the display hardware.

Interprocessor bandwidth

A phenomenon which emerges from our approach is the raising of the abstraction at which

communication occurs between the CPU and the pipeline coprocessor, when compared to the

contemporary approach for rendering on a GPU. Since the circuitry for applying synchronisation

updates to the pipeline is itself synthesised, the syntax and semantics of the communication

protocol are under complete control of the OPP generation processor. Consequently the number

of values which are synchronised with the FPGA can be reduced. For instance the vertical offset

of an entire view might be communicated, with the individual coordinates of each primitive

vertex comprising the view derived within the FPGA. This stands in contrast to Android’s

current approach to GPU rendering of views, whereby the coordinates of each vertex within

the user interface are streamed into the GPU.

If the magnitude of the interprocessor bandwidth were of concern then our approach has a clear

advantage, however we have not found any evidence to suggest that power consumed by this

form of communication is significant.

Coarse-grained reconfigurable architectures

Whilst FPGAs provide an accessible target for experimenting with place-and-route style optimi-

sations, their power inefficiency is related to the granularity at which they can be reconfigured.

Contemporary FPGAs tend to offer reconfigurability at the level of granularity of 1-6 bits: single

bits, or small collections of bits, can be individually routed and operated upon. The price paid

for a higher degree of flexibility is a reduced power efficiency. The kind of circuit which results

from synthesising an OPP does not require such a flexible fabric as found in an FPGA. It seems

quite likely that a fabric with granularity at the level of 8 or 16 bits would be the ideal target
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for our rendering application. Whilst this ideal target is not commercially available, there has

been a growing interest in such coarse-grained reconfigurable architectures (CRGAs) in recent

years, particularly within the domain of accelerators for deep neural networks [RMJ+21].

This is particularly interesting, since the problem of place-and-route optimisation is largely

orthogonal to the problem addressed in this chapter: obtaining the OPP configuration itself. If

viable CGRAs emerge, perhaps for embedded acceleration of neural networks, we would expect

the OPP we describe in this chapter to be implementable within such a CGRA, with consider-

ably better energy efficiency than in an FPGA. In this sense the problem we are attempting to

solve is of obtaining a representation of the rendering process (or related kinds of processes) in

a form amenable to place-and-route optimisations, with the intention of targeting generalised

spatial computing platforms.

4.10.2 Pipeline generation

The aim of our experiment was to generate an OPP from an application defined with respect

to an API resembling Android as closely as possible. We did not achieve complete conformance

with the Android API, for a number of reasons.

Firstly the languages and libraries which comprise the official Android distribution were either

too complicated or too limited to adapt to the requirements of our experiment, within the

amount of time we had available. Secondly the architects of Android made certain design

decisions, motivated by particular historical factors, which made our experiment more difficult

than necessary to conduct. Whilst we consider any divergences from Android to weaken the

contributions of our experiment, we nonetheless believe they are justifiable—here we provide

that justification, and where possible speculation on how future experiments might be brought

into closer alignment with the official API.
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Functional canvas API

The canvas API presented by Android is imperative in nature: the canvas object is mutable,

and drawing operations are performed by side-effecting methods, which alter the canvas state.

Whilst it is perhaps possible to generate a statically scheduled OPP for an application de-

fined with respect to this imperative API, either using translate or some other mechanism, it

presents certain challenges. Admitting operations which cause side-effects into the rasterisation

process would require the translation system to keep a careful account of the temporal ordering

of such operations, and to automatically infer data dependence relationships between opera-

tions based upon that ordering. Whilst this is a well studied problem in compiler design, in our

opinion it is an accidental complexity introduced by spurious historical factors: as such extend-

ing our compiler to correctly handle this imperative API is not inherent to the experiment, and

can be dealt with as a separable unit of research. We justify this assertion by observing how

Android’s use of its original canvas implementation and abstractions have changed over time.

As discussed in Section 4.3.1, originally Android executed most rasterisation operations on the

CPU, rasterising primitives into a stateful bitmap buffer, immediately upon calling drawing

methods of the respective canvas object. In the intervening years Android has switched to

a primarily GPU based rasterisation model, whereby this original canvas implementation has

been supplanted by a recording canvas implementation.

This recording canvas shares the same API, and is similarly stateful, but simply records the

drawing operations performed on the canvas to its internal symbolic display list. As such the

recording canvas is used solely to generate a symbolic representation of the user interface,

serving as an intermediate representation which is then translated into a sequence of equivalent

OpenGL commands, to be issued to the GPU. Note that if CPU-based rasterisation were

still desired, then this could also be accomplished via the display list: the only operational

difference observable being some additional temporary storage allocations for the display list,

and a possible delay to the rasterisation of the applied primitives. This comes about because

Android’s canvas API is largely write-only—users of the canvas are not expected to inspect the

state of individual pixels whilst the canvas is being mutated, and so immediate rasterisation is



4.10. Evaluation 121

unnecessary.

Since rasterisation within Android has transitioned to using a symbolic canvas implementation,

the supporting arguments in favour of an imperative API have become less relevant, whereby

a functional interface would serve equally. With a functional canvas API, an immutable canvas

object is supplied and returned from the draw method on view objects. These immutable canvas

objects symbolically represent the appearance of the canvas, and admit efficient implementation

since they are equivalent to a linked list of display list entries.

We defined the application of our experiment with respect to this kind of functional canvas API,

since it provided practically equivalent functionality to the existing imperative API, appeared

to be at least as suitable from a contemporary perspective, and simplified the implementation

of our compiler.

Supporting imperative constructs

The compiler we developed for our experiment could only generate OPP fragments from reified

methods which were both pure functions, and implemented exclusively using functional con-

structs internally. This is notably a stricter limitation than requiring the canvas API alone to

be functional. In this section we consider the detrimental effect of this limitation, and how it

might be overcome.

Since mutation, of at least shared state, is discouraged in Android within the rendering process,

the requirement to implement methods responsible for drawing in a functional style is not in

theory much of an imposition. It is however quite unnatural for Android developers to imple-

ment such methods using only functional constructs, especially in languages such as Java and

Python, which have a relatively restrictive expression sub-language, compared to for instance

a language like Haskell.

Although several imperative constructs are impossible to support in a statically scheduled

OPP, for instance unbounded iteration, certain functional constructs are also unsupported,

for instance unbounded recursion. Supporting translation of arbitrary source terms from any
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Turing-complete language to a statically scheduled OPP is not theoretically possible—the issue

is rather if the supported subset of the language is convenient or inconvenient.

Programmers used to an imperative language such as Python reasonably expect to use assign-

ment statements. Whilst in general assignment statements can cause mutation of shared state,

in many cases they are simply used for associating names with the result of certain intermediate

calculations. When restricted to this latter application it is certainly possible to support the

translation of such methods to an OPP. There are two strategies which we have considered:

(i) syntactically transforming the original implementation into a functional form before trans-

lation, perhaps via conversion to static single assignment form (SSA), or (ii) extending our

compiler internally to support constant propagation between statements. We briefly attempted

approach (ii) with some encouraging results, but no serious attempt was completed. Subse-

quent to the experiment described in this chapter, we explored approach (i) in greater detail,

developing a transformation named let-weakening—we describe let-weakening in Section 5.3.1.

Finally, in the particular case where it would be simpler to write a code generator for a method

than rewrite the method functionally, or imperatively according to these restrictions, a code

generator override for the method may be supplied explicitly.

View annotations

In Section 4.6.1 we introduced certain annotations which the application developer can apply to

their view definitions, allowing them to constrain the behaviour of particular views more strictly

than generally allowed by the class implementation. This was necessary for our experiment,

since certain kinds of view in Android, such as recycler views, do not lend themselves to efficient

rasterisation by an OPP in their full generality—for instance if a large number of children might

potentially be added at runtime, the OPP must contain enough nodes to support this worst

case, which can increase the latency and size of the pipeline enormously.

What is unclear is whether this burden on the application developer is either reasonable or nec-

essary. Could an application developer reason about which constraints are necessary, without
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knowing the hardware capabilities of the application user’s device, or without some feedback

from the translation system? Could these constraints be inferred automatically, or be better

supplied by the operating system?

Whilst we do not have a definitive answer to either of these questions, we imagine that at

the very least some kind of reporting or debugging tools would be required to aid application

developers in constraining their user interface effectively, since it is probably not obvious how

much each degree of freedom costs in terms of pipeline resources. It seems likely that certain

refinements to the standard views supplied by the operating system could reduce the burden

placed on the application developer, but this is not something we attempted in our experiment.

Application profiling could potentially discover many useful constraints heuristically, such as

the maximum observed population counts for the children of recycler views. Generating an

OPP using speculative information would require confirming the constraint at runtime for each

frame, with a fall-back mechanism to GPU- or CPU-based rasterisation should the constraint

be violated. Again, this is an idea which was not explored in our experiment.

Text rasterisation

In Android, GPU-based rasterisation of text is accomplished by means of a font atlas. The

Bézier curve rasterisation and anti-aliasing of each character is performed by the CPU, for each

unique combination of glyph, style and size, and cached in the atlas, which is then synchronised

periodically with a copy stored in the GPU texture memory, as and when new characters appear

within the user interface. The GPU is simply responsible for compositing entries from the atlas

onto the rasterised user interface, given a list of coordinates and their corresponding indices into

the atlas. This architecture was probably selected since the complexity of implementing full font

rasterisation in the GPU brings little benefit for typical user interfaces, since the atlas is only

updated periodically, and serves as an effective cache, amortising the cost of CPU rasterisation

over many frames. This stands in contrast to 3D rendering use cases, such as games, in which

the projection of each glyph typically changes between every frame.
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To implement text rasterisation in our FPGA based solution, an atlas-based architecture would

perhaps serve also. However a shortcoming of our experiment was an incomplete implemen-

tation of text rasterisation—all text within our experimental user interface was rendered as a

simple chevron pattern in place of the actual glyphs. Hence we can only speculate on the energy

impact of text rasterisation on our experimental results, and how a more elaborate experiment

might correctly handle text rendering.

A näıve implementation would introduce a separate node into the OPP for each text view in

the user interface being rasterised. This approach is potentially quite inefficient, since each of

these nodes would either require duplication of (some portion of) the atlas, or access to a shared

memory with many concurrent read ports, in order to allow the pipeline to execute without

stalling.

A more sophisticated implementation might separate out text composition from the OPP,

using a parallel pipeline though which atlas indices stream through one single-ported copy of

the atlas. The two resulting pixel streams might then be subsequently composited together

as a post-processing stage. Since textual and non-textual elements potentially interact in

complicated ways, the colour space of each pipeline might be extended to incorporate tagging

bits, for conditioning the post-processor. A limitation of this approach would be an inability

to handle overlapping glyphs, since it only supports a single set of indices being dereferenced

into the atlas for composition with each pixel. Whilst many user interfaces are likely to be

unaffected by this limitation, it might be mitigated either by implementing more read ports,

copies of the atlas, or some CPU-based fall-back mechanism.

Implementation language

Throughout this chapter we have described our experiment with reference to an implementation

in Python. We favour Python for OPP generation, over Java for example, since it readily

supports the kinds of scope introspection we required. The officially supported languages of

Android could in theory support the requisite reification operations, but would require further

work. In the next chapter we describe in greater depth how such translations are generated
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from Python functions, generically and not in particular to OPP generation.

However the precise implementation of our experiment was rather more complicated than this.

Most of the experiment was not carried out within Python, but instead within an interpreter for

an imperative language of our own specification. This was done in part for pragmatic reasons,

since prior to the experiment we did not know exactly what kinds of reified information would

be required—it was easier to modify the implementation of a very simple interpreter in order

to provide this information, as and where necessary.

This experimental interpreter was that of a minimal Lisp, although based upon F-expressions

rather than S-expressions, as its fundamental form. The use of an F-expression based Lisp

was motivated by their powerful support for metaprogramming and language extension. We

relied heavily on the design of the Kernel programming language [Shu10], for constructing this

interpreter. In retrospect, the full power of an F-expression based Lisp was unnecessary for

generating the pipelines encountered in our experiment, and the same effects can be achieved

in any programming language supporting reification of syntax and scope, such as Python. This

we demonstrate in Chapter 5.

Consequently during our experiment we progressed from generating code within our custom

interpreter to generating code within an equivalent system embedded in Python. Nevertheless,

the majority of our results were established in the original experimental interpreter, and the

Python version served only to prove that our techniques were independent of the peculiar nature

of our experimental setup.

A couple of technical issues with our original compiler implementation were only identified

whilst re-implementing it in Python. These were rectified in the Python implementation,

however we did not back-port these fixes to the original system, nor re-evaluate all prior exper-

imental data:

• Our original code generation system split translation of reified terms into two phases,

firstly inlining constants, and subsequently performing code generation from these in-

lined forms. This phased strategy was found to be unnecessary, and removed from the
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translation system, resulting in the design described in this chapter.

• The initial mechanism we designed for the representation of non-immediate reified scopes

was discovered to be ill-founded. This issue only manifested in a more general context,

and not within that of our experimental application. In Section 5.6.4 we describe in

depth the proper representation of non-immediate reified scopes, based upon contextual

generators.

4.11 Related work

Whilst the relevant related work for the metaprogramming aspects of this chapter have already

been surveyed in Chapter 3, it remains to discuss the related work pertaining to object-oriented

rendering, and also offloading computation at runtime to reconfigurable coprocessors.

4.11.1 Object-oriented rendering

Gharachorloo et al. [GGSS89] characterise three distinct categories of rasterisation techniques,

specifically frame-buffer, virtual-buffer and object-oriented based techniques. Their 1989 survey

predates contemporary GPU architectures, however the broad characterisations they present

are still applicable. Their treatment of frame-buffer and virtual-buffer rasterisation techniques

focuses on optimisations for conventional random-access memory systems, based upon mem-

ory access patterns, and also custom memory architectures, which in some cases bestow the

memories with specialised computational facilities. What they term object-oriented techniques

best aligns with the approach to rasterisation taken in this chapter. Within object-oriented

techniques they identify two broad subcategories: (i) sprite-based techniques; and (ii) processor-

per-polygon based techniques. What these two radically different approaches share in common

is only the manifestation of graphical abstractions within the physical rasterisation architec-

ture. They characterise processor-per-polygon rasterisation specifically as assigning each poly-

gon within the rasterised image to a separate physical processor. These processors are chained
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together to form a linear pixel-wide pipeline. Their work implicitly assumes, as it predates the

availability of high-capacity FPGAs, a fixed-function pipeline implementation, with variability

only in the assignable parameters of the polygon processors. They only consider processors

capable of rendering polygons, and not of any other kind of generic object, or application-

specific object. Foley et al. [FvDFH96] present a similar survey, although they do generalise

their characterisation, using the generic term of processor-per-primitive pipelines.

Various interesting, concrete instances of object-oriented rasterisation architectures have been

explored in the literature, notably: (i) Locanthi [Loc79] describes a specialised MOS/LSI inte-

grated circuit, taking into account the gate-level silicon layout, for rasterising a collection of rect-

angles; (ii) Schneider and Claussen [SC88] define a complex pipelined architecture, from which

we take the term object-processor pipeline (OPP), which includes post-processing stages for

shading and filtering the image; (iii) Weinberg [Wei81] describes a pipeline specifically suited to

generating antialiased images; (iv) Fussell and Rathi [FR82] present a real-time shaded triangle-

based processor system, paying specific attention to the performance attained for a fixed-cost

when implemented using contemporary VLSI technology; and (v) Deering et al. [DWS+88]

define a sophisticated triangle-based pipeline architecture specialised for 3D rendering, with

fixed-function shading hardware supporting multiple light sources.

4.11.2 Dynamic offloading to reconfigurable coprocessors

A wide array of diverse techniques and systems for offloading computations to reconfigurable

coprocessors have been proposed. Notable approaches, which focus on dynamic compilation

or customisation of the coprocessor include: (i) Lysecky et al. [LSV04] describe a processing

architecture which employs an FPGA as a coprocessor, to improve the performance and reduce

the energy consumption of software running on a microprocessor—the executing program is

profiled at runtime, and critical regions are JIT compiled and linked to an FPGA configuration;

(ii) Ma et al. [MAA16] present a technique for dynamically assembling FPGA accelerators from

pre-synthesised and partially reconfigurable tiles, dynamically modifying the FPGA LUTs,

which are arranged in a 2D array—their approach boasts orders of magnitude improvement in
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compilation times compared to full runtime synthesis, and is not based on profiling, but instead

includes a DSL which implements certain primitives within the accelerator; (iii) Capalija and

Abdelrahman [CA11] define a similar approach, but based on dynamic profiling to identify

commonly executed code fragments, which reconfigures the state of a pre-synthesised FPGA

overlay; (iv) Clark et al. [CBC+05] describe how the instruction set of a microprocessor can

be dynamically extended to include custom instructions which implement dataflow subgraphs

for critical sections of application code—these custom instructions are synthesised and linked

at runtime, and implemented in a configurable compute accelerator (CCA) which comprises

an array of functional units connected in a feed-forward network; and finally (v) Bergeron et

al. [BFD08] present an approach similar to Clark, which instead targets a commodity FPGA.

4.11.3 Low-power GPU computing

The extent to which mobile GPUs already offer a power-efficient computing platform, compared

to mobile CPUs, has been the subject of a number of studies: (i) Mittal and Vetter [MV14]

provide a broad and detailed survey of the state of the art, with attention to GPU energy-

efficiency in particular; (ii) Maghazeh et al. [MBEP13] implement a number of benchmarks to

assess the power efficiency of computing on mobile GPUs—they find that GPUs show promise

as an energy-efficient computing platform, but necessitate different optimisation strategies to

their non-mobile counterparts; and (iii) Grasso et al. [GRR+14] assess the suitability of the

ARM Mali GPU embedded in an Exynos 5250 SoC, specifically for 64-bit floating-point high-

performance computing (HPC) workloads, finding it simultaneously faster and lower-power

than the corresponding ARM CPU within their HPC benchmarks.

4.12 Conclusion

In this chapter we have applied the technique of late-bound code generation to the problem of

offloading the rasterisation of a smartphone user interface to an FPGA coprocessor. The solu-

tion we presented consists of two independent parts: (i) an application-specific object-processor
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pipeline rasterisation architecture, and (ii) a code-generation system capable of translating a

source program written in terms of contemporary user-interface abstractions to an instance of

this architecture. Our rendering architecture is a deeply pipelined dataflow graph, instances of

which are heavily specialised to the given application and its user interface. Our code genera-

tion system is capable of accommodating user interfaces which feature a combination of both

standard and programmatically defined components.

Although the pipeline generated for a particular user interface is highly application-specific,

it still accommodates the full range of variability which the user interface might span. This

variability is materialised within the pipeline as a number of mutable registers, which may be

read and written by the host processor, in order to synchronise the state of the pipeline with

the state of the application. Incorporating this variability into the pipeline is crucial, since it

is impractical to generate and independently specialise a pipeline for every frame. Our state

synchronisation process is efficient, since these registers need only to be updated once, in batch,

between frames.

Our pipeline architecture corresponds to a fully inlined and fully unrolled implementation of

raster drawing procedure, and is furthermore completely statically scheduled and amenable to

place-and-route optimisation, motivated by the objective of minimising the power consumed

due to data communication. In principle it appears to be capable of handling the structure of

user interfaces substantially more complex than that of our experimental application, although

it is inherently designed for 2D graphics, and is not suitable for 3D graphics, at least in its

current form. This deeply pipelined design makes effective use of the FPGA, since for the

majority of active clock cycles the entire circuit is usefully switching, and therefore not wasting

energy solely due to static leakage currents.

The architectural decision to admit only a statically scheduled pipeline was motivated by the

objective of eliminating dynamic control circuitry, which contributes to the power consumed by

a circuit, and if eliminated could give rise to a power saving. Whilst we succeeded in generating

a statically scheduled pipeline for our experimental application, it was necessary to introduce

a significant number of deep queues into the resulting circuit, required in order to maintain



130 Chapter 4. Low-power user interface rendering

data synchronisation. It is unclear whether the power consumed by these queues is potentially

greater than that of the control circuitry of a dynamically scheduled pipeline, designed to trade

a reduction in queue depth for a modicum of dynamic control.

In order to generate practical pipelines from contemporary user interface abstractions, such

as those present in the Android operating system, it was found necessary for the applica-

tion developer to annotate their user interface description with additional metadata. These

annotations typically place static limits on the range of behaviour the user interface might

exhibit, allowing the pipeline generator to implement significantly simpler and more specialised

pipelines. Although these annotations appear to be of an acceptable kind, in that they are

clearly understandable to an application developer, it would be necessary to provide additional

tooling to guide developers as to which elements of their user interface are in need of further

annotation—especially in those situations where a feasible pipeline could not be generated at

all. Alternatively an automatic annotation system, perhaps even speculative in nature, could

be envisioned.

Although our pipeline generation system was capable of handling user interface abstractions

typical of contemporary smartphones, further work would be required in order to handle the

imperative drawing interface currently presented by the Android operating system. Our experi-

mental application was defined with respect to a similar, but functional interface. Furthermore,

our system places a considerable burden on the smartphone operating system developers, requir-

ing considerable work in implementing RTL components for the rasterisation of each primitive

graphical operation—and perhaps even extending to hand-optimised RTL implementations of

each standard user interface component. Significant additional work would also be required

to integrate the system we have described into its eventual hardware and software context—

perhaps even necessitating standardisation of the interface presented by the FPGA—and finally

to develop the text rasterisation compositor we outlined, but did not implement.

With respect to power consumption, we were unable to effectively compare the power con-

sumed by our pipeline with that consumed within the GPU coprocessor of a contemporary

smartphone, attributable to the rasterisation of a similar user interface. This makes it very
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difficult to put our power consumption results in context. These power consumption results

are themselves estimates, and have a high degree of error: for instance they neglect various

factors, including the energy consumed in performing the place-and-route optimisation, and in

programming the FPGA. As an absolute power consumption value, without any comparison to

a similar application executing on a contemporary smartphone, the value itself is not particu-

larly suggestive, since our experimental application is extremely simple compared to a typical

smartphone application. In short, the power consumption of our pipeline is not sufficiently low

to be compelling in and of itself.



Chapter 5

ReiPy: late-bound code generation in

Python

5.1 Introduction

In this chapter we describe the design of ReiPy, a library for performing late-bound code

generation within the Python programming language. ReiPy consists of four components:

a preprocessor; a front-end reifier; a meta-circular interpreter; and a modular set of code

generators, which translate terms accepted by the interpreter into terms of the target language.

In Sections 5.3 though 5.6 we describe the design and implementation of each component of

ReiPy in turn, without reference to any particular application. This is done in order to provide

a concrete basis for the technical contributions of this thesis. Finally, in Section 5.7 we illustrate

the system as a whole, applying it to the problem of offloading fragments of computation to

the “cloud”.

To simplify our description, throughout this chapter we consider only a singular target language:

Python itself. Furthermore, the system as described is not currently capable of translating

arbitrary Python definitions, spanning the full programming language syntax or semantics.

Some notable omissions include lack of support for: early function return; throwing or catching

exceptions; coroutines or generators; variable shadowing; or non-positional arguments. In

132
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Section 5.8 we discuss these limitations, and how they might be overcome with further work.

5.2 Motivation

Translating the behaviour of Python functions to Python terms is not a redundant operation,

as it might so appear at first glance. Consider for example the problem of determining which

values stored in a key-value database hash to a particular value. If the query language provided

by the database does not support native calculation of the requisite hash function, computation

of the hash would need to be performed externally to the database.

The following Python function might be used to extract a value from the database, compute

the hash of the value, and then compare it against the hash of interest:

def predicate(some_key, some_hash):

value = DB.query('GET KEY ' + some_key)

hash_result = HASH(value)

return hash_result == some_hash

Here we assume that DB is bound to a database connection object, and HASH is bound to the

relevant hash function. Invoking predicate with a particular key and hash value will return

True or False, depending on whether the value mapped to that database key hashes to the

given value, or not.

Suppose that predicate has been defined in a Python interpreter executing on a different

machine to the database server. In this case a complete representation of value must be

communicated between the server and the interpreter, perhaps over a network. If the size of

the value is considerable, for instance several gigabytes, it would be much more efficient for the

Python function to be invoked in an interpreter executing on the database server itself.

Simply sending the literal syntax of the Python function definition to the remote server, with

its argument values, and then evaluating it there, is not sufficient to offload the computation.
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This is because predicate is a closure, and the concrete syntax of its definition lacks infor-

mation about how DB and HASH are bound. To offload the computation as a Python term,

whilst preserving the behaviour implicitly due to closure bindings, we are left with two options:

(i) establish an effectively identical scope in the target interpreter, in which to evaluate the

original concrete syntax of the function definition; (ii) create an equivalent Python fragment to

the original definition, but restricted to some base set of terms already agreed upon by both in-

terpreters. Below we illustrate a solution of the second kind, making use of ReiPy’s translation

capabilities.

Here we apply translate to the predicate function, providing a symbolic key argument, namely

argument_0, and an immediate value for the hash argument:

interesting_hash = 0x276104A8

translation = translate(PythonBlock,

immediate(PythonBlock, predicate, mandate), [

PythonBlock([], PythonLoadName('argument_0')),

immediate(PythonBlock, interesting_hash, mandate)

], mandate

)

This yields the following translation:

V0 = LocalDatabaseConnection('MODE=uds;PATH=/tmp/database.sock')

V1 = V0.query

V2 = 'GET KEY '

V3 = V2 + argument_0

V4 = V1(V3)

V5 = zlib.adler32

V6 = V5(V4)

V7 = 660669608

return V6 == V7
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Note that the terms DB and HASH do not appear in the resulting term. The only names

within the translation which close over its evaluation scope are: argument_0; zlib; and

LocalDatabaseConnection. The latter two are bound to Python’s standard library zlib

module, and our database’s connection class respectively. The user is required to ensure that

these terms are agreed upon by both the original and target Python interpreter, perhaps due

to a common import header:

import zlib

from MyDatabaseDriver import LocalDatabaseConnection

If these terms were not in common, then ReiPy could be used to represent the function’s

behaviour according to some different set of terms. For instance, if only the basic terms of the

Python language were agreed upon, then ReiPy could in principle be employed to emit the

implementation of zlib.adler32 and LocalDatabaseConnection with respect to only these

basic terms.

In this example, whilst the name HASH in our function definition was bound to the builtin Python

hash function zlib.adler32, DB was not bound to an instance of the class LocalDatabaseConnection.

To illustrate ReiPy’s generality, we configured our mandate object to substitute the original

TCP/IP connection object with an equivalent, but more efficient, Unix domain socket connec-

tion instead:

mandate = MyMandate()

mandate.map_remote_to_local_database(

'MODE=tcp;HOST=database.example.com', 'MODE=uds;PATH=/tmp/database.sock'

)

We will return to this example again in Section 5.7, and explore in depth how this translation

was accomplished. In the following section we begin our description of ReiPy’s design and

implementation in abstract terms, without reference to any particular application, starting

with its front-end preprocessor.
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5.3 Preprocessor

Given the modular nature of our code generation system—which we outlined in Chapter 2—we

must be careful in our treatment of source terms which assign to potentially mutable variables.

In imperative languages such as Python, information is typically retained and transmitted

between operations indirectly via named, shared, mutable and lexically scoped variables. Whilst

these variables are often local to a function invocation, other times they might be global, bound

to a class or object instance, or perhaps some other kind of block-level scope. This mechanism

of exchanging and persisting information throughout the execution of a program is simple and

elegant, yet from the perspective of a compiler it is frequently found rather more powerful than

strictly required, at least within a specific context.

For example, whilst variables might in general be (i) captured within the closure scope of a

first-class function, (ii) be assigned to from several distinct assignment statements, or (iii) be

reassigned again and again over time, we note that particular variables within a given program

rarely take advantage of all of these features simultaneously. An optimising compiler must

identify, on a case-by-case basis, which features a particular variable makes use of, in order to

generate code which elides the overhead incurred by the loose abstraction that general purpose

variables present.

Put another way, writing an algorithm in terms of stateful variables, but which does not exercise

its right to mutate those variables, requires a compiler to prove the impossibility of variable

mutation in order to generate a translation absent of mutable state. A similar situation arises

with the allocation and deallocation of variables which might be captured by a closure, et

cetera.

Although it might be infeasible for a compiler to accurately prove exactly which subset of

features are required for every variable, it is certainly feasible for a compiler to identify certain

common usage patterns, for instance to reduce the extent of mutable state within the target

program. It is often possible to identify certain patterns of variable usage which never lead to

reassignment, or ever appear in the scope of a closure.



5.3. Preprocessor 137

In this thesis we are particularly interested in generating pipelines for accelerating particular

functions, specifically from Python definitions. To support the general behaviour of Python

variables, our pipelines would require heap allocated, garbage collected mutable state for each

variable instance created or accessed by the accelerated function. For certain interesting execu-

tion targets such as FPGAs, this would likely obliterate any chance of substantially accelerating

the function, since the pipeline would incur frequent accesses to shared memory. Furthermore,

such interactions also reduce the feasibility of finding a static schedule for the pipeline, if one

is so desired. For this reason it is particularly important for ReiPy to identify certain common

usage patterns of variables, in order to reduce or eliminate the presence of shared mutable state

within its target pipeline.

In the following section we describe our solution for propagating information related to named

variables between modular code generators, whilst simultaneously eliminating unnecessary mu-

table state from the target program. This optimisation is optional, although translations which

are generated by ReiPy without it are typically unsatisfactory.

5.3.1 Let-weakening

Appel has noted [App98], based on prior work by Kelsey [Kel95], that the structure of an im-

perative program in SSA form [AWZ88, RWZ88] suggests an equivalent functional program.

Functional in the sense that all mutable variable bindings in the original program are replaced

by immutable bindings within the corresponding program. The functional program eliminates

variable mutation using a nest of lexically scoped closures, whereby rebinding is instead achieved

by recursive function invocation. Whilst this transformation is incredibly powerful, fully ac-

commodating both non-structured control-flow and SSA φ-nodes, we observe than certain kinds

of program can benefit from a simpler, specialised form of this transformation.

Assuming structured control flow, if all the uses of a particular variable definition are reached

only by that definition, and those uses occur only within statements following the assignment

(subsequently within the same block, or lexically nested, excluding closures) then the mutating

assignment may be transformed into an immutable let-binding, without any need to introduce
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a recursive continuation. All other instances of mutating assignment statements, which may

reassign to a variable, are left untransformed. We term this specialised transformation let-

weakening.

Put another way, an assignment is disqualified from let-weakening if either: (i) another inter-

vening assignment to the variable could occur (in time) between the candidate definition and

its uses; or (ii) some uses of the definition are outside the scope of the candidate let-binding.

Structurally let-weakening is a transformation which replaces sequences of statements of the

form:

[statement_i-1]

[variable_name] := [expression]

[statement_i+1]

[statement_i+2]

...

[statement_i+n]

[statement_i+n+1]

with the form:

[statement_i-1]

let [unique_name] = [expression] in:

[statement_i+1]

[statement_i+2]

...

[statement_i+n]

[statement_i+n+1]

The mutating assignment (:=) to variable name is replaced with a let-binding to unique name,

which immutably binds unique name to the result of evaluating the same expression, within

and only within an inner block scope. The string unique name is chosen uniquely to prevent
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any possible conflict with other names. All related uses of variable name are replaced by uses

of unique name in statement i+1 to i+n.

An assignment which has been let-weakened offers two benefits to the subsequent code gen-

eration process. Firstly the assignment operation may be translated without involving any

mutation to shared state, since all unshadowed uses of the name within the block necessarily

refer directly to the evaluation of expression. Secondly all unshadowed uses of the name

within the block can then be translated without incurring any accesses to shared state. For

example, if the translation target is an FPGA pipeline, this means that corresponding defini-

tions and uses of let-weakened assignments may be implemented as FIFOs, simply forwarding

values from the evaluation of each expression to its use(s), without any dynamic accesses to

shared memory. ReiPy’s current design does not support variable shadowing within the source

program, further simplifying its implementation.

Analysis

Whilst an analysis for let-weakening is likely possible using only reaching definitions, we follow

Appel and base our analysis on a typical SSA conversion. The danger of let-weakening a name

ineligible for let-weakening, is that the name is bound too early: uses of the variable might end

up resolving to an earlier assignment than in the original program. As such any assignments

for which the definition can outlive the termination of the let-in block are immediately and

conservatively disqualified from let-weakening.

For this reason, ReiPy begins its let-weakening analysis by identifying all names assigned within

a function definition which correspond to stack-allocated local variables—or equivalently, all

variables local to the function invocation which are not captured in a closure. Fortunately

we may simply reuse Python’s own determination for this set, which we shall see in Section

5.4.1 are accessible via the co varnames attribute, on any compiled bytecode object. Helpfully,

Python provides a “builtin” function compile for generating bytecode from concrete syntactical

definitions, if required.
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A control-flow graph (CFG) for the function definition is built by recursively walking its ab-

stract syntax tree, adding “guard” nodes before any primitive operations which could raise an

exception. These guard nodes have outward edges to every outer exception handler, and also

the terminal node of the graph. No attempt is made at interprocedural analysis, and so invo-

cations are represented simply as nodes within the CFG. The CFG is stripped of unreachable

nodes, which would otherwise disrupt our determination of dominance relationships.

Using a worklist, initialised to contain only the start node of the CFG, the nodes dominated

by a given node are determined as those nodes which are unreachable if the given node is

removed from the graph. Inverting this relation yields the set of dominators for each node.

The immediate dominator for each node is found using the following näıve Python algorithm,

where nodes is the set of all nodes in the CFG, and dominators[node] is the set of dominators

for node:

immediate_dominator = {}

for subject in nodes:

candidates = set()

for node in dominators[subject] - {subject}:

rejected = False

for other in dominators[subject] - {subject, node}:

if node in dominators[other] - {other}:

rejected = True

if not rejected:

candidates.add(node)

assert subject is initial_node or len(candidates) == 1

if subject is not initial_node:

immediate_dominator[subject] = candidates.pop()

The dominance frontier for each node is then determined using an algorithm due to Cooper et

al. [CHK01]:
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dominance_frontier = {}

immediate_predecessors = {}

for node in nodes:

dominance_frontier[node] = set()

immediate_predecessors[node] = set()

for node in nodes:

for successor in node.successors:

immediate_predecessors[successor].add(node)

for node in nodes:

predecessors = immediate_predecessors[node]

if len(predecessors) > 1:

for predecessor in predecessors:

cursor = predecessor

while cursor is not immediate_dominator[node]:

dominance_frontier[cursor].add(node)

cursor = immediate_dominator[cursor]

A classic live variable analysis (LVA) is performed, finding the fixed-point of the following pair

of dataflow equations, in order to determine the presence of φ-nodes within a pruned SSA form:

LIVEout[x] =
⋃

y∈succ(x)
LIVEin[y] (5.1)

LIVEin[x] = USED[x] ∪ (LIVEout[x]− ASSIGNED[x]) (5.2)

LIVEout[x] and LIVEin[x] are sets containing all variable names potentially live at the exit and

entry points of node x respectively. USED[x] is the set of all variable names used within node

x before being assigned, whereas ASSIGNED[x] is the set of all variable names assigned within

node x. The function succ(x) simply returns the set of all successor nodes to x within the

control-flow graph.

We populate our initial set of candidates for let-weakening with all assignments to stack-locals
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which are dead (i.e. not live according to LVA) in their dominance frontier, and for which

all other assignments to the same name dominated by the candidate are also dead in their

dominance frontier. This is simply the set of all assignments, in pruned SSA form, which are

not used within any φ-node. For each candidate in this set we find all of its uses: specifically all

uses dominated by the assignment which are not dominated by any other assignment dominated

by the candidate.

Finally we filter out any candidates which have uses outside the scope of the block let-weakening

would introduce. By default the scope of the block is extended maximally, to encompass all the

following statements within the block of the assignment. If an assignment has uses in lexically

enclosing blocks, this filtering step disqualifies them from let-weakening.

5.4 Front-end reifier

Late-bound code generation is, by definition, performed within the runtime context of the source

program. Consequently, any system for late-bound code generation must come equipped with

some form of reifier : a mechanism to materialise terms which comprise the source program’s

implementation, into values which are addressable within that source program’s runtime con-

text.

Python does not have a well-established formal semantics, and so it is ambiguous whether the

implementation of our reifier relies solely upon the semantics of Python, or in part upon various

implementation details of the CPython 3 interpreter.

In general, in order to correctly translate the behaviour of a runtime function, three pieces

of information are required: the syntax of the function definition; the scope over which the

function instance is closed; and the semantics of the language in which the definition is denoted.

Intuitively, the closure scope gives meaning to all free variables within the function’s syntactical

definition, and the language semantics gives meaning to the remainder of the syntax, such as

keywords and punctuation. ReiPy obtains the first two of these pieces of information by means

of reification.
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Whilst syntax reification is perhaps a more common operation than scope reification, it is

curious that in Python reification of scope is vastly more straightforward than reification of

syntax.

5.4.1 Scope

Python scopes are formed of four parts, in order of decreasing priority: the local scope, the

closure scope, the global scope, and ultimately the “builtin” namespace. When resolving a

variable by name, first the local scope is checked, and if a variable with that name exists in

the local scope, the name resolves to the value of that variable. Failing that, the closure scope

is checked, which might be nested in general, and perhaps absent, then the global scope, and

finally Python’s list of “builtins”. If no variable with that name is found in any of the four levels

of scope, a NameError is raised. A consequence of this arrangement is that loops do not establish

a scope separate from that of the enclosing function, since there is no higher priority scope than

the local function scope—statements executing in a loop body execute within the same scope

as statements of the same function residing outside the loop body. One peculiar complication

arises from Python’s use of variable hoisting, whereby it implicitly creates a binding in the local

function scope for any name which is possibly assigned within that function. This behaviour

may be modified on a case-by-case basis, by declaring the variable global or non-local using

the global and nonlocal keywords. Notionally this binding is created before the very first

statement of the function’s body is executed, hence the term hoisting, with the variable left

uninitialised: any attempt to read the variable raises an UnboundLocalError. Modules and

classes both introduce scopes into the scope hierarchy, however these manifest either at the

level of global scope, local scope, or within the nest of closure scopes.

In order to reify the lexical scope of a Python function instance, just three pieces of information

are required, all of which are available as attributes of the function object. Python maintains a

fairly comprehensive selection of information about the scope of any function, as the following

interactive shell excerpt illustrates.
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Python 3.7.3 (default, Jul 25 2020, 13:03:44)

[GCC 8.3.0] on linux

Type "help", "copyright", "credits" or "license" for more information.

>>> i = 123

>>> def outer(a):

... j = 456

... x = 'abc'

... def subject(b):

... y = 'xyz'

... z = 'foo'

... def inner(s):

... return z + s

... print(a + b + i + j)

... print(inner('bar') + x + y)

... return subject

...

>>> f = outer(789)

>>> f(0)

1368

foobarabcxyz

>>> f.__code__

<code object subject at 0x7f0e4aa2f660, file "<stdin>", line 4>

>>> f.__code__.co_cellvars

('z',)

>>> f.__code__.co_freevars

('a', 'j', 'x')

>>> f.__code__.co_varnames

('b', 'y', 'inner')

>>> f.__closure__
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( <cell at 0x7f0e4aa18a08: int object at 0x7f0e4a9f2830>,

<cell at 0x7f0e4a9e2618: int object at 0x7f0e4a9f27b0>,

<cell at 0x7f0e4a9e26a8: str object at 0x7f0e4aab5538> )

>>> f.__closure__[0].cell_contents

789

>>> f.__closure__[1].cell_contents

456

>>> f.__closure__[2].cell_contents

'abc'

>>> f.__globals__

{ '__name__': '__main__',

'__doc__': None,

'__package__': None,

'__loader__': <class '_frozen_importlib.BuiltinImporter'>,

'__spec__': None,

'__annotations__': {},

'__builtins__': <module 'builtins' (built-in)>,

'i': 123,

'outer': <function outer at 0x7f0e4a9987b8>,

'f': <function outer.<locals>.subject at 0x7f0e4a998840> }

As demonstrated by the above excerpt, code attributes such as code .co varnames and

code .co cellvars pertain to bindings to be instantiated within the local scope of the

function, and the scope of any functions nested within, such as inner. Notice also that the

builtins namespace is linked using named indirection through the global scope, via the variable

named ‘ builtins ’.

Since at least Python version 3.7, it is possible to both read and write the cell contents

attribute of the cell object, to resolve and assign to the corresponding variable, respectively:

enabling a fully reflective materialisation of function scope. In earlier versions of Python it was
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necessary to call PyCell Set via the ctypes.pythonapi foreign-function interface, mutating

the internal state of the Python interpreter, in order to reflect changes made to the reified

scope back into the runtime. The standard Python library inspect provides a somewhat more

abstract interface to scope bindings than does the code attribute, but to our knowledge it

does not support the mutation of bindings—hence it cannot be used if a reflective reification is

desired, as it is in ReiPy.

Since we are only interested in reifying the scope over which the function is closed—namely

the lexical scope in which the function was defined—many of these attributes are superfluous.

We only require three attributes: code .co freevars, closure and globals . The

first two of these attributes are tuples of exactly the same length, since the former contains

the names associated with the cells in the latter (although in the case that co freevars is an

empty tuple closure is None). This association can be observed in our example above, in

which f. code .co freevars[2] == ‘x’. From the function definition we expect that x ==

‘abc’, and indeed we observe f. closure [2].cell contents == ‘abc’.

Accordingly ReiPy reifies the lexical scope of any Python function thus:

def reify_scope(function):

if not hasattr(function, '__cached_closure_scope__'):

assert callable(function) and hasattr(function, '__code__')

function.__cached_closure_scope__ = PythonClosureScope(

function.__code__.co_freevars,

function.__closure__ or (),

function.__globals__

)

return function.__cached_closure_scope__

We define the constructor for PythonClosureScope as follows:

class PythonClosureScope(PythonScope):
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def __init__(self, names, cells, global_namespace):

names = names if names is not None else ()

cells = cells if cells is not None else ()

assert isinstance(names, tuple)

assert isinstance(cells, tuple)

assert isinstance(global_namespace, dict)

assert len(names) == len(cells)

self.__bindings = dict(zip(names, cells))

self.__global_namespace = global_namespace

...

The parent class PythonScope is simply an abstract class shared amongst other forms of reified

scope, which we shall encounter later. The minimal interface for objects of class PythonScope

is:

resolve(self: PythonScope, name: str) -> object

The method resolve simply returns the object bound to name in the given scope.

As we have seen, closure scopes in Python defer resolution of unbound names to the dictionary

of global variables, and failing that to the builtin namespace. Accordingly the method resolve

is defined on PythonClosureScope as follows:

def resolve(self, name):

if name in self.__bindings:

return self.__bindings[name].cell_contents

else:

try:

return self.__global_namespace[name]

except KeyError:
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from types import ModuleType

builtins = self.__global_namespace['__builtins__']

if isinstance(builtins, ModuleType):

try:

return builtins.__dict__[name]

except KeyError:

raise Exception('name "' + name + '" is unbound')

else:

try:

return builtins[name]

except KeyError:

raise Exception('name "' + name + '" is unbound')

In CPython, the object bound to builtins within the global dictionary may be either a

module, or a plain dictionary, depending for example on whether the function was defined

outside of the program’s main module. Accordingly both cases must be handled, since when

the builtins namespace is implemented using a module, the dictionary of bindings is accessed

via its dict attribute.

PythonClosureScope conforms to the interface required for scopes by the meta-circular inter-

preter defined in Section 5.5.

5.4.2 Syntax

Perhaps surprisingly, reification of the syntax of Python function definitions is technically

more challenging than the reification of their scope. The CPython interpreter does not per-

sist the concrete or abstract syntax fragment from which a function was instantiated. If the

function was defined from syntax originally read from a file, the code .co filename and

code .co firstlineno attributes of the function potentially record the path at which that

file was located on the filesystem at the time the function was allocated, together with the first
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line within which the definition begins.

Prior to Python version 3.9, co filename was a path relative to the current working directory at

the time the function was instantiated, and the absolute path of the current working directory

was not recorded, so it was not possible in general to resolve the file—since the current working

directory might have changed in the meantime. Since version 3.9 however the path recorded by

co filename is always an absolute path [Fou19]. Nevertheless, the contents of the file at that

path might have been modified since the function was instantiated, and therefore any function

definition found within that file is not necessarily related to the definition of the function

instance. Furthermore, due to optimisation details internal to the CPython interpreter the

co filename property is not populated reliably, however the path may be somewhat more

reliably obtained by using the inspect.getsourcefile library function, which performs more

extensive, yet still heuristic, inferences.

ReiPy simply assumes that the contents of the file so obtained has not changed since the function

was instantiated, and thus might produce unsound results if that assumption is violated.

Having assumed the contents of the file containing the function definition, together with the

line number of the first line of the definition, typically provides sufficient information to iden-

tify the respective concrete syntax fragment. However ambiguity can arise if several function

definitions begin at the same line. Fortunately Python’s grammar prevents several named func-

tion definitions from beginning at the same line, but no such constraint holds for anonymous

functions instantiated using the lambda operator.

Consequently ReiPy attempts to reify the syntax of the function definition in general using a

disambiguation strategy, due to Ristin [Ris18]. In order to reify the syntax of the function def-

inition we parse the concrete syntax of the entire file, using the standard ast library, rendering

a module-level abstract syntax tree. Walking the tree, nodes corresponding to each function

definition are obtained, and then filtered by line number. In the case that there is only one

definition on that line, then the singular node serves to reify the function’s syntax. In the case

of ambiguity each candidate definition is converted to CPython bytecode using the compile

builtin, and compared for equivalence against the code .co code attribute of the function
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being reified. Identical bytecode sequences are trivially equivalent, however the CPython com-

piler might compile the same concrete definition into a range of different equivalent sequences.

Establishing the equivalence of two programs is undecidable in general, so we proceed heuristi-

cally. The bytecode for each function definition on that line is compared to code .co code

modulo a small number of synonymous rewrites. If only one definition matches, then the AST

of that definition is used, otherwise an exception is raised.

Assuming that a unique native AST for the function is obtained, we build a PythonTerm

object, ReiPy’s own representation of syntax—this is for a number of technical reasons, the

most important of which is that the design of our meta-circular interpreter requires terms to

conform to this PythonTerm interface, and not Python’s native ast module, as we shall see

later.

ReiPy can translate terms from Python to Python itself, which is useful for reasons of opti-

misation and distribution as we illustrate in Section 5.7, and in doing so uses PythonTerm for

representing both source and target syntax. As we discussed in Chapter 2, our translation sys-

tem requires the target (intermediate) representation to accommodate references to instances

within the source program runtime, which PythonTerm does, yet Python’s native ast mod-

ule does not. Another reason for our own representation, is that PythonTerm only permits

terms absent of early function return, whereas Python’s native ast module allows definitions

containing early return statements. This current limitation greatly simplifies the translation

system.

The minimal interface for PythonTerm objects is as follows:

evaluate(self: PythonTerm, scope: PythonScope) -> object

is_immediate(self: PythonTerm) -> bool

immediate_reference(self: PythonTerm) -> object

The evaluate method simply evaluates the term in the given ReiPy scope, possibly returning

an object. Terms for Python expressions evaluate to the value of the expression, whereas terms

for Python statements typically evaluate to None, except blocks which evaluate to the value of
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the returned expression, if the last statement is a return statement. We describe the behaviour

of the methods is_immediate and immediate_reference later in Section 5.5.

Currently ReiPy does not supply the requisite rewrite transformation for converting function

definitions containing early returns to equivalent definitions without. Whilst this could be

defined, it might instead be simpler to properly support early returns within the code generation

procedure. Until either is made available, ReiPy is unable to handle the Python return keyword

in any position other than the last statement of the function body. Similarly ReiPy does not

support Python’s try or raise keywords.

The AST of the definition is walked recursively, creating an instance of PythonTerm for each

node in the tree. The process is a transliteration, however it is at this stage that let-weakening

is performed. After having performed the let-weakening analysis on the native AST, as was

described in Section 5.3.1, those let-weakening annotations are checked during instantiation of

the PythonTerm based representation: whenever an assignment is encountered which is eligible

for let-weakening, a special PythonLetIn term is instantiated, rather than a regular assignment

term. Since Python does not support any form of let-in construct, the language represented by

PythonTerm must be seen as an extension of regular Python. Since early returns and exceptions

are not supported by PythonTerm, it is simultaneously a specialisation of regular Python.

Let-in bindings are not simply syntactic, but introduce their own kind of scope, represented

in ReiPy as an instance of PythonLetInScope which extends the base PythonScope class.

PythonLetInScope is rather trivially implemented, as it forwards all operations on names to

the parent scope, expect for resolutions to the let-in bound name, which is resolved to the

bound value, and non-reassignable.

When instantiating a PythonLetIn term, all subsequent statements within the current block

are moved into the let-in body. The name of the binding is generated uniquely, appending an

integer to the original name such that it doesn’t interfere with any other name in scope. All

uses of the let-in binding are renamed to match the generated name.

This procedure for syntax reification is implemented by ReiPy’s reify_syntax function:
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Algorithm 1 Reify syntax

Require: f is a function
Require: f is not a method

Parse the file containing the definition of f using the ast library;
Find the definition of f within the abstract syntax tree (AST) of the module;
Inspect the set of stack-local variables f. code .co varnames;
Build a control-flow graph (CFG) for the body of f ;
Analyse the CFG for stack-local names eligible for let-weakening:
– Elide unreachable CFG nodes;
– Find all dominated, dominator and immediate dominator nodes;
– Determine dominance frontiers;
– Perform live variable analysis;
– Filter the nodes which can be let-weakened;
– Annotate assignments in the AST which are let-weakening eligible;
Walk the AST to instantiate a nest of PythonTerm objects:
Instantiate PythonLetIn terms for nodes eligible for let-weakening;
return the PythonTerm corresponding to the body of f ;

Methods, as opposed to functions, are not reified directly by reify_syntax, in order to maintain

the identity given in the next section. To reify the definition of some method, the underlying

method.__func__ must be reified as reify_syntax(method.__func__), and the bound object

method.__self__ retained, to be supplied as the first argument to the function.

5.4.3 Reification identity

ReiPy’s pair of functions reify_scope and reify_syntax are defined in order to maintain the

following identity:

function(argument_0, argument_1, ..., argument_n)

≡

reify_syntax(function).body.evaluate(

reify_scope(function)

.extend(PythonFunctionLocalScope)

.declare_locals(

reify_syntax(function).local_variable_names

).assign_locals(
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{

reify_syntax(function).argument_names[0]: argument_0,

reify_syntax(function).argument_names[1]: argument_1,

...,

reify_syntax(function).argument_names[n]: argument_n

}

)

)

The extended scope of this identity is an instance of PythonFunctionLocalScope, which repre-

sents the scope of a function invocation, with each formal argument name bound to the value of

the argument respectively. Since the scope of a Python variable is dependent on the presence or

absence of an assignment to its name within the function definition, it is important to declare

the names of all local variables at the point the PythonFunctionLocalScope is instantiated,

so that resolutions against that name which occur before the variable has been assigned result

in an UnboundLocalError being raised, and do not incorrectly recurse through the lexically

surrounding scopes.

This identity would fail to hold for Python bound methods, since there is an implicit first argu-

ment value bound to the method object, which does not correspond with an argument position

in the invocation expression. Therefore the underlying function object of bound methods must

be substituted in their place.

Reliance on this identity is central to the translation strategy implemented by ReiPy. In Section

5.6 we describe how this identity is used to translate the behaviour of Python functions.

5.5 Meta-circular interpreter

In our description of the front-end reifier, we sketched certain aspects of ReiPy’s meta-circular

interpreter, since the front-end necessarily generates terms acceptable to the interpreter. Our
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interpreter is structured to operate directly upon the AST of the term being evaluated, al-

though the actual operation of the interpreter need not even be implemented for ReiPy to

translate terms, as opposed to evaluate terms. This is because the translation of source terms

is accomplished by dispatching to code generators associated with the interpreter, which do

not depend on the interpreter implementation itself. The implementation of the interpreter, if

present, simply serves as an operation semantics for the author of the code generator to refer

to.

Whilst we could have equally implemented our interpreter as a single function, with a monolithic

conditional switch on the type of the evaluated term, we instead chose to implement it in an

object-oriented style, with separate classes for each term type.

There are just two super-classes from which every class of the interpreter inherits: PythonScope

and PythonTerm.

The interface for PythonScope objects is simply:

resolve(self: PythonScope, name: str) -> object

As we saw before, the interface for PythonTerm objects is:

evaluate(self: PythonTerm, scope: PythonScope) -> object

is_immediate(self: PythonTerm) -> bool

immediate_reference(self: PythonTerm) -> object

The methods is_immediate and immediate_reference are used extensively in order to identify

terms which always evaluate to the same object, for which that object is known at translation

time: is_immediate tests if this property holds, and immediate_reference is used to extract

the reference to that immediate object.

Typically the evaluate method of compound terms delegates to the evaluate method of its

sub-terms. For example a refinement of PythonTerm for the if and else keywords might be

implemented as follows:
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class PythonIfElse(PythonTerm):

def __init__(self, predicate, consequent, alternative):

self.predicate = predicate

self.consequent = consequent

self.alternative = alternative

def evaluate(self, scope):

if self.predicate.evaluate(scope):

self.consequent.evaluate(scope)

else:

self.alternative.evaluate(scope)

A class implementing Python name resolution (the use of a local, “nonlocal” or global variable)

could be implemented simply as:

class PythonLoadName(PythonTerm):

def __init__(self, name):

self.name = name

def evaluate(self, scope):

return scope.resolve(self.name)

ReiPy contains such class definitions for most of the terms in the Python language. Some term

types are omitted, such as terms for handling exceptions, since these are as yet unsupported,

as we discuss later in Section 5.8.

Similarly each type of scope in Python is implemented as a refinement of PythonScope. The

most common kinds of scope encountered when using ReiPy are PythonClosureScope and

PythonFunctionLocalScope, which represent the scope over which a function instance closes
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and the local scope of a function invocation respectively. The construction and implementation

of PythonClosureScope instances were discussed previously in Section 5.4.1.

PythonFunctionLocalScope instances must simply maintain a dictionary of local variable bind-

ings, which might be implemented simply as follows:

class PythonFunctionLocalScope(PythonScope):

def __init__(self, parent=None):

self.__parent = parent

self.__declarations = list()

self.__bindings = dict()

def declare_locals(self, names):

for name in names:

self.__declarations.append(name)

def assign_locals(self, bindings):

for name, value in bindings.items():

if name not in self.__declarations:

raise RuntimeError('undeclared local: ' + name)

self.__bindings[name] = value

def resolve(self, name):

if name in self.__declarations:

if name in self.__bindings:

return self.__bindings[name]

else:

raise UnboundLocalError('unbound local: ' + name)

elif self.__parent is not None:
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return self.__parent.resolve(name)

else:

raise RuntimeError('unbound variable: ' + name)

Local variables are resolved in the member dictionary of bindings, whereas all other names

are resolved by delegation to the parent scope. As discussed above, the list of local names

self.__declarations is necessary to implement Python’s variable hoisting semantics cor-

rectly.

ReiPy supports other kinds of scope, notably PythonImmutableFunctionLocalScope and also

PythonLetInScope. The former is a refinement of PythonFunctionLocalScope which forbids

local variable assignment, and binds argument immutably. Since the resulting scope is stateless,

it may be provided lazily during translation, to multiple consumers, without any of the hazards

which result from duplicating state. The latter implements the stateless scope underlying our

let-in extension to Python, necessary for our let-weakening optimisation.

5.6 Code generation

In the previous sections we have described how Python function objects are reified into instances

of PythonTerm, accepted by our meta-circular interpreter. Translation of these terms into some

target language is achieved by application of our reification identity introduced in Section 5.4.3.

In the simplest case of immediate functions which do not mutate their local scope, it specialises

to:

translate(Target,

immediate(function),

[argument_provider_0, argument_provider_1, ..., argument_provider_n],

mandate

)

≡
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translate(Target,

immediate(reify_syntax(function).body.evaluate),

[

translate(Target,

immediate(Target, PythonImmutableFunctionLocalScope, mandate),

[

immediate(Target, reify_scope(function), mandate),

immediate(Target, tuple(reify_syntax(function).argument_names), mandate),

translate(Target,

immediate(Target, instantiate_tuple, mandate),

[argument_provider_0, argument_provider_1, ... argument_provider_n],

mandate

)

],

mandate

)

],

mandate

)

Informally this identity might be stated as: “the invocation behaviour of the given function,

translated to some target language, is equivalent to the invocation behaviour of the evaluate

method of its reified body, when provided an immutable scope which binds its arguments,

translated to the same target language”.

The constructor for PythonImmutableFunctionLocalScope takes three arguments: the par-

ent scope, a tuple of argument names, and a tuple of argument values. The resulting scope

is an extension of the parent, with the argument names immutably bound to the argument

values. No assignments are permitted in this immutable scope, but changes to the parent scope

are visible from the extension—it is immutable in the sense that it does not instantiate any
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mutable state, or forward mutation operations to its parent. The convenient (non-standard)

function instantiate_tuple creates a tuple from its argument list, simply implemented thus:

lambda *arguments: tuple(arguments).

If function were to possibly mutate its local scope, the translation identity becomes somewhat

more complicated, since the scope provider must instead be instantiated non-lazily, which

we discuss in Section 5.6.1. ReiPy determines whether a function mutates its local scope,

or not, by searching the AST of its reified definition for assignment operations, including

import statements, and class or function definitions. In certain circumstances let-weakening

will transform a function which does mutate its local environment into one which doesn’t.

The translate operator delegates translation to the code generator attached to the method

reify_syntax(function).body.evaluate. If the function was constructed using the def key-

word then its body will be an instance of PythonBlock. Alternatively, the body of functions

constructed via the lambda keyword are instances of some subclass of PythonExpression,

since syntactically Python’s lambda constructor does not support blocks. Assuming the body

is a block, the code generator for Target associated with PythonBlock will be invoked. Con-

sider for example that the target language is Python itself—specifically PythonBlock rather

than PythonExpression—then the code generator for PythonBlock.evaluate might be im-

plemented as follows:

def translate_python_block_to_python_block(method, argument_providers, mandate):

self = method.__self__

scope_provider = argument_providers[0]

statements = []

for statement in self.member_statements:

translated_statement = translate(PythonBlock,

immediate(PythonBlock, statement.evaluate, mandate),

[scope_provider],

mandate

)



160 Chapter 5. ReiPy: late-bound code generation in Python

statements.extend(translated_statement.member_statements)

if translated_statement.return_expression is not None:

statements.append(

PythonExpressionStatement(translated_statement.return_expression)

)

if self.return_expression is not None:

translated_expression = translate(PythonBlock

immediate(PythonBlock, self.return_expression.evaluate, mandate),

[scope_provider],

mandate

)

statements.extend(translated_expression.member_statements)

return PythonBlock(statements, translated_expression.return_expression)

else:

return PythonBlock(statements)

Note that this code generator is associated not with a Python function instance, but a Python

method instance, and so the binding to the object of the method is retrieved using the __self__

property.

Such a code generator is merely a dispatcher, delegating fragments of the translation to the code

generators associated with each statement within the block. The major technicality has to do

with ReiPy’s handling of resulting values: the abstraction PythonBlock, as discussed previously,

only supports return statements if they are located at the end of the block. Furthermore the

translation strategy employed for translating to PythonBlock utilises return statements in

the final position to represent the result of the computation, similarly to how our pipeline

abstraction of Chapter 4 identifies the component of the pipeline which delivers the result.

Consequently there is a certain amount of “plumbing” involved in writing this code generator.

This is best understood by example: consider for instance that the following Python function

is to be translated to PythonBlock.
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def foo(bar):

print('Hello')

return 123 + bar

mandate = {}

translation = translate(PythonBlock,

immediate(PythonBlock, foo, mandate),

[ immediate(PythonBlock, 789, mandate) ],

mandate

)

The code generator for PythonBlock must first delegate to the code generator associated with

PythonExpressionStatement, since the first statement in the block is an “expression state-

ment” [Fou21]. This returns, after further delegating to the code generator for print:

print('Hello')

This seemingly trivial translation is only permissible since the code generators for Python builtin

functions assume that all builtins are bound under their standard names in the translation tar-

get’s namespace (this assumption can optionally be controlled via the mandate). Subsequently

the code generator associated with PythonBinaryOperation is invoked for the addition, which

further delegates to the code generator for PythonImmediate, for the literal and immediate

argument, returning respectively:

return 123

and

return 789
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Where the return statements denote the result of evaluating each sub-expression. These two

fragments are then composed by the code generator for PythonBinaryOperation, resulting in

the sub-translation:

V0 = 123

V1 = 789

return V0 + V1

Given the behaviour of PythonBinaryOperation’s evaluate method, which serves as an op-

erational semantics for implementing its code generator:

def evaluate(self, scope):

if self.operation_kind == 'Add':

return self.left.evaluate(scope) + self.right.evaluate(scope)

elif self.operation_kind == 'Sub':

return self.left.evaluate(scope) { self.right.evaluate(scope)

elif self.operation_kind == 'Mult':

return self.left.evaluate(scope) * self.right.evaluate(scope)

...

The code generator for PythonBinaryOperation.evaluate might be implemented as follows:

def translate_binary_op_to_python_block(method, argument_providers, mandate):

self = method.__self__

scope_provider = argument_providers[0]

translated_left = translate(PythonBlock,

immediate(PythonBlock, self.left.evaluate, mandate),

[scope_provider], mandate)

translated_right = translate(PythonBlock,

immediate(PythonBlock, self.right.evaluate, mandate),

[scope_provider], mandate)
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statements = []

left_name = generate_name()

statements.extend(translated_left.member_statements)

statements.append(

PythonAssignLocal(left_name, translated_left.return_expression))

right_name = generate_name()

statements.extend(translated_right.member_statements)

statements.append(

PythonAssignLocal(right_name, translated_right.return_expression))

return PythonBlock(statements,

PythonBinaryOperation(

self.operation_kind,

PythonLoadName(left_name),

PythonLoadName(right_name)

)

)

This is an example of a fairly typical code generator in ReiPy. The translations of functions

invoked by the method are translated by delegating to their code generators via translate, in

this case self.left.evaluate and self.right.evaluate. The ordering of effects is preserved

by collecting translated terms in the order demanded by the operator’s semantics, within the

list statements. Note that intermediate values are bound within the environment of the

target fragment under unique names, in this case automatically generated by the function

generate_name. This is a safe and effective method for maintaining binding hygiene, whereby

names from the source fragment are never used to bind values in the target fragments—instead

unique names, over the scope of the translation, are always generated whenever a binding is

required.

Finally the code generator translate_python_block_to_python_block composes these frag-

ments into the final result:
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print('Hello')

V0 = 123

V1 = 789

return V0 + V1

Whilst this example is rather trivial, more complicated examples typically involve interaction

with objects other than Python builtins, and the inlining of function implementations, which

present additional technical challenges.

5.6.1 Mutable scope

The example code generation process just presented did not involve any mutation to the func-

tion’s local scope. In the presence of mutable function scope, the scope provided to the trans-

lation of the function’s body must be instantiated within the translation itself, and bound to

a name. This bound name serves as the scope provider, instead of the fragment instantiating

the scope, as all users of the scope should have a common view of its state. This is achieved

using somewhat more intricate logic, replacing that illustrated in the section above. The ef-

fect however is simple—had the scope been mutable in the previous example, the result of the

translation would necessarily become:

V0 = PythonFunctionLocalScope(

PythonClosureScope((), (), globals())

)

V0.assign_locals({'bar': 789})

print('Hello')

V1 = 123

V2 = V0.resolve('bar')

return V1 + V2

The target fragment instantiates an instance of PythonFunctionLocalScope, which is provided

to the code generator of the function’s body as: V0. Here we have assumed not only that foo
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was defined within the global namespace, but also that the translated fragment is intended

for execution within that same global namespace. If this assumption were untrue, then the

invocation of globals to obtain the global dictionary would not necessarily obtain the global

namespace over which foo closed. In general the target fragment must access the source

interpreter instance over some kind of channel, which we explore more fully in Section 5.6.5. A

simpler yet safe alternative is to raise an error if any binding is accessed on the parent scope:

V0 = PythonFunctionLocalScope(PythonUnavailableScope())

V0.assign_locals({'bar': 789})

print('Hello')

V1 = 123

V2 = V0.resolve('bar')

return V1 + V2

Here for example the resolve method on PythonUnavailableScope raises a RuntimeError.

5.6.2 Inferring mutability of argument bindings

In general determining scope mutability in Python is somewhat subtle. It is tempting to

imagine, given Python lexical scoping rules, that a purely syntactic analysis of a function’s

definition would suffice to determine which arguments of a function are possibly mutated, and

also those which are certainly not. Furthermore, it should be possible to lexically determine

the names of all local variables declared (which are not arguments).

The presence of Python’s builtin exec function does not lead to intractability in this regard,

since it does not reflect back assignments to local variables performed by the executed code

fragment. What does complicate the analysis however is the possibility of scope reification.

Consider the following function:

def foo(x):

bar = lambda: print(x)
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return bar

Whilst the argument binding for x might never appear to be mutated within this definition, we

can not conclude from this fragment alone that x is never reassigned. For instance, as we saw

in Section 5.4.1, the closure scope of bar might be reified elsewhere in the program, and used

to mutate the binding:

baz = foo(123)

baz()

baz.__closure__[0].cell_contents = 789

baz()

Here the first closed-over variable of baz, namely x, is assigned the value 789. Running this

example renders the following to the console:

123

789

Furthermore, there are other reflective features in Python, such as stack frame inspection, which

could provide others means for binding mutation, which present additional challenges to the

analysis. In ReiPy we do not attempt a precise analysis for scope mutation, but instead make

a simple approximation based solely upon the syntax of the function definition. In the event

that an immutable scope is instantiated by the translated fragment, and then subsequently a

mutating operation is performed upon that scope, such that the approximation was erroneous,

a fatal exception is raised. This is a safe strategy, in the sense that scope resolution can never

return an incorrect result, but introduces an artificial source of runtime errors into the target

program.

Prior to Python 3.8—which introduced the := operator—anonymous functions defined by the

lambda keyword never mutate their local scope. Our syntactical analysis for named functions

comprises a simple check on every node within the function definition’s AST. If the AST does

not contains any nodes of the following types:
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• ast.Assign

• ast.AugAssign

• ast.Import

• ast.ImportFrom

• ast.FunctionDef

• ast.ClassDef

• ast.AsyncFunctionDef

then ReiPy’s analysis concludes that the function does not mutate its local scope. In the

exceptional case that a function does mutate its local scope and does not contain any of these

nodes in its AST—for example if the local scope is mutated only via reflection—it may be

annotated with a @mutable_local_scope decorator in order to override the outcome of the

analysis on a case-by-case basis.

Our current implementation of ReiPy performs its let-weakening analysis before scope mutation

analysis, but the let-weakening transformation subsequent to scope mutation analysis. This is

for purely incidental reasons, and not due to any true dependency. Hence AST nodes which

mutate only variables within the set of let-weak names are excluded from this syntactical

analysis, since their contribution to scope mutation will be removed during the let-weakening

transformation. This is important, since otherwise the vast majority of function definitions in

any practical program would lead to unnecessary scope materialisation in their translated form,

and nullify many opportunities for constant propagation and folding.

5.6.3 Implementing translate

There is considerable design freedom when it comes to implementing the translate operator

in Python. ReiPy takes advantage of the ability to dynamically assign new attributes to

Python function instances. If the provider of the function being translated is immediate, then
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the presence of an attribute on the function object with a “well-known name” is dynamically

checked. The current version of ReiPy associates code generators for some target language with

an attribute based on the target language name: '_translate_invoke_to_' + target.name.

If an attribute with that names is present on the function, it is used to determine the associated

code generator. Translation is delegated to that generator, and if it produces a result then that

translation is preferentially returned. If however the code generator opts to return no result, or

the function is not immediate and hence no preferential generator is resolvable, then translate

defaults to delegating the task of translation to the default_translate_invoke method of the

target language. This is illustrated within the following implementation of translate:

def translate(target, function_provider, argument_providers, mandate):

assert isinstance(function_provider, target)

for argument_provider in argument_providers:

assert isinstance(argument_provider, target)

if function_provider.is_immediate():

function = function_provider.immediate_reference()

generator_attribute = '_translate_invoke_to_' + target.name

if hasattr(function, generator_attribute):

generator = getattr(function, generator_attribute)

result = generator(function, argument_providers, mandate)

if result is not None:

assert isinstance(result, target)

return result

result = target.default_translate_invoke(function_provider,

argument_providers, mandate)

assert isinstance(result, target)

return result

Clearly this particular implementation of translate, and specifically its delegation policy, is

arbitrary. There are many other possible designs which would conform to the same interface,
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and render semantically acceptable translations. Additional cases could be inserted into the

dispatch policy, for example non-immediate providers could associate code generators against

other well-known named attributes attached to the provider itself, and be delegated to prefer-

entially over the default translation.

The default code generator for a given target can be implemented in any manner whatsoever.

In all of our experiments we designed our default code generator to perform code generation

by means of reification, as detailed earlier in this section.

5.6.4 Contextual generation

All of our previous examples have involved an extreme case regarding the information that is

known about the function under translation: either the translated function was immediate and

thus translatable; or unknown and so untranslatable; or some value was either immediate and

thus inlined; or unknown and so its resolution was delayed.

Many scenarios in which late-bound code generation is applicable involve cases which are less

binary, where a certain degree of information about an object or value is available at translation

time, but the material instance is not.

A scenario of this kind occurs when translating the behaviour of a function by means of reifi-

cation: even if the function being translated itself is immediate, the local scope within which

the syntax of the function definition is evaluated is in general not. The translated term must

generally instantiate some representation of the state of the scope, such as a stack frame or

heap allocated dictionary, dynamically for each future effective invocation of the behaviour.

Under certain conditions, such as scope immutability, this instantiation may be elided, but

it is necessary in general to allocate dynamic temporary storage for the function’s evaluation

state. Hence although this local scope is neither generally immediate, nor generally possible

to materialise at translation time, this does not imply every conceivable property of the scope

instance is unknown.

In certain cases some ancestor of the scope might be immediate, for example if the Python
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function being translated is immediate, then the parent of the local scope is certainly immediate,

since it is the function’s closure scope. Alternatively, if the translated function is invoked with

a literal argument (giving rise to an immediate argument provider) and the corresponding

argument variable is never mutated, then the resolution of that argument’s formal name in the

local scope is also immediate at translation time.

If it were devoid of any mechanism to encode such information, ReiPy would necessarily fail

to produce useful or performant translations when encountering such scenarios. Furthermore,

in our experience applying ReiPy to certain practical problems, such as those encountered in

Chapter 4, such scenarios are relatively common, if not representing the majority of cases.

ReiPy’s solves this problem using contextual generators.

A contextual generator is simply a code generator which is valid only within some specific

sub-context of the translation process: the correctness of the generated code depends on cer-

tain assumptions about the context in which it is executed, which do not hold more widely

throughout the translated program. Hence contextual generators are typically instantiated

dynamically during translation, applied selectively within their domain of validity, and then

discarded afterwards. For example, in order to represent the fact that the parent scope of a

non-immediate local scope is immediate, a contextual generator which provides that immediate

closure scope is constructed for the requisite language target. This contextual generator is then

associated with the provider of the local scope, in such a way as to override the code generated

when translating an invocation of the parent method on the provided local scope. We call this

the immaterial scope representation problem, or ISR problem.

One solution to the ISR problem is to override the code generator for loading the resolve

and parent attributes on the provided scope. If these methods are declared constant (in the

sense that the method implementation may not be changed after being defined) the default

code generator for loading their named attribute would return the bound method object as

an immediate value in the target language. In turn, the code generator associated with the

bound method object is called upon to generate an implementation of the behaviour of the

method, valid for any self instance provided. Using a contextual code generator, it is possible



5.6. Code generation 171

to override the former code generator, representing a specialised method object in place of

the original bound method object. The code generator of this specialised method object only

generates code for representing some specific closure scope, and is therefore only valid for a

particular binding of self.

Consider using an attribute with some well-known name, to associate our contextual code gener-

ator with the local scope provider: '_override_translate_load_attribute_to_' + target.name.

The code generator associated with our metacircular evaluator’s operator for loading attributes,

upon checking for this attribute on the object provider, can therefore delegate preferentially to

the overriding generator. If the overriding code generator provides a specialised implementation

of resolve when accessing the 'resolve' attribute of the scope, associated in turn with a code

generator which provides immediate values for bindings known at translation time, then the

ISR problem has been solved, in part. This solution can be extended, by similarly overriding

the code generator for the parent method the scope provider can also represent ancestry infor-

mation about the future scope. Note that this solution relies heavily on the metacircularity of

ReiPy’s interpreter, whereby code generators for translating source terms stage the interpreter

itself, dynamically dispatching to code generators for operations internal to the interpreter,

such as operations on scopes, in addition to operations which appear literally in the source

term.

This is just one potential application of contextual generators to solving the ISR problem. An-

other solution might associate the contextual generator with a class dynamically instantiated

duration translation. With this approach, code generation is selectively specialised by extend-

ing the class of certain values within a particular context. This specialised class is automatically

instantiated during the translation process, and used to override the code generation of opera-

tions only within fragments on the translated term for which the specialisation in valid. This

is quite a general technique for representing binding at translation time, whereby immediate

values are bound statically to the class extension, and unknown values remain as variables of

the class instance. This was the approach taken to solve the ISR problem in our rendering ex-

periment of Chapter 4. Classes with static bindings for their scope ancestry and any constant

values were instantiated during translation, in order to represent partial information regarding
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scopes.

A hazard inherent to instantiating contextual code generators, is that the specialised generator

might be called upon to generate code situated outside of the region to which the specialisation

applies. The semantics ReiPy requires of, but does not enforce upon, provider objects are

intended to mitigate this hazard. If contextual code generators are (i) only ever associated

directly with providers, are (ii) defined to be valid wherever the provider is valid, and (iii) are

never called upon to generate code outside the provider’s valid context, then the contextual

code generated must be valid. Therefore it remains to define the validity rules for providers.

ReiPy’s semantics for providers are as follows:

• The provider must be valid within the context in which the generated code fragment is

executed.

• The provider terms supplied to a code generator may be incorporated into the translated

code fragment zero times, once or several times.

• Providers may be reused as providers to code generators which are delegated to form

sub-fragments of the calling code generator’s fragment, so long as the provider remains

valid within the context of the sub-fragment.

• References must not be established to any provider which could outlive the invocation of

the code generator. Specifically references to providers must not be directly or indirectly

attached as metadata to the returned fragment, since the provider is only necessarily valid

within the context of the fragment.

• Providers must be idempotent upon execution, and must not invalidate any other provider

supplied to the code generator.

If providers are constructed and used according to these rules, then not only should the correct

value be provided within the translated fragment, but any contextual code generators associ-

ated with the provider should only ever be available for delegation within the context of their

speciality.
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An intuitive way to think about the semantics imposed upon providers and contextual code

generators, is that ReiPy generates code by means of mutually recursive dynamic dispatch

between many fragmentary code generators. The call stack of the translation process mirrors

the nesting of sub-terms within the translated term—code generators recursively call other code

generators to translate sub-terms of the result, which are combined together by the calling code

generator. A particular code generator might specialise a generator or provider to the context of

the sub-term it is currently generating, a specialisation which is valid throughout the downward

sub-stack of code generators it delegates to. In general this kind of specialisation is invalid in

the upward sub-stack of calling code generators, and so any reachable reference which outlives

the invocation of the code generator is potentially hazardous. This has an informal analogy

to the downward and upward “FUNARG” problem [Mos70]: providers and contextual code

generators are in general only valid when eligible for stack-based allocation (downward) and

pose a hazard when heap-allocated (upward). Python does not offer any means for requesting

stack-allocation of objects, which would assist in formally enforcing these semantics.

5.6.5 Object persistence

During translation any immediate and immutable values encountered during translation, which

are necessarily referenced by the translated term, can simply be rematerialised within the

translated term. For example, numeric literals are usually represented as numeric literals or bit-

strings throughout the result of the translation. If however the translation process encounters

a non-immediate reference, or an immediate reference to a mutable object, the translated term

must instead be generated with free variables which are subsequently linked to the requisite

object upon execution. We term this problem “object persistence”, in analogy to the issue of

“cross-stage persistence” in multi-stage programming languages.

In general ReiPy supports object persistence by means of the translation mandate. When per-

sistent objects are encountered during translation, a (translation-wide) unique term within the

target language is allocated to represent references to that object. This can be performed

in a target specific manner: for example when targeting Python itself the same function



174 Chapter 5. ReiPy: late-bound code generation in Python

generate_name might be used, as employed when generating names for binding intermedi-

ate results—but in this case the code for binding the name itself is not initially generated. It

is crucial that the association between the uniquely allocated term and the persistent object is

retained, as this association is necessary for subsequently linking the translated term prior to

execution.

A convenient way to retain these associations is via the mandate object. A directory of all

persistent objects, associated as an attribute of the mandate, is populated whenever a new

persistent object is encountered, registering the unique term allocated along with some proce-

dure to obtain the persistent object itself. Whilst this directory could instead be associated

with fragments of the translation, associating it with the mandate is more convenient for two

reasons. Firstly, with the code generator attached to the mandate—an object shared between

all code generators contributing to a translation—there is an opportunity to cache and reuse

the allocated term for the persistent object, amongst its several separate uses. Secondly, if the

directory were attached to individual code fragments, it would become necessary for code gen-

erators to merge the directories of persistent objects, whenever code fragments are combined.

Although this is a relatively simple problem to solve, it introduces unnecessary complexity to

the implementation of every ReiPy code generator.

The directory of terms allocated for persistent objects can be inspected, after the eventual

translation is formed, in order to prune any unneeded terms. ReiPy typically engenders the

generation of many code fragments during translation which are subsequently elided from the

translation result. For instance these elided fragments might include providers for unused

arguments, or generic fragments which are eliminated by opportunistic inlining or constant

folding optimisations. Any persistent objects which are determined to be ultimately unused

can simply be removed from the directory.

In order to execute any translation which includes references to persistent objects, the execution

environment must first be prepared, ensuring that those terms allocated to each persistent

object resolve correctly to the requisite object at runtime. This is analogous to the “linking”

step which traditionally precedes execution for ahead-of-time compiled languages. In general



5.7. Offloading computation to the cloud 175

the persistent objects referred to are not necessarily immediate at linkage time either, and

thus a bidirectional channel must be established to allow for runtime resolution of the object.

For example the source program might refer to a mutable variable, addressed by name, in the

originating process’ global scope. Each time such an object is dereferenced by the translation

during execution, messages must be exchanges over this channel with the originating processes,

in order to obtain information about the current state of the global binding.

5.7 Offloading computation to the cloud

In Section 5.2 we described how ReiPy can be used to offload computation across a network—

for instance offloading the computation of a hash over database values, to the same machine as

is hosting that database. This particular example was primarily motivated by the pragmatic

concern of minimising network bandwidth consumption, although the total execution time

would likely be reduced also.

A similar situation applies to resources which are hosted in “the cloud”, whereby databases and

other stateful or stateless services are managed as a subscription service, physically co-located in

some data center. Our motivating example is also applicable when considering the heterogeneity

of network bandwidth, internal and external to such a data center. Rather than offloading

computation to the very same machine as is hosting the database, which strictly minimises

network bandwidth consumption, computation might instead by offloaded to a machine co-

located with the database. If this machine is attached to the same internal data centre network

as the database server, since that local network’s available bandwidth is likely greater than

that to the client machine, the same pragmatic advantage is gained.

5.7.1 Basic scenario

In this section we return to the predicate function introduced in Section 5.2, and show in

detail how it is translated into a form suitable for remote execution. Subsequently in sections
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5.7.2 and 5.7.3 we will adapt this basic scenario, incorporating specific considerations for cloud

execution.

Consider again the definition of predicate, whose computation we desire to offload:

def predicate(some_key, some_hash):

value = DB.query('GET KEY ' + some_key)

hash_result = HASH(value)

return hash_result == some_hash

Throughout we will assume that predicate was instantiated within the following context:

def build_predicate(DB):

HASH = DB.get_configured_hash_function()

def predicate(some_key, some_hash):

value = DB.query('GET KEY ' + some_key)

hash_result = HASH(value)

return hash_result == some_hash

return predicate

database_connection = RemoteDatabaseConnection(

'MODE=tcp;HOST=database.example.com'

)

predicate = build_predicate(database_connection)

Note that DB is an argument to the function lexically enclosing predicate, the value of which

is instantiated before build_predicate is invoked. However, HASH is bound to a function

determined by—potentially effectful—communication with the database.

By applying the translate operator to our function closure, we seek to obtain a transformed

representation of the invocation behaviour of predicate. This transformed representation
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must only comprise Python terms common to both the local and remote interpreter evaluation

scopes, specifically eliminating any use of the names DB and HASH, which in our scenario are not

assumed to be common terms. We apply ReiPy’s translate operator to obtain our translation:

interesting_hash = 0x276104A8

translation = translate(PythonBlock,

immediate(PythonBlock, predicate, mandate), [

PythonBlock([], PythonLoadName('argument_0')),

immediate(PythonBlock, interesting_hash, mandate)

], mandate

)

The very first step of the transformation occurs within ReiPy’s preprocessor. The control-

flow graph for predicate is generated, according to the process we described in Section 5.3,

the result of which is illustrated in Figure 5.1. Applying our let-weakening algorithm to this

control-flow graph yields the following transformed definition:

def predicate(some_key, some_hash):

let UniqueName0 = DB.query('GET KEY ' + some_key) in:

let UniqueName1 = HASH(UniqueName0 ) in:

return UniqueName1 == some_hash

Both value and hash_result have been let-weakened. They have been renamed at both their

definitions and uses to uniquely generated names, not occurring elsewhere within the source

fragment. Given the binding structure manifest within this let-weakened form, but without

any domain-specific customisation, ReiPy would produce the following translation:

V0 = OriginProxy(0x7efd5bf41d38, ctypes.py_object).query

V1 = 'GET KEY '

V2 = V1 + argument_0
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[9] Guard

[10] BinaryOperation: Add

[1] TERMINAL

[11] Guard

[12] Call

[13] Guard

[15] Guard

[16] LoadName: HASH

[14] AssignName: value

[17] Guard

[19] Guard

[20] Call

[18] LoadName: value

[21] Guard

[23] Guard

[24] LoadName: hash_result

[22] AssignName: hash_result

[25] Guard

[26] LoadName: some_hash

[27] Guard

[28] Compare: Eq

[29] Return

[0] INITIAL

[2] Guard

[3] LoadName: DB

[4] Guard

[5] LoadAttribute: query

[6] LiteralString: GET KEY 

[7] Guard

[8] LoadName: some_key

Figure 5.1: Control-flow graph corresponding to the function definition of predicate. All of the
edges landing on the terminal node, except the single edge from the return node, correspond
to exceptional control flow paths. Ignoring these exceptional edges, this is a linear graph, since
predicate does not contain any conditional statements, or any loop constructs.
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V3 = V0(V2)

V4 = OriginProxy(0x7efd5bf7cf78, ctypes.py_object)

V5 = V4(V3)

V6 = 660669608

return V5 == V6

The bound value for DB is represented in the translation as a proxy. OriginProxy represents an

object in the originating interpreter’s address space, here parameterised by the virtual address

of the instance on the heap, along with its primitive type. This proxy forwards all object

interactions over the network connecting the original and target interpreters, and so performs

the query using double network indirection: first the query string would be sent back to the

original interpreter, and then forwarded to the database, the database would then return the

query result back to the original interpreter, which finally forwards it to the target interpreter.

This would not reduce our network bandwidth consumption, but only exacerbate it.

A similar issue applies to the binding of HASH, however this only involves a single level of network

indirection, computing the hash within the originating interpreter, yet again exacerbating our

bandwidth consumption. Clearly, in order to minimise our network bandwidth usage, these

two proxies must be eliminated from the translation. We will first demonstrate how the proxy

for HASH is removed, and then subsequently the proxy for DB.

Before we proceed, one might object to the fact that ReiPy has inlined the virtual address

of the object currently referenced by DB and HASH into the translation, rather than emitting

a call to resolve('DB') and resolve('HASH') on an OriginProxy for predicate’s scope.

ReiPy was enabled to inline these references, since we are using it in a configuration whereby

all names starting with a capital letter are assumed to be declared constant. This aligns well

with Python’s standard naming conventions, and reduces the need to explicitly and tediously

declare the constancy of various bindings to ReiPy. If DB was instead named db, the default

translation would be generated as follows:

V0 = PythonImmutableFunctionLocalScope.resolve(
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PythonImmutableFunctionLocalScope(

OriginProxy(0x7fedd27fa128, ctypes.py_object),

('some_key', 'some_hash'),

(argument_0, 660669608)

),

'DB'

).query

V1 = 'GET KEY '

V2 = V1 + argument_0

V3 = V0(V2)

V4 = zlib.adler32

V5 = V4(V3)

V6 = 660669608

V5 == V6

To eliminate the proxy for our hash function, such that the hash can be computed on the

remote machine, we must override the proxy generator corresponding to the hash function

used. Given that which hash function is applied depends on the runtime result of the method

get_configured_hash_function, we must override the proxy generator corresponding to all

potentially used hash functions. If we assume that the function is only ever bound to those hash

functions available in Python’s zlib module, we can override each of their generators thus:

for hash_function in [crc32, adler32]:

@proxy_generator(PythonBlock, hash_function)

def proxy(reference, mandate):

return PythonBlock([],

PythonAttributeLoad(PythonLoadName('zlib'), hash_function.__name__)

)

Here we apply ReiPy’s @proxy_generator decorator to each hash function in zlib, overrid-

ing its representation in the target language PythonBlock. This generator returns the terms



5.7. Offloading computation to the cloud 181

“zlib.crc32” and “zlib.adler32” for representing the CRC32 and Adler-32 hash functions

respectively. Due to a technical difficulty, it is not possible to apply an override directly to a

builtin Python function, since ReiPy internally attaches the generator to the function using an

attribute, but builtin Python objects do not support dynamically settable attributes. Therefore

we must define and use a trivially wrapped version of these builtin functions:

def crc32(value):

return zlib.crc32(value)

def adler32(value):

return zlib.adler32(value)

With our proxy generator overrides now associated with their hash functions, the resulting

translation becomes:

V0 = OriginProxy(0x7efd5bf41d38, ctypes.py_object).query

V1 = 'GET KEY '

V2 = V1 + argument_0

V3 = V0(V2)

V4 = zlib.adler32

V5 = V4(V3)

V6 = 660669608

return V5 == V6

We have declared the availability and meaning of the name 'zlib' in the target scope, by

means of overriding the relevant proxy generator. The substitution of this hash proxy was

legitimate, since it corresponds to a pure function. Now all that remains is to remove the proxy

corresponding to the database connection object. We will first demonstrate how the proxy

may be rewritten from a TCP/IP connection to a local Unix domain socket connection. Then

subsequently we describe a variation whereby a TCP/IP connection is retained, but using a

rewritten connection string.
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Similarly to how we eliminated the hash function proxy, we will override the proxy generator

for our connection object: however in this case, for the sake of generality, we will implement

a parametric generator, which is parameterised by the mandate. This will allow us to modify

aspects of the connection’s representation without modifying the generator definition itself:

@proxy_generator(PythonBlock, database_connection)

def proxy_connection(reference, mandate):

try:

local_connection_string = mandate.remote_to_local_database_map[

reference.connection_string

]

proxy_name = generate_name()

return PythonBlock(

[PythonAssignLocal(proxy_name,

PythonCall(PythonLoadName('LocalDatabaseConnection'),

[PythonImmediate(local_connection_string)]

)

)],

PythonLoadName(proxy_name)

)

except KeyError:

pass

This generator dynamically checks, at translation time, whether the mandate contains a map-

ping for the object’s connection string. If a mapping exists then the representation of the con-

nection is overridden, otherwise the generated representation falls back to the default proxy.

For reasons of exposition, we implemented this generator to emit code including an assignment

statement—the bound name is generated using generate_name, in order to maintain hygiene.

The code generated estantiates an instance of the class bound to LocalDatabaseConnection

in the target scope, using the remapped connection string. This instance is then bound to the
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uniquely generated name, and the resulting representation corresponds to the value resolved

by that generated name.

In order to make use of this generator override, we must first populate our mandate with

a suitable connection mapping. Here we accomplish this by defining a custom class for our

mandate, which populates the requisite remote_to_local_database_map attribute:

class MyMandate:

def __init__(self):

self.remote_to_local_database_map = {}

def map_remote_to_local_database(self, remote_string, local_string):

self.remote_to_local_database_map[remote_string] = local_string

Then to make use of our connection string mapping feature, we simply instantiate, populate

and supply our custom mandate to the translate operator:

interesting_hash = 0x276104A8

mandate = MyMandate()

mandate.map_remote_to_local_database(

'MODE=tcp;HOST=database.example.com', 'MODE=uds;PATH=/tmp/database.sock'

)

translation = translate(PythonBlock,

immediate(PythonBlock, predicate, mandate), [

PythonBlock([], PythonLoadName('argument_0')),

immediate(PythonBlock, interesting_hash, mandate)

], mandate

)

Hence we have eliminated all proxies from the resulting translation, arriving at the result we

originally sought in Section 5.2:
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V0 = LocalDatabaseConnection('MODE=uds;PATH=/tmp/database.sock')

V1 = V0.query

V2 = 'GET KEY '

V3 = V2 + argument_0

V4 = V1(V3)

V5 = zlib.adler32

V6 = V5(V4)

V7 = 660669608

return V6 == V7

5.7.2 Hostname rewriting variation

In a cloud computing context, where our execution target is likely to be a neighbouring ma-

chine of the database server, rather than the same machine, it might be more appropriate to

rewrite only the TCP/IP hostname of the connection string—although this might be in some

cases unnecessary, depending on the network routing configuration of the data centre. This

type of rewrite is achieved in an straightforward and analogous manner to our domain socket

substitution, via a novel attribute of the mandate:

mandate.map_hostname(

'database-node-42.cloud.example.com',

'database-node-42.local'

)

Any remote connection bound to 'database-node-42.cloud.example.com' within the trans-

lation will hence be represented as follows:

V0 = RemoteDatabaseConnection('MODE=tcp;HOST=database-node-42.local')

...
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In contrast to the proxy generators for our hash function, the validity of these connection

substitutions does not follow from the functional purity of the connection object. Clearly,

results obtained from database connection objects inherently depend on the mutable state of the

database. What we are asserting however, is that the extent of impurity within the connection

extends only to its dependence on the global database state, and no further. Therefore it is

valid to substitute another connection, so long as it connects to the same database.

5.7.3 Issuing computation for remote parallel execution

Finally we must consider how our translated fragment is offloaded, for remote execution. Sup-

pose that there are three database keys we wish to check against our static hash value. This

could be issued in parallel as follows:

results = {}

for key in ['data_123', 'data_456', 'data_789']:

results[key] = execute_remote(

database_connection.get_proximate_host(),

translation, {'argument_0': key}

)

for key in results:

result = await results[key]

print(key + ' : ' + str(result))

Execution of our translation is equivalent to applying predicate to key and interesting_hash,

however it occurs on the remote server returned by the method get_proximate_host. This

method is free to return any available server co-located with the database, perhaps supplying re-

sults according to some adaptive, or simple round-robin policy. The function execute_remote

takes a dictionary of bindings to serialise, and make available within the remote scope, and

returns an “awaitable” object, which represents the eventual result of the computation. After
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issuing all of the keys for parallel execution, the results are awaited and then printed to the

console, for example rendering:

data_123 : False

data_456 : True

data_789 : False

Prior to execution, the remote machine must populate the implicitly assumed bindings to zlib,

and the database connection classes within its execution scope, along with the deserialised

binding for argument_0:

scope = {

'zlib': zlib,

'LocalDatabaseConnection': LocalDatabaseConnection,

'RemoteDatabaseConnection': RemoteDatabaseConnection,

**{name: deserialised_values[name]

for name in formal_names}

} # e.g. {'argument_0': 'data_123'}

exec(code, scope)

It is interesting to consider one final variation to this scenario, in which the translation is

specialised to each key separately. Although in our particular context this is unlikely to be of

any pragmatic benefit, it illustrates the general possibility of optimising the translated fragment:

results = {}

for key in ['data_123', 'data_456', 'data_789']:

translation = translate(PythonBlock,

immediate(PythonBlock, predicate, mandate), [

immediate(PythonBlock, key, mandate),

immediate(PythonBlock, interesting_hash, mandate)
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], mandate

)

results[key] = execute_remote(

database_connection.get_host(), translation, {}

)

Given that key is here provided as an immediate value, ReiPy may constant fold the query string

at translation time. The following optimised translation is generated for the key 'data_123':

V0 = LocalDatabaseConnection('MODE=uds;PATH=/tmp/database.sock')

V1 = V0.query

V2 = V1('GET KEY data_123')

V3 = zlib.adler32

V4 = V3(V2)

V5 = 660669608

return V4 == V5

5.8 Conclusion

In this chapter we presented ReiPy, a Python library for performing late-bound code generation.

Its principal operator translate acts upon (providers for) function instances, translating their

invocation behaviour to syntactic closures in some target language. Although the only target

language we explicitly considered was Python itself, other target languages are admissible by

design. ReiPy consists of four parts: (i) a front-end preprocessor; (ii) a reifier; (iii) a meta-

circular interpreter; and (iv) a back-end collection of code generators.

The primary responsibility of the preprocessor is to let-weaken program fragments, a syntax-

based transformation intended to solve the problem of propagating information pertaining to

named variables between modular code generating units. Let-weakening conservatively replaces

certain assignment statements to mutable named variables with lexically-scoped and renamed
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immutable bindings (let-in expressions). Our implementation of let-weakening is based upon a

traditional SSA transformation, and pruned according to a supplementary live variable analysis.

The definition of let-weakened names thus becomes apparent to code generators acting upon

sub-terms within its scope, since the definition of the name is now unambiguously resolvable

within the scope hierarchy. Without let-weakening, information that pertains to a variable

definition would have no mechanism for propagating from definition to use during translation—

for instance preventing all constant-propagation based optimisations.

Our reifier for Python function instances supports the reification of both: (i) the syntax of the

function definition; and (ii) its closure scope. It builds upon CPython’s underlying facilities for

introspection, since the Python language itself lacks an implementation-independent definition

of the requisite introspection operators. The resulting reified structures conform to the inter-

faces accepted by our metacircular interpreter. ReiPy’s metacircular interpreter is defined as a

collection of independent, yet compatible classes—as opposed to a monolithic evaluation func-

tion. Individual classes implement the semantics of different terms within the Python language,

and its different scopes.

Code generators for a particular target language are associated with methods of the metacircular

interpreter, and also optionally with functions invoked directly or indirectly by the translated

function itself, which override those of the interpreter. Translation proceeds recursively by

dynamic dispatch between these modular code generating units, and under a particular man-

date. The mandate of the translation includes information pertaining to the translation unit

as a whole, for example whether bindings to Python’s builtin functions may be considered im-

mutable, or not. Side-effects within the translated function are permitted, and their ordering

is preserved within the translation. Our code generation system heuristically determines the

immutability of certain function local scopes, in order to minimise the allocation of mutable

state within the resulting translation, however the outcome of this heuristic may be overridden

using an appropriate function decorator. In those cases where a separable translation cannot

be attained, we described ReiPy’s approach to object persistence.

We introduced the concept of contextual generation, whereby specialised code generators are
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instantiated during the translation process by one code generator, and dynamically provided

to and for the use of another code generator. Contextual generation was applied to solve the

immaterial scope representation problem, which occurs when a particular scope is not fully

immediate at translation time, but must be represented (in some non-trivial way) in order to

effectively proceed with the translation. This problem typically occurs when representing the

local scope of a function which is invoked by the translated function—even if the invoked func-

tion itself is immediate, its local scope is not, since the local scope is in general only materialised

at the point of each invocation. Contextual generation allows such kinds of immaterial scope

to be represented, whereby information about the scope and its ancestors is maintained and

propagated during the translation process.

Given that ReiPy is more a framework than a concrete implementation system, its capabilities

and limitations depend strongly upon the capabilities and limitations of the code generators

made available to it. Whilst as described ReiPy is capable of translating side-effecting functions,

it has certain notable limitations within its current design and implementation. For instance

it does not currently support: (i) early function return; (ii) throwing or catching exceptions;

(iii) coroutines or generators; (iv) variable shadowing; or (v) non-positional arguments. Con-

sequently, most existing Python programs are not yet handled by our system. Supporting any

or all of these features would require redesigning and reimplementing a substantial portion of

ReiPy.

Overcoming the first three of these limitations might be accomplished by substituting the ex-

isting direct style metacircular interpreter for a continuation-passing style interpreter—while

leaving the interpreted program and code generators in direct style. Some rudimentary experi-

ments along these lines have already shown promising results, but extensive further work would

be required to confirm that this approach is feasible. Notably, this suggests that late-bound

code generation is not inherently limited to functions exhibiting only local control flow, and the

limitation is instead an artefact of the style in which our metacircular interpreter was written.

Support for variable shadowing could in principle be accommodated by modifying the pre-

processor, such that names which shadow variables are renamed in the same manner that
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let-weakened bindings are renamed: again simplifying the task of the code generation system

by eliding certain complexities via a syntactic transformation.

To support non-positional arguments would require a more substantial modification of the

late-bound code generation interface itself. The function signature of translate, and of its

code generators, both feature a list of argument providers. Support for optional named ar-

guments, and also variable arguments, would require this list to be substituted for a different

data structure, for example some kind of argument collection object. Alternatively the list of

“argument providers” could be replaced by a single “arguments provider”, which provides a

complex object containing all of the arguments, named, positional or variable. Object-oriented

languages such as Python typically adopt a convention that the subject of the invocation is

simply the first positional argument, frequently named self, which suggests a more general

interface for translate with simply three parameters: (i) the target language; (ii) a single

complex-arguments provider; and (iii) the mandate.

Despite ReiPy’s significant limitations, there are reasons to believe it has some specific utility

in its current design, although further work would be required to implement target languages

other than Python, even so. In those cases where it is desired to offload some fragment of

a program to a hardware accelerator, the ability of that accelerator to outperform the host

processor, either in terms of speed of power efficiency, is often predicated on its specialisation.

The accelerator is only capable of (efficiently) executing programs which conform to some

specialised set of restrictions, which it leverages to improve its performance. For example

such kinds of restriction often limit accelerated fragments to be absent of non-local control

flow. Therefore, in particular situations, the limitations of ReiPy are well-aligned with other

external constraints, such that the programs it handles span a useful set.
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Conclusion

6.1 Summary

The primary contribution of this thesis is in its definition, and demonstration, of late-bound code

generation: a novel technique for enabling computer programs to affect pragmatic control over

their own execution. Late-bound code generation is based upon syntactification, an approach

to translation, which represents the translated fragment as a syntactic closure. Syntactification

proceeds from a trivial proxy-based seed translation, which is then progressively elaborated

upon by a process that materialises information implicit within its scope into syntactical terms.

Within late-bound code generation, as defined in this thesis, each elaboration step is performed

by a modular code generator at runtime, which is selected by dynamic dispatch.

We described the principal operator of late-bound code generation: translate. Our operator

acts upon (providers for) potentially side-effecting function instances, returning a translation

of its behaviour in the given target language. Generating translations using translate does

not require the programmer to resort to programming in a multi-level language, nor does

it interfere with the interfaces at which software abstractions are composed. We defined its

operand requirements, including the translation mandate, and function and argument providers,

the latter of which are also syntactic closures in the target language.

191
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An application of late-bound code generation was illustrated, by applying it to the problem

of offloading the rasterisation of a smartphone user interface to an FPGA. We first defined

our rendering architecture, comprising a statically scheduled pipeline, suitable for specialis-

ing to a particular application, and amenable to place-and-route style optimisation. We then

demonstrated how late-bound code generation can be applied to generate an instance of this

architecture, specialised to a smartphone application written in terms of contemporary abstrac-

tions, and featuring both standard and programmatically defined user interface components.

To generate an efficient, statically scheduled pipeline it was necessary to supplement the ap-

plication with a number of annotations, which we described and justified. We detailed the

mechanism by which the state of the pipeline was synchronised with the state of the applica-

tion, between each frame. The power consumed by our pipeline, when executed on an FPGA,

was estimated, although we were unable to directly compare this result with a baseline power

consumption figure for a commercial smartphone.

Finally we described ReiPy, a library for performing late-bound code generation within the

Python programming language. We offered a solution to the problem of propagating informa-

tion pertaining to variable assignments between modular code generators, based on a preproces-

sor transformation called let-weakening: replacing assignments with lexically scoped immutable

bindings where possible. Late-bound code generation gives rise to an issue termed the “imma-

terial scope representation problem”. Our solution to this problem, which is based on the more

general technique of contextual generation, was outlined. We assessed the limitations of ReiPy

as currently defined.

6.2 Critique

Late-bound code generation is both a technique and a mechanism, in the same way that dynamic

dispatch is a both a technique and a mechanism. Generically it refers to a set of related

mechanisms, which all share a particular character, along with usage patterns for applying

those mechanisms to specific programming problems.
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Similarly to how one mechanism for dynamic dispatch differs from another with respect to

the priority list of its dispatch policy when a method is invoked—for instance one mechanism

might support multiple inheritance whereas the other might not—different mechanisms for late-

bound code generation also differ in their priority list for dispatching to code generators during

translation. In this thesis we attempted to define both the general character of the technique,

a basic implementation of a particular mechanism, and also explore certain variations on that

basic mechanism, for instance contextual generation.

Despite these variations among the various potential mechanisms for late-bound code genera-

tion, the technique does in general commit to a fixed front- and back-end interface. Specifically

the front-end interface for requesting the translation of a function:

Target translate(

Type Target,

Target function_provider,

List<Target> argument_providers,

> mandate

),

and the back-end interface for supplying translation fragments, implemented by individual code

generators:

Target generator(

Function function,

List<Target> argument_providers,

> mandate

).

This particular pair of interfaces, and their (informal) semantics in combination with gen-

eral techniques and patterns for their application, comprise our definition of late-bound code

generation—and it is upon this basis that we organise our reflections on this thesis.
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Whilst various deficiencies might be identified in a particular implementation of one mechanism

for late-bound code generation, those deficiencies do not necessarily undermine the validity of

the technique in general, just as the absence of parametric polymorphism in early versions

of Java’s type system did not undermine the validity of object-orientation as a technique. In

contrast however, any deficiency of late-bound code generation in supporting pragmatic control,

which is entailed by this abstract definition does indicate a serious flaw.

Finally, the tractability of implementing the technique in general is directly relevant. For exam-

ple if the technique creates implementation challenges which are (i) impractical to overcome, (ii)

do not readily permit implementations which scale well, or (iii) places undesirable requirements

on its users, then these are also serious deficiencies in the approach.

In the following sections we reflect upon late-bound code generation, formulating our criticism

according to these terms. Subsequently in Section 6.4 we return to speculate upon further work

and future research directions, which were left unexplored within this thesis.

6.2.1 Interface stability and generality

Our front-end and back-end interfaces for late-bound code generation evolved slightly during

our experimentation with the technique. However, somewhat to our surprise, the relatively

simple interfaces listed above, if applied retrospectively, suffice for all the pragmatic control

tasks upon which we embarked. They serve equally for the code generators associated with

application-level functions, as the code generators associated with each operator of our meta-

circular evaluator.

This is in part due to the extensibility of the data types used. We came by this extensibility

by virtue of implementing our translation system in an object-oriented language: whenever we

needed to provide more information to some delegate code generator, we simply assigned a new

member to the provider or mandate object. Such extensibility is not however unique to object-

oriented languages, and other programming paradigms offer equivalent forms of extension—

at the very least the providers, mandate and fragment might have be implemented using a
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collection type such as a dictionary, in order to achieve the necessary flexibility and extensibility.

Throughout our experimentation, one or other of the providers, mandate or translated fragment

proved an appropriate host for any information which needed to be conveyed between code

generators. We believe that this is due less to fortune, and more to the inherent elegance of

function-level abstraction. In those rare cases that information needed to be conveyed which did

not pertain either to the function or any argument provider, the mandate served as an effective

object of last resort, although in our experience, we never found it necessary to attach ad-hoc

data to the mandate. Throughout all of our experiments its use remained within the realm

of conveying either general information about the dynamic execution context, or otherwise

various desiderata pertaining to the entire translation, such as the convention for numerical

representation.

Contextual generation was the most severe test to which we subjected our code generation

interface. In this case, specialised code generators were instantiated dynamically during the

translation process, and associated as metadata fields on provider objects. This is just one

illustration of a powerful pattern, whereby provider objects may be used not just as data, but

more generally as delegates for parametric and context-sensitive code generation, at the disposal

of the code generator to which they are supplied.

Admittedly, our various experiments are at best circumstantial evidence for the sufficiency of the

design: applied to other problems our interface for generators might prove inadequate. Certain

foreseeable shortcomings are self evident. For example our interfaces are designed for functions

taking only a fixed number of positional arguments. To support named or variable arguments

a more generic interfaces must be designed. Similarly within this thesis translate has only

been applied to functions which adhere to structured local control flow. To support structured

non-local control flow, such as exceptions, might necessitate a more generic approach.

What is perhaps more immediately concerning however is the compositionality of provider and

fragment metadata, particularly in foreseeable practical situations. Whilst our interface might

prove sufficient in theory, it is another question as to whether is remains feasible for long-term

practical use. Whilst the providers supplied to code generators, and the fragments they return,
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may be extended with arbitrary metadata and methods, how should these data and methods

be organised such that they do not interfere—and further that their intended influence upon

the translation process composes? In trivial cases, in which the various metadata each influence

the generation of disjoint fragments, compositionality can be achieved simply by establishing a

naming convention. So long as different attribute names are assigned for different purposes, then

reads and writes to those attributes even on the same object can compose without interference.

The more troublesome case surely arises when several extensions to a provider overlap in their

intended influence. We have not explored any solutions to this compositionality problem.

6.2.2 Target language extension

Without an intermediate representation language, all optimisations implemented by a late-

bound code generator must operate directly on terms in the target language. Typically the

target language in question does not natively support all of the intermediate forms required,

or at least desired, by the optimiser. For example, when translating procedures to pipelined

circuits in Chapter 4, although our synthesisable pipeline model did not support proxy invoca-

tion nodes, it was necessary to extend our target language to include non-synthesisable nodes

for these invocations, amongst other things, in order to represent intermediate, unoptimised

pipeline fragments during the translation process. All such non-synthesisable nodes, which

exist only in the extended language, are refined out of the eventual pipeline.

In many cases it is straightforward to extend the target language in this manner, however

extending a language in general is a non-trivial problem. In theory the interaction of the

extension with all aspects of the unextended language must be considered, and their semantics

defined. This imposition of late-bound code generation might, in the worst case, prevent certain

languages from being targeted feasibly at all. Since this issue arises from the fundamental

definition of the approach, it can only be side-stepped, and cannot be solved. The corresponding

advantage of this defining feature, is that code generators have full control over the structure

of the eventual translation. Side-stepping the issue might be accomplished by targeting an

intermediate language, for which translators to the eventual target independently exist.
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6.2.3 Source language breadth

Since the code generators of ReiPy’s metacircular interpreter operate directly on terms ex-

pressed in the source language—which therefore could include any or all of the features of the

source language—they are more complicated and numerous than if a restricted version of the

language were used. Steele and Sussman have catalogued a number of transformations for sim-

plifying language terms into restricted forms [SJS76], and which could be applied by ReiPy’s

preprocessor to simplify the code generation problem. However, the corresponding benefit of

operating on full source language terms, is that code generator authors can predict the structure

of input terms given only the literal program source.

6.2.4 Generator applicability

In late-bound code generation, the translation of any function’s invocation can in principle be

overridden, by associating an explicit code generator with that function instance. In practice,

the applicability of that overriding code generator is highly sensitive to the translation context—

whether or not the overriding code generator is applied to the translation depends on whether

or not the callee of the invocation can be unambiguously resolved during the translation. If the

callee is not resolved at translation time, a less-specific code generator will be applied, rather

than the overriding code generator. This issue might lead to unexpected or undesirable results,

and acts as a source of performance non-determinism.

This is an inherent issue in our approach, and is due to the incompleteness of information

available (even in theory) to translators posed with the kinds of translation problem we face.

The only conceivable general solution is to “weave” some degree of residual translation with

the execution of the initial translation result, which could be prohibitive from a performance

perspective, or alternatively emit guards into the translation which raise an error if a more-

specific code generator is subsequently found to be applicable.
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6.3 Comparison with Lancet

Lancet, a framework based on LMS for “surgical-precision” JIT compilation [RSB+14] is closely

related to our approach of late-bound code generation. Whilst LMS operates directly on multi-

stage programs, Lancet encapsulates the multi-level language front-end of LMS behind a staged

metacircular interpreter for Java virtual machine (JVM) bytecode. Combined with the ability

to reify bytecode at runtime, it provides a mechanism for explicitly optimising, translating, and

offloading computation to heterogeneous hardware, including to GPU accelerators. Further-

more, it features a “JIT macro” system, which allows the compilation of individual methods to

be arbitrarily, and separately defined.

One immediate difference between Lancet and our approach can be observed within the rôle

of the metacircular interpreter. Without a metacircular interpreter, Lancet provides no mech-

anism for translating the behaviour of methods—or at least for translating the behaviour of

methods not written in the multi-stage language of LMS. In our approach, as illustrated in

Chapter 4, code generators are associated directly with closures, and may be used without

indirection via an interpreter. Whilst late-bound code generation systems might make use of

a metacircular interpreter, as we explored in Chapter 5, to reduce the number of code gener-

ators required, they are not a fundamental component. This difference manifests stylistically,

when considering how code generators are implemented: code generators for late-bound code

generation typically involve several recursive applications of the translate operator, whereas

macro invocation and the composition of compiled fragments is always managed implicitly by

the Lancet framework. Consequently, it is not immediately clear how a Lancet macro could

be defined which incorporates the compiled form of a different method, unless it is directly an

argument to that macro.

Another, closely related, difference has to do with the compiler interface. Whereas in late-bound

code generation translate is a globally available operator, which generates and returns trans-

lated code fragments, in Lancet translations are only immediately available within JIT macros.

Consequently late-bound code generation encourages arbitrary generation and composition of

code fragments, in the style of multi-stage programming languages, yet without adopting their
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multi-level language semantics. However, in contrast Lancet encourages encapsulation of the

translated code within the macro, whilst still providing it an option to distribute or serialise

the translation on a case-by-case basis.

Despite these fundamental differences, Lancet shares many similarities with our approach. JIT

macros are able to call back into the running program that they are translating, enabling

them to take advantage of runtime state, and to perform arbitrary computation including

compile-time evaluation of translated terms. Similarly to our code generators, JIT macros

are defined separately to the function for which they override the compilation outcome, and

thus do not interfere in any way with the definition of the that function. The arguments to a

Lancet macro are LMS Rep typed values, which are analogous to our providers in that they are

representations of translated terms. Unlike our providers, Rep[T] values are typically composed

using staged versions of the operators which act on T, with the ordering of their effects in the

translated fragment (let-insertion) managed automatically by LMS—according to compile-time

effects emitted by those staged operators. By contrast, in late-bound code generation provider

composition and effect ordering is managed explicitly by the code generator, similar in approach

to MetaOCaml: the result of the translation is constructed syntactically as a value. Several

other points of similarity can be found, for example Lancet’s macros are able to conditionally

fall-back to the compilation outcome they are overriding, inspect their dynamic scope, and

although not explicitly stated in the paper, appear to be selected via dynamic dispatch.

Although Lancet does not have an analogous object to our mandate, Rompf et al. demonstrate

how to make use of global state to achieve an equivalent effect—for example using a global

variable to control their inlining policy within a delimited dynamic scope. Whilst they do not

phrase their description of Lancet in terms of reified scopes, for typical Java objects the fields

of an object constitute the closure scope of the object’s methods. Since their macros are able to

inspect the runtime state of fields, in addition to their associated type declarations, this facility

is effectively equivalent to scope reification. They model method-local (invocation) scope as a

frame on their bytecode interpreter’s stack. Notably, structural operations on this stack, such as

pushing and popping frames, are not staged and therefore stack manipulation operations never

appear within the compiled code. The values stored within frame objects are themselves staged
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Rep values, which constitutes their solution to the immaterial scope representation problem.

Our more elaborate solution based upon contextual generation was necessary only to allow

staged scopes to safely escape their initial translation context. Since Lancet does not appear to

allow staged scopes to be captured within a macro, their simple solution is apparently sufficient.

An especially sophisticated aspect of Lancet can be found in its use of abstract interpretation:

they employ compile-time abstract interpretation of staged values for both type specialisation

and constant propagation. In late-bound code generation however, the former is supported by

provider metadata, whereas the latter is supported by let-weakening. Their abstract interpreta-

tion based approach elegantly unifies the handling of these two concerns, whilst suggesting many

more possibilities, for instance supercompilation, as they mention. Lancet’s compiler proceeds

according to fixed-point iteration, arriving at a translation only after the abstract interpreter

stabilises on a least upper-bound over the domain of abstract values. This approach naturally

accommodates both non-local control flow, and also a staged form of delimited continuations,

neither of which we have explored within late-bound code generation.

Rompf et al. demonstrate a number of diverse applications of Lancet, including both accelerat-

ing applications running inside the JVM, and offloading computation to various heterogeneous

targets, including GPU accelerators, SQL databases, and web browsers. However they do not

explicitly address the introduction of proxies into the offloaded fragment, nor populate anything

analogous to our preemption set of Chapter 4. Finally, a number of their applications cover

interesting domains to which we have not attempted to apply late-bound generation, namely

speculative optimisation, deoptimisation and taint analysis.

6.4 Future work

Although the concrete system for late-bound code generation which we have presented has

several limitations, these limitations suggest a number of interesting directions for future work.

In this section we outline the most promising potential extensions of our current system, and

of the approach more generally.
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6.4.1 Non-local control flow

In none of our applications of late-bound code generation did we attempt to handle non-local

control flow—even the ability to return early from a function was not explored or supported.

It would be imperative for any future work on late-bound code generation to robustly handle

the full domain of Python programs, including all forms of non-local control flow, in particular

exceptions, coroutines and generators.

We believe that by rewriting ReiPy’s metacircular interpreter in continuation-passing style,

whilst leaving the interpreted program and code generators in direct style, would be sufficient

to handle all non-local control flow operators that currently exist within Python. Some ex-

tremely brief and speculative work in this vein has already shown promising results. It is worth

noting that when applying translate to an operator of a continuation-passing interpreter, the

argument provider for the continuation can be supplied symbolically—as an unbound name—to

be linked only subsequently in the translation process.

Once non-local control flow is supported in ReiPy we believe that, in combination with let-

weakening, it would be capable of forming non-trivial translations for a substantial fraction

of valid Python programs. Let-weakening is equally important, since the callee function of an

invocation is otherwise frequently unresolvable during translation. This hypothesis could be

tested, by applying ReiPy to a diverse sample of valid programs, and inspecting the quality of

the translations generated.

Currently ReiPy never includes translations of functions for which it does not discover a po-

tential invocation. In certain situations a translation will be generated with proxy objects

corresponding to terms of the metacircular interpreter, which results in the translated frag-

ment calling back into the interpreter of the originating process. It would be interesting to

further reduce the extent to which this phenomenon occurs, by including an implementation

of the Python interpreter in the translated fragment, along with other immutable information

and translations of all closures present in the originating process.

So far we have not encountered any evidence to suggest that the interface for code generators,
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or the translate operator for that matter, need to be recast to continuation-passing style,

in general. It is, however, conceivable that certain potential abstractions, particularly those

used by code generators in the formation of their result, might necessitate this generalisation.

Further experimental work would be required to determine if this issue arises in practice.

6.4.2 Imperative propagation of information

During execution of an imperative program, information typically propagates from one state-

ment to another via side-effects in the program’s mutable state—for example variable assign-

ments or object field mutations. We introduced let-weakening in order to make certain proper-

ties of this information flow more apparent to our translation system, specifically eliminating

side-effects due to variable assignment where possible.

It would be desirable to investigate other potential mechanisms for propagating this (partial)

information during translation. There is an implicit design objective in late-bound code gen-

eration systems to keep the input and output representations of the code generators as close

as possible to the structure of the source program and target fragment. This is because an ap-

plication developer wishing to override the translation of some aspect of their application will

have a concrete conception of the source and target forms, but will not be cognisant of arbi-

trary intermediate representations created by ReiPy’s internal implementation. Let-weakening

disturbs the structure of the program which is acted upon by the metacircular interpreter,

and so replacing it with another information propagation solution, that does not disturb this

structure, would be preferable. An approach which makes use of, and contributes to, provider

metadata might be possible.

6.4.3 Unified intermediate representation

Although, as we argued in the previous subsection, it is desirable for code generators to take and

return representations which mirror source and target terms, it could be worth investigating a

unified intermediate representation for late-bound code generation, that serves as a common
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intermediate target language for translations. This would afford an opportunity to design a

representation which is well suited to certain kinds of common optimisation, such as inlining

and constant folding, and which might also provide a richer basis for explicitly encoding control-

flow, data-flow and type information.

In most situations an application developer cares only about a minority of aspects pertaining

to the translation: some general concerns include behavioural correctness, average performance

and code size. However, they also typically care about a limited number of application specific

concerns, for example the latency of certain program transitions. To retain pragmatic control

within these situations, it would be necessary to include in the intermediate representation

language an ability to commit fragments to a specific eventual target term: akin to the asm

statement in the C programming language.

6.4.4 Metadata compositionality

Our translation system makes use of metadata properties on both the mandate and the provider

objects. The experiments we undertook in this thesis were sufficiently simple that the issue

of metadata compositionality did not occur in practice. However, it is clear that in a more

complicated application, which makes use of a diverse variety of separate and interacting meta-

data properties, the issue of how such properties are organised and composed would become

manifest.

The space of potential abstractions for organising and composing mandate and provider meta-

data is clearly quite vast. It would be interesting to apply ReiPy to a problem which is more

demanding of its metadata attributes. A problem of this kind might, for example, include func-

tions and data structures which independently contribute requirements for bit-representations,

memory layouts, and inlining and parallelism objectives. This would help to inform which

metadata abstractions are worthy of further investigation.
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6.4.5 Generalising translate

In order to accommodate the translation of functions which accept anything other than a fixed

number of positional arguments, the interface for translate, and also of its code generators

must be generalised. It would seem appropriate to merge the function provider and argu-

ment providers all into a single provider, which provides a single object comprising all of this

information—this object is naturally extensible (since it is an object) and could for example

be extended to include variable and optional named arguments. The principle of contextual

generation could then be leveraged, to allow code generators to generate the function provider,

a particular argument provider, or argument list: thus retaining at least the same capabilities

as our current interface. This comes at the cost of greater abstraction and complexity within

the translation process.

We suggest a thorough investigation into the potential generalisations of the dispatch policy

for translate, possibly also including customisable policies, which could be controlled via the

mandate. Our experiments to date have suggested at least four categories of cite to which code

generators might be associated: (i) a provider (as in contextual generation); (ii) a function or

method instance; (iii) a function or method definition / class definition; and (iii) the target

language. Broadly speaking, these categories are listed in order from most specific to least

specific, although such an ordering is somewhat arbitrary. The dispatch policy of translate

used within this thesis simply delegates translation to the most specific generator according

to this list, falling back to less specific generators when required. It would be interesting to

investigate the full range of potential association cites, and also the various kinds of policy

which can be defined over this set.

Furthermore, in our current conception, the code generator for a function is responsible for

generating a complete implementation of the function’s behaviour in the target language: it

typically fulfills this responsibility by delegating the translation of certain sub-terms to other

code generators, via recursive application of translate. Different kinds of code generator

might also be conceived of—which could even coexist alongside our original conception—that

contribute to the translation, but are not wholly responsible for it, or that emit some represen-
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tation for a range of acceptable translations, which are subsequently selected from.

6.4.6 Structurally separating convention from language

Although we have regularly referred to the first parameter of translate as the target language,

this conflates a pair of distinct concepts. The target of the translation defines the target

language, but it also defines a set of conventions applied within the target language, which

are not strictly properties of the language itself. Examples of these conventions include, how

certain classes of object are represented, and how function invocations are performed within

the target fragment. The target language itself usually permits a wide array of different such

possibilities, but for the fragments generated by separate code generators to compose properly,

they must all adhere to a common set of these conventions.

This issue is directly analogous to the various C ABIs that have been defined, independently

from the C language specification. It seems prudent that future work on late-bound code

generation structurally separates the target language from these conventions. This is a rather

technical point, since the two separate instances of target language and target conventions

might still be composed into one target object, which is retained as the first parameter to

translate.

6.4.7 Static compilation

Whilst late-bound code generation is primarily intended as a technique for runtime code gen-

eration, it would be worth comparing the output of a late-bound code generation system with

that of a traditional compiler, if a compiler for the source language is available. Such an ex-

periment could be constructed by simply writing a program which binds various functions or

class definitions to names within the global scope, including some “main” function, and then

applying translate to that main function. The resulting translation should be comparable

with that of the static compiler, and any deficiencies noted would inform where to expend

further effort on improvements.
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6.4.8 Use-centric abstractions

Even though ReiPy might be improved to the point that it can generate acceptable translations

for any Python function, and to an array of desirable target languages, this does not necessarily

mean that it has any direct utility. It is conceivable that for every problem to which it might be

applied, there is also substantial effort required to integrate the interfaces presented by ReiPy

to those abstractions in terms of which the problem is conventionally solved.

For example, to apply ReiPy to the challenge of offloading numerical computations to a GPU

would entail more that generating GPU kernel code. The following problems also need to be

solved: (i) installing the kernel in the GPU; (ii) marshalling input data into the format expected

by the kernel; (iii) allocating the necessary memory space within the CPU and GPU address

space; (iv) feeding the data it into the GPU; (v) unmarshalling the results; and potentially (vi)

encapsulating all of these operations within a functional interface. Furthermore, if the developer

of such an application were expected to write or customise a number of code generators, it might

be important to provide suitable abstractions to assist them, and to automatically enforce any

constraints which are generally relied upon for the translation to be valid.

Collating a set of compelling, diverse use-cases for late-bound code generation would greatly

inform any effort at designing its requisite use-centric abstractions, and implementing these

additional features and libraries. Such an effort might also entail standardising interfaces at

which components of the system interact, for instance defining a standard protocol, comprising

a data and control language, for use by the channel connecting the host and target processes.

One especially interesting token-based approach to formalising the protocol for such a channel

has been suggested by Fredriksson and Ghica [FG13]

6.4.9 Alternative circuit models

When examining the statically scheduled rasterisation circuit of Chapter 4 we noted that it

included a large number of deep queues, used to synchronise data values in the absence of any

control signalling, other than a global clock. We also observe that the restriction of a static
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schedule in the translation imposes a severe restriction on the translated program: it must at

least be free of any unbounded recursion or iteration. Extending the circuit model to include

a modicum of additional control signalling might simultaneously reduce the inefficiency due to

these deep queues, and also admit a wider translation domain.

We suspect that some variation on a token-based circuit model might be well suited to this end,

and would certainly be worth investigating. Ghica et al. [Ghi11, GSS11] describe a circuit model

which features a single-bit control token: this token is passed around the circuit and corresponds

to a distribution of the von Neumann model program counter. Their model supports recursion

via the introduction of localised stack memories, although pipeline parallelism is not supported.

Other variations on this token-based model includes a “ready” bit, allowing circuit components

to reject control tokens during high-latency operations, for example during shared memory

accesses [CRKE15]. Townsend et al. [TKE17] employ this extended control interface within

their circuit model, which supports pipelining in addition to recursion. In contrast to Ghica’s

approach, their model however allocates control information on a global heap. Combining the

local stack memories of the former model, with the pipelining support from the latter, would

be of particular interest.

With an improved circuit model at hand, it would also be worth considering which coarse-

grained reconfigurable architectures (CGRAs) most efficiently support that model. It is possible

that certain existing CGRA architectures, for example various accelerators designed for machine

learning applications, would outperform an FPGA in this regard. Another possibility is that

the restrictions of the circuit model inform a novel CGRA architecture, which might serve as a

basis for better accelerating programmatically defined, pipelined computations.

6.4.10 Broader directions

One broad direction for future research would be to explore wholly different approaches to syn-

tactification. Late-bound code generation, as defined in this thesis, performs syntactification

according to a deterministic, recursively ordered and dynamically dispatched code generation
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model. It would be interesting to explore fundamentally distinct techniques, for instance per-

forming elaboration by the non-deterministic application of pattern matching rewrite rules.

Finally, our experience with late-bound code generation suggests that it would be well suited to

the optimisation and translation of F-expression based languages, such as for example Shutt’s

programming language Kernel [Shu10].



Appendix A

Glossary

Closure—A combination of a syntactical function definition, and a runtime environment

(scope) over which names free within the definition are closed.

Function definition—A fragment of program syntax which defines a function.

Function instance—see Closure.

Hygiene—Ensuring that name bindings never resolve to an unintended value: splicing a code

fragment which assigns to a temporary variable via a name shared with the surrounding code

is an example of hygiene violation, since subsequent surrounding uses of that name would be

rebound to the unintended temporary value. Hygiene may be maintained either manually by

the programmer, or automatically within the language system.

Late-bound code generation—A technique for performing syntactification, based upon dy-

namically dispatched mutual recursion between fragmentary code generators.

Let insertion—A discipline for maintaining the order of side-effects, and reducing re-computation

in generated code, by inserting “let” bindings, in order to bring the code into administrative

normal form (ANF). For a detailed introduction to this technique see [Rom16].

Let-weakening—A novel transformation for weakening mutable to immutable named let bind-

ings, described in Section 5.3.1.
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Pragmatic control—The control of aspects of a program’s execution which do not bear on

the correctness of the values which it produces: for instance controlling which hardware unit

is used to execute a particular section of the program, which machine instructions are used to

implement a particular operation, or how instructions are scheduled in time.

Pragmatic requirement—A requirement for a certain section of a program to execute within

a particular hardware unit, for an operation to be implemented using certain machine instruc-

tions, or a restriction on how machine instructions are scheduled in time.

Pragmatic self-control—A program exerting pragmatic control over its own execution.

Pragmatic statement—A statement in a program which affects pragmatic control over an-

other program, or the same program; the latter being a case of pragmatic self-control.

Reification—To make some aspect of a program’s behaviour or state accessible to the program

itself, typically as a runtime value. For example a section of a program’s behaviour might be

reified as list of machine instructions, or the state of a particular scope might be reified as a

dictionary from strings to values.

Self-issuance—When a program explicitly issues instructions to hardware for performing its

own computation, rather than implicitly relying on the language system to issue hardware

instructions on its behalf.

Syntactification—An approach to translation whereby translated terms are progressively re-

fined from simpler less elaborate forms, to complex more elaborate forms. It operates via a

process of iterative reduction over syntactic closures in the target language: reduction steps

discover binding and behavioural information implicit within the syntactic closure, and rep-

resenting that syntactically, typically inline within the translation, transforming information

from scope to syntax.
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