
Higher-Order and Symbolic Computation, 12, 7–45 (1999)
c© 1999 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Implementation Strategies for First-Class
Continuations*

WILLIAM D. CLINGER will@ccs.neu.edu
College of Computer Science, Northeastern University, 360 Huntington Avenue, Boston, MA 02115

ANNE H. HARTHEIMER

ERIC M. OST

Abstract. Scheme and Smalltalk continuations may have unlimited extent. This means that a purely stack-based
implementation of continuations, as suffices for most languages, is inadequate. We review several implementation
strategies for continuations and compare their performance using instruction counts for the normal case and
continuation-intensive synthetic benchmarks for other scenarios, including coroutines and multitasking. All of
the strategies constrain a compiler in some way, resulting in indirect costs that are hard to measure directly. We
use related measurements on a set of benchmarks to calculate upper bounds for these indirect costs.

Keywords: continuations, stacks, heap allocation, coroutines, multitasking, Scheme, Smalltalk

1. Introduction

A continuationis the abstract concept represented by the control stack, or dynamic chain
of activation records, in a typical programming-language implementation. In languages
such as Scheme and Smalltalk-80, continuations (known ascontextsin Smalltalk-80) may
become first-class objects with unlimited extent (lifetime), whereas continuations have only
dynamic (nested) extent in most languages [23, 28, 29, 38]. In Scheme, first-class continu-
ations allow multiple returns from a single procedure call. This implies that a conventional
stack-based implementation of recursive procedure calls, in which continuation frames
are allocated and deallocated in last-in, first-out manner by adjusting a stack pointer, is
inadequate [6, 21].

Lightweight threads raise many of the same issues, and can be implemented very easily
using first-class continuations [25]. Thus strategies for implementing first-class continua-
tions may also be relevant for languages that do not support first-class continuations directly
but do provide support for concurrent or pseudo-concurrent threads.

We use Scheme for our examples. In Scheme, the mechanism that allows continuations
to outlive their more usual dynamic extent is thecall-with-current-continuation
procedure. One possible implementation of this procedure, in terms of low-level procedures
creg-get andcreg-set!, is shown below. This code assumes that thecreg-get pro-
cedure converts the implicit continuation passed tocall-with-current-continuation

* This is a revised and greatly expanded version of a paper that was presented at the 1988 ACM Conference on
Lisp and Functional Programming [13].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Springer - Publisher Connector

https://core.ac.uk/display/81760307?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


8 CLINGER, HARTHEIMER AND OST

into some kind of Scheme object with unlimited extent, and that thecreg-set! procedure
takes such an object and installs it as the continuation for the currently executing procedure,
overriding the previous implicit continuation. The operation performed bycreg-get is
called acapture. The operation performed bycreg-set! is called athrow. The procedure
that is passed tof is called anescape procedure, because a call to the escape procedure will
allow control to bypass the implicit continuation.

(define (call-with-current-continuation f)
(let ((k (creg-get)))

(f (lambda (v)
(creg-set! k)
v))))

The simplest implementation strategy for first-class continuations is to allocate storage for
each continuation frame (activation record) on a heap and to reclaim that storage through
garbage collection or reference counting [23]. With this strategy, which we call thegc
strategy, creg-get can just return the contents of a continuation register (which is often
called the dynamic link, stack pointer, or frame pointer), andcreg-set! can just store its
argument into that register.

Several other implementation strategies for continuations with unlimited extent have
been described [5, 8, 13, 18, 19, 26, 33, 35, 36, 44]. Most of these strategies improve
upon the gc strategy by making ordinary procedure calls faster, but make captures and/or
throws slower because thecreg-get andcreg-set! operations involve a transformation
of representation and/or copying of data. Since procedure calls are more common than
captures and throws, this tradeoff is worthwhile.

In this paper we compare these implementation strategies and evaluate their performance.
Our analysis distinguishes between the relatively compiler-independent direct costs of a
strategy and its more compiler-dependent indirect costs. This distinction is explained in
Section 2. Section 3 describes three scenarios for the uses of continuations that are most
common in real programs.

Section 4 reviews ten implementation strategies. Section 5 summarizes their costs for a
normal procedure call and return. Their indirect costs are reviewed and bounded in Section
6. Our measurements show that the indirect cost of copying and sharing is very much smaller
than was reported by Andrew Appel and Zhong Shao [2]. We discuss this discrepancy in
Section 7. Section 8 gives two examples to show that all strategies incur some indirect cost
from the mere existence of first-class continuations within a programming language.

Section 9 confirms some of the analytic results of Section 5 for two continuation-intensive
benchmarks. Section 10 quantifies the continuation-intensive behavior that results from
using first-class continuations to implement lightweight multitasking, and reviews the per-
formance of several strategies for this important application of continuations.

Appel and Shao claimed that the stack-based strategies we describe are difficult to im-
plement, citing seven specific problems [2]. Section 11 explains how those problems can
be resolved by an implementation that uses the incremental stack/heap strategy, which we
recommend.



IMPLEMENTATION STRATEGIES 9

2. Direct and indirect costs

To evaluate the performance of an implementation strategy for continuations, it is convenient
to distinguish between the direct costs and the indirect costs of the strategy. We define the
direct costof a strategy as the number of machine instructions required to create a single
continuation frame, link it to the continuation being extended, and to dispose of the frame.
The direct cost so defined is relatively independent of the compiler.

The fraction of execution time that can be attributed to this direct cost varies greatly
depending on both the program being executed and the compiler that was used to translate
it into machine code. As an exceedingly rough rule of thumb, it is reasonable to assume that
one continuation frame is created for every hundred machine instructions that are executed
[2]. Under this assumption, each unit of direct cost will correspond to about 1% of the
overall execution time.

We define theindirect costsof a strategy as any costs that are not part of its direct cost. All
implementation strategies have indirect costs. Most of the indirect costs are very compiler-
dependent or hardware-dependent, which makes them harder to estimate than the direct
costs. Our discussion of compiler dependencies will rely upon certain technical concepts
defined below.

Within the code for a procedure, there are syntactic positions at which the continuation is
necessarily equivalent to the continuation that was passed to the procedure. These positions
are known astail positions, and can be defined by induction on the syntax of a programming
language, as has been done for Scheme [16, 29]. Atail call is a procedure call that occurs
in a tail position. For a tail call, it is syntactically obvious that the continuation that is
passed to the procedure being called is semantically equivalent to the continuation that was
passed to the procedure performing the call, which implies that the compiler does not have
to create a new continuation frame for the tail call. Anon-tail call is a procedure call that
is not a tail call.

Depending on the compiler, a continuation frame may be created whenever:

1. a procedure is entered;

2. a non-leaf procedure is entered, where a leaf procedure is defined as a procedure whose
body does not contain any procedure calls [46];

3. a non-leaf procedure is entered, where a leaf procedure is defined as a procedure whose
body may contain tail calls, but does not contain any non-tail calls [9];

4. a procedure call is performed;

5. a non-tail call is performed [1];

6. a conditional branch is resolved along a path that ensures that a non-tail call will be
executed [9];

7. a conditional branch in tail position is resolved along a path for which a non-tail call
is possible, and deferring the creation of a frame until a later conditional branch is
resolved would lose an opportunity to reuse a single frame for multiple non-tail calls
[14].



10 CLINGER, HARTHEIMER AND OST

Compilers that use rule 1, 2, 3, 6, or 7 often reuse a single continuation frame for multiple
non-tail calls. Compilers that use rule 6 or 7 tend to create fewer continuation frames than
compilers that use one of the first five rules.

Each of the implementation strategies that we will describe has exactly one of the following
indirect costs:

• A strategy may make it difficult for the compiler to reuse a single continuation frame
for multiple non-tail calls.

• A strategy may make it difficult for the compiler to allocate storage for mutable variables
within a continuation frame.

From the calculations in Section 6, it appears that the indirect cost of not reusing continuation
frames is larger than the cost of not allocating mutable variables within a frame, at least
for languages like Scheme and Standard ML. Several other indirect costs are discussed in
Sections 4 and 6.

3. Three common scenarios

This section describes three scenarios that abstract the most common behaviors of a program
with respect to first-class continuations. These scenarios illustrate most of the important
differences between the performance of different strategies for implementing first-class
continuations. Furthermore most programs lie somewhere along the spectrum spanned by
these scenarios.

3.1. No first-class continuations

Many Scheme programs do not usecall-with-current-continuation at all. It would
be nice if they didn’t have to pay for the mere existence ofcall-with-current-continu-
ation within the language.

We will say that an implementation strategy haszero overheadif, on programs that do not
use first-class continuations at all, the strategy’s direct cost is no greater than the direct cost
of an ordinary stack-based implementation of a language that does not support first-class
continuations.

To make this more concrete, we will take the Motorola PowerPC as representative of
modern computer architectures [37]; Appendix 1 of this paper reviews the PowerPC in-
structions that are used below. Consider the following simple (therefore nonstandard)
PowerPC assembly code for a non-tail call to a procedurefoo that takes no arguments:

addi cont,cont,-8 // creation of continuation frame
mflr r0 // common instructions
stw r0,4(cont) // common instructions
bl foo // common instructions
lwz r0,4(cont) // common instructions
mtlr r0 // common instructions
addi cont,cont,8 // disposal of continuation frame



IMPLEMENTATION STRATEGIES 11

This code consists of one add-immediate instruction to create a continuation frame, another
to dispose of that frame, and five instructions in between that save the link register (return
address) within the newly created frame, branch and link tofoo, and restore the link register.
These five instructions are common to all of the PowerPC examples in this paper, and will
henceforth be abbreviated to a comment. A strategy should require only two PowerPC
instructions beyond the five common instructions, and neither of those two instructions
should touch memory.

3.2. Non-local exits

Perhaps the most common use of escape procedures in Scheme is for non-local exits from
a computation when an exceptional condition is encountered. An escape procedure that
implements a non-local exit is seldom called more than once; indeed most such escape
procedures are not called at all. For thisnon-local-exit scenariowe will assume also
that only a few escape procedures are created, because programs that create many escape
procedures are likely to match the recapture scenario considered below.

For the non-local-exit scenario, we desire an implementation strategy that incurs no extra
overhead even after a continuation has been captured. For real-time systems, we would
also want to have some bound on the time required to perform a capture or throw.

3.3. The recapture scenario

Olivier Danvy suggested that captures tend to occur in clusters [18]. That is, the same
continuation, once captured (bycall-with-current-continuation), is likely to be
captured again—either an enclosing continuation will be recaptured, or some subpart of it
will be recaptured. In fact, recapturing a previously captured continuation frame can be
more common than returning through a captured frame. We call this therecapture scenario.

For the recapture scenario, we desire an implementation strategy that does not require
much additional time or space to recapture a previously captured continuation.

Not all programs that usecall-with-current-continuation match the recapture
scenario. In particular, many of the programs that use escape procedures only for non-local
exits do not match the recapture scenario. The recapture scenario is nonetheless fairly
common. For example, some programs create an escape procedure for each iteration of a
loop, recapturing the loop’s continuation each time.

When continuations are used to implement lightweight multitasking, as in Concurrent
ML [39], it is possible for a program to match the recapture scenario even though it does
not callcall-with-current-continuation explicitly. As explained in Section 10, we
found this to be true of many programs written using MacScheme+Toolsmith [41].

4. Implementation strategies

This section describes several implementation strategies. For most of the strategies we pro-
vide typical PowerPC code for a non-tail procedure call. We also state whether the strategy
has zero overhead for such calls, compared to a conventional stack-based implementation



12 CLINGER, HARTHEIMER AND OST

of a language that does not support first-class continuations. We then describe the actions
required to implement a capture (creg-get) and a throw (creg-set!) using the strategy.

Next we characterize the strategy’s performance for each of our three scenarios: programs
that don’t use first-class continuations, programs that create only a few escape procedures for
non-local exits, and the recapture scenario in which many continuation frames are captured
repeatedly.

For each strategy, we mention at least one of its primary indirect costs. We also name an
implementation that uses the strategy, including the earliest that we know.

In a few cases we cite an important variation of the strategy.

4.1. The garbage-collection strategy

The simplest strategy for ensuring that continuations have unlimited extent is to allocate
them in the heap and to rely on garbage collection or reference counting to recover their
storage [23, 27]. We call this thegc strategy.

Standard ML of New Jersey has demonstrated that the gc strategy is practical when
used with a fast generational garbage collector [1]. The gc strategy is not a zero-overhead
strategy, however. Here is typical PowerPC code for a non-tail call using the gc strategy:

stw cont,4(avail) // frame pointer
addi r0,r0,12 // creation (init header)
stw r0,o(avail) // creation
addi cont,avail,4 // creation (allocate)
addi avail,avail,12 // creation
cmpw avail,limit // creation (test for overflow)
bge overflow // creation

// five common instructions
lwz cont,0(cont) // frame pointer

The first and last instructions save and restore the continuation register (often called the
dynamic link, stack pointer, or frame pointer). The second and third instructions initialize
a header word with the total size of the block of storage being allocated, for the benefit of
the garbage collector. The fourth and fifth instructions allocate a 12-byte block of storage,
and place a pointer to that block into the continuation register. The compare-word and
conditional-branch instructions test for heap overflow. This code uses 6 instructions to
create the continuation frame, and another two instructions to save and to restore the frame
pointer.

Appel and Shao have pointed out that the header word can be eliminated by using a
garbage collector that can map return addresses to header words using an auxiliary table
[2]. This saves two instructions.

The last three of the instructions that are labelledcreation can sometimes be combined
with another heap allocation that occurs within the same basic block. For the seven bench-
marks considered by Appel and Shao, the percentage of non-tail calls for which this was
not possible ranged from 46% to 86%, with an average of 69% [2]. If we assume that
this average is representative of all programs, then the cost of those three instructions is
effectively reduced to3× .69 .= 2.1 instructions.



IMPLEMENTATION STRATEGIES 13

The number of machine instructions required to create a continuation frame therefore
ranges from 3.1 to 6. Two more instructions are required to save and to restore the frame
pointer. The storage occupied by a frame is reclaimed through garbage collection, whose
cost is considered in Section 5.

A capture (creg-get) is accomplished by a single instruction that copies the continuation
register to another register. A throw (creg-set!) is accomplished by a single instruction
that loads the continuation register with the new continuation.

The gc strategy is optimized for programs in which every continuation frame is captured.
On synthetic benchmarks that capture all continuations, the gc strategy therefore performs
better than the other strategies described below. Few real programs capture all continuations,
however, so the gc strategy may not perform as well as a zero-overhead strategy even on
programs that match the non-local-exit or recapture scenarios.

The most important indirect cost of the gc strategy is that the compiler must allocate a
separate continuation frame for each non-tail call, unless the compiler can prove that the
continuation will not be captured during the non-tail call. If it were captured, then reusing
the frame would overwrite a part of the captured continuation.

The gc strategy also suffers more cache misses than the other strategies described in this
paper.

The gc strategy has been used by many interpreters, including the first versions of
Smalltalk and MacScheme, and was used for compiled code by Standard ML of New Jer-
sey (SML/NJ), which supports first-class continuations as an extension to Standard ML [1].
Recent versions of SML/NJ have addressed the high costs of the gc strategy by allocating
many continuation frames in callee-save registers instead of the heap [42].

4.2. The spaghetti strategy

The spaghetti stack used in Interlisp is a variation of the gc strategy [7]. The spaghetti stack
is in effect a separate heap in which storage is reclaimed by reference counting rather than
garbage collection. Though complex, the spaghetti stack was at one time more efficient
than using a gc strategy with a nongenerational garbage collector, because the spaghetti
stack’s storage management is optimized to support procedure call, return, and a host of
related operations. In the normal case, when all frames have dynamic extent, the spaghetti
stack behaves as a conventional stack.

Unfortunately, the normal case also includes the overhead of testing the reference counts
and branching conditional on the new counts. Here is PowerPC code for the normal case;
this code assumes that the reference count is kept in the high-order bits of the header word:

stw cont,4(avail) // frame pointer
addi r0,r0,12 // creation (init header)
stw r0,o(avail) // creation
addi cont,avail,4 // creation (allocate)
addi avail,avail,12 // creation
cmpw avail,limit // creation (test for overflow)
bge overflow // creation

// five common instructions



14 CLINGER, HARTHEIMER AND OST

lwz r0,-4(cont) // disposal
cmpwi r0,12 // disposal
bgt unusual_case // disposal
addi avail,avail,-12 // disposal
lwz cont,0(cont) // frame pointer

The allocation of a continuation frame cannot be combined with other heap allocation
because the spaghetti stack is a separate heap. Furthermore the four instructions used here
to dispose of a frame explicitly are likely to cost at least as much as using precise generational
garbage collection to recover the frame’s storage. When a fast garbage collector is available,
the spaghetti strategy is probably slower than the gc strategy.

Captures and throws require updating the reference counts. It therefore appears that the
gc strategy should always perform better than the spaghetti strategy.

Spaghetti stacks were designed to support dynamically scoped languages such as Interlisp.
A macaroni stack is a variation of a spaghetti stack that is designed to support statically
scoped languages [43].

4.3. The heap strategy

The lifetime of a continuation frame created for a procedure call normally ends when the
called procedure returns. The only exception is for continuation frames that have been
captured. This suggests theheap strategy, in which a one-bit reference count in each frame
indicates whether the frame has been captured. Continuation frames are allocated in a
garbage-collected heap, as in the gc strategy, but a free list of uncaptured frames is also
used. When a frame is needed by a procedure call, it is taken from the free list unless the
free list is empty. If the free list is empty, then the frame is allocated from the heap. When
a frame is returned through, it is linked onto the free list if its reference count indicates that
it has not been captured. Otherwise it is left for the garbage collector to reclaim.

The heap strategy is not a zero-overhead strategy. The following PowerPC code assumes
that an empty free list can be detected via a memory protection exception during the ex-
ecution of the first instruction. If exceptions must be avoided, then two more machine
instructions would be required. This code also assumes that a separate word is used to link
frames into the free list, and that the sign bit of the saved frame pointer is used as the one-bit
reference count.

stw cont,0(free) // frame pointer
or cont,free,free // creation
lwz free,link(free) // creation

// five common instructions
stw free,link(cont) // disposal
or free,cont,cont // disposal
lwz cont,0(cont) // frame pointer
cmpwi cont,0 // disposal
blt unusual_case // disposal



IMPLEMENTATION STRATEGIES 15

Capturing a continuation involves setting the reference count of every frame in the con-
tinuation to indicate that it has been captured. Throwing to a continuation involves nothing
more than storing the continuation in the continuation register.

For programs that don’t use first-class continuations, the performance of the heap strategy
is roughly comparable to that of the gc strategy. The non-local-exit scenario degrades
performance just a bit, because every return through a captured continuation causes a few
extra instructions to be executed. The heap strategy performs well for the recapture scenario,
because recapturing a continuation takes constant time.

The heap strategy is most practical if all continuation frames are the same size; otherwise
multiple free lists may be required. This is an indirect cost of the heap strategy.

Like the gc strategy, the heap strategy makes it difficult to reuse a continuation frame for
multiple non-tail calls. This is another indirect cost.

Danvy has described an incremental variation of the heap strategy that avoids the need
to mark all continuation frames when a continuation is captured, at the cost of a few extra
instructions for each call and return [18]. Eliot Moss has described another variation of the
heap strategy that uses a single register to serve as both the continuation register and the
free list pointer [36].

4.4. The stack strategy

A last-in, first-out stack discipline works well except for continuations that are captured.
This suggests thestack strategy, in which the active continuation is represented as a con-
tiguous stack in an area of storage we call thestack cache. Non-tail calls push continuation
frames onto this stack cache, and returns pop frames from the stack cache, just as in an
ordinary stack-based implementation. When a continuation is captured, however, a copy
of the entire stack cache is made and stored in the heap. When a continuation is thrown
to, the stack cache is cleared and the continuation is copied back into the stack cache. A
first-class continuation thus resides in the heap, but is cached in the stack cache whenever
it is the active continuation.

The stack strategy is a zero-overhead strategy. It can use standard calling sequences,
making procedure calls and returns just as fast as for languages that restrict continuations
to have dynamic extent:

addi cont,cont,-8 // creation
// five common instructions

addi cont,cont,8 // disposal

Capturing, recapturing, and throwing to a continuation take time proportional to the size
of the continuation.

The stack strategy performs well for the non-local-exit scenario, where the overhead
consists of the time required to copy the few continuations that are captured. The stack
strategy performs poorly for the recapture scenario, because it repeatedly copies the same
continuation from the stack cache to the heap. This can increase the asymptotic storage
space required by an implementation [1, 16], which must be counted as an indirect cost of
the stack strategy.



16 CLINGER, HARTHEIMER AND OST

The stack strategy prevents a compiler from allocating storage for mutable variables
within a continuation frame, because an assignment to the variable that alters one frame
cannot affect other copies of it (unless the implementation does something complicated as
in T or SOAR [31, 45]). Mutable variables must generally be allocated in registers or in
the heap. This is another indirect cost of the stack strategy.

The SOAR implementation of Smalltalk-80 avoided this indirect cost by deferring the
copying of a captured frame until it was returned through, or until a throw was performed.
Then and only then was it copied into the heap. Pointers to the frame were updated using
information maintained by the generation scavenging garbage collector and its hardware-
assisted write barrier [45].

The stack strategy does allow continuation frames to be reused for multiple non-tail calls.
The stack strategy appears to have been invented by Drew McDermott [34]. Variations

of this strategy have been used by most implementations of Scheme and Smalltalk-80
[5, 19, 40, 44, 45].

4.5. The chunked-stack strategy

PC Scheme used a chunked-stack strategy: By maintaining a small bound on the size of
the stack cache, and copying portions of the stack cache into the heap or back again as
the stack-cache overflows and underflows, PC Scheme reduced the worst-case latency of
captures and throws [5].

The chunked-stack strategy works well with generational garbage collection because
limiting the size of the stack cache limits the size of the root set that the garbage collector
must scan on each garbage collection. The portion of the continuation that resides in the
heap will be scanned only when its generation is collected. This improves the efficiency
of generational garbage collection [12]. All of the strategies described below share this
advantage. Other strategies can use a “watermark” for this purpose [2].

On the other hand, the chunked-stack strategy requires a stack cache that is large enough
to accomodate the depth of typical recursions. Otherwise the copying of continuations
on stack-cache overflows and underflows will degrade performance. This indirect cost is
shared by the stack/heap, incremental stack/heap strategies, and Hieb-Dybvig-Bruggeman
strategies described below, but to a lesser degree.

We regard the chunked-stack strategy as a zero-overhead strategy, because the cost of
stack-cache overflows and underflows is usually negligible. See Section 6.4.

4.6. The stack/heap strategy

Thestack/heap strategyis similar to the stack strategy. All continuation frames are allocated
in the stack cache. When a continuation is captured, however, the contents of the stack
cache are moved into the heap and the stack cache is cleared. Likewise when a continuation
is thrown to, the new active continuation is left in the heap and the stack cache is cleared;
this can be done in constant time.

Since the current continuation may reside in either the stack cache or in the heap, each
procedure return must test to see whether the frame should be popped off the stack cache.
If the stack cache is separated from the heap by some limit address, and that limit is kept



IMPLEMENTATION STRATEGIES 17

in a register, then the stack/heap strategy requires two extra PowerPC instructions beyond
those of a zero-overhead strategy:

addi cont,cont,-8 // creation
// five common instructions

cmpw cont,limit // disposal
blt captured // disposal
addi cont,cont,8 // disposal

captured:

The stack/heap strategy makes throwing very fast, and recapturing a previously captured
continuation is very fast also. It therefore works well for the non-local-exit and recapture
scenarios.

With the stack/heap strategy, there is never more than one copy of a continuation frame,
so it is all right for the compiler to allocate storage for mutable variables within a frame.
A concomitant disadvantage of the stack/heap strategy is that it prevents the compiler from
reusing a single continuation frame for multiple non-tail calls.

The stack/heap strategy has been used by Tektronix Smalltalk [47], BrouHaHa [35], Mac-
Scheme [41], and Luis Mateu’s implementation of coroutines [33]. The implementation of
BrouHaHa is notable because continuation frames in the heap are represented quite differ-
ently from frames in the stack cache. BrouHaHa uses two distinct interpreters, depending
on whether the topmost continuation frame is in the heap or in the stack cache.

4.7. The incremental stack/heap strategy

Theincremental stack/heap strategyis a variation of the stack/heap strategy: When returning
through a continuation frame that isn’t in the stack cache, a trap occurs and copies the frame
into the stack cache. The trap can be implemented by maintaining a permanent continuation
frame at the bottom of the stack cache. This frame’s return address points to system code
that copies one or more frames from the heap into the stack cache, and immediately returns
through the first of those continuation frames.

The incremental stack/heap strategy is a zero-overhead strategy, with the same calling
sequence as the stack strategy.

In the non-local-exit scenario, the incremental stack/heap strategy must copy the stack
cache into the heap when an escape procedure is created, must copy continuation frames
back into the stack cache when returning to a continuation that has been captured by an
escape procedure, and must perform a second indirect jump on each such return. These
costs, which are incurred only for frames that have been captured, are about twice those for
the stack and stack/heap strategies.

In the recapture scenario, capturing a previously captured continuation frame is more
common than returning through a captured frame. Thus the incremental stack/heap strat-
egy performs much better than the stack strategy, and approaches the performance of the
stack/heap strategy.

Since the incremental stack/heap strategy copies frames from the heap into the stack
cache, mutable variables cannot be kept within a continuation frame.

The incremental stack/heap strategy is used in Scheme 48 and in Larceny [14].



18 CLINGER, HARTHEIMER AND OST

4.8. The Hieb-Dybvig-Bruggeman strategy

Chez Scheme uses a variation of the incremental stack/heap strategy due to Hieb, Dybvig,
and Bruggeman [26]. This variation uses multiplestack segmentsthat are allocated in the
heap. The stack segment that contains the current continuation serves as the stack cache.

When the stack cache overflows, a new stack cache is allocated and linked to the old one.
Stack-cache underflow is handled by an underflow frame, as in the incremental stack/heap
strategy.

When a continuation is captured, the stack cache is split by allocating a small data structure
that points to the current continuation frame within the stack cache. This data structure
represents the captured continuation. The unused portion of the stack cache becomes the
new stack cache, and an underflow frame is installed at its base.

A throw is handled as in the incremental stack/heap strategy: the current stack cache is
cleared, and some number of continuation frames are copied into it. The underflow frame
at the base of the stack cache is linked to the portion of the new continuation that was not
copied.

The Hieb-Dybvig-Bruggeman strategy is a zero-overhead strategy. As with the stack
strategy and the incremental stack/heap strategy, mutable variables generally cannot be
allocated within a continuation frame, but continuation frames may be reused for multiple
non-tail calls.

One of the main advantages of the Hieb-Dybvig-Bruggeman strategy over the incremental
stack/heap strategy is that it performs about twice as well for captured frames in the non-
local-exit scenario. For this scenario, the Hieb-Dybvig-Bruggeman strategy performs the
same amount of copying as the stack/heap strategy, although the copying occurs at the time
of return instead of the time of capture.

For the recapture scenario, the Hieb-Dybvig-Bruggeman strategy performs slightly better
than the incremental stack/heap strategy because it avoids copying on the first capture.

4.9. One-shot continuations

The Hieb-Dybvig-Bruggeman strategy can be extended to provide more efficient support
for escape procedures that cannot be called more than once [8]. Although theseone-shot
continuationsare not first-class continuations, they suffice for the non-local-exit scenario
and for multitasking.

Many programming languages, including C++ and Java, provide exception facilities
and/or threads that rely on one-shot continuations. Strategies for implementing one-shot
continuations are generally outside the scope of this paper. Our purpose in this section
is to describe one of several techniques that allow one-shot continuations to coexist with
first-class continuations.

One-shot continuations are captured by acall1cc procedure whose semantics are the
same as the semantics ofcall-with-current-continuation, except thatcall1cc
creates a one-shot escape procedure that cannot be called more than once.

A call to call1cc is implemented in much the same way as a stack-cache overflow with
the Hieb-Dybvig-Bruggeman strategy. Instead of splitting the current stack cache as for a



IMPLEMENTATION STRATEGIES 19

capture, a new stack cache is allocated and linked to the old one. The one-shot continuation
is represented as a small data structure that points into the old stack cache.

A call to a one-shot escape procedure discards the current stack cache and reinstates
the stack cache that is pointed to by the one-shot continuation. It also marks the one-shot
continuation so that any subsequent attempt to call the one-shot escape procedure will signal
an error.

Calls tocall-with-current-continuation can capture part or all of a one-shot con-
tinuation, coercing it into a first-class continuation. This is implemented by a process
much like performing a capture using the heap strategy, but marking stack segments in-
stead of individual continuation frames. Otherwise captures are implemented as in the
Hieb-Dybvig-Bruggeman strategy.

When coroutines or multitasking are implemented using one-shot continuations, the rapid
discarding of stack caches is likely to cause excessive garbage collection, leading to perfor-
mance that is worse than would be obtained from first-class continuations. This problem
can be overcome by maintaining a free list of stack caches [8].

The performance of one-shot continuations for multitasking is discussed in Section 10.
One-shot continuations were implemented in Chez Scheme, in combination with the

Hieb-Dybvig-Bruggeman strategy for first-class continuations [8].

4.10. Mateu’s coroutines

Mateu implemented a variation of the gc strategy in which the two youngest generations of
a generational garbage collector are devoted entirely to continuation frames, and reported
that this improved the performance of the gc strategy for coroutining applications [33]. We
can speculate on the reasons for this improvement:

• The youngest generation acts as a stack cache, which can be made small enough to fit
within the hardware’s primary data cache.

• Continuation frames have a higher mortality rate than other objects, so dedicating the
youngest generations entirely to frames decreases the number of objects that must be
copied into an older generation.

• The roots for a frames-only garbage collection consist of the register that holds the
current continuation, and the data structures that represent the current set of threads;
in Mateu’s implementation these roots were linked together. A more general garbage
collection would probably use a larger set of roots and a more cumbersome mechanism
for the remembered set.

Mateu also implemented a variation in which frames that had not been captured were deleted
explicitly, as in the stack/heap strategy, and found that this improved performance.

The performance of Mateu’s implementation for coroutines in discussed in Section 10.



20 CLINGER, HARTHEIMER AND OST

5. Summary of costs

Figure 1 summarizes the direct costs of several implementation strategies, and gives upper
bounds for the known indirect costs of each strategy, as calculated in Section 6. The total
cost of each strategy is then shown as the sum of its direct and indirect costs, in terms of the
number of machine instructions per continuation frame created plus the number of cycles
lost per continuation frame due to cache misses. Our Figure 1 can be compared with Appel
and Shao’s Figure 1, but the gc strategy of our Figure 1 corresponds to their “Heap” column,
whereas our heap strategy corresponds to their “Quasi-Stack” column [2].

Most of the direct costs in Figure 1 are obtained by counting machine instructions. In
several cases we report a range of costs. For the heap strategy, the cost of creating a
continuation frame is two instructions if an empty free list can be detected by a hardware
exception, but one or two additional instructions may be required if hardware exceptions
are not used. Similarly the cost of creating a stack frame depends upon whether stack-cache
overflow is detected by hardware or by the code that creates the frame. Most systems detect
stack overflow in hardware, but the stack/heap, incremental stack/heap, and Hieb-Dybvig-
Bruggeman strategies are able to recover from a stack-cache overflow by copying frames
into the heap. In systems that do not provide precise exceptions, this recovery may not be
practical unless the stack-cache overflow is detected by software, which will require one or
two additional instructions.

For the seven benchmarks used by Appel and Shao, the average cost to dispose of a
continuation frame using garbage collection was 1.4 instructions [2]. The cost was less than
1.4 instructions for five of the benchmarks, slightly higher for one, and was 7.9 instructions
for the outlier. This cost must be regarded as a little more uncertain than the other direct
costs, and is very sensitive to details of the garbage collector in any case.

Figure 2 uses asymptotic notation to express

• the cost of capturing a continuation for the first time,

• the cost of recapturing it a second time,

Strategy: gc heap stack stack/ incremental
heap stack/heap,

HDB
Creation 3.1 2.0 – 4.0 1.0 1.0 – 3.0 1.0 – 3.0
Frame pointers 2.0 2.0 0.0 0.0 0.0
Disposal (pop) 1.4 4.0 1.0 3.0 1.0
Direct Cost 6.5 8.0– 10.0 2.0 4.0– 6.0 2.0– 4.0
Indirect Costs < 10.7 < 6.2 < 1.4 < 4.1 < 1.5
Total Cost 6.5– 17.2 8.0– 16.2 2.0– 3.4 4.0– 10.1 2.0– 5.5

Figure 1. The cost of procedure call and return for six implementation strategies, in instructions per continuation
frame plus cycles lost due to cache misses. The indirect costs, from Figure 3, should be regarded as loose upper
bounds. See Section 5.



IMPLEMENTATION STRATEGIES 21

Strategy: gc heap stack stack/ incremental HDB
heap stack/heap

First capture Θ(1) Θ(M) Θ(N) Θ(N) Θ(N) Θ(1)
Recapture Θ(1) Θ(1) Θ(N) Θ(1) Θ(1) Θ(1)
Throw Θ(1) Θ(1) Θ(N) Θ(1) Θ(1) Θ(1)
Returns Θ(1) O(N) Θ(1) O(N) Θ(N) Θ(N)

Figure 2. The cost of captures, throws, and the total extra cost associated with procedure returns following a
throw, for six implementation strategies.M is the number of frames that are contained within the continuation
being thrown to, andN is the size of the continuation that is contained within the stack cache. See Section 5.

Strategy: gc heap stack stack/ incremental
heap stack/heap,

Indirect cost: HDB
cache write misses < 5.1 0 0 0 0
cache read misses < 1.0 0 0 0 0
not reusing frames < 4.6 < 5.4 0 < 3.2 0
heap variables 0 0 < 0.6 0 < 0.6
stack-cache overflow 0 0 0 < 0.1 < 0.1
copying and sharing 0 < 0.8 < 0.8 < 0.8 < 0.8
Indirect cost < 10.7 < 6.2 < 1.4 < 4.1 < 1.5

Figure 3. Upper bounds for the indirect costs of five implementation strategies averaged over our ten benchmarks,
in instructions per continuation frame. The true indirect costs are likely to be considerably less than the upper
bounds shown here.

• the cost of performing a throw, and

• the total marginal costs that are associated with performing all of the returns through
all of the frames of a continuation that has been thrown to.

These costs are expressed in terms of the sizeN of the continuation that is contained within
the stack cache, and the number of framesM that are contained within the continuation
being thrown to. For the heap and stack/heap strategies the predominant cost of returning
through a previously captured frame is the cost of allocating new heap storage, which is in
Ω(M) andO(N) but is not necessarily inΘ(M) or Θ(N). These costs are corroborated
by our benchmark results in Section 9.

6. Indirect costs

All of the implementation strategies have indirect costs that are hard to estimate because
they do not show up in the machine instructions that are used to perform a procedure call,



22 CLINGER, HARTHEIMER AND OST

benchmark lines of code brief description
smlboyer 1003 Standard ML version of a Gabriel benchmark
nboyer 767 term rewriting and tautology checking
conform 616 subtype inference
dynamic 2343 Henglein’s dynamic type inference
graphs 644 enumeration of directed graphs
lattice 219 enumeration of maps between lattices
nbody 1428 inverse-square law simulation
nucleic2 4748 determination of nucleic acids’ spatial structure
puzzle 171 Pascal-like search; a Gabriel benchmark
quicksort 58 array quicksort of 30000 integers

Figure 4. Benchmarks used to bound the indirect costs.

and vary greatly depending upon the program being executed and the compiler that was
used to compile it.

We rely on Appel and Shao’s estimates for the cost of cache misses associated with the
gc strategy. For the other indirect costs we derive upper bounds from a set of instrumented
benchmarks. These upper bounds are summarized in Figure 3.

Figure 4 lists the set of ten benchmarks that we used to bound the major indirect costs.
Thesmlboyer benchmark was selected because Appel and Shao reported that it exhibited
an unusually high indirect cost [2]. Thenboyer benchmark was selected because it is
essentially a scalable and less language-dependent version of thesmlboyer benchmark,
but its indirect costs were expected to be lower becausenboyer is a first-order program.
The other eight benchmarks were selected because various researchers have been using
them to evaluate compilers and garbage collectors, and they represent a mix of functional
and imperative programming styles.

Thenboyer andgraphs benchmarks take an integer parameter that determines the prob-
lem size.nboyer0 solves the same problem that is solved bysmlboyer, while nboyer3
solves a problem that is large enough to give current machines more of a workout. Although
the data we report fornboyer0 give some insight into the differences betweennboyer and
smlboyer, we ignored the data fornboyer0 when computing averages, and used the data
for nboyer3 instead.

Clinger modified the Twobit compiler used in Larceny v0.35 to generate code that collects
dynamic counts for

• the number of continuation frames created,

• the number of words in those continuation frames,

• the number of non-tail calls,

• the number of procedure activations (at entry to a procedure),



IMPLEMENTATION STRATEGIES 23

benchmark frames created frame words non-tail calls activations
smlboyer 654947 2548043 1965858 4081799
nboyer0 440863 1321706 624528 953856
nboyer3 18996440 56917766 30113464 42789559
conform 926350 2678079 2113284 4243491
dynamic 184415 577850 462452 681736
graphs7 95608529 403473195 64266948 249517273
lattice 69358517 278882250 110739112 152973602
nbody 3408040 18100938 6091223 17041183
nucleic2 227181 1033553 542594 863905
puzzle 19460 71932 25476 845883
quicksort 656884 4173904 782025 1224395

Figure 5. Data used to bound the indirect costs.

• the number of local variables that are allocated on the heap instead of in registers or in
the stack,

• the number of references to heap-allocated local variables,

• the number of assignments to heap-allocated local variables,

• the number of assignments to heap-allocated local variables that can take the fast path
through a generational garbage collector’s write barrier,

• the number of closures created for lambda expressions,

• and the number of data words in those closures, excluding the code pointer and static
link. (A compiler switch forced Twobit to create flat closures, so the static link was
always null.)

These statistics were collected for the code of each benchmark, but not for code that is part
of the standard Scheme library; hence the number of procedure activations is less than the
total number of procedure calls, which we did not measure. The data are shown in Figures
5 and 6.

Figure 5 shows that the average size of a continuation frame ranges from 2.9 words for the
conform benchmark to 6.4 words for thequicksort benchmark, with an average over all
ten benchmarks of 4.1 words per frame. This is slightly less than the 4.2 words per frame
that were observed by Appel and Shao for a different set of benchmarks [2].

6.1. Cost of cache misses

The gc strategy is the only strategy for which cache misses will be common during normal
procedure calls and returns. The cost of cache misses is difficult to compute, so we have
relied on the analyses and simulations reported by Appel and Shao [2].



24 CLINGER, HARTHEIMER AND OST

If the youngest generation of a generational garbage collector fits within the primary
cache, then the writes that are performed by the gc strategy should almost always hit the
cache. In many current implementations, however, the youngest generation is substantially
larger than the primary cache, and the writes that are performed by the gc strategy almost
always miss the cache. On some machines, write misses do not cost anything. On other
machines, the cost of a write miss can be very high. For example, if the size of a cache line
is 8 words, the average size of a continuation frame is 4.1 words (as calculated above), and
the penalty for a write miss is 10 cycles, then the average cost per frame due to write misses
is 10× (4.1/8) .= 5.1 cycles.

The gc strategy also tends to incur more read misses than the other strategies. For a 16
kilobyte direct-mapped, write-allocate cache, Appel and Shao used simulations to estimate
that these additional read misses cost the gc strategy about 1.0 machine cycles per frame
when compared to the other strategies [2]. Appel and Shao also analyzed three very regular
procedure calling behaviors: tail recursion, deep recursion, and the tree recursion that is
performed while solving the Towers of Hanoi puzzle. For these behaviors, the gc strategy
had essentially the same number of cache read misses as the other strategies.

When continuations are used to implement multitasking or coroutines, context switches
are likely to cause more cache read misses with the gc strategy than with other strategies.
The primary caches of current machines can hold the active portion of the continuations for
perhaps 100 threads (see Figure 8), so procedure returns that follow a context switch are
likely to hit the cache. With the gc strategy, however, an inactive thread’s continuation will
be flushed from the cache to make way for frames that are allocated on the heap by other
threads. This effect appears to be visible with thecofib benchmark described in Section
10.2.

6.2. Cost of not reusing frames

The gc, spaghetti, heap, and stack/heap strategies do not copy continuation frames that have
been captured. Although this has some advantages for continuation-intensive programs, it
also means that the compiler cannot modify a continuation frame in order to reuse it for
multiple non-tail calls. This is an indirect cost of those four strategies, and may well be the
largest indirect cost of those strategies, but the size of this cost is very compiler-dependent.

Many compilers for CISC architectures use push instructions to allocate a separate con-
tinuation frame for every non-tail call. With a compiler that wouldn’t reuse frames anyway,
the indirect cost of an implementation strategy that prevents the compiler from reusing
frames is zero.

On RISC machines, which may not even have push instructions, it is common for compil-
ers to allocate a single frame at entry to a procedure, and to reuse that frame for all non-tail
calls that occur within the procedure. Although changing such a compiler to allocate a
separate frame for every non-tail call would have a significant engineering cost, and might
have performance costs due to increased code size and overhead for procedure parameters
that do not fit into registers, it is quite possible that the overall performance cost would be
negative: Allocating a separate frame for every non-tail call might improve performance,
not make it worse.



IMPLEMENTATION STRATEGIES 25

The reason for this is that many of the dynamic procedure calls are tail calls. For example,
the manydo loops that appear within the Scheme version of thepuzzle benchmark are
syntactic sugar for tail recursion [29]. For our ten benchmarks, there are about as many
tail calls as non-tail calls. Since half of the calls are non-tail calls, a compiler that allocates
a frame for each non-leaf call will allocate only half as many frames as a compiler that
allocates a frame on entry to each procedure.

As an optimization, many compilers for RISC machines do not allocate a frame when
entering a leaf procedure. This helps, but not enough: In typical Scheme code, less than
one third of all procedure activations involve a leaf procedure, even when procedures that
perform only tail calls are classified as leaf procedures [9].

For many compilers, therefore, the indirect cost of not reusing frames is zero or close to
zero, and might even be negative.

For other compilers this indirect cost might be quite large, even for properly tail-recursive
languages like Scheme. Chez Scheme uses an algorithm that eliminates more than half of
the continuation frames that would be allocated by a compiler that allocates a frame on
entry to every leaf procedure [9]. Twobit uses a different algorithm for the same purpose.
For our ten benchmarks, as compiled by Twobit, there are about 1.54 non-tail calls per
continuation frame. An implementation strategy that prevents Twobit from reusing frames
would therefore increase the number of frames that are created by about 54%.

The indirect cost of not reusing frames includes not only the direct costs for these extra
frames, but also the cost of initializing a frame with values that would already have been
present within a reused frame; we have not measured this, but estimate that it averages
about two instructions for each frame that could have been eliminated through reuse. For
the heap strategy, whose direct costs are 8 instructions per frame, the indirect cost of
preventing Twobit from reusing frames therefore appears to be about0.54× (8 + 2) .= 5.4
instructions.

In practice, the indirect cost of not reusing frames is unlikely to be this large. Any compiler
for which this indirect cost is greater than zero would have to be modified to prevent it from
reusing frames, and that modification would probably involve changing the compiler to use
fewer caller-save registers and to rely more on callee-save registers [42]. These changes
mitigate but do not eliminate the cost of not reusing frames, and add some costs of their
own.

If the compiler is constrained to be safe for space complexity in the sense described by
Appel, then the compiler must ensure that a reused frame contains no stale values that
might increase the asymptotic space complexity of the program [1, 16]. The simplest way
to remove a stale value is to overwrite it with a useful value, or with a useless zero if there
are no more useful values that need to be saved within the frame. The cost of zeroing stale
data when reusing a frame effectively reduces the indirect cost of not reusing frames. We
have not measured this, but it seems clear that zeroing stale data within a frame is usually
cheaper than disposing of the frame, creating a new one, and initializing the new frame.

In summary, the indirect cost associated with implementation strategies that prevent the
compiler from reusing continuation frames for multiple non-tail calls could approach the
direct cost, but is probably less in practice. With compilers that already create a separate
frame for each non-tail call, or create a frame on entry to every procedure or non-leaf
procedure, the indirect cost of not reusing frames is zero or perhaps even negative.



26 CLINGER, HARTHEIMER AND OST

6.3. Cost of not allocating mutable variables in frames

The stack, chunked-stack, incremental stack/heap, and Hieb-Dybvig-Bruggeman strate-
gies prevent a compiler from allocating mutable variables within a continuation frame. This
appears to be the largest indirect cost associated with those strategies.

Many compilers for higher-order languages such as Scheme and Standard ML allocate
all mutable variables on the heap, for reasons that have nothing to do with continuations.
In Standard ML, for example, a mutable variable is itself a first-class object, and Scheme
compilers often treat mutable variables as first-class objects because this simplifies important
optimizations such as lambda lifting and closure conversion. Twobit does this, so an upper
bound for the indirect cost of not allocating mutable variables in a continuation frame can be
calculated from the number of heap variables that are allocated and the number of references
and assignments to them. These data are shown in Figure 6. We assume that it takes 6
instructions to allocate heap storage for a variable, and 2 instructions to reclaim that storage
through garbage collection; that each reference to a heap-allocated variable requires one
more instruction than a reference to a variable that is allocated in a continuation frame; and
that each assignment to a heap-allocated variable requires one extra instruction, plus the cost
associated with the write barrier of a generational garbage collector. We assume that the
write barrier costs 30 instructions in the worst case, but costs only 3 instructions when the
variable resides within the youngest generation or is already a part of the garbage collector’s
remembered set. For our benchmarks, over 99.9% of the assignments take the 3-instruction
path through the write barrier. The indirect cost of not allocating mutable variables in a
frame is at most 2.3 instructions per frame for thenboyer3 benchmark, 1.5 instructions per
frame for thepuzzle benchmark, 1.0 instructions per frame for thesmlboyer benchmark,

benchmark heap variables closures
allocated referenced assigned created words

fast slow
smlboyer 49231 84574 49230 1 49231 98462
nboyer0 0 174731 211128 4 0 0
nboyer3 0 7389410 8866287 198 0 0
conform 21446 46933 45928 3 37980 5596
dynamic 0 0 0 0 1043 1803
graphs7 0 0 0 0 59900055 329771002
lattice 7 21525292 120499 75 2295329 4745990
nbody 0 0 0 0 33571 162838
nucleic2 0 0 0 0 9000 27000
puzzle 2019 4083 2082 0 0 0
quicksort 0 0 0 0 1 0

Figure 6. More data used to bound the indirect costs. These data include the number of local variables that are
allocated on the heap, the number of references to them, and the number of assignments to them that take the fast
and the slow path through the write barrier. For thenboyer benchmark, the heap-allocated local variables were
created prior to the timed portion of the benchmark.



IMPLEMENTATION STRATEGIES 27

and less than one instruction per frame for the other seven benchmarks. The average over
all ten benchmarks is 0.55 instructions per frame.

This calculation should be considered an upper bound because some of these variables
occur free within a lambda expression for which a closure must be created, which means
they would have to be allocated on the heap in any case. Some others, including almost
all of the mutable local variables that are allocated on the heap by thesmlboyer and
lattice benchmarks, are artifacts of aletrec macro that expands into code that contains
assignments [29]. Most such assignments are eliminated by Twobit’s first-order closure
analysis, but assignments that are introduced by the definition of a higher-order procedure
are not eliminated.

Most of the side effects that occur in imperative languages can be removed by translating
the program into a mostly-functional intermediate form such as static single assignment
(SSA) form [3, 17]. A scalar variable that appears within an SSA form can be allocated
in a register or continuation frame if its lifetime permits, regardless of the implementation
strategy used for continuations. If a variable is not scalar, or if its lifetime extends beyond
that of a continuation frame, then the compiler would probably have had to allocate the
variable on the heap anyway.

When the compiler translates the phi nodes of an SSA form into machine language, it
may have to insert instructions that copy values between registers and/or stack temporaries.
A few of these instructions might be part of the indirect cost of not being able to allocate
mutable variables within a continuation frame.

The compiler that we used eliminates a few assignments to scalar variables, but does not
use SSA form for this purpose. For a more imperative language such as Smalltalk or Java,
this optimization is likely to be more important than it is in Scheme or Standard ML.

In summary, the indirect cost that is associated with implementation strategies that prevent
the compiler from allocating mutable variables within a continuation frame is less than one
instruction per frame for languages like Scheme and Standard ML, and can probably be
made small for other garbage-collected languages. For compilers that already allocate
mutable variables on the heap for other reasons, this indirect cost is zero.

6.4. Cost of stack-cache overflow and underflow

The chunked-stack, stack/heap, incremental stack/heap, and Hieb-Dybvig-Bruggeman strate-
gies suffer an indirect cost from stack-cache overflows and/or underflows. Stack-cache
overflows are usually caused by a deep recursion, and result in frames being copied into the
heap (except with the Hieb-Dybvig-Bruggeman strategy). Stack-cache underflows must
copy frames back into the stack cache (except with the stack/heap strategy, which avoids
copying by performing explicit tests on every return).

The average cost of copying a frame into the heap and then back into the stack cache
is a little over 20 instructions per frame, which might degrade the performance of a deep
recursion by as much as 20%. This compares favorably with the 180% degradation caused
by overflow and underflow of an UltraSPARC’s on-chip register windows during deep
recursion.

Deep recursions account for a very small percentage of the continuation frames that are
created by most programs, and recursions that are deeper than a few thousand non-tail calls



28 CLINGER, HARTHEIMER AND OST

are extremely rare. The frequency of stack-cache overflows and underflows can therefore
be controlled by using a sufficiently large stack cache. In Scheme, a stack cache of 64
kilobytes will accomodate about three thousand continuation frames. This is enough to
eliminate almost all stack-cache overflows and underflows, and helps to bound the size
of the root set that a generational garbage collector must scan on every collection. With
compilers that are not properly tail-recursive, or allocate arrays and other structured data
within continuation frames, or allocate unreasonably large frames, a larger stack cache
might be necessary.

Larceny v0.35 flushes the entire stack cache into the heap at every garbage collection,
so its overhead for stack-cache overflows and underflows is unusually large. Even so, the
cost of overflows and underflows averaged less than 0.04 instructions per frame for our
benchmarks.

For programs that do not capture continuations, the indirect cost of stack-cache overflow
and underflow is usually negligible. For the most continuation-intensive programs imagin-
able, Section 9 shows that stack-cache overflow and underflow account for less than 20%
of the overall execution time when the stack/heap or incremental stack/heap strategies are
used, but can double execution time when the chunked-stack strategy is used.

6.5. Cost of copying and sharing

In a higher-order language such as Scheme or Standard ML, the evaluation of a lambda
expression generally involves allocating a data structure known as aclosurethat points to
the code for the newly created procedure as well as to the values of its free variables.

Since these closures have unlimited extent, they cannot contain pointers into a stack
cache. Any stack-allocated values that must be retained by a closure must be copied into
the closure, or perhaps copied into a heap-allocated structure that can be shared by several
closures. Appel and Shao called this thecost of copying and sharing.

We believe this cost is orthogonal to the strategy used to implement continuations. Shao
and Appel observed that a compiler that uses the gc strategy can allocate a continuation
frame that contains the values needed by a closure but no dynamic link to the rest of the
continuation; that dynamic link can be kept in a callee-save register [42]. A closure can
then point to this frame without also retaining the rest of the continuation. A compiler that
uses a stack-based strategy can use exactly the same optimization, of course, regarding the
heap-allocated structure as an environment frame instead of a continuation frame.

Hence the indirect cost of copying and sharing, as defined by Appel and Shao, is really the
cost of not performing this optimization. This indirect cost is difficult to measure directly,
but is clearly bounded by the total cost of initializing all of the closures that are created
during execution of a program, and the cost of initializing closures is easy to measure.

We assume that it takes one load and one store instruction to initialize each data word of a
closure. For nine of our ten benchmarks, the total cost of initializing flat closures is less than
0.4 instructions per continuation frame. For thegraphs7 benchmark, which makes very
heavy use of higher-order procedures, the cost of initializing closures is 6.9 instructions per
frame. The indirect cost of copying and sharing is less than this, and is probably far less,
because many of these instructions store register variables (for which the load instruction



IMPLEMENTATION STRATEGIES 29

is omitted), and many of these register variables have never been copied into a stack frame
(so the store instruction should not count toward the cost of copying and sharing).

In summary, the indirect cost of copying and sharing is small for most programs, but might
be significant for programs that create an unusually large number of closures. This cost
appears to be orthogonal to the implementation strategy used for continuations, however,
and should be associated instead with the implementation strategy used for environments
and closures.

7. Appel and Shao’s estimates for copying and sharing

Our upper bounds for the indirect cost of copying and sharing are considerably lower than the
values reported by Appel and Shao [2]. In this section we explain why our measurements of
this cost should take precedence. We also give three possible explanations for the difference
between our upper bound and the cost measured by Appel and Shao.

For the Standard ML version of thesmlboyer benchmark, Appel and Shao reported that
the cost of copying and sharing was 5.75 instructions per frame. This was the highest
cost reported for their seven benchmarks, which averaged 3.4 instructions per frame. For
the Scheme version of thesmlboyer benchmark, we measured an upper bound of 0.30
instructions per frame for this cost. For our set of ten benchmarks, which had onlysmlboyer
in common with theirs, our upper bound for this cost averaged 0.8 instructions per frame,
despite our inclusion of one extremely closure-intensive benchmark.

Our upper bounds for the indirect cost of copying and sharing were obtained by direct
measurement of the number of words of storage that were allocated for all closures.

The values reported by Appel and Shao were computed indirectly. They constructed two
implementations that allocated all frames on the heap using the gc strategy. One of these
implementations used the optimization described in Section 6.5 to allow closures to point
to certain continuation frames. The other implementation did not use this optimization, and
used representations for continuation frames and closures that are more typical of stack-
based compilers. For each benchmark they counted the number of instructions required
by both implementations. They then assumed that the difference between the number of
instructions executed represented the cost of copying and sharing.

Conversations with Appel and Shao have revealed three factors that would have inflated
their measurement of the cost of copying and sharing for thesmlboyer benchmark [4].
The first two factors would have inflated this measurement for all benchmarks.

The first factor is that the compiler that was used for the stack-like implementation did
not reuse frames. This would have affected the reported cost of copying and sharing as
follows. The cost of copying and sharing is incurred only when a lambda expression closes
over a stack-allocated variable that, with the optimization described in Section 6.5, would
have been allocated in a special heap-allocated record. With the optimization, that variable
would not have been copied at all. Without the optimization, the cost of copying that
variable into a closure legitimately counts toward the cost of copying and sharing, but the
cost of copying that variable out of one frame into a register and then into another frame
should count instead toward the cost of not reusing continuation frames. The method used
by Appel and Shao could not distinguish these costs. It therefore appears likely that a large



30 CLINGER, HARTHEIMER AND OST

part of the cost they reported for copying and sharing is really part of the cost of not reusing
continuation frames.

The second factor is that their implementation did not have any global or module-level
environment, so creating a closure required copying all of the global and module-level
variables that are used by the closure’s code. This would have amplified the cost of copying
and sharing. (It should be noted that using a global environment does not violate Appel and
Shao’s requirement that implementations be safe for space complexity, because the size of
the global environment is fixed at the beginning of execution and the values of any global
variables that become unreachable will henceforth remain fixed in size. The asymptotic
space complexity is therefore unchanged by any failure to reclaim the storage occupied by
global variables.)

The third factor is that Appel and Shao’s implementation of exceptions created a closure
for each exception handler. These closures are unnecessary, even if implementations are
required to be safe for space complexity. Thesmlboyer benchmark creates only 49231
closures but establishes 129774 exception handlers, so unnecessary closures probably ac-
counted for most of the cost of copying and sharing that Appel and Shao reported for this
benchmark.

8. Observational equivalence

Programmers often assume that there is at most one return from a single dynamic procedure
call, and some compilers assume this also, but first-class continuations imply that there can
be more than one return from a single procedure call. First-class continuations therefore
render certain optimizations unsafe. The fact that these optimizations cannot be performed
must be counted as an indirect cost of all strategies for implementing first-class continua-
tions. We have not attempted to measure this cost, but it appears to be small. In this section
we give two examples.

Consider the following two-argument version of Scheme’smap procedure:

(define (map2 f xs) ; original, functional
(if (null? xs)

’()
(let ((y (f (car xs))))

(cons y (map2 f (cdr xs))))))

We will regard this code as the specification ofmap2, and will analyze two more definitions
that a Scheme programmer might write in an attempt to create a more efficient but equivalent
definition ofmap2.

If we ignore the continuation space that might be required byf, then the continuation
space required by the original code is linear in the length of the listxs. If we convert
this definition to iterative form as follows, then we obtain an observationally equivalent
definition that requires only a fixed amount of continuation space.

(define (map2 f xs) ; iterative, functional
(do ((xs xs (cdr xs))

(ys ’() (cons (f (car xs)) ys)))



IMPLEMENTATION STRATEGIES 31

((null? xs)
(reverse ys))))

Although this iterative version needs only a constant amount of storage for its continu-
ations, it allocates twice as much list storage as was allocated by the original definition.
To eliminate this extra allocation, a Scheme programmer might be tempted to rewrite the
iterative version usingreverse!, which is likereverse except that it reverses its argument
by side-effecting the links of the list instead of allocating a new list:

(define (map2 f xs) ; iterative, functional
(do ((xs xs (cdr xs))

(ys ’() (cons (f (car xs)) ys)))
((null? xs)
(reverse! ys))))

Unfortunately, this imperative version ofmap2 is incorrect. With the original and iterative
functional versions ofmap2, the expression shown below evaluates to(0 1 4 9 100).
With the iterative imperative version, it evaluates to(16 9 100).

(let* ((k (lambda (x) x))
(first-time? #t)
(z (map2 (lambda (x)

(call-with-current-continuation
(lambda (return)

(set! k return)
(* x x))))

’(0 1 2 3 4))))
(if first-time?

(begin (set! first-time? #f)
(k 100))

z))

This is not obvious, but it is explicable. With the iterative imperative version, the last
continuation that is captured preserves an environment in which the R-value ofxs is (4)
and the R-value ofys is (9 4 1 0). Whenreverse! is called, its side effects change
the R-value ofys to (9 16). (This is the most mysterious part of the explanation, but the
mystery is attributable to side effects, not to continuations.) Passing 100 to the last captured
continuation is equivalent to returning a second time from the call tof with argument 4,
returning 100 instead of 16. The 100 is consed onto the R-value ofys and the resulting list
(100 9 16) is passed toreverse!, which returns(16 9 100).

This is surprising to most programmers, so we conclude that side effects interact badly with
first-class continuations. By converting all of the code above to continuation-passing style
(CPS) we can obtain the same surprising results without using first-class continuations at all,
which shows that side effects interact badly with higher-order procedures in general. The
CPS equivalentsappearmore complex, however, so programmers are not quite so surprised
that the imperative CPS version behaves differently from the functional CPS versions. The
real problem with first-class continuations is that they allow subtle and complex programs
to be written more simply.



32 CLINGER, HARTHEIMER AND OST

Whether first-class continuations are desirable is beyond the scope of this paper, but
it is clear that first-class continuations break many of the observational equivalences that
would hold in the absence of first-class continuations. This affects performance because the
iterative imperative code formap2 is likely to be a little faster than the iterative functional
code, even in systems that use generational garbage collection. The fact that the imperative
code cannot be used in place of the functional versions, because it is not equivalent to them,
therefore counts as an indirect cost of first-class continuations.

In general, this cost arises whenever the existence of first-class continuations within
a language prevents a programmer or a compiler from improving the performance of a
program by introducing a side effect or by moving a side effect across a procedure call.

We will offer one more example of this indirect cost. SupposeE1, E2, . . . are arbitrary
expressions, and the variableslist andcons are known to refer to Scheme’s standard
procedures for constructing a new list or pair. Then

(list E1 E2 ... En)

is equivalent to

(let ((t1 E1)
(t2 E2)
...
(tn En))

(cons t1 (cons t2 ... (cons tn ’())...)))

in Scheme. Both of the above expressions would be equivalent to

(cons E1 (cons E2 ... (cons En ’())...))

if not for the existence of first-class continuations in Scheme. In the first two expressions,
all of the expressionsE1, E2, . . . are evaluated before any part of the list is allocated. In
the last expression, some of the pairs that comprise the list may be allocated beforeE1 has
been evaluated. This can be observable if the list that results from these expressions is
side effected, andE1 is a procedure call that returns more than once. A Scheme compiler
therefore cannot always translate the first or second expression into the third expression.
The last expression can be evaluated from right to left using a fixed number of temporaries,
whereas the first two expressions requiren temporaries. This can affect performance when
there aren’t enough registers to keep all of the temporaries in registers. It therefore counts
as an indirect cost of first-class continuations.

9. Continuation-intensive benchmarks

In 1988 we implemented the gc, stack, stack/heap, and incremental stack/heap strategies
by modifying MacScheme+Toolsmith version 1.5 [41]. Non-tail-recursive procedure calls
are slow in MacScheme because its calling conventions were designed for a byte code
interpreter, where it is faster to have a byte code do potentially unnecessary work than it is
to decode multiple byte codes. Since the operations associated with allocating and linking
a continuation frame are so complex in MacScheme, they are performed by an out-of-line



IMPLEMENTATION STRATEGIES 33

Benchmark gc stack stack/heap incremental
strategy strategy strategy stack/heap

strategy
loop1 1.0
loop2 5.9 12.1 5.9 6.9
tak 1.0
ctak 10.9 24.2 11.2 11.5

Figure 7. Four strategies compared on two continuation-intensive benchmarks,loop2 andctak. Timings are
relative toloop1 andtak, which are related benchmarks that do not use continuations at all.

routine in native code as well as in byte code; likewise for deallocating and unlinking a
continuation frame. This made it possible for us to test all four strategies using identical
native code.

We were unable to test the heap strategy because MacScheme uses continuation frames
of various sizes.

We tested our four strategies on two outrageously continuation-intensive benchmarks. The
loop2 benchmark corresponds to a non-local-exit scenario in which a tight loop repeatedly
throws to the same continuation. Thectak benchmark is a continuation-intensive variation
of the call-intensivetakbenchmark. As modified for Scheme, thectakbenchmark captures
a continuation on every procedure call and throws on every return, which creates a recapture
scenario.

Source code for these benchmarks, together with their less exotic analoguesloop1 and
tak, are shown in an appendix. These benchmarks were run on a Macintosh II with 5
megabytes of RAM using generic arithmetic and fully safe code; stack-cache overflow was
detected by software, because the Macintosh II was unable to detect stack overflows in
hardware.

Figure 7 shows the time required byloop2 relative to the time required byloop1, and
the time required byctak relative to the time required bytak. These relative timings are
accurate to the precision shown in Figure 7. Under carefully controlled conditions, our
absolute timings were repeatable to within plus or minus one count of the hardware timer,
which had a resolution of 1/60 second.

We also ran these benchmarks on comparable hardware using PC Scheme and T3. These
implementations used the stack or chunked-stack strategies, but we found that they did not
perform as well on continuation-intensive benchmarks as our experimental implementation
of the stack strategy.

The stack strategy is easily the worst of the tested strategies on the continuation-intensive
benchmarksloop2 andctak. The other three strategies are about twice as fast. The
incremental stack/heap strategy is a little slower than the stack/heap strategy on theloop2
benchmark because it has to copy a frame into the stack cache each time through the loop.
The gc strategy has a slight edge on thectak benchmark because it never has to copy any
frames.

Ten years later we verified these conclusions by using a coroutine benchmarkcofib, sim-
ilar to ctak, to compare the performance of the gc, stack/heap, Hieb-Dybvig-Bruggeman,



34 CLINGER, HARTHEIMER AND OST

Benchmark Average Size Per Cent Adjusted
of Continuation Recaptured Percentage
(32-bit words) (see text)

tak 189 69 23
ctak 166 76 37
takl 195 75 37
boyer 381 81 58
browse 105 76 25
destructive 69 78 3
traverse-init 68 82 23
traverse 205 90 74
deriv 96 70 2
dderiv 96 70 2
div-iter 61 80 0
div-rec 476 54 0
fft 80 91 65
puzzle 159 88 68
triangle 207 81 54
fprint 103 82 42
fread 202 83 58
tprint 106 81 41
compiler 455 92 83

Figure 8. Multitasking can create a recapture scenario. The “Per Cent Recaptured” column shows how much
of the continuation remained unchanged from one task switch to the next in MacScheme+Toolsmith. The
“Adjusted Percentage” column suggests what these percentages might have been with a less continuation-intensive
implementation of multitasking.

and incremental stack/heap strategies as implemented in Standard ML of New Jersey, Mac-
Scheme, Chez Scheme, and Larceny. These results are shown in Figure 9 and are analyzed
in Section 10.2.

10. Multitasking

Lightweight threads can be implemented very easily using first-class continuations [25].
This has been done in many implementations, including Concurrent ML, Chez Scheme,
and MacScheme+Toolsmith [8, 39, 41].

In this section we explain how multitasking creates a recapture scenario, which can be
exploited by the stack/heap, incremental stack/heap, and Hieb-Dybvig-Bruggeman strate-
gies. We then consider the performance of first-class continuations for multitasking and
coroutines.



IMPLEMENTATION STRATEGIES 35

10.1. Multitasking creates a recapture scenario

The MacScheme compiler implicitly inserts code to decrement a countdown timer at every
backward branch, at every procedure call, and at every return. When the timer reaches
zero, this code generates a software interrupt by calling a subroutine within MacScheme’s
runtime system. This routine polls the operating system to learn whether any enabled events
are pending. If so, then the event is packaged as a Scheme data structure that can be passed
to the interrupt handler. Otherwise the interrupt becomes a task-switch interrupt.

The default value of the countdown timer generated a task switch interrupt for every 5000
procedure calls (counting tail calls). On the Macintosh II this generated at least ten task
switches per second. To improve responsiveness, the interrupt rate was increased to one
interrupt for every 500 calls for a short time following each user interface event.

Since the continuation tends to change little during short periods of time, most programs
written using MacScheme+Toolsmith matched the recapture scenario fairly well. Figure
8 quantifies the extent to which the MacScheme compiler and eighteen of the Gabriel
benchmarks matched the recapture scenario when multitasking was enabled. Only the
compiler and thectak benchmark calledcall-with-current-continuation at all.

One of the peculiarities of MacScheme+Toolsmith is that each timer interrupt captures
a continuation. Since the task scheduler will capture exactly the same continuation, the
average fraction of continuation structure that is being recaptured due to multitasking can
never be less than half. We therefore adjusted the data to show what would happen if captures
were performed only by the task scheduler. We also subtracted 37 words of continuation
structure created by the read/eval/print loop and other system code. The last column of
Figure 8 shows the adjusted percentages. These numbers show that the extent to which a
program matches the recapture scenario can be sensitive to the details of an implementation.
The smaller benchmarks are more sensitive than the larger ones.

Higher switch rates would create even more of a recapture scenario.

10.2. Performance of multitasking

Mateu’s implementation of the stack/heap strategy on a Sun/670MP achieved more than
150,000 coroutine switches per second for thesamefringe benchmark, with roughly one
task switch for every two procedure calls, but excessive garbage collection limited its
usefulness. Mateu’s implementation of the stack/heap strategy with special support for
coroutines reduced the overhead of garbage collection and was able to achieve 430,000
coroutine switches per second for the same benchmark [33].

Bruggeman, Waddell, and Dybvig have reported results from a synthetic multitasking
benchmark that creates 10, 100, or 1000 threads, each of which computes the 20th Fibonacci
number using the doubly recursive (exponential) algorithm [8]. They ran this benchmark
on a DEC Alpha 3000/600 to compare the performance of their implementation of one-shot
continuations with the Hieb-Dybvig-Bruggeman strategy.

At low switch rates, with at least 128 procedure calls between task switches (about
5000 task switches per second on their machine), there was little difference between the
performance of one-shot continuations and the Hieb-Dybvig-Bruggeman strategy. At high
switch rates, including the extremely high rate of one task switch for every procedure call,



36 CLINGER, HARTHEIMER AND OST

gc (Standard ML of New Jersey)
stack/heap (MacScheme)
Hieb-Dybvig-Bruggeman (Chez Scheme)
incremental stack/heap (Larceny)

512 256 128 64 32 16 8 4 2 1

Figure 9. CPU times for the 100-threadcofib benchmark relative to the time required to execute the threads
sequentially (represented by the white rectangle at the bottom of each bar), as the frequency of context switches
increases from one context switch for every 512 procedure calls to one context switch for every call. A bar has
been omitted from the right of this figure because it would be almost twice as high as the bar to its left.

procedure calls per context switch
512 256 128 64 32 16 8

gc (SML/NJ) 1.12 1.11 1.15 1.18 1.24 1.41 1.70
stack/heap (MacScheme) 1.00 1.03 1.08 1.15 1.31 1.60 2.12
HDB (Chez Scheme) 1.05 1.10 1.21 1.35 1.65 2.10 2.98
incremental stack/heap 1.08 1.16 1.24 1.53 1.95 2.70 4.13

(Larceny)

Figure 10. CPU times for the 100-threadcofib benchmark relative to the time required to execute the threads
sequentially, as the frequency of context switches increases from one context switch for every 512 procedure calls
to one context switch for every 8 calls.

one-shot continuations were up to 15% faster than the Hieb-Dybvig-Bruggeman strategy.
These results suggest that only the most demanding uses of multitasking or coroutines
would benefit from one-shot continuations.

The stack/heap strategy used in MacScheme+Toolsmith performed well when there was
one task switch for every 5000 procedure calls, but operating system and user interface
overhead limited performance at higher interrupt rates. To separate the overhead of con-
tinuations from unrelated operating system and task scheduler overhead, we modified the



IMPLEMENTATION STRATEGIES 37

Fibonacci benchmark to use explicit coroutining instead of multitasking; this also made the
benchmark more portable. We refer to our modified benchmark ascofib.

We usedcofib to benchmark four implementations that use four different strategies for
continuations:

• the gc strategy as implemented in Standard ML of New Jersey v110.0.3, running on a
SPARC Ultra 1;

• the stack/heap strategy as implemented in MacScheme v4.2, running on a Macintosh
PowerBook 170 with 4 megabytes of RAM; this machine could not run the 1000-thread
version of the benchmark without paging, and does not have a data cache;

• the Hieb-Dybvig-Bruggeman strategy as implemented in Chez Scheme v5.0a, running
on a SPARCserver and also on the SPARC Ultra 1; and

• the incremental stack/heap strategy as implemented in Larceny v0.34, running on the
SPARC Ultra 1.

For Chez Scheme, the relative overhead of coroutining was consistent across the two ma-
chines we benchmarked; we report timings for the SPARC Ultra 1.

Figures 9 and 10 show CPU times for the 100-threadcofib benchmark relative to the
time required to execute the threads sequentially. The timings shown for Standard ML of
New Jersey are the arithmetic mean of 12 runs. For each frequency of context switching,
including sequential execution, the sample deviation was less than 3% of the mean.

At a low switch rate, with 512 procedure calls between task switches (about 8000 task
switches per second on the SPARC Ultra 1), the gc strategy has more overhead than the
other strategies. This can be explained by its cache read misses, as discussed at the end of
Section 6.1.

At high switch rates the cost of copying continuation frames becomes apparent. The gc
strategy does not copy any frames. The stack/heap strategy makes exactly one copy of
every frame that is live at a task switch, the Hieb-Dybvig-Bruggeman strategy makes at
least one, and the incremental stack/heap strategy makes at least two.

Figure 9 suggests that, for any fixed overhead that is large enough to expose the cost
of copying continuation frames, the gc strategy can perform about 1.5 times as many task
switches per second as the stack/heap strategy, the stack/heap strategy can perform about
twice as many as the Hieb-Dybvig-Bruggeman strategy, and the Hieb-Dybvig-Bruggeman
strategy can perform twice as many as the incremental stack/heap strategy. If the largest ac-
ceptable overhead is 100%, then current hardware can perform about 300,000 task switches
per second using the gc strategy, 200,000 task switches per second using the stack/heap
strategy, 100,000 task switches per second using the Hieb-Dybvig-Bruggeman strategy, and
50,000 task switches per second using the incremental stack/heap strategy.

11. Difficulty of implementation

We recommend the incremental stack/heap and Hieb-Dybvig-Bruggeman strategies for
implementing first-class continuations in almost-functional languages like Scheme and



38 CLINGER, HARTHEIMER AND OST

Standard ML. For more imperative languages, the stack/heap strategy may deserve consid-
eration.

Appel and Shao characterized these strategies as “complicated to implement”, citing seven
specific complications. In this section we review these issues and how they are resolved in
Larceny version 0.35 [14].
First-class continuations: Larceny uses the incremental stack/heap strategy described in
Section 4.7.
Frame descriptors: Larceny stores a frame descriptor in every frame, which adds two
instructions to the cost of creating a frame. This is unnecessary, and is likely to change in
a future version.
Detection of stack-cache overflow:The incremental stack/heap strategy allows a single
stack cache to be used by multiple threads. This makes it easier to detect stack-cache over-
flow in hardware. Nonetheless Larceny relies on software to detect stack-cache overflow.
This adds two instructions to the cost of creating a frame.
Generational garbage collection:Larceny’s stack cache decreases the size of the root set
that its generational garbage collector must scan on every collection, so there is no need to
maintain a separate “watermark” for this purpose.
Multitasking: The incremental stack/heap strategy uses a single stack cache to support
multiple threads. This is adequate for applications with ten thousand task switches per
second. Higher rates of task switching can be accomodated by the Hieb-Dybvig-Bruggeman
or stack/heap strategies. See Section 10.2.
Proper tail recursion: Almost-functional languages such as Scheme and Standard ML
depend upon proper tail recursion, which conflicts with stack allocation of variables [11, 16].
This conflict can be resolved by using the complicated technique described by Chris Hanson
[24], or by abandoning stack allocation for non-local variables.

The Twobit compiler used in Larceny does not use stack allocation for non-local variables.
Lambda lifting converts almost all non-local variables into local variables, and the few non-
local variables that remain after lambda lifting are allocated on the heap [14].
Space complexity: For the most part, issues of space complexity are orthogonal to the
strategy that is used to implement continuations. That strategy affects space complexity
only if it creates multiple copies of frames or allows continuation frames to be reused.

The stack strategy can increase the asymptotic space complexity of programs that recap-
ture continuations. The closure that is created to represent an escape procedure occupies
some storage in any case, so the chunked-stack, incremental stack/heap, and Hieb-Dybvig-
Bruggeman strategies are safe for asymptotic space complexity provided there is a bound,
such as the fixed size of a stack cache, on the total size of the continuation frames that are
copied on a stack-cache underflow. In Larceny 0.35, stack-cache underflows copy a single
frame.

If frames are reused, then the compiler may have to emit code to clear any slots of a
frame that have not been overwritten and are no longer live when the frame is reused for
a subsequent non-tail call. Alternatively, the compiler can add a descriptor to each frame
that tells the garbage collector which of the frame’s slots are live. As noted by Appel and
Shao, this descriptor does not imply any runtime overhead, because the runtime system can
maintain a mapping from return addresses to frame descriptors [2].



IMPLEMENTATION STRATEGIES 39

12. Conclusion

Many strategies can be used to implement first-class continuations. On most programs
the zero-overhead strategies perform better than the gc strategy, but all of the strategies
have indirect costs. The incremental stack/heap strategy is a zero-overhead strategy that
performs well and is not hard to implement. The Hieb-Dybvig-Bruggeman and stack/heap
strategies are also attractive, and perform better for multitasking.

Acknowledgments

Techniques invented for Algol 60 use a single stack to represent both environments and
continuations. Sometime during the 1982–1983 academic year Jonathan Rees pointed out
that we could forget about environments by assuming that all variables are in registers or
in heap-allocated storage. This insight led us to invent the stack/heap and incremental
stack/heap strategies. The stack/heap strategy was invented independently at about the
same time by the implementors of Tektronix Smalltalk [47].

The comments and experience of Norman Adams, Lars Hansen, Richard Kelsey, Jonathan
Rees, Allen Wirfs-Brock, and several anonymous referees were very helpful to us.

Our revision of this paper was supported by NSF grant CCR-9629801.

Appendix 1: PowerPC assembly language

The PowerPC is a load/store architecture with 32 general purpose registers, 32 floating
point registers, and a small number of special purpose registers such as the link register,
which is used to hold a return address. Memory is byte-addressable. A word of memory
consists of four 8-bit bytes. Thelwz (Load Word and Zero) instruction loads a word from
memory into a general purpose register; thestw (Store Word) instruction stores the contents
of a general register into memory. The first operand of thelwz andstw instructions is the
general register being loaded or stored. The effective address is formed by adding the
second operand (a displacement, in bytes) to the contents of the general register specified
by the third operand. Thus

lwz r3,0(r1) // Load Word and Zero
stw r3,4(r1) // Store Word

copies the word of memory whose address is in registerr1 to the following word of memory.
Most integer instructions operate on the contents of two general registers and place their

result in a destination register. The destination register is the first operand, so

or r3,r4,r4 // Or (inclusive)

copies the contents of registerr4 to registerr3. An immediate instruction takes an integer
as its last operand, so

addi r1,r1,-8 // Add Immediate



40 CLINGER, HARTHEIMER AND OST

decrements registerr1 by 8.
Thecmpw (Compare Word) andcmpwi (Compare Word Immediate) instructions compare

two integers. When only two operands are specified for these instructions, the implicit des-
tination is a condition register, which can be used to control a conditional branch instruction
such asbge (Branch if Greater or Equal) orblt (Branch if Less Than). Thus

cmpw r3,r3 // Compare Word
bge L1790 // Branch if Greater or Equal

always branches toL1790, but

cmpwi r4,0 // Compare Word Immediate
blt L25 // Branch if Less Than

branches to L25 if and only if the value inr4 is negative.
Thebl (Branch and Link) instruction is an unconditional branch that places the address of

the following instruction into the link register. Theblr (Branch to Link Register) instruction
branches to the address that is contained within the link register. Thus the following code
implements an infinite loop:

bl next // Branch and Link
next: blr // Branch to Link Register

Themflr (Move From Link Register) instruction copies the contents of the link register
into a general register, and themtlr (Move To Link Register) instruction copies the contents
of a general register into the link register. These instructions are used to save and to restore
a return address, as illustrated by the example in Section 3.1.

Appendix 2: Source code for benchmarks

These benchmarks use arun-benchmark procedure as in the benchmarks that come with
Gambit-C [20].

;;; LOOP1 -- A perverse way to write a loop.

(define (loop1 n)
(let ((n n)

(k 0))
(define (loop ignored)

(if (zero? n)
’done
(begin (set! n (- n 1))

(loop #t))))
(loop #t)))

(run-benchmark "Loop1" 1 (lambda () (loop1 1000000))
(lambda (result) (eq? result ’done)))



IMPLEMENTATION STRATEGIES 41

;;; LOOP2 -- An extremely perverse way to write a loop.

(define (loop2 n)
(let ((n n)

(k 0))
(define (loop ignored)

(call-with-current-continuation
(lambda (cont)

(set! k cont)))
(if (zero? n)

’done
(begin (set! n (- n 1))

(k #t))))
(loop #t)))

(run-benchmark "Loop2" 1 (lambda () (loop2 1000000))
(lambda (result) (eq? result ’done)))

;;; TAK -- A vanilla version of the TAKeuchi function

(define (tak x y z)
(if (not (< y x))

z
(tak (tak (- x 1) y z)

(tak (- y 1) z x)
(tak (- z 1) x y))))

(run-benchmark "TAK" 1 (lambda () (tak 18 12 6))
(lambda (result) (= result 7)))

;;; CTAK -- A version of the TAK procedure that uses
;;; continuations.

(define (ctak x y z)
(call-with-current-continuation
(lambda (k)

(ctak-aux k x y z))))

(define (ctak-aux k x y z)
(cond ((not (< y x)) ;xy

(k z))
(else (call-with-current-continuation

(lambda (k)
(ctak-aux
k
(call-with-current-continuation
(lambda (k)



42 CLINGER, HARTHEIMER AND OST

(ctak-aux k
(- x 1)
y
z)))

(call-with-current-continuation
(lambda (k)

(ctak-aux k
(- y 1)
z
x)))

(call-with-current-continuation
(lambda (k)

(ctak-aux k
(- z 1)
x
y)))))))))

(run-benchmark "CTAK" 1 (lambda () (ctak 18 12 6))
(lambda (result) (= result 7)))

(* Coroutine benchmark for Standard ML of New Jersey. *)

fun main (nthreads, n, ncalls) =
let open Array

open SMLofNJ.Cont
in callcc (fn (terminate) =>

let val tasks = tabulate (nthreads,
fn (i) =>
fn (ignored) =>
throw terminate 0)

val count = ref nthreads
val counter = ref ncalls
fun make_task (i) =

let
val j = let val j = i + 1

in if j >= nthreads then 0 else j
end

fun task_switch (k) =
((*print "\nTask switch,";*)
update (tasks, i, fn (x) => throw k x);
counter := ncalls;
sub (tasks, j) (0))

fun task_switch0 (f) =
(update (tasks, i, f);
counter := ncalls;
sub (tasks, j) (0))



IMPLEMENTATION STRATEGIES 43

fun fib (n) =
if !counter = 0

then (callcc task_switch;
fib (n))

else (counter := !counter - 1;
if n < 2

then n
else fib (n - 1) + fib (n - 2))

fun done (ignored) =
(print "\nThis shouldn’t have happened.";
throw terminate 0)

in fn (ignored) =>
let val result = fib (n)
in (count := !count -1;

if !count = 0
then throw terminate result
else task_switch0 done)

end
end

fun init i =
if i < nthreads

then (update (tasks, i, make_task (i));
init (i + 1))

else ()
in (init 0;

sub (tasks, 0) (0))
end)

end

fun cofib_benchmark (nthreads) =
let fun benchmark (name, ncalls) =

run_benchmark (name, 1, fn () => main (nthreads, 20, ncalls),
fn (x) => (x = 6765))

in (benchmark ("Sequential", 1000000);
benchmark ("512 calls/switch", 512);
benchmark ("256 calls/switch", 256);
benchmark ("128 calls/switch", 128);
benchmark ("64 calls/switch", 64);
benchmark ("32 calls/switch", 32);
benchmark ("16 calls/switch", 16);
benchmark ("8 calls/switch", 8);
benchmark ("4 calls/switch", 4);
benchmark ("2 calls/switch", 2);
benchmark ("1 call/switch", 1))

end



44 CLINGER, HARTHEIMER AND OST

References

1. A.W. Appel,Compiling with Continuations. Cambridge University Press, 1992.
2. A.W. Appel and Z. Shao, An empirical and analytic study of stack vs. heap cost for languages with closures.

Journal of Functional Programming6, 1 (1996), 47–74.
3. A.W. Appel,Modern Compiler Implementation in Java. Cambridge University Press, 1998.
4. A.W. Appel and Z. Shao, Personal communications by electronic mail in October 1996 and September 1998,

and by a telephone conference on 9 September 1998.
5. D.H. Bartley and J.C. Jensen, The implementation of PC Scheme. InProceedings of the 1986 ACM Con-

ference on Lisp and Functional Programming(August 1986), 86–93.
6. D.M. Berry, Block structure: retention or deletion? (Extended Abstract). InConference Record of the Third

Annual ACM Symposium on Theory of Computing, May 1971, 86–100.
7. D.G. Bobrow and B. Wegbreit, A model and stack implementation of multiple environments. CACM 16, 10

(Oct. 1973) 591–603.
8. C. Bruggeman, O. Waddell and R.K. Dybvig, Representing control in the presence of one-shot continu-

ations. InProceedings of the 1996 ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 1996,SIGPLAN Notices31, 5 (May 1996), 99–107.

9. R.G. Burger, O. Waddell and R.K. Dybvig, Register allocation using lazy saves, eager restores, and greedy
shuffling. InProceedings of the 1995 ACM SIGPLAN Conference on Programming Language Design and
Implementation, June 1995, 130–138.

10. P.J. Caudill and A. Wirfs-Brock, A third generation Smalltalk-80 implementation. InConference Proceedings
of OOPSLA ’86, SIGPLAN Notices21, 11 (November 1986), 119–130.

11. D.R. Chase, Safety considerations for storage allocation optimizations. InProceedings of the 1988 ACM
Conference on Programming Language Design and Implementation, 1–10.

12. P. Cheng, R. Harper and P. Lee, Generational stack collection and profile-driven pretenuring.Proceedings of
the 1998 ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1998,
162–173.

13. W.D. Clinger, A.H. Hartheimer and E. Ost, Implementation strategies for continuations. InProceedings of
the 1988 ACM Conference on Lisp and Functional Programming, 124–131.

14. W.D. Clinger and L.T. Hansen, Lambda, the ultimate label, or a simple optimizing compiler for Scheme.
In Proc. 1994 ACM Conference on Lisp and Functional Programming, 1994, 128–139.

15. W.D. Clinger and L.T. Hansen Generational garbage collection and the radioactive decay model.Proceedings
of the 1997 ACM SIGPLAN Conference on Programming Language Design and Implementation, June 1997,
97–108.

16. W.D. Clinger, Proper tail recursion and space efficiency.Proceedings of the 1998 ACM SIGPLAN Conference
on Programming Language Design and Implementation, June 1998, 174–185.

17. R. Cytron, J. Ferrante, B.N. Rosen, M.N. Wegman and F.K. Zadeck, Efficiently computing static single
assignment form and the control dependence graph. ACM TOPLAS 13, 4 (October 1991), 451–490.

18. O. Danvy, Memory allocation and higher-order functions. InProceedings of the SIGPLAN ’87 Symposium
on Interpreters and Interpretive Techniques, June 1987, 241–252.

19. L.P. Deutsch and A.M. Schiffman, Efficient implementation of the Smalltalk-80 system. InConference
Record of the 11th Annual ACM Symposium on Principles of Programming Languages, January 1984,
297–302.

20. M. Feeley, Gambit-C version 3.0. An implementation of Scheme available via
http:// www.iro.umontreal.ca/∼gambit, 6 May 1998.

21. M.J. Fischer, Lambda-calculus schemata. InJournal of Lisp and Symbolic Computation6, 3/4 (December
1993), 259–288.

22. R.P. Gabriel,Performance and Evaluation of Lisp Systems. The MIT Press, 1985.
23. A. Goldberg and D. Robson,Smalltalk-80: the Language and its Implementation. Addison-Wesley, 1983.
24. C. Hanson, Efficient stack allocation for tail-recursive languages. InProceedings of the 1990 ACM Confer-

ence on Lisp and Functional Programming, 106–118.
25. C.T. Haynes and D.P. Friedman, Engines build process abstractions.Conference Record of the 1984 ACM

Symposium on Lisp and Functional Programming(August 1984), 18–24.
26. R. Hieb, R.K. Dybvig and C. Bruggeman, Representing control in the presence of first-class continuations. In

Proceedings of the ACM SIGPLAN ’90 Conference on Programming Language Design and Implementation,
ACM SIGPLAN Notices25, 6 (June 1990), 66-77.



IMPLEMENTATION STRATEGIES 45

27. J. Holloway, G.L. Steele, G.J. Sussman and A. Bell, The SCHEME-79 chip. MIT AI Laboratory, AI Memo
559 (January 1980).

28. IEEE Standard 1178-1990.IEEE Standard for the Scheme Programming Language.IEEE, New York, 1991.
29. R. Kelsey, W. Clinger and J. Rees, Revised5 report on the algorithmic language.Higher-Order and Symbolic

Computation11, 3 (1998), 7–105.
30. D.A. Kranz, R. Kelsey, J.A. Rees, P. Hudak, J. Philbin and N.I. Adams, Orbit: An optimizing compiler for

Scheme. InProceedings of the SIGPLAN ’86 Symposium on Compiler Construction. SIGPLAN Notices 21,
7 (July 1986), 219–223.

31. D.A. Kranz,ORBIT: An Optimizing Compiler for Scheme. PhD thesis, Yale University, May 1988.
32. Lightship Software.MacScheme Manual and Software. The Scientific Press, 1990.
33. L. Mateu, An efficient implementation for coroutines. In Bekkers, Y., and Cohen, J. [editors].Memory

Management(Proceedings of the International Workshop on Memory Management IWMM 92), Springer-
Verlag, 1992, 230–247.

34. D. McDermott, An efficient environment allocation scheme in an interpreter for a lexically-scoped Lisp. In
Conference Record of the 1980 Lisp Conference(August 1980), 154–162.

35. E. Miranda, BrouHaHa—a portable Smalltalk interpreter. InConference Proceedings of OOPSLA ’87,
SIGPLAN Notices22, 12 (December 1987), 354–365.

36. J.E.B. Moss, Managing stack frames in Smalltalk. InProceedings of the SIGPLAN ’87 Symposium on
Interpreters and Interpretive Techniques, June 1987, 229–240.

37. PowerPC 601 RISC Microprocessor User’s Manual. Motorola, 1993.
38. J. Rees and W. Clinger, Eds., Revised3 report on the algorithmic language Scheme. InSIGPLAN Notices

21, 12 (December 1986), 37–79.
39. J.H. Reppy, CML: A higher-order concurrent language. InProceedings of the 1991 ACM SIGPLAN Con-

ference on Programming Language Design and Implementation, SIGPLAN Notices26, 6 (1991), 294–305.
40. A.D. Samples, D. Ungar and P. Hilfinger, SOAR: Smalltalk without bytecodes InConference Proceedings

of OOPSLA ’86, SIGPLAN Notices21, 11 (November 1986), 107–118.
41. Semantic Microsystems.MacScheme+Toolsmith. August 1987.
42. Z. Shao and A.W. Appel, Space-efficient closure representations. InProceedings of the 1994 ACM Confer-

ence on Lisp and Functional Programming, 150–161.
43. G.L. Steele, Jr., Macaroni is better than spaghetti. InProceedings of the Symposium on Artificial Intelligence

and Programming Languages(August 1977), 60–66.
44. N. Suzuki and M. Terada, Creating efficient systems for object-oriented languages. InConference Record

of the 11th Annual ACM Symposium on Principles of Programming Languages, January 1984, 290–296.
45. D.M. Ungar,The Design and Evaluation of a High Performance Smalltalk System. The MIT Press, 1987.
46. D.L. Weaver and T. Germond,The SPARC Architecture Manual, Version 9. SPARC International and PTR

Prentice Hall, 1994.
47. A. Wirfs-Brock, Personal communication, April 1988. Tektronix Smalltalk was described by Caudill and

Wirfs-brock, but not in enough detail for us to realize that Tektronix Smalltalk uses the stack/heap strategy
rather than the stack strategy [10].


