
M a y a : M u l t i p l e - D i s p a t c h S y n t a x

E x t e n s i o n i n J a v a

J a s o n B a k e r a n d W ilson C . H s ie h

UUCS-01-015

School of Computing

University of Utah

Salt Lake City, U T 84112 U S A

December 11, 2001

A b s t r a c t

W e have designed and implemented Maya, a version of Java that allows programmers to

extend and reinterpret its syntax. M aya generalizes macro systems by treating grammar

productions as generic functions, and semantic actions on productions as multimethods on

the corresponding generic functions. Programmers can write new generic functions (i.e.,

grammar productions) and new multimethods (i.e., semantic actions), through which they

can extend the grammar of the language and change the semantics of its syntactic con­

structs, respectively. M aya’s multimethods are compile-time metaprograms that transform

abstract syntax: they execute at program compile-time, because they are semantic actions

executed by the parser. M aya’s multimethods can be dispatched on the syntactic structure

of the input, as well as the static, source-level types of expressions in the input.

In this paper we describe what Maya can do and how it works. W e describe how its novel

parsing techniques work and how Maya can statically detect certain kinds of errors such as

hygiene violations. Finally, to demonstrate M aya’s expressiveness, we describe how Maya

can be used to implement the MultiJava language, which was described by Clifton et al. at

O O P S L A 2000.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by The University of Utah: J. Willard Marriott Digital Library

https://core.ac.uk/display/276277876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A revised version of this paper was published in Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation (PLDI 2002),Berline, Germany, June 2002. Please read and cite the published PLDI 2002 paper in preference to this

report.

Maya: Multiple-Dispatch Syntax Extension in Java

Jason Baker and Wilson C. Hsieh

University of Utah

ABSTRACT
We have designed and implemented Maya, a version of Java that al­
lows programmers to extend and reinterpret its syntax. Maya gen­
eralizes macro systems by treating grammar productions as generic
functions, and semantic actions on productions as multimethods
on the corresponding generic functions. Programmers can write
new generic functions (i.e., grammar productions) and new multi­
methods (i.e., semantic actions), through which they can extend the
grammar of the language and change the semantics of its syntactic
constructs, respectively. Maya’s multimethods are compile-time
metaprograms that transform abstract syntax: they execute at pro­
gram compile-time, because they are semantic actions executed by
the parser. Maya’s multimethods can be dispatched on the syntac­
tic structure of the input, as well as the static, source-level types of
expressions in the input.

In this paper we describe what Maya can do and how it works.
We describe how its novel parsing techniques work and how Maya
can statically detect certain kinds of errors such as hygiene viola­
tions. Finally, to demonstrate Maya’s expressiveness, we describe
how Maya can be used to implement the MultiJava language, which
was described by Clifton et al. at OOPSLA 2000.

1. INTRODUCTION
Syntax extension can be used to embed a domain-specific language
within an existing language. For example, embedded SQL extends
its host language with database query syntax. Syntax extension
can also be used to add language features when they are found to
be necessary. For example, design patterns [16] can be viewed as
work-arounds for specialized features missing from general-purpose
languages: the visitor pattern implements multiple dispatch in a
single-dispatch language. Some language designers have chosen to
specialize their languages to support certain patterns: the C# [22]
language includes explicit support for the state/observer pattern and
delegation. However, unless we are willing to wait for a new lan­
guage each time a new design pattern is identified, such an ap­
proach is unsatisfactory. Instead, a language should admit program­
mer-defined syntax extensions.

Macro systems [11, 23, 26] support a limited form of syntax ex­
tension. In most systems, a macro call consists of the macro name
followed by zero or more arguments. Such systems do not allow
macros to define infix operators. In addition, macros cannot change
the meaning of the base language’s syntax. Even in Scheme, which
has an extremely powerful macro system, a macro cannot redefine
the procedure application syntax.

Other kinds of systems allow more sophisticated forms of syntax
rewriting than simple macro systems. These systems range from
aspect-oriented languages [27] to compile-time metaobject proto­
cols (MOPs) [8, 25]. Compile-time MOPs allow a metaclass to

Extension Source

Application Source

Extension Library

mayac

Compiled Extensions

mayac

Compiled Application

Figure 1: Compiling language extensions and extended pro­
grams with the Maya compiler, mayac

rewrite syntax in the base language. However, these systems typi­
cally have limited facilities for defining new syntax.

This paper describes an extensible version of Java called Maya,
which supports both the extension of its syntax and the extension
of its base semantics. Figure 1 shows how Maya is used. Exten­
sions, which are called Mayans, are written as code that generates
abstract syntax trees (ASTs). After Mayans have been compiled,
they can be loaded into the Maya compiler and used while compil­
ing applications. Mayans are dispatched from the parser at applica­
tion compile-time; they can reinterpret or extend Maya syntax by
expanding it to other Maya syntax.

Maya has the following combination of features:

Mayans operate on abstract syntax. Maya can ensure that
Mayans produce valid ASTs, because AST nodes are well
typed. Since Mayans do not operate on flat token streams,
they are not subject to precedence errors that occur in typi­
cal macro systems. For example, the Java Syntactic Extender
(JSE) [2] allows macros to be defined with a case statement
that matches concrete syntax against patterns. Because JSE
macros operate on concrete syntax, they can generate many
of the same parse and precedence errors that C macros gen­
erate.

Maya treats grammar productions as generic functions, and
semantic actions (Mayans) as multimethods on those generic
functions. Mayans can be dispatched on a rich set of pa­
rameter specializers: AST node types, the static types of ex­
pressions, the concrete values of tokens, and the syntactic
structure of AST nodes. Multiple dispatch allows users to
extend the semantics of the language by overriding Maya’s
base semantic actions.

• Maya allows programmers to generate ASTs with templates,
a facility like quasiquote in Lisp [24]. Maya templates can be
used to build arbitrary pieces of abstract syntax. Most other
systems provide less general template mechanisms (

1

wig> [6] is an exception). For example, JTS [5] is a frame­
work for building Java preprocessors that supports templates.
JTS only defines template syntax corresponding to a fixed
subset of the JTS grammar’s nonterminals.

Like Java classes, Mayans are lexically scoped. Local Ma­
yan declarations can capture the state of enclosing instances.
In addition, Mayan definitions are separate from imports.
Imported Mayans are only applicable within the scope of
their import. These features allow great flexibility in the way
that syntax transformers share state and are exposed to the
base code. In comparison, compile-time metaobject proto­
cols such as OpenJava [25] typically provide fixed relation­
ships between transformers, state, and the lexical structure of
base code.

To support these features, Maya makes use of three new imple­
mentation techniques:

1. To support dispatch on static types, Maya interleaves lazy
type checking with lazy parsing. That is, types and abstract
syntax trees are computed on demand. Lazy type check­
ing allows a Mayan to dispatch on the static types of some
arguments, and create variable bindings that are visible to
other arguments. The latter arguments must have their types
checked lazily, after the bindings are created. Lazy parsing
allows Mayans to be imported at any point in a program.
Syntax that follows an imported Mayan must be parsed lazily,
after the Mayan defines any new productions. The lazy eval­
uation of syntax trees is exposed explicitly to the Maya pro­
grammer, so that the effects of laziness can be controlled.

2. Maya uses a novel parsing technique that we call pattern
parsing to statically check the bodies of templates for syn­
tactic correctness. The pattern parsing technique allows a
programmer to use quasiquote to generate any valid AST.

3. Maya supports hygiene and referential transparency in tem­
plates through a compile-time renaming step. This renaming
is possible because binding constructs must be explicitly de­
clared as such in Maya’s grammar. Maya’s implementation
of hygiene detects most references to free variables when
templates are compiled. Maya’s implementation of hygiene
does not support Dylan-like implicit parameters.

The rest of this paper is organized as follows. Section 2 reviews
some of the systems that we compare Maya against. Section 3 in­
troduces the basics of the Maya language with an extended exam­
ple. Section 4 describes the high-level design and implementation
of the Maya compiler, including how Mayans are compiled and
integrated into the Maya parser, how lazy parsing and type check­
ing work, how templates are parsed, and how hygiene and dispatch
work. Section 5 sketches how Maya can be used to implement an
interesting language extension: namely, open classes and multi­
methods as defined in MultiJava [10]. Section 6 describes related
work, and Section 7 summarizes our conclusions.

2. BACKGROUND
In this section we describe three systems that are closely related to
Maya, and to which we compare Maya in the rest of the paper: JSE,
JTS, and OpenJava.

JSE is a port of Functional Objects’ procedural Dylan macros to
Java. JSE macros are defined using Dylan patterns, but a macro’s

expansion is computed by JSE code rather than by pattern substitu­
tion. JSE macros must follow one of two syntactic forms: method­
like and statement-like macros. JSE recognizes macro keywords
through a class naming convention.

JSE provides a quasiquote mechanism to build macro return val­
ues. However, because macros operate on unparsed trees of tokens
and matching delimiters, JSE cannot statically check that quasi­
quotes produce syntactically correct output. In addition, macro ex­
pansion does not honor precedence.

JTS is a framework for writing Java preprocessors that operate
on ASTs. JTS and Maya approach the problem of extensible lan­
guages from opposite directions, and make different tradeoffs be­
tween flexibility and expressiveness. Whereas Maya can be used
to implement macros, it is impractical to define a simple macro by
building a JTS preprocessor.

JTS language extensions can define new productions, AST node
types, and grammar symbols. JTS extensions are also free to mutate
syntax trees, since typechecking is performed by a standard Java
compiler, after extensions have run to completion. JTS provides
great flexibility at the syntactic level but ignores static semantics.

In contrast, OpenJava allows metaclasses to be associated with
classes in the base program. A class declares its metaclass with an

clause, which appears after in a
class declaration. Metaclasses inherit introspection methods simi­
lar to the Java reflection API, and control translation to Java through
the visitor pattern. OpenJava provides for two kinds of macro ex­
pansion: caller-side translation allows a metaclass to expand ex­
pressions involving its instance types through visit methods on var­
ious expression and declaration forms, and callee-side translation
allows a metaclass to modify instance class declarations. OpenJava
also permits limited extensions to the syntax of
and type names.

OpenJava controls syntax translation based on the static types of
expressions, but imposes some limitations. Metaclasses must be
explicitly associated with base-level classes through the

clause. As a result, primitive and array types cannot be
used to dispatch syntax expanders. Additionally, caller-side ex­
panders override visit methods defined on a subset of Java syntax.

OpenJava lacks some features that make compile-time metapro­
grams robust: Its macros can generate illegal pieces of syntax, be­
cause they allow metaprograms to convert arbitrary strings to syn­
tax. In addition, OpenJava metaclasses inspect nodes through ac­
cessor methods rather than pattern matching. Finally, OpenJava
does not provide technology — hygiene and referential transpar­
ency — that makes macros work [11].

3. MAYA OVERVIEW
Maya can be used to implement simple macros as well as language
extensions such as MultiJava and aspects [4]. Maya provides a
macro library that includes features such as assertions, printf-style
string formatting, comprehension syntax for building arrays and
collections, and syntax for walking them. This section
describes the features that a macro should have, and the
way that these features can be implemented in Maya. In the exam­
ples that follow, we use bold text for keywords, and italic text for
binding instance names.

Given a Hashtable variable h, the following use of for­
:

h.keys().foreach(String st) {
System.err.println(st + " = " + h.get(st));

}

should expand to:

2

for (Enumeration enumVar = h.keysO;
enumVar.hasMoreElements();) {

String st;
st = (String) enumVar.nextElement();
System.err.println(st + " = " + h.get(st));

}

Many macro systems support exactly this sort of macro. Although
JSE cannot express our chosen concrete syntax, it allows a similar
macro to be written. OpenC++ [8] includes specific support for
member statements such as .

Macro overloading is useful with statements such as .
For example, we might want a version of that works on
arrays: the code we have written in Maya uses f oreach to walk

arrays as often as Enumerations and Collections. Over­
loading may also be used for optimization. For instance, the fol­
lowing code:

maya.util.Vector v;
v.elements{).foreach(String st) {

System.err.printIn{st) ;

}

1 Statement syntax
2 EForEachiExpression:Enumeration enumExp
3 \. foreach(Formal var)
4 lazy(BraceTree, BlockStmts) body)
5 {
6 final StrictTypeName castType
7 = StrictTypeName.make(var.getType0) ;
8
9 return new Statement {
10 for (Enumeration enumVar = $enumExp;
11
12
13
14
15
16
17
18

Figure 2: The Mayan that implements foreach on Enumer­

ations

could be expanded to more efficient code with a specialized version
of :

maya.util.Vector v;

{
Vector vl = v;
int len = vl.sizeO;
Object [] arr = vl.getElementData();
for (int 1 = 0 ; i < len; i++) {

String st = (String) arr[i];
System.err.println(st);

}
}

This code can avoid both object allocation and method calls be­

cause maya .util .Vector exposes its underlying object array
by overriding .

To support the optimization of foreach on a vector’s elements,
Maya allows semantic actions (called Mayans) to be dispatched
on both the structure and static type of an argument. In partic­
ular, the left-hand side of the specialized must be a
call to and the receiver of the call must have type

maya . ut i l . Vector. Although macro systems such as Scheme
syntax-rules [18] and JSE support syntactic pattern match­
ing, and although compile-time MOPs such as OpenJava dispatch
on static types, Maya is the first compile-time metaprogramming
system to unify these features. Maya’s multiple-dispatch model
provides benefits over the case statements of syntax-case [14]
and JSE in that the behavior of a syntactic form can be extended
without modifying the original definition.

This example shows the central challenge in providing flexible
macro dispatching. The statement’s expansion depends
on the static type of , yet the loop body cannot
be type checked until the statement is expanded and the
variable s t is declared. Some code cannot even be parsed until sur­
rounding Mayans have been expanded. Maya addresses this chal­
lenge through lazy parsing and lazy type checking.

3.1 Mayan Declarations
In Maya, a syntax extension is defined in two parts. First, a new
LALR(1) production may need to be added, if the new syntax is
not accepted by the existing grammar. Second, Mayans define se­
mantic actions for a production, and are dispatched based on values
on the production’s right-hand side.

Before Mayans can be defined to implement foreach, we must
extend the grammar to accept the syntax. The following
production would suffice (the concrete Maya syntax for describing
this production is given in the next paragraph):

Statement —> MethodName (Formal) lazy-block

We choose this syntax to avoid making a reserved word
in this context. The MethodName nonterminal matches everything
left of ‘ (’ in a method invocation. In particular, MethodName
matches the ‘Expression . Identifier’ sequence accepted by for­

. In this example, lazy-block matches a Java block that is not
parsed or type checked until its syntax tree is needed.

The production above is declared in Maya by the following code:

import maya.tree.*;
import maya.grammar;
import java.util.*;

abstract Statement
syntax{MethodName(Formal)

lazy(BraceTree, BlockStmts));

The production is introduced through the and
keywords. The syntax keyword indicates that a production or a
Mayan is being defined. The keyword indicates that a
production is being defined. is the return type of the
production (i.e., the left-hand side); it is also the return type of any
corresponding Mayans (semantic actions). The arguments to the
production are the right-hand side of the production.

Most symbols in the Maya grammar are AST node types such
as . Productions and Mayans may only be defined
on node-type symbols. Maya also supports several kinds of pa­
rameterized grammar symbols that are used to define repetition
and control lazy parsing. One such symbol,

, accepts a matching pair of braces and lazily parses
their contents as a block.

After we define the production that accepts , we can
declare Mayans to translate various kinds of statements
to standard Maya syntax. Note that if no Mayans are declared on a
new production (that is, no semantic actions are present on the pro­
duction), an error is signaled on input that matches the production.

A Mayan declaration differs from a production declaration in
three ways: Mayan parameters have specializers and names; Ma-

3

yan declarations have bodies; and Mayans do not begin with the
keyword. Figure 2 shows the Mayan that

implements for (not the optimized
version).

A Mayan parameter list serves two purposes. First, it determines
which occurrences of syntax a Mayan can be applied to. Second, it
binds formal parameters to actual arguments and their substructure.
Mayan parameter lists and case patterns in functional languages
serve similar purposes. In fact, Maya’s pattern matching facility
is made available through a statement as well as
through Mayan dispatch.

The EForEach Mayan is defined on the LALR(1) production
described earlier, which takes the left-hand side of a method invoca­
tion followed by a formal parameter and a block. Maya determines
that this production corresponds to when
is parsed. Parameter specializers are used to narrow Mayan ap­
plicability: only applies to nodes that
contain an explicit receiver expression. The receiver expression is
bound to and must have the static type .
The final identifier in the syntax is also specialized
to a particular token value: namely, . Maya’s ability
to dispatch on the values of identifiers such as allows
macros to be defined without introducing reserved words. EFor-

binds the loop variable and loop body to and
respectively.

3.2 Mayan Definitions
The body of a Mayan is ordinary Maya code. For example,

’s body consists of a local variable declaration and a return
statement. The return value is computed using a template expres­
sion that builds ASTs. Template can be used to build the ASTs
from concrete syntax. For example, a template containing ‘1 + 2

’ builds the corresponding tree. A template may also contain
expressions unquoted with ‘$’: the values of these expressions are
substituted into the resulting AST when the template is evaluated.
Templates are statically parsed to ensure syntactic correctness.

Maya’s templates automaticly provide hygiene and referential
transparency for lexically scoped names; programmers are given
mechanisms to explicitly break hygiene and to explicitly generate
fresh names if they so desire. A hygienic macro system guarantees
that variables declared in a macro body cannot capture references
in a macro argument, while a referentially transparent macro sys­
tem guarantees that variables local to a macro’s call site cannot
capture references in the macro’s body. In the case of EForEach,
hygiene ensures that the loop variable will not interfere with ref­
erences to other variables called in the loop body, and
referential transparency ensures that the loop variable will have the
type regardless of the calling con­
text.

Like OpenJava metaclasses, Mayans have access to a variant of
the Java reflection API. References to objects are avail­
able through methods such as
and . objects support
java. lang. Class’s introspection API and a limited form of
intercession that allows member declarations to be added to a class
body.

Mayans can use the reflection API to insulate themselves from
some details of Maya’s AST representation. For example, the ab­
stract syntax trees for and
have different shapes, but both declare variables of the same type.
EForEach uses the reflection API in two places. First, line 7 of
Figure 2 builds a node from the object that
represents the type of a variable. Second, line 13 generates a ref­

erence to a local variable directly, rather than generating an occur­
rence of the variable’s name. Reference .makeExpr also al­
lows fields to be referenced when they are shadowed by local vari­
ables. Line 12 translates between two distinct but related syntactic
forms.

3.3 Using Mayans
Maya decouples Mayan definition from use: a Mayan is not implic­
itly loaded into the compiler at the point of declaration, but must be
loaded explicitly. This feature allows Mayans and their uses to be
compiled separately, and allows local Mayans to use any value in
their environments.

A Mayan declaration, such as in Figure 2, is com­
piled to a class that implements . An instance of
the class is allocated when a Mayan is imported. A programmer
uses the directive to import instances into a
lexical scope; the argument to u se can be any class that imple­
ments . For example, can be used in a
method body as follows:

void showEm(Enumeration e) {
use EForEach;
e.foreach(Object o) { System.out.println(o); }

}

Imports of Mayans are lexically scoped. In this example, the scope
of the translation defined by consists only of the me­
thod body of .

The directive is also valid in class bodies and at the top
level. Additionally, Maya provides a command line option
that allows a programmer to compile a file using different Mayan
implementations.

Local Mayan instances are closed over their lexical environment
in the same way as local class instances. Because a local Mayan
definition can use any value in its environment, it cannot be im­
ported until these values exist. As a result, local Mayans can never
be imported with ; however, local Mayans can be instantiated
and run by other metaprograms. The advantage of local Mayans is
that one Mayan can expose state to other Mayans without resort­
ing to templates that define Mayans. As a result, nontrivial meta­
programs can be structured as a group of classes and a few small
Mayans, rather than as a series of macro definitions.

Since Mayans are typically small units of code, they can be ag­
gregated into larger metaprograms. An instance of such a class
is allocated, and its method is called to update the environ­
ment. For example, the class defines a
single method, which instantiates and runs each built-in
each Mayan in turn. As a result, a programmer need only u se the

class to import all of the built-in
Mayans.

4. DESIGN AND IMPLEMENTATION
Translating Maya source code to a fully expanded syntax tree in­
volves dispatching and running Mayans. Dispatch may require type
checking, while executing Mayans may change the types of sub­
trees. This mutual recursion precludes parsing and type checking
in one pass; Mayan dispatch requires that they be interleaved. Maya
satisfies these constraints by parsing and type checking lazily, i.e.,
computing syntax trees and their types on demand.

Figure 3 shows the major components of our Maya compiler,
mayac. The file reader reads class declarations from source files.
Our compiler then processes each class declaration in two addi­
tional stages. The class shaper parses the class body and computes
member types; the class compiler parses member initializers, in-

4

Figure 3: Overview of Maya’s internal architecture

M̂etfaodJNam̂^̂ (Formal) lazy(BraceTree, BlockSmts)

Expression . Identifier

Figure 4: The structure of EForEach’s formal parameters

symbol types are used directly by the LALR(1) grammar, while the
latter two require special handling. When a subtree or parameter­
ized symbol is encountered, Maya ensures that the corresponding
production is defined in the LALR(1) grammar, and uses the left-
hand side in the outer production.

For instance, the production used by includes both a
subtree and a parameterized symbol:

abstract Statement
syntax(MethodName(Formal)

lazy(BraceTree, BloekStmts));

file names

cluding method and constructor bodies. The parser is invoked in
all three steps to incrementally refine a declaration’s AST. To com­
pute the shape of a class , all super-types of and the types of
all members of must be found. Similarly, to compile , the
shapes of all types referred to by ’s code must be known. Maya
provides class-processing hooks that execute user-defined code as
a class declaration leaves the shaper.

The stream lexer enables lazy parsing by generating a tree of to­
kens rather than a flat stream. Specifically, the stream lexer creates
a subtree for each pair of matching delimiters: parentheses, braces,
and brackets. These subtrees are called lexers since they can pro­
vide input to the parser. The stream lexer resembles a Lisp reader
in that it builds trees from a simple context-free language.

Unless otherwise noted, all arcs coming into the parser are lex­
ers and all arcs going out are ASTs. The parser builds ASTs with
the help of the Mayan dispatcher: on each reduction, the dispatcher
executes the appropriate Mayan to build an AST node. Mayan dis­
patch may involve recursive parsing, as shown in Figure 3.

The pattern parser is used when compiling Mayans and tem­
plates. It takes a stream of both terminal and nonterminal input
symbols, and returns a partial parse tree.

The remainder of this section describes several Maya features
in depth. Section 4.1 discusses Maya’s lazy grammar and the way
new productions can be written to extend it. Section 4.2 discusses
pattern matching in Mayan parameter lists, Maya’s AST template
facility, and the parsing techniques used to implement these lan­
guage features. Section 4.3 describes Maya’s static approach to
hygiene and referential transparency. Section 4.4 discusses Maya’s
dispatching rules in detail. Finally, Section 4.5 compares Maya’s
features to those of related Java extensions.

4.1 Parsing
Maya productions are written in a high-level metagrammar that ex­
plicitly supports laziness. Users can define general-purpose pro­
ductions on any builtin nonterminal of the Maya grammar. User-
defined productions are indistinguishable from those built into Maya.
In addition, parameterized grammar symbols may implicitly define
productions on new nonterminals.

Production arguments (right-hand sides) consist of token literals,
node types, matching-delimiter subtrees, or parameterized symbols

such as . The former two

It is translated to the set of productions below:

Statement —> MethodName Go Gi
Go —> ParenTree
Gi —> BraceTree

Semantic actions (not shown) on and produce AST nodes
from unstructured subtrees. The semantic action for Go recursively
parses the to a Formal, which is mentioned explic­
itly in the production. The action for delays the parsing of
the , as specified by the parameterized symbol. If the
productions and actions already exist in the grammar, they are not
added again. For example, the production and action for are
used to parse both foreach and catch clauses; those for Gi are
used throughout the Maya grammar.

A production is valid if it does not introduce conflicts into the
grammar. The Maya parser generator attempts to resolve conflicts
with operator precedence relations. Unlike YACC, Maya does not
resolve shift/reduce conflicts in favor of shifts or reduce/reduce
conflicts based on the lexical order of productions. The parser gen­
erator rejects grammars that contain unresolved LALR(1) conflicts.

4.2 Pattern Parsing
Maya uses patterns in two ways: first, to establish bindings in Ma­
yan parameter lists and clauses; and second, to compile tem­
plates that dynamically construct AST nodes. Although these uses
are very different, they involve the same data structure: a partial
parse tree built from a sequence of both terminal and nonterminal
input symbols. The pattern parser differs from a standard parser in
that its input may include nonterminals as well as tokens. Just as
the pattern parser accepts nonterminal input symbols, it also gener­
ates parse trees that may contain nonterminal leaves.

Recall that in Figure 2 is defined on the production
given in Section 3.1. The pattern parser must infer the structure
of EForEach’s argument list, which is shown in Figure 4. Since

is a semantic action, it takes three actual arguments:
a , a parenthesized , and a lazily parsed
block. However, the first argument does not explicitly appear in
EForEach’s formal parameter list. The pattern parser infers the
structure of the first argument by parsing the symbols in the argu­
ment list.

The pattern parser is also used to parse template bodies. Maya
guarantees that a template is syntactically correct by parsing its
body when the template is compiled. The pattern parser generates

5

D
F
S

b
c
d
f
DeA
FA

input: de.A

state = 56

stack:
actions for 56

a shift 57

b shift 58

c shift 59

A goto 674

input: deA.

state = 674

stack:

input: f.A

state = 67

stack:
actions on 67

a reduce F

b reduce F

c reduce F

input: f.A

state = 33

stack:

(a) A simple grammar (b) A goto can be followed if present (c) Otherwise, FIRST(A) serves as lookahead

Figure 5: Pattern parsing example

a parse tree from a sequence of tokens that may be interleaved with
expressions unquoted with ‘$’. An unquote expression’s grammar
symbol is determined from its static type, or from an explicit coer­
cion operator.

The template parse tree is compiled into code that performs the
same sequence of shifts and reductions the parser would have per­
formed on the template body. Templates honor laziness: sub-tem­
plates that correspond to lazy syntax are compiled into local thunk
classes that are expanded when the corresponding syntax would be
parsed.

While some systems have developed ad hoc approaches for tem­
plate parsing [5, 8, 25, 26], Maya opts for a more general solution.
Our pattern-parsing algorithm allows Mayans to be defined on any
nonterminal node type, and templates can generate both nontermi­
nal node types and parameterized symbols. A proof of this algo­
rithm’s correctness is available elsewhere [3].

The Parsing Algorithm. The description of the pattern pars­
ing algorithm uses the function names and lexical conventions of
Aho et al. [1, §4.4]: upper-case letters are nonterminal symbols,
lower-case Greek letters are strings of terminals and nonterminals,
lower case Roman letters are strings of terminals, and FIRST maps
a string of symbols to the set of all terminals that appear first in
some derivation.

The pattern parser uses parse tables in much the same way as a
normal LALR(1) parser. Terminal input symbols are shifted onto
the stack or trigger reductions normally. However, nonterminal
symbols require some special handling. Figure 5 provides concrete
examples of how nonterminals can be parsed. When the pattern
parser encounters a syntactically valid input , there must be a
production in the grammar, and the parser must be in
some state such that one of the following holds:

1. contains an item : actions on FIRST are
all shifts to the same state, and this state contains a goto for

that leads to some state . In this case, is shifted
onto the stack, and the goto is followed. That is, the current
parsing state will “accept” an X because there is an entry in
the goto table.

Figure 5(b) illustrates this case, given the grammar in Fig­
ure 5(a). In this example, the metavariable X corresponds to
A ;Y corresponds to S'; a corresponds to D e; and and 7
correspond to .

2. contains an item , where is a nonterminal such
that a ̂ C,Z: the actions on first(X7) all reduce the same
rule . In this case, the stack is reduced leading to a

state in which one of the above conditions holds. That is,
the current parsing state will “accept” an X because we can
perform a reduction on the input before .

5(c) illustrates this case, again given the grammar in Fig­
ure 5(a). In this example, corresponds to ; corre­
sponds to ; and correspond to ; and , , and
correspond to .

If neither case holds, the input must not be valid. Note that X could
be invalid in the second case, and that the pattern parser may not
detect the error until it has performed some reductions.

4.3 Hygiene
Maya supports compile-time determination of variable hygiene in
templates, unlike most macro systems. Maya’s static approach to
hygiene detects references to unbound variables when a template
is compiled, rather than when it is executed. Macro systems make
hygiene and referential transparency decisions when the syntactic
role of each identifier is known. In most systems, this information
is only available after all macros have been expanded. The key to
Maya’s hygiene rules is that a Mayan writer must make explicit
which identifiers are bound and which are not: productions that
establish lexically scoped bindings must use special nonterminals

such as .
Maya examines trees produced by the pattern parser to decide

where hygienic and referentially transparent renaming should oc­
cur. Referential transparency in Mayan parameter lists ensures that
a class name matches nodes that denote the same fully qualified
name, and that class names in templates refer to the appropriate
classes.

Maya’s implementation of hygiene and referential transparency
relies on direct generation of bytecode. Maya implements hygiene
by assigning fresh names to local variable declarations generated
by Mayans. The names that Maya generates contain ‘$’ and are
guaranteed to be unique within a compilation unit. In a source-to-
source translator, hygiene would have to be implemented through a
slightly more complicated mechanism. Maya implements referen­
tial transparency by generating nodes that refer to classes directly.

Implementing referential transparency in a translation to Java
source code would be difficult, since class names can be completely
inaccessible in certain packages. For instance,

cannot be referenced inside the package below, due to
Java’s name rules:

package p;
class java { }
class System { }

A

6

Expression Identifier

Figure 6: The structure of VForEach’s formal parameters

Maya provides mechanisms both to explicitly generate unique
names and to explicitly break hygiene.

generates a fresh . Mayans can violate hy­
giene and referential transparency by unquoting -
valued expressions in templates, rather than embedding literal names.
Referential transparency can also be bypassed through the intro­
spection API. Maya’s hygiene rules do not support implicit param­
eters: names are either fully hygienic or unhygienic, and cannot be
shared only between a Mayan and its call site.

4.4 Dispatch
Mayan dispatching is at the core of Maya. Each time a production
is reduced, the parser dispatches to the appropriate Mayan. This
Mayan is selected by first finding all Mayans applicable to the pro­
duction’s right-hand side, then choosing the most applicable Mayan
from this set. While multiple dispatch is present in many languages
such as Cecil [7], CLOS [24], and Dylan [23], the exact formula­
tion of Maya’s rules is fairly unique.

Mayan dispatching is based on the runtime types of AST nodes,
but also considers secondary parameter attributes. As described
earlier, the pattern parser builds Mayan parameter trees from un­
structured lists of tokens and named parameters. A Mayan param­
eter consists of a node type and an optional secondary attribute.
This attribute may contain subparameters, a token value, a static
expression type, or a class literal type. For example, as shown in
Figure 4, specializes on its structure,

on its static type, and on the token
value .

Secondary attributes are used to compare formal parameters with
identical node types. Static expression types are compared using
subtype relationships; substructure is compared recursively; class
types and token values must match exactly. For example, the fol­
lowing optimized definition

Statement syntax
VForEach(Expression:maya.util.Vector v

\ .elements () \ . foreach (Formal var)
lazy(BraceTree, BlockStmts) body)

{ / * ■ ■ ■ * / }

overrides EForEach for certain input values. The structure of
’s formal parameters is shown in Figure 6.

is more specific than EForEach because the foreach “receiver”
is specialized on the node type, while does
not specialize the receiver node type.

Mayan dispatching is symmetric. If two Mayans are more spe­
cific than each other on different arguments, neither is more specific
overall, and an error is signaled. This approach avoids the surpris­
ing behavior described by Docournau et al. [13], and is consistent
with Java’s static overloading semantics.

Although dispatch is symmetric, Maya supports an unusual form

of lexicographic tie breaking: subsequently imported Mayans over­
ride earlier Mayans. Lexical tie-breaking allows several Mayans to
be imported with identical argument lists. Where several Mayans
are equal according to the argument lists, the last Mayan imported
with is considered most applicable. For example, many of
the Mayans that we have written do not specialize their arguments.
Such Mayans are more applicable than the built-in Mayans only
because the built-in Mayans are imported first.

Maya provides an operator that supports the layering of macros.
The operator calls the next-most-applicable Ma­
yan, and is analogous to calls in methods. This operator
may only be used within Mayan bodies, whereas other Maya fea­
tures such as templates may be used in any Maya code.

4.5 Discussion
Maya’s expressiveness can be compared to that of the other lan­
guages discussed in Section 2. Neither JSE, JTS, nor OpenJava
support automatic hygiene and referential transparency. JSE and
JTS do not provide static type information, while JSE and Open-
Java provide limited facilities for defining new syntax.

JTS allows extensions to define arbitrary new productions, while
Maya only allows general-purpose productions to be defined on a
fixed set of left-hand sides. JTS extensions are also free to extend
the abstract syntax tree format. Since Maya must be able assign
standard Java meaning to every syntax tree, only a few specific
node types may be subclassed.1

Finally, JTS extensions may walk syntax trees in any order and
perform mutation. In contrast, Mayans are executed by the par­
ser, and can only mutate class declaration by adding and removing
members when certain dynamic conditions are met. This restric­
tion ensures that class updates cannot change the results of previous
type checking and Mayan dispatch.

OpenJava and Maya both allow some form of syntax extension,
dispatch based on static information, and the association of syn­
tax transformation code with the lexical structure of the program.
Maya provides more flexibility in these areas.

OpenJava allows three extensions to declaration syntax: new
modifiers may be defined, clauses may be added to the class dec­
laration syntax, and suffixes may be added to the type in a variable
declaration. In all cases, a keyword signals the presence of ex­
tended syntax, and the metaclass must provide a parsing routine. In
contrast, Maya allows new productions to be defined on any gram­
mar symbol, and does not require that keywords be used.

OpenJava dispatches caller-side visit methods to transform an
input program based on its static types. However, visit methods
are only defined for a few expression and declaration forms. In
contrast, Mayans may be defined on all productions in the base
grammar, as well as user-defined productions.

OpenJava associates syntax transformation methods with class
declarations through the clause. A metaclass is
free to examine and modify the bodies of its instance classes. Al­
though Maya does not provide a similar mechanism, local Mayan
definitions and imports allow user-defined metaobjects to be cre­
ated easily. These metaobjects need not be associated with classes.

5. MULTIJAVA
To evaluate Maya, we implemented MultiJava, an extension to Java
that Clifton et al. have specified [10]. The first author’s thesis [3]
contains several smaller examples of how Maya can be used; it also
discusses the MultiJava implementation in greater detail.

This restriction is not currently enforced in the implementation.

7

MultiJava adds generic functions to Java through two new con­
structs: open classes and multimethods. Open classes allow meth­
ods to be declared at the top level, and multimethods allow dispatch
based on the runtime types of all method arguments. MultiJava’s
formulation of open classes and multimethods supports separate
compilation.

5.1 MultiJava Overview
Open classes in MultiJava offer an alternative to the visitor design
pattern. Rather than maintaining a visit method on each class in a
hierarchy and a separate hierarchy of visitor classes, one can simply
augment the visited class hierarchy with externally defined meth­
ods. External methods can be added without recompiling the vis­
ited class hierarchy, but a class can override external methods that
it inherits.

Within an external method, is bound to the receiver in­
stance. However, external methods in MultiJava may not access
private fields of , nor can they access nonpublic fields of
this if the receiver class is defined in another package.

MultiJava defines a compilation strategy and type checking rules
that together allow external methods and their receiver classes to
be compiled separately. Essentially, an external virtual function is
compiled to a dispatcher class, and calls to an external method are
replaced with calls to a method in the dispatcher class.

In addition to open classes, MultiJava supports multimethods.
Multimethods allow a class to define several methods with the same
name and signature, but distinct parameter specializers. Each vir­
tual function is treated as a generic function, so that multiple dis­
patch and static overloading can be used together. A call
in a multimethod (to the same generic function) selects the next
applicable method, rather than the method defined by a superclass.

MultiJava imposes some restrictions on parameter specializers
to support separate compilation. First, only class-typed parame­
ters may be specialized, and they may only be specialized by sub­
classes. Second, a concrete class must define or inherit multimeth­
ods for all argument types (including abstract types). These restric­
tions allow MultiJava to statically ensure that there is exactly one
most applicable method for every possible call to a generic func­
tion.

5.2 Maya Implementation
We implemented MultiJava with a mixture of class and Mayan defi­
nitions. The majority of code is defined in ordinary methods, rather
than in Mayan bodies. Maya provides several features that make a
MultiJava implementation practical:

• The full power of Maya’s extensible LALR(1) grammar is
used to extend Java’s concrete syntax. In particular, Multi-
Java defines two new productions:

abstract Declaration
syntax(list(Modifier) LazyTypeName

QualifiedName\.Identifier (FormalList)
Throws lazy(BraceTree, BlockStmts));

abstract Formal
syntax(list(Modifier)

LazyTypeName @ LazyTypeName
LocalDeclarator);

Maya’s lexical tie-breaking rule lets MultiJava transparently
change the translation of base Java syntax. Our MultiJava
implementation examines every ordinary method declaration
to determine whether its parameters include specializers, and
whether it overrides an external method. Maya dispatches

to these Mayans rather than built-in Mayans because of the
dispatcher’s lexical tie-breaking rule.

Maya provides standard Java type information to Mayans,
which MultiJava uses to enforce its type checking rules.

Semantic actions are implemented as local Mayans, which
allows them to share state.

The lexical scoping of imported Mayans is used to limit the
scope of translations.

Local Mayan declarations and lexically scoped imports allow
our MultiJava implementation to be structured hierarchically into
high-level constructs. For example, our implementation instanti­
ates classes named and to
keep track of MultiJava language constructs. These objects are sim­
ilar to instances of metaclasses in OpenJava; unlike metaclasses,
our classes are not a fixed part of the Maya language.

and store information that is used
to ensure that generic function definitions cannot produce dispatch
errors, and to compute the method of sends from multi­
methods. The actual translation of sends is performed by

a method-local Mayan defined in MultiMethod. This Mayan
relies on its enclosing instance, and is exported
locally within a multimethod body.

5.3 Discussion
Clifton [9] implemented MultiJava by modifying the Kopi [12] Java
compiler, . His implementation added or materially changed
20,000 of the 50,000 lines in k j c. In contrast, our MultiJava imple­
mentation is less than 2,500 noncomment, nonblank lines of code.
It should be noted that Clifton’s MultiJava implementation involved
fixing bugs and implementing standard Java features in .

One might consider implementing MultiJava in the languages
described in Section 2. It is hard to imagine a MultiJava imple­
mentation in a macro system such as JSE, because JSE macros
cannot transparently expand method declarations. JTS is a more
viable option: since JTS allows the Java grammar to be extended
and reinterpreted, it is certainly powerful enough to express Multi-
Java. However, one would have to implement Java’s standard type
checking rules along with MultiJava’s rules, since JTS relies on
j avac for its type checking.

OpenJava provides some of the features that one would need.
OpenJava allows the translation of a class to be changed when its
declaration is annotated with an clause. A sim­
ple extension to OpenJava might allow the default metaclass to be
changed transparently. OpenJava also exposes static type informa­
tion to metaprograms, and provides a limited form of lexical scop­
ing in that callee-side translation is limited to the scope of a class.
However, OpenJava supports very a limited form of syntax exten­
sion that cannot express new kinds of declarations such as external
methods. OpenJava’s model of lexically scoped macros is also a
poor match for MultiJava, since OpenJava supports class, but not
method, metaobjects.

6. RELATED WORK
Most multiple-dispatch systems allow dispatch on more than just
types. For instance, CLOS [24] dispatches on argument values us­
ing specializers, and Dylan [23] generalizes this feature with
singleton and union types. Maya’s dispatching rules bear a partic­
ular resemblance to the grand unified dispatcher (GUD) in Dubi­
ous [15]. Like GUD, Maya uses pattern matching. Additionally,

8

GUD allows dispatch on user-defined predicates whereas Maya al­
lows dispatch on the static types of expressions. Languages such
as Dubious and Cecil [7] perform static checks to ensure that all
generic function invocations unambiguously dispatch to a method.
Maya defers these checks to expansion time.

A* [20] is a family of languages for writing preprocessors: it
extends Awk to operate on syntax trees for particular source lan­
guages. A* supports a limited form of pattern matching: a case
guard may be either a boolean expression or a YACC production.
A production case matches nodes generated by the corresponding
production in A*’s parser, and introduces new syntax for accessing
the node’s children. Unlike Maya’s patterns, A* patterns cannot
contain substructure or additional attributes such as identifier val­
ues or expression types.

Maya is certainly not the only syntax manipulation system to
support pattern matching. Scheme’s syntax-rules [18] and its
descendants [14, 23] allow macros to be defined using case analy­
sis. Whereas these systems do pattern matching over concrete syn­
tax (s-expressions), Maya does pattern matching over AST nodes.

Maya borrows many ideas from high-level macro systems such
as Chez Scheme’s syntax-case [14], Dylan [23], and XL [21].
However, Maya makes a different set of tradeoffs than these sys­
tems. Specifically, Maya’s ability to statically check template syn­
tax comes at the cost of hygienic implicit parameters, and local
Mayans can share state more easily than local macros.

Chez Scheme’s syntax- case provides programmable hygien­
ic macros with lexical scoping. Unlike Chez Scheme, Maya sep­
arates the concepts of local macro definition and local macro im­
port. This separation allows Mayans to share context directly. In
syntax-case, context can only be shared indirectly: data must
be encoded as literals and exposed to inner macros through

bindings. This technique can be cumbersome in any lan­
guage, and is particularly unattractive in languages such as Java
that limit literals to numbers, strings, and arrays of literals.

McMicMac [19] is an extended macro facility for Scheme that
overcomes some of these limitations. McMacMic allows macros
to explicitly pass inherited attributes as arguments and synthetic
attributes as multiple return values. McMicMac also allows macros
to be defined on “special” grammar constructs such as procedure
application, but it is less powerful than Maya’s multiple-dispatch
model.

MS2 [26] is essentially Common Lisp’s defmacro for the C
language. Macro functions are evaluated by a C interpreter and
may expand declarations, statements, or expressions. As in Dylan,
macro keywords are recognized by the lexer, and macro parameters
may be recursively parsed according to their syntactic types.

MS2 defines template syntax for building ASTs and supports a
polymorphic unquote operator, ‘ ’. Maya shares these features.
When parsing templates, MS type checks ‘ ’ expressions to de­
termine the grammar symbols they produce. In MS , templates can
only generate declarations, statements, and expressions, but three
additional node types can be unquoted: identifiers, numeric liter­
als, and type specifiers. MS2 ’s recursive-descent parser is written
to accept macro calls and unquoted expressions at these few well-
defined places.

MacroML [17] extends ML with a type-safe macro system. In
MacroML, macro expansion cannot produce type errors. Macro
return values are statically checked for both syntactic correctness
and type safety. In contrast, Maya checks the syntactic structure
of a template at compile-time, but only type checks the resulting
tree when a template is expanded. MacroML supports three macro
forms. Function macros consist of the macro name followed by one
or more arguments, and may not establish bindings. Lambda-like

macros consist of the macro name, a variable name, and a body
in which the variable is bound. Finally, let-style macros consist of
the keyword, the macro name, a variable name and initializer,
and a body in which the variable is bound. Since MacroML makes
bindings explicit in a macro’s form, it can make hygiene decisions
statically.

<bigwig> [6] includes an unusual pattern-based macro facil­
ity in which macro expansion is guaranteed to terminate.
wig> macros define new productions in an extended LL(1) gram­
mar. Macro productions consist of a macro keyword followed by
zero or more terminal and nonterminal arguments. also
allows the programmer to define new nonterminal symbols called
metamorphs. Metamorphs are named and can be mutually recur­
sive, features not present in Maya’s parameterized grammar sym­
bols.

A macro body is a template that contains concrete
syntax and references to nonterminal arguments. al­
lows all nonterminals to appear in macro arguments and templates
(as Maya does), but Brabrand and Schwartzbach do not indicate
whether their template implementation uses extra grammar produc­
tions or direct parser support.

’s extended LL(1) parser defines two conflict resolu­
tion rules. First, longer rules are chosen over shorter rules. Second,
smaller FIRST sets are considered more specific than larger ones.
This second rule handles identifiers used as keywords elegantly, but
has farther-reaching implications. <bigwig>’s definition of well-
formed grammars would allow:

S —> a a|Tb
T —> a | b

even though <bigwig> cannot parse “ab”. Maya’s LALR(1) par­
ser can accept this language, but more importantly, Maya signals
an error when grammar conflicts cannot be resolved.

Maya’s parsing strategy offers several advantages. First, it al­
lows parsing and type checking to be interleaved. Second, it uses
standard LALR(1) parsing techniques, which are more flexible than
LL(1). Finally, conflicts are detected.

7. CONCLUSIONS
We have described Maya, a version of Java that supports user-
defined syntax extensions. These extensions are written as mul­
timethods on generic functions, which makes them expressive and
powerful. Local Mayan declarations and lexically scoped imports
allow great flexibility in how language extensions are structured.
Several implementation mechanisms make Maya’s macros easy to
write:

Pattern parsing is a novel technique for clean and general
quasiquoting in languages like Java.

Lazy type checking allows Maya to dispatch arbitrary Ma­
yans based on static type information, even though Mayans
may create variable bindings.

Lazy parsing allows lexically scoped Mayans to change the
grammar.

Maya’s static template parsing and hygienic renaming allows
large classes of macro errors to be detected: syntax errors are
detected in parsing, and references to unbound variables are
detected during hygiene analysis.

While Maya is well suited to implement language extensions
such as aspect weaving [4] and MultiJava, it is equally well suited

9

for smaller tasks such as the macro described in Sec­
tion 3. The Maya compiler and our MultiJava implementation are
available at .

Acknowledgments
We thank Eric Eide for his many comments on drafts of this paper.
We also thank Sean McDirmid and John Regehr for their feedback.
This research was supported in part by the National Science Foun­
dation under CAREER award CCR-9876117 and the Defense Ad­
vanced Research Projects Agency and the Air Force Research Lab­
oratory under agreement number F33615-00-C-1696. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
hereon.

8. REFERENCES
[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,

Techniques, and Tools. Addison-Wesley, 1986.

[2] J. Bachrach and K. Playford. The Java syntactic extender
(JSE). In Proc. of OOPSLA ’01, Oct.

[3] J. Baker. Macros that play: Migrating from Java to Maya.
Master’s thesis, University of Utah, Dec. 2001. http : / /

.

[4] J. Baker and W. C. Hsieh. Runtime aspect weaving through
metaprogramming. TR UUCS-01-013, University of Utah,
Oct. 2001. http: / /www. cs . Utah. edu/flux/

.

[5] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing domain-specific languages. In 5th
International Conference on Software Reuse, 1998.

[6] C. Brabrand and M. Schwartzbach. Growing languages with
metamorphic syntax macros.

, 2000.

[7] C. Chambers. The Cecil Language Specification and
Rationale: Version 2.0, 1995.

[8] S. Chiba. A metaobject protocol for C++. In Proc. of
OOPSLA’95, pp. 285-299, 1995.

[9] C. Clifton. The MultiJava project.
http: / /www.cs. lastate.edu/~cclifton/

.

[10] C. Clifton, G. Leavens, C. Chambers, and T. Millstein.
MultiJava: Modular open classes and symmetric multiple
dispatch for Java. In Proc. of OOPSLA ’00, pp. 130-146,
Minneapolis, MN, Oct. 2000.

[11] W. Clinger and J. Reese. Macros that work. In Proc. of the
18th Annual ACM Symposium on Principles of Programming
Languages, pp. 155-162, 1991.

[12] W. Divoky, C. Forgione, T. Graf, C. Laborde, A. Lemonnier,
and E. Wais. The Kopi project.

.

[13] R. Docournau, M. Habib, M. Huchard, and M. Mugnier.
Monotonic conflict resolution mechanisms for inheritance. In
Proc. of OOPSLA ’92, pp. 16-24, 1992.

[14] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syntactic
abstraction in Scheme. Lisp and Symbolic Computation,
5(4):pp. 295-326, 1993.

[15] M. Ernst, C. Kaplan, and C. Chambers. Predicate
dispatching: A unified theory of dispatch. In Proc. of
OOPSLA ’98, pp. 186-211, 1998.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design
Patterns: Elements of Reusable Object-Oriented Software.

[17] S. Ganz, A. Sabry, and W. Taha. Macros as multi-stage
computations: Type-safe, generative, binding macros in
MacroML. In Proc. of the ICFP ’01, Sept. 2001.

[18] R. Kelsey, W. Clinger, and J. Rees (Eds.). The revised5
report on the algorithmic language Scheme. ACM SIGPLAN
Notices, 33(9), Sept. 1998.

[19] S. Krishnamurthi. Linguistic Reuse. PhD thesis, Rice
University, 2001.

[20] D. A. Ladd and J. C. Ramming. A*: A language for
implementing language processors. IEEE Trans. on Software
Engineering, 21(11):894—901, Nov. 1995.

[21] W. Maddox. Semantically-sensitive macroprocessing.
Master’s thesis, University of California, Berkeley, 1989.

[22] Microsoft. C# language specification.
http: / /msdn.microsoft.com/library/

.

[23] A. Shalit. Dylan Reference Manual. Addison-Wesley, 1996.

[24] G. Steele Jr. Common Lisp, the Language. Digital Press,
second edition, 1990.

[25] M. Tatsubori, S. Chiba, M. Killijian, and K. Itano. OpenJava:
A class-based macro system for Java. In OOPSLA ’00
Reflection and Software Engineering Workshop, 2000.

[26] D. Weise and R. Crew. Programmable syntax macros. In
Proc. ofPLDI ’93, pp. 156-165, Albuquerque, NM, June
1993.

[27] Xerox. The AspectJ programming guide. http:
.

Addison Wesley, Massachusetts, 1994.

10

http://www.cs.lastate.edu/~cclifton/
http://msdn.microsoft.com/library/

