View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by The University of Utah: J. Willard Marriott Digital Library

Maya: Multiple—-Dispatch Syntax

Extension in Java

Jason Baker and Wilson C. Hsieh

UUCS-01-015

School of Computing
University of Utah
Salt Lake City, UT 84112 USA

December 11, 2001

Abstract

We have designed and implemented Maya, a version of Java that allows programmers to
extend and reinterpret its syntax. Maya generalizes macro systems by treating grammar
productions as generic functions, and semantic actions on productions as multimethods on
the corresponding generic functions. Programmers can write new generic functions (i.e.,
grammar productions) and new multimethods (i.e., semantic actions), through which they
can extend the grammar of the language and change the semantics of its syntactic con-
structs, respectively. Maya’s multimethods are compile—time metaprograms that transform
abstract syntax: they execute at program compile—time, because they are semantic actions
executed by the parser. Maya’s multimethods can be dispatched on the syntactic structure

of the input, as well as the static, source—level types of expressions in the input.

In this paper we describe what Maya can do and how itworks. We describe how its novel
parsing techniques work and how Maya can statically detect certain kinds of errors such as
hygiene violations. Finally, to demonstrate Maya'’s expressiveness, we describe how Maya
can be used to implement the MultiJava language, which was described by Clifton et al. at
OOPSLA 2000.

https://core.ac.uk/display/276277876?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A revised \ersion of this paper wes published in Proceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Inplementation (PLDI 2002),Berline, Germany, June 2002. Please read and cite the published PLD1 2002 paper in preference to this

report

Maya: Multiple-Dispatch Syntax Extension in Java

Jason Baker and Wilson C. Hsieh
University of Utah

ABSTRACT

We have designed and implemented Maya, aversion of Java ttetal-
lows programmers to extend and reinterpret its syrtax. Maya gen-
eralizes macro systens by treating grammar productions as gereric
functions, and semantic actions on productions as multimethods
on the corresponding gereric functions. Programmers can write
new generic functions (i.e., grammar productions) and new multi-
methods (i.e., semantic actians), through which they can extend the
grammar of the language and change the sarmantics of Its syntactic
aostncts, respectively. Maya’s multimethods are conpile—tine
metaprograns thet transform astract syntax they execute at pro-
gram conpile—tine, because they are semantic actians executed by
the parser. Maya’s multimethods can be dispatched on the syntac-
tic structure of the input, as well as the static, source—level types of
epressions in the input

In this paper we describe what Maya can do and how itworks.
We describe how its novel parsing technigues work and how Maya
can statically detect certain kinds of errars such as hygiene viola-
tas. Arally, to demonstrate Maya’s expressiveness, we describe
how Maya can be used to implement the MultiJava language, which
was described by Clifton etal. atOOPSLA 2000.

1. INTRODUCTION

Syrtax extension can be used t embed a domain—specific language
within an existing language. For exanple, embedded SQL extends
its host language with databese query syrtax. Syntax extension
can also be used to add language features when they are found to
be necessary. For exanple, design patterms [16] can be viewed as
work—arounds for specialized features missing from general purpose
languages. the visitor pattem inplements nultiple dispatch in a
single—dispatch language. Some language desigrers have chosen o
specialize their languages to support certain patterrs:. the C# [22]

language includes explicit support for the state/dosener pattermand

celegation However, unless we are willing to wait for a new lan-
guage each time a new design pattem is identified, such an ap-
proach isusatisfactory. Instead, a language should admit program-
mer—defined syrntax extensions.

Macro systerrs [11, 23, 26] supporta limited form of syrtax ex-
tersion. In nost systenrs, amacro call aosists of the macro name
folloned by zero or more argunents. Such systens do not allowv
mecros todefire infix gperators. In addition, mecros cannot change
themeaning of the base language’s syntax. Even in Scheme, which
hes an extrenely powerful macro system a macro cannot recefine
the procedure gpplication syritax.

Other kinds of systerrs allowmore sophisticated foms of syntax
rewriting then sinple mecro systens. These systens range from
agpect—orientad languages [27] to conpile—tine metachject proto-
ools (MOPs) [8, 25]. Conrpile—tine MOPs allow a nmetaclass

Extersion Library
Extension Source
mayec
Conpiled Extarsians
Application Souree
neyac
Conpilled Axplication

Figure 1. Compiling language extensions and extended pro-
grams with the Maya conpiler, mayac

rewrite syntax in the base language. Honever, these systens typi-
cally have limited fadilities for defining new syntax.

This paper describes an extensible version of Java called Maya,
which sygports both the extension of its syntax and the extension
of its base semantics. Figure 1 shows how Maya is used. Exten-
sions, which are called Mayans, are written as code thet generates
aostract syntax tress (ASTs). After Mayans have been conpiled,
they can be loaded into the Maya conpiler and used while compil-
ing goplications. Mayans are dispatched from the parser at gpplica-
tion campile—ting; they can reinterpret or extend Maya syntax by
expanding itto other Maya syntax.

Maya hes the follonming combination of features:

Mayans gperate on astract syrtax. Maya can ensure thet
Mayans produce valid ASTs, because AST nodes are well
typed Since Mayans do not gperate on flat token streans,
they are not subject to precedence errars that occur in typi-
cal macro systers. For exanple, the Java Syntactic Extender
(JSE) [2] allons macros 1o be defined with a case staterent
that matches concrete syntax against patterms. Because JSE
MBCIos gperate on concrete syntax, they can gererate many
of the same parse and precedence errars thaet C macros gen-
erate

Maya treats grammar productions as gereric functians, and
semantic actions (Mayans) as nultimethods on those gereric
functions. Mayans can be dispatched on a rich set of pa-
raneter specializers: AST node types, the static types of ex-
pressians, the conarete values of tokens, and the syntactic
structure of AST nodes. Multiple dispatch alloas users
extend the semantics of the language by overriding Maya’s
base sementic actiars.

« Maya allons progranmers to gererate ASTs with tenplates,
afaality like quesiquote inLisp [24]. Maya tenplates canbe
used 1o build arbitrary pieces of estract syntax. Most other
systerrs provide less gereral tenplate mechanisms (

wig> [6] is an exception). For exanple, JTS [5] isa frame-
work for building Java preprocessors that sugports tenplates.
JTS only defines tenplate syrtax corresponding 1o a fixed
subset of the JTS grammar’s nonterminals.

Like Java classes, Mayans are lexically scoped. Local Ma-
yan declarations can capture the state of enclosing instanoes.
In addition, Mayan definitias are sgparate from inports.
Imported Mayans are only ggplicable within the scope of
their inport. These features allow great fledhbility in the way
that syntax transformrers share state and are exposed 1o tre
base code. In comparison, carpile—tine metachject proto-
ools such as OpenJava [25] typically provide fixed relation-
ships between transfomers, state, and the lexical structure of
base code.

To sygport these features, Maya makes use of three new imple-
mentation tednigues:

1 To support dispatch on static types, Maya interleaves lazy
type checking with lazy parsing. That is, types and abstract
syrtax tress are conputed on demand. Lazy type check-
ing allons a Mayan to dispatch on the static types of some
argurents, and create variable bindings thet are visible ©
other argurents. The latter argurents must have their types
checked lazily, after the bindings are aeated Lazy parsing
allons Mayans to be inported at any point in a program
Syntax that follons an inported Mayan nmust be parsed lazily,
after the Mayan defines any new productions. The lazy eval-
uation of syntax tress is exposed eplicitly to the Maya pro-
grammer, o that the effects of laziness can be controlled.

2. Maya uses a novel parsing technique thet we call pattem
parsing to statically check tre bodies of tenplates for syn-
tactic corectness. The pattem parsing technique allons a
programmer 1o use quesiquote to gererate any valid AST.

3. Maya suygports hygiene and referential transparency in tem-
plates through a conpile—tire renaming step. This renaming
is possible because binding costructs must be explicitly de-
clared as such in Maya’s grammar. Maya’s inplementation
of hygiene detects most references 1o free variables when
tenplates are conpiled. Maya’s inplerentation of hygiene
does not support Dylan—like inplicit paraneters.

The rest of this paper is organized as follons. Section 2 reviens
some of the systens that we compare Maya against. Section 3 in-
troduces the besics of the Maya language with an extended exam+-
ple. Section 4 describes the highHewel design and inplementation
of the Maya campiler, including how Mayans are conpiled and
integrated into the Maya parser, how lazy parsing and type check-
ing work, how tenplates are parsed, and how hygiene and dispatch
work. Section 5 sketches how Maya can be used to implement an
interesting language extension: narely, open classes and multi-
methods as defined in MultiJava [10]. Section 6 describes related
work, and Section 7 sunmarizes our conclusions.

2. BACKGROUND

In this sectionwe describe three systens that are closely related to
Maya, and towhichwe compare Maya in the rest of the paper: JSE,
JTS, and OpenJava.

JSE is a port of Functional Objects’ procedural Dylan mecros to
Java. JSE mecros are defined using Dylan patterms, but a macro’s

expansion is computed by JSE code rather then by pattem substitu-
ton JSE macros nmust follow one of two syntactic forms:. method-
like and statement-like mecros. JSE recognizes mecro keywords
through a class naming converttion.

JSE provides a quasiquote mechanism to build macro retum val-
ues. However, because macros gperate on unparsed trees of tokerns
and matching celimiters, JSE cannot statically check that quasi-
quotes produce syntactically correct autput. In addition, mecro ex-
pansion does not honor precedence.

JTS is a framework for writing Java preprocessors that operate
on ASTs. JTS and Maya approach the problem of extersible lan-
guages from opposite directios, and make different tradeoffs be-
tween fledbility and exressiveness. Whereas Maya can be used
to inplement macros, itis inpractical 1o define a sinple mecro by
building a JTS preprooessor.

JTS language extensions can define new productions, AST node
types, and grammar synmbols. JTS extensions are also free tonutate
syntax tress, since typechecking is performed by a standard Java
corpiler, after extensions have run t conpletion. JTS provides
great fledbility at the syntactic level but ignores static semantics.

In antrast, OpenJava alloas netaclasses to be associated with
classes in the base program. A class declares its metaclass with an

clause, which appears after ina
class declaration Metaclasses inherit introspection methods simi-
lar tothe Javareflecion API, and control trarslation to Java through
the visitor pattern: OpenJava provides for two kinds of mecro ex-
parsion: caller-side trarslation alloas a netaclass to expand ex-
pressians involving its instance types through visit methods on var-
ious expression and declaration forms, and callee-side trarslation
allons anetaclass tomodify instance class declaratios. OpenJava
also permits limited externsions to the syrntax of
and type names.

OpenJava aontrols syntax trarslation based on the static types of
epressions, but inposes some linitations. Metaclasses must be
eplicitly associated with beseeel classes through tre

clause. As a reault, primitive and array types cannot be
used to dispatch syntax expanders. Additionally, caller—sice ex-
panders overrice visit methods defined on a subset of Java syntax

OpenJava lacks some features thet make copile—tine metapro-
grans rdast Its mecros can gererate illegal pieces of syntax, be-
cause they allow metaprograns to convert arbitrary strings o syn-
tax In addition, OpenJava nmetaclasses inspect nodes through ac-
cessor methods rather then pattem nmettching. Firally, OpenJava
does not provide technology — hygiene and referential transpar-
ency — thatmakes mecros work [11].

3. MAYA OVERVIEW

Maya can be used to inplement sinple mecros as well as language
extensions such as MultiJava and agpects [4]. Maya provides a
mecro library that includes features such as assertians, printf—style
string forretting, comprehension syrtax for building arrays and
oollections, and syrtax for walking them This section
describes the features thet a macro should have, and tre
way that these features can be inplemented inMaya. In the exam-
ples that follon, we use bold text for keywords, and italic text for
binding instance names.

Given a Hashtable varidble h, the follomMng use of for-

h.keys().foreach(String st) {
System.err.printin(st + " = " + h.get(st));

}

should expand to:

for (Enumeration enumVar = h.keysO;
enumVar.hasMoreElements();) {
String st;
st = (String) enumVar.nextElement();
System.err.printin(st + " = " + h.get(st));

}

Many mecro systens sugport exactly this sort of macro. Although
JSE cannot express our chosen concrete syrtax, itallons a sinilar
macro 1 be witten OpenC++ [8] includes specific support for
member staterrents such as .

Macro overloading is useful with statenents such as .
For exanple, we might want a version of thatworks on
arays. the code we have written in Maya uses foreach towalk
arrays as often as Enumerations and Collections. Over-
loading may also be used for gotimization. For instance, the fol-
loning code:
maya.util.Vector V;

v.elements{).foreach(String st) {
System.err.printin{st);

}

could be expanded tomore efficient code with a specialized version
of :
maya.util.Vector v;

Vector Vvl =v;
int len =vl.sizeO;

Object [] arr = vl.getElementData();
for (int 1=0; i <len; i++) {
String st = (String) arr[i];

System.err.println(st);
}
}

This code can avoid both aoject allocation and method calls be-
cause maya .util .Vector exquoses its underlying dgject array
by overriding .

To support the optimization of foreach onavector'selements,
Maya allons semantic actios (called Mayans) to be dispatched
on both the structure and static type of an argurent. In partic
ular, the left-had side of the specialized must be a
call to and the receiver of the call must have type
maya .uti | .Vector. Although macro systens such as Scheme
syntax—rules [18] and JSE sugport syntactic patterm match-
ing, and although carpile—tinre MOPs such as OpenJava dispatch
on static types, Maya is the first conpile—tine metaprogranming
system to unify these features. Maya’s nmultiple—dispatch model
provides berefits over the case staterents of syntax—case [14]
and JSE in thet the behavior of a syntactic form can be extended
without modifying the original definition

This exanple shows the central dhallenge in providing flexible

mecro dispatching. The statement’'s expansion depends
on the static type of , yet the loop body cannot
be type checked until thre staterrent is expanded and the

variable st isdeclared. Some code cannot even be parsed until sur-
rounding Mayans have been expanded. Maya addresses this chal-
lenge through lazy parsing and lazy type checking.

3.1 Mayan Declarations

In Maya, a syrtax extension is defined in two parts. Arst, a new
LALR(1) production may need 1o be added, if the new syntax is
not accepted by the existing grammar. Second, Mayans define se-
mantic actions for aproduction, and are dispatched based on values
on the production’s right—hand side.

Statement syntax

EForEachiExpression: Enumeration enumBxp
\. foreach(Formal var)
lazy(BraceTree, BlockStmts) body)

{ final StrictTypeName castType
= StrictTypeName.make(var.getType0);

return new Statement {
for (Enumeration enumVar = $enumExp;

BREORBRE Bwor ool hw po—

Figure 2: The Mayan that implements foreach on Enumer-
ations

Before Mayans can be defined toimplement foreach, we must
extend the grammar toaccept the syrtax. The follomng
production would suffice (the concrete Maya syntax for describing
this production is given in the next paragraph):

Sateret — Method\ene (Fomal) laayblock

We choose this syrntax t avoid making areserved word
in this cotext. The MethodNane nonterminal matches everything
left of * (C in a method invocation. In particular, MethodNane
matches the ‘BExpression . ldentifier’ sequence acospted by for-
. In this exanple, lazy-block matches a Java block tret is not

parsed or type checked until its syntax tree is needed.

The production above is declared inMaya by the following code:
import maya.tree.*;
import maya.grammar;
import java.util.*;

abstract Statement
syntax{MethodName(Formal)
lazy(BraceTree, BlockStmts));

The production is introduced through the and
keywords. The syntax keyword indicates that a production or a
Mayan is being defined. The keyword indicates theta
production is being defined. is the retum type of the
production (i.e., the left-had side); it is also the retum type of any
corresponding Mayans (semantic actios). The argurents o tte
production are the right—hand side of the production

Most symbols in the Maya grammar are AST node types such
as . Productions and Mayans may only be defined
on node—type synbols. Maya also sypports saveral kinds of pa-
rameterized grammar symbols thet are used to defire repetition
and control lazy parsing. One such syimbol,

, aooepts amatching pair of braces and lazily parses

their contents as ablock

After we define the production thet acoepts , We can
declare Mayans 1o trarslate various kinds of Statenents
1o standard Maya syntax. Note thet if no Mayans are declared on a
new production (thet is, No semantic actions are presert on the pro-
duction), an enror is signaled on input that mattches the production.

A Mayan declaration differs from a production declaration in
three ways: Mayan paraneters have specializers and names; Ma—

yan declarations have bodies; and Mayans do not begin with the

keyword. Figure 2 shows the Mayan thet
inplements for (not the optimized
versian).

A Mayan parareter list serves two purposes. Arst, itdetermines
which oocurrences of syrtax a Mayan can be applied to. Second, it
binds formal parareters to actual argurents and their substructure.
Mayan parareter lists and case patterrs in functional languages
sene sinilar purposes. In fact, Maya’s pattern metching fadlity
is made awailable through a staterent as well as
through Mayan dispatch.

The EForEach Mayan is defined on the LALR(1) production
described earlier, which takes the left—had side of amethod invoca-
tion folloned by a formal paraneter and a block. Maya determines
that this production corresponds t© when
is parsed. Paraneter specializers are used to narrow Mayan ap-
plicability. only gpplies o nodes that
contain an eqlicit receiver eqoression. The receiver expression is
bound © and must have the static type .
The firal identifier in the syrtax is also specialized
0 a particular token value: narely, . Maya’s ability
o dispatch on the values of identifiers such as allons
macros 1o be defined without introducing reserved words. EFor—

binds the loop variable and loop body t© and
respectively.

3.2 Mayan Definitions

The body of aMayan is ordinary Maya code. For example,

’s body aorsists of a local variable declaration and a retum
staterent. The retum value is computed using a tenplate expres-
sion that builds ASTs. Tenplate can be used to build the ASTs
from concrete syntax. For exanple, a terplate cottaining ‘1 + 2

” builds the corresponding tree A tenplate may also cortain
expressions unquoted with ‘$’: the values of these eqressias are
substituted into the resuling AST when the tenplate is evaluaied
Templates are statically parsed to ensure syntactic cormrectness.

Maya’s terplates autonaticly provide hygiene and referential
transparency for ledcally scoped names; progranmers are given
mechanisns to explicitly break hygiene and to explicitly generate
fresh names ifthey so desire. A hygienic macro system guararntees
that variables declared in a macro body cannot capture references
in a mecro argurent, while a referentially transparent macro sys-
tem guarantees thet variables local o a macro’s call site cannot
capture references in thremacro’sbody. In the case of EForEach,
hygiene ensures that the loop variable will not interfere with ref-
erences to other variables called in the loop body, and
referential transparency ensures that the loop variable will have the
e regardless of the calling con-
Bt

Like OpenJava nmetaclasses, Mayans have access to a variant of
the Java reflection API. References 1O ayjects are avail-
able through methods such as
and . dbjects support
java.lang. Class’s introspection APl and a limited form of
interocession that allons member declaratios to be added toa dass
body.

Mayans can use the reflection API to insulate therselves from
some cetails of Maya’s AST represartation. For exanple, the ab-
stract syntax tress for and
have different shapes, but both declare variables of the same type.
EForEach uses the reflection API in two places. Arst, line 7 of
Figure 2 builds a node from the dbject that
represents the type of a variable. Second, lire 13 gererates a ref-

erence o a local variable directly, rather thaen generating an occur-
rence of the variable’'s name. Reference .makeExpr also al-
lowns fields to be referenced when they are shadowed by local vari-
ables. Line 12 trarslates between two distinct but related syntactic
forms.

3.3 Using Mayans

Maya decouples Mayan definition fromuse: aMayan isnot inplic-
itly loaded into the conpiler at the point of declaration, butnmust be
loaded explicitly. This feature allons Mayans and their uses to be
compiled sgparately, and alloas local Mayans to use any value in
thelr enviroments.

A Mayan declaration, such as in Figure 2, is com-
piled to a class that inplements . An instance of
the class is allocated when a Mayan is inported. A programer
usss the directive 1 inport instances Into a
lexical soope; the argurent to use can be any class that inple-
ments . For exanple, canbeused ina
method body as follons:
void showEm(Enumeration €) {

use EForEach;
e.foreach(Object o) { System.out.printin(o); }

}

Inports of Mayans are lexically sooped. In this exanple, the scope
of the trarslation defined by axsists only of the me-
thod body of .

The directive is also valid in class bodies and at the tp
leel. Additionally, Maya provides a command lire gption
thet alloas a progranmer to compile a file using different Mayan
inplementations.

Local Mayan instances are closed over their lexical ervironment
in the same way as local class instances. Because a local Mayan
definition can use any value in its environment, it cannot be im-
ported until these values exist. As a reault, local Mayans can never
be imported with ; honever, local Mayans can be instantiated
and run by other metaprograns. The advantage of local Mayans is
that one Mayan can expose state 1o other Mayans without resort-
ing to terplates that define Mayans. As a result, nontrivial meta-
prograns can be structured as a group of classes and a few sall
Mayans, rather then as a series of mecro definitions.

Since Mayans are typically small units of code, they can be ag-
gregated into larger metaprogranms. An instance of such a dlass
is allocated, and its method is called 1o update the environ-
ment. For exanple, the class defines a
single method, which irstantiates and runs each built—in
each Mayan intum As aresult, aprogrammer needonlyuse the

class to inport all of the huilt—in
Mayans.

4. DESIGN AND IMPLEMENTATION

Trarslating Maya source code to a fully expanded syntax tree in-
wolves dispatching and running Mayans. Dispatch may require type
checking, while executing Mayans may change the types of sub-
tress. This mutual recursion precludes parsing and type checking
inone pess; Mayan dispatch requires that they be interleaved. Maya
satisfies these castraints by parsing and type checking lazily, ie,
computing syntax tress and their types on demand.

Figure 3 shows the major components of our Maya carpiler,
mayac. Thefile reader reads class declarations from source files
Our conpiler then processes each cdlass declaration in two addi-
tioral stages. The class shaper parses the diass body and corputes
member types, the class conpiler parses member initializers, in-

file renes

i¢ file names ‘ ¢

file file class class class class class

class declarations ‘ ‘

names reader declarations| shaper declarations| compiler files

file names

stream token trees | 1y pser pattern

lexer parser

lists of nodes single nodes

Mayan
dispatcher

Figure 3: Overview of Maya’s intermal architecture

cluding method and constructor bodies. The parser is invoked in
all three steps to increnental ly refire a declaratio’'sAST. To com-
pute the shape of aclass |, all yeer—types of and the types of
all members of nust be found. Similarly, o compile |, te
shapes of all typss referred toby ’s code must be known. Maya
provides class—rooessing hooks that execute user—defined code as
a class declaration leaves the shgper.

The stream lexer engbles lazy parsing by gererating a tree of to-
kens rather then a flat stream oecifically, the stream lexer aeates
a subtree for each pair of matching delimiters: parentheses, braoes,
and bradets. These sUbtrees are called lexers since they can pro-
vide input to the parser. The stream lexer resenbles a Lisp reader
in that ithuilds tress from a sinple aontext—free language.

Unless otherwise noted, all arcs coming into theparser are lex-
ers and all arcs going aut are ASTs. The parser builds ASTs with
the help of thre Mayan dispatcher: on each reduction, the dispatcher
executes the gppropriate Mayan tobuild an AST node. Mayan dis-
patch may involve recursive parsing, as shown in Figure 3.

The pattern parser is used when corpiling Mayans and tem-
plates. It takes a stream of both terminal and nonterminal input
symbols, and retunrs a partial parse tree

The remainder of this section describes saveral Maya features
in depth. Section 4.1 discusses Maya'’s lazy grammar and the way
new productions can be written to extend it Section 4.2 discusses
pettem mattching in Mayan paraneter lists Maya’s AST tenplate
fedility, and the parsing tedniques used to inplement these lan-
guage features. Section 4.3 describes Maya'’'s static approach 1o
hygiene and referential trangparency. Section 4.4 discusses Maya's
dispatching rules in cetail. Anally, Section 4.5 compares Maya’s
features 1o those of related Java extersios.

4.1 Parsing
Maya productions are written in a high-evel metagrammar thatex-
plictly supports laziness. Users can define general—{purpose pro-
ductions on any kuilan nonterminal of the Maya grammar. User—
defined productions are indistinguisheble fromthose built into Maya.
In addition, parameterized grammar symbols may inplicitly define
productions on new nontermirals.

Production argurents (right—hand sides) corsist of token literals
node types, matching—delimiter subtrees, or paraneterized symools
such as . The formrer two

NN (Fandl) ky(BasTie BaidTe

Figure 4: The structure of EForEach’s formal parameters

symbol types are used directly by the LALR(1) grammar, while tre
latter two require special handling. When a subtree or paraneter-
ized symbol is encountered, Maya ensures that the corresponding
production is defined in the LALR(1) grammar, and uses the left—
hand side in the outer production.

For instance, the production used by
subtree and a parareterized symbol:
abstract Statement
syntax(MethodName(Formal)

lazy(BraceTree, BloekStmts));

includes both a

Itis trarslated 1o the set of productions below:

Saterent — Method\ene Go Gi
G — Paeilee
Gi — BraxTree

Semantic actias (not shown) on and produce AST nodes
fromunstructured subtress. The semantic action for Go reaursively
parses the 10 a Formal, which is mentioned explic-
itly in the production. The action for delays the parsing of
the , as specified by the paraneterized synbol. If tte
productions and actions already exist in the grammar, they are not
added again. For exanple, the production and action for are
used to parse both foreach and catoch clauses; those for Gi are
used throughout the Maya granmar.

A production is valid if it does not introduce coflicts into the
granmar. The Maya parser generator attenpts to resohve axfflicts
with operator precedence relatias. Unlike YACC, Maya does not
resolve shift/reduce corflicts in favor of shifts or reduce/reduce
anflicts based on the lexical order of productions. The parser gen-
erator rejects grammars that contain unresolved LALR (1) aonflicts.

4.2 Pattern Parsing

Maya uses patterms in two ways: first; o establish bindings in Ma-
yan paraneter listsand clauses; and second, to conpile tem-
plates that dynamically construct AST nodes. Although these uses
are very different, they involve the same data stucture a partial
parse tree buikt from a sequence of both terminal and nonterminal
input synbols. The pattem parser differs from a standard parser in
that its input may include nontermirals as well as tokers. st as
the pattem parser acogpts nonterminal input sybols, italso gener-
ates parse tress thet may cortain norterminal leaves.

Recall thet in Figure 2 is defined on the production
given in Section 3.1. The pattem parser must infer the structure
of EForEach’sargurent list, which is shown in Figure 4. Since

is a semantic action, it takes three actual argurents:
a , a parenthesized , and a lazily parsed
block. However, the first argument does not exlicitly appear in
EForEach’s formal parareter list The pattem parser infers tre
structure of the firstargurent by parsing the synbols in the argu-
ment list

The pattem parser is also used to parse tenrplate bodies. Maya
guarantees thet a tenplate is syntactically correct by parsing its
body when the tenplate is conpiled. The pattem parser gererates

iUt de. A

=56 actios fars6
A stack 3
b a shift57
C b suft58
D d .
F f c ift5o
S EXA A goto 674

@) A sinple grammar

(b) A goto can be folloned if present

iUt deA inut £A input fA
state =674 state =67 state =33
stedke stack actions on 67 stack
a reduce F
b reduce F
C reduce F

(c) Otherwise, FIRST(A) serves as lookahead

Figure 5: Pattem parsing example

aparse tree froma sequence of tokens thetmay be interleaved with
eqressions unquoted with ‘$’. An unguote expression’s grammar
symbol is determined from its static type, or froman explicit coer-
cion goerator.

The tenrplate parse tree is conpiled into code that perfoms the
same sequence of shifts and reductions the parser would have per-
formed on the tenplate body. Tenplates honor laziness. sub—tem+
plates that correspond to lazy syrtax are compiled into local thunk
classes that are expanded when the corresponding syntax would be
parsed.

While some systens have developed ad hoc approaches for tem-
plate parsing [5, 8 25, 26], Maya gpts for amore gereral solution
Our patterm—parsing algorithmallons Mayans 1o be defined on any
nonterminal node type, and tenplates can generate both nortermi-
rnal node types and paraneterized symbols. A proof of this algo-
rithnTs correctress is available elsenhere [3].

The Parsing Algorithm. The description of the patiem pars-
ing algorithtm uses the function names and lexical converttions of
Aho etal. [1, 8.4]: uper—case letiers are norterminal symbols,
loner—case Greek letters are strings of terminals and nontermirals,
loner case Roman letters are strings of termirals, and FIRST maps
a strirg of symbols 1o the set of all termirals that appear first in
some derivation

The pattem parser uses parse tables in much the same way as a
normal LALR(1) parser. Terminal input synmbols are shifted onto
the stadk or trigger reductions nomelly. However, nonterminal
synmbols require some special handling. Figure 5 provides concrete
exanples of how nonterminals can be parsed. When the pattem
parser encounters a syntactically valid input , there must be a
production in the grammar, and the parser nust be in
some state such that one of the folloning holds:

1 contains an item : actians on FIRST are
all shifts to the same state, and this state contains a goto for
thet leads to some state . In this case, is shifted
onto the stadk, and the goto is folloned. That is the curent
parsing state will “accept” an X because there isan entry in
the goto t2ble.
Figure 5(b) illustrates this case, given the grammar in Fig-
ure5(@). In this example, the metavariable X corresponds t©
A;Y corresponds ©S; @ corresponds oD e and and 7
correspod o .

2 ocotains an item ,where isanomterminal such
treta ~C,Z: treactios on First(X 1) all reduce the same
rule . In this casg, the stadk is reduced leading O a

state inwhich one of the above conditions holds. That is,
the current parsing statewill “acoept” an X because we can
performa reduction on the input before

5(c) illstrates this case, again given the granmar in Fig-
ure 5@). In this exanple, coresponds o, core-
spodst ; ad ocomrespodt® ;ad , ,ad
correspod to .

If neither case holds, the inputmust notbe valid Note thetX could
be invalid in the second case, and that the pattem parser may not
detect the error util ithes performed some reductions.

4.3 Hygiene

Maya supports corpile—tinme determination of varigble hygiene in
tenplates, unlike most macro systens. Maya’s static approach to
hygiene detects references to unbound variables when a tenplate
is conpiled, rather then when it is executed. Macro systens make
hygiene and referential transparency decisions when the syrtectic
role of each idtifier is known. In most systens, this information
is only available after all mecros have been expanded. The key to
Maya’s hygiere rules is that a Mayan writer must make eqlicit
which identifiers are bound and which are not productions thet
establish lexically scoped bindings must use special nomterminals
suchas .

Maya examines trees produced by the pattern parser to decide
where hygienic and referentially transparent renaming should oc-
aur. Referential transparency in Mayan parameter lists ensures thet
a class name matches nodes that denote the same fully qualified
name, and thet class names in tenplates refer o the goporopriate
classes.

Maya’s inplementation of hygiene and referential transparency
relies on direct gereration of bytecode. Maya inplements hygiene
by assigning fresh names to local variable declarations generated
by Mayans. The names thet Maya gererates cotain ‘$’ and are
guaranteed 1o be unique within a conpilation unit. In a saure—to-
source trarslator, hygiene would have 1o be inplemented through a
slightly more corplicated mechanism. Maya inplements referen-
tial transparency by generating nodes that refer to classes directly.

Implementing referential transparency in a translation © Java
source code would be diffiault, since class names can be completely
inecoessible in certain packages. For instance,

canot be referenced inside the package below, due to
Java’s name rules:
package p;
class java { }
class System { }

Statement

MethodName (Formal) lazy(BraceTree, BlockSmits)

CallExpr . [Identifier
70{Name list(Expression,”,")

Figure 6: The structure of VForEach’s formal parameters

Maya provides mechanisns both to eqlicitly generate unique

names and t eplicity break hygiene.
gererates a fresh . Mayans can violate hy-

giene and referential transparency by unguoting -
valued eqoressions intenplates, rather then embedding Iiteral nanes.
Referential transparency can also be bypassed through the intro-
spection API. Maya'’s hygiene rules do not support inplicit param-
eters names are either fully hygienic or unhygienic, and cannot be
shared only between a Mayan and its cal site

4.4 Dispatch

Mayan dispatching is at the core of Maya. Each tine a production
is reduced, the parser dispatdhes to the gopropriate Mayan. This
Mayan is selected by first finding all Mayans gpplicable to the pro-
duction’srigt-had sice, then choosing the most gpplicable Mayan
fromthis set Whi le multiple dispatch is presert inmany languages
such as Cecil [7], CLOS [24], and Dylan [23], the exact formula-
tion of Maya’srules is fairly unique.

Mayan dispatching is based on the runtime types of AST nodes,
but also casiders secondary parareter attributes. As described
earier; the pattem parser builds Mayan parameter tress from un-
structured lists of tokens and named paraeters. A Mayan param-
eter aosists of a node type and an gptional secondary attribute
This attribute may contain subparareters, a token value, a static
expression type, or a cless literal type. For exanple, as shown in
Figure 4, specializes on its structure,

on its static type, and on the token
value .

Secondary attrilbutes are used to compare fonmal parareters with
icertical node types. Static expression types are compared using
subtype relationships, sutstructure is compared recursively; dass
types and token values must match exactly. For example, the fol-
lowing optimized definition
Statement syntax
VForEach(Expression:maya.util.Vector v

\.elements () \. foreach (Formal var
lazy(BraceTree, BlockStmts) bodyg
{/*mmm*/}

owerrides EForEach for certain input values. The structure of
’sformal parareters is shown in Figure 6.

ismore specific then EForEach because the foreach “receiver”

isspecializedon the node type, while does

not specialize the receiver node type.

Mayan dispatching is symretric. If two Mayans are more spe-
cific then each other on differentargurents, neither ismore specific
owerall, and an enror is sigaled. This approach avoids the supris-
ing behavior described by Docournau etal. [13], and is cosistent
with Java’s static overloading semantics.

Although dispatch is symmetric, Maya supports an unusual form

of lexicographic tiebresking: subsequently inported Mayans over-
ride earlier Mayans. Lexical tie-bregking allons several Mayans to
be imported with identical argurent lists Where several Mayans
are equal according to the argurent lists, the last Mayan imported
with is considered most gpplicable. For exanple, many of
the Mayans that we have written do not specialize their argunents.
Such Mayans are more gpplicable then the built—in Mayans only
because the built-inMayans are inported first

Maya provides an goerator that sugports the layering of mecros.
The gperator calls the next-nost—gplicable Ma-
yan, and is analogous to clls in methods. This gperator
may only be used within Mayan bodies, whereas other Maya fea-
tures such as tenplates may be used inany Maya code.

4.5 Discussion

Maya’s expressiveness can be compared 1o that of the other lan-
guages discussed In Section 2. Neither JSE, JTS, nor OpenJava
support automatic hygiene and referential transparency. JSE and
JTS do not provide static type information, while JSE and Open—
Java provide limited fadlities for defining new syntax.

JTS allons extersions to define arbitrary new productions, while
Maya only allons general —purpose productions 1o be defined on a
fixed set of left-ad sides. JTS extensions are also free to extend
the abstract syntax tree format. Since Maya must be able assign
standard Java meaning to every syntax treg, only a few specific
node types may be subclassed.1

Arally, JTS extensions may walk syntax trees in any order and
perform mutation. In contrast, Mayans are executed by the par-
==, and can only mutate class declaration by adding and removing
members when certain dynamic conditions are met. This restric
tion ersures that class updates cannot change the results of previous
type checking and Mayan dispatch.

OpenJava and Maya both allow some form of syntax extension,
dispatch based on static infonmation, and the association of syn-
tax trarsformration code with the lexical structure of the program
Maya provides more fledhbility in these aress.

OpenJava allons three extensions 1o declaration syntax new
nmodifiers may be defined, clauses may be added to the class dec-
laration syrtax, and suffixes may be added to the type in avariable
ceclaration. In all cases, a keyword sigals the presence of ex-
tended syrtax, and thenmetaclass must provide a parsing routire. In
antrast, Maya alloas new productions 1o be defined on any gram-
mar symbol, and does not require thaetkeywords be used.

OpenJava dispatches caller-side visit methods to transform an
input program based on its static types. However, usit methods
are only defined for a few expression and declaration foms. In
antrast, Mayans may be defined on all productions in the base
grammar, aswell as user—defined productions.

OpenJava assodiates syntax transformation methods with dass
ceclaratias through the clause. A netaclass is
free to examine and modify the bodies of its instance classes. Al-
though Maya does not provide a similar mechanism, local Mayan
definitions and inports allow user—defined metaobjects to be cre-
ated essily. These metachjects need not be associated with classes.

5. MULTUNAVA

To evaluate Maya, we implemented MultiJava, an extension toJava
that Clifton et al. have specified [10]. The firstauthor’s thesis [3]
cottains several sraller exanples of how Maya can be used; italso
discusses the MultiJava inplementation in greater detail.

This restriction is not currently enforced in the implementation.

MultiJava adds gereric functions to Java through two new con-
structs open classes and nultinethods. Open classes allov meth-
ods to be declared at the top level, and multimethods allow dispatch
based on the runtime types of all method argurents. MultiJava’s
formulation of open classes and nultimethods supports separate
carpilation

5.1 MultiJava Overview

Open classss in MultiJava offer an altermative to the Visitor design
pattem. Rather then maintaining a visit method on each class ina
hierarchy and a sgparate hierardy of visitor classes, one can sinply
augment the visited class hierarchy with extermally defined meth-
ods. Bxtermal methods can be added without reconpiling the vis-
ited class hierardy, but a class can override extermal methods thet
itinherits

Within an extermal method, is bound to the receiver in-
stance. However, extermal methods in MultiJava may not access
private fields of , nor can they access nonpublic fields of
this ifthe receiver dass is defined in another package.

MultiJava defines a conpilation strategy and type checking rules
that together allow extermal methods and their receiver classes t©
be conpiled sgparately. Essentially, an exterral virtual function is
conmpiled to a dispatcher class, and clls to an exterral method are
replaced with calls toamethod in the dispatcher class.

In addition to open classes, MultiJava sygports nultimethods.
Multimethods allow a class to defire several methods with the same
name and signature, but distinct paraneter specializers. Each vir-
tual function is treated as a gereric function, so thet multiple dis-
patch and static overloading can be used together. A all
in a nultimethod (o the same generic function) selects the next
applicable method, rather then the method defined by a superclass.

MultiJava inposes some restrictias on parareter specializers
1o support separate conpilation. Hrst, only class—typed parame-
ters may be specialized, and they may only be specialized by sub-
classes. Second, a concrete class must defire or inherit nultimeth-
ods for all argument types (including aostract types). These restric-
tas allov MultiJava 1o statically ensure thet there is exactly one
most applicable method for every possible call to a gereric func-
tion

5.2 Maya Implementation

We implemented MultiJava with amixture of class and Mayan defi-
nitias. The ngjority of code is defined in ordinary methods, rather
than in Mayan bodies. Maya provides several features thet make a
MultiJava inplementation practical:

« The full power of Maya’s extersible LALR(1) grammar is
used to extend Java’s concrete syntax. In particular, Multi—
Java defines two new productions:

abstract Declaration

syntax(list(Modifier) LazyTypeName
QualifiedName\. Identifier (FormalList)
Throws lazy(BraceTree, BlockStmts));

abstract Formal

syntax(list(Modifier)
LazyTypeName @ LazyTypeName
LocalDeclarator);

Maya’s lexical tie-bregking rule lets MultiJava transparently
change the traslation of base Java syrtax. Our MultiJava
implementation examines every ordinary method declaration
todetermine whether itsparaneters include soecializers, and
whether it overrides an exterral method. Maya dispatches

1o these Mayans rather then built—in Mayans because of the
dispatcher’s lexical tie-bregking rule.

Maya provides standard Java type informration to Mayans,
which MultiJava uses to erfforce its type checking rules.

Semantic actions are inplemented as local Mayans, which
allons them to share state

The lexical scoping of inported Mayans is used 1o linit the
soope of trarslatians.

Local Mayan declaratios and lexically scoped inports allow
our MultiJava inplementation to be structured hierarchically into
highHevel costructs. For exanple, our inplementation instanti-
ates classes named and o)
keep tradkof MultiJava language costructs. These dojects are sim-
ilar 0 instances of netaclasses in Opendava; unlike netaclasses,
aur classes are not a fixed part of the Maya language.

and store inforration thet is used
o ensure thet gereric function definitions cannot produce dispatch
erors, and o conpute the method of sends from nmulti-
methods. The actual translation of sends is performed by
a method—local Mayan defined in MultiMethod. This Mayan
relies on its enclosing instance, and is exported
locally within a multimethod body.

5.3 Discussion

Clifton [9] implemented MultiJava by modifying the Kopi [12] Java
carpiler, . His inplenertation added or materially changed
20,000 of the’50,000 lirssinkj c. Incotrast, our MultiJava inple-
mentation is less then 2,500 noncomment, nonblank lines of code.
Itshould be noted that Clifton’sMultiJava implementation imnvolved
fixing bugs and inmplementing standard Java features in

One might consider implementing MultiJava in the languages
described in Section 2 It is hard to imegine a MultiJava inple-
mertation in a macro system such as JSE, because JSE macros
cannot transparently expand method declaratios. JTS is a more
viable gption: since JTS allons the Java grammar to be extended
and reinterpreted, itis certainly powerful enough to exoress Multi—
Java. However, one would have to inplement Java’s standard type
checking rules along with MultiJava’s rules, since JTS relies on
javac for its type checking.

OpenJava provides some of the features that one would need.
OpenJava alloas tre trarslation of a class to be changed when its
declaration is amnotated with an clase. A sim-
ple extension to OpenJava might allow the default metaclass o be
changed trangparently. OpenJava also exposes static type informae-
tion to metaprograms, and provides a limited form of lexical scop-
ing in thet callee—sice translation is limited 1o the scope of a class.
However, OpenJava supports very a limited form of syntax exten
sion that cannot exaress new kinds of declaratians such as extermal
methods. OpenJava’s model of lexically scoped mecros is also a
poor match for MultiJava, since OpenJava sugports class, but not
method, metadbjects.

6. RELATED WORK

Most multiple—dispatch systens allow dispatch on more than just
types. For instance, CLOS [24] dispatches on argument values us-
ing specializers, and Dylan [23] gereralizes this feature with
singleton and union types. Maya’s dispatching rules bear a partic-
ular resenblance 1o the grand unified dispatcher (GUD) in Dubi-
ous [15]. Like GUD, Maya uses pattern matching. Additionally,

GUD allons dispatch on user—defined predicates whereas Maya al-
lows digpatch on the static types of exqoressions. Languages such
as Dubious and Cecil [7] perform static checks 1o ensure that all
gereric function invocations unambiguously dispatch o a method.
Maya defers these checks to expansion tine.

A* [2] is a family of languages for writing preprocessors: it
extends Awk 1o goerate on syrntax tress for particular source lan-
guages. A* suports a limited form of pattem matching: a case
guard may be either a boolean expression or a YACC production.
A production case matches nodes gererated by the corresponding
production InA*’sparser, and irntroduces new syntax for accessing
the node’s children. Unlike Maya’s patterms, A* patterrs cannot
contain substructure or additional attributes such as identifier val-
ues or expression types.

Maya is certainly not the only syntax manipulation system 1o
support patterm matching. Scheme’s syntax—rules [18] and its
descendarts [14, 23] allow mecros to be defined using case analy-
sis Whereas these systens do patterm matching over concrete syn-
tax (s—eressians), Maya does patterm matching over AST nodes.

Maya borrons many ideas from high-evel macro systens such
as Chez Scheme’s syntax—case [14], Dylan [23], and XL [21].
However, Maya makes a different st of tradeoffs then these sys-
ters. Soecifically, Maya's ability to statically check tenplate syn-
tax comes at the ocost of hygienic inplicit parareters, and local
Mayans can share state more essily then local macros.

Chez Scheme’s syntax— case provides progranmeble hygien-
ic mecros with lexdcal scoping. Unlike Chez Scheme, Maya sep-
arates the conoepts of local macro definition and local mecro im-
port. This sgparation allons Mayans to share context directly. In
syntax—case, cotext can only be shared indirectly: data must
be encoded as literals and exposed to inner macros through

bindings. This technique can be cunbersome inany lan-
guage, and is particaularly unattractive in languages such as Java
thet limit literals to nubers, strings, and arrays of literals

McMicMac [19] is an extended macro fecility for Scheme thet
overcores some of these limitatios. McMacMic alloas mecros
o eqlicitly pass inherited attributes as argurents and syrthetic
atiributes as multiple retumvalues. McMicMac also allons mecros
1o be defined on “special” grammar castructs such as procedure
aoplication, but it is less ponerful than Maya’s nmultiple—dispatch
model.

MS2 [26] is essentially Common Lisp’'s defmacro for tre C
language. Macro functions are evaluated by a C interpreter and
may expand declarations, statenents, or eqoressions. As inDylan,
macro keywords are recognized by the ler, and mecro paraneters
may be recursively parsed acocording to their syntactic types.

MS2 defines terplate syntax for building ASTs and supports a
polymorphic unquote goerator, “ ’. Maya shares these features.
When parsing terplates, MS type checks © ’ expressions to de-
termine the grammar synbols they produce. InMS |, terplates can
only gererate declarations, statenents, and expressions, but three
additional node types can be unquoted: identifiers, nueric liter-
als, and type soecifiers. MS2'’s recursive—desoent parser is written
1o accept macro calls and unquoted exqoressions at these few well—
defined places.

MacroML [17] extends ML with a type—safe macro system In
MacroML, macro expansion cannct produce type emars. Macro
retum values are statically checked for both syntactic correctness
and type safety. In aontrast, Maya checks the syntactic structure
of a tenplate at conpile—tine, but only type checks the resuling
treewhen a tenrplate is expanded. MacroML supports three maecro
forms. Function mecros carsist of the macro name followed by one
or more argurents, and may not establish bindings. Lambda—like

mecros axsist of the macro name, a variable name, and a body
inwhich the variable is bound. Frally, let-style macros corsist of
te keyword, the macro name, a varigble name and inftializr,
and a body inwhich the variable isbound. Since MacroML makes
bindings explicit in amacro’s form, itcan make hygiene decisions
statically.

<bigwig> [6] includes an unusual patterm-besed macro fecil-
ity in which macro expansion is guaranteed 1o termirate.
wig> mecros define new productions in an extended LL(1) gram-
mar. Macro productions carsist of a macro keyword folloned by
zero ar more terminal and nonterminal argunents. also
allons tre programmer to define new nonterminal symbols called
metanorphs. Metamorphs are named and can be mutually recur-
sive, features not present in Maya’s parameterized grammar sym-
bols.

A macro body is a tenplate that contains concrete
syntax and references to norterminal argurents. al-
lows all norterminals to appear in macro argurents and tenplates
(as Maya does), but Brabrand and Schwartzbach do not indicate
whether their tenplate inplementation uses extragranar produc-
tias or direct parser sugport.

’'sextended LL(1) parser defines two aorflict resolu-
ton rules. Arst, longer rules are chosen over shorter rules. Second,
svaller FIRST sets are considered more specific then larger ones.
This second rule handles identifiers used askeywords elegantly, but
hes farther—eaching inplications. <bigwig>’sdefinition of well—
formed grammars would allow:

S — aalTb
T — alb

even though <bigwig> cannot parse “ab”. Maya’sLALR(1) par-
sr can acoept this language, but more inportantly, Maya signals
an error when grammear aanflicts cannot be resolved.

Maya’s parsing strategy offers several advantages. Arst, ital-
lows parsing and type checking to be interleaved Second, Ttuses
standard LALR(1) parsing techniques, which aremore flexible then
LL(2). Arally, conflicts are detected

7. CONCLUSIONS

We have described Maya, a version of Java thet supports usar—
defined syntax extersions. These extarsians are written as mul-
timethods on gereric functions, which makes them expressive and
poverful. Local Mayan declarations and lexically scoped inports
allow great fledbility in how language extersions are structured
Saveral inplementation mechanisms make Maya’s maecros easy to
write:

Pattem parsing is a novel tedhnique for clean and gereral

quesiquoting in languages like Java.

Lazy type checking allons Maya to dispatch arbitrary Ma-
yans based on static type information, even though Mayans
may create variable bindings.

Lazy parsing allons lexically scoped Mayans to change the
granar.

Maya’s static tenplate parsing and hygienic renaming allons
large classes of macro emars to be detected. syntax enars are
detected in parsing, and references o unbound varigbles are
detected during hygiene aralysis.

While Maya is well suited to inplement language extensions
such as aspect weaving [4] and MultiJava, itis equally well suited

for saller tasks such as tre macro described in Sec-
ton 3. The Maya conpiler and our MultiJava inplementation are
available at .

Acknowledgments

We thank Eric Eide for his many comments on drafts of this peper.
We also thank Sean McDirmid and John Regehr for their feedback.
This researchwas supported in part by the National Science Foun-
dation under CAREER award CCR—9876117 and the Defense Ad-
vanced Research Projects Agency and the Air Force Research Lab-
oratory under agreement number F33615—-00—C—-1696. The U.S.
Government is authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any copyright annotation
hereon.

8. REFERENCES

[A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques, and Tools. Addison-\Wesley, 1986.

[2] J. Bachrach and K. Playford. The Java syntactic extender
(JSE). InProc. of OOPSLA 01, Oct

[3] J. Baker. Macros thetplay. Migrating from Java to Maya.
Master's thesis, University of Utah, Dec. 2001. http ://

[4] J. Baker andW. C. Hsieh. Runtime aspect weaving through
metaprogranming. TR UUCS—01—-013, University of Utah,
Oct. 2001. http:/ /www.cs .Utah.edu/flux/

[5] D. Batory, B. Lofaso, and Y. Smaragdakis. JTS: Tools for
implementing damein—specific languages. In 5th
International Conference on Software Reuse, 1998.

[6] C. Brabrand and M. Schwartzbach. Growing languages with
metanmorphic syrtax Mecros.

, 2000.

[71 C. Chambers. The Cecil Language Specification and
Rationale: \Version 2.0, 1995.

[B] S. Chiba. A metaodbject protocol for C++. InProc. of
OOPSLAS, pp. 285—299, 1995.

[@] C. Aifton The MultiJava project
http://www.cs.lastate.edu/~cclifton/

C. Clifton, G. Leavens, C. Chambers, and T. Millstein
MultiJava: Modular open classes and symretric multiple
dispatch for Java. In Proc. of OOPSLA 00, pp. 130-146,
Minneapolis, MN, Oct. 2000.

[11] W. Clinger and J. Reese. Macros thatwork. In Proc. of the
18th Annual ACM Syrmposium on Principles of Programming
Languages, pp. 155—162, 1991.

[12] W. Divoky, C. Forgiore, T. Graf, C. Laborde, A. Lemonnier,

and E. Wais. The Kopi project

[10]

R. Docournau, M. Habib, M. Huchard, and M. Mugnier.
Monotonic corflict resolution mechanisms for inheritance. In
Proc. of OOPSLA "92, pp. 16-24, 1992.

[14] R. K. Dybvig, R. Hieb, and C. Bruggeman. Syrtactic
abstraction in Scheme. Lisp and Symbolic Conputation,
5(4):pp. 295—326, 1993.

[15] M. Bmst, C. Kaplan, and C. Chambers. Predicate
dispatching A unified theory of dispatch. In Proc. of
OOPSLA 98, pp. 186—211, 1998.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design

Patterns: Elements ofReusable Object-Oriented Software.

[13]

10

Addison Wesley, Massachusetts, 1994.
[17] S. Ganz, A. Sabry, andW. Taha. Macros as multi-stage
corputations. Type-safe, generative, binding macros in
MacroML. InProc. of the ICFP "01, Sept. 2001.
R. Kelsey, W. Clinger, and J. Rees (Eds.). The revisedb
report on the algorithmic language Scheme. ACM SIGPLAN
Notices, 33(9), Sept. 1998.
S. Krishnamurthi. Linguistic Reuse. PhD tresis, Rice
University, 2001.
D. A. Ladd and J. C. Ramming. A*: A language for
implementing language processors. |EEE Trars. on Software
Engineering, 21(11):894—901, Nov. 1995.
[21] W. Maddox. Serentically—sarsitive macroprocessing.
Master's thesis, University of Califormia, Berkeley, 1989.
Microsoft. C# language specification
http://msdn.microsoft.com/library/

18]

[19]
[2]

2]

[23] A. Salit Dylan Reference Manual. Addison—Wesley, 1996.

[24] G. Steele . Common Lisp, the Language. Digital Press,
second edition, 1990.

[25] M. Tatsubori, S. Chiba, M. Killijian, and K. Hano. OpenJava:
A class—esed macro system for Java. In OOPSLA 00
Reflection and Software Engineering Wérkshop, 2000.

[26] D. Weise and R. Crew. Programmable syrtax mecros. In
Proc. of PLDI "93, pp. 156165, Albuguergue, NM, June
1993.

[27] Xerox. The Aspect] progranming guide. http:

http://www.cs.lastate.edu/~cclifton/
http://msdn.microsoft.com/library/

