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Lambda-Dropping:

Transforming Recursive Equations into Programs

with Block Structure ∗

Olivier Danvy and Ulrik P. Schultz

BRICS †

Department of Computer Science
University of Aarhus ‡

March 1997

Abstract

Lambda-lifting a functional program transforms it into a set of re-
cursive equations. We present the symmetric transformation: lambda-
dropping. Lambda-dropping a set of recursive equations restores block
structure and lexical scope.

For lack of scope, recursive equations must carry around all the
parameters that any of their callees might possibly need. Both lambda-
lifting and lambda-dropping thus require one to compute a transitive
closure over the call graph:

• for lambda-lifting: to establish the Def/Use path of each free
variable (these free variables are then added as parameters to
each of the functions in the call path);

∗Extended version of an article to appear in the 1997 ACM SIGPLAN Symposium on
Partial Evaluation and Semantics-Based Program Manipulation (PEPM’97), Amsterdam,
The Netherlands, June 1997.
†Basic Research in Computer Science,
Centre of the Danish National Research Foundation.
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E-mail: {danvy,ups}@brics.dk
Phone: (+45) 89 42 33 69.
Fax: (+45) 89 42 32 55.
Home pages: http://www.brics.dk/~{danvy,ups}
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• for lambda-dropping: to establish the Def/Use path of each pa-
rameter (parameters whose use occurs in the same scope as their
definition do not need to be passed along in the call path).

Without free variables, a program is scope-insensitive. Its blocks are
then free to float (for lambda-lifting) or to sink (for lambda-dropping)
along the vertices of the scope tree.
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We believe lambda-lifting and lambda-dropping are interesting per
se, both in principle and in practice, but our prime application is partial
evaluation: except for Malmkjær and Ørbæk’s case study presented at
PEPM’95, most polyvariant specializers for procedural programs op-
erate on recursive equations. To this end, in a pre-processing phase,
they lambda-lift source programs into recursive equations. As a result,
residual programs are also expressed as recursive equations, often with
dozens of parameters, which most compilers do not handle efficiently.
Lambda-dropping in a post-processing phase restores their block struc-
ture and lexical scope thereby significantly reducing both the compile
time and the run time of residual programs.
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1 Introduction and Motivation

Block structure and lexical scope stand at the foundation of functional pro-
gramming, but are they so much in everyday use?

Evidence says that they are not. Consider the standard append function
defined as a recursive equation:

fun append-lifted (nil, ys) = ys

| append-lifted (x :: xs, ys) =

x :: (append-lifted (xs, ys))

Using block structure and lexical scope, append could have been defined as
follows:

fun append-dropped (xs, ys) =

let fun loop nil = ys

| loop (x :: xs) = x :: (loop xs)

in loop xs end

In the lifted version, the second argument is passed during the whole
traversal of the first argument, only to be used in the base case. In the
dropped version, the second argument is free in the traversal of the first
argument. The dropped version follows more closely the inductive definition
of lists. It does so by exploiting two linguistic features: scope and block
structure.

This example might appear overly simple, but there are many others —
map for example: the mapped function is passed as a parameter during the
whole traversal of the list. Fold functions over lists pass two unchanging
parameters (the folded function and the initial value of the accumulator)
during the traversal of the list. Lambda-interpreters thread the environment
through every syntactic form instead of keeping it as a global variable and
making an appropriate recursive call when encountering a binding form.

These examples are symptomatic of a programming malaise: recursive
equations offer no linguistic support to write modular programs, and they
suffer from a chronic inflation of parameters.1 Auxiliary functions must
be written as extra recursive equations. This makes it possible to call them
directly with non-sensical initial values, e.g., for accumulators. Instead, aux-
iliary functions should be local — a programming style that is not possible
with recursive equations.

1As Alan J. Perlis’s epigram goes, “if you have a procedure with ten parameters, you
probably missed some.”
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Yet recursive equations can be efficiently implemented. This led Hughes,
Johnsson, and Peyton Jones, in the mid 80’s, to devise a meaning-
preserving transformation from block-structured programs to recursive equa-
tions: lambda-lifting [18, 19, 28]. We review lambda-lifting in Section 2.

Recursive equations also offer a convenient format in Mix-style par-
tial evaluation [22]. Modern partial evaluators such as Schism and Similix
lambda-lift source programs before specialization [8, 10].

source
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//

source
recursive
equations

partial
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��
residual
recursive
equations

As a result, residual programs are also expressed as recursive equations. If
partial evaluation is to be seen as a source-to-source program transformation,
however, residual programs should be block structured. To this end, we
present lambda-dropping: the transformation of recursive equations into
block-structured and lexically scoped programs.

Overview: The rest of this article is organized as follows. Sections 2
to 5 describe lambda-lifting and lambda-dropping. We present them in a
symmetric way:
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Parameter lifting makes a program scope-insensitive by passing extra vari-
ables to each function to account for variables occurring free further down
the call path. Block floating eliminates block structure by globalizing each
block, making each of its locally defined functions a global recursive equa-
tion. Block sinking restores block structure by localizing (strongly con-
nected) groups of equations in the call graph. Parameter dropping exploits
scope by not passing variables whose end use occurs in the scope of their
initial definition.

Section 6 investigates applications of lambda-lifting and lambda-drop-
ping. Section 7 surveys related work. Section 8 concludes.

Throughout the article, we assume variable hygiene, i.e., that no name
clashes can occur. Also, the term “block” is assumed to mean a collection
of declarations, possibly functions, followed by a main expression.

2 Lambda-Lifting

We consider Johnsson’s algorithm [3, 19, 20]. Johnsson’s target is the G-
machine, which can run recursive equations efficiently. Lambda-lifting trans-
forms a block-structured program into a set of recursive equations. These
recursive equations correspond to local functions in the block-structured
program. Each equation is passed variables that would have occurred free
in a block-structured program.

2.1 The basics of lambda-lifting

Lambda-lifting is achieved using two transformations that are applied iter-
atively:

1. Eta-expansion. Each lambda-abstraction is eta-expanded with its free
variables, both at its definition site and at all its application sites.

2. Letrec floating. Each set of local functions that do not refer to local
free variables is moved to the enclosing scope level.

Eta-expanding an application can introduce more free variables, which
are handled in a later iteration. Function names do not need to be passed
as parameters, since they are used as the names of the recursive equations
and thus are globally visible.

The two transformations listed above can be freely interleaved. Johns-
son’s algorithm, however, factorizes the transformations into two stages.
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1. Naming anonymous lambda abstractions.

Each (λx.e) is replaced by (letrec f = λx.e in f), where f is fresh.

2. Lifting the parameters of each function, by traversing the program
top-down.

During the traversal we use a set to describe the information that is
gathered. This set associates the name of a function with the set of
variables it needs to be eta-expanded with. We call this set the “set
of solutions.”

• We process each occurrence of a function name according to the
set of solutions. If the function is associated with the empty set,
no change is made. If a function is associated with a non-empty
set of variables, the function is eta-expanded into an application
to these variables.

Figure 1: Parameter lifting. Free variables are made parameters, part 1/2

2.2 Implementing lambda-lifting

In a program with proper variable hygiene, a let expression can be replaced
by a letrec expression. Thus, we assume that the program being lambda-
lifted uses letrec expressions for both function and value bindings. Johns-
son’s algorithm proceeds in two stages.

1. Parameter lifting.

Free variables are eliminated by eta-expanding each local function def-
inition. Each time the definition of a function is eta-expanded, all call
sites of this function must be correspondingly eta-expanded. In the
resulting program, no function has free variables. This process is de-
tailed in Figures 1 and 2.

2. Block floating.

The floating step is trivial because each function is scope-insensitive
after parameter lifting. Definitions can freely be moved outwards
through the block structure of the program. In the resulting pro-
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• We process each letrec block by computing a new set of
solutions describing the functions.

1. To describe the occurrences of variables and functions
in each local function, we create a group of recursive
set equations. We associate a local function g with:

– A set Vg holding the free variables of g. These
variables are needed by the function.

– A set Fg holding all function names (the callees)
occurring in the body of g. The lifted definition
of g must provide variables for all the callees.

2. First we process the occurrences of functions not de-
clared in the block. In each set Fg, each function h

which is described in the set of known solutions S, is
removed from Fg. The set Vg is extended with the
variables associated with h in S.

3. Then we process each function h remaining in Fg by
adding all elements of Vh to Vg. We repeat this step
until a fixed point is reached.

4. The new set of solutions is the union of the old solu-
tions with the set equations.

We traverse the body and each binding of the letrec block
with the newly computed set of solutions.

Figure 2: Parameter lifting. Free variables are made parameters, part 2/2
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1. Moving each block to the global level.

We process each letrec block by removing all of its function definitions
and making them global. If no local declarations remain, we replace
the block by its body.

2. Removing the remaining letrec blocks.

We remove the remaining (now non-recursive) letrec blocks by con-
verting each one into an application of a global function that has a
fresh name. The formal parameters of the global function are the
variables that were bound by the letrec block, and the body of the
function is the body of the block.

Figure 3: Block floating. Flattening of block structure.

gram, all function definitions are global. This process is detailed in
Figure 3.

Other styles and implementations of lambda-lifting exist. We review
them in Section 7.2.

2.3 A detailed example

As an example, we consider an implementation of a Deterministic Finite
Automata (DFA), as displayed in Figure 4. The DFA accepts the lan-
guage defined by the regular expression R = α(β(δ|γα))∗, given the alphabet
{α, β, γ, δ}. The DFA reads symbols from an input stream, and invokes the
associated functions a, b, c and d, as long as the input symbols conform to
R. If the input is non-conforming, the DFA aborts. The formal parameter
die? determines whether to signal an error or just return the empty list.
The stream is terminated by either the symbol $ or the end of the list.

The next two sections describe the process of lambda-lifting this program
according to the algorithm of Figures 1, 2 and 3. Some of the variables share
the same name. This lack of hygiene does not interfere with the algorithm
here, so we retain the names for the sake of clarity.
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α
// G?>=<89:;/.-,()*+
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22 H?>=<89:;δ
rr

γ

zz

(define (r a b c d die? xs)

(letrec ([err

(lambda (x)

(if (null? x)

(error ’r "end of stream~%")

(error ’r "token ~a~%" x)))]

[empty?

(lambda (s)

(or (null? s) (eq? (car s) ’$)))]

[h (lambda (reject xs)

(if (empty? xs)

(reject ’())

(case (car xs)

[(gamma) (c (f reject (cdr xs)))]

[(delta) (d (g reject (cdr xs)))]

[else (reject (car xs))])))]

[g (lambda (reject xs)

(if (empty? xs)

xs

(case (car xs)

[(beta) (b (h reject (cdr xs)))]

[else (reject (car xs))])))]

[f (lambda (reject xs)

(if (empty? xs)

(reject ’())

(case (car xs)

[(alpha) (a (g reject (cdr xs)))]

[else (reject (car xs))])))])

(f (if die? err (lambda (x) ’())) xs)))

Figure 4: Our original DFA.
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2.3.1 Parameter lifting

1. The anonymous lambda-abstraction within the body of f needs to be
explicitly named:

(f (if die?

r-error

(lambda (x) ’()))

xs)

becomes

(f (if die?

r-error

(letrec ([fresh0 (lambda (x) ’())])

fresh0))

xs)

where fresh0 is a fresh variable.

2. The entire program is traversed. At all times S represents the current
set of solutions.

(define (r ...) (letrec ...)) with S = ∅:
A global function contains no free variables. Thus, its parameters
do not need any lifting.

(letrec ...) with S = ∅:
We process a block by extending the set of solutions. We start
by computing the sets of free variables for each function:

Verr = Vempty? = ∅
Vh = {c, d}
Vg = {b}
Vf = {a}

Then we compute the sets of function names describing references
to other functions:

Ferr = Fempty? = ∅
Fh = {f, g, empty?}
Fg = {h, empty?}
Ff = {g, empty?}

13



These sets are used to express the set equations:

Verr := Verr = ∅
Vempty? := Vempty? = ∅

Vh := Vh ∪ Vf ∪ Vg ∪ Vempty? = {c, d}
Vg := Vg ∪ Vh ∪ Vempty? = {b}
Vf := Vf ∪ Vg ∪ Vempty? = {a}

To solve these set equations, we iterate the assignments until a
fixed point is reached.

Iteration 1:

Verr := ∅
Vempty? := ∅

Vh := {c, d} ∪ {a} ∪ {b} ∪ ∅ = {a, b, c, d}
Vg := {b} ∪ {c, d} ∪ ∅ = {b, c, d}
Vf := {a} ∪ {b} ∪ ∅ = {a, b}

Iteration 2:

Verr := ∅
Vempty? := ∅

Vh := {a, b, c, d} ∪ {a, b} ∪ {b, c, d} ∪ ∅
= {a, b, c, d}

Vg := {b, c, d} ∪ {a, b, c, d} ∪ ∅ = {a, b, c, d}
Vf := {a, b} ∪ {b, c, d} ∪ ∅ = {a, b, c, d}

Iteration 3:

Verr := ∅
Vempty? := ∅

Vh := {a, b, c, d} ∪ {a, b, c, d} ∪ {a, b, c, d}
∪ ∅

= {a, b, c, d}
Vg := {a, b, c, d} ∪ {a, b, c, d} ∪ ∅

14



= {a, b, c, d}
Vf := {a, b, c, d} ∪ {a, b, c, d} ∪ ∅

= {a, b, c, d}

We have reached a fixed point. The new set equations are:

Verr = ∅
Vempty? = ∅

Vh = Vg = Vf = {a, b, c, d}

We can now process the local functions and the body of the letrec
block, using the new set equations.

(letrec ([err ...] ...) ...) :

S = {r = ∅, . . . , h = {a, b, c, d}, . . .}.
S associates err with the empty set, so there is no need to eta-
expand the definition of err. The body contains no functions
described in the set of solutions, so no changes need to be made
here either.

(letrec (... [empty? ...]) ...) is handled like err.

(letrec (... [h ...]) ...) is handled as follows:

S = {r = ∅, . . . , h = {a, b, c, d}, . . .}.
The solutions associate h with the set {a, b, c, d}. Thus, we must
eta-expand the definition:

[h (lambda (reject xs) ...

is replaced by

[h (lambda (a b c d) (lambda (reject xs) ...

The body of h contains references to empty? and g. The solutions
associate empty? with the empty set, so it is unchanged. The
solutions also associate g with the set {a, b, c, d}. The occurrence
of g as

(g reject (cdr xs))

is replaced by

((g a b c d) reject (cdr xs))

15



(define (r a b c d die? xs)

((f a b c d) (if die? err fresh0) xs))

(define (fresh0 x)

x)

(define (err x)

(if (null? x)

(error ’r "unexpected end of stream~%")

(error ’r "unexpected token ~a~%" x)))

(define (empty? s)

(or (null? s) (eq? (car s) ’$)))

(define (h a b c d)

(lambda (reject xs)

(if (empty? xs)

(reject ’())

(case (car xs)

[(gamma) (c ((f a b c d) reject (cdr xs)))]

[(delta) (d ((g a b c d) reject (cdr xs)))]

[else (reject (car xs))]))))

(define (g a b c d)

(lambda (reject xs)

(if (empty? xs)

’()

(case (car xs)

[(beta) (b ((h a b c d) reject (cdr xs)))]

[else (reject (car xs))]))))

(define (f a b c d)

(lambda (reject xs)

(if (empty? xs)

(reject ’())

(case (car xs)

[(alpha) (a ((g a b c d) reject (cdr xs)))]

[else (reject (car xs))]))))

Figure 5: The DFA after lambda-lifting.
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(letrec (...[g ...]...) ...) is handled like h.

(letrec (...[f ...]...) ...) is handled like h.

(letrec (...) (f ...)) is handled as follows:

S = {r = ∅, . . . , h = {a, b, c, d}, . . .}.
We eta-expand the occurrence of f with the appropriate vari-
ables. The declaration and occurrence of fresh0 need not be
eta-expanded.

2.3.2 Function floating

1. We remove all functions from the letrec block declaring f to the out-
ermost (global) one, and we replace this block by its body. Ditto for
the block declaring fresh0.

2. Since no letrec blocks are left, there is no need to convert them into
applications.

Figure 5 displays the final result.

3 Reversing Lambda-Lifting

As described in Section 2, lambda-lifting starts by making functions scope-
insensitive through eta-expansion, and then proceeds to make all functions
global through letrec-floating. To reverse lambda-lifting, we could make
the appropriate global functions local, and then make them scope-sensitive
through eta-reduction. To simplify the process, we always generate letrec
blocks, even if a let block would suffice.

Localizing a function in a letrec block moves it into the context where it
is used. Once a function is localized, it is no longer visible outside the letrec
block. This localization often makes the program easier to understand for
a human reader, and simplifies compilation.2 Localization, however, is not

2“Simplify” in the sense that often, efficient compilers are tuned to typical handwritten
programs. For example, Chez Scheme and Standard ML of New Jersey handle functions
with few parameters better than functions with many parameters. This is bad news
for partial evaluation: for example, a partial evaluator such as Pell-Mell [14], because
it uses lightweight symbolic values, tends to produce recursive equations with dozens of
parameters. Compiling these residual programs de facto becomes a bottleneck.
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always possible. Functions used in different parts of the program might not
be localizable to all these places, unless one is willing to duplicate code.3

3.1 Block sinking

To reverse the effect of lambda-lifting, let us examine the program of Figure
5, which was lambda-lifted in Section 2.3. The main function of the program
is r. All other functions are used by r, and are thus localizable to r. We
replace the body of r with a block declaring these functions and having the
original body of r as its body.

define r = letrec f = ...

g = ...

h = ...

err = ...

empty? = ...

fresh0 = ...

in ...

We can see that the body of r refers to only the functions f, err and fresh0.
The functions g, h and empty?, however, are used only by f. Therefore it
makes sense to localize them to f.

define r = letrec f = letrec g = ...

h = ...

empty? = ...

in ...

err = ...

fresh0 = ...

in ...

Examining the newly localized functions more closely reveals that h is only
called by g. It is therefore possible to localize h in g. The function empty?

is used by f, g and h, but we cannot localize it any further, since it needs to
be accessible to f. The result of our function localization is:

3The Glasgow Haskell compiler is currently the theater of intensive and so far en-
couraging experiments in block floating and block sinking [26]. In that work, floating is
only relative in that blocks are moved either inwards or outwards, and in the latter case,
not necessarily at the top level. Source programs, however, are no longer systematically
lambda-lifted.
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define r = letrec f = letrec g = letrec h = ...

in ...

empty? = ...

in ...

err = ...

fresh0 = ...

in ...

The functions of the program cannot be localized any further. This lambda-
dropped version has more block structure than the original version. It is
our experience that one tends to write such incompletely lambda-dropped
programs.

3.2 Parameter dropping

To reverse the parameter lifting performed during lambda-lifting, we need
to determine the origins of each formal parameter. The functions f, g and h

all pass the variables a, b, c and d to each other. These formal parameters
always correspond to the variables of the same name defined by the function
r. Since these parameters all are now visible where the three functions are
declared, there is no need to pass them around as parameters. We can simply
remove the four formal parameters from the declaration of each function,
and refrain from passing them as arguments at each application site.

The function err is passed as an argument to f. We would thus need to
perform a control-flow analysis to determine which arguments are passed to
err (in this case a control-flow analysis is very simple). If parameter lifting
had been performed on err, err would have been applied directly to any
such variables. Since err is not applied, we can safely assume that it has not
been parameter lifted. The function empty? is never passed as an argument,
but it is passed arguments that are not themselves formal variables. These
arguments could not have been the produced by the lambda-lifter, so we
need not consider dropping the parameters of this function either.

We have thus removed all the formal parameters of the functions f, g and
h. What remains in each case is a function of no parameters which returns a
function of two parameters — the two parameters of the function declaration
from the original program. Since these thunks are always applied, it makes
sense to eliminate them, leaving only the part of the function corresponding
to the original program.

Figure 6 displays the final result of our reversal process. Comparing with
the original program, and taking into account that we generate more block
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(define (r a b c d die? xs)

(letrec

([f (lambda (reject xs)

(letrec

([g (lambda (reject xs)

(letrec

([h (lambda (reject xs)

(if (empty? xs)

(reject ’())

(case (car xs)

[(gamma) (c (f reject (cdr xs)))]

[(delta) (d (g reject (cdr xs)))]

[else (reject (car xs))])))])

(if (empty? xs)

xs

(case (car xs)

[(beta) (b (h reject (cdr xs)))]

[else (reject (car xs))]))))]

[empty?

(lambda (s)

(or (null? s) (eq? (car s) ’$)))])

(if (empty? xs)

(reject ’())

(case (car xs)

[(alpha) (a (g reject (cdr xs)))]

[else (reject (car xs))]))))]

[fresh0

(lambda (x) x)]

[err

(lambda (x)

(if (null? x)

(error ’r "unexpected end of stream~%")

(error ’r "unexpected token ~a~%" x)))])

(f (if die? err (lambda (x) ’())) xs)))

Figure 6: The DFA program after lambda-dropping.

20



structure, a single difference remains: the anonymous lambda-abstraction
from the body of r is still explicitly named.

4 Lambda-Dropping

We now specify lambda-dropping more formally. Lambda-dropping a pro-
gram minimises parameter passing, and serves in principle as an inverse of
lambda-lifting. Function definitions are localised maximally using lexically
scoped block structure. Parameters made redundant by the newly created
scope are eliminated.

4.1 The basics of lambda-dropping

Lambda-dropping is achieved using two transformations that are iteratively
applied:

1. Letrec sinking. Any set of functions that is referenced by a single
function only is made local to this function. This is achieved by sinking
this set inside the definition of the function.

2. Eta reduction. A function with a formal parameter that is bound to
the same variable in every invocation can potentially be parameter-
dropped. If the variable is lexically visible at the definition of the
function, the formal parameter can actually be dropped. A formal pa-
rameter is dropped from a function by removing the formal parameter
from the parameter list, removing the corresponding argument from
all invocations of the function, and substituting the name of the vari-
able for the name of the formal parameter throughout the body of the
function.

4.2 Implementing lambda-dropping

To ensure scope insensitivity of functions, we start by lambda-lifting the
source program. If the program contains global function declarations only,
the lambda-lifting step is not necessary. The lambda-dropping algorithm
then works in two stages. It handles other binding constructs (such as let
or the letType construct of Schism [10]), but we have made no attempt to
drop parameters which are bound to variables defined by these constructs.
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1. Creating a scope graph.

We construct a graph describing the scope constraints imposed by
references to global functions:

• For each function definition, we create a node.

• If a function f refers to some other function g by its name, we
introduce an edge from the node of f to the node of g.

• We create an empty node, the root node. This root node will
point to the node of any function that should remain as a global
definition.

During this pass, we trivially create Def/Use chains for functions.
We also tag any function passed as an argument as “higher order.”

2. Transforming the scope graph into a DAG.

We isolate the strongly connected components of the scope graph.
We collapse components that contain at most a single cycle, into
a node. We associate the resulting node with the set of functions
represented by the nodes of the component. If the component only
has a single entry point and contains more than one node, we try to
reduce the size of the component. We remove edges from nodes in
the component to the node that is the entry point of the component.
We iterate the transformation step on the nodes of the component.

Figure 7: Block sinking. Re-creation of block structure, part 1/2

22



3. Transforming the DAG into a tree.

• Two disjoint paths p1 and p2 from a node N to some other
node N ′ indicate that a common successor exists in the graph.
We must detach the common successor N ′ from at least one of
its direct predecessors, and re-attach it without violating the
scope restrictions imposed by the graph. Detaching N ′ from
those of its predecessors that lie on p1 and p2, and making it a
direct successor of N preserve scope restrictions. We collapse
all successors of N ′ into a single node, which we place at the
previous location of N ′.

• We merge every node associated with more than one function,
and that is the father of a node, with this child node. We remove
the child node from the graph, re-attaching any edges onto the
father node.

4. Re-constructing the program from the tree.

The tree representation is isomorphic to a program. We make the
direct successors of the root node global functions. Then we tra-
verse the tree, generating a function containing a letrec block at each
branch. The functions associated with the direct successors of this
node we declare locally in this block. If the node has no successors,
we generate no letrec block.

Figure 8: Block sinking. Re-creation of block structure, part 2/2
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1. Determining Use/Def information for each formal parameter.

We annotate each use of a variable declared as a formal parameter
with a reference to the function that declared it.

2. Constructing a flow graph.

We process the formal parameters of each function definition sepa-
rately, except when the function is marked as “higher order.” In this
case, we leave it unprocessed.

• We create a definition node for the function that declares the
formal parameter.

• We create an application node for each application site of the
function where the argument corresponding to the formal pa-
rameter is itself a formal parameter.

• If the argument corresponding to the formal parameter is not
a formal parameter, we discard the definition node and all cor-
responding application nodes, and we create no more nodes for
this parameter.

We collapse the strongly connected components of the graph, using
the standard algorithm to detect strongly connected components [1].
Reversing the resulting DAG yields the flow graph.

Figure 9: Parameter dropping. Removing parameters, part 1/2
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3. Propagating variable identities through the flow graph.

We assign a unique ID to all nodes without predecessors. All other
nodes have uninitialized IDs. When all the predecessors of a node
all have the same ID, we assign this ID to this node. When some
predecessors of a node have different IDs, we assign a new, unique
ID to this node.

4. Removing redundant formal parameters.

We process the parameters of each function definition separately.
If the U/D chain of a formal parameter p of a function definition
D points to another formal parameter p′, and D is declared in the
scope of p′, we remove p. We remove the formal parameter p from
the parameter list of the declaration of D, and we substitute p′ for
p throughout the body of D. If all formal parameters are removed
from D, a possibly redundant thunk encapsulates the body of D. If
the body is a lambda form, we substitute this lambda form for D. If
the body is a letrec block with a lambda form as its body, we move
the block into the lambda form, and substitute the lambda form for
D. In both cases, the function is “de-thunked.”

5. Removing redundant arguments.

We process each application site by removing the arguments corre-
sponding to formal parameters that were removed. If the function
being applied was de-thunked, we replace the application by a refer-
ence to the function.

Figure 10: Parameter dropping. Removing parameters.
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1. Block sinking.

Each reference to a function introduces restrictions on where it can
be declared. Expressing these restrictions as a tree gives guidelines
for translating from recursive equations to block structure. In the
resulting program, function definitions are declared locally wherever
possible. This process is detailed in Figures 7 and 8.

2. Parameter dropping.

Two things determine whether some of the parameters of a function
can be dropped: the scope in which the function is declared and the
set of variables it is passed as arguments. In the resulting program,
a formal parameter is never passed as an argument to a function if
it instead could have been substituted throughout the body of the
function. This process is detailed in Figures 9 and 10.

4.3 A detailed example

In Section 2.3, we demonstrated how the program of Figure 4 was lambda-
lifted, resulting in the program displayed in Figure 5. Lambda-dropping
can be applied to this program, as described in Figures 7, 8, 9, and 10. In
this program, many variables have the same name. For the sake of clarity,
we retain the original names, and annotate the variables to tell them apart
when necessary.

4.3.1 Function sinking

1. We start by creating the scope graph of the program. The edges
correspond to references to function names.
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During the creation of the scope graph, we also construct Def/Use
chains for functions. Reversing the edges of the scope graph yields the
Def/Use chains.

2. We iterate the Strongly Connected Component (SCC) algorithm on
the scope graph, by removing edges and collapsing nodes into sets.

(a) The nodes {h, g, f} are in the same SCC.

(b) f is the entry point of this SCC (by the edge 〈r→f〉), so 〈h→f〉
is removed.

(c) Now {h, g} are in the same SCC.

(d) g is the entry point of this SCC (by the edge 〈f→g〉), so 〈h→g〉
is removed.

(e) There are no more SCC.

The resulting DAG has the same structure as the original graph. Each
node is a singleton, since recursive dependencies could be resolved by
removing edges rather than collapsing nodes.

root
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{err}

{g} //
33{h} // {empty?}

3. We transform the DAG into a tree:

• There are two disjoint paths from {f} to {empty?}: one direct
from {f} itself, and one going through {g}. To remove the
common successor, we remove the edges 〈{f}→{empty?}〉 and
〈{g}→{empty?}〉, and we add the edge 〈{f}→{empty?}〉.
There are still two disjoint paths from f to empty?. One is di-
rect from f and one goes through h. We remove the edges
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〈{f}→{empty?}〉 and 〈{h}→{empty?}〉, and we add the edge
〈{f}→{empty?}〉.
• No node is associated with more than one function, so there is

no need to collapse the tree.

The result of the transformation is the following tree:
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{g} // {h} {empty?}

4. We re-construct the program from the tree:

• There are edges from {r} to {fresh0}, {err} and {f}. So we
place the functions from these nodes in a block in r.4

• There are edges from {f} to {g} and {empty?}, so we place g and
empty? in a block in f.

• There is an edge from {g} to {h}, so we place h in a block in g.

The block structure of the resulting program can be outlined as:

(define (r ...)

(letrec ([f (lambda (...)

(letrec ([g (lambda (...)

(letrec ([h ...])

...))]

[empty? ...])

...))]

[fresh0 ...]

[err ...])

...))

4If r had not been a singleton node, the structure of the tree would have been locally
collapsed in the previous step.
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4.3.2 Dropping parameters

1. There are only function names and formal parameters in the program.
For each function we let the formal parameters occurring in the body
point to the definition of the function.

2. Constructing the flow graph:

• We create appropriate nodes for all functions and all applications,
with the following exceptions:

– The function fresh0 is passed as an argument, so we create
no nodes for it.

– The function err is passed as an argument, so we create no
nodes for it.

– The function empty? receives an argument that is not a formal
parameter. Thus we discard all nodes associated with this
first parameter.

In the rest of this section, we index uncurried parameters starting
from zero. The resulting graph consists of four components, one
for each of a, b, c and d. These components are all identical
except for variable positions and parameter names. The graph
for variable position zero and the parameter a looks like this:
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;
;

@(g, af )0
oo

For clarity, the formal parameter a has been annotated with the
name of the function defining it, in each node. The three other
components of the graph detail parameter positions one to three,
with the variables b, c and d. In the general case, the graph can
have connections between nodes with different variable positions.
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• All nodes for the parameter a of f, g and h are in the same SCC,
and likewise for b, c and d. Thus, in the case of variable position
zero and the parameter a, collapsing the SCC of each component
of the flow graph yields:

{λ(r, ar)0}

��
{@(f, ar)0}

��
{λ(f, af )0, λ(g, ag)0, λ(h, ah)0,@(h, ag)0, . . .}

The three other components also have the same structure.

• Reversing the graph yields the flow graph.

3. The propagation of identities through the flow graph is trivial: The
roots are λ(r, v)i, where v is a, b, c or d, and i is 0, 1, 2 or 3, respectively.
Each root is assigned a unique ID. All nodes for a receive the same ID,
and similarly for b, c and d.

This yields a flow graph annotated with U/D chains for variables:

{λ(r, ar)0}

��
{@(f, ar)0}

��
{λ(f, af )0, λ(g, ag)0, λ(h, ah)0,@(h, ag)0, . . .}

U/D

;;

4. Finally, we traverse the program:

(define (r ...) ...) : The parameters of a top-level definition can-
not be dropped.

(letrec (...[f (lambda (a b c d) ...)]...) ...) :

The U/D chain of a points to the variable a in the definition
of r. This variable is visible in the current scope, so a can be
parameter-dropped. Similarly for the parameters b, c and d.
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Dropping these four parameters leaves none behind. The body of
f is a letrec block, the body of which is a lambda form (with the
formal parameters reject and xs). We replace the declaration of
f with this lambda form, and place the letrec block inside.

[f (lambda (a b c d)

(letrec (...)

(lambda (reject xs) ...)))]

is replaced by

[f (lambda (reject xs) (letrec (...) ...))]

The definitions of g and h are handled similarly.

The functions fresh0, err and empty? have no U/D chains, so they
cannot be dropped.

5. Every application is processed. If it is an application of f, g or h, the
application is replaced by the function itself.

The resulting program is the same as the program we lambda-dropped
by hand in Section 3. It can be found in Figure 6.

5 Further Explanation

Several aspects of the lambda-dropping transformation deserve to be ex-
plained in greater detail. They include the block-structure transformations,
the flow graph and properties of lambda-dropping as a whole.

5.1 Restoring blocks

The block-structure transformations are realized through a series of graph
transformations. In this section we discuss some of the intermediate graph
representations, and how each of these relate to the programs they represent.

5.1.1 Scope graphs

We now compare the scope graph used by the lambda-dropping algorithm
with the more familiar call graph. A graph is used as an intermediate
representation during function sinking. At all times, the graph structure
expresses constraints on the block structure of the program. We start out
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with the scope graph of the program: the scope graph has nodes for each
function definition, and each edge expresses that a function needs to be able
to refer to another function.

In a first-order program, the scope graph is equivalent to the call graph.
In this restricted case, the only way to refer to another function is by calling
it. Thus, each reference is equivalent to a call, and the graphs coincide.
However, if functions are passed as arguments, all references to function
names must be included in the graph. In this case, the call graph is a
sub-graph of the scope graph. Note that references to a function through
an alias (e.g., a variable bound to the function) do not generate an edge in
neither the scope graph nor the call graph. Such a reference does not impose
restrictions on how the function can be localized.

5.1.2 Refined strongly connected components

The transformation from a graph to a DAG employs an adapted version of
the algorithm detecting strongly connected components in the Dragon book
[1]. In Step 2 of the block-sinking stage of Figures 7 and 8, the cycles of the
scope graph (the strongly connected components) are collapsed into nodes,
thus isolating recursive dependencies and yielding a DAG. It turns out that
the usual algorithm is too coarse for our purposes: localizable functions may
not be localized if this algorithm is used in Step 2 of the block-sinking stage.

Consider the DFA program of Figure 5, for example. The scope graph,
which is the first diagram of Section 4.3.1, contains two cycles, both of which
belong to the same strongly connected component. The nodes g and h form a
sub-cycle of the cycle containing the nodes {f, g, h}. Performing the function
localization using the usual SCC-detection algorithm would yield a program
where all local definitions are declared in a single block within the body of
the function r. The block structure would become identical to that of the
source program. (The source program is shown in Figure 4).

This coincidence reflects the fact that lambda-lifting two different pro-
grams can yield the same result. Had we lambda-lifted our lambda-dropped
program (in Figure 6), we would also have ended up with a program identical
to the lambda-lifted program of Figure 5. This example illustrates that we
cannot hope to provide a unique inverse for lambda-lifting. Block structure
can be reconstructed from recursive equations in several different ways.

We have taken the approach of generating maximally localized block
structure. For this reason, iterating the SCC-detection algorithm (as in the
lambda-dropping algorithm) yields the desired result. Our current imple-
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mentation of lambda-dropping supports both algorithms.

5.1.3 Peyton Jones’s dependency analysis

In his textbook [28], Peyton Jones uses an analysis to generate block struc-
ture. In several ways, the algorithm for this dependency analysis is similar to
the algorithm we employ for function localization. Its goal, however, differs.
Assuming the lambda-lifted version of the DFA program (see Figure 5) was
extended with a main expression calling the function r with appropriate
arguments, Peyton Jones’s dependency analysis would yield the following
skeleton:

let empty? = ...

in let f = ...

g = ...

h = ...

in let err = ...

fresh0 = ...

in let r = ...

in (...call to r...)

It is important to note that in this skeleton, all function names are visible to
the other functions that need it. Their formal parameters, however, are not
visible to these other functions. Peyton Jones’s analysis places no function
in the scope of any formal parameters, which is incompatible with parameter
dropping.

More detail on Peyton Jones’s dependency analysis, its purpose and
properties, and its relation to our transformation can be found in the second
author’s MS thesis [32].

5.1.4 Isomorphism of trees and block structure

This section describes an isomorphism between the block structure of certain
programs and trees. A lambda-lifted program consists of a set of equations,
none of which contain block-structuring constructs. There is no inherent
structure among the equations. Lambda-dropping such a program attempts
to establish block structure, which by its very nature must conform to a tree
structure. Transforming the dependencies between the equations into a tree
structure accomplishes the task. The nodes of the tree are functions. The
edges define the block structure. An edge from a function f to a function
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g indicates that g should be declared in a block local to f , along with any
other direct successor of f .

Block-structured programs generated from a tree in this manner have
letrec blocks and function declarations as their top-level constructs. The
bodies of the letrec blocks and functions consist of other types of constructs.
Lambda-dropped programs always have this form. We refer to it as Block-
Structured Normal Form (BSNF) in the rest of this section.

Any program can be transformed to BSNF. Incrementally lambda-lifting
the program to move definitions towards the global level, and creating letrec
blocks as appropriate, performs the transformation. Programs in BSNF
can be mapped to a tree by reversing the transformation employed by the
lambda-dropper. Mapping the tree back to program form yields the same
program, modulo the order of function declarations in a block.

Any tree of functions represents a block-structured program, and the
block structure of any program in BSNF represents a tree. Transforming a
program to a tree and back again yields the same program. Thus, the block
structure of a program in BSNF is isomorphic to a tree.

5.2 Dropping formal parameters

A flow graph is used to build Use/Def chains for the formal parameters of
each function. Given the U/D chains, parameter dropping is accomplished
by detecting whether the formal parameter at the end of each chain is vis-
ible in the lexical scope. When building the flow graph, we must eliminate
recursive dependencies between parameters. If a group of parameters de-
pend on each other, they can either all be dropped or none of them can
be dropped. The original strongly connected component algorithm isolates
these recursive dependencies, ensuring that such groups of parameters are
processed uniformly.

5.3 Properties of lambda-dropping

We designed lambda-dropping to provide an inverse for Johnsson’s lambda-
lifting algorithm [19]. Before we can state any inverseness properties, we
need an appropriate notion of equality of programs. In the context of this
paper, equality of programs is syntactic, modulo renaming of variables and
modulo the ordering of mutually recursive declarations.

Consider several versions of a program that have been partially lambda-
lifted or lambda-dropped. These versions do not have the same block struc-
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ture but lambda-lifting maps them to the same set of mutually recursive
equations. Consequently, we cannot hope to provide a unique inverse for
lambda-lifting. However, it is our conjecture that the two following proper-
ties hold:

Property 1 Lambda-dropping is the inverse of lambda-lifting on all pro-
grams that have been lambda-dropped.

Property 2 Lambda-lifting is the inverse of lambda-dropping on all pro-
grams that have been lambda-lifted.

Property 1 is arguably the more complex of the two. Lambda-dropping
a program requires re-construction of the block structure that was flattened
by lambda-lifting. Formal parameters lifted by the lambda-lifter must be
omitted.

Examining the lambda-dropping algorithm reveals that a function that
is passed as argument never has its parameters dropped. Dropping the
parameters of such functions is certainly possible, but is non-trivial since
it requires a control-flow analysis to determine the set of variables being
passed as arguments (see Section 6.3 for an example).

Restricting ourselves to providing an inverse for lambda-lifting elimi-
nates the need for this analysis. If a function has no free variables before
lambda-lifting, no additional parameters are added, and we need not drop
any parameters to provide a proper inverse. If the function did have free
variables, these variables are applied as arguments to the function at the
point where it is passed as an argument. Thus, the extra parameters are
easily dropped, since they are unambiguously associated with the function.

In languages such as Scheme where currying is explicit, a lambda-lifter
may need to construct a function as a curried, higher-order function when
lifting parameters. A lambda-dropper can easily detect such declarations
(the currying performed by the lambda-lifter is redundant after lambda-
dropping), and remove them.

Johnsson’s lambda-lifting algorithm explicitly names anonymous lambda
forms with let expressions, and eliminates let expressions by converting them
into applications. A lambda-dropper can recognize the resulting constructs
and reverse the transformations, thereby satisfying the inverseness proper-
ties.
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6 Applications and Synergy

6.1 Partial evaluation

Our compelling motivation to sort out lambda-lifting and lambda-dropping
is partial evaluation [12, 21]. As mentioned in Section 1, recursive equations
offer a convenient format for a partial evaluator. Similix and Schism, for ex-
ample [8, 10], lambda-lift source programs before specialization and produce
residual programs in the form of recursive equations. Very often, because of
arity raising, these recursive equations are afflicted with a huge number of
parameters, which increases their compilation time enormously, sometimes
to the point of making the whole process of partial evaluation impractical
[14].

Our lambda-dropper handles the output language of Schism. As this
article is going to press, we have integrated lambda-dropping into Schism,
but have not yet had feedback from other Schism users.

6.1.1 Example: a fold function

Figure 11 displays a source program, which uses a standard fold function
over a binary tree. Without any static input, Schism propagates the two
static abstractions from the main function into the fold function. The raw
residual program appears in Figure 12. It is composed of two recursive equa-
tions. The static abstractions have been propagated and statically reduced.
The dynamic parameters x and y have been retained and occur as residual
parameters.5 They make the traversal function an obvious candidate for
lambda-dropping. Figure 13 displays the corresponding lambda-dropped
program, which was obtained automatically.

As partial-evaluation users, we find it more clear to compare Figure 11
and Figure 13 rather than Figure 11 and Figure 12. (N.B. A monovariant
specializer would have directly produced the program of Figure 13, using
mere unfolding and no memoization).

6.1.2 Example: the first Futamura projection

Let us consider a while-loop language as is traditional in partial evaluation
and semantics-based compiling [11]. Figure 14 displays a source program

5That is how partially static values and higher-order functions inflate (raise) the arity
of recursive equations.
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(define-type binary-tree

(leaf alpha)

(node left right))

(define binary-tree-fold

(lambda (process-leaf process-node init)

(letrec ([traverse

(lambda (t)

(case-type t

[(leaf n)

(process-leaf n)]

[(node left right)

(process-node

(traverse left)

(traverse right))]))])

(lambda (t) (init (traverse t))))))

(define main

(lambda (t x y)

((binary-tree-fold

(lambda (n) (leaf (* (+ x n) y)))

(lambda (r1 r2) (node r1 r2))

(lambda (x) x)) t)))

Figure 11: Source program.

(define (main-1 t x y)

(traverse:1-1 t y x))

(define (traverse:1-1 t y x)

(casetype t

[(leaf n)

(leaf (* (+ x n) y))]

[(node left right)

(node (traverse:1-1 left y x)

(traverse:1-1 right y x))]))

Figure 12: Specialized (lambda-lifted) version of Figure 11.
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(define (main-1 t x y)

(letrec ([traverse:1-1

(lambda (t)

(case-type t

[(leaf n)

(leaf (* (+ x n) y))]

[(node left right)

(node (traverse:1-1 left)

(traverse:1-1 right))]))])

(traverse:1-1 t)))

Figure 13: Lambda-dropped version of Figure 12.

with several while loops. Specializing the corresponding definitional inter-
preter (not shown here) using Schism with respect to this source program
yields the residual program of Figure 15. Each source while loop has given
rise to a recursive equation. Figure 16 displays the corresponding lambda-
dropped program, which was obtained automatically.

Again, we find it more clear to compare Figure 14 and Figure 16 rather
than Figure 14 and Figure 15. The relative positions of the residual recursive
functions now match the relative positions of the source while loops. (N.B.
Again, a monovariant specializer would have directly produced the program
of Figure 16).

6.2 Programming environment

It is our programming experience that lambda-lifting and lambda-dropping
go beyond a mere phase in a compiler for functional programs. They can
offer truly useful (and often unexpected) views of one’s programs. For ex-
ample, lambda-dropping tells us that in Figure 11, the fold functional could
have been defined locally to the main function.

In the context of teaching, these unexpected views often help students
to improve their understanding of lexical scope and block structure, and to
use them more effectively in programming. Sections 6.3 to 6.5 present more
examples.
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{

int res=1; int n=4; int cnt=1;

while (cnt > 0) {

res = 1; n = 4;

while (n > 0) { res = n * res; n = n - 1; }

cnt = cnt - 1;

}

}

Figure 14: Example imperative program.

(define (evprogram-1 s)

(evwhile-1

(intupdate 2 1 (intupdate 1 4 (intupdate 0 1 s)))))

(define (evwhile-1 s)

(if (gtint (fetchint 2 s) 0)

(evwhile-2 (intupdate 1 4 (intupdate 0 1 s)))

s))

(define (evwhile-2 s)

(if (gtint (fetchint 1 s) 0)

(let ([s-1 (intupdate 0 (mulint (fetchint 1 s)

(fetchint 0 s)) s)])

(evwhile-2 (intupdate 1 (subint (fetchint 1 s-1) 1) s-1)))

(evwhile-1 (intupdate 2 (subint (fetchint 2 s) 1) s))))

Figure 15: Specialized (lambda-lifted) version of the definitional interpreter
with respect to Figure 14.
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(define (evprogram-1 s)

(letrec

([evwhile-1

(lambda (s)

(letrec

([evwhile-2

(lambda (s)

(if (gtint (fetchint 1 s) 0)

(let ([s-1 (intupdate 0

(mulint (fetchint 1 s)

(fetchint 0 s))

s)])

(evwhile-2 (intupdate 1

(subint (fetchint 1 s-1)

1)

s-1)))

(evwhile-1 (intupdate 2

(subint (fetchint 2 s) 1)

s))))])

(if (gtint (fetchint 2 s) 0)

(evwhile-2 (intupdate 1 4 (intupdate 0 1 s)))

s)))])

(evwhile-1 (intupdate 2 1 (intupdate 1 4 (intupdate 0 1 s))))))

Figure 16: Lambda-dropped version of Figure 15.
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6.3 From Curry to Turing

Here is Curry’s fixpoint operator [5]:

λf.let g = λx.f (x x)
in g g

f occurs free in g. Lambda-lifting this block yields the following λ-term:

λf.let g = λf.λx.f (x x)
in g f (g f)

Control-flow analysis tells us that x can only denote g f and that all the
occurrences of f denote the same value. Thus we can safely relocate the
second occurrence of f , in the let body, into the let header:

λf.let g = λf.λx.f (x f x)
in g f g

Again, control-flow analysis informs us of the only application sites of the
λ-abstraction denoted by g. Thus we can safely swap its two parameters:

λf.let g = λx.λf.f (x x f)
in g g f

Eta-reducing this term yields Turing’s fixpoint operator [5].

6.4 Detecting global variables

Following Schmidt’s initial impetus on single-threading [31], Sestoft has in-
vestigated the detection of global variables in recursive equations [33], and
Fradet, the detection of single-threaded variables using continuations [16].
Such variables come in two flavors: global, read-only variables, and updat-
able, single-threaded variables.

Lambda-dropping reveals read-only global variables by localizing blocks.
(N.B. Many of these global variables are not global to a whole program,
only for parts of it. These parts are localized.) Conversely, transforming a
program into continuation-passing style (CPS) reveals single-threaded vari-
ables: their value is passed to the continuation. This last point of course
suggests to lambda-drop after CPS transformation.
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6.5 Continuation-based programming

Shivers optimizes a tail-recursive function by “promoting” its CPS coun-
terpart from being a function to being a continuation [35]. For example,
consider the function returning the last element of a non-empty list.

letrec last = λx.let t = tl x
in if t = nil

then hd x
else last t

in last l

Its (call-by-name)6 CPS counterpart can be written as follows.

λk.letrec last′ = λx.λk.tl′ x λt.if t = nil
then hd′ x k
else last′ t k

in last′ l k

where hd′ and tl′ are the CPS versions of hd and tl, respectively. The type
of last′ reads:

Value→ (Value→ Answer)→ Answer.

Shivers promotes last′ from the status of function to the status of continu-
ation as follows:

λk.letrec last′ = λx.tl′ x λt.if t = nil
then hd′ x k
else last′ t

in last′ l

The type of last′ now reads:

Value→ Answer.

It coincides with the type of a continuation, since last′ does not pass con-
tinuations anymore. Promoting a function into a continuation amounts to
parameter-dropping its continuation.

Lambda-dropping the CPS counterpart of programs that use call/cc also
offers a convenient alternative to dragging around escape functions at each
function call.

6For example.
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6.6 An empirical study

Lambda-dropping a program removes formal parameters from functions,
making locally bound variables free to the function. An implementation
must handle these free variables. In languages where functions are first-class
citizens, it is usually necessary to store the bindings of these free variables
when passing a function as a value. Most implementations use closures for
this purpose.

6.6.1 Considerations

Creating a closure usually incurs extra overhead. Values must be copied
into the closure, the closure takes up either stack or heap space and it is
manipulated by the memory manager. Looking up values in a closure often
takes more instructions than referencing a formal parameter. The closure
of a function is created upon entry into its definitional block. Thus, the
function can be called many times with the same closure. This is relevant
in the case of recursive functions, since the surrounding block has already
been entered when the function calls itself.

A recursive function in a program written without block structure must
explicitly manipulate everything it needs from the environment at every
recursive call. A contrario, if the function has many free variables, e.g.,
after lambda-dropping, the performance of the program may be improved:

• Fewer values need to be pushed onto the stack at each recursive call.
This reduces the number of machine instructions spent on each func-
tion invocation.

• If a free variable is used in special cases only, it might not be manip-
ulated during the execution of the body of the function. This reduces
the amount of data processing, potentially reducing register spilling
and improving cache performance.

A compiler unfolding recursive functions up to a threshold could lambda-
drop locally before unfolding, thereby globalizing constant parameters, for
example.

6.6.2 Experiments

Initial experiments suggest that lambda-dropping can improve the perfor-
mance of recursive functions, most typically for programs performing re-
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cursive descents. The improvement depends on the implementation, the
number of parameters removed, the resulting number of parameters, and
the depth of the recursion. It is our experience that lambda-dropping in-
creases performance for the following implementations of block-structured
languages:

• Scheme: SCM and Scheme 48;

• ML: Standard ML of New Jersey and Moscow ML;

• Haskell: the Glasgow Haskell Compiler and Gofer;

and also for implementations of imperative languages such as Delphi Pascal,
Gnu C and Java 1.1.

In some implementations, such as Standard ML of New Jersey, dropping
one out of two formal parameters decreases performance. But dropping five
out of seven can (in slightly contrived cases) result in a program 7 times
faster than the original. In Chez Scheme, however, lambda-dropping entails
a slight slowdown in all cases. Limiting our tests to a few programs stressing
recursion and parameter passing gave speedups ranging from 1.05 to 2.0 in
most cases. This was observed on all implementations but Chez Scheme.

We are currently developing an abstract model describing the costs of
procedure invocation and closure creation. The model is parameterized by
the costs of the basic operations of a low-level abstract machine. Perhaps it
will prove useful to explain the results and, if possible, predict the usefulness
of lambda-dropping in given situations.

More detailed information on the experiments, the abstract model, and
the results can be found in the second author’s MS thesis [32].

6.7 Time complexity

The lambda-lifting algorithm has a time complexity of O(n3 + m logm),
where n is the maximal number of functions declared in a letrec block and
m is the size of the program. The n3 component is derived from solving the
set equations during the parameter lifting stage [19].

The lambda-dropping algorithm has a time complexity of O(n2 +
m logm), where n is the number of definitions and m is the size of the pro-
gram. The n2 component is derived from Step 3 of the parameter-dropping
stage. In a worst-case situation, we may need to make n traversals of the
graph (which has size n) during this step.
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7 Related Work

Aside from Peyton Jones’s localization of blocks (Section 5.1.3), Sestoft’s
detection of read-only variables (Section 6.4) and Meijer’s unpublished note
“Down with Lambda-Lifting” (April 1992) — none of which directly ad-
dresses lambda-dropping — we do not know of any work about lambda-
dropping. There is, however, plenty of work related to lambda-lifting.

7.1 Enabling principles

The enabling principles of lambda-lifting are worth pointing out: Peter
Landin’s correspondence principle [23], which has been formalized as cat-
egorical exponentiation [4], lets us remove let statements.

let x = a in e ≡ (λx.e) a

Eta-expansion lets us removes free variables. Let associativity enables let-
floating, which lets us globalize function definitions that have no free vari-
ables.

7.2 Curried and lazy vs. uncurried and eager programs

Johnsson concentrated on lambda-lifting towards mutually recursive equa-
tions [19], but alternative approaches exist. The first one seems to be
Hughes’s supercombinator abstraction, where recursion is handled through
self-application and full laziness is a point of concern [18]. Peyton Jones
provides a broad overview about fully lazy supercombinators [27, 28, 29].
Essentially, instead of lifting only free variables, one lifts maximally free
expressions. Fully lazy lambda-dropping would amount to keep maximally
free expressions instead of identifiers in the initial calls to local functions.

In their Scheme compiler Twobit, Clinger and Hansen also use lambda-
lifting [9]. They, however, modify the flow equations to reduce the arity
of lambda-lifted procedures. Lambda-lifting is also stopped when its cost
outweighs its benefits, regarding tail-recursion and allocation of closures in
the heap. Lambda-lifting helps register allocation by indicating unchanging
arguments across procedure calls.

7.3 Closure conversion

To compile Standard ML programs, Appel represents a closure as a vector
[2]. The first element of the vector points to a code address. The rest of the

45



vector contains the values of the free variables. Applying a closure to actual
parameters is done by passing to the code address the closure itself and the
actual parameters. Thus calls are compiled independently of the number of
free variables of the called function. This situation is obtained by “closure
conversion.” Once a program is closure-converted, it is insensitive to lexical
scope and thus it can be turned into recursive equations.

Closure conversion, however, is different from lambda-lifting, for the two
following reasons:

• In both closure-converted and lambda-lifted programs, lambda ab-
stractions are named. In a closure-converted program, free variables
are passed only when the name is defined. In a lambda-lifted program,
free variables are passed each time the name is used.

• Closure conversion only considers the free variables of a lambda-
abstraction. Lambda-lifting also considers those of the callees of this
lambda-abstraction.

In the latter sense, lambda-lifting can be seen as the transitive closure of
closure conversion.

Steckler and Wand consider a mix between lambda-dropping and closure
conversion: so-called “lightweight closures” [39]. Such closures do not hold
the free variables that are in scope at the application sites of this closure.
A similar concern leads Shao and Appel to decide whether to implement
closures in a deep or in a flat way [34].

7.4 Analogy with the CPS transformation

An analogy springs to the mind: continuation-based compilation. As ob-
served by Sabry, Felleisen, et al. [15], CPS compilers proceed in two steps:
first, source programs are transformed into continuation-passing style, but
eventually they are mapped back to direct style.

One is left with the conjecture that both transformations (lambda-
dropping and CPS transformation) expose, in a simpler way, more informa-
tion about the structure of a program during its journey through a compiler.
The CPS transformation reveals control-flow information, while lambda-
dropping reveals scope information. As pointed out in Section 7.2, this
information is useful for lambda-lifting proper. We believe that it is also
useful for stackability detection by region inference.
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7.5 Stackability

Recently, Tofte and Talpin have suggested to implement the λ-calculus with
a stack of regions and no garbage collector [37]. Their basic idea is to asso-
ciate a region for each lexical block, and to collect the region on block exit.
While this scheme is very much allergic to CPS (which “never returns”),
it may very well benefit from preliminary lambda-dropping, since the more
lexical blocks, the better for the region inferencer. We leave this issue for
future work.

7.6 Partial evaluation

Instead of lambda-lifting source programs and lambda-dropping residual
programs, a partial evaluator could process block-structured programs di-
rectly. In the diagram of the abstract, we have depicted such a partial
evaluator with a dashed arrow. To the best of our knowledge, however, ex-
cept for Malmkjær and Ørbæk’s case study presented at PEPM’95 [25], no
partial evaluator for procedural programs handles block structure today.

As analyzed by Malmkjær and Ørbæk, polyvariant specialization of
higher-order, block-structured programs faces a problem similar to Lisp’s
“upward funarg.” An upward funarg is a closure that is returned beyond
the point of definition of its free variables, thus defeating stackability. The
partial-evaluation analogue of an upward funarg is a higher-order function
that refers to a specialization point but is returned past the scope of this
specialization point. What should the specializer do? Ideally it should move
the specialization point outwards to its closest common ancestor together
with the point of use for the higher-order function. Lambda-dropping resid-
ual recursive equations achieves precisely that, merely by sinking blocks as
low as possible.

The problem only occurs for polyvariant specializers for higher-order,
block-structured programs where source programs are not lambda-lifted and
program points are specialized with respect to higher-order values. Of these,
there are few: Lambda-Mix [17] and type-directed partial evaluation [13]
are monovariant; Schism [10] and Similix [8] lambda-lift before binding-time
analysis; Pell-Mell [24] lambda-lifts after binding-time analysis; ML-Mix [6]
does not specialize with respect to higher-order values; and Fuse [30] does
not allow upwards funargs.
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7.7 Other program transformations

Other program transformations can also benefit from lambda-dropping: in
Wadler’s work on deforestation [38], for example, the “macro” style amounts
to lambda-dropping by hand.

8 Conclusion and Issues

In the mid 80’s, Hughes, Johnsson and Peyton Jones presented lambda-
lifting: the transformation of functional programs into recursive equations.
Since then, lambda-lifting seems to have been mostly considered as an inter-
mediate phase in compilers. It is our contention that lambda-lifting is also
interesting as a source-to-source program transformation, together with its
inverse: lambda-dropping.

In this article, we have introduced lambda-dropping, outlined some of its
properties, and mentioned some other applications than our main one: as a
back end in a partial evaluator. We have implemented a lambda-dropper in
Scheme for the target language of Schism and we plan to port it in ML for
Pell-Mell. As this article is going to press, we do not have (yet) any signifi-
cant statistics on the success rate of lambda-dropping over typical residual
programs. We are also formalizing lambda-lifting and lambda-dropping in
order to prove their correctness (it should be mentioned that we are not
aware of any such correctness proofs for lambda-lifting). Finally, we are
investigating faster algorithms using set constraints.
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