80 research outputs found

    Single Channel ECG for Obstructive Sleep Apnea Severity Detection using a Deep Learning Approach

    Full text link
    Obstructive sleep apnea (OSA) is a common sleep disorder caused by abnormal breathing. The severity of OSA can lead to many symptoms such as sudden cardiac death (SCD). Polysomnography (PSG) is a gold standard for OSA diagnosis. It records many signals from the patient's body for at least one whole night and calculates the Apnea-Hypopnea Index (AHI) which is the number of apnea or hypopnea incidences per hour. This value is then used to classify patients into OSA severity levels. However, it has many disadvantages and limitations. Consequently, we proposed a novel methodology of OSA severity classification using a Deep Learning approach. We focused on the classification between normal subjects (AHI 30). The 15-second raw ECG records with apnea or hypopnea events were used with a series of deep learning models. The main advantages of our proposed method include easier data acquisition, instantaneous OSA severity detection, and effective feature extraction without domain knowledge from expertise. To evaluate our proposed method, 545 subjects of which 364 were normal and 181 were severe OSA patients obtained from the MrOS sleep study (Visit 1) database were used with the k-fold cross-validation technique. The accuracy of 79.45\% for OSA severity classification with sensitivity, specificity, and F-score was achieved. This is significantly higher than the results from the SVM classifier with RR Intervals and ECG derived respiration (EDR) signal feature extraction. The promising result shows that this proposed method is a good start for the detection of OSA severity from a single channel ECG which can be obtained from wearable devices at home and can also be applied to near real-time alerting systems such as before SCD occurs

    Electrocardiogram Monitoring Wearable Devices and Artificial-Intelligence-Enabled Diagnostic Capabilities: A Review

    Get PDF
    Worldwide, population aging and unhealthy lifestyles have increased the incidence of high-risk health conditions such as cardiovascular diseases, sleep apnea, and other conditions. Recently, to facilitate early identification and diagnosis, efforts have been made in the research and development of new wearable devices to make them smaller, more comfortable, more accurate, and increasingly compatible with artificial intelligence technologies. These efforts can pave the way to the longer and continuous health monitoring of different biosignals, including the real-time detection of diseases, thus providing more timely and accurate predictions of health events that can drastically improve the healthcare management of patients. Most recent reviews focus on a specific category of disease, the use of artificial intelligence in 12-lead electrocardiograms, or on wearable technology. However, we present recent advances in the use of electrocardiogram signals acquired with wearable devices or from publicly available databases and the analysis of such signals with artificial intelligence methods to detect and predict diseases. As expected, most of the available research focuses on heart diseases, sleep apnea, and other emerging areas, such as mental stress. From a methodological point of view, although traditional statistical methods and machine learning are still widely used, we observe an increasing use of more advanced deep learning methods, specifically architectures that can handle the complexity of biosignal data. These deep learning methods typically include convolutional and recurrent neural networks. Moreover, when proposing new artificial intelligence methods, we observe that the prevalent choice is to use publicly available databases rather than collecting new data

    Mobile Health Technologies

    Get PDF
    Mobile Health Technologies, also known as mHealth technologies, have emerged, amongst healthcare providers, as the ultimate Technologies-of-Choice for the 21st century in delivering not only transformative change in healthcare delivery, but also critical health information to different communities of practice in integrated healthcare information systems. mHealth technologies nurture seamless platforms and pragmatic tools for managing pertinent health information across the continuum of different healthcare providers. mHealth technologies commonly utilize mobile medical devices, monitoring and wireless devices, and/or telemedicine in healthcare delivery and health research. Today, mHealth technologies provide opportunities to record and monitor conditions of patients with chronic diseases such as asthma, Chronic Obstructive Pulmonary Diseases (COPD) and diabetes mellitus. The intent of this book is to enlighten readers about the theories and applications of mHealth technologies in the healthcare domain

    Algorithms for automated diagnosis of cardiovascular diseases based on ECG data: A comprehensive systematic review

    Get PDF
    The prevalence of cardiovascular diseases is increasing around the world. However, the technology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject is being researched, and different methods can automatically identify these diseases, helping patients and healthcare professionals with the treatments. This paper presents a systematic review of disease identification, classification, and recognition with ECG sensors. The review was focused on studies published between 2017 and 2022 in different scientific databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The study demonstrated that different datasets are available online with data related to various diseases. Several ML/DP-based models were identified in the research, where Convolutional Neural Network and Support Vector Machine were the most applied algorithms. This review can allow us to identify the techniques that can be used in a system that promotes the patient’s autonomy.N/

    mHealth Engineering: A Technology Review

    Get PDF
    In this paper, we review the technological bases of mobile health (mHealth). First, we derive a component-based mHealth architecture prototype from an Institute of Electrical and Electronics Engineers (IEEE)-based multistage research and filter process. Second, we analyze medical databases with regard to these prototypic mhealth system components.. We show the current state of research literature concerning portable devices with standard and additional equipment, data transmission technology, interface, operating systems and software embedment, internal and external memory, and power-supply issues. We also focus on synergy effects by combining different mHealth technologies (e.g., BT-LE combined with RFID link technology). Finally, we also make suggestions for future improvements in mHealth technology (e.g., data-protection issues, energy supply, data processing and storage)

    Automated sleep apnea detection in raw respiratory signals using long short-term memory neural networks

    Get PDF
    Sleep apnea is one of the most common sleep disorders and the consequences of undiagnosed sleep apnea can be very severe, ranging from increased blood pressure to heart failure. However, many people are often unaware of their condition. The gold standard for diagnosing sleep apnea is an overnight polysomnography in a dedicated sleep laboratory. Yet, these tests are expensive and beds are limited as trained staff needs to analyze the entire recording. An automated detection method would allow a faster diagnosis and more patients to be analyzed. Most algorithms for automated sleep apnea detection use a set of human-engineered features, potentially missing important sleep apnea markers. In this paper, we present an algorithm based on state-of-the-art deep learning models for automatically extracting features and detecting sleep apnea events in respiratory signals. The algorithm is evaluated on the Sleep-Heart-Health-Study-1 dataset and provides per-epoch sensitivity and specificity scores comparable to the state of the art. Furthermore, when these predictions are mapped to the apnea-hypopnea index, a considerable improvement in per-patient scoring is achieved over conventional methods. This paper presents a powerful aid for trained staff to quickly diagnose sleep apnea

    Front-Line Physicians' Satisfaction with Information Systems in Hospitals

    Get PDF
    Day-to-day operations management in hospital units is difficult due to continuously varying situations, several actors involved and a vast number of information systems in use. The aim of this study was to describe front-line physicians' satisfaction with existing information systems needed to support the day-to-day operations management in hospitals. A cross-sectional survey was used and data chosen with stratified random sampling were collected in nine hospitals. Data were analyzed with descriptive and inferential statistical methods. The response rate was 65 % (n = 111). The physicians reported that information systems support their decision making to some extent, but they do not improve access to information nor are they tailored for physicians. The respondents also reported that they need to use several information systems to support decision making and that they would prefer one information system to access important information. Improved information access would better support physicians' decision making and has the potential to improve the quality of decisions and speed up the decision making process.Peer reviewe

    Preface

    Get PDF

    Machine learning algorithms development for sleep cycles detection and general physical activity based on biosignals

    Get PDF
    In this work, machine learning algorithms for automatic sleep cycles detection were developed. The features were selected based on the AASM manual, which is considered the gold standard for human technicians. These include features such as saturation of peripheral oxygen or others related to heart rate variation. As normally, the sleep phases naturally differ in frequency, to balance the classes within the dataset, we either oversampled the least common sleep stages or undersampled the most common, allowing for a less skewed performance favouring the most represented stages, while simultaneously improving worst-stage classification. For training the models we used MESA, a database containing 2056 full overnight unattended polysomnographies from a group of 2237 participants. With the goal of developing an algorithm that would only require a PPG device to be able to accurately predict sleep stages and quality, the main channels used from this dataset were SpO2 and PPG. Employing several popular Python libraries used for the development of machine learning and deep learning algorithms, we exhaustively explored the optimisation of the manifold parameters and hyperparameters conditioning both the training and architecture of these models in order for them to better fit our purposes. As a result of these strategies, we were able to develop a neural network model (Multilayer perceptron) with 80.50% accuracy, 0.7586 Cohen’s kappa, and 77.38% F1- score, for five sleep stages. The performance of our algorithm does not seem to be correlated with sleep quality or the number of transitional epochs in each recording, suggesting uniform performance regardless of the presence of sleep disorders. To test its performance in a different real-world scenario we compared the classifications attributed by a popular sleep stage classification android app, which collected information using a smartwatch, and our algorithm, using signals obtained from a device developed by PLUX. These algorithms displayed a strong level of agreement (90.96% agreement, 0.8663 Cohen’s kappa).Neste trabalho, foram desenvolvidos algoritmos de aprendizagem de máquinas para a detecção automática de ciclos de sono. Os sinais específicos captados durante a extração de características foram selecionados com base no manual AASM, que é considerado o padrão-ouro para técnicos. Estas incluem características como a saturação do oxigénio periférico ou outras relacionadas com a variação do ritmo cardíaco. A fim de equilibrar a frequência das classes dentro do conjunto de dados, ora se fez a sobreamostragem das fases menos comuns do sono, ora se fez a subamostragem das mais comuns, permitindo um desempenho menos enviesado em favor das fases mais representadas e, simultaneamente, melhorando a classificação das fases com pior desempenho. Para o treino dos modelos criados, utilizámos MESA, uma base de dados contendo 2056 polissonografias completas, feitas durante a noite e sem vigilância, de um grupo de 2237 participantes. Do conjunto de dados escolhido, os principais canais utilizados foram SpO2 e PPG, com o objetivo de desenvolver um algoritmo que apenas exigiria um dispositivo PPG para poder prever com precisão as fases e a qualidade do sono. Utilizando várias bibliotecas populares de Python para o desenvolvimento de algoritmos de aprendizagem de máquinas e de aprendizagem profunda, explorámos exaustivamente a optimização dos múltiplos parâmetros e hiperparâmetros que tanto condicionam a formação como a arquitetura destes modelos, de modo a que se ajustem melhor aos nossos propósitos. Como resultado disto, fomos capazes de desenvolver um modelo de rede neural (Multilayer perceptron) com 80.50% de precisão, 0.7586 kappa de Cohen e F1-score de 77.38%, para cinco fases de sono. O desempenho do nosso algoritmo não parece estar correlacionado com a qualidade do sono ou o número de épocas de transição em cada gravação, sugerindo um desempenho uniforme independentemente da presença de distúrbios do sono. Para testar o seu desempenho num cenário de mundo real diferente, comparámos as classificações atribuídas por uma aplicação Android de classificação de fases do sono popular, através da recolha de informação por um smartwatch, e o nosso algoritmo, utilizando sinais obtidos a partir de um dispositivo desenvolvido pela PLUX. Estes algoritmos demonstraram um forte nível de concordância (90.96% de concordância, 0.8663 kappa de Cohen)
    • …
    corecore