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A B S T R A C T   

The prevalence of cardiovascular diseases is increasing around the world. However, the tech-
nology is evolving and can be monitored with low-cost sensors anywhere at any time. This subject 
is being researched, and different methods can automatically identify these diseases, helping 
patients and healthcare professionals with the treatments. This paper presents a systematic review 
of disease identification, classification, and recognition with ECG sensors. The review was focused 
on studies published between 2017 and 2022 in different scientific databases, including PubMed 
Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, 
and Frontiers. It results in the quantitative and qualitative analysis of 103 scientific papers. The 
study demonstrated that different datasets are available online with data related to various dis-
eases. Several ML/DP-based models were identified in the research, where Convolutional Neural 
Network and Support Vector Machine were the most applied algorithms. This review can allow us 
to identify the techniques that can be used in a system that promotes the patient’s autonomy.  

Abbreviations: WHO, World Health Organization; ECG, Electrocardiography; AI, Artificial Intelligence; DL, Deep Learning; ML, Machine 
Learning; NLP, Natural Language Processing; CNN, Concolutional Neural Networks; SHAP, SHapley Additive exPlanations; SVM, Support Vector 
Machine; LASSO, Least Absolute Shrinkage and Selection Operator; MLR, Multiple Linear Regression; POAF, Postoperative Atrial Fibrillation; MLP, 
Multiplayer Perceptron; LR, Linear Regression; LSTM, Long Short-Term Memory; kNN, k-nearest neighbors; BNN, Binarized Neural Network; RNN, 
Recurrent Neural Network; GRU, Gated Recurrent Unit; DNN, Deep Neural Networks; GMM, Gaussian Mixture Model; GAN, Generative Adversarial 
Networks; GNB, Gaussian Naive bayes; LDA, Linear Discriminant Analysis; RF, Random Forest. 
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1. Introduction 

Cardiovascular diseases are one of the leading causes of death worldwide, and the World Health Organization (WHO) estimated 
that 17.9 million persons died in 2019 of this kind of disease [1]. Cardiovascular diseases are related to health problems that affect the 
heart and blood vessels [2]. The risk of these diseases increases with smoking, high blood pressure, high cholesterol, unhealthy diet, 
lack of exercise, and obesity [3]. 

The use of technology may improve healthcare treatments and monitoring with the help of different sensors available in the devices 
used daily by the population [4,5]. These devices, including smartphones, laptops, or tablets, allow the persons to be in constant 
contact with medical doctors, or they may have access to different information online [6–10]. It exploits the concepts of patient 
autonomy and empowerment, where each one can have tools to benefit the health. It is now included in a concept related to 5P-Med-
icine, where developing different devices will help healthcare in the future [11,12]. 

Regarding cardiovascular diseases, one crucial data to acquire from the individuals is their feedback [13–16]. However, due to the 
low cost of some Electrocardiography (ECG) sensors, they can be used as a complement for the better visualization of the healthcare 
professionals [17,18]. Also, Artificial Intelligence is a computer science field that allows the creation of solutions for the automatic 
diagnosis of different diseases based on the data acquired from the sensors [19–21]. It included identifying different abnormal patterns 
of the data obtained from the sensors, allowing the identification of various diseases [22–25]. Currently, this type of solution is scarce 
and under development, but it is essential to give autonomy to the patients [13,26,27]. Mainly, different datasets are related to various 
diseases identified by each capture [28–30]. A standard and secure application using data worldwide are essential to promote a 
considerable advance in healthcare treatments [31,32]. However, the General Data Protection Regulation must be considered. 

As the ECG data is responsible for measuring heart rates and rhythms [33], it may be health healthcare professionals to check 
different healthcare problems remotely or create personalized medication for each individual. The world is constantly evolving, and 
various healthcare problems appear during this pandemic. Thus, the early detection of different diseases with machine learning 
methods may reduce its consequences [34]. 

The purpose of this study consists of a comprehensive systematic review of the different studies available in various scientific 
databases, including PubMed Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Explore, and 
Frontiers published between 2017 and 2022, related to methods for disease identification, classification, and recognition with ECG 
sensors. This review is essential to understand the different usages of the ECG data and the techniques previously used in the literature 
to create a new methodology for the identification of diseases remotely. 

Other reviews are available in the literature but need to cover the parameters in the data and the importance of ECG in cardio-
vascular disease diagnostics. The authors of [35] give an overview of the application of AI and describe AI-based approaches and focus 
only on the AI part of the diagnostics process. In Ref. [36], it is also given an overview of AI-based techniques and emphasizes deep 
learning-based AI. The authors of [37] also provide an overview of the analysis of algorithms for heart sounds. Other reviews exist in 
the literature. The main contribution of this review compared with the other reviews in the literature is that this review analyzes the 
global scope of algorithms for automated diagnosis and treats the approaches from both data acquisition and availability aspects and 
the application of the proposed methods on the diagnosis process. 

2. Methodology 

2.1. Research questions 

This systematic review was focused on the following research questions: (RQ1) Which types of sensors can be used to track different 
diseases? (RQ2) Which ML/DP methods are mainly used primarily to support the automatic analysis of ECG data? (RQ3) Which 
diseases are specifically studied with the datasets available online? (RQ4) What challenges are related to monitoring different diseases 
with sensors? 

2.2. Inclusion criteria 

The research on disease identification, classification, and recognition with automatic methods based on ECG data was based on the 
following inclusion criteria: (1) studies that used ML/DP methods for measuring different parameters related to ECG data; (2) studies 
that are related to cardiovascular diseases; (3) studies that used different sensors to acquire ECG data or present a public dataset; (4) 
studies that find the importance of the ECG data considering for the monitoring of different diseases; (5) studies that include a concrete 
presentation of the purpose of the study; (6) studies with a defined population/dataset; (7) studies that show results (8) studies that 
were published between 2017 and 2022; (9) studies written in English. 

2.3. Search strategy 

This systematic review consisted of the research of studies based on disease identification, classification, and recognition with ECG 
data. The search was performed with a Natural Language Processing (NLP)-based framework [38] in the following databases: PubMed 
Central, Springer, Elsevier, Multidisciplinary Digital Publishing Institute (MDPI), IEEE Xplore, and Frontiers. The keywords applied for 
this research were: “ECG disease identification”, and “ECG disease classification”, “ECG disease recognition”. Each study was filtered 
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Table 1 
Study analysis.  

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

Anand et al. 
[39] 

2022 New Delhi 
(India) 

Journal 
article 

PTB-XL dataset [28] (21837 
samples from 18885 patients) 

The implementation of a number of 
deep neural networks on a publicly 
available dataset of PTB-XL of ECG 
signals for the detection of cardiac 
disorders. 

12-Lead 
ECG 

CNN, SHAP Patient- 
independent 

Cardiovascular 
diseases 

Geweid et al. 
[40] 

2022 Michigan (USA) Journal 
article 

2017 Physionet/CinC challenge 
dataset [41] (8258 recordings) 

A method based on a Hybrid Approach 
of Dual Support Vector Machine is 
used for the detection of atrial 
fibrillation 

1-Lead ECG SVM Patient- 
independent 

Atrial Fibrillation 

Guo et al. [42] 2022 Xian (China) Journal 
article 

423 subjects from the 
International Cooperation Center 
for Hypertrophic Cardiomyopathy 
of Xijing Hospital 

This work aimed to develop a 
pragmatic prediction model based on 
the most common ECG features to 
screen for Hypertrophic 
cardiomyopathy (HCM). 

12-Lead 
ECG 

LASSO, 
MLR 

Patient- 
independent 

Hypertrophic 
Cardiomyopathy 

He et al. [43] 2022 Chengdu 
(China) 

Journal 
article 

100 patients from Department of 
Cardiovascular, West China 
Hospital of Sichuan University 

This study aimed to build statistical 
models and machine learning models 
based on P-wave parameters to predict 
Postoperative Atrial Fibrillation 
(POAF). 

12-Lead 
ECG 

SVM Patient- 
independent 

Postoperative 
Atrial Fibrillation 

Hsu et al. [44] 2022 Hualien 
(Taiwan) 

Journal 
article 

A population of 2,206 military 
males were obtained from the 
cardiorespiratory health in 
eastern armed forces study 
(CHIEF Heart Study) [45,46] 

This study proposed a machine 
learning method for 
electrocardiographic features to 
identify Left Atrial Enlargement in 
young adults. 

12-Lead 
ECG 

MLP, SVM, 
LR 

Patient- 
independent 

Left Atrial 
Enlargement 

Zhao al [47]. 2022 Nanjing (China) Journal 
article 

MIT-BIH arrhythmia database 
[48] (48 patients) 

An improved deep residual 
convolutional neural network is 
proposed to classify arrhythmias 
automatically 

2-Lead ECG CNN Patient- 
independent 

Arrhythmia 

Liu et al. [49] 2022 Harbin (China) Journal 
article 

MIT-BIH arrhythmia database 
[48] (48 patients) 

A network layer design based on LSTM 
to obtain the autoencoder structure is 
optimized. This structure can 
cooperate with the ECG preprocessing 
process designed by the same team to 
obtain better arrhythmia classification 
effects. 

MLII 
(modified 
limb lead II) 
Lead 

Auto-encoders, 
CNN, LSTM 

Patient- 
independent 

Arrhythmia 

Mazidi et al. 
[50] 

2022 Qeshm (Iran) Journal 
article 

MIT–BIH arrhythmia [48] 
database (22 records) 

This study focused on the tunable Q- 
factor wavelet transform algorithm 
and statistical methods to detect PVC. 

2-Lead ECG SVM, kNN Patient- 
independent 

Premature 
Ventricular 
Contraction 

Sawano et al. 
[51] 

2022 Tokyo (Japan) Journal 
article 

29,859 patients The development of a deep 
learning–based artificial intelligence 
algorithm for the diagnosis of 
significant aortic regurgitation using 
electrocardiography. 

12-Lead 
ECG 

CNN Patient- 
specific 

Aortic regurgitation 

Zhao et al. [52] 2022 Guangzhou 
(China) 

Journal 
article 

1863 patients from Third 
Affiliated Hospital of Sun Yat-sen 
University, China 

The propose of this study was to build 
a DL model based on convolutional 
neural networklong short-term 
memory (CNN-LSTM) to detect left 
ventricular hypertrophy 

12-Lead 
ECG 

CNN 
LSTM 

Patient- 
independent 

Left Ventricular 
Hypertrophy 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

Zheng et al. [53] 2022 Orange (USA) Journal 
article 

18612 ECG records extracted 
from 545 patients from Ningbo 
First Hospital of Zhejiang 
University 

This work proposed an artificial 
intelligence-enabled ECG analysis 
algorithm to estimate possible origins 
of idiopathic ventricular arrhythmia 
at a clinical-grade level accuracy. 

12-Lead 
ECG 

Gradient 
Boosting 

Patient- 
independent 

Idiopathic 
Ventricular 
Arrhythmia 

Dey et al. [54] 2021 Chittagong 
(Bangladesh) 

Journal 
article 

517 records of 268 individuals 
from Physikalisch-Technische 
Bundesanstalt (PTB) database 
[55], available in Physionet [56] 

The development of a temporal 
feature-based classification approach 
for myocardial infarction based on 
merging of CNN e bi-LSTM methods. 

12-Lead 
ECG 

CNN, bi-LSTM Patient- 
specific 

Myocardial 
Infarction 

Che et al. [57] 2021 Dalian (China) Journal 
article 

3699 records from males and 
3178 from females 

An end-to-end deep learning 
framework based on convolutional 
neural networks is proposed for ECG 
signal processing and arrhythmia 
classification. 

12-Lead 
ECG 

CNN Patient- 
specific 

Arrhythmia 

Chen et al. [22] 2021 Wuhan (China) Journal 
article 

Intensive Care Medicine Database 
(61,532 patients) 

A deep learning-based diagnosis 
system is proposed for the early 
detection of heart failure particularly 
in elderly patients. 

2-Lead ECG CNN Patient- 
specific 

Heart Failure 

Dai et al. [58] 2021 Hsinchu 
(Taiwan) 

Journal 
article 

PTB Diagnostic ECG [29] 
database (233 subjects) 

A deep convolutional neural network 
to classify five CVDs using standard 
12-Lead ECG signals is proposed. 

12-Lead 
ECG 

CNN Patient- 
independent 

Cardiovascular 
diseases 

Grogan et al. 
[59] 

2021 Minnesota 
(USA) 

Journal 
article 

2541 patients The development of an artificial 
intelligence-based tool to detect 
cardiac amyloidosis from a standard 
12-lead electrocardiogram. 

12-Lead 
ECG 

kNN Patient- 
specific 

Amyloidosis 

Haleem et al. 
[60] 

2021 Coventry (UK) Journal 
article 

PhysioNet’s QT [61] database, 
MIT-BIH Normal Sinus Rhythm 
[62] Database, BIDMC Congestive 
Heart Failure [63] Database, 
MIT-BIH Sudden Cardiac Death 
Holter [64] database, and 
MIT–BIH arrhythmia [48] 

A two-stage multiclass algorithm is 
proposed. The first stage performs 
ECG segmentation based on 
Convolutional Bidirectional LSTM 
neural networks with attention 
mechanisms. A second stage is based 
on a time adaptive CNN applied to 
ECG beats extracted from the first 
stage for several time intervals. 

2-Lead ECG CNN, LSTM Patient- 
independent 

Cardiovascular 
diseases 

Houssein et al. 
[65] 

2021 Minia (Egypt) Journal 
article 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

Different ECG signal descriptors based 
on one-dimensional local binary 
pattern, wavelet, higher-order 
statistical, and morphological 
information are introduced for feature 
extraction. 

ECG sensors SVM Patient- 
independent 

Arrhythmia 

Hua et al. [66] 2021 Wuhan (China) Journal 
article 

40 thousand ECG samples from 
Hefei Hi-tech competition dataset 
[67] 

The development of general feature 
extraction framework for ECG data, 
that can perform various kinds of 
feature engineering tasks, all of them 
have their meaning under a clinical 
context. 

8-Lead ECG BNN Patient- 
independent 

Arrhythmia 

Jahmunah et al. 
[68] 

2021 Jurong West 
(Singapore) 

Journal 
article 

Fantasia [69] and St. Petersburg 
[70] database 

The development of an automated 
system for the automated 
categorization of ECG signals into 

2-Lead ECG CNN Patient- 
independent 

Coronary Artery 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

normal, CAD, myocardial infarction 
and congestive heart failure classes 
using CNN and unique GaborCNN 
models. 

Li et al. [71] 2021 Manchester 
(United 
Kingdom) 

Journal 
article 

6,877 (females: 3,178; males: 
3,699) records collected from 11 
hospitals 

This study aimed to develop an auto- 
detection algorithm, which extracts 
valid features from 12-lead ECG for 
classifying multiple types of cardiac 
states. 

12-Lead 
ECG 

CNN, LSTM, 
BiLSTM, RNN 

Patient- 
independent 

Arrhythmia 

Luo et al. [72] 2021 Kunming 
(China) 

Journal 
article 

MIT-BIH Atrial Fibrillation [73] 
database 

The development of a mixed depth 
model for processing time series to 
predict multi-classification 
electrocardiographs. 

2-Lead ECG CNN, RNNs Patient- 
independent 

Arrhythmia 

Naz et al. [74] 2021 Wah (Pakistan) Journal 
article 

MIT–BIH arrhythmia [48] 
database, CUDB arrhythmia [75] 
database, and Nsr arrhythmia 
database. 

A deep learning approach is proposed 
for the detection of VA. Initially, the 
ECG signals are transformed into 
images that have not been done 
before. Later, these images are 
normalized and utilized to train the 
AlexNet, VGG-16 and Inception-v3 
deep learning models. 

2-Lead ECG SVM Patient- 
independent 

Ventricular 
Arrhythmia 

Nguyen et al. 
[76] 

2021 Wellington 
(New Zealand) 

Journal 
article 

PhysioNet 2017 [41] dataset 
(8528 instances) 

A method is proposed for recognition 
of AF from ECG signals by stacking a 
support vector machine on statistical 
features of segment-based recognition 
units produced by a convolutional 
neural network 

1-Lead ECG CNN, SVM Patient- 
independent 

Atrial Fibrillation 

Radhakrishnan 
et al. [77] 

2021 Hyderabad 
(India) 

Journal 
article 

Physionet Computing in 
Cardiology Challenge 2017 [41] 
dataset (8482 ECG records), 
MIT-BIH Atrial Fibrillation [73] 
database (25 ECG records) 
MIT–BIH arrhythmia [48] dataset 
(47 ECG records) 

A time-frequency domain deep 
learning-based approach is proposed 
to detect AF and classify terminating 
and non-terminating AF episodes 
using ECG signals. 

1-Lead ECG CNN, DL, LSTM Patient- 
independent 

Atrial Fibrillation 

Sabut et al. [78] 2021 Bhubaneswar 
(India) 

Journal 
article 

CUDB [75] and VFDB [79] 
databases 

In this study, a VF/VT classification 
scheme is proposed using a deep 
neural network approach using hybrid 
time–frequency-based features. 

ECG sensors DL, ML Patient- 
independent 

Ventricular 
Arrhythmia 

Yadav et al. [80] 2021 Raigad (India) Conference 
Proceedings 

The ECG signals for 200 
individuals from PTB database 
[81] 

This study developed an approach to 
diagnose MI using 7 -layer deep CNN 
automatically. 

12-Lead 
ECG, 3-Lead 
Frank 

CNN Patient- 
specific 

Myocardial 
Infarction 

Wang et al. [82] 2021 Tianjin (China) Journal 
article 

MIT-BIH arrhythmia [48] 
database and China Physiological 
Signal Challenge (CPSC) 2018 
[83] 

This paper proposes an improved 
gated recurrent unit by setting a scale 
parameter into the existing 
bidirectional GRU model for PVC 
signals recognition. 

ECG sensors CNN, GRU Patient- 
independent 

Premature 
Ventricular 
Contraction 

Wang et al. [84] 2021 Zhengzhou 
(China) 

Journal 
article 

CCDD [85] database In order to better assist doctors in 
diagnosing cardiovascular diseases, a 
set of end-to-end automatic diagnosis 

2-Lead ECG DL, ML Patient- 
independent 

Cardiovascular 
diseases 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

algorithms for ECG diseases based on 
intelligent simulation modeling are 
proposed. 

Wu et al. [86] 2021 Wuhan (China) Journal 
article 

MIT–BIH arrhythmia [48] (48 
ECG records) 

A 12-layer deep one-dimensional 
convolutional neural network is 
proposed for classification of the five 
micro-classes of heartbeat types 

2-Lead ECG CNN, DL, 
Ensemble 
classifiers, ML 

Patient- 
independent 

Arrhythmia 

Xiong et al. [87] 2021 Baoding 
(China) 

Journal 
article 

Physikalisch-Technische- 
Bundesanstalt (PTB) [29] 
database (290 subjects) 

The development of a multi-lead MI 
localization approach based on the 
densely connected convolutional 
network. 

12-Lead 
ECG 

CNN Patient- 
independent 

Myocardial 
infarction 

Zhang et al. [88] 2021 Beijing (China) Journal 
article 

CPSC 2018 dataset [83] (3,178 
females and 3,699 males) 

A deep learning classification method, 
namely, a global hybrid multi-scale 
convolutional neural network is 
proposed, to implement binary 
classification for AF detection. 

1-Lead ECG CNN, DL Patient- 
independent 

Atrial fibrillation 

Zhang et al. [89] 2021 Jinjiang (China) Journal 
article 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

This paper proposed a high-accuracy 
ECG arrhythmia classification method 
based on convolutional neural 
networks. 

ECG sensors CNN Patient- 
independent 

Arrhythmia 

Zhang et al. [90] 2021 Ohio (USA) Journal 
article 

CPSC 2018 [83] dataset The development a deep neural 
network for automatic classification of 
cardiac arrhythmias from 12-Lead 
ECG recordings 

12-Lead 
ECG 

DL, ML, SHAP Patient- 
independent 

Arrhythmia 

Ambhore et al. 
[91] 

2020 Texas (USA) Journal 
article 

MIT-BIH arrhythmia [48] 
database, BIDMC Congestive 
Heart Failure [63] database, 
MIT-BIH Normal Sinus Rhythm 
[62] Database 

CVD detection by using Deep Neural 
Network with the help of Heart Rate 
Variability is proposed. 

ECG sensors CNN, DL, 
Ensemble 
classifiers, ML, 
SVM 

Patient- 
independent 

Cardiovascular 
diseases 

Banerjee et al. 
[92] 

2020 Vellore (India) Conference 
Proceedings 

8528 samples signals from 
Physionet Challenge 2017 CinC 
dataset [41] 

This article aimed at developing a 
complete wearable application that 
use signal pre-processing combined 
with a Deep Learning Model 
consisting of 1-D Convolution Neural 
Networks and Long Short-term 
Memory Networks to classify single- 
lead ECG signals into different 
categories for early diagnosis of 
arrhythmia. 

Single-Lead 
ECG 

CNN, LSTM Patient- 
specific 

Arrhythmia 

Banerjee et al. 
[93] 

2020 Vellore (India) Conference 
Proceedings 

200 individuals were selected 
from MIMIC II waveform dataset 
[94] and the second dataset was 
created using real records from 
150 individuals at the clinic 
environment 

The authors proposed a neural 
network architecture based on hybrid 
CNN-LSTM model, that effectively 
combines two non-specific coronary 
artery disease markers, 1) anomalous 
morphology of Electrocardiogram 
(ECG) waveform and 2) abnormal 
Heart Rate Variability (HRV). 

2-Lead ECG, 
Single-Lead 
ECG 

CNN, 
LSTM 

Patient- 
specific 

Coronary Artery 
Disease 

Bitarafan et al. 
[95] 

2020 Tehran (Iran) Conference 
Proceedings 

Creighton university ventricular 
tachyarrhythmia database [75], 

This research work proposed a deep 
learning method based on hybrid 

ECG sensors CNN, 
LSTM 

Patient- 
specific 

Arrhythmia 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

MIT-BIH atrial fibrillation [96], 
and MIT-BIH arrhythmia 
databases [97] 

DCNN-LSTM model for arrhythmia 
detection and classification that does 
not demand any heuristic 
segmentation. 

Bouny et al. [98] 2020 Mohammedia 
(Morocco) 

Journal 
article 

MIT-BIH Arrhythmia [48] 
database (randomly selected 
45000 ECG fragments) 

This paper presents an End-to-End 
Deep Learning method for heart 
disease diagnosis from single channel 
ECG signal. 

ECG sensors CNN, DL Patient- 
independent 

Cardiovascular 
diseases 

Chumrit et al. 
[99] 

2020 Chiang Rai 
(Thailand) 

Conference 
Proceedings 

MIT-BIH arrythmia, MIT-BIH 
normal sinus rhythm and QT 
database [56] 

This study presented a method for 
arrhythmia detection from the ECG 
signal based on the average energy 
and zero-crossing quantities that are 
extracted from the ECG records. 

ECG sensors SVM Patient- 
specific 

Arrhythmia 

Deng et al. [100] 2020 SuZhou (China) Conference 
Proceedings 

MIT-BIH atrial fibrillation 
database [56] 

The proposed method based on time 
domain features of ECG sequence and 
one-dimensional CNN to detect atrial 
fibrillation. 

ECG sensors CNN, SVM Patient- 
specific 

Atrial Fibrillation 

Hammad et al. 
[101] 

2020 Minya (Egypt) Conference 
Proceedings 

48 ECG records obtained from 47 
subjects composed of 47% female 
and 53% male participants from 
MIT-BIH database [56] 

The proposed technique fused the 
adaptability and flexibility in input- 
output relationships of deep neural 
networks (DNN) models with the 
“learnability” of classical ML methods 
as well as repeatability inherent to the 
mutation, crossover and other 
properties of GA and other 
optimization techniques to realize 
efficient strategy for arrhythmia 
detection. 

5-Lead ECG DNN, kNN, 
SVM, MLP 

Patient- 
specific 

Arrhythmia 

Hatamian et al. 
[102] 

2020 Erlangen 
(Germany) 

Conference 
Proceedings 

8528 ECG signals from 
PhysioNet/CinC challenge 2017 
[41] dataset 

Was investigated the effectiveness of 
two most augmentation algorithms, 
namely Gaussian Mixture Model 
(GMM) and Generative Adversarial 
Networks (GANs) to identify the most 
suitable ones to enhance classification 
performance of Atrial Fibrillation in 
short ECG Signals. 

Single-Lead 
ECG 

GANs, 
GMM 

Patient- 
specific 

Atrial Fibrillation 

Hsu et al. [103] 2020 San Diego 
(USA) 

Conference 
Proceedings 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

A waveform-based signal processing 
(WBSP) technique was presented. 

2-Lead ECG DL, ML Patient- 
independent 

Arrhythmia 

Jiang et al. 
[104] 

2020 Guangzhou 
(China) 

Journal 
article 

12,000 adults those aged over 65 
years old or diagnosed with atrial 
fibrillation (N = 3,585) 

This study aimed to develop an 
artificial intelligence approach based 
on Convolutional Neural Network for 
the detection of Left atrial 
enlargement. 

12-Lead 
ECG 

CNN Patient- 
independent 

Left Atrial 
Enlargement 

Ibrahim et al. 
[105] 

2020 Abu Dhabi 
(United Arab 
Emirates) 

Journal 
article 

713,447 extracted ECG samples 
and associated auxiliary data 
ECG-ViEW II [106] database 

This study proposed framework to 
predict the onset of Acute Myocardial 
Infarction realized with two deep 
learning models, a convolutional 
neural network (CNN) and a recurrent 

12-lead ECG RNN, CNN, 
XGBoost 

Patient- 
specific 

Acute Myocardial 
Infarction 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

neural network (RNN), and a decision- 
tree based model, XGBoost. 

Li et al. [107] 2020 Beijing (China) Journal 
article 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

This paper proposed designing a 
simple architecture of deep neural 
network, CraftNet, for accurately 
recognizing the handcraft features. 

2-Lead ECG DL, Ensemble 
classifiers 

Patient- 
independent 

Cardiovascular 
diseases 

Li et al. [108] 2020 Zhuhai (China) Conference 
Proceedings 

48 ECG signals from PhysioBank 
MIT-BIH arrhythmia [88] 
database 

An ECG classification model by using 
a CNN-based broad learning system 
(CNNBLS) for automatic recognition 
of arrhythmia was proposed. 

MLII and 
V5-Lead 
ECG 

CNN, LSTM, Patient- 
specific 

Arrhythmia 

Liang et al. 
[109] 

2020 Guilin (China) Journal 
article 

MIT–BIH arrhythmia [48] 
Database (1000 10-s single-lead 
ECG segments), ICBEB [24] 
dataset (6,877 records) and 
PhysioNet Challenge 2020 [110] 
database 

A deep learning algorithm for 
exploring the heartbeat event 
classification was proposed, and a 
systemic comparison based on the 
different methods and databases was 
conducted. 

1-Lead and 
12-Lead 
ECG 

CNN, DL, LSTM Patient- 
independent 

Cardiovascular 
diseases 

Prabhakararao 
et al. [111] 

2020 Guwahati 
(India) 

Journal 
article 

data consisted of 124 MI patients, 
49 HC and 41 (26 MMI patients 
and 15 with other cardiac 
diseases) non-MI patients from 
PTB diagnostic database [56] 

A method based on neural network 
with intra- and inter-lead attention 
modules for automated diagnosis of 
MI form non-MI patients using 12-lead 
ECG and patients’ clinical features 
was presented. 

12-Lead 
ECG 

RNN Patient- 
independent 

Myocardial 
Infarction 

Mazaheri et al. 
[112] 

2020 Isfahan (Iran) Journal 
article 

MIT–BIH arrhythmia [48] 
database (45 patients) 

A computer-aided diagnosis system 
was provided for the automated 
classification and diagnosis of seven 
types of cardiac arrhythmias using the 
ECG signal. 

2-Lead ECG ML, kNN Patient- 
independent 

Arrhythmia 

Rahman et al. 
[113] 

2020 Nashville (USA) Conference 
Proceedings 

48 records of two channels ECG 
signals collected from 47 
individuals obtained from MIT- 
BIH Arrhythmia [48] database 

DP 1-D CNN classification model was 
proposed for the automatic ECG 
heartbeat for five distinct types of 
cardiac arrhythmia. 

ECG sensors CNN Patient- 
specific 

Arrhythmia 

Subramanian 
et al. [114] 

2020 Coimbatore 
(India) 

Conference 
Proceedings 

MIT-BIH database [48] This work proposed an SVM based 
solution that classifies ECG data into 
types of arrhythmias. 

ECG sensors SVM Patient- 
specific 

Arrhythmia 

Wang et al. 
[115] 

2020 Shanghai 
(China) 

Journal 
article 

MIT-BIH arrhythmia [48] 
database (25 men and 22 women) 

A dual fully connected neural network 
model for accurate classification of 
heartbeats was presented. 

2-Lead ECG CNN Patient- 
independent 

Arrhythmia 

Wang et al. 
[116] 

2020 Zhengzhou 
(China) 

Journal 
article 

PTB MI ECG [29] database (290 
subjects) 

The aim of the paper was to provide a 
method to detect MI leveraging ECG. 

12-Lead 
ECG 

Ensemble 
classifiers, SVM, 
kNN 

Patient- 
independent 

Myocardial 
Infarction 

Yang et al. [117] 2020 Changchun 
(China) 

Journal 
article 

MIT-BIH Normal Sinus Rhythm 
[62] Database, St Petersburg 
INCART 12-lead Arrhythmia [70] 
Database, and BIDMC Congestive 
Heart Failure [63] Database. 

A CAD and CHF classification method 
based on ECG fragment alignment was 
proposed -principal component 
analysis convolutional network. 

12-Lead 
ECG 

CNN, SVM Patient- 
independent 

Coronary Artery 

Yao et al. [118] 2020 Jinan (China) Journal 
article 

Included dataset of 107 healthy 
control and 93 CAD patients, 
collected by Shandong Provincial 
Qianfoshan Hospital between 

Aimed to explore the efficacy of the 
information derived from QT interval 
time-series and ST–T segment 
waveforms in ECG based automated 

Single-Lead 
ECG 

GNB, RNN Patient- 
specific 

Coronary Artery 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

November 2017 and September 
2019 

CAD detection, an automated 
diagnostic system for CAD was 
developed. 

Zhang et al. 
[119] 

2020 Hefei (China) Journal 
article 

ICBEB [24] dataset (6,877 
subjects) 

A spatio-temporal attention-based 
convolutional recurrent neural 
network was proposed to focus on 
representative features along both 
spatial and temporal axes. 

12-Lead 
ECG 

CNN, DL, RNNs Patient- 
independent 

Arrhythmia 

Bashar et al. 
[120] 

2019 Berlin 
(Germany) 

Conference 
Proceedings 

36 subjects from Medical 
Information Mart for Intensive 
[94] database 

This study presented a method to 
detect AF from ICU patients using the 
MIMIC III ECG waveform. 

ECG sensors SVM, 
LDA, kNN 

Patient- 
specific 

Atrial fibrillation 

Boppana et al. 
[121] 

2019 Chennai (India) Conference 
Proceedings 

PhysioNet Database [81] and 
Apnea ECG image Database 

This study proposed a system to 
conquer the disadvantage of standard 
system, by translating the exact ECG 
by utilizing machine perception and to 
identify the problems in ECG, mainly 
concentrates on OSA as well as 
Myocardial infraction. 

ECG sensors K-Medoids, kNN Patient- 
independent 

Obstructive sleep 
Apnea (OSA), 
Myocardial 
infraction 

Celin et al. [122] 2019 Coimbatore 
(India) 

Conference 
Proceedings 

MIT-BIH Arrhythmia [48] 
database 

The presented paper presented an 
automated long-term ECG signal 
analysis and classification 
methodology based on RF classifier. 

2 -Leads 
ECG 

SVM, Adaboost, 
ANN, RF 

Patient- 
specific 

Arrhythmia 

Deb et al. [123] 2019 Khulna 
(Bangladesh) 

Conference 
Proceedings 

36 signals from MIT-BIH Normal 
Sinus Rhythm Database [62] and 
36 signals from PTB Diagnostic 
[29] ECG Database 

The purpose of this work aimed to 
classify ECG signals into normal and 
abnormal cardiac conditions groups 
using SVM algorithm. 

12-Lead 
ECG, 3 
Frank lead 
ECG 

SVM Patient- 
independent 

Abnormal cardiac 
conditions 

Gao et al. [124] 2019 Zhengzhou 
(China) 

Journal 
article 

MIT-BIH arrhythmia [48] 
database (48 patients) 

A LSTM with FL was proposed to 
handle imbalanced ECG beat data on 
the MIT-BIH arrhythmia database. 

ECG sensors LSTM Patient- 
independent 

Arrhythmia 

Hoang et al. 
[125] 

2019 Hsinchu 
(Taiwan) 

Conference 
Proceedings 

32 subjects (75 records) from 
Physionet St. Petersburg Institute 
of Cardiological Technics [110] 

A multi-leads ECG premature 
ventricular contraction detection 
method using tensor decomposition 
and Convolutional Neural Network 
was proposed. 

6-Lead ECG, 
12-Lead 
ECG 

CNN Patient- 
specific 

Premature 
Ventricular 
Contraction 

Kong et al. [126] 2019 Shanghai 
(China) 

Journal 
article 

1056 AF patients and 904 healthy 
people 

In this study, an improved machine 
learning method was proposed for 
rapid modeling and accurate diagnosis 
of AF. 

Inno-12-U 
ECG 

ML, SVM Patient- 
specific 

Atrial Fibrillation 

Mahmood et al. 
[127] 

2019 Khartoum 
(Sudan) 

Conference 
Proceedings 

Physionet Computing in 
Cardiology Challenge 2017 
dataset [128] 

Comparison study with the purpose to 
propose an approach for selecting the 
best classifier for diagnoses of atrial 
fibrillation (AF) in coronary 
heartbeats. 

1-Lead (LA- 
RA) ECG 

kNN, SVM, 
Decision trees, 
Random Forest, 
AdaBoost 
ensemble 
classifier 

Patient- 
specific 

Atrial Fibrillation 

Li et al. [129] 2019 Taiyuan 
(China) 

Journal 
article 

Chest pain centers (CPCs) of 
Shanxi Academy of Medical 
Sciences dataset (573 patients) 

A deep convolutional neural network- 
Recurrent neural network model for 
automatic staging of heart failure 
diseases in real-time and dynamically 
was proposed. 

2-Lead ECG CNN, DL, ML, 
RNNs 

Patient- 
specific 

Heart Failure 

(continued on next page) 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

Nankani et al. 
[130] 

2019 Assam (India) Conference 
Proceedings 

8528 ECG records from PhysioNet 
Computing in Cardiology 
Challenge 2017 database [128] 

The propose of this study was the 
development of end-to-end 
framework for automatic detection of 
Atrial Fibrillation using Deep Residual 
Learning. 

Single-Lead 
ECG 

CNN, Wider 
CNN, ResNet, 
CRNN 

Patient- 
specific 

Atrial Fibrillation 

Pandey et al. 
[131] 

2019 Raipur (India) Journal 
article 

MIT–BIH arrhythmia [48] 
database 

An 11-layer deep convolutional neural 
network model was proposed for 
classification of the MIT-BIH 
arrhythmia database into five classes 
according to the ANSI–AAMI 
standards. 

ECG sensors CNN Patient- 
independent 

Arrhythmia 

Prabhakararao 
et al. [132] 

2019 Assam (India) Conference 
Proceedings 

549 records from 290 subjects 
with varying cardiac 
abnormalities from PhysioNet/ 
PTBDB diagnostic database [56] 

This study proposed a weighted SVM- 
based approach for automatic 
detection of posterior myocardial 
infarction using VCG signals. 

12-lead 
ECG, 13- 
Lead VCG 

SVM Patient- 
specific 

Posterior 
Myocardial 
Infarction 

Tadesse et al. 
[133] 

2019 Berlin 
(Germany) 

Conference 
Proceedings 

ICBEB [24] dataset (6,877 
subjects) 

An end-to-end trainable cross-domain 
transfer learning was proposed for 
CVD classification from ECG 
waveforms, by utilizing existing 
vision-based CNN frameworks as 
feature extractors, followed by ECG 
feature learning layers. 

12-Lead 
ECG 

CNN, DL Patient- 
independent 

Cardiovascular 
diseases 

Tison et al. 
[134] 

2019 Boston (USA) Journal 
article 

University of California, San 
Francisco [135] database (36186 
ECGs records) 

The development and testing of an 
algorithmic framework that facilitates 
scalable analysis of ECG data while 
preserving interpretable parallels to 
cardiac physiology. 

12-Lead 
ECG 

CNN, ML Patient- 
independent 

Cardiovascular 
diseases 

Tripathy et al. 
[136] 

2019 Hyderabad 
(India) 

Journal 
article 

Medical Center (BIDMC) CHF 
[63] database and MIT-BIH 
arrhythmia [48] database. 

This paper proposed an approach to 
design a classifier-based system for the 
automated detection of CHF. 

2-Lead ECG kNN Patient- 
independent 

Congestive Heart 
Failure 

Wang et al. 
[137] 

2019 Shanghai 
(China) 

Journal 
article 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

An improved CNN was proposed to 
automatically classify the heartbeat of 
arrhythmia. 

2-Lead ECG CNN, ML Patient- 
independent 

Arrhythmia 

Wang et al. 
[138] 

2019 Shenzhen 
(China) 

Conference 
Proceedings 

ICBEB [24] dataset (6,877 
subjects) 

An end-to-end deep learning method 
for multiclass arrhythmia detection 
with multiple stage features fusion 
was proposed. 

12-Lead 
ECG 

CNN Patient- 
specific 

Arrhythmia 

Wu et al. [139] 2019 Shandong 
(China) 

Journal 
article 

Cleveland Heat Disease [140] 
database and Statlog Heart 
Disease [140] database 

A method that uses K-Nearest 
Neighbor to impute missing values of 
ECG data and Z-score to standardize 
ECG data for the requirement of the 
random forest was proposed. This 
study combined the random forest and 
ECG data to develop an ECG left 
ventricular hypertrophy classifier. 

ECG sensors Ensemble 
classifiers, kNN 

Patient- 
independent 

Left Ventricular 
Hypertrophy 

Zhang et al. 
[141] 

2019 Nanjing (China) Journal 
article 

ECG management system of the 
First Affiliated Hospital of Nanjing 
Medical University (277,807 
ECGs records) 

A deep learning method was applied 
to build a system for automated 
detection and classification of ECG 
signals. 

12-Lead 
ECG 

CNN, DL Patient- 
specific 

Cardiovascular 
diseases 
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Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

Abdeldayem 
et al. [142] 

2018 Morgantown 
(USA) 

Conference 
Proceedings 

48 patients’ records from MIT-BIH 
arrhythmia database [48] 

The propose of this study was a 
development of a machine learning 
approach that augments the 
traditional arrhythmia detection 
approaches via our automatic 
arrhythmia classification system. 

2- and 6- 
Leads ECG 

SVM, kNN Patient- 
independent 

Arrhythmia 

Ebrahimzadeh 
et al. [143] 

2018 Tehran (Iran) Journal 
article 

Atrial Fibrillation Prediction 
[144] Database (106 records) 

A method was proposed for the 
prediction of the onset of PAF, 
through integrating classical and 
modern methods 

ECG sensors ML Patient- 
independent 

Atrial Fibrillation 

Gomes et al. 
[145] 

2018 São João del- 
Rei (Brazil) 

Journal 
article 

Guvenir et al. dataset [146] This paper combined several data 
mining techniques, such as clustering, 
feature selection, oversampling 
strategies, and automatic 
classification algorithms to create 
more efficient classification models to 
identify the disease. 

ECG sensors Ensemble 
classifiers, ML 

Patient- 
independent 

Arrhythmia 

Hammad et al. 
[23] 

2018 Harbin (China) Journal 
article 

MIT–BIH arrhythmia [48] dataset 
(25 men and 22 women) 

A classifier that simulates the 
diagnosis of the cardiologist to classify 
the ECG signals into normal and 
abnormal from a single lead ECG 
signal was proposed. 

2-Lead 
(MLII) ECG 
and lead V1 

SVM, kNN Patient- 
independent 

Abnormal Heart 
Conditions 

Hao et al. [147] 2018 Honolulu 
(Hawaii) 

Conference 
Proceedings 

MIT–BIH atrial fibrillation [73] 
database 

A classification method called 
Softmax regression model was 
proposed, and it uses the known state 
data of two-layer neural network 
structure of the Softmax regression 
model for training and learning, and 
then calculates the probability of 
reclassification data belonging to each 
category. 

ECG sensors kNN Patient- 
independent 

Cardiovascular 
diseases 

Iqbal et al. [148] 2018 Kuala Lumpur 
(Malaysia) 

Journal 
article 

MIT-BIH dataset, and University 
of Malaya Medical Center dataset 

An approach called deep deterministic 
learning was proposed, which works 
by combining predefined heart 
activities with fused datasets to 
classify MI and Af. 

2-Lead ECG DL Patient- 
independent 

Myocardial 
infarction Atrial 
fibrillation 

Liu et al. [149] 2018 Ansan (Korea) Conference 
Proceedings 

UCR Time Series Archive [150] 
dataset 

A classification method of heart 
diseases based on ECG by adopting a 
machine learning method, called Long 
Short-Term Memory (LSTM) was 
proposed. 

ECG sensors DL, LSTM, ML Patient- 
independent 

Cardiovascular 
diseases 

Mukherjee et al. 
[25] 

2018 Kolkata (India) Journal 
article 

PhysioNet 2017 Challenge public 
database [41] (8528 ECG 
recordings) 

Developing an algorithm for 
classification of short, single lead 
Electrocardiogram recordings into 
normal, AF, other abnormal rhythms 
and noisy classes 

AliveCor 
device (1- 
Lead ECG) 

Ensemble 
classifiers 

Patient- 
independent 

Atrial fibrillation 

Raj et al. [151] 2018 Bihta (India) Journal 
article 

MIT–BIH arrhythmia [48] 
database 

This study presented a technique for 
representation of electrocardiogram 

ECG sensors SVM Patient- 
independent 

Arrhythmia 

(continued on next page) 

H
.V. Denysyuk et al.                                                                                                                                                                                                  



Heliyon9(2023)e13601

12

Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

signals using sparse decomposition 
using a composite dictionary. 

Raj et al. [152] 2018 Bihta (India) Journal 
article 

MIT–BIH arrhythmia [48] 
database (48 ECG records) 

The proposal of a feature extraction 
method using the sparse 
representation technique to represent 
the different ECG signals for analysis. 

2-Lead ECG SVM, kNN Patient- 
independent 

Arrhythmia 

Warrick et al. 
[153] 

2018 Montreal 
(Canada) 

Journal 
article 

PhysioNet/CinC Challenge 2017 
[41] database (8528 ECG 
recordings) 

This work aimed to construct an 
intelligent tool that assists 
cardiologists in identifying cardiac 
arrhythmias and noise in 
electrocardiogram recordings. 

1-Lead ECG CNN, Ensemble 
classifiers, 
LSTM 

Patient- 
independent 

Arrhythmia 

Wu et al. [154] 2018 Taipei (Taiwan) Conference 
Proceedings 

202 ECG records from MIT-BIH- 
AR database and 897 recordings 
from DeepQ database [155] 

This study presented an end-to-end 
generic ECG heartbeat classification 
model that addresses interpatient 
variability and achieves the state-of- 
the-art performance for arrhythmia 
detection on the MIT-BIH-AR 
database. 

2-Lead ECG, 
single-Lead 
ECG 

CNN Patient- 
specific 

Arrhythmia 

Xu et al. [156] 2018 Jinan (China) Journal 
article 

MIT-BIH Atrial Fibrilation [73] 
database (25 recordings) 

A deep CNN with a total of 12 layers 
was developed to train an AF/non-AF 
classification model. 

ECG sensors CNN Patient- 
independent 

Atrial Fibrillation 

Zhang et al. 
[157] 

2018 Jinan (China) Conference 
Proceedings 

48 ECG records from 47 subjects 
from MIT-BIH database [48] 

In this paper, was propose a nine-layer 
convolutional neural network (CNN) 
that can automatically extract 
appropriate features and detect the 
different categories of ECG beats 
based on individual records. 

1-Lead ECG CNN Patient- 
independent 

Arrhythmia 

Acharya et al. 
[158] 

2017 Singapore Journal 
article 

St. Petersburg Institute of 
Cardiological Technics 12-lead 
Arrhythmia [70] Database and 
Fantasia open access [69] 
database 

This work proposed application of 
Higher-Order Statistics and Spectra 
for an automated classification of 
normal and CAD conditions using ECG 
signals. 

12-Lead 
ECG 

kNN Patient- 
independent 

Coronary artery 

Andreotti et al. 
[159] 

2017 Oxford (United 
Kingdom) 

Conference 
Proceedings 

8,528 ECG segments from 
Physionet/Computing in 
Cardiology Challenge 2017 
database [128] 

This study presented a comparison of 
a feature-based and a deep learning 
approach to classify rhythms from 
short ECG segments. 

Single-Lead 
ECG 

CNN, RNNs Patient- 
specific 

Atrial Fibrillation 

Couceiro et al. 
[160] 

2017 Coimbra 
(Portugal) 

Conference 
Proceedings 

12 patients Model based on SVM algorithm for AF 
detection was proposed. 

12-Lead 
ECG 

SVM Patient- 
specific 

Atrial Fibrillation 

Dolatabadi et al. 
[161] 

2017 Tehran (Iran) Journal 
article 

46 men and 29 women A method for the automatic diagnosis 
of normal and coronary artery disease 
conditions using Heart Rate 
Variability signals extracted from 
electrocardiogram was proposed. 

ECG sensors SVM Patient- 
specific 

Coronary Artery 

Khatun et al. 
[162] 

2017 Memphis (USA) Conference 
Proceedings 

440 records from PTB Diagnostic 
ECG database [81] 

This work focused on the detection of 
MI and AR from single-lead ECG data 
applying ML technique and compares 
different lead performances in order 
to find the most suitable lead so that 
any of these two diseases can be 

Single-Lead 
ECG 

Bagging Tree Patient- 
specific 

Myocardial 
Infarction, 
Arrhythmia 
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H
.V. Denysyuk et al.                                                                                                                                                                                                  



Heliyon9(2023)e13601

13

Table 1 (continued ) 

Paper Year Location Type of 
Publication 

Population/Dataset Purpose of Study Sensors ML/DP Methods Approach Diseases 

detected using a single classifier with 
minimum delay. 

Pławiak et al. 
[163] 

2017 Krakow 
(Poland) 

Journal 
article 

MIT–BIH arrhythmia [48] 
database (45 patients) 

This article presented a research 
methodology that enables the 
classification of cardiac disorders 
based on ECG signal analysis and an 
evolutionary-neural system. 

1-Lead ECG SVM Patient- 
independent 

Cardiovascular 
diseases 

Pławiak et al. 
[164] 

2017 Coimbatore 
(India) 

Journal 
article 

MIT–BIH arrhythmia [48] 
database (29 patients) 

This article presented a genetic 
ensemble of classifiers applied to 
classification of cardiac disorders 
based on ECG signal analysis. 

1-Lead ECG Ensemble 
classifiers 

Patient- 
independent 

Myocardial 
infarction 

Plesinger et al. 
[165] 

2017 Brno (Czech 
Republic) 

Conference 
Proceedings 

Physionet Challenge 2017 
database [128] 

This study presented a method for 
automated classification of holter ECG 
recordings into four groups: normal 
recordings, recordings with atrial 
fibrillation, recordings with any other 
arrhythmia, and noisy recordings. 

1-Lead ECG CNN Patient- 
specific 

Atrial Fibrillation, 
Arrhythmia 

Shimpi et al. 
[166] 

2017 Mumbai (India) Conference 
Proceedings 

279 different attributes from the 
cardiac arrhythmia dataset of the 
UCI machine learning repository 
[167] 

This paper introduced an approach to 
classify the ECG data into one of the 
sixteen types of arrhythmia using 
Machine Learning. 

ECG sensors Random Forest, 
SVM, Logistic 
Regression and 
kNN 

Patient- 
specific 

Arrhythmia 

Soliński et al. 
[168] 

2017 Warsaw 
(Poland) 

Conference 
Proceedings 

8528 ECG records from PhysioNet 
Challenge database [128] 

This study aimed to develop machine 
learning based algorithm for 
classification of AF and other rhythms 
from short-term signal. 

Single-Lead 
ECG 

ANN Patient- 
specific 

Atrial Fibrillation 

Tan et al. [169] 2017 Singapore Journal 
article 

Fantasia [69] and St Petersburg 
Institute of Cardiology Technics 
[70] database (7 CAD and 40 
normal subjects) 

The implementation of a long short- 
term memory network with a 
convolutional neural network to 
automatically diagnose CAD ECG 
signals was proposed. 

2-Lead ECG CNN, DL, LSTM Patient- 
independent 

Coronary Artery 

Warrick et al. 
[170] 

2017 Montreal 
(Canada) 

Conference 
Proceedings 

PhysioNet Challenge 2017 dataset 
[128] which consisted of 8528 
ECG signals 

A deep learning model, named CL3, 
for automatic classification of cardiac 
arrhythmias based on raw single lead 
ECGs was proposed 

single-Lead 
ECG 

CNNc, LSTM Patient- 
specific 

Arrhythmia  
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using the defined criteria presented in Section 2.2. The research was performed on November 18, 2022. 

2.4. Extraction of study characteristics 

There are specific parameters extracted from the studies. The information from the studies was classified and presented in Table 1 
by the following terms: year of publication, location, type of publication, population/dataset, the purpose of the studies, sensor/ 
equipment, ML/DP applied methods, approach, and diseases. Some clarifications related to the studies were discovered by contacting 
the respective authors of the analyzed studies. 

3. Results 

As presented in Fig. 1, this systematic review found 21145 articles, of which 3892 are duplicates, 9013 are identified as incomplete 
sources, and 7819 are marked as irrelevant by automation tools. The remaining 421 studies were manually analyzed. In the analysis 
and full-text evaluation, we removed 20 papers that were Review/Survey, and 298 papers were not related to the main subject. The 
remaining 103 papers were included in the qualitative and quantitative synthesis. In summary, we examined 103 scientific articles. 
The reader must check the original published works for more information relevant to the different studies. 

3.1. Quantitative analysis 

Based on the results presented in Table 1, the analyzed studies were published between 2017 and 2022, reporting 11 studies in 
2022 (10.7%), 23 studies in 2021 (22.3%), 24 studies in 2020 (23.3%), 19 studies in 2019 (18.4%), 14 studies in 2018 (13.6%), and 12 
studies in 2017 (11.7%). Based on the locations of the different studies, 35 studies were conducted in China (34.0%), 19 studies were 
performed in India (18.4%), 10 studies were performed in the USA (10.1%), 5 studies were conducted in Iran (4.9%), 4 studies were 
performed in Taiwan (3.9%), with 3 studies each country (2.9%) were performed in Germany, Singapore, and UK, with 2 studies each 
country (1.9%) were performed in Bangladesh, Canada, Egypt, and Poland, and with 1 study each country (1.0%) was performed in 
Brazil, Czech Republic, Hawaii, Japan, Korea, Malaysia, Morocco, New Zealand, Pakistan, Portugal, Sudan, Thailand, and United Arab 
Emirates. Regarding types of publication sources, 34 studies (67.0%) are from Conference Proceedings, and the remaining 69 studies 
(33.0%) are from Journal papers. Some important sensors were used to perform the studies, 26 studies used only a 12-lead ECG sensor 
(25.2%) and 5 studies used a 12-lead ECG, complemented with other leads configurations (4.9%), 20 studies used a solo 2-Lead ECG 
sensor (19,4%) and 4 studies used a 12-lead ECG, complemented with other leads configurations (4.9%), 19 studies used 1-lead sensor 
(18.4%), 2 studies used MLII (Modified Limb Lead II) lead sensor (2.0%), 1 study used 8-lead ECG sensor (1.0%), 1 study used 5-lead 
ECG sensor (1.0%), 1 study used Inno-12-U ECG sensor (1.0%) and the remaining 24 studies did no lead sensors specification specified 
(23.3%). In addition, all the studies used machine learning methods. Many of these (64.1%) are applied to patient-independent 
methods, indicating that most studies explore models that offer accurate performance across multiple subjects. The remaining 

Fig. 1. Flow diagram of identification and inclusion of papers.  
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35.9% are patient-specific methods designed considering personalized data from a specific patient. Regarding the different techniques 
implemented, 45 studies (43,7%) used a single method, where 18 studies (40,0%) referred to the use of CNN, 12 studies (2.7%) 
referred to the use of SVM, 4 studies (0.9%) referred to the use of kNN, 2 studies (0.4%) referred to the use of Ensemble classifiers, 1 
studies (0.2%) each referred to the use of ANN, Bagging Tree, BNN, CNN, DL, Gradient Boosting, LSTM, and ML, and 38 studies 
(56,3%) used more than one method, where at least, 19 studies referred to the CNN method, 13 studies referred to the ML method, 12 
studies referred to the SVM method, 10 studies referred to the DL method, 9 studies referred to each of the kNN, and LSTM methods, 7 
studies referred to the Ensemble classifiers method, 3 studies referred to the RNN method, 2 studies referred one of the methods in 
closed in the following techniques, such as LR, SHAP, CNN, MLP, and Random Forest, and 1 study referred one of the methods in closed 
in the following methods, such as bi-LSTM, CNNc, GANs, GMM, GNB, GRU, K-Medoids, LASSO, MLR, Auto-encoders, LDA, Logistic 
Regression, kNN, XGBoost, Adaboost, ANN, BiLSTM, CRNN, DNN, ResNet, RF, RNN, Wider CNN, AdaBoost ensemble classifier, and 
Decision trees. The studies also considered different types of diseases, 36 studies were based on arrhythmia (35.0%), 17 studies were 
based on atrial fibrillation (16.5%), 14 studies on cardiovascular diseases (13.6%), 7 studies each were based on coronary artery and 
myocardial infarction (7.2%), 3 studies were based on premature ventricular contraction (2.9%), 2 studies each were based on 
abnormal cardiac conditions, heart failure, left atrial enlargement, left ventricular hypertrophy and ventricular arrhythmia (1.9%), 
and 1 study each was based on acute myocardial infarction, amyloidosis, aortic regurgitation, congestive heart failure, hypertrophic 
cardiomyopathy, idiopathic ventricular arrhythmia, posterior myocardial infarction, and postoperative atrial fibrillation. 

To simplify the qualitative analysis, Table 2 presents the combination of studies by pathology similarity into 3 groups. The Change 
in heart rate group aggregates 57 studies (55.3%) related to changes in the rhythm of the heartbeat. The Myocardial dysfunction/ 
pathologies group encloses 14 studies (13.6%) associated with the functioning of the myocardium muscle, which is responsible for 
pumping blood to the rest of the body. The last group is more generic and comprehensive, aggregating all the other 32 studies (31.1%) 
reported that do not fit in the previously presented groups. 

3.2. Changes in heart rate 

Mukherjee et al. [25] present an algorithm for classifying short single-lead algorithms into four classes: Normal, Atrial Fibrillation, 
Other abnormal rhythms, and noisy. To test this method, the authors sourced from the PhysioNet 2017 Challenge public database a 
dataset of short single-lead ECG signals collected using an AliveCor device. This database comprises 8528 ECG recordings, of which 
5050 would be classified as normal, 738 as Atrial Fibrillation, 2456 as other arrhythmias, and 284 as noisy data. From these signals, the 
authors extracted a total of 188 features. The method presented in this study earned the authors a top position in the PhysioNet 2017 
Challenge, achieving, for the hidden test data, a 92% F1-score in the detection of AF recordings, an 86% F1-score in the detection of 
Normal rhythms, a 74% F1 score in the detection of other types of abnormal rhythms, and an overall F1-score of 83%. 

In [40], the top five methods for Atrial Fibrillation detection submitted in the PhysioNet/Computing in Cardiology Challenge 2017 
were compared, and a method based on a Hybrid Approach of Dual Support Vector Machine (HA-DSVM) for Atrial Fibrillation 
detection is proposed. The authors tested the method on the dataset collected from the 2017 Physionet/CinC Challenge, which contains 
8258 recordings of single-lead ECG signals. Of these 8258 recordings, 5145 were normal sinus rhythms, 2557 were other rhythms, 71 
were Atrial Fibrillation, and 46 were noisy recordings. From these recordings, the authors extracted the following features: R-wave, 
QRS-Waves, P-R Interval, Q-T Interval, S-T Interval, P, QRS, and T Waves, Normal rhythm, AFr rhythm, and Noisy rhythm. When 
applying this method, the authors achieved a precision of 70.80%, a specificity of 57.18%, an accuracy of 99.40%, and an F1-score of 
85.30%. 

He et al. [43] collected long-term ECG data 24 h before surgery and 7 days after surgery by single-lead ECG from 100 patients with 
preoperative sinus rhythm who underwent cardiac surgery. The patients were divided into a Postoperative atrial fibrillation (POAF) 
group and a no-POAF group. A clinical model and a clinical + ECG model were constructed. The ECG parameters were designed, and a 
support vector machine (SVM) was selected to build a machine-learning model and evaluate its prediction efficiency. The detection 
rate of POAF in long-term ECG monitoring was 31%, and that in conventional monitoring was 19%. We calculated 7 P-wave pa-
rameters, Pmax (167 ± 31 ms vs. 184 ± 37 ms, P = 0.018), Pstd (15 ± 7 vs. 19 ± 11, P = 0.031), and PWd (62 ± 28 ms vs. 80 ± 35 ms, 
P = 0.008) were significantly different. The AUC of the clinical model (sex, age, LA diameter, GFR, mechanical ventilation time) was 
0.86. Clinical + ECG model (sex, age, LA diameter, GFR, mechanical ventilation time, Pmax, Pstd, PWd), AUC was 0.89. The machine 
learning model’s accuracy (Ac) of the train set and test set was above 80 and 60%, respectively. 

Hsu et al. [44] applied three machine learning classifiers, including the multilayer perceptron (MLP), logistic regression (LR), and 
support vector machine (SVM) with a linear kernel, were used for 26 ECG features and with or without six biological training to 
identify the presence of Left atrial enlargement (LAE) from 2,206 male adults aged 17–43 years in Taiwan. The definition of LAE was 

Table 2 
Grouping of the studies by the similarity of pathology.  

Group nomenclature Pathologies present in the studies 

Changes in heart rate Arrhythmia, Atrial fibrillation, Idiopathic ventricular arrhythmia, Postoperative atrial fibrillation, Ventricular arrhythmia 
Myocardial dysfunction/ 

pathologies 
Acute myocardial infarction, Left ventricular hypertrophy, Myocardial infarction, Posterior myocardial infarction, Premature 
ventricular contraction 

Other cardiovascular 
pathologies 

Abnormal cardiac conditions, Amyloidosis, Aortic regurgitation, Cardiovascular diseases, Congestive heart failure, Coronary 
artery, Heart failure, Hypertrophic cardiomyopathy, Left atrial enlargement, Obstructive sleep apnea (OSA)  
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based on an echocardiographic left atrial dimension >4 cm in the parasternal long-axis window. The most significant area under the 
receiver operating characteristic curve is present in machine learning of the SVM for ECG only (77.87%) and of the MLP for all 
biological and ECG features (81.01%), both of which are superior to the P wave duration (62.19%). If the sensitivity is fixed to 70–75%, 
the specificity of the SVM for ECG only is up to 72.4%, and that of the MLP for all biological and ECG features is increased to 81.1%, 
both of which are higher than 48.8% by the P wave duration. 

The authors of [47] proposed a deep residual convolutional neural network to classify arrhythmias automatically. The ECG signals 
used in the study were retrieved from the MIT-BIH arrhythmia database, with 48 recordings selected, each with a 30-min duration. 
This method does not require feature extraction in a specific domain but extracts the ECG features automatically. The method proposed 
by the authors achieved a sensitivity of 94.54%, a positive predictivity of 93.33%, and a specificity of 80.80% for normal segments; a 
sensitivity of 35.22%, a positive predictivity of 65.88%, and a specificity of 98.3% for the supraventricular ectopic segment; and a 
sensitivity of 88.35%, a positive predictivity of 79.86%, and a specificity of 94.92% for the ventricular ectopic segments. 

The authors of [49] optimized a network layer design based on Long Short-Term memory to obtain the autoencoder structure. In 
the same amount, the ECG signal data utilized during the study was extracted from the MIT-BIH arrhythmia database and the MIT-BIH 
supraventricular arrhythmia database. The ECG features from these signals are extracted automatically by the autoencoder. The 
method proposed by the authors achieved an accuracy of 98.50%, a sensitivity of 97.98%, and positive predictivity of 97.55%. 

Zheng et al. [53] developed an algorithm that precisely predicts the correct origins of idiopathic ventricular arrhythmia (IVA) and 
outperforms the accuracy of all prior studies found in literature and human experts. A total of 18612 ECG recordings extracted from 
545 patients who underwent successful catheter ablation (CA) to treat idiopathic ventricular arrhythmia were proportionally sampled 
into training, validation, and testing cohorts. For it, was designed four classification schemes respond to different hierarchical levels of 
the possible IVA origins. For every classification scheme, 98 distinct machine learning models with optimized hyperparameter values 
obtained through extensive grid search were compared and reported an optimal algorithm with the highest accuracy scores attained on 
the testing cohorts. One of the developed machine learning-based ECG algorithms to predict 21 possible sites of IVA origin with an 
accuracy of 98.24% on a testing cohort. The accuracy and F1-score for the three left schemes surpassed 99%. 

Che et al. [57] proposed an end-to-end deep learning framework based on a convolutional neural network for ECG signal processing 
and arrhythmia classification. The ECG signal data utilized in this study was acquired from a cardiology challenge, for which it had 
been collected from a total of 6877 individuals. Of these 6877 participants, 3178 were women, and 3699 were men, and each of these 
12-Lead ECG recordings has a duration of between 6 and 60 s. A 7-layer CNN can automatically extract the relevant ECG features from 
these ECG signals. The method proposed was able to achieve an F1-score of 81.7% for the detection of normal beats, 85.8% for the 
detection of Atrial Fibrillation, 87.8% for the detection of First-degree atrioventricular block, 80% for the detection of Left Bundle 
Branch Block, 87.2% for the detection of Right Bundle Branch Block, 61.8% for the detection of Premature Atrial Contractions, 83% for 
the detection of premature ventricular contractions, 71.1% for the detection of ST-segment depression, 68.6% for the detection of 
ST-segment elevated, and an overall F1-score of 78.6%. 

The authors of [65] introduce different ECG signal descriptors based on one-dimensional local binary pattern (LBP), wavelet, 
higher-order statistical (HOS), and morphological information for feature extraction, and a hybrid ECG arrhythmia classification 
approach called MRFO-SVM that combines a metaheuristic algorithm called Manta ray foraging optimization (MRFO) with support 
vector machine (SVM) for feature selection and classification. The database utilized in this study was the MIT-BIH arrhythmia 
database, which contains a total of 48 ECG files with a duration of 30 min each. The features extracted using the proposed 
morphological descriptors were the Distance between the R-peak and maximum amplitude in P duration, the distance between the 
R-peak and the two minimum amplitude values in QRS duration, and the distance between the R-peak and maximum amplitude in T 
duration. The extracted features of the R-R intervals found between consecutive beats are Pre-R-R, Post-R-R, Local-R-R, and Global-r-r. 
The MRFO-SVM method proposed by the authors achieved, when applied to the MIT-BIH arrhythmia database, an accuracy, sensi-
tivity, specificity, precision, and F-score of 98.69%, 98.79%, 98.79%, 98.86%, and 98.97% respectively for beats belonging to the 
Normal beats class, an accuracy, sensitivity, specificity, precision and F-score of 98.20%, 98.20%, 99.20%, 96.45%, and 96.95% 
respectively for beats belonging to the Supraventricular Ectopic Beats class, an accuracy, sensitivity, specificity, precision and F-score 
of 98.05%, 98.05%, 99.83%, 99.38%, and 97.94% respectively for beats belonging to the Ventricular Ectopic beats class, and finally, 
an accuracy, sensitivity, specificity, precision and F-score of 96.50%, 96.50%, 99.59%, 96.05%, and 96.24% respectively for beats 
belonging to the Fusion class. 

Hua et al. [66] proposed a framework based on neural networks to classify heartbeat arrhythmia problems. The model was trained 
with a Bayesian Neural Network (BNN) based on clinical features from the raw ECG data. The method was evaluated and compared 
between how the model makes decisions and what field experts do for the same problem. The main findings were that the features 
extracted from raw ECG data using the proposed framework could be used as an indication for specific heartbeat arrhythmia, the 
mechanism of the model can be interpreted as a decision-making procedure by weighing relative metrics just like human experts do, 
the weight of the features extracted from raw ECG data can be used to build a knowledge tree for guidance on diagnosing of specific 
heartbeat disease. 

Li and Zhang [71] proposed a framing preprocessing method that can minimize the loss of ECG signals to enhance the features of 
signals and diagnose multiple types of cardiac arrhythmias. This study used the China Physiological Signal Challenge (CPSC) 2018 
dataset comprising 6,877 (females: 3,178; males: 3,699) recordings of 12-lead ECG data collected from 11 hospitals. The proposed 
algorithm for classifying 12-lead ECG with multi-labeling consists of data denoising, framing blocking, dataset balance for data 
preprocessing, and a neural network structure based on ResNet in combination with attention-based bidirectional long short-term 
memory (BiLSTM). The developed algorithm was trained and tested on ECG data of nine types of cardiac states, fulfilling a 
multi-label classification task. It achieved an averaged F1-score and area under the curve at 0.908 and 0.974, respectively. 
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In [72], the authors developed a network model named Hybrid Convolutional Recurrent Neural Network for processing time series 
to predict multi-classification ECG. The database used was the MIT-BIH atrial fibrillation and contained 48 pieces of 2-lead ECG data, 
and each piece has 30 min. The features were extracted using the CNN method: the P, Q, R, S, T wave, and the R peak. The methods 
used were the long short-term memory, the gated recurrent unit, and the random forest. The method proposed has an accuracy of 
99.01%, a sensitivity of 99.58%, a positive predictivity of 99.44%, and an F1-score of 99.51%. 

In [74], the authors proposed an approach for detecting ventricular arrhythmias. This approach would transform ECG signals into 
images that could then be analyzed utilizing the AlexNet, VGG-16, and Inception-v3 deep learning models for feature extraction, with 
the actual classification of the beats being tested with several different classifiers. The authors extracted the ECG data utilized in this 
study from the MIT-BIH arrhythmia database, the Creighton University VT database, and Nsr. Three pre-trained CNN models were used 
for feature extraction in this study. The proposed method, after fusing Alexnet, VGG19, and Inceptionv3 DCNN features after 
entropy-based selection, was reported by the authors to achieve the best performance when using the cubic support vector machine as 
a final stage classifier, reaching a sensitivity of 98.2%, a specificity of 97.5%, a false negative rate of 2.3%, an accuracy of 97.6% and an 
F-score of 97.9%. 

Nguyen et al. [76] proposed a method for single-lead ECG-based automatic recognition of atrial fibrillation by stacking a support 
vector machine on statistical features of segment-based recognition units produced by a convolutional neural network. The authors 
utilized the PhysioNet 2017 dataset to extract 8528 ECG signal recordings, of which 5076 were classified as normal beats, 758 as atrial 
fibrillation, 2415 as other beats, and 279 as noise. The authors then utilized the deep convolutional neural network to extract these 
signals’ relevant features. From a total of 5 trials run by the authors, the average F1-score achieved by the proposed method was 
84.19%. 

Radhakrishnan et al. [77] proposed a time-frequency domain deep learning-based approach to detect atrial fibrillation and classify 
terminating and non-terminating atrial fibrillation episodes using ECG signals. In this study, two databases were used. The first 
database was Physionet Computing in Cardiology Challenge 2017 and contained 8482 single-lead ECG recordings with a sampling 
frequency of 300 Hz. The database consisted of 5156 normal recordings, 771 atrial fibrillation recordings, and 2557 records in the 
other rhythms classes. The second database is a mixture of the ECG recordings from the MIT-BIH atrial fibrillation dataset and the 
MIT-BIH arrhythmia dataset. The MIT-BIH AF dataset contains twenty-five records of two-lead ECGs with a sampling frequency of 250 
Hz. The MIT-BIH arrhythmia dataset consists of forty-seven two-lead ECG recordings sampled at 360 Hz. The features extracted were 
the RR-interval, the QRS-complex morphology, and the P-wave. The proposed method, time-frequency representation, obtained an 
accuracy of 99.18%, a sensitivity of 99.17%, and a specificity of 99.18%. 

The authors of [78] proposed a method for the automated classification of Ventricular Fibrillation and Ventricular Tachycardia 
using a deep neural network and hybrid time–frequency–based features. The authors utilized all the ECG records that made up the 
CUDB and the VFDB databases of the PhysioNet repository. The CUDB consisted of 35 8 min long records that, after being segmented 
into windows of 5 s, resulted in a total of 791 ventricular fibrillation windows and 2744 normal sinus rhythm windows. The VFDB 
consisted of 22 30 min long records that, after being segmented into 5-s windows, resulted in a total of 1202 ventricular tachycardia 
windows and 7618 normal sinus rhythm windows. The authors extracted several features from these ECG signals, like Filter Leakage 
Measure, Spectral Analysis (FSMN, A1, A2, and A3), Bandpass filter and auxiliary counts (C1 and C2), Covariance measure, Frequency 
calculation, Area calculation, Kurtosis, Standard Exponential Algorithm, Modified Exponential Algorithm, Skewness, Threshold 
crossing interval, Threshold crossing sample count, Hurst Parameter, Mean Absolute Value, Permutation Entropy, Non-linear Features 
such as Shannon entropy, Norm Entropy, Log Entropy, Threshold Entropy, and Sure Entropy. The proposed method achieved an 
accuracy of 99.2%, a sensitivity of 98.8%, and a specificity of 99.3%. 

The authors of [86] proposed a robust and efficient 12-layer deep one-dimensional convolutional neural network for classifying the 
five micro-classes of heartbeat types in the MIT-BIH Arrhythmia Database. This database contained 48 ECG recordings. Each recording 
time was 30 min, the sampling frequency was 360Hz, and each ECG record was composed of two leads. In this study, the authors 
extracted features using convolution and pooling layers with two automatic extraction methods. The results obtained by the proposed 
CNN network method to the five micro-class classifications of heartbeats reach an accuracy of 97.41% and specificity and a positive 
prediction rate of over 90%. 

The authors of [88] propose a classification method based on deep learning, namely, a global hybrid multi-scale convolutional 
neural network, to implement binary classification for Atrial Fibrillation detection using single-lead ECG recordings. The China 
Physiological Signal Challenge 2018 dataset (CPSC 2018) was used with a sample of 6877 12-Lead ECG recordings, of which 3699 
belonged to males and 3178 to females. Of these 6877 recordings, 1098 (15.96%) were classified as suffering from Atrial Fibrillation, 
while the remaining 5779 (84.03%) were not. The authors used the GH-MS-CNN method to automatically capture and integrate the 
global discriminative multi-scale features related to atrial fibrillation patterns in all dense blocks layer-wise while ensuring relatively 
low computational cost. The authors reported an accuracy of 99.84%, a precision of 99.89%, a sensitivity of 99.65%, a specificity of 
99.98%, and an F1-score of 99.54%. 

In [89], the authors proposed an ECG-based arrhythmia classification method utilizing convolutional neural networks. The ECG 
data used by the authors during this study was extracted from the MIT-BIH arrhythmia dataset, which contains excerpts from 
48-and-a-half-hour double-channel recordings extracted from 47 subjects. The convolutional neural network automatically handles 
the feature extraction. The results achieved by the proposed method averaged an accuracy of 99.76, a sensitivity of 94.45%, a 
specificity of 99.54%, and a positive predictive rate of 97.40%. 

The authors of [90] proposed a 12-Lead ECG-based method for automatically classifying arrhythmias using a deep neural network. 
The authors got the ECG signal data for this study from the China Physiological Signal Challenge 2018 training database. The authors 
extracted two types of expert features from these signals, statistical features like mean, standard deviation, variance, and percentile, 
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and Shannon entropy of signal processing features, extracted by applying discrete wavelet decomposition. The proposed method 
achieved, on average, a precision of 82.1%, a recall of 81.2%, an F1-score of 81.3%, an area under the receiver operating characteristic 
curve of 97%, and an accuracy of 96.6%. 

In [92], the authors proposed an idea using a 14- layer deep learning model which consists of 1-Dimensional Convolutional Neural 
Networks (CNN) which extract representation features and Long Short-Term Memory (LSTM), which extract time sequence features 
that eventually pass into the Dense layer which classifies the ECG result into 4 classes. The classified result is then sent to the NodeMCU 
board, where the processing takes place, after which it is sent to Google Firebase. The result is stored in Firebase, which acts as a 
real-time database. The results and the notification are retrieved from the database, which is displayed in a mobile application. The 
Physionet Challenge 2017 CinC dataset has been used to build the deep learning model. The dataset houses 8528 samples of single-lead 
short ECG signals. The ECG signals have been sampled with a sampling frequency of 300Hz. The duration of each signal varies between 
the 20s and 1 min, reporting an overall F1 score of 81% obtained from the model. 

The authors of [95] aimed to distinguish three arrhythmias types, A-Fib, AFL, and V-Fib, in ECG signals. The model proposed for 
R-peak automated detection was based on CNN applying dilated convolutions and residual connections. Also was introduced a model 
called Dilated CNN LSTM (DCNN-LSTM), to which the extracted segments around R-peaks were used as the input. The DCNN-LSTM 
final model consisted of dilated convolution layers and an LSTM layer to detect various arrhythmias. The performance of the proposed 
model on test samples was 98.93%, 99.78%, and 99.58%, respectively, in terms of overall accuracy, sensitivity, and specificity for 
tackling the problem of 4- class arrhythmia classification. 

In [99], the authors presented an ML-based method for arrhythmia detection by extracting two important quantities, average 
energy and zero-crossing, as the features. ECG signals used in this study were obtained from 3 different databases, namely MIT-BIH 
arrhythmia, MIT-BIH normal sinus rhythm, and QT databases. SVM was utilized to classify the data containing two groups: normal 
and arrhythmia. 10-fold cross-validation for 10 min long ECG signals was the most suitable evaluating technique for the proposed 
method, with the respective performance results: 96.67% average accuracy, 93.33% sensitivity, 100% specificity, and 100% precision. 

In [100], the authors proposed a method based on time domain features of ECG sequence and one-dimensional CNN to detect atrial 
fibrillation. The ECG data records were obtained from the MIT-BIH atrial fibrillation database, which contained 25 ECG signals, each 
with a recording time of 10h. The sampling frequency of the ECG signals was 250Hz, the resolution was 12bit, and the sampling 
bandwidth was 0.1–40Hz. The ECG signals were segmented into seven heartbeats, and 8 features were extracted based on the time 
domain features of the ECG sequence to form the feature vector (size 1*8). The convolutional neural network’s one-hot label (1*2) 
output was combined with the extracted time domain features (size 1*8) to obtain 10-dimensional features. The extracted 10-dimen-
sional features were normalized and then put into the SVM classifier. The experimental results showed that the proposed algorithm’s 
sensitivity, specificity, and total accuracy were 99.07%, 97.05%, and 98.03%, respectively. 

Hammad et al. [101] presented a deep neural network (DNN) strategy to determine appropriate information in ECG-based 
Arrhythmia diagnosis and treatment. The MIT-BIH database that contained 48 ECG records obtained from 47 subjects composed of 
47% female and 53% male participants was used. It consisted of a learning stage where classification accuracy was improved via a 
robust feature extraction protocol. This is followed by a genetic algorithm (GA) to aggregate the best feature extraction and classi-
fication combination. Several classifiers were applied, including k-NN, support vector machine (SVM), and multilayer perception 
(MLP). A comparison of the performance recorded for the proposed technique alongside state-of-the-art methods reported that the area 
shows an increase of 94% and 95.3% in average accuracy and F1-score, respectively. 

In [102], the authors investigated the impact of various data augmentation algorithms, e.g., oversampling, Gaussian Mixture 
Models (GMMs), and Generative Adversarial Networks (GANs), on solving the class imbalance problem in the classification of Atrial 
Fibrillation in Short Single-Lead ECG Signals. The data used in this study was obtained from the PhysioNet/CinC challenge 2017. It 
comprised 8528 single-lead ECG signals in four classes, namely 5154 Normal (N), 771 atrial fibrillation (AF), 2557 Noisy, and 46 Other 
rhythm signals. For data segmentation was chosen segment length SL = 1500 was equivalent to 5 s. The DCGAN Architecture was 
implemented. The ADAM optimizer with a learning rate of 10-3 and a decay rate of 10-5 was applied for training the deep neural 
networks. The ADAM optimizer with a learning rate of 10-3 and a decay rate of 10-5 was used for training the deep neural networks. On 
training the generator and the discriminator of the DCGAN, a learning rate equal to 2 × 10− 4 was defined. As for the weight 
initialization in the network, the Xavier uniform initialization technique was applied. Among the augmentation algorithms investi-
gated in this study, the lowest improvement in performance was achieved by oversampling, while GMM and DCGAN enhanced the 
performance the most. Although GMM marginally outperforms DCGAN in terms of the overall f1-score, it turns out that DCGAN results 
in better accuracy while producing comparable Normal class accuracy to GMM. 

Hsu et al. [103] proposed a method for arrhythmia classification utilizing deep learning and machine learning, with features 
extracted by a waveform-based signal processing technique. The authors chose to extract the ECG data for this study from the MIT-BIH 
arrhythmia database, which contains records of 48 subjects, each with a duration of 30 min. Based on the waveform-based signal 
processing technique, the authors selected Gaussian and cubic spline features, which are automatically extracted. Of the machine 
learning methods utilized by the authors, the one that reaches the best results is the optimizable ensemble classifier, with an overall 
accuracy of 98.8%, and the deep learning-based classification method achieves an overall accuracy of 97.8%. 

In [108] was developed a network of arrhythmia classification based on the CNN-Based Broad Learning System (CNNBLS). The ECG 
signals from the PhysioBank MIT-BIH arrhythmia database, which contained 48 groups of MLII and V5 leads at a 360 Hz sampling 
frequency, were used in this study. The proposed CNNBLS network extracted features through CNN and filtered out a part of the noise 
through convolution. The feature and enhancement nodes were taken as the extended input data, and the connection weights were 
approximated by ridge regression of the pseudoinverse. In addition, when CNNBLS encountered an incoming input. To compare the 
performance of the proposed system, traditional deep learning networks CNN and LSTM were implemented. The test accuracy of CNN 
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and LSTM at 10,000 initial training sets was 98.56% and 97.34%, respectively, and the training time was 298.47 s and 175.22 s, 
respectively. When 12,929 incremental training data were added, the accuracy of CNN and LSTM was 98.93% and 97.87%, but the 
time spent on the training process was 696.95 s and 409.89 s, respectively. In original and denoising heartbeat data, the overall ac-
curacy of CCBLS was 98.5% and 98%, respectively. When CNNBLS encountered incoming data, the test accuracy was increased to 
98.45% with incremental learning, and the training time was only 47.23s. 

Mazaheri et al. [112] proposed a method for diagnosing arrhythmias, which extracts morphological characteristics, frequency 
domain features, and nonlinear indices, reduces the feature space by utilizing metaheuristic optimization algorithms, and then uses 
machine learning algorithms, like k-nearest neighbor, feed-forward neural network, fitting neural network, radial basis function neural 
network and pattern recognition network, to classify the ECG signals. This study utilizes the MIT-BIH-Arrhythmia database, consisting 
of 48 dual-channel ECG registries from 45 patients. The method increased the performance of the classifier methods, with the best 
performing one, the feed-forward neural network, achieving an accuracy of 98.75%, a sensitivity of 98.84%, and a specificity of 
99.85%. 

Rahman et al. [113] proposed classification models based on classifying five classes of ECG arrhythmic signals from Physionet’s 
MIT-BIH Arrhythmia Dataset. This dataset comprised 48 records of two channels of ECG signals for 30 min collected from 47 in-
dividuals. In this paper, a total of 109446 beats at 125 Hz sampling frequency from 44 records was evaluated as train and test patterns 
for the performance analysis of the 1D convolutional neural network model. Proposed CNN structure comprised 4 convolutional layers, 
three pooling layers afterward a single fully connected layer or dense layer, and a softmax. The model’s overall accuracy was 95.2%, 
with an average precision and recall of 95.2% and 95.4%, respectively. 

Subramanian and Prakash [114] analyzed heart diseases categorized as arrhythmia based on Electrocardiogram (ECG). ECG re-
cords from the MIT-BIH database of different disease conditions were investigated. The ECG signals were filtered to remove noise 
caused due to powerline interface or Electromyogram. This filtered signal was segmented into smaller pieces of ECG. The features 
extracted were Peak-to-peak Interval (R-R Interval), BPM (Beats per minute), and P-wave to QRS peak. The data set was classified using 
an SVM classifier algorithm. This algorithm classified the input ECG signal with varying feature parameters into two types of ar-
rhythmias. This method achieved an accuracy of 91% with precision, recall, and an F1-score of about 0.906593. 

In [115], the authors presented a dual fully-connected neural network model for the classification of heartbeats. The data utilized 
during this study was acquired from the Massachusetts Institute of Technology-Beth Israel Hospital arrhythmia database, containing 
48 2-lead recordings from 47 individuals, of which 25 were males between the ages of 32 and 89 and 22 were females between the ages 
of 23 and 89. The MIT-BIH supraventricular arrhythmia database, consisting of 78 2-lead recordings, was also utilized for verification. 
The authors extracted a total of 105 features from these signals, like RR interval-related features: Anterior RR interval, Posterior RR 
interval, Local RR interval, Mean of RR interval, Normalized anterior RR interval, Normalized posterior RR interval, and Normalized 
local RR interval; Morphological features: Sampled QRS complex(10 points with 6-point intervals), a sampled neighborhood of T (8 
points with 18-point intervals); Statistical features: Maximum, minimum, kurtosis, skewness, variance, mean, maximum to minimum 
ratio of heartbeats and QRS complex; Sum of trough features: Sum of the trough to describe the shape of the waveform; and Wavelet 
packet entropy: All the node energy at 6 levels. The overall accuracy of the proposed method was 93.4%, with a sensitivity and positive 
predictivity of 95.1% and 98.3%, respectively, for the detection of normal beats, sensitivity and positive predictivity of 90.3% and 
43.5% for the detection of supraventricular ectopic beats, and sensitivity and positive predictivity of 84.1% and 89.5% respectively for 
the detection of ventricular ectopic beats. 

In [119], the authors proposed an ECG-based multi-class Arrhythmia detection method using a Spatiotemporal attention-based 
convolutional recurrent neural network called STA-CRNN. The China Physiological Signal Challenge 2018 (CPSC 2018) database, 
containing 6877 12-Lead ECG records, is utilized as the training set for the proposed method, which is then evaluated using the private 
test set of CPSC 2018, containing 2954 12-Lead ECG records. A convolutional neural network automatically extracts the ECG features 
from the ECG signals in this database. The method proposed by the authors was able to achieve an F1-score of 81.9% for the detection 
of normal beats, 93.6% for the detection of atrial fibrillation, 86.6% for the detection of first-degree atrioventricular block, 86.2% for 
the detection of left bundle branch block, 92.6% for the detection of right bundle branch block, 78.9% for the detection of premature 
atrial contraction, 86.5% for the detection of premature ventricular contractions, 81.2% for the detection of ST-segment Depression, 
and 64% for the detection of ST-segment Elevated, with the average F1-score of the STA-CRNN method reaching 83.5%. 

Bashar et al. [120] presented an automated and robust algorithm to detect Atrial Fibrillation using electrocardiogram (ECG) signals 
from ICU patients. Several statistical parameters were calculated from the heart rate, including root mean square of successive dif-
ferences, Shannon entropy, Sample entropy, and turning point ratio. A subset of the Medical Information Mart for Intensive Care 
(MIMIC) III database containing 36 subjects were used in this study. Three classification algorithms were implemented and compared, 
including support vector machine (SVM), discriminant analysis (DA), and K-nearest neighbor (kNN). The results showed that the DA 
model achieved 99.80% sensitivity, 98.82% specificity, and 99.23% accuracy, kNN model with k-5, 99.76% sensitivity, 99.28% 
specificity, and 99.48% accuracy. Using the SVM classifier with radial basis kernel, the proposed method achieves 99.95% 
cross-validation accuracy on the training data and 99.88% sensitivity, 99.65% specificity, and 99.75% accuracy on the blinded test 
data. 

Celin and Vasanth [122] developed a method of signal modeling based HRV signal approach to detect abnormality in ECG signals. 
The ECG signals were taken from the MIT-BIH arrhythmia database. In many cases of recordings, the upper signal was measured from 
ML II lead, and the lower signal was measured from V1 lead; V2, V5, and V4 leads were also used for several instances. FFT-based 
R-peak detection was proposed to extract the HRV signals. Next, the polynomial-based curve fitting was modeled. The statistical 
and wavelet parameters were used as features for the classification of normal and abnormal ECG signals using SVM, ANN, Adaboost, 
and Random Forests. The experimental result showed that the accuracy of the classifiers was 94.6%, 94.6%, 96.7%, and 98.8%, 
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respectively. 
The authors of [124] propose a method to detect arrhythmia in an imbalanced ECG dataset utilizing long short-term memory with 

focal loss. The MIT-BIH arrhythmia database provided the ECG signals used in this study. A total of 93371 ECG beats and eight beat 
types were considered for this study: Normal beat (N), LBBB (Left bundle branch block), RBBB (Right bundle branch block), APC (Atrial 
premature contraction), NESC (Nodal (junctional) escape beat), ABERR (Aberrated atrial premature beat), NPC (Nodal (junctional) 
premature beat), and AESC (Atrial escape beat). Of the 93371 beats, 75020 are N, 8072 are LBBB, 7255 are, 2546 are APC, 229 are 
NESC, 150 are ABERR, 83 are NPC, and 16 are AESC. A long short-term memory network automatically extracted the features from 
these recordings. Applying the proposed method to the dataset, the authors achieved an accuracy of 99.26%, a recall of 99.26%, a 
specificity of 99.14%, a precision of 99.13%, and an F1-score of 99.27%. 

Kong et al. [126] proposed a machine learning method for rapid modeling and accurate diagnosis of atrial fibrillation. For this 
study, the electrical activity of the whole heart of the patients with atrial fibrillation and synchronous 12-Lead ECG signals was 
collected from atrial fibrillation patients and healthy people. The instrument used to manage the 12-Lead ECG signals was the 
Inno-12-U ECG. The dataset contains 1056 atrial fibrillation patients and 904 healthy people. The features were extracted using the 
Pan-Tompkins algorithm. The integrated radial basis function was combined with the relevance vector machine (IRBF-RVM). The 
results showed that the technique has a classification rate of over 97%. 

In [127], the Physionet Computing in Cardiology Challenge 2017 data source was used for this study. The detection of the QRS 
complex, after which a completed analysis and delineation of each beat was obtained. In the preprocessing stage, the Discrete Wavelet 
Transform (DWT) was used for removing noise and tuning to the morphological characteristics of the waveform features. For feature 
extraction, a set of features that consists of both morphological and temporal features was extracted using DWT. A comparison study 
was conducted between five classifiers (Decision trees, Random Forest, AdaBoost ensemble classifier, support vector machine (SVM), 
and K-nearest neighbor Algorithm (KNN)) to evaluate the best diagnoses for each type of Arrhythmia. This study used four classes of 
coronary heart beats atrial fibrillation, normal, other rhythms, or noise. Results showed that the AdaBoost classifier gives 100% 
Accuracy scores for all types of Arrhythmias in the training set. The AdaBoost algorithm obtained a mean improvement report for all 
classes in the testing set (97.3% in Area under curve accuracy, 94.7% in classifier accuracy, 96.7% in sensitivity, and 98% in precision). 

Nankani and Baruah [130] developed an end-to-end framework for classifying different length ECG segments into four classes: 
atrial fibrillation, normal, other, and noisy rhythms using a deep residual neural network, thereby eliminating the need for handcrafted 
features. A data augmentation technique was employed to make the model more robust toward the noise. The proposed method 
produces an F1 score of 0.88 ± 0.02 on the PhysioNet Computing in Cardiology Challenge 2017 database, consisting of four classes 
(recordings): Atrial Fibrillation (771), normal (5154), other (2557), and noisy (46) rhythms of lengths between 9 and 60 s sampled at 
300Hz. The optimum length was between 3 and 7 s when the sampling frequency was kept and 7 s when the sampling frequency was 
around 300 Hz. 

The authors of [131] proposed an 11-layer deep convolutional neural network model for classifying the MIT-BIH arrhythmia 
database into five classes according to the ANSI-AAMI standards. The database contained 48 subjects. The method used to extract 
features automatically was the CNN architecture. The proposed method used in this study was an accuracy of 98.3%. 

The authors of [137] proposed a method for arrhythmia classification utilizing convolutional neural networks. The Massachusetts 
Institute of Technology-Beth Israel Hospital arrhythmia database, consisting of 48 lead II records collected from 47 individuals, of 
which 25 were male, ages 32–89, and 22 were female, ages 23–89, was utilized by the authors as this study’s source of ECG signals. The 
extraction of features from these ECG signals is handled automatically by the convolutional neural network. The proposed method 
performs at a high level for arrhythmia detection, reaching an accuracy of 99.06%. 

Wang et al. [138] proposed a CNN-based method for multi-class arrhythmia detection with multiple-stage features fusion. The 
significant contributions of this study were as follows: connection operations to fuse different levels of features extracted by the neural 
network at various stages for target task processing were skipped. And the channel-wise attention modules were adopted to extract the 
features learned at the different stages. By combining the attention module and convolutional neural network, the discrimination 
power of the network for ECG classification was improved. The proposed model was validated on the China Physiological Signal 
Challenge 2018 database and demonstrated its performance in classifying 9 cardiac arrhythmias using 12-lead ECG signals. The 
proposed method for ECG classification was compared on an open ECG dataset with some state-of-the-art methods, which achieved an 
average F1-score of 81.3%. 

Abdeldayem and Bourlai [142] investigated the classification of cardiac arrhythmia using the patient’s ECG signal by assessing 
three algorithms. A temporal texture-based algorithm was utilized, which extracts the 1D-LBP features of the ECG signal. The inte-
gration of the second ECG lead (i.e., using both ECG lead configurations) has boosted the system’s accuracy by an average of 10% since 
additional information is gained compared to using only one lead. On the other hand, spectro-temporal STFT texture features provided 
more knowledge than only temporal information since it reflects the variation of frequency components over time, where a boost of 7% 
was achieved. The CWT has an overall performance improvement, especially on the sub-class level, with an average 15% increase in 
the F-score. The SVM classifier has proven its superiority compared to KNN, which suffered from over-fitting when using a 10 
cross-validation on the MIT-BIH database. The proposed system achieved an accuracy of 99.81% in the time-frequency domain using 
an SVM classifier and an input ECG signal of 0.56 s. 

Ebrahimzadeh et al. [143] aimed to address a validated method to predict the onset of Paroxysmal Atrial Fibrillation (PAF) by 
integrating classical and modern techniques. In this study, 106 data from 53 pairs of ECG recordings were obtained from the standard 
database called Atrial Fibrillation Prediction Database (AFPDB). Each ECG segment contains a recording with a sampling rate of 128 
Hz and 12-bit resolution. The features the authors extracted from the ECG recordings were the HRV signal, the time-domain features, 
and the frequency-domain features. The method used was the local subset feature selection. The authors used 2 classifiers, the Support 
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Vector Machine and the K-Nearest Neighbor, to help the proposed method. The first classifier has an accuracy of 94.64%, a specificity 
of 93.10%, a sensitivity of 96.29%, and a precision of 92.85%. The second has an accuracy of 89.28%, a specificity of 86.66%, a 
sensitivity of 92.30%, and a precision of 85.71%. 

The authors of [145] combined several data mining techniques, such as clustering, feature selection, oversampling strategies, and 
automatic classification algorithms, to create more efficient arrhythmia classification models. The dataset utilized during this study 
was acquired from the machine learning repository UCI and had 280 attributes. The authors used CfsSubsetEval as the method for 
automatic extraction of the ECG features from these signals. Analyzing the impact of combining these data mining techniques with 
classification algorithms, like Random Forest classifiers, the authors proved it increased their accuracy and Macro-F1 value. In the 
specific case of the Random Forest classifier, the Macro-F1 value of the algorithm increased consistently from its original value of 
62.3% to its 72.7% value when applying feature selection, to 81.9% when applying classification using local clustering with over-
sampling, and finally to 88.8% when applying both feature selection and classification using local clustering with oversampling. 

The authors of [151] propose the representation of electrocardiogram signals using sparse decomposition over the composite 
dictionary to recognize cardiac arrhythmias automatically. The ECG data utilized during this study was collected from the MIT-BIH 
arrhythmia database, which contains 48 30-min records from 47 patients. The authors extracted five features from these ECG sig-
nals: permutation entropy, energy, RR-interval, standard deviation, and kurtosis. Having applied the proposed method to the database, 
the authors report an overall accuracy of 99.21%, an overall sensitivity of 99.21%, and an overall F-score of 99.21%. 

In [152], the authors proposed a feature extraction method using the sparse representation technique to efficiently represent the 
different ECG signals for efficient analysis of cardiac arrhythmias. The database used was MIT-BIH arrhythmia, including 48 2-Lead 
ECG recordings of patient data. The data were sampled at a rate of 360 Hz. The ECG features were extracted using machine 
learning techniques, SVM, K-NN, PNN, and RBFNN, and optimized using ABC and PSO techniques. The best method to classify the ECG 
signals was the LSTSVM + PSO, with an accuracy of 89.93%, a sensitivity of 91.47%, and a positive predictivity of 85.88%. 

Warrick et al. [153] proposed an algorithm combining a Convolutional Neural Network and a sequence of Long Short-Term 
Memory units to identify cardiac arrhythmias and noise in electrocardiograms. The authors utilized the ECG signals provided for 
the PhysioNet/CinC Challenge 2017, which contained 8528 signals. Of these 8528 signals, 5076 presented normal sinus rhythm (N) 
cases, 758 atrial fibrillation (AF) cases, 2415 alternative rhythms (O), and 279 noisy cases. The relevant ECG features were auto-
matically extracted for each of these entries using a one-layer CNN. The study’s authors reported that the method achieved an overall 
F1-score of 82.0%, with an F1-score for N of 90.28%, for AF of 82.21%, and an F1-score for O of 73.24%. 

Wu et al. [154] proposed an end-to-end model for generic and personalized ECG arrhythmic heartbeat detection on ECG data from 
wearable and non-wearable devices. Firstly, a deep learning-based model was developed to address the challenging problem caused by 
inter-patient differences in ECG signal patterns. This model achieves state-of-the-art performance for ECG heartbeat arrhythmia 
detection on the commonly used benchmark dataset from the MIT-BIH Arrhythmia Database. Then the model was used in an active 
learning process to perform patient adaptive heartbeat classification tasks on the non-wearable ECG dataset from the MIT-BIH 
Arrhythmia Database and the wearable ECG dataset from the DeepQ Arrhythmia Database. Results showed that our personaliza-
tion model requires a query of less than 5% of data from each patient, significantly improves the precision of disease detection from the 
generic model on each subject, and reaches nearly 100% accuracy in normal and VEB beat predictions on both databases. 

In [156], the authors developed a 12-layer deep convolutional neural network to train a classification model to distinguish between 
Atrial Fibrillation and non-Atrial Fibrillation cases. For this study, the authors utilized ECG signals from the MIT-BIH AF database, 
consisting of 25 recordings from 25 patients every 10 h and 15 min in duration. The authors automatically extract the relevant ECG 
features from the signals in this database using the convolutional neural network, with no need for manual intervention. Utilizing the 
MIT-BIH Atrial Fibrillation Database and excluding an inferior signal quality ECG recording in the test data, the method proposed by 
the authors in this study was able to achieve a mean accuracy of 84.85%, a mean sensitivity of 79.05%, a mean specificity of 89.99% 
and a result for the area under the receiver operating characteristic curve of 0.92. 

Zhang et al. [157] proposed a nine-layer convolutional neural network (CNN) that can automatically extract appropriate features 
and detect the different categories of ECG beats based on individual records. A ten-fold cross-validation strategy was designed that 
boosts the robustness of our proposed CNN model. The dataset consisted of three types of ECG beats, namely: normal beat (N), pre-
mature ventricular contraction beat (V), and right bundle branch block beat (R). The experimental results demonstrated that with an 
appropriate choice of structure and parameters, the proposed deep learning model could classify the ECG hearts with a sensitivity of 
98.37%, specificity of 99.19%, and accuracy of 98.92%. 

Andreotti et al. [159] classified segments of ECG into four classes (AF, normal, other rhythms, or noise) as part of the Physi-
onet/Computing in Cardiology Challenge 2017. It was compared with a state-of-the-art feature-based classifier with a convolutional 
neural network approach. Both methods were trained using the challenge data, supplemented with an additional database derived 
from Physionet. The feature-based classifier obtained an F1 score of 72.0% on the training set (5-fold cross-validation) and 79% on the 
hidden test set. Similarly, the convolutional neural network scored 72.1% on the augmented database and 83% on the test set. The 
latter method resulted in the competition’s final score of 79%. 

In [160], the authors propose an algorithm for Atrial Fibrillation detection based on the irregularity of heart rate, the absence of 
P-waves, and the presence of fibrillatory waves, in which the Support Vector Machine classification model makes the distinction 
between Atrial Fibrillation and non-Atrial Fibrillation episodes. The ECG signals utilized in this study were acquired from 12 different 
patients, with the data from one of them coming from the St-Petersburg Institute of Cardiological Technics 12-lead Arrhythmia 
Database and the data from the other 11 coming from the Cardiorisk - Personalized Cardiovascular Risk Assessment through Fusion of 
Current Risk Tools project. The authors determined the most relevant features for the detection of Atrial Fibrillation episodes based on 
the F-scores these were able to achieve when utilized in the tests and ended up with a total of eight ECG features. The method proposed 
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by the authors in this study for the detection of Atrial Fibrillation in 12-Lead ECG signals, when applied to the database utilized in this 
study, was able to reach a sensitivity of 88.5%, a specificity of 92.9% and a positive predictive value of 90.6%. 

Khatun and Morshed [162] explored the robust detection of both Myocardial Infarction and Arrhythmia from ECG signals using 
minimalistic (single-channel) ECG data. This study used 440 records from 12-lead ECG signals (79 Healthy Person, 346 MI, and 15 AR) 
from the “PTB Diagnostic ECG Database” of PhysioBank. The proposed algorithm automatically identified the ECG signals’ P, Q, R, S, 
and T points and then extracted 33 features: 15 interval type and 18 amplitude type. Bagging Tree, a computationally efficient 
ensemble method that can deal with the class imbalance problem within the data, was used for classification. During training, 10-fold 
cross-validation was used to ensure the classifier’s generalization and to remove over-fitting. This study demonstrated that Bagging 
Tree was able to identify MI, AR, and normal patients with a cross-validation accuracy of 99.7%, a sensitivity of 99.4%, a specificity of 
above 99.5%, a precision of 99.32%, an F1-score of 99.36% from a single lead ECG data (Lead V4). 

In [165], the authors proposed an autonomous and robust method of distinguishing between pathological and normal recordings. 
The presented method consisted of the following blocks – signal transformation (primarily to envelograms), QRS detection, signal 
averaging, feature extraction, and their processing with machine learning (ML) and simple logical rules. The data processing was as 
follows: an ECG file (1 lead, 300 Hz sampling, AliveCor device) was loaded and transformed into envelograms intended for QRS 
detection (LF: 1–8 Hz, MF: 5–25 Hz, HF: 45–65 Hz) and a convolution neural network (1–5 Hz, 5–10 Hz, etc. up to 35–40 Hz). The 120 
most important features and outputs from the neural network were fed into a bagged tree ensemble. Machine-learning algorithms and 
logical rules were trained using 8,138 files from a reduced training set. The F1-score measured using a hidden test set (3,658 re-
cordings) was 81%. 

Shimpi et al. [166] used 4 classifiers for the classification of cardiac arrhythmia, namely: Random Forest Algorithm, Support Vector 
Machine, Logistic Regression, and KNN classifier. When the dataset was cross-validated and tested, the maximum accuracy was ob-
tained by the Support Vector Machine Classifier. The accuracy obtained was 91.2%. 

Soliński et al. [168] proposed an algorithm for Atrial Fibrillation and other arrhythmias classification of short-term single lead ECG 
signals, which was the aim of the PhysioNet Challenge 2017. The database comprises over 8.5 thousand ECG recordings (between 10 
and 60 s length) measured by the AliveCor device. An alternative hybrid approach for QRS detection was prepared to obtain RR time 
intervals. It consists of two complementary methods in hierarchical order: one based on nonlinear transformation and the first-order 
Gaussian differentiator as superior and another proposed in sample entry as inferior. Was introduced the machine learning algorithm 
to classify whether it is a normal sinus rhythm, Atrial Fibrillation, or an alternative heart rhythm using features considered regularity of 
RR time intervals and morphology of the ECG signal. The separate part of the algorithm based on the beat averaging method was 
dedicated to the preceding extraction of too noisy recordings from the input to the classifier. The best overall F1-score achieved in the 
official phase of the PhysioNet Challenge 2017 was 77%. 

In [170], the authors introduced an approach to automatically detect and classify cardiac arrhythmias in electrocardiogram (ECG) 
recordings. The proposed method used a combination of Convolution Neural Networks (CNN) and a sequence of Long Short-Term 
Memory (LSTM) units, with pooling, dropout, and normalization techniques to improve their accuracy. The network predicted a 
classification at every 18th input sample and selected the final prediction. Results were cross-validated on the Physionet Challenge 
2017 training dataset, which contained 8,528 single lead ECG recordings lasting from 9s to just over the 60s. Using the proposed 
structure and no explicit feature selection, 10-fold stratified cross-validation gave an overall F-measure of 0.83.10 ± 0.015 on the 
held-out test data (mean ± standard deviation over all folds) and 0.80 on the hidden dataset of the Challenge entry server. 

3.3. Myocardial dysfunction/pathologies 

Mazidi et al. [50] proposed a detection system for premature ventricular contraction (PVC) based on the tunable Q-factor wavelet 
transform algorithm and statistical methods to detect PVC. The authors extracted 22 ECG records from the MIT-BIH arrhythmia 
database for this study. The tunable Q-factor wavelet transform algorithm handles the feature extraction in this paper. The authors 
extracted the QRS width and R peaks and, in a second step, nine features from these ECG signals: minimum, maximum, root mean 
square, mean, interquartile range, standard deviation, skewness, and variance. The system then uses three machine learning classifiers, 
Support Vector Machine, K-Nearest Neighbor, and artificial neural network, to evaluate the extracted features. The best results were 
achieved with the K-Nearest Neighbor algorithm, reaching a sensitivity of 98.23% and an accuracy of 97.81%. 

Dey et al. [54] proposed unique architecture that systematically processes 12-lead ECGs based on employing handcrafted features 
to discriminate the multiple classes, resulting in the development of o a detection model consisting of a one-dimensional (1-D) con-
volutional neural network (CNN) and a bidirectional long short-term memory (bi-LSTM) layer which classifies into three classes, 
namely: healthy control (HC), Myocardial Infarction (MI), and non-myocardial infarction (non-MI) subjects for a realistic and reliable 
assessment. The model’s performance was evaluated using 517 records acquired from the Physikalisch-Technische Bundesanstalt 
(PTB) database with an accuracy of 99.246%, kappa of 0.983, and macro averaged F1-score of 98.86% achieved using stratified 5-fold 
cross-validation. 

Wang et al. [82] proposed an improved gated recurrent unit by setting a scale parameter into the existing bidirectional gated 
recurrent unit (BGRU) model for premature ventricular contraction signals recognition. To verify the effectiveness, the IGRU model 
was embedded into a convolutional network frame, and existing GRU and BGRU models were employed as control groups for a fair 
comparison. The databases used were the MIT-BIH arrhythmia database and China Physiological Signal Challenge 2018. The first 
database consisted of 48 records. The second consists of 6877 records with a sampling rate of 500 Hz and a duration of 6s–60s. For data 
consistency, the authors downsampled the ECG records in both databases to 250 Hz and divided them into 2s episodes. All the features 
used in this study were automatically extracted. The proposed method, CNN-IGRU, performs for the first database with an accuracy of 
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98.3%, a sensitivity of 98.4%, and a specificity of 98.2%. For the second database, an accuracy of 97.9%, a sensitivity of 98%, and a 
specificity of 97.8%. 

Xiong et al. [87] developed a multi-lead myocardial infarction localization approach based on the dense convolutional network 
(DenseNet). The 12-Lead ECG data was from Physikalisch-Technische-Bundesanstalt (PTB). This study selected 448 records, specif-
ically 80 records from 52 healthy subjects called healthy control and 368 records from 148 myocardial infarction patients. The features 
were extracted using the DenseNet method, and the Pan Tompkins algorithm detected the R peak. Beyond the DenseNet method, the 
convolutional neural network method was used. The proposed method achieved an accuracy of 99.87%, a sensitivity of 99.84%, and a 
specificity of 99.98%. 

Ibrahim et al. [105] utilized the ECG-ViEW II database to propose three machine learning models to predict Acute Myocardial 
Infarction (AMI) risk conditions. ECG-ViEW II contained 979,273 extracted ECG measurements and other information regarding di-
agnoses, drug prescriptions, and selected laboratory test results collected from 371,401 patients over 19 years. Three proposed pre-
dictive models showed promising results when evaluated across all 5-performance metrics. The RNN model underperformed compared 
to the CNN model due to its more fitting application to time-series data and not static data. The CNN model shows a minimum F1-score 
of 89%, minimum sensitivity of 88%, and minimum specificity of 93% beating many states of-the-art literature approaches. The best 
model was the XGBoost model, with an F1 score of 97.1%, a sensitivity of 93.5%, and a specificity of 99.4%. Due to the tabular nature 
of the dataset. Testing the CNN and RNN models without the age and sex features a reduced performance by an average of 3.78% and 
5.9% across the 5 metrics, respectively. Shapley value analysis shows that age, ACCI, and QRS duration are the most crucial variables 
in predicting the onset of AMI. 

Prabhakararao and Dandapat [111] proposed a method for detecting Myocardial Infarction (MI) patients from non-MI patients and 
health control HC. Each lead of the incoming 12-lead ECG was first fed to the respective weights shared temporal encoding (TE) block 
to capture the lead-specific temporal dependencies. An intra-lead attention module corresponding to each lead was developed to focus 
on the most discriminative ECG features to obtain a lead-specific attentive representation (LSAR). An inter-lead attention module 
combines these representations across the 12-leads to form an inter-lead attentive representation. This representation was concate-
nated with the five PC features (c ∈ R5) and fed to a standard Softmax classifier for the classification. The present generalizable 
classification results, a patient-independent 5-fold cross-validation technique, resulted in an overall accuracy of 98.3%. 

The authors of [116] proposed a method for automated detection of myocardial infarction utilizing multi-feature fusion and 
random forests. The ECG data used during this study was extracted from the PTB MI ECG database (Goldberger et al., 2000), which 
consists of 549 records collected from 290 subjects, 209 of which were males with a mean age of 55.5 years and 81 of which were 
females with a mean age of 61.6. From these signals, the authors extracted statistical (mean, standard deviation, skewness coefficient, 
and kurtosis coefficient) and entropy features (signal entropy, Shannon entropy, Renyi entropy, and Tsallis entropy) as the repre-
sentation of the first layer features for each lead and extracted second layers features resorting to the use of random forests. The authors 
then employed 2 schemes for the intra-patient and inter-patient to evaluate the proposed method. For the intra-patient scheme, the 
technique achieved an accuracy of 99.71%, a sensitivity of 99.7%, a specificity of 99.73%, and an F1-score of 99.71%. The inter-patient 
scheme attained an accuracy of 85.82%, a sensitivity of 73.91%, a specificity of 97.73%, and an F1-score of 83.9%. 

Boppana et al. [121] proposed the combined format of Clustered based K-medoid and Classification based K-NN along with 
hyperparameter tuning to classify abnormalities in ECG, mainly focusing on Myocardial infarction (MI) and Obstructive Sleep Apnea 
(OSA). ECG Data capturing System by using machine perception, digitization of ECG image data was considered and converted into 
binary image format to remove ambient noises and disruptions and extract the features from binary image format using wavelet 
transforms. AR models and their coefficients were combined and concatenated to form a 1-D vector where the calculated intervals and 
amplitude features were stored in that vector. The pre-processing process of ECG image based on clustering uses K-medoid last per-
formance was evaluated using KNN and hyperparameter. KNN showed an accuracy of 86% in the existing system, and to detect OSA 
and MI from ECG abnormalities where k = 5, which was given an accuracy of 90%. 

Prabhakararao and Dandapat [132] presented the Posterior Myocardial Infarction (PMI) detection algorithm from health control 
(HC) subjects using 3-lead ECG signals. The proposed method consisted of four stages, such as VCG signal preprocessing to reduce BW 
and HF noises, multiscale sub-band matrices (MSSM) were constructed from preprocessed ECG signal using 6-level wavelet decom-
position, covariance structures of selected MSSM to obtain a 12-dimensional MSEF for efficient classification, and supervised binary 
classification of 3-lead ECG signals as HC or PMI using weighted SVM classifier to combat data imbalance problem. The publicly 
available PhysioNet/PTBDB diagnostic database validated the proposed method using 1463 HC and 148 PMI 4 sec 3-lead ECG signals. 
The best test accuracy of 96.69%, the sensitivity of 80%, and the Gmean of 88.72% were achieved by a 12- dimensional MSEF and 
weighted SVM-RBF classifier. 

In [139], the authors combined random forests and ECG data to develop an ECG left ventricular hypertrophy classifier. For the ECG 
data to meet the requirements of the random forests, this study also proposes a method that uses K-nearest neighbors imputes missing 
values of ECG data and Z-score to standardize ECG data. The data utilized in this study was obtained from the Cardiovascular Disease 
Risk Factors Two-Township Study, from which the authors could acquire recordings from 767 subjects. Of these 767 people, 385 were 
female, and 382 were male. The female subjects had a mean age of 67, while the male subjects had a mean age of 68, and the mean BMI 
of both groups was the same at 24. A total of 327 patients had left ventricular hypertrophy, with 206 (53.5%) female participants and 
121 (31.6%) male participants. From these ECG signals, the authors extracted P waves representing atrial depolarization, PR intervals, 
QRS complexes representing ventricular depolarization, T waves representing ventricular repolarization, and QT intervals repre-
senting the duration of left and right ventricle depolarization and repolarization. The results of the application of this method vary 
depending on the number of decision trees utilized, with 50 being the number that, in the tests run by the authors, resulted in the best 
outcomes, with a sensitivity of 58.4%, a specificity of 70.9% and an accuracy of 66.1%. 
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Iqbal et al. [148] proposed a method for recognizing myocardial infarctions and atrial fibrillation patterns, called deep deter-
ministic learning, combining predefined heart activities with fused datasets. Two datasets were used during this study, the Massa-
chusetts Institute of Technology–Beth Israel Hospital dataset and one provided by the University of Malaya Medical Center. From these 
signals, the authors extracted seven-time features, including heart rate, mean of HR, the standard deviation of RR interval, root mean 
square difference of RR interval, number of RR intervals more than 50, the mean value of T-wave onset, and mean value of the T-wave 
offset. The proposed method achieved an overall accuracy of 99.88% for detecting myocardial infarction, 100% for detecting normal 
sinus rhythms, and 99.97% for detecting atrial fibrillation. 

The authors of [164] presented an innovative genetic ensemble of classifiers for classifying cardiac disorders based on electro-
cardiography signal analysis. The ECG signals were obtained from the PhysioNet service from the MIT-BIH Arrhythmia Database. The 
database has 1-lead ECG signals from 29 patients, and each signal contains 17 classes: normal sinus rhythm, pacemaker rhythm, and 15 
cardiac dysfunctions. All ECG signals were recorded at 360 Hz. The features were extracted using the Welsh method. The method used 
was the support vector machine (SVM). Ensembles proposed method in this study was an accuracy of 91.40%, a sensitivity of 91.40%, 
and a specificity of 99.45%. 

3.4. Other cardiovascular pathologies 

In [23], the authors proposed a fast and accurate classifier that simulates the cardiologist’s diagnosis to classify the ECG signals into 
normal and abnormal from a single-lead ECG signal. The features extracted were the R, P, Q, S, and T peaks, the T wave, the P-R 
interval, the R-R interval, and the S-T interval. The proposed method approaches an accuracy of 99%. 

The authors of [22] presented a deep learning-based diagnosis system for the early detection of heart failure, particularly in elderly 
patients. The databases used in this study were the MIMIC-III, containing 61532 patients’ data, and the physiological waveform 
database, containing 10282 patients’ data. The features were extracted automatically using the CNN method. The other method used 
in this study was the 33. The results for this last method were an accuracy of 97.5%, a sensitivity of 97.7%, and a specificity of 97.4%. 

Anand et al. [39] implemented the ST–CNN–GAP-5 model on a publicly available PTB-XL ECG signal dataset to detect cardiac 
disorders. This dataset is available on Physionet, and the ECG data was recorded from 1989 to 1996. It’s a 12-Lead ECG dataset 
consisting of 21,837 samples from 18,885 patients aged between 1 and 95 years, where gender is equally balanced, with 52% male and 
48% female. For the proposed study, the authors extracted the QRS complex representing ventricular depolarization, the ST-T-U 
complex (ST segment, T, and U) representing ventricular repolarization, and the P-wave representing atrial depolarization. Using 
this method, the authors generated two groups of results, one at 500 Hz and one at 100 Hz. The first group has an accuracy of 95.85%, a 
Macro AUC of 99.46%, a Macro AUPRC of 98.53%, a Macro Precision of 95.44%, a Weighted of 95.85%, a Macro Recall of 95.34%, a 
Weighted Recall of 95.85%, a Macro F1 of 95.39%, and a Weighted F1 of 95.84%; the second group has an accuracy of 96.22%, a 
Macro AUC of 99.54%, a Macro AUPRC of 98.73%, a Macro Precision of 95.90%, a Weighted of 96.25%, a Macro Recall of 95.71%, a 
Weighted Recall of 96.22%, a Macro F1 of 95.79%, and a Weighted F1 of 96.22%. Based on these results, the performance at 100 Hz is 
better than that at 500 Hz. 

Guo et al. [42] developed a pragmatic prediction model based on T wave inversion (TWI) and S wave in lead V1 (SV1), which can 
automatically be acquired by electrocardiography to screen for Hypertrophic cardiomyopathy (HCM). All enrolled participants had 
data from at least one standard 12-lead ECG and transthoracic cardiac echocardiography examination. Model development was 
performed according to the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
guidance. Four different approaches were applied: (1) the adaptive least absolute shrinkage and selection operator (LASSO) analysis; 
(2) LASSO followed by multivariable logistic regression with backward stepwise selection; (3) LASSO followed by best subset selection; 
and (4) multivariable logistic regression with backward stepwise selection. After several independent feature selection approaches and 
model evaluation, only two ECG features were included, T wave inversion (TWI) and the amplitude of S wave in lead V1 (SV1) in the 
HCM prediction model. The model showed a useful discriminative performance (C-statistic >0.75) in training [C-statistic 0.857 
(0.818–0.896)] and temporal validation cohorts [C-statistic 0.871 (0.812–0.930)]. In the external validation cohort, the C-statistic of 
the model was 0.833 [0.825–0.841]. 

In [51], a deep learning model to detect significant aortic regurgitation using ECG is proposed. The dataset utilized during this 
study consisted of 29859 ECG–echocardiography pairs, including 412 AR cases from 170 patients, and was collected using a 12-Lead 
ECG sensor, model FCP-8700/FCP-8800 by Fukuda Denshi. The mean age of the study population was 63.3 ± 16.9 years, and of the 
29859 ECG–echocardiography pairs, 16922 12-Lead ECGs were from 9010 men and 12,937 12-Lead ECGs from 7334 women. For the 
study, nine features from the automatic 12-Lead ECG analysis results were considered: heart rate, presence of atrial fibrillation, RR 
interval, PR interval, QRS duration, QT interval, corrected QT interval, QRS axis, and P-wave axis. Two demographic variables (age 
and sex) were also collected from the record when the 12-Lead ECG was performed. The authors developed a multi-input neural 
network model consisting of a two-dimensional convolutional neural network (2D-CNN) using raw ECG data and a YB (FC-DNN) using 
ECG features. The results achieved when applying this method prove that it can detect significant aortic regurgitation with modest 
predictive value: 82.3% accuracy, 53.5% sensitivity, 82.8% specificity, 99.1% negative predictive value, and 5% positive predictive 
value. 

Zhao et al. [52] developed a deep learning model based on the convolutional neural network long short-term memory (CNN-LSTM) 
to detect left ventricular hypertrophy (LVH) using 12-lead ECG. The echocardiogram and ECG of 1,863 patients obtained within one 
week after hospital admission were analyzed. Patients were evenly allocated into 3 sets at a 3:1:1 ratio: the training set (n = 1,120), the 
validation set (n = 371), and the test set 1 (n = 372). In addition, we recruited 453 hospitalized patients into the internal test set 2. 
Different DL model of each subgroup was developed according to gender and relative wall thickness. The LVH was predicted by the 
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CNN-LSTM model with an area under the curve (AUC) of 0.62 (sensitivity 68%, specificity 57%) in the test set 1, which outperformed 
Cornell voltage criteria (AUC: 0.57, sensitivity 48%, specificity 72%) and Sokolow-Lyon voltage (AUC: 0.51, sensitivity 14%, speci-
ficity 96%). In the internal test set 2, the CNN-LSTM model had a stable performance in predicting LVH with an AUC of 0.59 (sensitivity 
65%, specificity 57%). In the subgroup analysis, the CNN-LSTM model predicted LVH by 12-lead ECG with an AUC of 0.66 (sensitivity 
72%, specificity 60%) for male patients, which performed better than that for female patients (AUC: 0.59, sensitivity 50%, specificity 
71%). 

The authors of [58] propose a deep convolutional network for classifying cardiovascular diseases utilizing standard 12-Lead ECG 
signals. The ECG data used in this study was acquired from the PTB Diagnostic ECG Database. This database has a total of 549 records 
obtained from 290 subjects, of which 209 were male, and 81 were female, ranging from 17 to 87 years old. Of the 549 records, this 
database has 148 myocardial infarctions, 52 normal beats, 7 hypertrophic cardiomyopathies, 6 dilated cardiomyopathies, 14 bundle 
branch blocks, and 6 valvular heart diseases. To increase the amount of data the authors had to work with, they first divided the 
database into intervals of 1, 2, and 3 s. The convolutional neural network automatically takes care of the feature extraction and feature 
selection in this study, removing the need for expert knowledge. Applying this method to the database, the authors were able to 
achieve accuracy, sensitivity, and specificity of 99.59%, 99.04%, and 99.87%, respectively, with 1-s ECG signals, an accuracy, 
sensitivity, and specificity obtained of 99.80%, 99.48%, and 99.93%, respectively, using 2-s of signals with pre-trained proposed 
models, and accuracy, sensitivity, and specificity of segmented ECG tested by 3-s signals of 99.84%, 99.52%, and 99.95%, respectively. 

The authors of [59] proposed a 12-Lead ECG-based cardiac amyloidosis detection method utilizing artificial intelligence. The 
authors collected the ECG data used in this study from a group of 2541 patients, with the inclusion criteria being a diagnosis of 
Transthyretin Amyloidosis or light chain-associated amyloid in the last 180 days. The AI automatically handles the feature extraction 
in this study. The method proposed achieved an area under the receiver operating characteristic curve of 0.91, with a positive pre-
dictive value for detecting Transthyretin Amyloidosis or light chain-associated amyloid of 86%. The AI was also able to predict the 
presence of these conditions in patients subjected to ECG tests pre-diagnosis, more than 6 months before the clinical diagnosis, on 59% 
of occasions. The best single-lead model was V5, with an area under the receiver operating characteristic curve of 0.86 and a precision 
of 78%. The 6-lead model had an area under the receiver operating characteristic curve of 0.90 and a precision of 85% 

Haleem et al. [60] proposed a two-stage multiclass algorithm. The first step performs ECG segmentation based on convolutional 
bidirectional long-term memory neural networks with attentional mechanisms. A second stage was based on a time-adaptive con-
volutional neural network applied to ECG beats extracted from the first stage for various time intervals. The authors used one dataset 
for training/testing the ECG segmentation model and four datasets for the cardiovascular disease model detector for training/testing. 
The first dataset was trained, validated, and tested using PhysioNet’s QT dataset and contained 105 2-lead ambulatory ECG recordings 
with P, QRS, and T waves. The other four datasets were: MIT-BIH Normal Sinus Rhythm Database, containing 18 long-term ECG 
recordings of normal healthy not-arrhythmic subjects (thirteen females between 20 and 50 years old); BIDMC Congestive Heart Failure 
Database, including 15 long-term ECG recordings of subjects with severe CHF (eight females between 22 and 63 years old); the 
MIT-BIH Sudden Cardiac Death Holter database, containing 18 patients with sustained ventricular tachyarrhythmia (eight females 
between 17 and 89 years old); and the last one was MIT-BIH Arrhythmia Database obtained from 47 subjects (22 females between 23 
and 89 years old). The features extracted were P, QRS, and T waves. The CVD method achieved 100% accuracy in detecting events, 
such as normal sinus rhythm, congestive heart failure, arrhythmia, and sudden cardiac death, based on different time intervals of the 
ECG recordings. 

In [68], the authors developed an automated system for automatically categorizing electrocardiogram signals into normal coronary 
artery disease, myocardial infarction, and congestive heart failure classes using a convolutional neural network and unique GaborCNN 
models. This study utilized Fantasia and St. Petersburg databases containing 2-lead ECG signals from 92 healthy controls, 7 coronary 
artery disease, 148 myocardial infarctions, and 15 congestive heart failure patients. The authors used the CNN model for automated 
extraction. The methods used were CNN and GaborCNN. For the CNN method, the results were: the normal class was a sensitivity of 
98.85%, a specificity of 99.49%, a positive predictive value of 99.60%, and an accuracy of 99.13%; the myocardial infarction class was 
a sensitivity of 99.95%, a specificity of 99.95%, a positive predictive value of 99.58%, and an accuracy of 99.95%; the coronary artery 
disease class was a sensitivity of 98.67%, a specificity of 99.35%, a positive predictive value of 95.96%, and an accuracy of 99.26%; the 
congestive heart failure class was a sensitivity of 99.64%, a specificity of 99.90%, a positive predictive value of 99.62%, and an ac-
curacy of 99.85%. For the GaborCNN method, the results were: the normal class was a sensitivity of 97.95%, a specificity of 99.39%, a 
positive predictive value of 99.52%, and an accuracy of 98.58%; the myocardial infarction class was a sensitivity of 99.13%, a 
specificity of 99.75%, a positive predictive value of 97.82%, and an accuracy of 99.68%; the coronary artery disease class was a 
sensitivity of 98.56%, a specificity of 98.92%, a positive predictive value of 93.47%, and an accuracy of 98.87%; the congestive heart 
failure class was a sensitivity of 99.30%, a specificity of 99.79%, a positive predictive value of 99.19%, and an accuracy of 99.69%. 

Yadav et al. [80] implemented a convolutional neural network (CNN) made of two layers of convolution-pooling, two dense layers, 
and one output layer for diagnosing myocardial infarction using ECG. This network uses Leaky ReLU neurons with categorical 
cross-entropy loss function and the ADAM optimizer algorithm for better performance. To avoid the problem of overfitting, the L2 
method for regularization of the dense layer of CNN was applied. The performance obtained of sensitivity, specificity, and accuracy of 
100%, 99.65%, and 99.82%, respectively, for data taken from the training set, and 99.88%, 99.65%, and 99.82%, respectively, on the 
testing set. 

The authors of [84] proposed a set of end-to-end automatic diagnosis algorithms for ECG diseases based on intelligent simulation 
modeling. The database used in this study was the Center for Communicable Disease Dynamics (CCDD) database. This database 
contained 193690 12-Lead ECG data with the sampling rate at 500 Hz. This database used two datasets: the first dataset contained 
31497 data on disease types; the second dataset contained 43510 data. The features extracted from the ECG data were: QRS width, 
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mean QRS width, RR interval, average RR interval, PR interval, PP interval, TP segment, average TP segment, QRS main wave, R wave 
time limit, S wave time limit, Q wave time limit, R peak time limit, Q peak voltage value, R peak voltage value, S peak voltage value, 
QRS main wave voltage, QRS main wave average voltage, Q wave type, R wave type, S wave type, T wave type, P wave type, QRS axis 
deviation, and ST-segment morphology. For the first dataset, the proposed method has an accuracy of 90.47%, a sensitivity of 81.59, 
and a specificity of 91.75%. For the second dataset, an accuracy of 89.50%, a sensitivity of 81.18%, and a specificity of 90.71%. 

In [91], the authors proposed cardiovascular disease (CVD) detection by using a Deep Neural Network (DNN) with the help of Heart 
Rate Variability (HRV). The data utilized in this study was collected from 3 PhysioNet databases: Arrhythmia Database from MIT-BIH, 
Normal Sinus Rhythm Database MIT-BIH, and Congestive Heart Failure Database from BIDMC. With these databases, the author 
detected the R peaks wavelength for the ECG signal. The experimental results of the Deep Neural Network method achieved 99% 
accuracy. 

In [93], a hybrid neural network approach was proposed by combining two non-specific surrogate Coronary artery disease (CAD) 
markers, i.e., anomalous ECG morphology and abnormal HRV, in a single CNN-LSTM architecture. This approach was evaluated on 
two datasets, a corpus selected from the MIMIC II waveform dataset and a partially noisy in-house dataset, recorded using a low-cost 
ECG sensor. Results showed that overall classification accuracy of 93% and 88% were achieved on the two datasets, which out-
performed the existing approaches from the revised literature. 

Bouny et al. [98] presented an End-to-End Learning method for heart disease diagnosis from a single-channel ECG signal. The 
authors proposed a Multi-Level Wavelet Convolutional Neural Network (ML-WCNN) to recognize various cardiac arrhythmias auto-
matically. The ECG database was constructed from MITDB by randomly selecting 45000 ECG fragments distributed as follows: 13200 
normal, 7100 premature ventricular contractions, 7200 of ht bundle branch block, 8000 left bundle branch block, 2500 premature 
atrial contraction, and 7000 paced beats. The Multi-Level Wavelet Convolutional Neural Networks model extracted the features. The 
methods used were: the convolutional neural networks (CNN), the long-short term memory (LSTM), the deep unidirectional LSTM, the 
denoising auto-encoder, the deep neural networks, and the wavelet sequence, the convolutional auto-encoder, the faster regions with 
CNN, and the short-time Fourier transform. The proposed method has an accuracy of 99.57%. 

In [104], an artificial intelligence approach for the detection of left atrial enlargement (LAE) based on 12-lead electrocardiography 
(ECG) was proposed. The dataset from 3,391 older adults over 65 years old who had both 10-s 12 lead ECG and echocardiography was 
used in this study. The left atrial (LA) anteroposterior diameter >40 mm on echocardiography was diagnosed as LAE, and the LA 
anteroposterior diameter was indexed by body surface area (BSA) to classify LAE into different degrees. A convolutional neural 
network (CNN) was trained and validated to detect LAE from normal ECGs. The model’s performance was evaluated by calculating the 
area under the curve (AUC), accuracy, sensitivity, specificity, and F1 score. The proposed method for ECG-identified LAE obtained an 
AUC of 0.949 (95% CI: 0.911–0.987). The sensitivity, specificity, accuracy, precision, and F1 score were 84.0%, 92.0%, 88.0%, 91.3%, 
and 0.875, respectively. 

Li et al. [107] proposed designing a simple architecture of the deep neural network, CraftNet, for accurately recognizing the 
handcraft features. This study used the MIT-BIH database available on Physionet. It contained 48 30 min-long 2-lead ECG records 
samples from 47 patients at 360 Hz. From the ECG signals, the author extracted R-R intervals (RR), wavelet, higher-order statistics 
(HOS), and morphological (Morph) features. The proposed method could characterize the normal beat, supraventricular ectopic beat, 
ventricular ectopic beat, fusion beat, average value, and accuracy. The regular beat has positive productivity of 99.18%, a sensitivity of 
88.16%, and a specificity of 94.34%. The supraventricular ectopic beat has positive productivity of 41.64%, a sensitivity of 85.37%, 
and a specificity of 94.85%. The ventricular ectopic has positive productivity of 95.63%, a sensitivity of 94.53%, and a specificity of 
99.70%. The fusion beat has positive productivity of 10.89%, a sensitivity of 89.92%, and a specificity of 94.28%. The average value 
has positive productivity of 61.84%, a sensitivity of 89.25%, and a specificity of 95.79%. The accuracy of this method was 89.24%. 

In [109], the authors propose a deep learning algorithm for the classification of heartbeats, combining a convolutional neural 
network with bidirectional long short-term memory. For this study, the authors utilized two different datasets, one collected from the 
MIT-BIH arrhythmia database and containing 1000 10-s single-lead ECG segments, and the other shared by the China physiological 
Signal Challenge 2018 (Liu et al., 2018), including 6877 12-Lead ECG recordings, of which 53.7% were acquired from male partic-
ipants, and 46.3% were obtained from female participants. The CNN blocks automatically accomplished the feature extraction for 
these signals. The proposed method achieved, for the first database, a sensitivity, specificity, and F1-score of 84%, 99%, and 85%, 
respectively, and for the second database, a sensitivity, specificity, and F1-score of 74.3%, 97.5%, and 80%, respectively. 

The authors of [117] proposed a coronary artery disease (CAD) and congestive heart failure (CHF) classification method based on 
ECG fragment alignment (EFA)-principal component analysis (PCA) convolutional network (EFAP-Net). This study obtained data from 
3 databases: MIT-BIH Normal sinus rhythm, St Petersburg INCART 12-lead Arrhythmia, and BIDMC Congestive heart failure. The first 
database has a normal ECG type with 18 2-lead ECG records. The second has coronary artery disease ECG type with 17 2-lead ECG 
records. The third database has congestive heart failure ECG type with 15 2-lead ECG records. The EFAP-Net method used in this study 
was an accuracy of 99.78%. 

Yao et al. [118] investigated associations of Coronary artery disease (CAD) with increased QT interval variability and waveform 
ST–T segment abnormalities, such as T-wave inversion and ST-segment elevation or depression, and their efficacy in automated CAD 
detection. The dataset containing related clinical characteristics and 5-min single-lead ECGs of 107 healthy controls and 93 CAD 
patients was constructed. Based on this dataset, simultaneous analyses were conducted in five scenarios. Different ML algorithms were 
applied to classify the two groups with various features derived from the RR and QT interval time series and ST–T segment waveforms. 
Compared with features obtained from the RR interval time series, better classification results were achieved utilizing those obtained 
from the QT interval time series. The classification results were elevated by combining the utilization of features derived from the RR 
and QT interval time series. Further fusing features extracted from ST–T segment waveforms achieved the best performance with 
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96.16% accuracy, 95.75% sensitivity, and 96.40% specificity. Based on the best performance, an automated CAD detection system was 
developed with extreme gradient boosting, an ensemble ML algorithm, and the residual neural network, namely, a deep learning 
method. 

Deb et al. [123] developed a method to classify ECG signals into two groups: normal and abnormal. Angina, Bundle Branch Block, 
Cardiomyopathy, Heart Failure, Dysrhythmia, Myocardial Hypertrophy, Myocardial Infarction, Myocarditis, and Valvular Heart 
Disease. All these cardiac conditions were classified as abnormal ECG signals. Statistic features skewness, kurtosis, the standard de-
viation of detail, and approximation coefficients of the Daubechies wavelet (db10) of order 5 for several abnormal and normal ECG 
signals were obtained in the extraction stage. Support Vector Machine (SVM) was used for model classification. This method’s ac-
curacy, sensitivity, and specificity were compared and evaluated by testing the SVM with 36 signals obtained from the MIT-BIH 
Normal Sinus Rhythm Database and 36 signals from the PTB Diagnostic ECG Database, which yielded an accuracy, sensitivity, and 
specificity of 98.61%, 97.37%, 97.22%, respectively. 

In [125], the authors proposed models of combinations of multi-lead ECG from the 12-lead ECG St. Petersburg Arrhythmias 
database to detect premature ventricular contractions (PVCs) and optimize the required data pre-processing resources for Convolu-
tional Neural Network(CNN) implemented on wearable devices. Was considered two scenarios to evaluate the performance of data 
processing for CNN classification of PVCs. Firstly, Wavelet Fusion was applied for 6-lead ECG to be our CNN input image, and second, 
was used Tensor decomposition of multi-leads combination techniques for the same 6-lead ECG. CNN model was built with TensorFlow 
to classify our ECG signals with or without PVC. The designed CNN has 7 layers, 2 convolutional layers, 2 max-pooling layers, 1 fully 
connected, and 1 output layer. CNN’s architecture and setup parameters were the same for all the cases: Factors as input and Fused 
Wavelet Image as input. 5-fold cross-validation was used for tuning the hyperparameters of CNN. Experimental results showed that 
tensor decomposition of stacked multi-lead ECG achieved better performances than wavelet fusion for 6-lead ECG. The achieved 
accuracy for the Tensor-based method reaches 90.84% with a sensitivity of 78.6% and a specificity of 99.86% using the SELU acti-
vation function. 

The authors of [129] proposed a deep convolutional neural network-Recurrent neural network (CNN-RNN) model for automati-
cally staging heart failure diseases in real-time and dynamically. The dataset utilized in this study was from the chest pain centers 
(CPCs) of the Shanxi Academy of Medical Sciences. The data collected included 573 patients at least 18 years old from January 2013 to 
December 2017, including healthy persons and heart failure patients. The features were extracted automatically using the automatic 
CNN-RNN method. This method has an accuracy of 97.6%, a sensitivity of 96.3%, a specificity of 97.4%, and a positive predictivity of 
97.1%. 

In [133], the authors present a method for cardiovascular disease classification, proposing an end-to-end trainable cross-domain 
transfer learning for cardiovascular diseases from ECG waveforms by utilizing existing vision-based Convolutional Neural Network 
Frameworks as feature extractors, followed by ECG feature learning layers. The authors collected ECG signal data from two separate 
datasets, the ICBEB and CCH datasets. The ICBEB dataset contains 12-Lead ECG records from a total of 6877 subjects, of which 5959 
were diagnosed with at least one of the following cardiovascular abnormalities: Atrial fibrillation, First-degree Atrioventricular Block, 
Left Bundle Branch Block, Right Bundle Branch Block, Premature Atrial Contraction, Premature Ventricular Contraction, ST-segment 
Depression and ST-segment Elevated. The GGH dataset has ECG signals collected from a total of 21241 patients, and for this study, the 
data from 11,853 Myocardial Infarction and 5,528 normal patients was used. The Softmax layer automatically extracted the relevant 
ECG features from these signals. The proposed method is then validated on both datasets, achieving an accuracy of 49.9% for the ICBEB 
dataset and 85.8% for the GGH dataset. 

Tison et al. [134] developed and tested an algorithmic framework named ecgAI that facilitates scalable analysis of ECG data while 
preserving interpretable parallels to cardiac physiology. The data was obtained from The University of California, San Francisco 
(UCSF) ECG database and was selected for 36186 12-Lead ECG. The authors developed a 725-component ECG vector representation 
derived from the CNN/HMM segmented ECG segments to extract features: the PR interval, the QRS complex, the ST-T wave complex, 
and the TP segment. The results of the proposed method, ecgAI, were 91 ± 3 for the P wave, 85 ± 2 for the PR segment, 94 ± 4 for the 
QRS complex, 88 ± 3 for the ST segment, 91 ± 3 for the T wave, and 92 ± 5 for the TP segment. 

In [136], the authors proposed an ECG-based classifier for Congestive Heart Failure, utilizing Stockwell Transform and Hybrid 
Classification Scheme. For the study, congestive heart failure and normal sinus rhythm ECG signals were collected froth the Beth Israel 
Deaconess Medical Center (BIDMC) CHF database and the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) 
arrhythmia database, respectively. The BIDMC CHF database comprises two-lead ECG signals collected from 15 subjects lasting an 
hour and 6 min each. The MIT-BIH arrhythmia database contains 17 NSR ECG signals, each lasting 30 min. To utilize the Hybrid 
classification scheme, the authors extracted the time-frequency entropy features from these signals, with the 48-dimensional feature 
vector, with the entropy features computed from the first 48 frequency components, serving as the input for the hybrid classifier. The 
proposed method achieved an accuracy of 98.78%, a sensitivity of 98.48%, and a specificity of 99.09%. 

The authors of [141] proposed a deep learning method to create an automated system for detecting and classifying cardiovascular 
diseases. The CNN made to detect cardiovascular diseases was trained to utilize 259,789 ECG signals from a dataset constructed by the 
authors from the ECG management system of the First Affiliated Hospital of Nanjing Medical University, with a total of 277,807 
12-lead static ECG recordings. Having applied the proposed method, the authors reported an accuracy of 98.27%, a precision of 
60.93%, and a sensitivity of 99.95%. 

Hao et al. [147] propose a method for classifying cardiovascular diseases called the Softmax regression model, which utilizes the 
available state data of the two-layer neural network structure of the Softmax regression model for training and learning, and to then 
calculate the probability of reclassification data belonging to each category. The categories mentioned correspond to the maximum 
likelihood and the classification result of the data to be classified. The ECG signal data from the MIT-BIH database is utilized during this 
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study, with the authors extracting ECG data of patients with 3 kinds of cardiovascular diseases: atrial fibrillation, normal sinus rhythm, 
and ventricular two rates. The feature extraction from this data is then automatically carried out by the Softmax regression model. 
Having applied the proposed method to the database, the authors report a correct classification rate of 94.44%. 

The authors of [149] propose a heart disease classification method using Long Short-Term Memory. The ECG signals utilized during 
this study were extracted from the UCR time series classification archive, from which the authors randomly selected 5000 heartbeats. 
The ECG features were then extracted from these signals by an automatic classification process called symbolic aggregate approxi-
mation. The accuracy achieved by this method was 97%. 

Acharya et al. [158] proposed an automated ECG classification method for coronary artery disease by applying Higher-Order 
Statistics and Spectra. For this study, the authors utilized the ECG signal data from the St. Petersburg Institute of Cardiological 
Technics 12-lead Arrhythmia Database to extract 17 coronary artery disease records from 7 subjects. The Fantasia, an open-access 
database, extracts 40 normal records from 40 subjects. From these ECG signals, the authors extracted a total of 136 bispectra and 
136 cumulant features. The proposed method was able to characterize the normal and coronary artery disease-affected ECG signals 
with a 98.17% accuracy, a 94.57% sensitivity, and a 99.34% specificity using 13 bispectrum features, and an accuracy of 98.99%, a 
sensitivity of 97.75%, and a specificity of 99.39% using 31 cumulant features. 

In [161], the authors proposed a methodology for automating the diagnosis of normal and Coronary Artery Disease conditions 
using Heart Rate Variability signals extracted from ECGs. The authors obtained the coronary artery disease beats from the Long-Term 
ST Database, consisting of 86 recordings from 80 human subjects, of which 46 were men, ages 44–85, and 29 were women, ages 23–87. 
To create a coronary artery disease group, only 23 of the 80 subjects were of interest. The data for the control group of normal beats 
was acquired from 24-h Holter monitor recordings of 54 healthy subjects, 30 of which were male and 24 of which were female, ages 
29–76, with a mean age of 61. To create groups of equal size, the authors only extracted 23 beats from this database. The authors then 
extracted different features from these signals that could be organized into three groups: time-domain, frequency-domain, and 
nonlinear characteristics. The time-domain features extracted the standard deviation of normal to normal R-R intervals, the standard 
deviation of successive RR interval differences, the square root of the mean of the sum of the squares of differences between adjacent 
NN intervals, the square root of the mean of the sum of the squares of differences between adjacent NN intervals, the baseline width of 
the RR histogram evaluated through triangular interpolation and the number of all NN intervals/maximum number; the frequency 
domain features extracted the total power, high frequency, and low-frequency value and ratio of low-frequency power to 
high-frequency power; and the nonlinear features extracted were the point care plots, recurrence quantification analysis, approximate 
entropy, sample entropy, detrended fluctuation analysis, and correlation dimension. The authors utilize principal component analysis 
to reduce the dimension of the extracted features and then, applying a support vector machine, classify the beats into two classes. This 
method achieved an accuracy of 99.2%, a sensitivity of 98.43%, and a specificity of 100%. 

The authors of [163] proposed a method for cardiac disease classification based on ECG signals, allowing for the distinction be-
tween 17 classes, and utilizing evolutionary-neural systems. The MIT-BIH Arrhythmia database was used during this study, consisting 
of records from 45 patients. For feature extraction, the authors used the following methods: Power spectral density, Welch’s method, 
Periodogram, Fourier discrete transform, Hamming window, and Series of logarithms of signals. The best evolutionary-neural system, 
based on the SVM classifier, obtained a recognition sensitivity of 17 myocardium dysfunctions at a level of 90.20% (98 errors per 1000 
classifications, accuracy of 98.85%, specificity of 99.39%, and time for classification of one sample = 0.0023 [s]). 

In [169], the authors proposed a method for automatic diagnosis of coronary artery disease, implementing a long short-term 
memory with a convolutional neural network for that purpose. The authors extracted the normal ECG data used in this study from 
the Fantasia open-source database and the coronary artery disease ECG data from the St Petersburg Institute of Cardiology Technics 
12-leads arrhythmia database. The authors only utilized 7 coronary artery disease records from the database, 6 of which had been 
obtained from female subjects, 1 which had been obtained from a male subject, and 40 normal beat records, which had been collected 
from 20 female and 20 male subjects. The relevant features for this study are automatically extracted from these ECG signals by the 
convolutional layer of the CNN. The proposed method can detect coronary artery disease with a precision of 99.85%, a recall of 
99.85%, an F1-score of 99.52%, and an accuracy of 99.85%. 

4. Discussion 

4.1. Interpretation of the results 

ECG data can be used for different kinds of research, where the monitoring of diseases is revealed as possible. The mainly used 
sensors combined with ML/DP methods vary between 1- and 12-lead sensors. As the sensors have low costs, they can be used for 
research purposes, allowing the creation of different solutions. 

Among the 103 studies analyzed, as presented in Fig. 2, thirty-five studies were performed in China, nineteen studies took place in 
India, ten studies were conducted in the United States of America, five studies were conducted in Iran, four studies were performed in 
Taiwan, three studies were conducted in Germany, three studies were conducted in Singapore, three studies were conducted in the 
United Kingdom, two studies were performed in Bangladesh, two studies were performed in Canada, two studies were performed in 
Egypt, two studies were performed in Poland, and one study for each country was conducted Brazil, Czech Republic, Hawaii, Japan, 
Korea, Malaysia, Morocco, New Zealand, Pakistan, Portugal, Sudan, Thailand, and United Arab Emirates. 

Some studies were based on problems related to a specific disease, and Fig. 3 demonstrates various diseases that were conducted in 
the studies, where thirty-six studies analyzed arrhythmia, seventeen studies examined atrial fibrillation, fourteen studies analyzed 
undefined cardiovascular diseases, seven studies analyzed myocardial infarction, seven studies analyzed coronary artery, two studies 
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analyzed ventricular arrhythmia, two studies analyzed left ventricular hypertrophy, two studies analyzed left atrial enlargement, two 
studies analyzed heart failures, and two studies analyzed abnormal cardiac conditions. The remaining diseases were diagnosed in one 
study. 

Regarding Table 3, most studies relied on datasets/databases to perform the tests. It is essential to mention that MIT-BIH databases 
had the most usage, counting forty studies. MIT-BIH arrhythmia is, by far, the most accessed database. Thirteen studies did not use any 
database, relying only on the population. 

Another noteworthy mention is the methods used for the interpretation of these studies. They all share the same method but use 

Fig. 2. Distribution of studies by the country where the studies were conducted.  

Fig. 3. Distribution of studies by disease.  
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different implementations. Machine learning showed an excellent correlation when working with ECG data. Concerning Fig. 4, the 
studies used different implementations, being the convolutional neural network (CNN) the most common madding appearance in 
forty-one studies, followed by support vector machine (SVM) appearing in twenty-four, and classical machine learning (ML) appearing 
in fourteen studies as well. 

Table 3 
Relations between datasets and studies.  

Datasets Studies 

MIT-BIH arrhythmia database [48,56,88,97] [ 
PhysioNet database [41,56,61,81,110,128] [40,60,77,121,125,127,132,153,159] 
Physikalisch-Technische Bundesanstalt (PTB) database [28,29,55,56,81] [39,54,58,80,87,111,116,162] 
MIT-BIH Atrial Fibrillation database [56,73] [72,95,100,101,147,156] 
Medical Center (BIDMC) CHF [63] [60,91,117,136] 
ICBEB [24] [109,119,133,138] 
Fantasia database [69] [68,158,169] 
MIT-BIH Normal Sinus Rhythm database [62] [60,91,117,123] 
St. Petersburg Institute of Cardiological Technics [70] [68,158,169] 
CPSC 2018 dataset [83] [82,88,90] 
Creighton university ventricular tachyarrhythmia database [75] [74,78,95] 
MIMIC II waveform dataset [94] [93,120] 
Atrial Fibrillation Prediction database [144] [143] 
CCDD [85] [84] 
CHIEF Heart Study [45,46] [44] 
ECG-ViEW II database [106] [105] 
Guvenir et al. dataset [146] [145] 
Hefei Hi-tech competition dataset [67] [66] 
San Francisco database [135] [134] 
UCI machine learning repository [167] [166] 
UCR Time Series Archive [150] [149]  

Fig. 4. Distribution of the various machine learning methods by the studies.  
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Table 4 
Discussion of study results and limitations.  

Paper Results and Benefits Limitations 

Anand et al. [39] The proposed model produced better results than the other state- 
of-the-art models on the same datasets. This model demonstrated 
generalizability by achieving good results on two different ECG 
dataset. The proposed model can be easily integrated with the 
existing ECG machines, to help the doctors in primary and 
secondary healthcare. 

N/D 

Geweid et al. [40] The results showed that the proposed method was the high 
reliability and accuracy which simplifies the extraction process and 
removal of detecting ECG signal fiducial points and removing 
hand-crafted features. This algorithm could be applied to personal 
health monitoring systems as it had reliably detected atrial 
fibrillation as well as other rhythms on ECG recording. 

N/D 

Guo et al. The proposed model showed a clearly useful discriminative 
performance (C-statistic >0.75) in the training [C-statistic 0.857 
(0.818–0.896)], and temporal validation cohorts [C-statistic 0.871 
(0.812–0.930)]. In the external validation cohort, the C-statistic of 
the model was 0.833 [0.825–0.841]. 

Further external validation using participants from multiple centers 
and a population with more heterogeneity is needed. The analysis of 
ECG variables in the current study focused only on those parameters 
that are easily assessed in clinical practice; thus, some important but 
less frequently used variables might have been omitted. The 
proposed model showed high sensitivity for HCM screening, at the 
cost of a high false-positive rate 

He et al. [43] The results of this study showed that long-term ECG monitoring 
could significantly improve the detection rate of postoperative 
atrial fibrillation. The model combining P wave parameters and 
clinical data performed better in predicting postoperative atrial 
fibrillation. 

The included sample size was relatively small, which may affect the 
results. ECG signal quality limited the effective of machine learning 
model. 

Hsu et al. [44] This was the first study using machine learning for ECG and 
biological features to predict Left Atrial Enlargement (LAE) early in 
young adults. The SVM was the best machine learning classifier for 
ECG features only to detect LAE in young males, achieving an AUC 
of 78% of the ROC. In contrast, the MLP was the best machine 
learning classifier, which could improve the performance from 73 
to 81% after biological features were added to the MLP model. 

Population of military males were physically active, the living 
environment was a closed system, the participants had a similar daily 
schedule, and the unmeasured bias could be minimized. As data were 
only obtained from the males, the results might not be the same for 
the females. Oxidative stress was also related to the occurrence of 
atrial fibrillation, and this was not considered in this study. 

Li et al. [47] The proposed method was illustrated by high classification 
performance under inter-patient paradigms, even though single- 
lead raw ECG data was used only. The advantage of this method 
was that it could classify arrhythmias without extracting 
heartbeats, and the classification accuracy was comparable to that 
of the methods mentioned in the introduction. 

The method proposed in this paper needs to use a larger annotated 
heartbeat database to improve the classification performance. 

Liu et al. [49] Using the comparative experiments, the proposed method 
achieved the optimal effect in the investigation of the same type of 
methods. This method had higher accuracy than other methods, 
and it was simpler and easier to understand. 

The proposed method does not use deep learning methods to classify 
arrhythmia heartbeat. 

Mazidi et al. [50] The experimental results reveal that the combination of the 
proposed method with the KNN classifier had better performance 
than other methods. 

A limitation was that the proposed method had limited performance 
with the processing tools in real time due to the complexity of 
mathematical computations in the TQWT algorithm. 

Sawano et al. [51] The area under the receiver operating characteristic curve of the 
multi-input model was significantly greater than that of the 
proposed model alone and those of other machine learning models. 
This study may be a first step toward creating a screening tool for 
aortic regurgitation, facilitating early diagnosis. 

First, because this study was a single-center retrospective, there may 
have been patient selection bias. Second, the authors had no data 
regarding the patient’s heart failure status. And the last limitation 
was the Grad-CAM method showed that the multi-input model 
focused on the QRS complex in leads I and aVL and the analysis of 
single-lead models and variable importance showed consistent 
findings. 

Zhao et al. [52] The proposed CNN- LSTM model predicted left ventricular 
hypertrophy (LVH) with higher sensitivity than the Cornell voltage 
criteria and Sokolow-Lyon voltage (68, 48, and 14%, respectively), 
whereas its specificity was inferior to these two criteria (57, 72, 
and 96%, respectively). 

This was a single-center study, the models may have the risk of 
generalizing poorly to other hospital systems and other datasets The 
accuracy of proposed model still needed to be improved. 

Zheng et al. [53] In comparison of the location prediction performance between 
human experts and proposed machine learning algorithm, results 
showed that the sensitivity, specificity, F1-Score, and accuracy of 
the machine learning-enabled ECG approach exceeded those of the 
human experts 0.57, 18.18, 2.17, and 3.95%, respectively. 

A multi-center prospective evaluation in larger cohorts is necessary 
to show robustness and compatibility of the proposed algorithm. 

Dey et al. [54] The proposed model provides relevant information of temporal 
features, and their correlation with the physical state of the 
myocardial infarction patients could provide a great help for the 
specialists. 

This method shows promising results if a selection of a minimum of 
12 consecutive ECG cycles can be ensured for proper extraction of all 
the features used. 

Che et al. [57] The proposed model combines CNN and Transformer networks to 
extract temporal information in ECG signal and can perform 
arrhythmia classification with acceptable accuracy. This model can 

N/D 

(continued on next page) 
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Paper Results and Benefits Limitations 

help cardiologists perform diagnosis of heart disease, improving 
the efficiency of healthcare delivery, and the authors hope it can be 
applied to low-cost ECG devices. 

Chen et al. [22] The results showed that the proposed method performance was 
better for both classifications of ECG signals. This study brings a 
greater burden to the evaluation of doctors and the management of 
medical institutions. 

N/D 

Dai et al. [58] The proposed end-to-end model enables the fast prediction of 
diseases without manual feature extraction. The results reported 
high accuracy, sensitivity, and specificity. 

N/D 

Grogan et al. [59] The results demonstrated the ability of an AI-ECG tool to detect 
amyloid heart disease before clinical diagnosis. The use of this 
model to detect cardiac amyloidosis may promote early diagnosis 
and initiation of potentially lifesaving therapy. 

The number of ECGs was limited. It was possible that individuals 
with unrecognized cardiac amyloidosis may have been included in 
the control group. Some patients with amyloid in the training set 
may not have had definite cardiac involvement. Fourth, the model 
needed validation in larger cohorts with prospective application. 

Haleem et al. [60] The achieved results help to reduce domain experts’ work, by 
computing useful signal characteristics via an automated complete 
system for early diagnosis of CVD. This tool had the capability to be 
implemented under real-time settings and to be tested in patients 
with known heart disease. 

The publicly available datasets used in this study presented some 
missing information and limitations. 

Houssein et al. [65] The experimental results revealed that the proposed method 
achieved good results compared with the competitor algorithms. 
And demonstrated a promising use for professionals who want to 
diagnose heart diseases based on the ECG signal. 

N/D 

Hua et al. [66] The proposed a feature selection framework can extract specific 
clinical metric features from raw ECG data, these features are more 
concrete and has their meaning compared to the ones extracted by 
other deep neural networks. 

The number of the features extracted from the raw ECG data give a 
small subset of what the samples can offer. 

Jahmunah et al. 
[68] 

The proposed method was more effective than the CNN model, as it 
can be trained faster with lesser weights and achieving high 
accuracy performance. This method was preferred for the 
classification and can be potentially used as an assistive tool for 
clinical experts to confirm their diagnostic decisions quickly. 

The first limitation, the authors just used a few subjects for CAD and 
CHF groups. The second limitation, the necessity of having a large 
dataset to train and test the proposed method. 

Li et al. [71] The proposed algorithm BiLSTM–CNN can diagnose multiple types 
of cardiac arrhythmias with promising accuracy of 99.56%, clinical 
value, and robustness, which may be potentially useful in assisting 
risk stratification, clinical diagnosis, and real-time ECG 
monitoring. 

The proposed model still needs to be further tested and improved by 
using other ECG datasets with more types of rhythmic abnormalities. 

Luo et al. [72] The proposed model outperformed some state- of-the-art studies, 
with a high overall performance value. The results achieved 
demonstrated that the SMOTE technique can improve the 
classification accuracy of the method, especially for the minority 
classes. This method is an effective tool for performing rapid and 
consistent arrhythmia diagnosis that can help cardiologists 
correctly identify heartbeat types. 

This method requires a large amount of data and the time cost of the 
training phase and the model’s training by using 10-fold cross 
validation is high and demands powerful computers 

Naz et al. [74] The results of the proposed method had a higher accuracy than 
existing methods, and the execution time is minimized. 

N/D 

Nguyen et al. [76] The training strategy applied to the convolutional neural network 
during this study resulted in the extraction of useful deep features 
without the need for expertise on ECG signals and cardiac rhythm 
disorders. Stacking SVN with RBF kernel on the statistics of CNN 
predictions allowed for precision in distinguishing different 
heartbeat classes. When compared to other methods submitted for 
the Physionet 2017 challenge, this method achieved better scores 
than most. The proposed method could be extended to other 
problems related to medical signals. 

The authors reported a weakness with the method, although they say 
it was due to the nature of the dataset. The lack of information 
related to the location of the atrial fibrillation rhythm, as well as 
other rhythms in each ECG, may have resulted in some segments 
from atrial fibrillation signals not containing atrial fibrillation. 
Similarly, a segment from an others signal may not contain any other 
rhythms. 

Radhakrishnan 
et al. [77] 

The proposed method demonstrated higher classification 
performance using chirplet transform-based time-frequency 
representation of ECG signal as compared to other methods. The 
proposed method could be deployed in intelligent healthcare 
systems for automated atrial fibrillation detection using ECG 
sensor data. 

N/D 

Sabut et al. [78] The results reached an accuracy of 99.2%, which was better than 
other studies. The proposed method could be improved further in 
terms of detection accuracy and computational complexity. 

N/D 

Yadav et al. [80] Sensitivity, specificity, and accuracy of 99.88%, 99.65%, and 
99.82%, respectively, on patients, it hasn’t seen before, which 
suggests that the model can achieve excellent classification 
performance. 

During the handling of ECG signals, noise reduction was an 
important issue. 

(continued on next page) 
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Wang et al. [82] The proposed method’s experimental results demonstrated that it 
achieved better performance values than the two control groups 
and various state-of-the-art algorithms. This study introduced the 
scale parameter into the Bidirectional Gated Recurrent Unit Neural 
Network model that allows it to achieve a better trade-off between 
model performance and computation cost than Gated Recurrent 
Unit and Bidirectional Gated Recurrent Unit Neural Network. 

The proposed model only detects Premature Ventricular 
Contractions and its generalization ability could be improved 
utilizing more diverse and abundant data sources. 

Wang et al. [84] The proposed method had a lower computational load and higher 
interpretability. It wasn’t affected by data imbalance and small 
sample size and had real-time performance. 

The proposed method accuracy was affected by localization. 

Wu et al. [86] The proposed convolutional neural network was able to 
successfully process the non-filtered dataset, and the ten-fold cross- 
validation implemented in this work proves the robustness of the 
network. This study benefits the research community by reporting 
results on the classification of micro-classes of Arrhythmia that 
were normally ignored. 

A limitation of the proposed model arises from the computational 
costs of training such a network, due to large quantities of data. 

Xiong et al. [87] The proposed method achieved superior results than other 
methods, with an accuracy of 99.87%. This method could be 
introduced into clinical practice to assist the diagnosis of 
myocardial infarction. 

N/D 

Zhang et al. [88] The results showed that the proposed method enables the model to 
automatically extract various types of inter-layer complementary 
multi-scale features from ECG signals in a global space and 
facilitates the improvement of the final classification performance. 
The proposed model had tremendous potential to be applied to 
ECG analysis platforms in hospitals to achieve more accurate and 
robust atrial fibrillation detection. 

The training data was restricted to single-lead ECG recordings, which 
provides limited spatial information compared to a standard 12-lead 
ECG. Due to the lack of sufficient data from other categories it was 
only possible to focus on the detection of atrial fibrillation 
abnormalities. 

Zhang et al. [89] The proposed method achieved an accuracy of 99.8% for 
ventricular ectopic beat detection, and an accuracy of 99.7% for 
supraventricular ectopic beat detection. 

N/D 

Zhang et al. [90] The results showed that the proposed method had a better 
performance than other classifiers. 

Since the dataset was entirely collected from China hospitals, the 
study didn’t have data for different races. And adversarial samples 
could lead to misbehaviors of deep learning models. 

Ambhore et al. 
[91] 

The proposed method achieved better results when attempting to 
detect cardiovascular diseases than other famous machine learning 
techniques. The pre-processing of the ECG peaks as an entry vector 
to the DNN allowed for the identification of morphological 
characteristics useful in forecasting attitudinal stress. The 
experimental results validated the proposed methods and resulted 
in an improvement in CVD classification for the MIT- BIH Dataset. 

N/D 

Banerjee et al. [92] CNN and Long Short-Term Memory methods increased the 
precision and accuracy of a lightweight wearable Arrhythmia 
Detector model that classifies real-time ECG signals and the mobile 
application made it more 
convenient. 

The proposed model can be upgraded with better components for 
recording ECG signals which further 
increases accuracy due to its low-noise and accurate output. 

Banerjee et al. [93] Results showed that overall classification accuracy of 93% and 
88% are achieved on the two datasets, which outperform the 
existing approaches. 

The biomarkers considered in this work are not guaranteed at the 
onset of CAD and the proposed approach failed to detect few of the 
borderline patients. 

Bitarafan et al. [95] The performance of the proposed model on test samples is 98.93%, 
99.78%, and 99.58% respectively in terms of overall accuracy, 
sensitivity, and specificity for tackling the problem of 4- class 
arrhythmia classification. 

N/D 

Deng et al. [100] The results show that the sensitivity, specificity, and total accuracy 
of the proposed method were 99.07%, 97.05% and 98.03%, 
respectively. 

N/D 

Bouny et al. [98] The results showed that the proposed method could classify six 
types of ECG beats with higher recognition accuracy of 99.67%. 

The proposed methods required long training time, which was 
computationally expensive. The validation technique required a long 
time to evaluate the performance of the systems. The visualization 
technique required an expensive time to be processed for a large 
testing set. 

Chumrit et al. [99] The best detection results based on the average energy feature with 
10-fold cross validation presents are 96.67% average accuracy, 
93.33% sensitivity, 100% specificity and 100% precision. 

N/D 

Hatamian et al. 
[102] 

The result showed that oversampling, GMM and DCGAN 
augmentation algorithms on ECG signal classification into AF and 
Normal classes improve the performance. 

In some cases, using GAN and GMM to augment the AF class causes 
slight deterioration of the Normal class accuracy. 

Hammad et al. 
[101] 

The average accuracy values of 98% showed the efficiency of 
proposed technique for arrhythmia detection from the MIT-BIH 
dataset. Performance of the model was reported in terms of 

N/D 

(continued on next page) 
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specificity (98.9%) sensitivity (99.7%) and positive predictivity 
(95.8%) for the five-fold cross-validation. 

Hsu et al. [103] The proposed method achieved an accuracy of 98.8% and a 
sensitivity of 96.3% for class V, and a sensitivity of 98.6% for class 
Q. The authors also found the key waveform parameters that 
contribute to arrhythmia classification with the proposed WBSP 
method. 

N/D 

Jiang et al. [104] The results showed that AI-enabled ECG performed well in 
diagnosing left Atrial Enlargement (LAE) achieved 95% of 
accuracy, especially in diagnosing moderate and severe LAE. 

The proposed model requires further refinement and external 
validation. 

Ibrahim et al. [105] The CNN model showed competitive F1 score of >89%, sensitivity 
>88%, and specificity >93% beating literature approaches. The 
best performance showed XGBoost model with an F1 score of 
97.1%, sensitivity of 93.5%, and specificity of 99.4%. 

The RNN model underperformed when compared to the CNN model, 
with an F1 score of 89.0%, sensitivity of 93.2%, and specificity of 
88.1%. due to its more fitting application to time-series data and not 
static data. 

Li et al. [107] The results demonstrated that the proposed method effectively 
faced the data imbalance problem. The results showed that the 
proposed approach had stronger classification ability than the 
other methods and was less influenced by the data imbalance used 
in this study. 

N/D 

Li et al. [108] The accuracy and training time before incremental learning of 
proposed CNNBLS were 97.94% and 21.61 s, and the accuracy and 
training time after incremental learning with additional 12929 
data were 98.45% and 47.23 s, which overperformed traditional 
deep learning networks in term of time-consuming CNN 696.95 s, 
LSTM 409.89 s, and an accuracy 98.93%, 97.87% respectively. 

Despite CNNBLS showed the better results for accuracy at 
incremental training sets model, compared with initial data training 
model, the time-consuming was increased from 21.61s to 47.23 s 

Liang et al. [109] The proposed method was able to process the data quickly, and it 
achieved good performance with an overall mean F1 score of 80%. 
The proposed method was a generic method that could be used for 
other bio signal applications. 

Not as accurate as other methods tested, but faster. 

Prabhakararao 
et al. [111] 

A notable advantage of proposed method was that it provided 
robust discrimination between MI and non-MI patients and its 
model interpretability, which correlated with the clinician’s way of 
inspecting the 12-lead ECG for the diagnosis. 

The proposed method has a moderate number of parameters with a 
slightly higher average run-time of 8.42 ms to provide a 
classification decision. 

Mazaheri et al. 
[112] 

This study achieved better accuracy than other methods. The 
proposed method could help physicians improve the diagnostic 
accuracy of the clinical decision-making process. 

Not employing the entire MIT-BIH database signals and diagnosis; 
only seven classes of arrhythmias were one of the main 
disadvantages of this study. And the proposed method could not 
detect the ECG signals with more than one class type abnormality. 

Rahman et al. 
[113] 

The proposed CNN classification model achieved an overall 
classification accuracy of 95.2% with an average precision and 
recall of 95.2% and 95.4% that significantly outperforms the 
identified in state-of-the-art methods. 

N/D 

Subramanian et al. 
[114] 

The performance of proposed SVM model was an accuracy of 91% 
with precision recall and F1 score of about 0.906593. 

N/D 

Wang et al. [115] The results demonstrated that the proposed method had high 
performance for arrhythmia detection. The proposed method could 
interfere with the classification effect for a certain disease, which 
had advantages for the classification of rare classes. 

Unbalanced datasets. 

Wang et al. [116] The proposed method had better results than other methods, with 
an accuracy of 99.71%. The combination of the proposed method 
and hardware devices facilitated the automatic diagnosis of ECG 
for clinical applications. 

The proposed method was too complex. 

Yang et al. [117] The studies showed that the proposed method had a fast heartbeat 
classification speed, and it had significant noise robustness. This 
method could be conveniently applied in the clinic or on mobile 
devices 

N/D 

Yao et al. [118] The best classification results were achieved using a combination 
of above features derived from the RR and QT interval time-series 
and the ST–T segment waveforms, with 96.16% accuracy, 95.75% 
sensitivity, and 96.40% specificity. 

A dataset with a larger subject population would certainly improve 
the results. The investigation was conducted on coronary artery 
disease (CAD) patients without myocardial infarction (MI), in 
comparison to healthy control subjects; thus, presented findings 
might not be applicable to MI patients. The findings were only tested 
on the constructed database. 

Zhang et al. [119] The authors proved that the proposed model STA-CRNN resulted in 
superior detection performance in comparison with state-of-the-art 
methods, especially when it came to identifying arrhythmias with 
lower recognition rates. This is a promising method with the 
potential to assist diagnosis. 

N/D 

Bashar et al. [120] SVM with the RBF kernel has the best outcome, resulting in 99.88% 
sensitivity, 99.65% specificity and 99.75% accuracy. 

N/D 
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Table 4 (continued ) 

Paper Results and Benefits Limitations 

Boppana et al. 
[121] 

According to results, the proposed combined method could be used 
to reduce the computation complexity and enhance the precision 
by using the hyper tuning parameters. 

Correlation between obstructive sleep apnea and myocardial 
infarction could be explored. 

Celin et al. [122] The proposed method on RF classifier yielded an improved 
accuracy of 98.83% on the signals from MIT-BIH arrhythmia 
database. 

N/D 

Deb et al. [123] The performance of the proposed SVM model yielded an accuracy, 
sensitivity, specificity 98.61%, 97.37%, and 97.22%, respectively. 

In comparison with selected state-of-the-art methods by authors, the 
performance of the proposed method did not show significant 
overruns. 

Gao et al. [124] The results demonstrated that the LSTM network with FL reached a 
reliable solution to the problem of imbalanced datasets in ECG beat 
classification. This method could be used in telemedicine scenarios 
to assist cardiologists. 

The study was only conducted for eight ECG beat types, and the 
proposed network was the time cost of the training phase. 

Hoang et al. [125] The proposed method achieved accuracy to detect Premature 
ventricular contractions (PVC) for tensor-based feature extraction 
was 90.84% with a sensitivity of 78.60% and a specificity of 
99.86%. 

The overall performances did not compete with related work on 
neural network for premature ventricular contractions detection 
reaching accuracy of 98 and 99%. 

Kong et al. [126] The results demonstrated that the predictive performance of the 
proposed method was comparable to SVM, and the RVM was more 
suitable for online diagnosis since RVM was sparser than SVM. The 
proposed method had a better performance than other methods. 
The research could be applied to clinical diagnosis of atrial 
fibrillation. 

The limitation of the RVM model was the iterative computation to 
obtain the weights. 

Mahmood et al. 
[127] 

Simulation results showed that the AdaBoost classifier provides a 
better solution to predict problem class in heartbeat classification 
obtained a mean improvement report for all classes in testing set 
97.3% in area under curve accuracy, 94.7% in classifier accuracy, 
96.7% in sensitivity, and of 98% in positive predictive value. 

The study of adaptive beat size segmentation is still required. The 
relationship between underlying physiology and features extracted 
must be explored. 

Li et al. [129] The results showed that the proposed method achieved good 
robust and generalization performance on real datasets. Feature 
extraction, selection and classification procedures were combined 
in a single deep structure. Denoising was not required. Ten-fold 
cross validation ensured the results were reliable and robust. 

The proposed method required a lot of data for training and took 
more time to train the data. 

Nankani et al. 
[130] 

The proposed method produces an F1 score of 0.88 ± 0.02 on 
PhysioNet Computing in Cardiology Challenge 2017 database, 
which is better than the existing methods in the revised literature. 

A dynamic neural network could also be employed to add or prune 
the filters during the training phase to obtain a smaller model that 
can be used in the mobile devices. 

Pandey et al. [131] The proposed method was fully automatic, and it was not required 
of an additional system like feature extraction, feature selection, 
and classification. This method had less computational complexity 
and could be used for classifying long term ECG signals and 
detecting disease events in real time. 

N/D 

Prabhakararao 
et al. [132] 

The results showed that the best test accuracy of 96.69%, 
sensitivity of 80%, and geometric mean of 88.72% are achieved by 
WSVM classifier with radial basis function (RBF) kernel. 

N/D 

Tadesse et al. [133] The results demonstrated that competitive performance was 
achieved using transfer learning without training a dedicated 
network from scratch. 

N/D 

Tison et al. [134] The objective of this study was to demonstrate how to extract more 
knowledge from the data, and yet remain transparent to 
physicians, patients, and researchers on the provenance of this 
knowledge. 

The machine learning used was just optimized to analyze ECGs in 
normal sinus rhythm. Also, the data was derived from a single 
medical center. 

Tripathy et al. 
[136] 

The features utilized in this study, entropy features in the range 
from 10 Hz to 30 Hz, were highly affected by congestive heart 
failure, so, the hybrid classification method utilized by the authors, 
based on these features was able to achieve its highest performance 
values. The time-frequency features the authors extracted using the 
proposed method can be utilized in the detection of other 
anomalies in ECG signals. 

The proposed method does not predict congestive heart failure when 
the patient has myocardial infarction, cardiomyopathy, and valvular 
disease. 

Wang et al. [137] The results showed that the proposed method could be employed 
as a tool to automatically detect different kinds of arrhythmia 
when properly trained. It was demonstrated that the proposed 
method was insensitive to noise, and filtering could be applied 
before the method. 

N/D 

Wang et al. [138] The results of proposal method achieved an average F1-score of 
81.3% in classification of 8 types of arrhythmias and sinus rhythm. 

N/D 

Wu et al. [139] The random forest prediction model that the authors implemented 
reached higher sensitivity and accuracy values for the detection of 
left ventricular hypertrophy than other methods previously 
proposed. 

There were many missing values in electrocardiograms and each 
column of data had different units. 

(continued on next page) 
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Table 4 (continued ) 

Paper Results and Benefits Limitations 

Zhang et al. [141] The results demonstrated an accuracy of 99.15% to diagnosis of 
normal rhythm, and 99.27% to diagnose atrial fibrillation. This 
method appeared to be sufficiently reliable for clinical use. 

Some individual labels did not have enough data to adjust the 
parameters of the proposed method. 

Abdeldayem et al. 
[142] 

The best result was obtained by proposed time-frequency SVM 
model, with a maximum accuracy of 99.81%, sensitivity of 
98.17%, and specificity of 99.98% 

N/D 

Ebrahimzadeh 
et al. [143] 

The proposed algorithm achieved results superior to those of 
previously developed methods in terms of sensitivity and 
specificity. The authors believe the proposed can be used by 
doctors, if developed into an early detection system for the 
idiopathic onset of paroxysmal atrial fibrillation, to alert patients 
prior to the occurrence of the event. 

The results reported by the authors lack a prospective head-to-head 
evaluation using clinically derived, real-world data. 

Gomes et al. [145] The results demonstrated that classification models constructed 
from a more relevant attributes subset, selected through an FS 
technique, tend to improve the quality of the models generated 
significantly. The proposed method could aid in the construction of 
classification models that assists medical specialists. 

N/D 

Hammad et al. [23] The results showed that the proposed method could be used to 
perform real-time classification of ECG signals. This method could 
serve as a tool to help clinicians in confirming their diagnosis. 

The proposed method was sensitive to the ECG signal quality. And, 
totally depended on the features values that extract from the feature 
extraction stage. 

Hao et al. [147] The results demonstrated that the classification accuracy of the 
proposed method was much higher than other methods. This 
method could be used to classify the high dimensional data, and, 
also, could be applied to the fault diagnosis. 

N/D 

Iqbal et al. [148] The results obtained were satisfactory in all types of subjects, with 
a high accuracy. The proposed method was a significant 
contribution to the diagnosis of special cases of myocardial 
infarction. 

The proposed method just covered the time domain features for 
patterns matching. 

Liu et al. [149] The proposed method achieved a high accuracy value, in the 
classification of heart disease, in a short period. When compared 
with other methods, long short-term memory always achieved 
better results 

N/D 

Mukherjee et al. 
[25] 

The proposed method achieved an overall F1 Score of 83%, for the 
classification of normal rhythms and atrial fibrillation achieved a 
higher accuracy, but the detection of other types of abnormal 
rhythms was weak 

The proposed method was not good at detecting different types of 
abnormal rhythms, except atrial fibrillation. 

Raj et al. [151] The proposed method, when validated using the MIT-BIH 
arrhythmia database, achieved higher accuracy than other existing 
methodologies. This method has the potential to be utilized in 
hospitals for on-line monitoring of continuous long-term heartbeat 
assessment and compressed sensing based tele-monitoring 
applications. 

The proposed method requires more memory, the optimization 
technique takes a long time to tune the classifier, utilizes fixed 
windows for the heartbeats, and for confirmation of the method, the 
authors would still need to test the method in a clinical situation on 
patients. 

Raj et al. [152] The proposed methodology was evaluated under two analysis 
schemes, category-based and personalized scheme, and the 
performance achieved under both proves this method to be an 
efficient, low computational complexity and fast solution for 
automated classification of cardiac arrhythmias. 

The proposed method uses constant windows for determining the 
length of ECG signals, which can vary depending on the individual, 
takes a long amount of time in the training and optimization stages, 
and is still in need of testing in a clinical situation on patients. 

Warrick et al. 
[153] 

The results showed that the proposed method yielded superior 
classification performance compared to a single base model. 

The proposed method was not used in technical and clinical 
questions. 

Wu et al. [154] The result of proposed method achieved nearly 100% accuracy in 
the normal and ventricular ectopic beat (VEB) predictions, thus 
could provide flexibility to improve a wearable device’s user 
experience and reduce its cost. 

The disease classifier performance could be further strengthened 
with the help of increasing diversity and sizable labeled datasets. 

Xu et al. [156] The proposed method fails in improving the accuracy, sensitivity, 
and specificity values, but is believed by the authors to have better 
generalization ability. This algorithm could be used for monitoring 
and prevention of atrial fibrillation, which has great practical 
meaning. 

More data could be used. 

Zhang et al. [157] The proposed model achieved a diagnosis sensitivity of 98.37%, 
diagnosis specificity of 99.19%, and diagnosis accuracy of 98.92%. 

This work was established on three types of ECG beats only and the 
number of samples and type of signals need to be increased. Another 
limitation did not analyzing ECG beats in more leads. 

Acharya et al. 
[158] 

The results showed that the HOS features extraction method gave 
better results compared to other methods to identify coronary 
artery disease. 

N/D 

Andreotti et al. 
[159] 

The feature-based classifier obtained an F1 score of 72.0% on the 
training setal, and 79% on the hidden test set. Similarly, the 
convolutional neural network scored 72.1% on the augmented 
database and 83% on the test set. 

By ignoring noisy segments during training, was noticed a clear 
decrease in performance and on the final competition ranking 
differed significantly from the ranking during the test phase. This 
suggests that the split for the TEST-DB was sub-optimal and not 
representative of the method’s performance 

(continued on next page) 
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4.2. Comparison of the different studies 

In Table 4, we summarize the main results and limitations of the selected relevant studies related to the disease identification, 
classification, and recognition of different diseases with ECG data. 

4.3. Final remarks 

This systematic review proved the possible impacts of ECG data in combination with machine learning when the subject is the 
identification of cardiovascular diseases with ECG data. In 2022, due to the world’s problems, these types of diseases do not have the 
same importance as before. Cardiovascular diseases are among the most deadly, representing 32% of global deaths [1]. Developing a 
method to help people prevent cardiovascular diseases is highly recommended since the level of danger is one of the highest. 

The most used databases are MIT-BIH arrhythmia and PhysioNet databases, where the most used methods are CNN and SVM. In 
general, the accuracy of CNN is higher than the SVM classifier. In the future, we propose adapting a technique that connects the 
methodology of CNN with improved accuracy and training speed for automatically learning newly labeled data. Also, combining 
different databases for the training and testing stages may improve the accuracy of multivariate data. 

After a deep analysis of the sixty-nine studies presented in this systematic review, we can find answers to our main questions. 
Regarding RQ1, “Which types of sensors can be used to track different diseases?” there are some valuable sensors. In this systematic 
review, we saw the usage of 1-lead to 12-Lead ECG. These sensors showed much reliability when considering these types of diseases. 1- 
Lead ECG sensors can be used for basic monitoring and the 12-Lead ECG sensors for deeper monitoring. 

Concerning RQ2, “Which ML/DP methods are mainly used primarily to support automatic analysis of ECG data?” in general, for all 
studies presented, the usage of deep learning methods had a significant role when the theme was the interpretation of ECG data. The 
convolutional neural network (CNN) is the one that made the most appearances, right followed by the deep neural network (DNN) and 
support vector machine (SVM). It is essential to mention that k-nearest neighbors (KNN) and Long Short-Term Memory have also been 
considerably used. 

Regarding RQ3, “Which diseases are mostly studied with the datasets available online?”, we have seen a lot of different datasets 
used in these studies, counting thirty different datasets in total. Still, there is one that stands out the most. The MIT-BIH arrhythmia is 

Table 4 (continued ) 

Paper Results and Benefits Limitations 

Couceiro et al. 
[160] 

The results demonstrated that the extracted features were relevant 
to this topic and the algorithm was able to achieve better 
discrimination performance when compared to the previously 
methods. 

N/D 

Dolatabadi et al. 
[161] 

This study showed that methods which were based on the feature 
extraction of the signals were an appropriate approach to predict 
the health situation of the patients. The proposed method was 
suitable for clinicians and could be installed in the hospitals to 
detect coronary artery disease automatically using HR signals. 

N/D 

Khatun et al. [162] The results presented 99.7% 10-fold cross-validation accuracy with 
overall 99.41% sensitivity and 100% specificity from lead V4 in 
separating normal, different myocardial infarction and arrhythmia 
patients. 

Due to a low number of records (440), was not applied the final 
model to an independent dataset. 

Pławiak et al. [163] From this study the authors were able to conclude that the best 
evolutionary-neural system based on the SVM classifier achieved a 
sensitivity of 17 myocardium dysfunctions at a level of 90.20%, an 
accuracy = 98.85%, and a specificity = 99.39%. Against the 
background of the current scientific literature, these results 
represent some of the best results obtained. 

This method doesn’t apply a completely subject-oriented validation 
scheme, and it does not allow for the possibility of analyzing ECG 
signal fragments that contain more than one class type. 

Pławiak et al. [164] The results obtained confirm that the proposed method was 
efficient and fast for recognition of myocardium dysfunctions. 

The proposed method had a lower recognition sensitivity for heart 
disorders. 

Plesinger et al. 
[165] 

The resultant F1 score measured using hidden test set (3,658 
recordings) of proposed based on neural networks method was 
0.81 (normal 0.91, AF 0.80, OA 0.74). 

The results showed demonstrated the necessity of using features 
based on QRS detection. 

Shimpi et al. [166] Support Vector Machine classifier model obtained the best results 
for classifying arrhythmia achieved accuracy of 91.2%. 

N/D 

Soliński et al. [168] The final result in PhysioNet Challenge 2017 equaled 0.77 in 
overall F1 score. The F1 score of the signal classification as normal 
was 0.86, Atrial Fibrillation 0.78 and other rhythms 0.66. 

N/D 

Tan et al. [169] The results, using the 8-layer stacked proposed method, achieved 
highest diagnostic performance. This method had the potential to 
be deployed in clinical settings to assist cardiologists to diagnose 
ECG signals. 

Was not installed in a portable device, so was difficult to use for the 
experts. 

Warrick et al. 
[170] 

The proposed model and no explicit feature selection, 10-fold 
stratified cross-validation gave an overall F-measure of 0.83.10 ±
0.015 on the held-out test data (mean ± standard deviation over all 
folds) and 0.80 on the hidden dataset of the Challenge entry server. 

This model could be refined by applying an ensemble deep learning 
framework to decrease information loss and overfitting problems, 
and to overcome the class imbalance problem.  
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the most used and related to arrhythmia disease. There is another MIT-BIH, which is directly linked to atrial fibrillation. Cardiovascular 
disease is studied a lot as well, appearing in several different datasets, for example, BIDMC congestive failure, 2017 Physionet/CinC, 
MITH-BIH normal sinus rhythm, and S.- Petersburg Institute of Cardiology Technics. 

And finally, in RQ4, “What are the challenges related to the monitoring of different diseases with sensors?”, we have identified that 
the use of ECG sensors, which currently cost decrease, can be used for the constant monitoring of different diseases. The main challenge 
is related to the acceptance of the technology by the population for the measurement. However, with the use of information tech-
nologies, the privacy and security of the data are vital for the exchange of information between healthcare professionals and patients. 
Lastly, with the help of the ECG sensors, another challenge appears related to patient empowerment. The different models and 
techniques implemented in the various studies could be instrumented, thus optimizing the control and autonomy of the patient’s 
health and treatment. 

5. Conclusions 

The 103 studies were meticulously selected in this review based on the inclusion criteria and subsequently analyzed. The review 
identified the sensors used to discover cardiovascular diseases, the most used ML/DP methods, the importance of the relation between 
the methods and sensors used, and which databases contribute the most with helpful information. 

Since these diseases are one of the most dangerous, it is essential to mention that even if these sensors and methods are highly 
reliable, there is always room for improvement. Preventing these diseases is not always predictable, but with the help of sensors and AI- 
based methods such as ML and DL, we can get around the situations. 

As future work, this systematic review intends to idealize a new solution for the remote identification of diseases related to ECG 
data and different automatic prescriptions of various medicines or treatments to reduce the problems associated with the high 
affluence of the healthcare institutions, giving tools to promote the independence of the population. 
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