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Abstract 
In this work, machine learning algorithms for automatic sleep cycles detection were 

developed. The features were selected based on the AASM manual, which is considered 

the gold standard for human technicians. These include features such as saturation of 

peripheral oxygen or others related to heart rate variation. As normally, the sleep phases 

naturally differ in frequency, to balance the classes within the dataset, we either 

oversampled the least common sleep stages or undersampled the most common, allowing 

for a less skewed performance favouring the most represented stages, while 

simultaneously improving worst-stage classification.  

For training the models we used MESA, a database containing 2056 full overnight 

unattended polysomnographies from a group of 2237 participants. With the goal of 

developing an algorithm that would only require a PPG device to be able to accurately 

predict sleep stages and quality, the main channels used from this dataset were SpO2 and 

PPG. 

Employing several popular Python libraries used for the development of machine 

learning and deep learning algorithms, we exhaustively explored the optimisation of the 

manifold parameters and hyperparameters conditioning both the training and architecture 

of these models in order for them to better fit our purposes. 

As a result of these strategies, we were able to develop a neural network model 

(Multilayer perceptron) with 80.50% accuracy, 0.7586 Cohen’s kappa, and 77.38% F1-

score, for five sleep stages. The performance of our algorithm does not seem to be 

correlated with sleep quality or the number of transitional epochs in each recording, 

suggesting uniform performance regardless of the presence of sleep disorders. 

To test its performance in a different real-world scenario we compared the 

classifications attributed by a popular sleep stage classification android app, which 

collected information using a smartwatch, and our algorithm, using signals obtained from 

a device developed by PLUX. These algorithms displayed a strong level of agreement 

(90.96% agreement, 0.8663 Cohen’s kappa). 
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Resumo 
Neste trabalho, foram desenvolvidos algoritmos de aprendizagem de máquinas para a 

detecção automática de ciclos de sono. Os sinais específicos captados durante a extração 

de características foram selecionados com base no manual AASM, que é considerado o 

padrão-ouro para técnicos. Estas incluem características como a saturação do oxigénio 

periférico ou outras relacionadas com a variação do ritmo cardíaco. A fim de equilibrar a 

frequência das classes dentro do conjunto de dados, ora se fez a sobreamostragem das 

fases menos comuns do sono, ora se fez a subamostragem das mais comuns, permitindo 

um desempenho menos enviesado em favor das fases mais representadas e, 

simultaneamente, melhorando a classificação das fases com pior desempenho. 

Para o treino dos modelos criados, utilizámos MESA, uma base de dados contendo 2056 

polissonografias completas, feitas durante a noite e sem vigilância, de um grupo de 2237 

participantes.  

Do conjunto de dados escolhido, os principais canais utilizados foram SpO2 e PPG, com 

o objetivo de desenvolver um algoritmo que apenas exigiria um dispositivo PPG para 

poder prever com precisão as fases e a qualidade do sono. 

Utilizando várias bibliotecas populares de Python para o desenvolvimento de 

algoritmos de aprendizagem de máquinas e de aprendizagem profunda, explorámos 

exaustivamente a optimização dos múltiplos parâmetros e hiperparâmetros que tanto 

condicionam a formação como a arquitetura destes modelos, de modo a que se ajustem 

melhor aos nossos propósitos. 

Como resultado disto, fomos capazes de desenvolver um modelo de rede neural 

(Multilayer perceptron) com 80.50% de precisão, 0.7586 kappa de Cohen e F1-score de 

77.38%, para cinco fases de sono. O desempenho do nosso algoritmo não parece estar 

correlacionado com a qualidade do sono ou o número de épocas de transição em cada 

gravação, sugerindo um desempenho uniforme independentemente da presença de 

distúrbios do sono. 

Para testar o seu desempenho num cenário de mundo real diferente, comparámos as 

classificações atribuídas por uma aplicação Android de classificação de fases do sono 

popular, através da recolha de informação por um smartwatch, e o nosso algoritmo, 

utilizando sinais obtidos a partir de um dispositivo desenvolvido pela PLUX. Estes 

algoritmos demonstraram um forte nível de concordância (90.96% de concordância, 

0.8663 kappa de Cohen). 

Palavras-chave: Aprendizagem profunda; Aprendizagem de máquinas; Wearable; 

Fotopletismografia; Estágios de Sono; Variação do Ritmo Cardíaco. 
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1. Introduction 

1.1. Context and Motivation 

Sleep’s impact on mood and health is so widely recognized by medical researchers that 

such understanding disseminated among average people in recent years [2]. While newer 

studies strengthen the suspected link between inadequate sleep and a wide range of 

infirmities [2], the general population is not very conscious of their sleep quality. This can 

lead to not giving enough importance to proper rest, as people are not aware of their 

accumulating sleep deficits or the toll these deficits take on their conscious cognitive 

functions [3, 4]. Simultaneously, there is also a tendency for people to overestimate their 

sleep periods in self-reports [5]. 

As a result, there is much interest in having proper means of studying sleep, given its 

importance and how difficult it is to accurately diagnose sleep disorders, considering how 

individuals are affected by sleep loss, and their ability to recover from said sleep loss, 

varies significantly depending on individual phenotypic traits [6]. 

The discovery of the brain’s electrical activity was the main contributor responsible for 

the development of the field of sleep medicine in the second half of the 20th century [7]. 

The examination of the electroencephalogram (EEG) patterns that occur during sleep lead 

to the current division of the sleep period into different stages, thus creating the basis of 

sleep medicine and the study of human sleep [3]. Therefore, we came to understand, 

among other particulars, that sleep is much more restorative to both waking cognition and 

health when it occurs accordingly to our circadian clock and goes through the appropriate 

physiological sequences (Figure 1.1) [3]. 

 

 

 

 

 

 

 

 

 

 
Figure 1.1 - Hypnogram detailing 6.5 hours of sleep. Adapted from [8]. 
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This is to say that, due to the way that sleep is structured into distinct stages, where 

each one has a certain set of characteristics and its own physiological role, the exclusive 

measurement of the amount of time slept is not enough for the quality of sleep to be 

determined. 

As such, sleep quality depends not only on total time slept but on many other factors 

such as fragmentation, amount of time spent in each sleep stage, and how the sleep cycles 

are structured.  

There are two types of sleep, non-rapid eye movement (NREM) sleep and rapid eye 

movement (REM) sleep [9]. Complementarily, sleep is divided into 5 stages: wake, N1, N2, 

N3, and REM (with some studies and standards further dividing N3 into N3 and N4), where 

N stands for NREM sleep and represents a progression of relative sleep depth. Most of 

sleep’s duration (c.a. 75%) is spent in the NREM stages, with a typical night’s sleep 

consisting of 4 to 5 sleep cycles, in the following order: N1, N2, N3, REM [10] (averaging 90 

minutes for each cycle [11]), with the majority of time spent in the N2 stage [12]. As 

mentioned previously, each of these stages has unique characteristics that allow us to 

distinguish them between themselves, ranging from variations of brain wave patterns to 

eye movements or muscle tone.  

 

 

 

 

[13] 

 

 

 

 

 

 

 

Although sleep cycles and stages were uncovered through the use of EEG and the study 

of the electrical patterns of brain activity [14, 15], other methodologies can be applied to 

study them. For example, the metabolic differences that arise during sleep or the variation 

of the different degrees of activation of either the parasympathetic or sympathetic 

nervous systems [16]. 

Figure 1.2 – Screenshot of a person in stage N3 sleep, showcasing the signals obtained from different channels 
over a 30-second window. Retrieved from [13]. 
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The detection of these metabolic changes can be achieved through the measurement 

of temperature, heart, or breathing rate. On the other hand, although these characteristics 

are also correlated to the functioning of parasympathetic or sympathetic nervous systems, 

determining the degree of activation of either of them is not so straightforward, especially 

when not utilising EEG, as is the case when using photoplethysmography (PPG) or 

electrocardiography (ECG). Some studies have used heart rate variability (HRV) to obtain 

information about the autonomic nervous systems and to predict sleep stages [12, 17, 18]. 

In general, there is a decline in heart rate (HR) and sympathetic-nerve activity during 

NREM sleep, with this being more noticeable in deeper stages and reflecting a decrease in 

the level and variability of arterial pressure [19]. On the other hand, parasympathetic 

activity tends to increase as sleep transitions from wakefulness to NREM sleep [20]. 

Simultaneously, this trend is somewhat reversed during REM sleep where, instead, there is 

an increase in sympathetic activity, even when compared to wakefulness [19]. 

Currently, polysomnography (PSG) is the most common technique used to study sleep 

disorders, being able to record brain activity (EEG), heart (ECG), breathing rate, muscle 

activity (electromyography, EMG), and electro-ocular activity (electrooculography, EOG) 

[21], with some exams also recording respiratory effort, blood oxygen saturation and 

performing video analysis [22]. It has, however, the issue of being expensive and 

inconvenient [23]. This type of exam is normally performed in a clinic, which raises the 

issue of negative bias, as people may behave differently than normal when they know they 

are being monitored [24]. 

Furthermore, there is the matter of longitudinal data. Laboratory PSGs are usually a 

single-night snapshot, whereas sleep is a dynamic process that is affected by the existence 

and intensity of many other factors that vary from day to day, such as exercise, caffeine 

intake, diet, and stress, among others. As a result of the natural variation and the 

interactions that can result from these, comes the need for improved “real-world” 

measurements and statistics, derived from large datasets that would allow correlations to 

be established between different factors and quality of sleep. From a practical point of 

view, for any one individual, such data can only be acquired outside of a clinical 

environment. This can be achieved, for example, through self-monitoring, which 

traditionally implies methods such as sleep diaries that, as mentioned previously, pose 

some problems due to their unreliability. As a consequence, due to the vaster amount of 

information that is possible to capture reliably this way, there has been an increasing 

interest in assisting self-monitoring through the use of wearable devices. 
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Wearable sleep-trackers, for instance, in the form of wristbands, smartwatches or 

headbands, are low-cost devices capable of measuring several biosignals, such as heart 

rate, temperature, sweat levels (through skin conductance measurements), in addition to 

motion [25]. This data can then be used by wearables devices to infer information about 

certain behaviours, like sleep, or to diagnose disorders, such as obstructive sleep apnea 

(OSA) [26]. 

Besides the convenience and affordability of these devices, there are also other 

advantages that they present, such as their user-friendliness and data accessibility, with 

many of these devices having some sort of cloud-based platform used for storage and 

integration of said data. In this way, they allow the acquisition of an unprecedented 

amount of information about sleep and other behaviours or health parameters [27], 

throughout extended periods in peoples’ natural environments, with minimal 

inconvenience to users, who simply have to wear the device, lessening the burden of 

specialized technicians that would examine the already processed data provided by these 

devices. Another advantage is that the novelty and widespread use of devices with health 

monitoring capabilities (like smartwatches and smartphones) have also contributed to the 

dissemination of the importance of sleep in our modern society [3], while additionally 

familiarizing people with this kind of technology.  

However, despite the seemingly many different initial advantages of these devices 

when compared to other more traditional exams, there are some drawbacks. To begin 

with, these devices have a battery that needs to be charged frequently, which when 

combined with the possibility of the novelty of such devices fading to the individual, might 

lead to lower persistent use of the devices over time than would otherwise be expected. 

Moreover, unlike in PSG where after the data is collected it is examined by specialists, data 

extracted by wearables tends to be directly processed and interpreted by an algorithm 

inbuilt into the device. This poses the issue of producing an algorithm that is applicable 

across a diverse population, given a wide variety of sleep problems and other 

comorbidities that might influence the aspect of sleep physiology measured by said device, 

and as such, affect the scoring reliability of the algorithm and, thus, of the device itself 

[23]. 

Not surprisingly, the growing interest in this area means that more validation studies 

are being made. However, this effort is still unable to keep up with the rate at which these 

devices are developed and introduced to the market [25]. When this is combined with the 

fact that consumer wearables are commercial devices, which use proprietary algorithms 

that are sometimes subject to change over time, makes it difficult to understand exactly 

how accurate these devices are. 
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This is why the amount of data available is so important, where, despite the existence 

of so many other databases, researchers still argue for the need of popular wearables 

already being employed in this field to share their raw data access. This possibility would 

not only mitigate some validation concerns, but also serve as a foundation for the 

development of future algorithms and devices. This is also pertinent since there are many 

different factors, unrelated to the disorders or other problems that might influence the 

quality of sleep of an individual, that can influence the data collected depending on the 

population examined [23, 28]. 

To add to the problem of validation, although PSG is considered the gold standard for 

sleep assessment, and as such is used as a comparison to home sleep monitors, it is still 

imprecise, being manually scored by experienced technicians, who sometimes disagree on 

their decisions [29, 30]. Finally, while theoretically possible, posterior manual analysis of 

the stored data is cost prohibitive and time-consuming, as there is a massive amount of 

data produced by these devices, making this kind of processing and validation that much 

more difficult. All in all, this makes for a lack of available data about many of these devices’ 

validity, accuracy, and reliability. 

As such, taking the above-mentioned information into account, there is interest in the 

development of algorithms that, with the ability to be paired with wearable devices, would 

be able to automatically and accurately classify sleep stages with a similar degree of 

accuracy as the current gold-standard for this area, in order to bypass the associated costs 

and time expenditures, as well as other issues mentioned previously. Should this be done, 

a focus on ensuring that the algorithm performs well across a wide population, and that its 

structure, inner workings, and behavior are carefully documented would be critical. 

Ideally, such an algorithm should also strive to be as simple as possible (both in terms of 

signals used and model complexity). 

 

1.2. Objectives 

The main objective of this work is the development of a machine learning (ML) 

algorithm that allows us to detect and classify sleep cycles through the use of data sourced 

from wearables. Because of this, there is also a focus on minimizing the number of signals 

and features used, in order to reduce the energy spent and storage space occupied in 

these devices, while additionally attempting to decrease the time spent processing. 

Accordingly, several steps were accomplished during this dissertation: 

 Choosing which signals to utilise; 

 Selecting the databases to use to train the different models; 
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 Pre-processing the data and selecting the features later extracted; 

 Creation and optimization of the creation process of the developed models; 

 Data acquisition, to obtain new data samples; 

 Use of the new data acquired to compare the performance with commercially 

available algorithms; 

 

1.3. Thesis Structure 

This work is divided into five chapters. This introductory chapter identifies both the 

relevancy of the field of study and some of the problems with the technologies currently 

used in it, which justify further study of this area. The viability of other technologies and 

the likelihood of their replacement of the gold standard are also evaluated. A description 

of this thesis' main objectives and structure is also done. 

In the second chapter, a review of the literature and an up-to-date description of the 

state-of-the-art for the relevant technologies involved in this work are done. 

In the third chapter, information about the databases chosen to be used in this work is 

detailed, as well as the methodology used during the development of the thesis in terms 

of signal pre-processing, feature selection and extraction, ML algorithm development, and 

evaluation of the performance of the developed models. 

In Chapter 4, “Results and Discussion”, we display results, describe the influence of 

each of the choices made during model development on their performance, and present 

the characteristics of the developed algorithms. 

Finally, in the fifth chapter, after showing the performance of the classifiers, we 

compare it with those obtained in other studies. Some areas for improvement and 

additional functionalities for future work or studies are proposed, with the level of 

fulfilment of the objectives submitted earlier in the thesis being evaluated.  
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2. State of the Art 
 

According to Pavlova and Latreille [31], sleep disorders are common in modern society 

but, despite the treatment for some being difficult, most can be easily managed with 

adequate interventions, as long as they are properly diagnosed. 

As previously stated in Sub-Section 1.1., PSG is considered a diagnostic reference tool 

for sleeping problems, with it traditionally being required to diagnose these disorders [32], 

mainly due to the amount of information that can be gathered in it.  

For most of the past, sleep was thought to be a passive state; it was only in the middle 

of the 20th century that scientists examined sleep from a physiological perspective. This 

was only possible due to a deepening in the understanding of both the form and nature of 

the cells that compose the nervous system as well as the discovery of the electrical activity 

of the brain (Figure 2.1). 

 

 

 

 

 

 

[33] 

 

 

 

 

 

 

 

 

 

Cortical electrical activity in humans was first recorded, from the scalp, in 1924, 

resulting in the creation of EEG [34]. Shortly after this, most of the major elements of sleep 

wave patterns were described in a series of experiences [35], with several papers being 

published between 1935 and 1939 [36–40] describing the principal features that now 

make up non-REM sleep. This included the division of sleep being into five different stages 

(A, B, C, D, and E), being arranged in order of appearance and resistance to change by 

external disturbances. These experiments gave rise to improvements in the methods used 

to study sleep, starting with advancements in the recording of EEG (through the use of 

amplifiers and both high and low pass filters), the discovery of specific brain regions that 

lead to the creation of better records of certain EEG waveforms (ushering greater 

Figure 2.1 - A cap holds electrodes in place while recording an EEG. Retrieved from [33]. 
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importance of certain EEG channels) and, finally, the addition of channels that record 

other physiological measurements, like heart rate, respiration or temperature [41]. In due 

course, this effort culminated in the addition of more channels to detect information such 

as movements during sleep [6], eye movements (initially through direct visualization, 

eventually through EOG), and muscle potentials (through EMG). This occurred in 

conjunction with fundamental changes in the way this information was gathered, such as 

the move towards recording continuously throughout the entirety of a night (as opposed 

to intermittent sampling of sleep during the night or short sleep recordings). In 1967, the 

first consensus-based guidelines for staging and scoring sleep, called R & K or 

Rechtschaffen and Kales system, was developed [34]. These guidelines went through 

different iterations, with the advent of modern digital equipment eventually leading to the 

creation of the American Academy of Sleep Medicine (AASM) manual in 2007 [42]. This is a 

continuously evolving resource, with the latest version (2.6) being released January 2020 

[43]. 

Currently, in most cases, PSG consists of the recording of at least 4 channels 

(corresponding to EEG, EMG, and two EOG channels) which are then manually scored by 

experts for the purpose of defining the different sleep stages [44, 45]. The specialised 

equipment used in PSG and the experts necessary to process the output of this technology 

are the principal cause for them being costly and time-consuming (scoring an eight-hour-

long PSG may require up to two hours of work [28]), often being reflected in long waiting 

lists [46]. As a result of this, recent studies have focused on improving PSG scoring 

methods, both in terms of accuracy (through the additional use of other exams [47]), and 

labour or time required (with a shift from manual scoring to automatic [48]), optimizing 

the amount of data extracted so as to reduce processing time and storage space [49]. 

These developments also bring the prospect of a reduced amount of PSG recordings 

needed to reach a therapeutic decision in some patients via a fully automated analysis 

[50]. 

Nevertheless, automatic scoring for PSG is not yet widely used in sleep centres due to 

high inter-scorer variability and low inter-scorer agreement [51], caused by the scoring 

rules employed, which allow for some subjective interpretation of the collected data. 

Another question raised by these rules is related to the division of sleep in 30-second long 

epochs and considering sleep stages as distinct entities, while a more accurate 

representation of sleep would be as a gradual transition from one stage to another [28]. 

A possible strategy to solve issues related to the limited or delayed capacity to perform 

PSG could be portable monitoring, using a selected number of bio-parameters, which has 
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Figure 2.2 – Example of a smartwatch, capable of wrist actigraphy. Retrieved from [57]. 

been proposed as an alternative in order to shorten the diagnosis time and the beginning 

of effective treatment for some sleep disorders like OSA [52]. 

Another increasingly popular alternative is the use of wearable devices [53]. A complete 

wearable device is composed of two essential parts, hardware and software. Hardware 

typically involves the selection of the sensors and their characterization, communication 

(both to the decision-making subsystem and, potentially, to other devices), and noise 

signal processing. Software, on the other hand, beyond signal processing, is also usually 

involved in making decisions based on the acquired signals. Recent technical 

developments made the use of wearable medical devices feasible for real-time monitoring 

and diagnosis of medical problems, with their growing adoption in healthcare further 

accelerated due to the availability of cheaper components and advancements in wireless 

communication technology [54]. Despite this, however, these devices still face challenges 

in terms of robustness, accuracy, precision, and reliability [55]. 

Home sleep monitoring devices vary greatly by which and how many different 

biosignals they monitor, with some devices measuring only one type of biosignals (for 

example, wrist actigraphy (Figure 2.2) for the detection of insomnia or circadian rhythm 

disorders [56]), while others monitor many simultaneously for the purpose of reaching a 

more informed decision. 

 

 

 

 

 

 

 

 

 

 

 

In order to reduce the discomfort caused by these devices (to improve patient 

compliance), the size of the device, power consumption and storage space necessary, 

material cost, and time required for analysis or processing (all of which are major design 

considerations in wearable systems [58]), there has been an effort to record only targeted, 

specific signals, with recent studies attempting to identify which are the optimal signals to 
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be used as inputs for automatic sleep stage detection algorithms or sleep disorder 

detection [49]. 

Other studies choose to instead focus on the discussion of how these devices acquire 

data, as well as their objective. For instance, these devices can be classified as wearable 

(like the devices mentioned in Sub-Section 1.1., wristbands, smartwatches, or headbands), 

or non-wearable (such as smart mattresses, under-the-mattress sensors, or under-the-

sheet sensors), with some being used for sleep stage classification, sleep posture 

monitoring, sleep disorder detection, vital signs monitoring [59], or even to study circadian 

rhythm patterns [26]. This type of specialization allows these devices to be as efficient as 

possible in their desired function, which inadvertently has the possible drawback of 

making their validation more complex as explained previously.  

Another potential downside is that, in such a quickly developing industry, the validation 

effort may lag behind the release and update of new devices [25], which might differ in the 

sensors, biosignals, and algorithms used, with both the algorithms and raw data not 

usually being shared publicly. As a consequence, determining their accuracy and validating 

them may be laborious [27, 60]. This is especially true when it is taken into account that 

PSG, despite being considered the golden standard for these devices, has its flaws in this 

respect [23]. 

Nevertheless, it is still possible to give an overview of the current devices that have 

been validated by comparison to PSG or that have already been adopted by individuals for 

this express purpose. For example, Fitbit Charge 2, which records wrist activity through 

accelerometers and pulses through PPG, has been validated against portable home PSG, 

where it was determined to be able to provide reasonably accurate mean values of sleep 

and HR estimates, should it follow careful data processing [61]. One other device is the 

Heally Recording System which, through the combination of embedded sensors and 

electrodes in a shirt that measures respiratory and cardiac physiology, monitors sleep 

based on autonomic signals. It exhibited accuracy at approximately 80% agreement with 

manual scoring, which is similar to accuracies obtained through actigraphy [22], 

considered an appropriate method for the assessment of sleep in patients with certain 

sleep disorders [62]. 

As mentioned previously, all these different wearable devices or automatic 

methodologies for PSG scoring require software or, more specifically, an algorithm to 

evaluate their input and output results, with its accuracy directly influencing how reliable 

the device itself is. Some of these first algorithms were elaborated through the use of 

discriminant analysis techniques [63], currently, there are more advanced techniques to 

develop these models. 
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One such technique is machine learning. Considered a subset of artificial intelligence, 

ML creates dynamic algorithms capable of data-driven decisions, in contrast to computer 

programs that follow static programming instructions [64, 65]. These algorithms have the 

ability to automatically improve their performance at some tasks through experience, 

however, this requires ground truth in the form of accurately curated data sources from 

carefully constructed subject trials with a properly distributed subject population of 

significant size [54]. Normally, such requirements would pose a challenge to the training of 

these algorithms, however, wearables’ low cost, ease of use, and unobtrusiveness make 

widespread, longitudinal studies feasible [66]. This means that it is relatively easier to 

produce a significant amount of raw data, ready to be used to train algorithms as needed, 

allowing them to be quickly developed, improved, and overall a more suitable option for 

model development than before. 

In regard to ML itself, there are differences in how these algorithms are produced, with 

some recent studies delving into which are the optimal ways to perform their training with 

the data available [49] or testing previously created algorithms with different datasets in 

order to minimize bias [67]. 

Other studies, which rely on either ML or deep learning, have successfully developed 

algorithms for sleep stage prediction. For example, Tsinalis et al. (2020) managed to obtain 

sleep stage-specific characteristics with an average accuracy of 86% based on EEG data 

[68], while Yildirim et al. (2019), developed and applied a 19-layer 1D convolutional neural 

network model to EEG and EOG signals, achieved the highest classification accuracies for 5 

of its 6 sleep classes as over 91% [48]. This suggests that the development of similar fully 

automatic recognition systems could serve as a suitable replacement for manual 

inspection of PSG signals, particularly for large-scale studies. 

There are many considerations for the development of ML algorithms for this purpose, 

however. To begin with, even analogous problems or otherwise identical questions but 

with differences in data, tend to have distinct best-case solutions in terms of the ML 

algorithm approaches [69, 70]. For instance, in the case of deep learning, these differences 

can manifest themselves in terms of learning methods, types of artificial neural networks 

(NN), number of layers or neurons in the case of these NNs, activation functions, 

optimizers for their compilation or the consideration of different optimal metrics that are 

monitored during training, among many other variations of parameters and 

hyperparameters. 

The optimization of these parameters is pivotal for the development of algorithms with 

the best possible performance for a specific dataset and problem. Too simple of a model 

and it will not be able to appropriately learn from the data, underfitting to it, and having a 
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low performance even for data it has been trained on (high bias). Too complex of a model 

(in the case no precautions are taken) and it will learn from the noise in the dataset, 

perhaps displaying high accuracy for the training dataset (due to overfitting), but a 

considerably lower performance for the test dataset (high variance). This is a delicate 

balance that is necessary to take into account for the development of models for a 

particular purpose. 
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3. Methodology 
 

The main goal of this work was the development of an algorithm that takes biosignals 

recorded by sensors and converts them into useful information about sleep cycles and the 

quality of sleep. To do this, it was necessary to be able to discern between the different 

stages of sleep and correlate certain biosignals with sleep quality. Initially, the algorithm 

was trained through the use of a publicly available online database, selected from among 

others such as the NCH Sleep DataBank [71], or the Sleep Heart Health Study [72]. 

Afterwards, we acquired real-world data, used these models to classify it, and compared 

the results with other publicly available algorithms. 

Accordingly, the first task was the selection of a few variables from specific databases 

including raw PPG signal, HR, and saturation of peripheral oxygen (SpO2). Following that, it 

was necessary to apply signal processing techniques, like filtering, to be able to properly 

extract the information used to train the algorithms. The structure and training process of 

these algorithms were refined over several iterations until a satisfactory result was 

achieved. Afterwards, data acquisition protocols were developed for the acquisition of 

relevant signals and, finally, after this, we proceeded with the evaluation of the 

effectiveness of the system through the use of real-world data, comparing the results from 

our model with the ones obtained through the use of a publicly available algorithm. 

In order to build the code developed in this thesis to analyse and process the dataset, 

as well as build the ML models, Python was used through the code editor Spyder. Several 

different libraries were used, including BeautifulSoup4, Pandas, NumPy, scikit-learn, 

Tensorflow, and hrvanalysis. 

 

3.1. Chosen Dataset 

There are many factors that might influence the quality of sleep of an individual, and, as 

such, affect the data collected depending on the population examined. For this reason, the 

present work chose to initially prioritize the training of our algorithm resorting to carefully 

chosen databases, before testing it with real-world information obtained through the use 

of devices developed by PLUX. After a comparison and evaluation among these databases, 

one was selected based on its size, sensor quality and quantity, detail of the scoring, and 

how recently collected was the data. 

The set of PSG recordings1 used in this thesis was obtained from the Multi-Ethnic Study 

of Atherosclerosis (MESA) [73–75]. This dataset was designed to study the characteristics 

                                                       
1 We requested authorisation to use this dataset on the 24th of March 2022, with access being granted 
on the 31st of March the same year. 
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of subclinical cardiovascular disease (CVD) and the risk factors that predict progression to 

clinically overt CVD or progression of the subclinical disease. With the objective of 

understanding how variations in sleep and sleep disorders vary across gender and ethnic 

groups and relate to measures of subclinical atherosclerosis, a sleep exam was conducted 

between 2010-2012, with 2237 participants, which included a full overnight unattended 

polysomnography, these being the exams utilised for this work (Table 3.1). 

 

Table 3.1- Dataset demographics of the MESA database (adapted from [76]). 

Characteristics Value 

Number of PSGs 2056 

Number of Patients 2237 

Age (Years) 

Mean 69.6 

Median 69.0 

Standard deviation ± 9.2 

Minimum 54.0 

Maximum 95.0 

Gender 

Female 1198 

Male 1039 

Race/ethnicity 

White, Caucasian 830 

Chinese American 265 

Black, African-American 616 

Hispanic 526 

 

As can be seen in Table 3.1, this sleep study’s polysomnography documentation 

contains 2056 PSG recordings, with the information pertaining to each PSG being split into 

two separate files. 

In this regard, files in the XML format contain annotations corresponding to the PSG 

recordings, that is, information regarding the type of events (respiratory, sleep stages, 

among others), description of the events (hypopnea or SpO2 desaturation, for example), 

time of the start of the events and, finally, the duration of said events. The events relating 

to stages of sleep are collapsed at the end of the file, with each sleep stage there being 

similarly defined by stage, duration, and when each stage started. Using these events, 
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hypnograms, comprised of information concerning the classification of the patient’s sleep 

stages over time, were assembled for each XML file2. 

These sleep stages are scored based on the AASM guidelines [42], using an epoch-by-

epoch approach with 30 seconds duration, and each epoch being assigned a single sleep 

stage score. These epochs are scored into stages W, N1, N2, N3, and R (respectively 

identified as 0, 1, 2, 3, or 5 in the XML files), corresponding to AASM’s wake stage 

(wakefulness), stage N1, stage N2, both stage N3 and N4 simultaneously, and REM, 

respectively. 

The analysis of the XML files allows us to differentiate the proportion of sleep stages 

among each other, which is very useful information to later fine-tune the creation process 

of our algorithms (Figure 3.1). 
 

 

 

 

 

 

 

 

 

  

 

As expected, the most prevalent sleep stage, from REM and NREM sleep, is stage 2, 

representing 32.82% of all intervals in the dataset. The overall most common stage in 

these files is stage 0, representing 43.30%, with a significant part of the counts of this 

stage being from before the start of sleep and after the end of it. After that, the number of 

stages 1, 3, and 5 are similar, with 5 being the most common out of these at 10.31%, 

followed by stage 1 at 7.83%, and, finally, stage 3 is the least common in the database, 

placed at only 5.73%. 

Conversely, the files in the EDF format contain the recorded signals3. Each recording 

makes use of 20 sensors to produce 27 signals. Among these signals are the 3 that were 

used from this dataset, namely “HR”, “Pleth” (which is the PPG recording), and “SpO2”, 

                                                       
2 This was done through the use of the BeautifulSoup4 Python library to read these files. 
3 Which were read by resorting to the mne Python library. 

Figure 3.1 - Graphical representation of the relative incidence for each sleep stage in the MESA database. 
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which is extracted through an oximeter. These 3 signals were originally sampled at 1 Hz, 

except for the “Pleth” signal, which was sampled at 256 Hz. 

 

3.2. Signal Pre-processing 

The information in the XML files was used to segment the signals in the EDF files into 

different 30-second long intervals, and assign a sleep stage for supervised ML.  

The relevant features from these intervals were subsequently saved in the CSV files 

used to later train models. As a matter of fact, with the exception of the “SpO2” channel, 

and the sleep stage information taken from the XML files, these were extracted exclusively 

from the “Pleth” signal. This strategy was chosen as it closely resembles the conditions in 

which this algorithm would later be tested in a real-world situation, as well as for the 

significant advantage of reducing the number of signals acquired and sensors used. 

We utilise the EDF files’ HR signal to filter particularly noisy intervals by comparing it to 

the HR calculated using the PPG signal, as both signals are obtained through the same 

pulse oximeter, so if there is a considerable discrepancy between the two HR values, it 

could suggest that, regardless of whether it is due to the pre-processing, the noise 

contained in the signal, or the method of finding the peaks, the signal for this interval is 

unfit to be used. Similarly, the SpO2 signal was used to compensate for the lack of access 

to the secondary PPG necessary to calculate this variable. 

While the data contained in the XML files did not require any kind of filtering or pre-

processing, it is advantageous to manipulate the data in the EDF files before extracting 

information from them. The reasoning behind this pre-processing is to not only eliminate 

periods of signal that have too much noise to yield useful information or to improve the 

signal-to-noise ratio, but also to try to regularise the data between both different 

individuals and also different sources or datasets.  

Although the advantages of the former are clear, the point of this regularisation is that 

by making the signals used as similar as possible by standardising amplitudes, baseline 

offsets, and other signal characteristics that we do not directly use as features to train our 

models, we do not change the information that is measured and extracted, just make this 

extraction easier and more reliable. Additionally, the results of applying filters become 

more predictable, allowing for a greater similarity of the extracted features in analogous 

situations, such as the same stage being detected between different individuals, which 

further improves the ability of the created models to learn from the signals. The ensuing 

process was only applied on the “Pleth” channel, as the “HR” and “SpO2” channels are 

already products obtained through processing applied on this former channel. 
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Accordingly, the first step of pre-processing was the standardisation of the signal, 

achieved through the subtraction of its mean, then division by its standard deviation.  

After that, we analysed the signal in windows of 128 samples. To a certain point, this 

window size should be as low as possible and, after testing different window sizes, we 

found that using half the signals sampling frequency as window size worked optimally in 

this case. Afterwards, we calculated the mean value in each window, and once again 

removed it, in an effort to reduce the signal’s baseline drift. 

Subsequently, a 4th order Chebyshev II bandpass filter, used as it is considered an 

optimal filter for short photoplethysmogram signals [77], when taking into account certain 

signal quality indexes [78], with a sampling frequency of 256 Hz (equivalent to the signal’s 

own) and cut-off frequencies of 0.05 and 30 Hz was applied to the signal, with these values 

being chosen based on Kim et al. (2019) [79] and Pilt et al. (2013) [80].  

Thereafter, in case we have access to accelerometer data (for example, when utilising 

the data that we acquired), we removed the intervals in which significant movement was 

detected, that is, when the signal’s magnitude is above a certain, pre-defined threshold. At 

this point, the signal is deemed ready to have its features extracted.  

 

3.3. Feature Extraction 

For this thesis, we decided to work with features instead of just inputting the signal 

directly into the algorithm. The intent behind this is that, despite leading to an increase in 

the time spent during pre-processing, this procedure allows a greater degree of 

interpretability of the data utilised, as instead of having to look at several thousand 

samples if we desire to try understanding the reasoning behind a classification, we only 

need to look at a few dozen characteristics, which serves to reduce the “black box” nature 

of the algorithms. Additionally, since we will exclusively require these features to classify 

the signal, in case we are storing this data elsewhere, like in a storage server, for example, 

not only will these features take up less storage space, the amount of power and 

bandwidth necessary to transmit this information is lower than it would otherwise be. This 

will also serve to reduce the complexity of the models created later in this work. 

After properly preparing the data, we proceeded to extract the relevant metrics from 

the signal. We start by determining the maximum, average, and minimum values of SpO2 

and HR from the PSG files using their respective channels. Once done, within the defined 

30-second intervals, we located the peaks in the previously processed PPG data. As a 

result of the pre-processing, the interval selection and peak detection were significantly 
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simplified, yielding very acceptable results which, in turn, increased the overall reliability 

of this process. 

Having determined the number of peaks, we could calculate the maximum, mean [81] 

and minimum heart rate, and its standard deviation [82] using the PPG channel, at which 

point it can be compared with the HR information available in the dataset for a signal 

quality check, as previously mentioned. Subsequently, we used the sampling frequency 

and the position of the detected peaks, to determine features related to heart rate 

variability.  

As stated earlier, features related to HRV were used as there are changes to the 

autonomic nervous system during sleep, with blood pressure, respiratory and heart rate 

adapting to the metabolic needs during sleep. As a consequence, the mean heart rate 

drops as sleep transitions from wakefulness to light sleep, and then to deep sleep. On the 

other hand, HRV increases significantly during REM sleep. These and other stage-specific 

variations make it possible to distinguish between different sleep phases [83, 84]. 

The resulting analysis of HRV is grouped under time-domain and frequency-domain 

[85]. 

The time-domain features extracted from the signal are based on the beat-to-beat 

intervals, that is, the time difference between a peak in the PPG signal and its preceding 

peak. To simplify the explanation of this procedure, and understanding the similarities in 

the information we are using from PPG when compared to ECG, we borrowed some 

terminology and reasoning from what is done for ECG. Knowing that RR intervals represent 

the time between each heartbeat, and are measured from peak to peak on the QRS 

complex that can be observed in ECGs (which is analogous to measuring the distance 

between peaks in the PPG signal), we add some filtering to remove artefacts and noise 

that would otherwise contribute to making these intervals unreliable. We did this by 

excluding RR intervals that are shorter than 0.15 seconds or longer than 3 seconds, or 

intervals where there is a RR interval with a larger difference than 150 milliseconds from 5 

adjacent intervals. These NN intervals were used to calculate the following time-domain 

features: 

 Root mean square of successive differences (RMSSD) [86]; 

 Standard deviation of successive differences (SDSD) [85]; 

 Number of pairs of successive NNs that differ by more than 50 ms and 20 ms 

(NN50 [87] and NN20 [86]); 

 Total proportion of NN50 and NN20 in relation to the total number of NNs 

(pNN50 [81] and pNN20 [86]); 
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 Standard deviation of NN intervals (SDNN), in this case, calculated over the 30 

seconds interval [86]; 

 Mean and median of NN-intervals (Mean_nni and Median_nni) [85];  

 Coefficient of variation, equal to SDNN divided by Mean_nni (cvnni);  

 Coefficient of variation of successive differences, equal to RMSSD divided by 

Mean_nni (cvsd); 

 Difference between the longest and shortest NN interval (range_nni). 

 

Contrastingly, frequency-domain methods assign bands of frequency and then count 

the total number of NN intervals that match each band. The frequency-domain features 

utilised were: 

 Total power spectral density (total_power) [85];  

 Power (or variance) in the very low-frequency band (0.003 to 0.04 Hz), which 

reflects an intrinsic rhythm produced by the heart, primarily modulated by 

sympathetic activity (vlf) [81];  

 Power in the low-frequency band (0.04 to 0.15 Hz), that reflects a mix of both 

sympathetic and parasympathetic activity (lf) [81];  

 Power in the high-frequency band (0.15 to 0.4 Hz), which reflects fast changes 

in beat-to-beat variability due to parasympathetic activity (hf) [81];  

 Normalised lf and hf power (lfnu and hfnu) in addition to the ratio between lf 

and hf (lf_hf_ratio) [81], used by some investigators as a quantitative mirror of 

the sympatho/vagal balance [88].  

 

Besides these features, information about the signal’s entropy (specifically fuzzy 

entropy [89], dispersion entropy [90], approximate entropy [91], and sample entropy [92]) 

was calculated for each interval. As this information is time-consuming to obtain, we 

separately tested the amount of information gained about the sleep stages for each 

different kind of entropy calculated on a smaller subset of 200 PSG files, and chose to 

utilise only the features that provided a significant increase in the quality of prediction of 

the created models. After comparing the results, we opted for the use of both fuzzy and 

dispersion entropy. With the goal of further reducing the amount of time spent computing 

these features, without reducing their quality significantly, the average value of 32 sample 

long intervals (1/8th of a second) was determined, with this information being used to 

calculate these entropies instead. The choice of the window size used was obtained 

through trial and error and attempting to minimise time spent and information loss, in this 
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case, the average variation in the value of the calculated entropy features was around 

10%, with a remarkable decrease in time spent (around 30 times faster). 

Finally, as sleep is a continuous process, taking into account information about previous 

intervals is important, and, as such, for each interval we chose to save the two preceding 

stages’ classification as well as the difference between these two values alongside the 

other above introduced features. 

Throughout the feature extraction process, the quality of the acquired features in 

relation to the prediction of sleep stages was assessed by both the use of the software 

Orange and the creation and evaluation of models using the scikit-learn library. 

In Orange, use of the Rank function allows us to rank each feature according to the 

amount of information that it carries or how important it is for the accuracy of the created 

models. We utilised this to avoid the addition of extracted features that do not contribute 

in a significant way to the prediction capabilities of the created models. 

 

3.4. Methods of Classification 

When developing models used to classify sleep stages, several different learning 

methods are commonly used. As a result of this, instead of focusing exclusively on one 

type of classifier, we opted to test most of the classifiers available in the libraries that we 

utilised. 

 

3.4.1. Non-Neural Network Models 

In regard to the non-NN models developed we evaluated the effectiveness of Random 

Forest, Gradient Boosting, Gaussian Naive-Bayes, K-Nearest Neighbours, and Support-

Vector Machine classifiers. 

During this thesis, we indirectly used Decision Tree learning as the basis of some of the 

ensemble methods, that is, methods that combine several base models to produce one 

optimal predictive model. This algorithm is a parametric, supervised (meaning that the 

datasets used to train the algorithms are labeled) learning approach. As during this work 

the target variable or label that we use only takes discrete values (correspondent to the 

different sleep stages), these tree models are called classification trees, where the leaves 

represent class labels, the branches represent conjunctions of features that lead to those 

class labels and the predicted outcome is the class to which the data that was being 

classified belongs. In essence, a feature (usually the one that can separate the most data) 

is chosen for each node, with this node branching into different resulting classifications (or 
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probabilities of classifications) depending on the range of values of the chosen feature. 

This branching process continues until a certain depth or efficacy is reached. They are one 

of the most popular algorithms due to their simplicity and intelligibility [93]. 

Random Forest is an ensemble learning method that constructs numerous decision 

trees at training time that can later be used for classification. Each of these trees is trained 

with a random set of variables, from which the feature that produces the most separation 

between its nodes is chosen. This serves to increase the diversity of results among the 

different trees, which together with bootstrap aggregation, allows us to further lower 

correlation across trees leading to increased performance when compared to single 

decision trees, as the ensemble prediction becomes more accurate than any of its 

individual predictions [94]. 

Similarly, Gradient Boosting is an ensemble learning method of weak prediction 

models, usually decision trees. Like other boosting methods, it involves incrementally 

building an ensemble by attributing a higher weight to misclassified instances during 

training, thus emphasizing model training for them. Essentially, instead of parallelizing the 

tree-building process in a similar manner to what happens during bootstrap aggregation, 

boosting takes a sequential approach where, for example, each decision tree attempts to 

solve for the net error of the previous decision tree, thereby reducing it. This means that, 

with careful tuning of its parameters, it may result in better performance than Random 

Forest models, but it can also more easily result in overfitting [95]. 

Conversely, Gaussian Naive Bayes classifiers are based on applying Bayes’ theorem with 

a strong independence assumption to classify the data. The assumption that the selected 

features do not interact is unlikely in real data, but the approach still tends to perform well 

in most cases regardless. When dealing with continuous data, it is typically assumed that 

the continuous values associated with each class are distributed according to a Gaussian 

distribution, hence the name [96]. 

K-Nearest Neighbours (KNN) algorithms are non-parametric, supervised learning 

classifiers that utilise proximity to make predictions. For classification problems, a class 

label is assigned to a data element based on the vote of the K number of its nearest 

neighbours. Additionally, it is possible to construct a weighted version of this type of 

model, where instead of just taking the majority vote, the distance between the data 

points is taken into account, thus making the contribution of closer points more significant 

[97]. 

Finally, Support-Vector Machine (SVM) algorithms attribute classifications by finding a 

hyperplane in an N-dimensional space (with N being the number of features) that is able to 
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Figure 3.2- Illustration of the topology of a generic artificial NN with one hidden layer. Retrieved from [100] 

separately classify the data points. For a multiclass problem, the most common approach 

is the division of it into multiple binary classification problems [98]. 

As mentioned previously, ML algorithms have hyperparameters associated with them, 

and it is possible to improve a model’s performance through the adjustment of these 

parameters [99]. To accomplish the fine-tuning of these models, we chose to utilise the 

scikit-learn library’s implementation of the grid search technique (GridSearchCV), which 

uses cross validation. This, together with the Orange’s Test and Score and Confusion 

Matrix functions allow us to quickly gain an understanding of (beyond how relevant and 

adequate the metrics that were chosen to be extracted from the signal were, and how well 

pre-processed the signal was) what kind of model structure or method of model creation is 

optimal, as well as what kind of misclassifications are more common. 

Similarly, the scikit-learn library allows us to easily create several different kinds of 

models and obtain their confusion matrixes, alongside a quantification of any other 

relevant desired metric, such as accuracy or F1-score, while, at the same time, being more 

customizable in terms of how each model is created when compared to Orange and 

providing an easy way to save such models to use and manipulate posteriorly.  

 

3.4.2. Artificial Neural Networks 

For this work, we also made use of artificial NNs, specifically Multilayer Perceptrons. 

The reason for using them is that, while each model has its advantages and disadvantages, 

NNs have the capacity to interconnect and map the input and outputs in a non-linear and 

much more complex way than other models (Figure 3.2). 
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Multilayer Perceptrons are a fully connected class of feedforward artificial NNs, 

consisting of at least three layers of nodes (input and output layers, with additional hidden 

layers in between). With the exception of the nodes in the input layer, each node is a 

neuron that uses a nonlinear activation function (such as rectified linear units or a sigmoid 

function). Learning in perceptrons occurs by changing the connection weights during 

training by comparing the errors in the output to the expected result [101]. This is done in 

Multilayer Perceptrons through backpropagation, with the rate or way the weights of the 

NN change being dependent on the chosen optimizer (with stochastic gradient descent or 

Adam being common choices [102]).  

 

3.5. Minimization of Overfitting and Evaluation of Performance 

Throughout the development of the algorithms in this work, we took care to calculate 

the models’ accuracy values based on their effectiveness on files that they had not 

previously been exposed to, so as to get a more accurate portrayal of the real-world 

accuracy of the models by minimising the possible effects of overfitting. In a similar 

manner, while simultaneously taking into account and attempting to maximise the models’ 

performance (which, to a certain point, should increase alongside their complexity), we 

also considered it important to try reducing their complexity as much as possible, since, as 

formerly explained, this is central in reducing overfitting.  

For the NN, to further these goals, several attempts at attaining this reduction were 

done during this work, for example, when we chose to, whenever appropriate, minimise 

the number of hidden layers and neurons used to create them, or when we tested the 

results of applying regularisation techniques on the developed structures. 

One of the studied regularisation techniques applied was dropout. Dropout is 

considered a noise injection technique, and works by randomly (with a certain, pre-

determined probability) ignoring some number of layer outputs during training [103]. The 

reasoning behind this regularisation method is to alter the layer connectivity and, as such, 

search for alternative paths to convey information from one layer to the next. This leads to 

each update in a layer during training being performed with a different visualization of the 

layer itself, which aims to approach the Bayesian gold standard of regularising a fixed-size 

model (that is, training a large number of NNs with different architectures in parallel, 

averaging the predictions of all possible settings of the parameters and then weighting 

each setting by its posterior probability given by the training data), while using significantly 

less computation [104]. 
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As such, besides minimizing overfitting, dropout also serves to approximately combine 

several different NN architectures efficiently, and given that model combination 

consistently improves the performance of ML methods, but is avoided due to being cost-

prohibitive, this is a technique that possibly addresses both these issues successfully [104]. 

Other regularisation techniques that control model complexity by adding an extra 

penalization term at the end of the loss function, such as L1 (lasso regression) [105] and L2 

(ridge regression) [106] regularisation, were also evaluated. 

The main difference between L1 and L2 techniques is the penalty term, where the first 

adds an absolute value of the magnitude of the neuron’s weight as a penalty term to the 

loss function, while the latter adds a squared magnitude of this weight as a coefficient. 

This means that, while L2 works very well to avoid overfitting since it has a more 

pronounced effect for high network weights, L1 shrinks the weight of the least important 

features to zero, essentially removing them, meaning it is somewhat more appropriate for 

feature selection. 

Both of these techniques can be modified by lambda or rate, which adds more or less 

weight to the cost of this regularisation element in the loss function. As a high rate may 

lead to too much weight being attributed to this element, which can cause underfitting, 

the selection of a proper lambda is important, especially in the case of L2 regularisation 

[105]. 

Since L2 regularisation appends the squared value of weights in the cost function, it has 

a substantially more pronounced effect on the directions of the weight vector that 

contribute less to the loss function, when compared to its effect on other directions that 

do. This as a result reduces the variance of the model, without increasing its bias 

significantly, making it easier for the model to generalize on unseen data. 

The choice of the loss function is also crucial for the development of the algorithms 

[107], as it is a method of evaluating how well an algorithm does in terms of predicting the 

expected outcome of a dataset [108]. During training, the goal is the minimization of the 

error between the actual and predicted outcome, which in practice means we desire to 

minimize the value of the chosen loss function. 

Beyond the selection of these parameters, suitably determining and comparing the 

actual level of performance of the created models is also important. One issue is that, 

usually, models are stochastically trained, meaning that two models with the matching 

architecture being trained with identical data in the same manner, might perform 

differently after training, which may further complicate the study and understanding of 

the training process. One way to deal with this issue is simply constructing several identical 
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models with the same characteristics, evaluating the average of their performance, and 

then using these results to compare with the average performance of other models with 

different architectures. 

Another difficulty is that, despite the high interpretability of accuracy, it is not a very 

appropriate metric for measuring the performance of algorithms in unbalanced datasets, 

which, as mentioned previously, is the case for normal sleep. This is problematic as 

models’ learning on unbalanced data may start neglecting to learn about the least 

represented classes, as, besides just having less information that the models can use to 

train with, having a poor classification performance on these classes does not penalize the 

models’ accuracy very significantly (even if its performance is worse on a class, if it is less 

represented the total number of misclassifications might be lower still). This means that 

the models’ calculated accuracy loses its relevance as a proper evaluation metric for our 

purposes, since, for instance, despite consistently failing the classification of 3 out of its 5 

classes it may nevertheless present a high accuracy. 

For this purpose, F1-score might prove more useful, as, while we balanced the datasets 

used for training and testing, in a real-world scenario the various sleep phases are 

unbalanced, and so, since F1-score is more sensitive to data distribution and more heavily 

penalises false-negatives it might be preferable to accuracy. Similarly, since during our 

work we will be comparing the results we have obtained to ones that were classified by 

technicians, determining the measure of agreement between both might be useful. For 

this end, we propose the use of Cohen’s kappa coefficient. This coefficient determines 

whether the degree of agreement between two raters is higher than would be expected 

by chance [109], being one of the most important and widely accepted measures of inter-

rater reliability [110]. 

 

3.6. Corroboration of Results through Collection of Real-world Data 

After achieving some measure of success in the creation of the algorithms for sleep 

stage prediction, we proceeded to acquire our own data, classifying the sleep stages and 

then comparing them with the classification attributed by a validated sleep prediction 

algorithm available in the market, with the intent of determining, in a less controlled 

environment, the comparative effectiveness of our algorithm. For this end, we used a 

device developed by PLUX, biosignalsPlux, which allows for high-quality biosignal 

acquisition of 8 channels in up to 3000 Hz sampling rate while having 16-bit resolution per 

channel [111], and a TicWatch E2 smartwatch. 
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PLUX was established in 2007 and creates innovative products for healthcare and 

research by developing advanced biosignal monitoring platforms that combine wearable 

body sensors, wireless connectivity, and software applications to deliver valuable products 

for their target markets. They aim to create miniaturized sensors and wearable devices for 

biosignal acquisition and processing with maximum comfort and safety, with user-friendly 

software [112]. 

The biosignalsPlux device was used with an accelerometer and blood oxygen saturation 

attachment, sampled the signals at 200 Hz, and supplied the resulting data to the 

developed models for sleep stage prediction. One of the advantages of using this device 

compared to many other wearables is that it gives us access to the biosignal’s raw data, 

allowing us to more conveniently adapt it to our algorithm’s needs. This is also an 

important standard for the field as a whole, as it allows algorithms to use raw data for 

training and classification, instead of being limited to using the data that other wearables 

provide. As mentioned previously, this limitation is an issue, because this information is 

often uniquely processed (due to the specific hardware and software utilized by these 

devices), thus making the validation process more difficult. 

Contrastingly, TicWatch E2 was used in conjunction with a mobile phone application 

called “Sleep as Android” [113, 114]; using its accelerometer and PPG data to assist in the 

sleep stage classification done by this app. 

The smartwatch was used on the wrist of the dominant hand with the PPG sensor 

placed on its posterior side. On the other hand, the biosignalsPlux’s PPG sensor mirrored 

its positioning, the accelerometer sensor was placed on top of the PPG sensor, and both 

sensors were fastened by a wrist brace. 

As the sources of this data are different from the dataset used to train the algorithm, 

despite most of the pre-processing being done in such a way to be easily generalizable, 

some slight adjustments to the pre-processing were still necessary to be able to better 

analyse the data acquired this way. More specifically, as mentioned previously, in this 

case, as opposed to the MESA database, we have access to accelerometer data, which was 

collected and used to both more easily identify the start and end of the sleeping interval, 

as well as facilitate the removal of noisy intervals of sleep. In the case that intervals in the 

middle of sleep were removed because of this, in the effort to keep both records 

synchronized, they were removed in both of the recordings. In addition to this, we only 

utilised records that, after being successfully synchronized, had a duration of at least five 

hours. In total only 14 nights (approximately 80 hours) from one individual matched this 

criterion. 
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The data obtained through the biosignalsPlux device was acquired through 

“OpenSignals (r)evolution”, a Python-powered software that can be downloaded for free 

from the biosignalsPlux website [115]. This data is then saved in a TXT file and a HD5 file, 

with the relevant signal data being easily accessible in the TXT file, ready for pre-

processing and, afterwards, classification by the chosen algorithm. 

Subsequently, after pairing the smartwatch with a phone, the data captured by it was 

imported through the use of “Google Fit” [116], with all resulting sleep stage data being 

stored in a single JSON file. This information was read, split into the different nights, and 

stored in CSV files to facilitate its visualization through graphs (such as the one in Figure 

3.3b), and comparison to the sleep stages classified by our algorithm. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As can be seen in Figure 3.3, “Sleep as Android” only classifies sleep into 4 different 

stages, with only one stage corresponding to light sleep. As our algorithm classifies into 5 

different stages, to simplify comparison, stage 1 and stage 2 were converted into a single 

stage of light sleep. 

 

Figure 3.3 – Example of a graph produced by a night’s sleep through the phone app “Sleep as 
Android”, A), and the same data visualised through Python, B). 

(A) 

(B) 
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4. Results and Discussion 
 

4.1. Non-Neural Network Models 

As mentioned previously, for the creation of the non-NN models we used scikit-learn 

[117]. The data utilised to train these models was split utilising its train_test_split function. 

This split was stratified so that both the training and test sets had the same proportion of 

sleep stages, and, initially, 80% of the data was used to train the algorithms, while the 

remaining 20% of data was utilised as testing data. Besides this split, we also separated 

some files from the training set and used them exclusively for a test set, which was later 

used to validate the created models more rigorously. 

To avoid the occurrence of imbalanced learning we chose to balance the data. This was 

done through different means, depending on whether the data belonged to the testing or 

training set. The data we used to train the models with was balanced via oversampling, i.e. 

we duplicated data pertaining to intervals that belonged to the least common sleep stages, 

while data in the test set was balanced by undersampling, that is, intervals belonging to 

the most common sleep stages were discarded until every class was equally represented. 

Usually, as we have a great amount of data available to train the models with, we could 

use undersampling for both, however, as after a few tests no increase in overfitting was 

noticed as being caused by this choice, and, to avoid unnecessarily discarding information, 

we decided to oversample the training files instead, while still undersampling the files 

used for testing, as we should not care as much about minimizing loss of information in 

this case. 

To speed up the process, these initial models were trained only using data belonging to 

200 files (equivalent to around 1700 hours of sleep). For this same reason, we did not 

begin a more in-depth analysis of the model creation process until the ones developed by 

resorting to the default scikit-learn settings achieved around 80% accuracy on the training 

set. This threshold was chosen as only at this point did we consider to have gathered 

enough evidence that the models were able to sufficiently learn from the acquired 

features. Instead, until we attained this target, we chose to proceed with the addition of 

new features and adjustments to the pre-processing. 

Of all the trained models, the best performing models were the ones using the Random 

Forest classifier, with one such example displaying 94.53% accuracy at the end of training 

by scikit-learn (for the sake of reference, the Gradient Boosting attained 89.91% accuracy, 

the Gaussian Naive-Bayes reached 61.73% accuracy, the K-nearest Neighbours displayed 

33.00% accuracy, and the Support-Vector Machine achieved 35.34% accuracy). Upon 
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testing this Random Forest model on the test set, containing another 200 files, to which 

the training set did not have access, this precision dropped to 71.39% with a Cohen’s 

kappa of 0.64, as it is possible to observe in the following graphs (Sub-Figures 4.1a and 

4.1b). 

 

 

 

 

 

 

 

 

 

 

 

As we can see from these figures, the performance of the model is significantly lower 

for sleep stages 1 and 3 when compared to stages 0, 2, and 5. A possible explanation for 

this is that the natural disparity in the number of intervals with stages 1 or 3, when 

compared to stages 0 and 2, is large enough that even after balancing, the model is unable 

to properly learn how to classify these stages. Meanwhile, stage 5 is so distinct from the 

other sleep stages, that even with a reduced amount of information the model is still able 

to learn how to differentiate it from other stages.  

With this in mind, in an attempt to reduce the model’s overfitting, we reduced the 

amount of data utilised during training, with 90% of the data used as the test set, and only 

10% used to train the model. Once again, the best performing model was Random Forest, 

displaying this time an accuracy of 83.2% on the training set. Running this model on the 

200 separate test files showed an increase in performance to 76.40% overall precision, 

5.00% higher than when compared to the previous model, and a Cohen’s kappa of 0.70 

(Sub-Figures 4.2a and 4.2b).  

 

 

 

 

 

Figure 4.1 – (A) Graphical representation of the probability of misclassification for each sleep stage. (B) Confusion 
matrix of the created model for the test set. 

(A) (B) 



31 
 

 

 

 

 

 

 

 

 

 

 

 

Through observation of these graphs, we notice that the model’s performance on 

classifying stages 1 and 3 intervals increased significantly (from 22.53% accuracy to 43.61% 

for stage 1, and from 58.72% to 74.20% for stage 3), while its performance for classifying 

stage 2 and stage 0 lowered (from 96.41% to 87.85% for stage 2, and from 87.82% to 

85.11% for stage 0). Stage 5 classification remained mostly the same, dropping only very 

slightly in performance from 91.48% accuracy to 91.19%. 

We believe that this overall increase in performance is due to the fact that the intrinsic 

interpersonal variance is significantly higher than the average variance in the different 

intervals belonging to the same stages of the same individual. Because of this, while in 

theory, a reduction in the quantity of information used to train the algorithms would lead 

to a decreased quality of prediction, in reality, using too much information from an 

individual leads to slightly lower precision when compared to reducing the amount of data 

utilised from each individual, but instead increasing the amount of data used by sampling 

more people. 

This means that despite there being an apparent drop in the model’s performance 

when being tested on files that were used for training, it can better distinguish the 

different sleep stages on files from individuals it has not seen before, which is what is 

desired from the development of these models. 

This is a slightly different situation than normal overfitting, where, because a model 

trains for too long on sample data or becomes too complex, it starts learning from the 

noise that exists in the data or otherwise irrelevant information. In this case, we think that 

this effect can be mostly explained by the fact that each PSG file originates about two 

thousand data points, many of them duplicated because of the discrepancy in frequency 

between the different stages, the models might end up attributing undue importance to 

Figure 4.2 – (A) Graphical representation of the probability of misclassification for each sleep stage. (B) Confusion 
matrix of the created model for the test set. 

(A) (B) 
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characteristics innate to the individual that would not otherwise matter for classification 

as they are not shared between individuals, and if this is the case, simply increasing 

amount of data made available to the model would not help mitigate this issue, as we 

would have to ensure that new data comes from different individuals than the ones 

already sampled. 

As such, reducing the percentage of data points utilised for training presents itself as a 

suitable solution for minimizing this kind of overfitting, but still does not remove the 

necessity of separately testing the models with files from different individuals than the 

ones they were trained with, as the displayed accuracy at the end of training by these 

libraries can otherwise be misleading. We also predict that this effect would be 

significantly reduced by using a larger set of data, possibly even justifying a more even split 

of the training and testing sets. 

That being said, it is important to point out that the model’s performance on an entire 

PSG actually decreased on the second type of model despite the overall performance 

seemingly increasing. This is the direct consequence of the unbalanced distribution of 

sleep stages, with stages 0 and 2 being substantially more common than stages 1, 3, and 5. 

Thus, despite there being a more significant increase in model performance when it 

comes to stage 1 and 3 detection, than a reduction in performance when predicting stages 

0 and 2, once utilised in a real-world situation the amount of misclassifications is 

considerably higher. 

We can observe this in Sub-Figures 4.3a and 4.3b, which were produced through the 

creation and comparison of maps of a test file’s sleep stages over time, where each point 

represents a 30 seconds interval. 

 

 

 

 

 

 

 

 

 

 

Figure 4.3 - (A) A randomly chosen file, processed by a model created with a 90% training, 10% testing split; and (B) 
The same file, processed by a model trained with a 10% training, 90% testing split. The orange lines represent the 

actual stage attributed by the technicians to the intervals, while the blue lines are the stages predicted by the 
model. If the blue lines are not visible, that means the maps are perfectly aligned, that is, the prediction was 

correct. 

(A) (B) 
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Because of this, while it might seem that the second model’s performance is worse as it 

fails more often in the most common classes, because every stage has its physiological 

importance, and to try to preserve the sleep structure as close to reality as possible, we 

consider improving worst-case classification performance as important, even if the 

model’s performance for stage 0 and 2 prediction worsens slightly, which is where F1-

score becomes an important metric. 

With this information in mind, in an attempt to further improve model performance we 

used grid search and all of the recorded files in the training folder. The chosen criteria 

were selected based on the parameters scikit-learn allows us to change for each model 

(Table 4.1), with the results of the best performing models being displayed in Table 4.2. 

Table 4.1- Values for the different parameters to be optimized when utilizing gridsearchCv. 

 
Parameters Values 

random forest 

n_estimators 
10-100 and 100-1000 (in increments of 10 and 100, 
respectively) 

criterion gini, entropy 

max_depth None, 10-100 (with 10 step) 

gradient 
boosting 

n_estimators 
10-100 and 100-1000 (in increments of 10 and 100, 
respectively) 

criterion friedman_mse, squared_error, mse 

max_depth 1,3,5, 10-100 (in increments of 10) 

KNN 

n_neighbour
s 

1, 3, 5, 7, 9, 11 

weights uniform, distance 

metric manhattan, euclidean 

SVM/SVC 

C 0.0001, 0.01, 0.05, 0.1, 0.5, 1.0, 5, 10 

kernel linear, poly, rbf 

gamma scale, 0.0001, 0.01, 0.05, 0.1, 0.5, 1.0, 5, 10 
 

Table 4.2- Values of the chosen metrics for the highest performance models of each type. 

 
Balanced dataset Raw, unbalanced files 

 
Accuracy 

(%) 
Cohen's 
kappa 

Cohen's 
kappa 

Macro average 
F1-Score (%) 

Lowest class 
accuracy (%) 

Random 
Forest 

79.30 0.7412 0.7255 75.97 42.11 (class 1) 

Gradient 
Boosting 

82.34 0.7792 0.6967 75.40 56.32 (class 1) 

Gaussian 
Naive-Bayes 

68.41 0.6052 0.5285 61.71 33.36 (class 1) 

KNN 21.99 0.0249 0.0219 19.71 14.54 (class 5) 

SVM/SVC 25.03 0.0628 0.0564 21.53 16.47 (class 1) 
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As can be observed in Table 4.2, increasing the number of files available for the training 

of these models and using the grid search method to find optimal values for several of the 

models’ hyperparameters lead to an increase in the performance of most models. It is 

possible to notice that by a significant margin the best models are Random Forest and 

Gradient Boosting, with this last model presenting an overall more balanced performance 

for all of its classifications when compared to the other models and presenting the highest 

accuracy and Cohen’s kappa for the balanced dataset, with the former model, on the other 

hand, having a better performance for the unbalanced dataset. 

 

 

 

 

 

 

 

 

 

 

 

As the behaviour of both models is similar, to further distinguish them, we suggested 

the use of a specific cost matrix, with distinct costs being attributed to different 

misclassifications, depending on how similar the true and predicted class are or how “far 

apart” they are from each other (Table 4.3). 

Table 4.3- Suggested cost matrix. 

 
Predicted label 

True label 0 1 2 3 5 

0 ---------------- 0.5 1 2 1 

1 0.5 ---------------- 0.5 1 2 

2 1 0.5 ---------------- 1 2 

3 2 1 1 ---------------- 2 

5 1 2 2 2 ---------------- 

 

After applying the cost matrix, Gradient Boosting has a lower associated cost, meaning, 

in theory, that even if the rate of misclassification is similar, the overall importance of the 

mistakes is lower (since, for instance, we considered that the model mistaking stage 1 with 

(A) (B) 

Figure 4.4 – Confusion matrix of the Gradient Boosting model, A), and the Random Forest model, B), for the 
balanced test set. 
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stage 2 (both part of light sleep) is less concerning than misclassifying stage 1 as stage 3 

(which is deep sleep)). Consequently, we selected this model as the best performing non-

NN model developed so far. 

 

4.2. Creation of Deep Neural Networks 

As shown throughout this work, the structure and way ML models are trained are key in 

reducing misclassifications. As such, in the effort to further fine-tune the model creation 

process, how it learns from data, and the suitability of the model to the problem, we 

decided to create NNs, which, as they allow for the creation of models with greater 

complexity, should enable us to attain greater effectiveness of the algorithms. 

Assuming that the data utilised to train a NN has enough information to be used in the 

prediction of the data’s label, in this case, the interval’s sleep stage, the NN’s performance 

is dependent on its structure, with the suitability of said structure being dependent on the 

problem being solved and information available to it [118]. 

To our knowledge, even considering other studies done in this area or with the same 

datasets (such as Sun et al. (2020) [119] and Sridhar et al. (2020) [120]), this exact problem 

with this set of features has not been solved before and, because of this, the optimal 

structure of our desired NN is unknown. As these problems are commonly approached by 

resorting to trial and error, in this work scripts were developed to run through a large 

number of different structures, with both different parameters and hyperparameters, 

briefly training each one and comparing how well they perform.  

For the creation of these NNs, we used Tensorflow. Tensorflow was chosen as it is a 

low-level library that provides more flexibility and network control. This allows us to not 

only define our own functionality or services for the models, which facilitates their 

adaptation based on changing requirements, but also helps us more easily understand 

how operations are implemented across the network, and to directly visualize the created 

ML models with its built-in tools. Additionally, we can extract and save these models for 

later use, which would assist in a possible future integration of the algorithms in device 

development. 

For this work, all created NNs were composed of Dense layers (meaning that all 

neurons from one layer are connected to all neurons from the previous and next layer) 

and had relu (rectified linear) activation functions for both its input and hidden layers. The 

input layer had a width equivalent to the total number of features, with the same number 

of neurons as the succeeding layer. As for the output layer, its activation function was 

instead softmax, which, when coupled with the fact that its neuron count matches the 
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number of labels, essentially means this last layer will output class probabilities. This is a 

requirement as we have chosen to utilise categorical cross-entropy as our loss function, 

which trains NNs to output a probability over the 5 classes for each 30-second sleep 

interval. 

The optimizer chosen to train these models was Adam with a starting learning rate of 

0.001. The chosen loss was categorical cross-entropy and the selected metric during 

compilation was accuracy on the validation set.  

To start, we created 2048 NNs for each of four different structure types, depending on 

how the number of neurons varied between each layer. In homogeneous patterns, each 

layer would have the same number of neurons per layer, in diminishing ones, each layer 

would inherit 75% (rounded to the nearest integer) of the number of neurons of the 

previous layer, in increasing patterns each layer would have 25% more neurons than the 

previous layer, and finally a random pattern, where, in each layer, the total number of 

neurons would be randomised. 

According to these different structures, a nested for-loop sequence was used, 

described in further detail through pseudocode in Algorithm 4.1. 

Algorithm 4.1- Pseudocode describing the nested for-loop sequence used for inputting the 
starting neuron and layer numbers for the different model architectures to the model 

creator process. 

for number_of_hidden_layers := 1 to 64 do: 

     

    for initial_number_of_neurons_per_layer :=16 to 512 by 16 increments do: 

         

        layers = number_of_hidden_layers 

        neurons = initial_number_of_neurons_per_layer 

        train_neural_network(layers, neurons, epochs = 30, file_count = 200) 

         

    End 

End 

 

The increment of 16 per loop for the number of neurons was chosen since exhaustively 

exploring all these variables one by one would take too much time, and unnecessary since 

the purpose of this test was simply to narrow down the possible architectures into an 

acceptable baseline foundation. Each NN was trained for a total of 30 epochs, and, 

similarly to before, only the data from 200 files was utilised so as to reduce the time spent 

in this stage. 
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As a result of this trial, models created with a homogeneous structure proved to be 

generally superior, with four out of the five best models being of this structure type, while 

the only other model type having a result in the best five was a model with the 

randomised structure. Other patterns were also observed, such as the generalised drop in 

model performance when the total number of hidden layers surpassed ten, with most 

models above this number, regardless of structure type, presenting a similar accuracy to 

just random guessing, no matter how long they were trained. The best performing models 

with the homogeneous structure were two models with three hidden layers (one with 32 

neurons and another with 128), and two others with seven hidden layers and the same 

neuron configuration as before. 

In order to test if the larger, more complex models were underfitting to the data due to 

the number of epochs, five models with 32 layers and 128 neurons per layer were trained 

for 500 epochs, showing no improvement in performance over this period. Other tests to 

try resolving this underfitting were conducted by raising the starting learning rate of the 

Adam optimizer to 0.01, and, later, to 0.1, changing the Adam optimizer to a stochastic 

gradient descent (SGD) optimizer with 0.01 learning rate, and then with a learning rate of 

0.1 and a momentum of 0.9. Despite these attempts to optimise the training of these 

larger models, they failed to learn from the data. 

A possible explanation for this is that the created NN is too large and complex for the 

problem being solved with the selected features, such that the exceedingly small variation 

in the weights of the neurons caused by the learning process has too small of an impact on 

the overall performance of the network, effectively impeding the learning process (as 

these are NNs using gradient-based learning methods and backpropagation, this could be 

explained by the vanishing gradients problem [121], and if so, this could be mitigated 

through use of the batch normalization [122]). 

Following this, one of the best performing models obtained from the previous trial (as 

the performance of these models was similar, the simplest and smallest one, with 32 

neurons per layer and with 3 layers, was selected) was chosen as the standard model 

henceforward, with the next step intending to fine-tune the structure of the network, 

while still accounting for the inherent randomness of the learning process. 

After limiting the number of neurons per layer to 32, we trained 22 different NNs with 

varying layer numbers over 200 epochs, repeating this for each architecture ten times in 

total. We tested these models in the previously chosen, separate, test set of 200 files, and 

saved the resulting values of maximum accuracy, minimum loss, and in which epoch these 

values were achieved, with the following results (Figure 4.5). 
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In these graphs is possible to see that the models’ quality is highest for models with 3 

and 7 layers, confirming what was observed in the earlier test, with models tending to 

worsen in quality once they cross this threshold. To note, we chose to train the models for 

a high number of epochs, disregarding any possible resulting overfitting, as, since we are 

recording the maximum accuracy and minimum loss over this period in the test sets, it 

should not be a concern. This would also allow us once again to test if the low 

performance of the more complex models is due to being limited to a shorter training time 

than they would otherwise need. However, as can be seen, these larger models tend to 

reach their best performance relatively early when compared to the other models, 

indicating a more limited capability to learn from the datasets, especially when their lower 

accuracy is also taken into account. 

In order to better show this, we saved information about the learning process from two 

of the trained models, one with three layers and another with 22 (Figure 4.6). 

 

 

Figure 4.5 - Composite image of model accuracy, loss, epochs till maximum accuracy and minimum loss for models 
with 32 neurons per layer and increasing hidden layer number. 

(A) (B) 

(C) (D) 
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From these images it is possible to see that the performance of more complex models is 

less stable, with more frequent drops from around 70% accuracy to lower than 30% during 

training. Additionally, besides the maximum accuracy being lower, with the 22-layer model 

presenting a maximum of 69.90% accuracy and the 3-layer model having 72.10%, it is 

possible to observe that, at a certain point, the models’ performance drop to the quality of 

a random guess permanently (this happened on epoch 107 where the precision first 

dropped from 67.25% to 48.19% on the following epoch and then to 20.34% at which 

point it stabilised). This sudden accuracy drop was never observed during the training of 

the 3-layer model, which, simultaneously, showed no evidence of overfitting over the 200 

epochs. 

With the completion of this test, we limited the number of layers to three, and 

performed a new optimization step to find the optimal number of neurons. To do this, we 

built another for-loop that created models with three layers and with a variable number of 

neurons in each layer, with the first model having two neurons per layer and the following 

models having twice as many neurons in each layer until the last one that had 1024 (Figure 

4.7). This increment rate was chosen as it allows us to test over a wide range of values, 

Figure 4.6 – Composite image of model accuracy and loss over 200 training epochs, for the models with 3, A), B); 
and 22, C), D) layers. 

(A) (B) 

(C) (D) 
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while concurrently having a lower resolution for higher numbers of neurons, which we 

know from previous trials do not perform very well, and a higher resolution for lower 

numbers, which privileges the creation of simpler models. This process was repeated ten 

times, with the best performing models being selected to be represented, in an attempt to 

minimize outlier effects caused by lack of determinism in model creation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we can see from these graphs, models that have less than 8 or more than 128 

neurons per layer appear to be unable to correctly learn from the data, while models that 

have between 16 and 64 neurons per layer, exhibit the best performance of all models. 

Similarly to before, the least adequate models tend to reach their best performance 

comparatively early, indicating a limited ability to learn from the data, while also 

suggesting that this underfitting is not due to low training time. 

To further fine-tune the previous test, we created more 3-layered models, this time 

with neurons per layer ranging from 16 to 64 and incrementing this number by one for 

each model. Similarly to before, we repeated this process ten times, selecting the best 

results for each different model configuration (Figure 4.8). 

Figure 4.7 - Composite image of model accuracy, loss, epochs till maximum accuracy and minimum loss for models 
with 3 layers and an increasing number of neurons per layer. 

(A) (B) 

(C) (D) 
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Figure 4.9 – Average accuracy, A), and loss, B), of the created models according to the number of neurons per 
layer. 

(A) (B) 

 

 

 

 

 

 

 

 

 

 

As the performance of these models is similar (with the accuracy fluctuations between 

most models being low enough that it can be attributed to stochastic differences in 

training), this criteria is no longer useful for determining the optimal NN structure. At this 

point we could merely select the simplest of these models (so 16 neurons per layer) and 

use it as the structure for the final algorithm; however, during training we noticed that 

some of these models were distinctly unstable performance-wise, with some of these 

structures only having an acceptable level of performance (>70% accuracy and >0.60 

Cohen’s kappa) on very few of the created models. As this lowers the average 

performance of these models, for the purpose of optimisation of the training processes of 

similar models, we chose to further explore this (Figure 4.9).  

 

 

 

 

 

 

 

 

 

After this trial, and making use of the information displayed in Table A1, we considered 

the structure that has 32 neurons per layer to be optimal for this particular issue and 

dataset. This was chosen as we desire to maximise average accuracy and Cohen’s kappa 

while simultaneously minimizing average loss and NN complexity. 

Figure 4.8 – Highest accuracy, A), and lowest loss, B), of the created models over the 10 separate training 
attempts, according to the number of neurons per layer. 

(A) (B) 
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Figure 4.10 – Correlation between average model accuracy, A), or loss, B), and dropout probability. 

(A) (B) 

Figure 4.11 - Correlation between average model accuracy, A), or loss, B), and dropout probability, with neuron 
number adjustment in accordance with dropout probability. 

(A) (B) 

At this stage, with the intent of further reducing the models’ overfitting to the data, we 

began exploring regularisation methods, starting with dropout. 

Usual values for dropout range from around 20% to 80% with some studies suggesting 

that probability values of 50% should maximize the regularisation effect [123]. Using this 

information as a target, we added this parameter to the previously chosen NN architecture 

and recorded its performance (Figure 4.10). 

 

 

 

 

 

 

 

 

 

During training, however, we noticed that the introduction of dropout severely lowers 

the performance of the created models (as can be seen in Figure 4.10 or Table A2), even in 

low dropout probabilities. As this goes against the consensus of the influence of dropout 

on model performance, we hypothesise that this is because the model is already too 

simple for it to benefit from dropout and, as such, decided to test this parameter again, 

but now proportionally increasing the number of neurons each layer has according to the 

probability of dropout (in such a way that, for example, a model with 50% dropout would 

have 50% more neurons per layer). This would reduce the benefits of model simplification 

obtained by applying dropout, but should still make the models more robust performance-

wise, and, as such, worthwhile to test (Figure 4.11). 
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Figure 4.12 – Number of the epoch where the best performing model for a certain dropout probability 
achieved its highest accuracy. 

Despite this increase in neuron number, the overall effect of the addition of dropout on 

the model’s average performance is still negative. As it is possible to see in Table A2, the 

presence of any dropout lowers the average accuracy of the models, while simultaneously 

significantly reducing all the calculated standard deviations. One thing to note is that the 

maximum accuracy attained with these models is only substantially reduced when dropout 

probability is above 20% (raising the threshold from 10% on the previous attempt at 

implementing dropout), perhaps making it more likely that this reduction in performance 

is due to the model already being simple enough, and that any further reduction in 

complexity through this mechanism leads to an inability of the model to properly learn 

from the data.  

This is further confirmed by the fact that the models do not seem to improve over the 

training epochs, which can be seen in Figure 4.12, in which the epochs, where the best 

performing model for a specific value of dropout obtained its highest accuracy, seem to 

lower as dropout increases. This should not be the case, as higher dropout should increase 

the time necessary before the models’ performance converge to the consistent state 

[123]. This, once again, suggests that this lower accuracy is not due to an underfitting to 

the data because of a short training time, but because of the inadequacy of the resulting 

NN architecture. 
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As previously mentioned, despite the inefficacy of dropout, there are still other 

regularisation techniques that might prove useful. We began by testing L1 regularisation 

(Figure 4.13). 

 

 

 

 

 

 

 

 

 

Similar to the results obtained when using dropout, the addition of any L1 

regularisation seems to significantly reduce the average performance of the created 

models, with there being a clear trend where the higher the regularisation rate is (and 

therefore the impact of this regularisation), the lower the efficacy of the model is. This 

drop in performance is more gradual than what occurred when we added dropout to the 

neural layers (more details about this behaviour in Table A3). An important characteristic 

to take note of is that the use of this type of regularisation does not seem to reduce any of 

the recorded standard deviations (except when it is above 0.3, which might be correlated 

to the lower recorded metrics), instead increasing this value when compared to not using 

any L1 regularisation rate. In fact, this effect was especially noteworthy during testing, to 

the extent that, in order to reliably obtain the same trends for each of the points in these 

graphs or tables, we had to gather information about the performance of 50 identical NNs, 

instead of the 10 we normally used for testing other modifications. 

As mentioned previously, since L1 regularisation is essentially a feature selection 

technique, and due to the way features were originally carefully selected to be extracted 

from the signal, this result from the use of this type of regularisation is not unexpected. 

 

 

 

 

 

 

Figure 4.13 - Correlation between average model accuracy, A), or loss, B), and L1 regularisation rate. 

(A) (B) 
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Figure 4.14 – Correlation between average model accuracy, A), or loss, B), and L2 regularisation rate. 

(A) (B) 

Figure 4.15 – Expanded test on the correlation between average model accuracy, A), or loss, B), and L2 
regularisation rate. 

(A) (B) 

After this, we proceeded to test the effect of L2 regularisation in the same NN 

architecture (Figure 4.14).  

 

 

 

 

 

 

 

 

 

As can be observed from Figure 4.14, in this case, L2 regularisation slightly improves 

average model accuracy, loss, and Cohen’s kappa, as well as (represented in Table A4) 

reducing their standard deviation. Beyond these results are also the expected positive 

effects of model simplification by weight reduction, as these models should be able to 

better generalize to previously unseen data. 

Expanding this test further, we can find the threshold for the rate when the models 

start being negatively affected by L2 (Figure 4.15). 

 

 

 

 

 

 

 

 

 

 

From the study of these graphs, and acknowledging that the maximum accuracy of the 

models only seems to drop from a regularisation rate of above two (which can be 

observed in Table A5), it seems that as long as the chosen rate is under 2 the results from 

this addition should be acceptable. 
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Reaching this point, we gathered what we have learnt so far about the optimal 

parameters of NN development for this dataset, and proceeded to the development of a 

finalized version of a Multilayer Perceptron. The results obtained are displayed in Table 

4.4. 

Table 4.4- Values of the chosen metrics for the Multilayer Perceptron model. 

 

Balanced dataset Raw, unbalanced files 

 

Accuracy 
(%) 

Cohen's 
kappa 

Cohen's 
kappa 

Macro average            
F1-Score (%) 

Lowest class  
accuracy (%) 

MLP 80.50 0.7563 0.7586 77.38 52.95 (class 1) 

 

4.3. Model comparison 

After comparing NN and non-NN models within their type, it is possible to compare the 

best models resulting from each of these groups. 

Looking into the performance displayed by these models (Figure 4.16, and Tables 4.2 

and 4.4) we see that their performance is similar on the test datasets, the Gradient 

Boosting model has slightly higher accuracy (+ 1.84 %) and Cohen’s kappa (+ 0.02) on the 

balanced test set and the Multilayer Perceptron has a higher Cohen’s kappa (+ 0.06), and 

F1-score (+ 1.98%) on the unbalanced test set. Additionally, reusing the proposed cost 

matrix (Table 4.3) leads us to a very similar cost as well (with the NN having a 1.53% higher 

associated cost). 

 

 

 

 

 

 

 

 

 

 

 

 

 

(A) (B) 

Figure 4.16 – Confusion matrix of the Gradient Boosting model, A), and the Multilayer Perceptron model, B), 
for the balanced test set. 
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Figure 4.17 – Probability of misclassification for each sleep stage, for the Gradient Boosting model, A), 
and the Multilayer Perceptron, B). 

(A) (B) 

One meaningful difference though, is the accuracy of the models for each of the classes 

in the unbalanced dataset (Figure 4.17). 

 

 

 

 

 

 

 

 

 

Although the accuracy of the NN is inferior for most stages, it still performs better on 

stage 2. This was possible to see even on the balanced dataset, however, this difference 

seems to have further intensified in the complete unbalanced dataset. We believe that this 

difference in performance for stage 2 is due to the NN’s increased ability to generalize to 

data it has not been trained with when compared to the non-NNs developed throughout 

this work. Usually, such a difference in performance might not be significant (especially if it 

is only noticeable once tested with a larger set of data), however, as mentioned 

previously, stage 2 is one of the most common stages during normal sleep (representing 

32.82% of the intervals in our dataset), and, as such, any slight variation in its classification 

represents a disproportionate impact in the performance of the model in real-world 

circumstances. 

Because of this, and due to their similarity in terms of the recorded metrics, we 

propose that it is more adequate to utilise the developed NN than the other models. 

Using this, we can now more directly compare the performance of our model with 

others that used information from the same dataset (MESA). In this regard, the results we 

have obtained (80.50% accuracy, 0.7586 Cohen’s kappa, and 77.38% macro-average F1-

score) can be considered as good. Kudo et al. (2022), using information from PPGs and 

accelerometers for classification (extracting this data from the public datasets Apple watch 

Sleep dataset [124], and MESA), achieved a macro F1 score of 0.655 and Cohen’s kappa 

score of 0.527, on their GRU-based recurrent neural network [125]. Another similar study, 

published by Sridhar et al. (2020), utilizing a fully convolutional neural network with 

dilated convolutional blocks and using the ECG signal of both the Sleep Heart Health Study 

and the MESA dataset for training, validation and testing of the developed algorithm, 



48 
 

obtained an overall performance of 77% accuracy and 0.66 Cohen’s kappa, for four-stage 

classification, against the reference stages on a held-out portion of the datasets used for 

training [120]. 

These results are despite the fact that during this work we exclusively used the PPG 

signal for classifying the sleep stages, which, notwithstanding its convenience in terms of 

integration with wearable devices, tends to be contaminated with noise artefacts [126] 

and is just one of the many signals used during a normal PSG. 

Our algorithm also matches up positively with other recent studies that only use PPG, 

presenting higher accuracy and Cohen’s kappa for sleep stage classification of 4 different 

classes [17, 127]. 

 

4.4. Real-world Corroboration of Results 

Due to the previously displayed results, the Multilayer Perceptron model was chosen to 

be compared to the results obtained from “Sleep as Android”. As a result of this 

comparison, we acquired the data displayed in Figure 4.18. 

 

 

 

 

 

 

 

 

 

 

 

 

The results obtained (Table 4.5) present a strong level of agreement [109]. These are 

valuable results as, first of all, “Sleep as Android” is one of the most reviewed android 

sleep analysis smartphone applications [128], with over ten million downloads [129, 130] 

(its paid version having over a thousand [131, 132]), showing that there is a market for 

algorithms with the sort of accuracy our models have. Second, as previously described, the 

devices and setting used for this test are different from the ones used for training the 

Figure 4.18 – Normalized confusion matrix of the results obtained from the Multilayer 
Perceptron for the “Sleep as Android” data. 
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algorithm, exhibiting our model’s ability to work in a wider set of circumstances (more 

specifically in a real-world situation). Third, it assists in confirming the reliability of the 

developed algorithm, as “Sleep as Android” estimates sleep stages mainly utilizing 

actigraphy, which is sometimes considered as an alternative to PSG [62, 133, 134], with 

their own studies agreeing with these results [135]. 

 

Table 4.5- Values of the chosen metrics for the Multilayer Perceptron model on the 
acquired data. 

Accuracy (%) Cohen's kappa Macro average F1-Score (%) Lowest Class Agreement (%) 

90.96 0.8663 90.52 85.55 (class REM) 
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5. Conclusion 
 

5.1. General Results 

This thesis’ main objective was the development of a ML algorithm that focuses on the 

detection and classification of sleep cycles.  

At the start, we had to select which signals to utilise. As PPG is very convenient, 

inexpensive, and easily integrated into portable devices, it is a promising signal to use for 

sleep stage classification based on wearables. After that, since we intended to build NNs 

that require a significant amount of data to be trained, we had to find databases that not 

only contained PPG signals and information about sleep stages, but that were also vast 

enough. The MESA dataset [73–75] was selected, as it has 2056 full overnight 

polysomnographies and contains PPG signals, thus being appropriate for our ends. 

Pre-processing and feature selection were the next step, and here we benefitted from 

the current state-of-the-art. Although, typically, this type of sleep study is done through 

the use of more than just PPG, we were nevertheless able to build optimal filters and 

select features for this purpose, such as signal characteristics related to HRV, which, while 

often connected to studies utilising ECG, proved useful for our work. 

In regard to the ML models, we created both NN and non-NN models. For the non-NNs, 

the best performing model (Gradient Boosting) presented 82.34% accuracy, a Cohen’s 

kappa of 0.7792, and a macro average F1-Score of 75.40% on the complete, unbalanced 

test set. During the training of these models, we concluded that, beyond the normal 

effects of overfitting, the increase of data from a single individual is deleterious to the 

model’s ability to generalize its predictions to other individuals, despite, in theory, this 

being beneficial to algorithm development. 

For the NNs, the best performing model (Multilayer Perceptron) presented 80.50% 

accuracy, 0.7563 Cohen’s kappa, and a macro average F1-Score of 77.38% on the 

complete, unbalanced test set. After an extensive search for the optimal configuration of 

hyperparameters for the NN, we found that the model consistently performed better in a 

3 hidden layer, 32 neurons per layer, structure, with all hidden layers having a L2 

regularisation rate of 0.4. Overall, we found that performance tends to be highest for 

models with 3 or 7 layers, with it dropping sharply outside these limits. Similarly for 

neuron count, accuracy dropped to around 20% for any number of neurons per layer 

outside of the interval between 16 and 64, where it seems mostly stable at around 80% 

accuracy and optimal at 32 neurons per layer. 
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We also tested some other commonly used regularisation methods, such as L1, L2, or 

dropout. In the case of the latter, despite usually being described as improving model 

performance, it failed to do so in this case, instead leading to a decrease in performance 

(even only 5% dropout lowers average accuracy to 41.84%). This decrease seems tied to 

dropout probability, where the higher the probability, the worse the performance is. This 

effect reaches a plateau at 37.35% accuracy, at which point all created models seem to 

have very homogeneous characteristics. The addition of L1 regularisation also seems to be 

detrimental to model development, with the higher the rate, the worse its impact on the 

model’s accuracy. On the other hand, L2 regularisation seems to improve the effectiveness 

of the models, and, while we found a regularisation rate of 0.4 to be optimal, there seems 

to be a wide range of values (from 0.1 to 2) where the model still benefits from its 

addition. 

These results are promising as, while some models are able to achieve higher accuracy 

[48, 68], they do so while using more signals (usually EEG, EOG, or ECG), which significantly 

restricts their usability for everyday applications. Conversely, we reached better 

performance than many other models, including recently published studies that make use 

of more signals or features [119], or employ the same dataset [120, 125]. 

One of the goals of this work was to test the developed model’s performance in a real-

world scenario. To achieve this, we simultaneously recorded data using a biosignalsPlux 

device with PPG and accelerometer sensors and a widely used Android sleep scoring 

application (“Sleep as Android”) paired with a commercially available wearable device 

(TicWatch E2). 

Associated with the device developed by PLUX was one of our previously created 

models (more specifically, the Multilayer Perceptron). This validation was done to ensure 

its performance was not tied exclusively to data from the chosen dataset and to compare 

its effectiveness with other popular sleep algorithms. The selection of the Multilayer 

Perceptron was justified by the fact that, despite its performance being slightly inferior for 

the balanced dataset when compared to the Gradient Boosting, there are significant 

differences in accuracy (with the NN having a 13.94% higher accuracy) for stage 2 sleep 

classification, which represents 32.82% of the data points we used, in a larger test set. As 

for the corroboration of the previously attained results by resorting to a comparison to the 

scoring of our own data acquisitions performed by another algorithm (associated with the 

app “Sleep as Android”), we obtained a strong level of agreement (90.96% accuracy, 

0.8663 Cohen’s kappa and a macro average F1-Score of 90.52%). This leads us to believe in 

the potential of the developed algorithm to be used in real-world scenarios. 
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5.2. Future Work 

While we fulfilled the main goals of this work, it still presents some limitations that 

could be improved, namely in terms of feature acquisition and extraction. 

Future studies should attempt to integrate these algorithms into devices. This way, not 

only is it possible to increase the similarity between the devices and algorithms being 

compared, but it should also be easier to acquire a larger amount of data, ideally, from a 

larger set of individuals as well. 

The recording of more data itself would also likely lead to improvements in the 

determination of the real-world performance of the models, besides the potential use of 

this data for model training. In this regard, the recording and comparison of results with a 

PSG study would be optimal. 

Additionally, during feature extraction, we chose to reduce the number and quality of 

the entropies used as features, due to time and computation constraints. As, even after 

this, these were some of the most relevant features, the extraction and use of them 

without averaging the signal beforehand could lead to some performance improvements. 

Finally, throughout this work several models were created, some of them having similar 

levels of accuracy and other selected metrics to the final model developed. Due to this, a 

complementary study that could be done is the creation of another ensemble model that 

utilises the output of these models as inputs, as these types of models tend to have a 

better performance than the sum of their parts [136]. 
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Appendix A 
 

Table A1- Complementary information about the model’s performance briefly described in 
Figure 4.9. (Bold and red colour for emphasis of model structures with low standard deviation) 
 

Neurons 
per layer 

Max. 
Accuracy 

Avg. 
Accuracy 

Acc. Std. 
Deviation 

Min. 
Loss 

Avg.  
Loss 

Loss Std. 
Deviation 

Max. Cohen's 
kappa  

Avg. Cohen's 
kappa 

Cohen Std. 
Deviation 

16 0,8047 0,6512 0,2095 0,6380 0,9634 0,4325 0,7161 0,4361 0,3744 

17 0,8062 0,7260 0,1746 0,6287 0,8057 0,3720 0,7107 0,5667 0,3152 

18 0,7947 0,5266 0,1541 0,6653 1,1978 0,3101 0,6934 0,2218 0,2723 

19 0,8025 0,7197 0,1723 0,6298 0,8198 0,3674 0,7032 0,5560 0,3109 

20 0,8068 0,8026 0,0042 0,6250 0,6414 0,0168 0,7110 0,7035 0,0087 

21 0,8041 0,7165 0,1706 0,6309 0,8260 0,3480 0,7064 0,5539 0,3097 

22 0,8008 0,6481 0,2078 0,6443 0,9664 0,4342 0,7023 0,4294 0,3704 

23 0,8067 0,7261 0,1727 0,6281 0,7988 0,3574 0,7127 0,5684 0,3126 

24 0,8086 0,8029 0,0042 0,6261 0,6505 0,0176 0,7140 0,7051 0,0050 

25 0,8042 0,6456 0,2130 0,6318 0,9729 0,4483 0,7092 0,4308 0,3762 

26 0,8031 0,7243 0,1673 0,6323 0,8024 0,3437 0,7066 0,5676 0,2977 

27 0,8013 0,7218 0,1734 0,6456 0,8155 0,3688 0,7089 0,5596 0,3127 

28 0,8039 0,8010 0,0019 0,6448 0,6479 0,0031 0,7074 0,7015 0,0047 

29 0,8077 0,7993 0,0082 0,6343 0,6568 0,0280 0,7139 0,6995 0,0128 

30 0,8054 0,6483 0,2115 0,6272 0,9665 0,4440 0,7098 0,4298 0,3788 

31 0,8024 0,7236 0,1679 0,6387 0,8120 0,3512 0,7047 0,5647 0,2977 

32 0,8068 0,8023 0,0036 0,6240 0,6480 0,0192 0,7147 0,7059 0,0072 

33 0,8054 0,7249 0,1751 0,6325 0,8056 0,3714 0,7123 0,5648 0,3138 

34 0,8039 0,7314 0,1501 0,6380 0,8013 0,3231 0,7106 0,5830 0,2616 

35 0,8034 0,8014 0,0016 0,6326 0,6408 0,0061 0,7092 0,7039 0,0053 

36 0,8064 0,8036 0,0027 0,6267 0,6417 0,0144 0,7154 0,7072 0,0054 

37 0,8027 0,8006 0,0027 0,6390 0,6491 0,0079 0,7117 0,7032 0,0057 

38 0,8011 0,6586 0,1941 0,6425 0,9493 0,4162 0,7082 0,4523 0,3464 

39 0,8026 0,6523 0,2040 0,6441 0,9617 0,4344 0,7017 0,4344 0,3663 

40 0,8058 0,8013 0,0028 0,6314 0,6485 0,0152 0,7102 0,7016 0,0056 

41 0,7996 0,7212 0,1731 0,6442 0,8186 0,3644 0,7056 0,5592 0,3127 

42 0,8045 0,7255 0,1729 0,6307 0,8049 0,3712 0,7084 0,5670 0,3081 

43 0,8045 0,8017 0,0038 0,6300 0,6465 0,0177 0,7116 0,6996 0,0116 

44 0,8023 0,6552 0,2010 0,6406 0,9583 0,4306 0,7029 0,4427 0,3561 

45 0,8021 0,5815 0,1993 0,6423 1,1201 0,4242 0,7025 0,3113 0,3517 

46 0,8051 0,6527 0,2025 0,6215 0,9508 0,4248 0,7088 0,4567 0,3426 

47 0,8054 0,7244 0,1746 0,6377 0,8094 0,3694 0,7113 0,5656 0,3153 

48 0,8033 0,5887 0,1969 0,6444 1,1108 0,4204 0,6998 0,3334 0,3419 

49 0,8068 0,8024 0,0029 0,6306 0,6405 0,0061 0,7122 0,7019 0,0066 

50 0,8034 0,8011 0,0029 0,6375 0,6450 0,0083 0,7078 0,7012 0,0066 

51 0,8046 0,8001 0,0047 0,6368 0,6526 0,0221 0,7053 0,6990 0,0063 

52 0,8031 0,7218 0,1728 0,6429 0,8151 0,3617 0,7049 0,5603 0,3100 

53 0,8051 0,7425 0,1347 0,6285 0,7604 0,2709 0,7120 0,6095 0,2202 

54 0,8014 0,7323 0,1516 0,6326 0,7978 0,3233 0,7091 0,5988 0,2310 

55 0,8075 0,8015 0,0048 0,6329 0,6466 0,0140 0,7093 0,7014 0,0064 

56 0,8040 0,8012 0,0021 0,6375 0,6413 0,0065 0,7099 0,7020 0,0060 

57 0,8031 0,8016 0,0015 0,6434 0,6480 0,0043 0,7119 0,7039 0,0059 

58 0,8064 0,7986 0,0073 0,6337 0,6632 0,0240 0,7098 0,6974 0,0104 

59 0,8060 0,8011 0,0033 0,6359 0,6432 0,0084 0,7089 0,7051 0,0024 

60 0,8065 0,7302 0,1609 0,6316 0,7917 0,3400 0,7101 0,5735 0,2868 

61 0,8014 0,6548 0,1999 0,6365 0,9580 0,4270 0,7036 0,4396 0,3592 

62 0,8039 0,7267 0,1708 0,6348 0,8023 0,3595 0,7087 0,5705 0,3033 

63 0,8050 0,8013 0,0030 0,6267 0,6428 0,0139 0,7124 0,7067 0,0070 

64 0,8057 0,8026 0,0026 0,6354 0,6435 0,0066 0,7114 0,7055 0,0040 
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Table A2- Complementary information about the model’s performance briefly described in 
Figure 4.10. (Bold and red colour for models with maximum accuracy above 70%) 

 

Dropout 
Value 

Max. 
Accuracy 

Avg. 
Accuracy 

Acc. Std. 
Deviation 

Min. 
Loss 

Avg. 
Loss 

Loss Std. 
Deviation 

Max. 
Cohen's 
kappa  

Avg. Cohen's 
kappa 

Cohen Std. 
Deviation 

0.00 0.7890 0.7037 0.1702 0.6368 0.8078 0.3346 0.7141 0.5712 0.2904 

0.05 0.7655 0.4184 0.1233 0.7071 1.3573 0.2322 0.6827 0.0849 0.2161 

0.10 0.7427 0.4103 0.1168 0.7554 1.3742 0.2174 0.6356 0.0636 0.2010 

0.15 0.7556 0.4117 0.1208 0.7323 1.3735 0.2253 0.6375 0.0641 0.2015 

0.20 0.7039 0.4065 0.1045 0.8759 1.3878 0.1799 0.5566 0.0560 0.1759 

0.25 0.3735 0.3734 0.0001 1.4438 1.4460 0.0013 0.0003 0.0001 0.0001 

0.30 0.3737 0.3734 0.0001 1.4434 1.4457 0.0013 0.0009 0.0002 0.0003 

0.35 0.3739 0.3734 0.0002 1.4439 1.4461 0.0015 0.0005 0.0002 0.0002 

0.40 0.3735 0.3733 0.0001 1.4395 1.4449 0.0030 0.0002 0.0001 0.0001 

0.45 0.3734 0.3733 0.0000 1.4443 1.4461 0.0012 0.0002 0.0000 0.0001 

0.50 0.3736 0.3733 0.0001 1.4423 1.4459 0.0019 0.0003 0.0001 0.0001 

 
 

Table A3- Complementary information about the model’s performance briefly described in 
Figure 4.13. 

 

L1 Value 
Max. 

Accuracy 

Avg. 
Accurac

y 

 Acc. Std. 
Deviation 

Min. 
Loss 

Avg. 
Loss 

Loss Std. 
Deviation 

Max. Cohen's 
kappa  

Avg. 
Cohen's 
kappa 

Cohen Std. 
Deviation 

0.00 0.7929 0.7262 0.1135 0.6372 0.8096 0.2872 0.7154 0.5523 0.2671 

0.05 0.7970 0.7182 0.1263 0.7451 0.9547 0.2747 0.7175 0.5361 0.2923 

0.10 0.7943 0.6766 0.1437 0.7978 1.0771 0.2959 0.7137 0.4432 0.3311 

0.15 0.7934 0.7059 0.1281 0.8382 1.0533 0.2604 0.7144 0.5109 0.2935 

0.20 0.7922 0.6153 0.1450 0.8968 1.2496 0.2728 0.7085 0.3004 0.3328 

0.25 0.7928 0.6076 0.1363 0.9420 1.3099 0.2409 0.7097 0.2796 0.3107 

0.30 0.7882 0.5673 0.1177 0.9898 1.3975 0.2044 0.7056 0.1938 0.2650 

0.35 0.7608 0.5385 0.0817 1.1244 1.4880 0.1157 0.6090 0.1415 0.1885 

0.40 0.7918 0.5365 0.0819 1.1160 1.5127 0.1031 0.7048 0.1260 0.1916 

0.45 0.7605 0.5069 0.0427 1.2053 1.5503 0.0500 0.6056 0.0650 0.1098 

0.50 0.5955 0.5011 0.0257 1.5616 1.5718 0.0040 0.3906 0.0492 0.0914 

 
 

 
Table A4- Complementary information about the model’s performance briefly described in 

Figure 4.14. 
 

L2 Value 
Max. 

Accuracy 

Avg. 
Accurac

y 

 Acc. Std. 
Deviation 

Min. 
Loss 

Avg. 
Loss 

Loss Std. 
Deviation 

Max. 
Cohen's 
kappa  

Avg. Cohen's 
kappa 

Cohen Std. 
Deviation 

0.0 0.7935 0.7890 0.0071 0.6415 0.6403 0.0140 0.7048 0.6969 0.0149 

0.1 0.7973 0.7925 0.0023 0.6609 0.6709 0.0051 0.7212 0.7181 0.0016 

0.2 0.7985 0.7953 0.0027 0.6642 0.6751 0.0083 0.7241 0.7206 0.0028 

0.3 0.7988 0.7941 0.0050 0.6629 0.6795 0.0155 0.7226 0.7187 0.0046 

0.4 0.8006 0.7946 0.0041 0.6585 0.6889 0.0178 0.7246 0.7187 0.0044 

0.5 0.7967 0.7932 0.0032 0.6645 0.6951 0.0170 0.7219 0.7171 0.0042 
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Table A5- Complementary information about the model’s performance briefly described in 
Figure 4.15. (Bold and red colour for emphasis of the value where the drop in performance 

begins) 
 

L2 Value 
Max. 

Accuracy 

Avg. 
Accurac

y 

 Acc. Std. 
Deviation 

Min. 
Loss 

Avg. 
Loss 

Loss Std. 
Deviation 

Max. 
Cohen's 
kappa  

Avg. Cohen's 
kappa 

Cohen Std. 
Deviation 

0.0 0.8085 0.8059 0.0025 0.6149 0.6284 0.0101 0.7176 0.7106 0.0069 

0.1 0.8122 0.8093 0.0016 0.6426 0.6573 0.0109 0.7195 0.7160 0.0028 

0.5 0.8114 0.8104 0.0007 0.6750 0.6855 0.0068 0.7195 0.7168 0.0019 

1.0 0.8114 0.8038 0.0184 0.6865 0.7300 0.0541 0.7198 0.7051 0.0330 

2.0 0.8104 0.5832 0.1723 0.7482 1.2119 0.3376 0.7154 0.3218 0.3006 

3.0 0.4746 0.4204 0.0200 1.4704 1.4736 0.0018 0.1585 0.0318 0.0509 

4.0 0.4714 0.4213 0.0197 1.4698 1.4727 0.0016 0.1143 0.0213 0.0422 

5.0 0.5084 0.4357 0.0309 1.4694 1.4720 0.0018 0.1786 0.0693 0.0591 

10.0 0.4415 0.4209 0.0121 1.4713 1.4737 0.0012 0.1001 0.0235 0.0332 

50.0 0.4250 0.4134 0.0044 1.4705 1.4735 0.0015 0.0525 0.0099 0.0210 
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