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Abstract: 

In this paper, we review the technological bases of mobile health (mHealth). First, we derive a component-based 
mHealth architecture prototype from an Institute of Electrical and Electronics Engineers (IEEE)-based multistage 
research and filter process. Second, we analyze medical databases with regard to these prototypic mhealth system 
components.. We show the current state of research literature concerning portable devices with standard and 
additional equipment, data transmission technology, interface, operating systems and software embedment, internal 
and external memory, and power-supply issues. We also focus on synergy effects by combining different mHealth 
technologies (e.g., BT-LE combined with RFID link technology). Finally, we also make suggestions for future 
improvements in mHealth technology (e.g., data-protection issues, energy supply, data processing and storage). 
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1 Introduction 

Our interest in an up-to-date scientific mHealth technology overview results primarily from long-term 
expertise in modeling and supporting several mobile information systems in heterogenous contexts on 
different continents. Just a few years ago, our standard IS system architecture in technical customer 
services support simply relied on an Internet connection between a mobile device (rather a laptop than a 
mobile phone, no sensors) and an immobile integration platform. Almost all data storage and processing 
took place in that platform (Fellmann et al., 2011).  

When we began to make the experiences we gained from engineering product services systems available 
for the healthcare sector, requirements engineering showed that healthcare professionals would employ 
applications that run directly on portable devices (Breitschwerdt, Reinke, Kleine Sextro, & Thomas, 2012; 
Gerhardt, Breitschwerdt, & Thomas, 2015, 2016a). A trend towards mobile applications rose sharply in the 
following years. Given the increasing complexity of current high-tech products and a large variety of 
services, we had to develop new methodological approaches, such as a smart glasses-based support 
system that guides service technicians at the point of service. That system showed a quantum leap in 
t rms o  s nsor t   nolo y an  t   mo  l  t rm nal’s  ata-processing capacity compared to our former 
technical customer services IS (Metzger, Niemöller, & Thomas, 2017).  

In our mHealth projects in developing countries (e.g., in one project, we developed an application to 
support midwives in Papua New Guinea), we had to face completely different technological challenges. 
Those challenges concerned offline functionality (lack of steady and stable Internet connection), battery 
economy, data economy (provider limits data volume to 60 MB) and an integration interface for users with 
an older 2G phone (Niemöller et al., 2016). 

It seems obvious that, in addition to adequate requirements engineering (Gerhardt et al., 2015), 
successfully realizing such heterogeneous projects requires adequate technological solutions for very 
different contexts. As information scientists, we believe that reviewing the current state of mHealth 
technology based on science represents significant scientific value. 

Contribution: 

In this paper, we review the technological base of mHealth. We use an IEEE-based multistage literature and filter 
pro  ss to ―  st ll‖ a s   nt     mH alt  ar   t  tur  prototyp   For t   r sult n  mH alt   ompon nts, w   xam n  t   
current state of technological implementation. The review also covers the current state of knowledge with regard to 
synergy effects between different mHeath technologies. We emphasize the need for future improvements in mHealth 
technology (e.g., data protection, energy supply, data processing and storage). 

2 Literature 

Parallel to the development of mobile healthcare applications, mHealth research has also undergone a 
certain evolution. While mHealth research mainly focused on personal digital assistants (PDAs) in its 
beginnings, the research focus changed towards basic mobile phones from 2007 to 2012 and once again 
towards smart devices after 2012 (Ali, Chew, & Yap, 2016). Researchers have also described other 
changes in mHealth research concerning the targeted disease spectrum an  also   alt  ar ’s 
accessibility (Ali et al., 2016). Of course, in the mHealth area, some high-quality reviews already exist. 
However, the recent reviews on the subject of mHealth technology fundamentally differ from our present 
paper. We can broadly classify them as:  

 Reviews limited to specific geographic regions or care structures. These reviews (e.g., Aranda-
Jan, Mohutsiwa-Dibe, & Loukanova, 2014; Chigona, Nyemba, & Metfula, 2012) primarily focus 
on mHealth applications in developing countries. 

 Reviews limited to certain diagnoses or patient subgroups. We found several examples of 
diagnose specific reviews, such as dealing with chronic diseases and elderly patients (Chiarini, 
Ray, Akter, Masella, & Ganz, 2013), suicide prevention (Luxton, June, & Chalker, 2015), or 
diabetes management (DeRidder, Kim, Jing, Khadra, & Nanan, 2016).  

 Reviews restricted to certain technology aspects. For example, Hall, Cole-Lewis, and 
Bernhardt (2015) focused on identifying mHealth text-messaging interventions.   

 Reviews limited to certain professional user subgroups. Such reviews have targeted, for 
example, healthcare workers (e.g., Odendaal et al., 2015).  
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 Reviews of clinical outcome studies. Because mHealth is also a medical subdiscipline, many 
reviews have also focused on the clinical outcomes of mhealth interventions (e.g., Buntin, 
Burke, Hoaglin, & Blumental, 2011; Free, Phillips, Watson, Galli, & Felix, 2013; Free et al., 
2010).  

 Meta-level reviews. These reviews deal with the analysis of mHealth research history (e.g., Ali 
et al., 2016).  

In contrast, in our review, we take a fundamentally different approach by directly focusing on mHealth 
technology without geographical or patient-/user-related restrictions. 

3 Review Method 

To obtain an overview of the relevant technological mHealth components, we carried out a multistage 
search and filter process based on IEEE Xplore. That technology oriented database covers almost two 
million Institute of Electrical and Electronic Engineers (IEEE) and Institution of Engineering and 
Technology (IET) journal papers and conference proceedings (see http://libguides.asu.edu/citation/ 
alternatives). Figure 1 graphically depicts the precise research process we followed. 

IEEE xplore 
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abstract 
168 original 
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Extract 

keywords 

4,514 

keywords 
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2,653 

different 
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Figure 1. IEEE Xplore mHealth Keyword Analysis 

Except for the non-technology-specific keywords, we found the most keywords for the additional 
equipment and portable device categories followed by the data transmission category, embedded 
software application category, and memory category. Based on this multistage keyword search and filter 
process, we developed a prototypical component based mHealth architecture (Figure 2). 

Con  rn n  t   ―m mory‖  ompon nt,  t ma   s ns  to      r nt at    tw  n  nt rnal an   xt rnal 
memory. Furthermore, we took the fact that cloud computing comprised an essential component of the 
― ata transm ss on‖ k ywor  su  roup  at  ory as a r ason to part  ularly  ons   r t  r  party s rv rs 
(clouds) with regard to the external data storage and processing component. 

In a further research step, we explored the state of scientific IS research with regard to the components 
that Figure 2 presents. Because the degree of mHealth representation varies quite significantly between 
different scientific data sources (Gerhardt et al., 2016), we decided to integrate both a biomedical and life 
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sciences database and also an electrical and engineering and technology specific resource into our 
systematic literature search. IEEE Xplore and PubMed together cover about 27 millionbiomedical, 
engineering, and technology scientific papers (see http://libguides.asu.edu/citation/alternatives and 
http://www.ncbi.nlm.nih.gov/pubmed). Throughout that literature research process, the prototypical 
mHealth architecture (Figure 2) served as a base for the search algorithms. We used both relatively 
specific and more open search terms (Table 2). 

Table 1. Keywords Categories from IEEE Explore mHealth Publications 

Keyword subgroup category 
Keyword count from 

that category 
Most common keywords 

Additional equipment 140 
Electrocardiography, wireless sensor 

networks 

Data transmission 64 Wireless communication, cloud computing 

Interface 11 User interfaces, medical image processing 

Portable device 137 Smartphones, mobile handsets 

Embedded software application 47 Middleware, protocols 

Operating System (OS) 18 Android, Java 

Memory 36 Servers, databases 

Non-technology specific 1518 mHealth, mobile computing 

Power supply 8 Batteries, power consumption 

 

 

Figure 2. Component-based mHealth Architecture: Prototypical Visualization of mHealth System Core 
Elements as a Result of Multistep Keyword-based Literature Search 

 

 

http://libguides.asu.edu/citation/alternatives
http://www.ncbi.nlm.nih.gov/pubmed
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Table 2. Systematic Literature Search: IEEE Xplore and PubMed Search Algorithms 

 Search algorithm: mHealth AND… 

Specific search terms 

LTE, Cat4, Cat6, GPRS, GSM, 3G, 4G, satellite, WLAN, wireless LAN, ad hoc 
networks, cloud, Bluetooth, mHealth sensors, camera, x-ray, MRI, ultrasound, 
sonography, computer tomography, radiology, dermatology, Verdict, MeeGo, 
Maemo, WebOS, Palm OS, Garnet OS, BADA, Windows OS, Blackberry OS, 

iOS, Android, Symbian, smartphone, tablet, battery 

Open search terms 

Infrastructure, prototype, hardware, interface, antenna, transmission, 
software, operation system, psychiatric, psychological, test, localization, 

power 

We then individually analyzed the references we based from using these search terms so that we could 
extract irrelevant references. We considered references as irrelevant if they: 

 Merely described scientific principles without concrete mhealth application  

 Contained medical-technological applications without the aspect of mobility 

 Did not focus on technological aspects, or 

 Contained mostly redundant technological information from multiple former publications. 

After that filtering process, 108 relevant and innovative technology publications remained from the 
systematic literature search. To further increase the sensitivity of the search, we conducted an open 
search that included the AIS S n or S  olar’s  ask t o  journals  A   t onally, w  n w  pr s nt   an 
innovative psychiatric mHealth design (Gerhardt et al., 2016a) at the largest German business informatics 
conference (Multikonferenz Wirtschaftsinformatik 2016), we had the opportunity to discuss mHealth 
technology aspects with various experts in the information technology theory and application field and to 
o ta n valua l  a   t onal   nts r  ar  n  t   AIS S n or S  olar’s  ask t o  journals  By t  s m ans, t   
number of papers we obtained rose to 143. Given several similar studies on the same aspect, we focused 
on avoiding redundancy by selecting the most current, technology-oriented, and detailed studies. 

4 Review Results 

4.1 Hardware-oriented mHealth Technologies 

4.1.1 Portable Device 

To achieve a high market penetration, it makes sense to prefer widespread portable systems. Since 2010, 
the global smartphone market has undergone significant change. While the world market leader resided in 
Northern Europe in 2010, in 2015, Samsung (320 million units, 22.5% of global market) and Apple (225 
million units, 15.9% of global market) took over this leadership position (Gartner, 2016). Table A1 (see 
Appendix) compares the technical data of various high-end smartphones. From 2015 to 2018, remarkable 
performance improvements have occurred: for example, the maximum data rate of high-end smartphones 
increased from 100 Mbps to 450 Mbps, RAM doubled from 2 GB to 4 GB, and battery capacity 
increasedfrom 2600 mAh to 3600 mAh (Adibi, 2013; AreaDigital, n.d.). According to our literature search, 
smartwatches, television sets and tablet devices have played only a subordinate role. Tablet devices are 
used almost exclusively for hospital applications that require a large display. Contemporary television sets 
also often have Internet access and the possibility to install user-defined applications. Their large screen 
size offers even better display options compared to smartphones, smartwatches, and tablets—especially 
for the elderly, deaf, and visually impaired. As such, smart TV-based mHealth applications could arise in 
the future, such as an application that tracks medicine intake (Yusufov, Paramonov, & Timofeev, 2013), 
provided that they can meet strict data-protection requirements. 

4.1.2 Internal Memory 

Some medical imaging methods also require high file sizes due to their resolution. The file sizes for the 
most commonly used imaging procedures range from 8 MB (e.g., magnetic resonance imaging) to 20 MB 
(ultrasonic imaging). Therefore, as Adibi (2013) has pointed out, on-device RAM, which should ideally 
include at least 64 GB (in exceptional cases, such as digital mammography, even more) represents a 
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main limitation for mHealth biomedical imaging data transmission. We provide more details about the on-
device RAM in current high-end smartphones in Table A1. 

4.1.3 Regular Smartphone Sensors and Additional Equipment 

In a 2009 review on mHealth and eEmergency systems, Kyriacou, Pattichis, and Pattichis (2009) found 
that most applications dealt simply with transmitting electrocardiography (ECG) or image/video. Since 
then, the mHealth landscape has exponentially developed and differentiated both in terms of 
smartp on s’ an  ta l ts’ ―on- oar   qu pm nt‖ an  w t  r  ar  to a   t onal  xt rnal s nsors: 

4.1.4 Modified Application of Regular Equipment 

Microphone: normally, microphones in a mobile phone only transmit spoken communication for 
telephone calls. However, microphones can obviously collect other biological sounds and background 
noise as well, such as voices, breath sounds, and other noises such as water flow noise (tsunami), 
explosion noise (large fire), or rumbling sounds (earthquake). A smartphone application or analysis 
software can then analyze these sounds. These features transform the mobile microphone into a valuable 
ingredient of a smartphone disaster recovery system (Adibi, 2015). Furthermore, one can use the 
smartp on  m  rop on  as an ―un al  rat   pr ssur  s nsor‖  On   an trans orm t  s pr ssur   ata, 
w     a m  rop on   oll  ts w  n a p rson  or   ly  x al s,  nto an ―un al  rat    low rat ‖  From t  s 
flow curve, one can calculate the essential parameters of a pulmonary function test (i.e., PEF, FEV1, 
FEV1%, and FVC) with a deviation of 11.74 percent from spirometric reference measurements (Agu et al., 
2013; Larson, Lee, Liu, Rosenfeld, & Patel, 2013). In a similar direction, another mHealth application can 
accurately detect coughs in an audio recording (Agu et al., 2013; Larson et al., 2011). In addition to 
coughing, a smartphone can detect sneezing and snow blowing via a microphone (Agu et al., 2013; Chen, 
Wang, & Chu, 2012).  

Speakerphone: one can also use a smartp on ’s sp ak rp on  (just l k  t   sp ak r syst m o  ot  r 
mobile systems, such as a tablet) in emergency situations to, for example, transmit important information 
and instructions from military or civilian rescue organizations simultaneously to more than one listener. As 
an additional requirement for that communication pathway, Adibi (2015) has identified the special 
importance of long-term evolution (LTE) for direct communication between mobile end devices since it 
bypasses the base station in a disaster scenario (see also Section 4.2.3). 

Earphone: Poh, Kim Goessling, and Swenson (2012) present another elegant way to use modified 
standard smartp[hone equipment. Considering aesthetics, comfort/wearability, costs, and possible 
irritation from adhesive electrodes, they decided to integrate reflective LED/photosensors into the earbuds 
of popular intraconcha earphones that allowed 400 Hz photoplethysmographic waveform registration from 
the subcutaneous blood vessels of the tragus region. One can transmit the corresponding dataflow either 
via cable and processing/control unit into an iPhone or via 2.4 GHz radio transceivers with USB connector 
into a tablet. These so- all   ―  artp on s‖ outstan  n ly mat   t     art rat  m asur m nts o  a  l n  al 
ECG (mean bias −0.07 beats per minute). 

Camera: smartphones and tablets can transmit detailed optical information using their integrated 
 am ra(s)  A  or  n  to t      om ―a p  tur   s wort  a t ousan  wor s‖, p otos (t at an  ma   analys s 
software possibly supports) provide a quick and detailed overview of the nature and intensity of an 
emergency and the number of affected persons, and they allow one to identify individual persons that a 
disaster has affected (Adibi, 2015). Furthermore, applying independent component analysis on the color 
channels of a video signal allows one to precisely detect heart rate, heart rate variability, and respiration 
rate (Agu et al. 2013; Poh, McDuff, & Picard, 2011). In addition, mHealth applications can even detect 
melanoma disease with a sensitivity of 87.27 percent and a specificity of 71.31 percent by applying 
standardized dermatologic diagnostic criteria to skin photographies taken with a smartphone camera (Agu 
et al., 2013; Wadhawan et al., 2011). A comparison between three experienced wound clinicians and an 
mHealth application in terms of how well they assessed wound sizes yielded a correlation coefficient of 
0.736 (Wang et al., 2015). While Wang et al  us   a sp   al ― ma    aptur   ox‖, s v ral ot  r woun -
assessment mHealth studies (Poon & Friesen, 2015; White, Podaima, & Friesen, 2014) have used 
stan ar  smartp on   qu pm nt to   t  t woun s’ s z   O   ours , on   an also us  mo  l  p on  
cameras for video conferencing, which can give patients the chance to contact, consult, and/or receive 
support from their personal physician. Finally, smartphone cameras can also read QR codes. For 
example, Vazques-Briseno, Navarro-Cota, Nieto-Hipolito, Jimenez-Garcia, and Sanchez-Lopez (2012) 
us   t  s  un t on as an alt rnat v  to RFID  or tra k n     l r ns’  oo   ntak   n a mH alt  plat orm   
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LED light source: high-end smartphones have a LED light source close to their camera. During a heart 
cycle, a pulse wave passes through the entire blood vessel tree and leads to a rhythmic dilation and 
contraction of the vessels. A smartphone can measure the resulting pulsatory opacity changes in a 
 uman’s   n  rt p t ssu     an  n  v  ual pla  s a   n  rt p on t   lamp and the camera at the same time 
(Zhu, Wang, & Meng, 2013). 

Acceleration sensors: most mobile devices can detect linear accelerations (accelerometer) and 
angular/rotational velocities (gyroscope) via micro-electro-mechanical systems (MEMS), micrometer-small 
devices that measure either capacity changes/the piezo effect that the deformation of a spring causes or 
the deflection of magnetically excited comb structures (tuning fork principle). These acceleration sensors 
detect both controlled and involuntary movements of the smartphone carrier. Therefore, they may help 
one in discovering emergency situations that often feature relatively rough involuntary movements (e.g., 
epileptical seizures, earthquakes) or deliberately controlled movements (e.g., enabling a person to escape 
from an earthquake situation) (Adibi, 2015). Due to the fact that individuals can more reliably attach a 
watch than a smartphone to their body, smartwatches appear particularly useful in that context. Ghazal, Al 
Khalil, Dehbozorgi, and Alhalabi (2015) recently showed that the mHealth application they developed 
could detect falls with 93 percent accuracy using accelerometer and gyroscope data from smartwatches. 
These smartwatches were connected via Bluetooth to a smartphone, which then alerted the caregiver via 
Wi-Fi, SMS or Bluetooth. Of course, accelerometers can also simply estimate walking speed. In this 
context, the combination of accelerometer and GPS data may further minimize errors in the walking speed 
estimation (Altini et al. 2014). 

Compass: compasses rely on the orientation of magnetic particles in parallel with the terrestrial magnetic 
field, which makes it possible to determine a cardinal direction. Given additional information, such as the 
position of visual landmarks, a compass allows for an application to relatively accurately determine a 
smartp on ’s pos t on an    t rm n  rout s  T  s   ompass prop rt  s suppl m nt t   smartp on ´s 
accelerometer and the gyroscope, especially when major disasters occur (Adibi, 2015).  

GPS: first of all, in combination with accelerometer data, the GPS signal can improve the accuracy with 
which a smartphone estimates speed (Altin, Vullers, Van Hoof, van Dort, & Amft, 2014). Furthermore, one 
can obtain valuable epidemiological information by combining medical data with its corresponding GPS 
position. Boonchieng, Boonchieng, Senaratana, and Singkaew (2014) empirically proved that, by 
systematically acquiring household GPS coordinates and combining it with individual health data, 
socioeconomic information, and Google Street View data, they could obtain both descriptive statistical 
results (e.g., age range of a district population, number of people living with each disease) and also the 
exact geographic distribution of certain diseases (e.g. patients with chronic kidney disease) (Boonchieng 
et al., 2014). This information has particular value when deciding how to best distribute health resources 
(e.g., in choosing where to build a new hospital or in analyzing which disease will consume particular 
medications). 

Received signal strength indicator (RSSI): an elegant way to localize people in their apartment involves 
m asur n  t   s  nal qual ty o  t   r apartm nt’s W -Fi network, which smartphones routinely measure. 
Duarte, Yokoyama, and Villas (2015) show that, with appropriate calibration, an mHealth application could 
measure this signal quality with 97.75 percent accuracy. Such an mHealth application could be particularly 
valuable for patients with paroxysmally altered consciousness (e.g., epilepsia) but also for dementia 
patients. In both cases, the application would be able to safely detect a change in the typical movement 
pattern and to generate an emergency call autonomously. 

Sensor-free sleep monitoring: standard smartphone sensors provide a characteristic pattern of user 
habits based in particular on the type and intensity of smartphone use, charging processes, and 
environmental sensor perceptions such as brightness or loudness level. The best effort sleep (BES) 
model considers light sensor data, duration of phone lock, phone recharging times, phone off times, 
accelerometer data, and microphone data (Chen et al., 2013). Compared to on-body-sensor sleep-
estimation systems (sleep duration error: 10 minutes), BES showed a considerably larger and also 
clinically relevant measurement error (> 40 minutes) (Chen et al., 2013b). Thus, from a medical point of 
view, one can use BES only as a screening method and not to definitively diagnose a sleep disorder. 
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4.1.5 External Devices 

ECG/seismocardiography (SCG): due to the high prevalence of cardiovascular disease and the lack of 
ECG side effects, the ECG is one of the most common medical examination methods.  

 Gakare, Patel, Vaghela, and Awale (2012) showed that, via Bluetooth, a mobile sensor can 
transmit ECG signals to an Android-based smartphone application, which then analyzes the 
signal in real time (e.g., heart rate variability) and then, depending on the wireless network 
coverage, either stores or transmits the results via cellular link to a server that, in turn, forwards 
t  m to a p ys   an  Many mo  l  ECG (mECG) appl  at ons  av   mploy   t  s ―two-hop 
w r l ss r lay s  nar o‖ (Son , 2011; s   also F  ur  6)   

 Many other authors have also described Bluetooth-linked ECG sensors for real-time ECG 
telemonitoring (e.g., Secerbegovic, Mujcic, Suljanovic, Nurkic, & Tasic, 2011, Yang, Ge, Li, 
Rao, & Shen, 2014).  

 Furthermore, researchers have shown another Android/Java-based smartphone application 
linked to a Bluetooth ECG device (Shimmer, Dublin, Ireland) to achieve a high sensitivity 
(92.7%) and positive predictive value (94.0%) in atrial fibrillation screening (Oster et al., 2013).  

 Watanabe, Kawarasaki, Sato, and Yoshida (2012) have pointed out that the Lithium-ion battery 
capacity (450 mAh) of the Shimmer Bluetooth ECG device can provide up to 36 hours of ECG 
recording.  

 Etemadi et al. (2016) recently presented a 9 x 4 cm ECG and SCG patch with 50 hours battery 
capacity (not counting not counting the battery power that an optional antenna consumed) that 
one can affix to the chest wall using three surface ECG electrodes.  

An unsolved problem in this context concerns the fact that the diagnostic value of an ECG increases with 
each lead while the freedom of movement of the patient decreases with each cable attached. A clinical 
standard ECG provides 12 leads (via 10 electrodes). To date, even high-end mHealth ECG systems do 
not include more than seven leads (recorded via five electrodes fixed to the patient) (e.g., Huang et al., 
2014). A desirable goal would involve developing a body area network with patch electrodes and patch 
antenna (see Figure 7) embedded in comfortable garment that provides a clinically meaningful 12-lead 
ECG without the need to attach 10 cables to the patient. 

Besides the electrophysiology, acceleration sensors can also measure the mechanical aspects of a 
  art’s a t on  y r   st r n     st-wall microvibrations (SCG). 

SIM card-based medical record bracelet/pendant system: under certain circumstances (e.g., 
accidents, dementia, epilepsia, stroke, cardiac arrest), being able to immediately access an individual's 
m    al   story  an sav  t    n  v  ual’s l     An mH alt  p rsonal m    al r  or  syst m prov   s a   ss 
to a patient's information via a medical database stored on a 16 KB SIM card in a protective 
bracelet/pendant system with an easily recognizable logo. The Extensible Markup Language (XML) file—
stored up onto the SIM card using an USB interface SIM-card reader/writer—includes general information 
(e.g. name, telephone number, blood type), medical history (e.g., surgical, obstetric, allergies, 
medication), medical encounters (e.g., chief complaint(s), present illness, physical examination) and other 
relevant medical data (e.g., orders and prescriptions, test results, medical images). The custom-
develope  ―M   r  ‖ so twar  appl  at on allows on  to r pro u   t  s  n ormat on on a stan ar  mo  l  
phone (Nokia 5630 XpressMusic Symbian, Nokia Corp., Espoo, Finland) (Abu-Faraj, Chaleby, Barakat, & 
Zaklit, 2011). 

Pill dispenser: based on an ordinary medication blister, researchers have developed mHealth blister 
systems with microcontrollers and a NFC-based air interface (Morak, Schwarz, Hayn, and Schreier, 2012; 
Crema et al., 2015). 

Peak flow meter/spirometer: as w   n   at  a ov , on   an us  a smartp on ’s microphone as 
―un al  rat   pr ssur  s nsor‖ to r   st r an ―un al  rat    low rat ‖ an  t    orr spon  n    r v   
parameters (i.e., PEF, FEV1, FEV1%, and FVC) (Agu et al., 2013; Larson et al., 2013). One can expect 
an even higher precision when one uses calibrated medical devices. Therefore, Al-Dowaihi et al. (2013) 
connected a calibrated peak flow meter via Bluetooth to an Android mobile application that directly 
displays suitable information to the patient and—via the Internet—transmits data to healthcare 
professionals. Researchers have also developed a similar mobile spirometer architecture based on 
iOS/iPhone 5s (Michailidis, Smanis, Stamatis, Bergeles, & Kouris, 2014). Furthermore, an impressive 
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project from Oxford University and Harvard Medical School developed a mobile spirometer that meets 
 ot  m    al a  ura y r qu r m nts an    v lop n   ountr  s’ l m t     nan  al r sour  s  T   mo  l  
spirometer—including both breathing tube (autoclavable) and hardware elements (printed circuit board, 
USB 2.0 port, differential pressure sensor, digital humidity/temperature sensor, microcontroller, 12 Mhz 
oscillator)—costs about US$11.75 and meets American Thoracic Society (ATS) and European 
Respiratory Society (ERS) standards (Carspecken, Arteta, & Clifford, 2013). This successful project 
s ows mH alt ’s pot nt al  or   v lop n   ountr  s  

Pulse oximeter: pulse oximetry non-invasively obtains a pulse curve and the blood oxygen saturation by 
measuring the absorbance of infrared light transmitted through human body tissue (usually finger or ear 
lo  s)  O v ously, t     art’s   at an  oxy  n saturat on r pr s nt v tal  o  ly  un t ons  T  r  or , puls  
oximetry has an extremely high priority in human medicine. For sparsely populated areas or developing 
countries, the ability to convert such an important medical technology into mHealth would mean a 
quantum leap forward in medical care. Therefore, pulse oximeter mHealth systems that display heart rate 
and blood oxygen saturation on a smartphone display via Bluetooth have become quite popular (e.g., 
Wuryandari & Suprijono, 2012). One particular system (called the phone oximeter project) has also 
included photoplethysmogram waveform and signal quality index (depicted as background color) 
(Dunsmuir et al., 2014). A quite elegant system that comprises a smartphone (stored in a bracelet), its 
headphone microphone (placed next to the nose), and a pulse oximeter (connected to the smartphone via 
Bluetooth) can detect moderate or severe obstructive sleep apnea (OSA) with an accuracy of up to 92.2 
percent (Behar et al., 2015). 

Accelerometer: of course, contemporary smartphones and smartwatches include an accelerometer by 
default. Individuals widely use these accelerometers when playing sport as a step counter. However, to 
achieve greater accuracy, one may also link external accelerometers to a smartphone as well. For 
example: 

 The Lab of Mobile Health in Peking University, Beijing, China, fit a triaxial accelerometer in a 
wearable belt. Connected via Bluetooth transmission to a smartphone-based Android 
application, the system reached a higher accuracy to monitor walking and stair climbing 
 ompar   to t   ― P on  H alt ‖ syst m (L u, Wu, & Hou, 2015)  In a   t on, t   ― nt ll   nt 
  lt syst m‖  oul    al an  m r  n y  onta t num  r an  to send a short message that 
contained GPS information when a user shakes the intelligent belt in an emergency situation 
(Liu et al., 2015).  

 Furthermore, Lennon, Bernier, Tamayo, Goldberg, and Mankodiya (2015) have presented a 
multisensory wearable sensor system for monitoring more discrete movement disorders such 
as dyskinesia.  

 Yang et al. (2014) fixed an accelerometer to a wheelchair to detect rollovers.  

 Li, Huang, Xu, Hu, and Xie (2014) implemented a three-axis accelerometer, a three-axis 
gyroscope, and a three-axis compass into a Bluetooth-enabled (and RFID-enabled for user 
identification) wristlet and achieved a recognition precision of 93 percent.  

 Interestingly, our systematic literature review revealed several mHealth systems that have 
drawn conclusions from physiological parameters to mental processes. For example, Saleheen 
et al. (2015) combined a complex respiratory rate sensor (see respiratory rate paragraph 
below) with an additional three-axis gyroscope and three-axis accelerometer on each wrist and 
achieved an accuracy rate concerning cigarette puffing detection of 96.9 percent with only 1.1 
percent false negative results.  

 Furthermore, Shi et al. (2015) transmitted data about breath rate, heart rate, ambulation 
pattern, and skin temperature from a chest strap and smart shirt via Bluetooth to a smartphone 
to predict alcohol cravings. 

Pressure cushion: the Wuhan University of Technology has integrated a resistive pressure sensor into a 
wheelchair cushion in order to determine if and when its user has fallen out of it (Yang et al. 2014). 

Blood pressure device: R  oll  o-Nan  , C  v z-Ol v ra, Cu vas-Val n  a,Alar  n-Paredes, and 
Alonso (2015) replaced the manometer of a common sphygmomanometer with a MPVZ5050GWTU 
pressure sensor (Freescale Semiconductor, Inc., Austin, Texas), processed the sensor signals via 
microcontroller unit (MCU ATMEGA328PPU, Atmel Corp. San José, California), and wirelessly transmitted 
the serial protocol information via Bluetooth (C-06 Bluetooth module, Wavesen, Guangzhou, China) to an 
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Android-based mobile device. Similar blood pressure systems are quite popular (e.g., Wuryandari & 
Suprijono, 2012). Some other blood pressure meters, such as UA-767 Plus NFC (A&D, Tokyo, Japan), 
support the NFC technology. This technology allows even patients who do not read and write (e.g., in 
pediatric oncology) to correctly capture their blood pressure and heart rate to a mobile device simply by 
touching the measurement device with their smartphone (Duregger, Hayn, Morak, Ladenstein, & Schreier, 
2015). 

Respiratory rate: Pimentel et al. (2014) showed that one can also accurately calculate the respiratory 
rat   rom an os  llom tr    loo  pr ssur  s  nal w t  t   r ―AutoS ns ‖ r sp ratory rat  s nsor  How v r, 
this sensor combines different information from a wearable chest band, a two-lead ECG, a respiratory 
inductive plethysmograph band, galvanic skin response measurement, a skin temperature thermistor 
under the arm, ambient temperature sensor registration, and an artifact assessment via a three-axis 
accelerometer. For data transmission, AutoSense uses an ANT ultra-low power wireless network solution 
(Ertin et al., 2011). 

Libra: beyond its cosmetic or long-term medical implications, body weight also has short-term implications 
for some patients (e.g., patients with chronic kidney disease or oncological patients). Individuals can 
readily access body weight scales with NFC technology, such as UC-321PL (A&D, Tokyo, Japan) 
(Duregger et al., 2015), which enable them to rapidly acquire their body weight without error. Such scales 
also provide a practical way for children or illiterate persons to obtain their body weight. 

NFC-based touch area network: Duregger et al. (2015) showed that individuals—even children in 
preschool—can capture their own wellbeing, pain level, and nausea simply by touching a smart poster 
that features child-friendly symbols and corresponding RFID tags on the back with a smartphone. To 
farther facilitate this process, the researchers used a passive NFC booster antenna on the back of a 
smartphone (Duregger et al., 2015). 

Electroencephalography (EEG): due to registration channels it requires, EEG places particularly high 
demands on data transmission (Byrne, Manada, Marinkovic, & Popovici, 2011). Therefore, according to 
our knowledge, curr ntly no ―mEEG‖  x sts  

Bed occupancy sensor: in the geriatric sector and in home nursing care, mHealth facilitates remote 
patient monitoring. A particularly unobtrusive system (BOS by S4 Sensors Controls.) uses bed pressure 
mats (Joshi, Holtzman, Arcelus, Goubran, & Knoefel, 2012). These mats, equipped with 24 pressure 
sensors, rest below the mattress and provide not only information about at what periods the mat is 
covered but also a two-dimensional impression of the movement pattern when a patient leaves the bed. 
This feature has high practical relevance since the mats can differentiate the movement pattern when 
patients unintentionally fall out of the bed from normal standing up. Furthermore, the mats also measure a 
pat  nt’s r sp ratory rat  (Jos    t al., 2012). 

Heart rate (HR) and heart rate variability (HRV): many commercial devices deliver such precise 
measurements—particularly HR measurements—that researchers have successfully used them for 
scientific purposes, such as BioHarness 3, a Bluetooth-based chest belt that can detect posture transition 
and associated heart rate response (Zephyr, Annapolis, Maryland) (Jovanov, Milosevic, & Milenkovic, 
2013). As another example, Sannino, De Falco, and De Pietro(2014) used BioHarness 3-derived HRV to 
detect obstructive sleep apnea (OSA) events. His algorithm performed better than five well-established 
other OSA event-detection systems.  

Fetal Doppler signal: contemporary obstetrics commonly monitors fetal heart activity. The fetal Doppler 
ultrasound (US) can reliably detect fetal emergency situations and, thereby, prevent intrauterine deaths or 
hypoxic brain damage (which result in permanent mental and physical impairment). Kazantsev, Senin, 
Ponomareva, and Mochalova (2014) presented a fetal-monitoring system architecture in which a U.S. 
Doppler probe (which a pregnant woman can easily use herself) connected to an Android-embedded 
Doppler Web monitor that linked further to the cloud and, finally, to a gynecology and obstetrics specialist. 
Via an appropriate data-compression algorithm, they achieved a transfer time that took only 10 to 11 
seconds (107 byte recordings of fetal Doppler output signal; home Wi-Fi network throughput 32,000 kbit/s) 
(Kazantsev et al., 2014). For pregnant women in industrialized countries, a mHealth system would make 
fetal monitoring more convenient; for pregnant women in developing countries, mHealth could potentially 
represent the only way to ensure optimal antenatal care. 

Environmental/ambient sensors: knowl     a out pat  nts’  nv ronmental conditions plays a crucial 
role in medically assessing them. Although contemporary smartphones feature environmental sensors as 
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standard (e.g., for light and temperature measurement), these sensors cannot continuously provide 
ambient conditions at a sufficiently valid enough level partly due to the varying way people transport (e.g., 
in a phone holder vs. the trunk of a car) and store (e.g., close to the body vs. in a handbag or backpack 
vs. in a bookcase) their phones and partly due to the indirect way smartphones detect temperature (i.e., 
via battery temperature). Thus, commercial sensor boards have arisen (e.g., MTS310CA from 
Crossbowtechnology) that validly measure ambient light, temperature, acoustics (Crossbowtechnology, 
2003; Navarro, Lawrence, & Lim, 2009). 

mHealth laboratory diagnostics: for mHealth laboratory diagnostics purposes, Balsam has developed 
an orthographic projection capillary array fluorescent sensor that achieves comparable measurement 
results to a smartphone camera and a commercial fluorescence plate reader (Balsam, Bruck, & Rasooly, 
2013). 

Other biomedical sensors: one can connect any available biomedical sensor to a portable device. The 
IEEE has proposed standard protocols (IEEE P 11073) for the following application profiles (Adibi, 2015): 
ECG (P11073-10102), implantable cardiac device (P11073-10103), pulse oximeter (P11073-10404), 
heart-rate monitor (P11073-10406), blood pressure monitor (P11073-10407), thermometer (P11073-
10408), respiration rate monitor (P11073-10413), weighing scale (P11073-10415), glucose meter 
(P11073-10417), insulin pump (P11073-10419), body composition analyzer (P11073-10420), peak 
expiratory flow (P11073-10421), cardiovascular fitness (P11073-10441), independent living activity 
(P11073-10471), and medication monitor (P11073-10472). The possibility to combine not originally mobile 
standard devices with wireless networks opens up enormous additional mHealth opportunities. In this 
context, Jara Zamora-Izquierdo, and Skarmeta (2012, 2013) presented an innovative device that 
combines RFID/NFC-technology for contactless user identification, standard interfaces (USB/RS232/IrDA) 
to connect non-mobile devices, and the networking technology 6LoWPAN (IPv6 over Low-Power Wireless 
Personal Area Networks) with a Jennic transceiver to connect to the cloud and/or the Internet of things. 

4.2 Data Transmission 

We discovered few mHealth architectures that used ZigBee (Liu et al., 2012) or ANT (Zhang, Passow, 
Jovanov, Stoll, & Thurow, 2013) to transmit data from a sensor to a mobile device. In the context of our 
systematic literature search, we most frequently (e.g., in Postolache et al., 2011) encountered the 
prototypical data transfer architecture that Figure 3 depicts. 

 

Sensor Bluetooth Smartphone WiFi/cellular Internet Web based telecare IS

 

Figure 3. Prototypical Two-hop Data Transmission Architecture 

In this section, we discuss the corresponding data-transmission technologies (e.g., Bluetooth and Wi-Fi) 
and also common alternative options. As we mention above, mHealth can overcome geographical 
distances between medical professionals and patients, between medical professionals and their 
colleagues, and between professionals/patients and medical databases. Therefore, the wireless range 
constitutes an important characteristic of mhealth systems.  

The basic principle of wireless data transmission dates back to the 19th century when Heinrich Hertz 
(1984) experimentally demonstrated that pulsatile electrical discharges connected to a dipole induce 
electric power flow in a copper wire over a certain distance (see Figure 4) due to electromagnetic waves. 

The wavelength  and the frequency f of these electromagnetic wave are reciprocally interconnected:  

c / f (Steute Schaltgerte, 2010). In this equation, c refers to the vacuum velocity of electromagnetic 
waves, which is identical to the speed of light. However, even under vacuum conditions, only a small part 
of the radiated transmission power reaches the receiver.  

The principal factors that affect the ratio between transmission power and received signal intensity in 
vacuum are distance (quadratic relation), frequency (quadratic relation), and effective receiving/sending 
surface of the receiver/transmitter antenna (Steute, 2010). Normally, smartphones and many wireless 
sensors use planar inverted F-shaped antennas (PIFA). Today, special vertically polarized BAN antennas 
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have emerged as an alternative to the classical horizontally polarized PIFA antennas (see Figures 5 and 
6). These new antennas have an improved radiation efficiency (from < 20% (PIFA) to > 80% (BAN)) 
(Dumanli, Gormus, & Craddock, 2012). Furthermore, mHealth developers have to consider other factors 
such as natural electromagnetic background noise or (outside a vacuum) materials that absorb or scatter 
electromagnetic radiation. In this context, another important aspect concerns the data-transfer rate from 
the sensor to the portable device (sensor-manager link technologies; see Section 4.2.1 below) and from 
the portable device—via a base station (e.g., Evolved Node B) to the external data storage and 
processing unit (cellular link technologies; see Section 4.2.3 below). In this section, we discuss sensor-
manager link technologies, wireless body area networks (WBAN), and cellular link technologies. 

A/B: Ruhmkorff inductor/interrupter 

C/C´: ends of the dipole 

M: spark micrometer   

Figure 4. A Short History of Antenna Design: Fundamental Principle for how Electromagnetic Waves Transmit 
(Hertz, 1894) 

 

 

Figure 5. A Short History of Antenna Design: Planar Inverted F-Shaped Antenna (PIFA) (based on Nashaat et 
al., 2005) 

 

 

Figure 6. A Short History of Antenna Design: Patch Antenna (based on Ullah et al., 2009) 
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4.2.1 Sensor-manager Link Technologies 

The mHealth concept refers not only to the wireless data transfer but also to cable-free mobile devices. 
Thus, mHealth devices must also adopt a wireless power supply. Accordingly, battery life represents 
another important characteristic of mHealth systems. Figure 7 depicts these three characteristics (i.e., 
wireless range, data-transfer rate, battery life) of the most common mHealth sensor-manager link 
technologies. 

 

Figure 7. Main Characteristics of Common mHealth Sensor-manager Link Technologies: Wireless Range, 
Data-transfer Rate, Battery Life (data in accordance with Adibi, 2012, 2013, 2015; Atmel Corporation, 2014; 

Song & Isaac, 2014; Jacinto, 2009; Sharma, n.d.; Smiley, 2016) 

Based on Figure 7, we recommend that one differentiates mHealth sensor-manager link technology in the 
following ways. 

Long range–low rate: a cluster of sensor-manager link technologies do have a relatively long wireless 
range that, presumably due to their rather low data-transmission rate, operate for months or even years 
without an external power supply: Sensium, ANT+, BodyLAN, Z-Wave, ZigBee, and Bluetooth-Low 
Energy (BT-LE). These link technologies are proprietary low-power sensor technologies that the medical 
and other fields (e.g., sports and wellness) already use (Adibi, 2012; Gehlot, 2012). In this technology 
cluster, the degree to which a link technology is suitable for mHealth purposes varies according to its 
performance characteristics (Figure 7 and Table 3). 

While ANT has seen common use in leisure sports, it has not seen similar use in professional mHealth 
technology—possibly because Apple does not support the technology (Zendesk, 2018). Further, few 
smartphones feature ZigBee due to its relatively high price (Song. 2011). Therefore, in our literature 
review, we found few mHealth architectures that focused on ZigBee (Liu et al., 2012). While significantly 
cheaper than ZigBee, Z-Wave does not suit simultaneous audio and video transmission due to its 
significantly lower data-transmission rate. In contrast, BT-LE can simultaneously process multiple medical 
devices due to its relatively long wireless range and relatively high data-transmission rate that allows for a 
timed synchronization scheme (Adibi, 2012). Furthermore, BT-LE has gained much importance through 
the fact that it constitutes one of the physical transport layers of the constrained application protocol 
(CoAP) that enables personal health devices to access home networks and the Internet (Santos, Almeida, 
& Perkusich, 2015). In contrast to Bluetooth, BT-LE has a much longer battery life of one year. These 
technologies also differ in their security and privacy aspects. ZigBee, BT-LE, and ANT+ qualify for use in 
the healthcare sector because they meet safety standards and feature appropriate encryption 
technologies, wheras Z-Wave does not (Adibi, 2012). 
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Table 3. “Long Range–Low Rate” Link Technologies: Application-related Properties and Safety Standards 

Technology Properties Safety standard* 

 
Z-Wave 

Relatively inexpensive 
Low data-transmission rate (see Figure 7) 

No simultaneous audio and video transmission 
– 

 
ZigBee 

High price 
Not very common in smartphones 

Not common in mHealth 
+ 

 
ANT+ 

Not supported by Apple 
Not common in mHealth 

Common in leisure sports 
+ 

 
BT-LE 

Simultaneous multiple devices processing 
Timed synchronization scheme enabled 

High data-transmission rate 
+ 

* + = high safety standard available, – = safety standard not sufficient for health sector. 

We can distinguish two other subtypes of sensor-manager link technologies from this f rst ―lon  ran  –low 
rat ‖  lust r: 1) Blu toot  an  a t v  RFID an  2) NFIC  

Bluetooth and active RFID: both Bluetooth and active RFID have a long wireless range of up to 100 
metres and with an impressive data-transfer velocity of up to 24 Mbps (Bluetooth) or 54 Mbps (active 
RFID) (Sharma, 2016; Adibi, 2012). However, serious technical reasons have precluded these 
technologies from spreading in the mHealth sector: Bluetooth systems consume a relatively large amount 
of power and have a correspondingly low battery life and, thus, seem not suitable as mHealth-related link 
technology. However, Bluetooth low energy (BT-LE) has elimintated this disadvantage (see long range–
low rate paragraph above). Due to the necessary high-performance battery, active RFID units have a 
considerably larger size and weight than passive RFID units and cost between US$20 and US$100. For 
this reason, they see use primarily in tracking large assets (pipes, containers, and machinery) but not in 
the mHealth sector. However, one can use pass v  RFID to  omp nsat   or Blu toot ’s major 
disadvantage: its long-winded pairing procedure. Hayn, Jammerbund, and Schreier (2011) have proposed 
a way to combine passive RFID and Bluetooth: by putting a mobile device near the ECG recorder, a field 
dete tor  an sw t   on t   ECG r  or  r’s Blu toot  mo ul  w  l  an RFID ta    x   onto t   ECG 
recorder delivers the Bluetooth pairing information. We think that one could easily implement this model 
into other medical sensors or devices and, thus, expand many classic healthcare elements with an 
mHealth component. While few smartphone models support RFID, almost all contemporary high-end 
smartphones have a Bluetooth interface. One way to address the fact that few contemporary smartphone 
models support RFID involves combining Bluetooth and passive RFID technology in another way: with 
IDBlu  (IDBLUE Corporat  H a quart rs, St  Jo n’s, Cana a), a p n-shaped device that can read RFID 
information and transmit this information to other devices (e.g., smartphone) via Bluetooth (Vazques-
Briseno et al., 2012). 

NFC: Figure 7 shows that NFC differs from all other communication technologies due to its very low range 
(0.1 metres). Therefore, NFC has so far typically seen use in card readers and peer-to-peer (P2P) 
communication (Adibi, 2012). However, NFC will soon establish itself as a standard smartphone 
technology and, thus, gain importance for the mHealth sector. For example, Morak et al. (2012) 
su   ss ully   v lop   a ―smart  l st r‖ syst m  Bas   on an or  nary m    at on blister, microcontrollers 
tracked when someone removed pills from the blister. They used mobile phones to collect the data from 
the blister´s NFC-based air interface. 

4.2.2 Wireless Body Local Area Networks (WBAN) 

Another very interesting wireless approach uses the human body itself or the electric field around the 
human body for data-transmission purposes. One can establish the WBAN connection between sensors 
an  t    uman  o y   t  r   r  tly (― alvan    oupl n  approa  ‖)  y   r  tly atta   n  two transm tter 
 l  tro  s to t    uman  o y t at su s qu ntly    om s ―a sp   al k n  o  transm ss on l n ‖ or  n  r  tly  
v a  l  tr      l   n u t on (― apa  t v   o y  oupl n  t   n qu ‖) (Mazloum, 2008)   

Electromagnetic waves can propagate parallel to special inductive surfaces. These surfaces can serve as 
a conductor layer with a dielectric film coating or as a flat conductor with a corrugated surface form (Wait, 
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1957)  Turn r, J ssup, an  Ton  (2012)   monstrat   t at on   an  r at  a ―sur a   wav   arm nt‖ t at 
enables over-body propagation at 60 GHz WBANs. Of course, changes in body shape or composition can 
affect the data transfer in WBANs. Therefore, researchers have attempted to better understand this body-
coupled communication (BCC) channel. For example, Attard and Zammit (2013) demonstrated the 
 n lu n   t at      r nt  o y mov m nts  av  on t   BCC   ann l’s   ara t r st  s  T   WBA n twork 
comprises various nodes. A personal device acts as a coordinator node: it interacts with the user and 
combines all information from the other nodes. One can divide the other nodes into sensors and 
actuators.  

Whereas the sensor nodes measure and forward physiological or ambient data, actuators can convert 
information into physical motion (e.g., inject a specific volume from an insulin pump) (Movassaghi, 
Abolhasan, Lipman, Smith, & Jamalipour, 2014). The WBAN nodes usually connect to each other 
wirelessly. Table A2 (see Appendix) depicts the common WBAN transceiver categories (physical layer 
specifications according to the IEEE 802.15.61 WBAN standardization (Kwak, Ullah, & Ullah, 2010; 
Kartsakli et al., 2014). 

4.2.3 Cellular Link Technologies 

In this section, we discuss the predominant cellular link technologies. Of course, any cellular link 
technology can be only as effective as the associated wireless coverage (i.e., its range) (see Figure 8). 
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Figure 8. Range of Cellular Link Technologies 

Therefore, before designing an mHealth study, one needs to carefully analyze wireless coverage. For 
example, Brown et al. (2015) conducted a cartographic analysis of mobile communication antennas and 
towers (CAAT) and improved the sent/received success rate of an SMS-based mHealth project from 
97.84 percent to 100 percent simply by choosing the best location (signal strength) of the SMS system 
and by choosing the best provider (most service antennas). 

GSM/3G: the Groupe Spécial Mobile (GSM)—an ad hoc subgroup of the European Conference of Postal 
and Telecommunications Administrations (CEPT)—started to harmonize the European cellular 
technologies in the 1980s. Later, the European Telecommunications Standards Institute (ETSI), a 
European Union Standards Organization, and later the 3rd Generation Partnership Project (3GPP) 
technical specification group called GSM/EDGE Radio Access Network (GERAN) continued this work 
(3GPP, 2018). When considering GSM architecture from the perspective of a mobile device (e.g., 
smartphone), the mobile device connects to a base transceiver station (BTS). Equipped with radio 
frequency (RF) antennas, transceivers, duplexers, and amplifiers, a BTS enables wireless communication 
between mobile devices and a cellular network. Its supraordinate network node (i.e., the base station 
 ontroll r (BSC))   t rm n s t   a tual ―  ll‖  on   urat on,  ontrols  mportant p ys  al properties of the 
BTS (e.g., RF power levels), and connects to the mobile services switching center (MSC). The MSC acts 
l k  a ―t l p on  sw t   n  o     ‖:  t  ontrols  n oun  an  out oun   alls an  mana  s  ata tra       On  
BSC can control many BTSs. The MCS has access to several network databases, which include the 
home location register (HLR), which stores permanent information about subscribers; visitor location 
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register (VLR), which stores temporary information about visiting subscribers; authentication center (AUC), 
which stores ID authentication and encryption parameters; and equipment identity register (EIR), which 
stor s  n ormat on a out t    qu pm nt’s ID  T    at way mo  l  s rv   s sw t   n    nt r r pr s nts  
the interface between the MSC and the global telephone network (landline/mobile network) (Islam, n.d.). 
3G technology offers a data throughput of about 2 Mbps (Lehr & McKnight. 2003). From a global 
perspective; GSM remains the most widely used cellular link technology (Islam, n.d.). 

LTE-A: the performance of a data-transmission channel depends on its data-transfer rate and latency. 
T   3GPP  o us   on m  t n   ts stak  ol  rs’  ata-rate and service-quality demands by developing LTE 
(3GPP, 2018b). This popular technology offers a transmission speed of 300 Mbps for downloads and 75 
Mbps for uploads and has very low latency (about 5 ms). It suits cell sizes between 10 meters and 100 
km. Based on the well-known relationships between wavelength, propagation velocity, and frequency of 
electromagnetic waves, a lower frequency selection can achieve a longer wavelength with a 
correspondingly greater range. Each state in the United States uses a specific predetermined frequency 
band list: 450, 700, 800, 850, 900, 1700, 1800, 1900, 2100, 2300, 2500, 2600, 3500, and 3600 Mhz 
(Adibi, 2015). Adibi (2015) has also pointed out that, in case of a disaster scenario, LTE can circumvent 
the base station and allow direct communication between mobile end devices.  

HSPA+: high-speed packet data access (HSPA+) constitutes another 3GPP release. It combines high-
speed down link packet data access (HSDPA) and enhanced-up link (UL) (Wannstrom, 2018). However, 
comparative measurements between LTE and HSPA+ show that, despite a lager average network radius, 
LTE can serve significantly more users with a significantly higher average network throughput and total 
network traffic (Jacinto, 2009). Accordingly, customers show a higher satisfaction with LTE than that 
HSPA+ (Jacinto, 2009).  

Wi-Fi: Wi-Fi refers to a brand name for a popular short-range wireless connection technology whose 
specifications the IEEE 082.11x regulates. Due to its low coverage (20 meters indoors and 100 meters 
outdoors) around the access point (Song & Isaac, 2014), Song (2011) and Song and Isaac (2014) have 
justly designated Wi-F  as a ―w r l ss  xt ns on to Et  rn t‖ an  W -F  a   ss po nts as ―n twork 
 slan [s]‖, r sp  t v ly  T  s  stat m nts po nt to W -F ’s  or  r str  t on:  t  o s not su t stan alon  us  
in vehicles (cars, subways, buses) and, therefore, allows (alt ou   w r l ss) no v r ta l  ―mo  l ‖ Int rn t 
access. We list further relevant Wi-Fi features, especially with regard to differences between Wi-Fi and 
World Interoperability for Microwave Access (WiMAX), in Table A3 (see Appendix).  

WiMAX: Th  IEEE 802 16 stan ar      n s W MAX’s   ara t r st  s  Its       ata-transmission range (up 
to 50 km) (see Table A3 in the Appendix) represents its most significant difference to Wi-Fi. This range 
allows the technology to cover a network area ten times larger than 3G towers can achieve (Song & Isaac, 
2014). However, it has a somewhat lower data-transfer rate (up to 70 Mbps) (Song & Isaac, 2014). 

Hybrid cellular networks: in contrast to Wi-F , 3G an  W MAX o   r r al mo  l   ata  onn  t ons  3G’s 
main advantage probably lies in the investments already made into it and also in the fact that it remains 
more established in terms of voice communication (Ma & Jia, 2005). Considering its technological 
equipment, we may find that WiMAX will prevail in the long term over 3G. Wi-Fi, however, seems 
unbeatable with respect to bandwidth and data-transmission rate (see Table A3 in the Appendix). 
T  r  or , w  a r   w t  t   stat m nt t at ―W MAX an  W F  ar  stron  st w  n work n  
 olla orat v ly…[an  t at] a pra t  al way of having WiMAX and WiFi joint networks is to use WiMAX to 
l nk up W F   otspots‖ (Son  & Isaa , 2014)  

4.3 Third Party Server 

Figure 3 depicts a prototypical mHealth data flow. In addition, note that, while external data storage affects 
telecare IS, it may also—  p n  n  on t   syst m’s ar   t  tur —include a (temporary) storage and data 
processing in a cloud. Thus, mobile cloud computing (MCC) seems to be particularly noteworthy in the 
data storage and processing context. In MCC, mobile devices connect wirelessly to a central processor, 
w     pro u  s an Int rn t  onn  t on to a ― lou ‖  In t at  lou , a ― lou   ontroll r‖  nsur s t at a  ata 
  nt r a  quat ly answ rs t   mo  l  t rm nals’ r qu sts (D n , L  , N yato, & Wan , 2013)  To date, the 
MCC has a valuable significance for mHealth applications: for example, it allows wireless broadband patient 
monitoring, the effective coordination of an emergency vehicle fleet, low-threshold access to healthcare 
information, and healthcare payment operations (Dinh et al., 2013; Varshney, 2007). In our opinion, the most 
comprehensive definition of cloud computing comes from the National Institute of Standards and Technology 
(NIST) (M ll & Gran  , 2011)  F  ur  9 summar z s t   NIST     n t on’s k y po nts  
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Figure 9. Characteristics of Cloud Computing in Accordance with the NIST Recommendations (Mell & Grance, 
2011) 

According to the NIST definition (see Figure 9) (Mell & Grance, 2011), cloud computing provides a 
quantum leap to mHealth engineering because it allows a wireless, localization-independent, and 
uncomplicated on-demand access from different user platforms (smartphone, tablet, personal computer, 
special equipment) to quickly recruitable and (seemingly) unlimited computing and storage capacities. 
NIST’s     nition uses the terms software as a service (SaaS), platform as a service (PaaS), and 
 n rastru tur  as a s rv    (IaaS) to   st n u s  t      r   to w      ustom rs mo  l z  a  lou ’s 
resources. While, in Saas, customers may only use the applications that the provider has already 
preinstalled in a cloud, in PaaS, they can install applications themselves. Finally, in IaaS, customers can 
 nstall or mo   y a  lou ’s OS or n twork n   ompon nts  Furt  rmor , on   an      r nt at  a  lou  
based on access. Different users from same organization can access a private cloud, various users from 
different organizations who share certain concerns (e.g., security requirements) can access a community 
cloud, and the general public can access a public cloud without any restrictions. Hybrid clouds refer to 
those clouds that mix the above three types. 

As it concerns cloud data storage and processing, we question the use of online social media to remotely 
mon tor n  pat  nts’   alt   W  a r    n t  s r sp  t w t  K orak un an  Bhatti (2014, p.290) who refuse 
to use Facebook  for mHealth systems with the following argumentation: 

The privacy, security and access control mechanisms must remain under the control of the 
carer network, but in the Facebook platform, the policies are controlled by Facebook and could 
change arbitrarily. Also configuring security and privacy features is complex, and so erroneous 
configuration is possible. 

To exchange electronic health records between different health professionals in a standardized way, a 
continuity of care record (CCR) usually uses the Extensible Markup Language (XML). Correctly reading 
an  pr s nt n  XML   l s,  ow v r, r qu r s appropr at  analys s so twar , t   ―pars r‖  C  n, L ou, 
Chen, and Li (2013a) recently experimentally tested the speed of different XML parsers by creating CCR 
objects between 1 and 40000 kilobytes. They showed that the Simple API for XML (SAX) worked the 
fastest, though Javascript Object and Array notation (JSON) followed closely behind. However, they found 
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XML Document Object Model (DOM) had a much slower speed and that they could not recommend it 
(Chen, Liou, Chen, & Li, 2013a). 

Table 4 overviews further relevant challenges in processing and storing mHealth data and possible 
approaches to solve them. 

Table 4. Medical Data Processing and Storage: Challenges and Appropriate Approaches to Solve Them (in 
accordance with Clifford & Clifton, 2012; U.S. National Library of Medicine, 2016) 

Challenge Appropriate-solving approach 

Biotelemetric image transmission 
standard 

Health level 7 (HL7): protocol standard for the communication of clinical 
information systems at application level 

Time-stamping issues 
Use GPRS or Wi-Fi communication protocol 

Extract time stamping information via synchronization with the smartphone 
telecommunications network 

Semantic encoding of biomedical 
data 

Supplement the HL7 content with metadata (e.g., device configuration, applied 
filters, signal-quality information) 

Apply the Unified Medical Language System (UMLS) Semantic Network tool 
(semantic types/semantic relations) 

Ontological encoding 
Apply the UMLS vocabularies (CPT, ICD-10-CM, LOINC, MeSH, RxNorm, 

SNOMED CT) and natural language-processing tools 

Time delays in data transmission Database-synchronization techniques 

Patient privacy issues Ideally develop an international standard for data security 

4.4 Power Supply 

Table A1 (see Appendix) shows the performance characteristics of typical smartphone batteries. Whereas 
the popular low-power mHealth sensor-manager link technologies mostly have a battery life of several 
months or even years (see Figure 7), even high-end smartphones with above-average battery capacity 
reach only about 1200 minutes (20 hours) of battery life during active use (AreaDigital, n.d.).  

In developing countries in particular, an insufficient power supply can constitute a major cause of mHealth 
failures. For example, Eskenazi et al. (2014) developed an mHealth application to map the indoor 
locations that mSpray users had sprayed with insecticides to combat malaria and found an insufficient 
power supply to most commonly cause mHealth non-us  (―p on  was not   ar    or  att ry     ‖, 
47.6%). Therefore, in the absence of a continuous power plant-operated electricity network as in in 
developing countries, one may need, for example, photovoltaic plants to independently recharge 
smartphone batteries.  

WBAN technology has critical applications concerning mHealth energy efficiency because mHealth 
sensors must be portable and unobtrusive (i.e., small and light), which limits their available battery 
capacity. Nevertheless, implantable WBAN sensors require a long battery life (Marinkovic & Popovici, 
2012). In this situation with rather small battery volume and particularly high demands on battery life, a 
possible solution would involve reducing the amount of electricity that the sensors consume. To this end, 
Marinkovic and Popovici (2012) developed a wake-up receiver (WUR) with a static power consumption of 
only 270 nW. The actual sensor consumed no energy in its sleep mode, but a signal from the master node 
 oul  always wak   t up  A smartp on ’s audio output could provide power supply for external sensors. 
Yao, Sun, and Hall (2015) achieved between 77.9 and 85.4 percent efficiency with a tunable impedance-
matching network. However, even under these optimal conditions, the audio output harvest reached only 
20.5 mW, which satisfies what many sensors require (e.g., pulse oximetry) but does not meet ECG-
registration requirements (Yao et al., 2015). 

4.5 Interface 

A workgroup from the Sydney University of Technology created an extremely user-friendly graphical 
interface in 2009 for supporting registered nurses (RN) in emergency situations (Sax & Lawrence, 2009). 
This example shows the importance of appropriate requirement engineering to successfully develop 
mHealth applications. Beforehand, they conducted semi-structured interviews with the potential 
stakeholders to understand the normal course of a medical emergency situation. Based on the knowledge 
they required, they designed appropriate IS support for each working step a RN performs in an 
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emergency situation. To summarize their work, they found that an appropriate mHealth emergency 
interface needs: 

 A logical structure 

 Access to the required information with the minimum of operation steps 

 A space-saving input device 

 To reduce cognitive effort 

 To reduce the number of buttons 

 The most natural, intuitive human-machine-interaction 

 To automatically display critical parameters 

 A clear graphical structure to display content on the screen, and 

 Acoustic and visual feedback (Sax & Lawrence, 2009). 

Taking also non-emergency conditions into consideration, Matthew-Maich et al. (2016) described the 
following mHealth interface design features: 

 Software/app features: graphs that display patient-related trends, a notification system for 
alerting professionals, motivational and exucational text messages, reminders to improve 
treatment adherence, video messaging, client-management features, visual/auditive/cognitive 
help, patient-texting features, and voice over Internet protocol (VoIP) software applications. 

 Hardware/mobile devices: mobile devices with large touchscreens and large virtual buttons, 
stable mobile device systems, lighter devices, touch pens, voice input function, and cloud 
computing resources (Matthew-Maich et al., 2016).  

In addition to graphical and information technology aspects, the degree to which a user interface (UI) 
helps users to search for information represents a major UI property. Traditional search engines 
presuppose a very structured approach via a well-informed, focused use of keywords that fits to an a priori 
known research object. However, medical personnel often work under time pressures and psychological 
strain, especially in emergency situations. Under such circumstances, mHealth applications should 
actively help individuals search for information. For this purpose, information systems use semantic 
computing. Similar to the association areas in the cerebral cortex, semantic computing associates 
mult   m ns onal  n ormat on w t  a k ywor  an , t us,  an s ns  a us r’s a tual  nt nt ons   yon  t   
lexical m an n   n t   k ywor s t  y us   T   ― ont nt   s r ptors‖ as a  as    l m nt  n F  ur  10 may 
require further explanation: content descriptors may include on the one hand structural (e.g., spatial, 
storage format, encoding, browsing options, temporal or syntactic description) and on the other hand 
s mant   ( n part  ular ―r al worl ‖ s mant  s) asp  ts o   n ormat on  
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Figure 10. Main Semantic Pieces of Information (in accordance with Bellini, 2012; Hasida, 2007) 
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Since semantic computing accesses mult   m ns onal an  us rs’ pr vat   ata, sa  ty asp  ts play an 
important role in safeguarding that data (especially in medical software applications). However, we do not 
focus on these aspects in this overview. However, as Azfar, Choo, and Liu (2015) note in discussing the 
poss   l t  s to lo at  an  r stor  mH alt  us rs’   ta ls,  ma l a  r ss s, lo at ons (w t  an asso  at   
timestamp), food habits, passwords, four-digit PINs (e.g., that users use to log into applications), and user 
profile pictures, one needs to carefully consider data security aspects when developing mHealth 
applications. 

4.6 Software-oriented mHealth Technologies 

4.6.1 Operating System (OS) 

Common operating system (OS) platforms include Android, BlackBerry 10, Cyanogen Mod, Embarcadero, 
Fire, Firefox, iOS, Jolla/Sailfish, Tizen, Ubuntu, and Windows (Würstl, 2016). Based on data from 5,000 
mHealth practitioners (e.g., app developers and decision makers) and approximately 11,000 mHealth 
apps, evidence shows that Android and iOS will remain the preferred OS in the near future (Research 2 
Guidance, 2015). Cecere, Corrocher, and Battaglia (2015) also support this finding. As such, we compare 
the main features of Android and iOS in Table A4 in the Appendix.  

Wukkadada, Nambiar, and Nair (2015) compared iOS and Android in detail and found that iOS 
  v lopm nt mak s mor  sp         man s on t    ar war  w  l  An ro     v lopm nt ― an tak  pla   
 n any mo  stly  qu pp    omput r s   n   la oratory‖  In   onom   t rms, An ro   (as  r  war ) o   rs 
an advantage compared to iOS. On the other hand, iOS has a much better error-reporting feature, which 
provides live support to users. While Android has minor security gaps, iOS features an excellent level of 
security that makes an antivirus program unnecessary. As such, Wukkada et al. (2015) came to the 
ov rall  on lus on t at ― OS  s   tt r t an an ro    ut… ost w s  [t at] an ro    s   tt r‖   

Blackberry OS provides a free instant-messaging service; on the other hand, the Blackberry market is 
almost exclusively restricted to the business sector, so that the Blackberry app market offers a much lower 
number of apps for one to download (Raman, n.d.). Jolla Sailfish OS offers innovative design and 
handling but a quite limited app supply in the Jolla store. Emulated Android apps run slowly and 
inadequately on Jolla. Furthermore, limited privacy settings and sometimes confusing handling may 
 urt  r  xpla n Jolla Sa l  s  OS’s low mark t s ar   Us rs  am l ar w t  An ro   syst ms s oul   av  no 
problems with handling Firefox OS. The Firefox app store has a comparatively low number of apps, and 
they often simply link to Web-based resources rather than provide real, installable apps. However, this 
syst m’s a vanta  —―to  lur t   l n    tw  n t   Int rn t an  lo ally  nstall   apps‖; W mm r, 2015)—
seems to have become a disadvantage today (based on user ratings) since one can buy memory cards 
more cheaply than access the Internet. The Cyanogen Mod OS resembles Android in design and 
handling, but it adds various intelligent features to the Android portfolio (e.g., an optional control scheme, 
especially for left-handers) and access to millions of apps in the Google Play Store. Cyanogen also 
  atur s  n an     ata s  ur ty  n t at  t allows on  to  ompl t ly  n rypt a smartp on ’s storage. In 
summary, Cyanogen Mod seems to represent a realistic alternative to Android OS. However, at present, it 
features a low number of original apps (Wimmer, 2015). Ubuntu, a Linux-based OS, not only provides a 
similar user interface on desktop and smartphone but also allows one to use the same apps on different 
devices. Due to its open source code, security holes and spyware may be detected more quickly than 
other OS. 

4.6.2 Embedded Software App 

The most widely used Android OS use Java as their common programming language, though some use C 
and C ++. Individuals who program iOS applications usually use Swift and sometimes also Objective-C, C, 
and C++. Other possible programming languages include HTML5 (for Blackberry, Jolla/Sailfish, Tizen, 
and Ubuntu OS), PHP (Cyanogen Mod OS), Object Pascal (Embarcadero OS), CSS (Firefox, Web OS), 
Qt und QML (Jolla / Sailfish, Ubuntu OS), ActionScript (Macromedia Flash Lite), and Python (Ubuntu OS) 
(Würstl, 2016). The core of an information system usually comprises several specific layers that the open 
systems interconnection model (OSI) depicts (see Figure 4). Roughly speaking, this model comprises four 
data-oriented layers (that deal with microelectronic bit transmission, data encoding and protection, 
network, and data transport) and three application-oriented layers (Tari & Bukhres, 2001). As one can see 
in Section 4.1.5, a large variety of devices with wireless connectivity exists. Healthcare practitioners often 
simultaneously use many on the same patient. Therefore, the ar   t  tur  o  a mo  l  app  as to  a   ―t   
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  all n   o  mult pl  s multan ous   alt   ata sour  s‖ (Boro  n, Zavyalova, Za arov, & Yamus  v, 
2015). The corresponding software layer, which mediates these various parallel processes, is called 
middleware. Middleware is anchored to the three application-oriented OSI layers (i.e., that focus on 
controlling, presenting, and directly applying communication) (Tari & Bukhres, 2001). As an example, we 
mention the cloud-centric middleware platform SOPHRA (Lomotey, Jamal, & Deters, 2012; Lomotey & 
Deters, 2014) because it features strong reliability, data security, and minimum access-time latency. 
F  ur  11 s ows m   l war ’s stru tur  an   ts r lat on to OSI  n   ta l  
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Figure 11. Middleware Structure and OSI Embedment (based on Tari & Bukhres, 2001; Lomotey et al., 2012) 

mHealth not only bridges geographical distances between different healthcare stakeholders but also 
a t v ly supports m    al     s on mak n  pro  ss s  As B ll n   t al  (2012) not : ―Mo  l    vices and 
applications of Mobile Medicine have to provide a set of challenging features that cannot be met without 
t    nj  t on o  a   rta n  nt ll   n    nto t    ont nt  ts l ‖  T us,     s on support syst ms o t n 
represent the centerpiece of mHealth applications. 

 

Figure 12. Principle of Medical Decision Support in Accordance with Hommersom et al. (2013) 

As Figure 12 shows, these systems must understand the cause-effect relationships according to the 
current scientific state of knowledge without neglecting the uncertainty inherent to medical processes. 
Furt  rmor , m    al     s on support syst ms must    a l  to  ons   r a pat  nt’s  n  v  ual 
  r umstan  s (p rsonal zat on) an  to prov    ―w at-  ‖ pr    t ons  A t r all, t   syst ms must also    
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capable of learning as medical processes often quickly change (Hommersom et al., 2013). A Bayesian 
network largely meets these complex requirements. Such a network represents a directed acyclic graph 
(DAG), which includes all known variables of a system as nodes and the statistical interactions between 
these variables as connecting lines. Probability tables describe the probability distribution of these 
variables, which depend on the status of so-called parent variables (Hommersom et al., 2013).  

5 Discussion of Results and Implications for Future Research 

5.1 mHealth: Impact and Critical Success Factors 

As t   nam  su   sts, mH alt  ― s an  m r  n     l   n t    nt rs  t on o  m    al  n ormat  s, pu l   
health and business, referring to health services and information delivered or enhanced through the 
Int rn t an  r lat   t   nolo   s‖ (Eys n a  , 2001)  T rou   t  s syn r y, w   an ov r om  
geographical distances between medical professionals and patients, medical professionals and their 
colleagues, and professionals/patients and medical databases. Simultaneously, we can use the 
computing power of mobile terminals and that of their connected central servers to solve medical 
problems concerning diagnosis, clinical communication, medical training, hospital information systems 
(HIS), self-healthcare management, assisted healthcare, supervised healthcare, and continuous 
monitoring (Chiarini et al., 2013; Mosa, Yoo, & Sheets, 2012).  

Indeed, mHealth could lead to a quantum leap in medical data quality if one takes Nyquist’s sampl n  
theorem into consideration. Based on mathematical laws, the sampling frequency should be at least the 
double the highest signal frequency; in many examples such as a routine blood pressure (BP) 
measurement (circadian rhythm, typically with two peaks and two nadirs (Middeke, 2007); i.e., frequency = 
2/day), we can easily recognize that clinical routine measurements (e.g., BP measurement only once or 
twice daily) do not provide sufficient reliability simply due to their low measurement frequency (Clifford & 
Clifton, 2012). In this context, mHealth provides the possibility for one to obtain the measurement 
frequency that one requires. Furthermore, one can use mHealth to build up a long-term medical record 
and to personalize healthcare (Clifford & Clifton, 2012). These characteristics of mHealth have led to a 
remarkable paradigm shift in medical care not only in high-technology countries but also in emerging and 
developing ones. In the lower-middle World Bank income group, the percentage of countries that report at 
least one mHealth initiative almost matches (~85%) the percentage for the high-income countries (World 
Health Organization, 2011). Examining mHealth economics shows benefits for clients/patients (e.g., 
increased medical effectiveness, increased access to healthcare, less work time missed, and reduced 
accommodation, meal, and transportation costs), providers (e.g., avoided inpatient visits, increased 
medication adherence, increased knowledge transfer among practitioners), and other stakeholders (e.g., 
increased productivity of workers due to less travel and less illness, avoided cases of communicable 
diseases). Thus, the economic potential of mHealth investments to reduce costs and increase efficiency 
becomes apparent from the perspective of all major health system stakeholders (Schweitzer & Synowiec, 
2012).  

Cl n   ans’ a   ptan   an  a opt on r pr s nt t   most  r t  al su   ss  a tors (CSF) to susta na ly 
implement mHealth (Yu, Wu, Yu, & Xiao, 2006). One can best identify these future stakehol  rs’   man s 
via diligent requirements engineering (Gerhardt et al., 2016). But, based on our own experience with 
modeling and implementing several major mHealth projects worldwide (Gerhardt et al., 2015; Gerhardt et 
al., 2016; Fellmann et al., 2011; Breitschwerdt et al. 2012; Metzger et al., 2017; Niemöller et al., 2016), we 
believe that one can only successfully establish the link between requirements engineering and 
marketable mHealth applications by using optimal technology in a context-sensitive manner. Gutiérrez-
Ibarluzea, Chiumente, and Dauben (2017) have described the factors that influence the durability 
(lifecycle) of health technologies in detail. Because organizations in both the IT and healthcare sectors 
implement several of those influencing factors (e.g., research and development, investment options, 
spreading through clinical guidelines, speed of innovation) in a clearly pronounced way, mHealth 
t   nolo   s may  av  a s ort r ― ura  l ty‖  ompar   to t   nolo y  n non-health related industries. 

5.2 Scientific Contribution 

Given the rapid technological progress (e.g., in sensor technology, wireless data transmission, data 
processing, and energy management) in highly divergent contexts that we continue to see today, 
information science needs to provide an adequate basis for future advancements. Our review contributes 
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to that current scientific state of technology by first evaluating the relevant components of mHealth 
technology and then describing the current state of knowledge with respect to these components. 

5.3 Component based mHealth Architecture Prototype 

In Section 3, we systematically derive a component-based mHealth architecture prototype from the 
s   nt     l t ratur  (w      n lu    t   AIS S n or S  olars’  ask t o  journals)  W     nt  y s veral 
components that represent main mHealth system components: the portable device with internal and 
external (sensor) equipment, data transmission, interface, operating system, and embedded software 
application, internal and external memory, and power supply (see Figure 2).  

5.4 From Hardware to Semantic Computing 

With regard to these architectural components, we further searched leading technological and medical 
databases to review the current scientific knowledge of each of these components.  

Concerning mobile devices/smartphones, we have seen increases in data transmission and computing 
speed, internal memory, internal sensor technology, and battery power in the last several years, which 
further improves the possibilities that mHealth will spread (see Table A1 in the Appendix). The 
communication between user and mHealth system has reached another milestone via semantic 
computing (Figure 10) and medical decision support systems (see Figure 12).  

iOS and Android will likely prevail as the most dominant OS in the longer term; in comparing these two 
market leaders, we found that Android—as open source freeware—offers advantages in terms of flexibility 
and cost, while iOS has better safety aspects (see Table A4 in the Appendix). In addition, with regard to 
softwar   nt  rat on, w  s ow m   l war ’s stru tur  an   ts r lat on to OSI  n   ta l  n S  t on 4 6 2 (s   
Figure 11).  

Obviously, mobile technologies require wireless data transmission; in this respect, the scientific literature 
unsurprisingly also deals with sensor-manager and cellular link technologies, which includes smartphone 
and sensor antenna design (see Figures 4 to 7), WBAN transceiver technology (see Table A2 in the 
Appendix), Wi-Fi/WiMAX features (Figure 3), and data-transmission architecture (see Figure 3).  

With regard to the importance of external data storage, we also describe in detail the characteristics of 
cloud computing in accordance with NIST recommendations (Figure 9). 

5.5 Main Focus: Sensor Technology 

In analyzing the scientific literature, we focused on the diversity of available internal and external sensor 
technology in smartphones (additional equipment). Accordingly, we reflect that focus in this paper: we 
describe the relevant current sensor technologies in detail in Section 4.1.5. We were particularly 
impressed with the extent to which one can already use the standard features of contemporary high-end 
smartphones for mHealth purposes (see Figure 13). 

5.6 “Combination” as a Key Concept of mHealth Wireless Link Technology 

After evaluating the sc  nt     mH alt  t   nolo y l t ratur , w    l  v  t at ― om  nat on‖ r pr s nts a 
key concept of mHealth engineering. As an example, we address the wireless link technologies: we show 
that WiMAX is technologically superior to 3G and offers an attractive range up to 50 km. On the other 
hand, Wi-Fi has a very low range but significantly surpasses WiMAX in terms of data-transfer velocity. 
However, combining these two technologies by using WiMAX to link up Wi-Fi hotspots results in an 
excellent hybrid technology (Song & Isaac, 2014). Another examples involves combining BT-LE and RFID 
technology: BT-LE is an excellent and widespread sensor-manager link technology for simultaneously 
processing multiple medical devices. It has a long wireless range, a high data-transmission rate, a long 
 att ry l   , an   ollows CoAP stan ar s  How v r, Blu toot  t   nolo y’s ma n   sa vanta    on  rns 
its long-winded pairing procedure. Passive RFID can compensate for this disadvantage by rapidly 
delivering Bluetooth pairing information.  
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5.7 Implications for Future Research 

Finally, our review also provides notes on unresolved issues in applying mHealth, such as with regard to 
data-protection issues, potential bottlenecks in the energy supply (see Table A1 in the Appendix and 
Figure 7) of sensors and mobile terminals in developing countries, and mHealth data processing and 
storage (see Table 4). 
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Figure 13. mHealth Technology on the Basis of Smartphone Standard Equipment 
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Appendix A: Technical Tables 

Table A1. Comparison Chart: Technical Data of Current High-end Smartphones (in accordance with 
AreaDigital, 2016) 

 
Samsung Galaxy S7 

Edge 
HTC 10 Huawei P9 LG G5 

Apple iPhone 6S 
Plus 

OS 
Android 6.0 

Marshmallow 
Android 6.0 

Marshmallow 
Android 6.0 

Marshmallow 
Android 6.0 

Marshmallow 
iOS 9 

CPU 2.3 GHz 2.15 GHz 2.5 GHz 2.1 GHz 1.8 GHz 

GPU Mali-T880 Adreno 530 Mali-T880 MP4 Adreno 530 
PowerVR 
GT7600 

RAM 4 GB 4 GB 3 GB 4 GB 2 GB 

Memory (max 
expansion) 

32 GB 
(200 GB) 

32 GB 
(200 GB) 

32 GB 
(128 GB) 

32 GB 
(2000 GB) 

128 GB 

Data protocol 
HSDPA, HSUPA, 

LTE 
HSDPA, HSUPA, 

LTE 
HSDPA, HSUPA, 

LTE 
HSDPA, 

HSUPA, LTE 
HSDPA, HSUPA, 

LTE 

Data rate 450 Mbps 450 Mbps 300 Mbps 300 Mbps 300 Mbps 

Bluetooth 4.2 4.2 4.2 4.2 4.2 

Wi-Fi 802.11ac/b/g/n 802.11ac/b/g/n 802.11ac/b/g/n 802.11ac/b/g/n 802.11ac/b/g/n 

GPS 
Yes 

(+ GLONASS) 
Yes 

(+ GLONASS) 
Yes 

(+ GLONASS) 
Yes 

(+ GLONASS) 
Yes 

(+ GLONASS) 

NFC Yes Yes Yes Yes Yes 

Sensors 
ACC,CMP,FPS,GYR, 

PRX,ALS 
ACC,CMP,FPS,GYR, 

PRX,ALS 
ACC,FPS,GYR, 

PRX,ALS 

ACC,CMP, 
FPS,GYR, 
PRX,ALS 

BAR, 
ACC,CMP,FPS, 
GYR, PRX,ALS 

Battery 3600 mAh 3000 mAh 3000 mAh 2800 mAh 2750 mAh 

Legend: OS: operating system, CPU: central processing unit, GPU: graphics processing unit, RAM: random-access 

memory, GPS: global positioning system, NFC: near field communication, BAR: barometer, ACC: accelerometer, 
CMP: digital compass (magnetometer), FPS: fingerprint sensor, GYR: gyroscope PRX, proximity sensor, ALS: 
ambient light sensor. 

 

Table A2. Description of the WBAN Transceiver Standards in Accordance with IEEE 802.15.6 (Kwak et al. 
2010; Kartsakli et al., 2014; Kibret, Teshome, & Lai, 2014) 

WBAN transceiver 
technology 

Description 

Narrowband (NB) 

Initially used in short- and medium-range wireless data transmission (ZigBee, Bluetooth, 
WLAN). In WBAN context, these receiver/transmitter systems operate at different frequency 
bands located between 402 MHz and 2483.5 MHz (e.g., MICS - Medical Implant 
Communication Service: 402-405 MHz). Very low bandwidth (0.3-1 MHz), 10-79 channels 
available, transfer rate between 75.9 and 971.4 kbps. Both NB receiver subcategories have 
specific disadvantages: ZigBee receivers have an unfavorable energy efficiency, the non-
ZigBee receivers tend to unwanted oscillations and interference effects. 

Ultra wideband (UWB) 

Mostly used for on-body transmission. Frequency band between 3000-5000 MHz (three 
available channels) or 6000-10000 MHz (eight channels); much higher bandwidth (499.2 
MHz) and higher maximum transfer rate (between 394.8 and 15600 kbps) compared to NB 
and HBC. Low radiated energy, simple implementation, no unwanted interference effects 
with other wireless technologies. 

Human body 
communications (HBC) 

IEEE 802.15.6 establishes 21 MHz as center frequency for human body communication. 
Relatively low bandwidth (5.25 MHz), only one channel available, transfer rate between 
164.1 and 1312.5 kbps. Powerful television and radio stations may use the same 
frequencies so that interference avoidance represents a particular challenge. 
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Table A3. Relevant Differences Between Wi-Fi and WiMAX (in accordance with Song & Isaac, 2014; Beer, 
2016) 

 Wi-Fi WiMAX 

IEEE Standard IEEE 802.11 a/b/g/n IEEE 802.16 d/e 

Maximal data rate 400 (-600) Mbps 70 Mbps 

Maximal range 
20 m indoors 

100 m outdoors 
50 km 

Operating Frequency 2.4 GHz and 5 GHz 2 – 6 GHz 

Channel Bandwidth 40 MHz 1.25 – 20 MHz 

OSI embedment 
MAC layer and physical layer (Convergence 

protocol based on FHSS and DSSSS) 
MAC layer and physical layer (Convergence 

protocol based on QAM and QPSK) 

Encryption RC4 and ACS 3DES and AES 
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