10,817 research outputs found

    Fault Diagnosis of Train Axle Box Bearing Based on Multifeature Parameters

    Get PDF
    Failure of the train axle box bearing will cause great loss. Now, condition-based maintenance of train axle box bearing has been a research hotspot around the world. Vibration signals generated by train axle box bearing have nonlinear and nonstationary characteristics. The methods used in traditional bearing fault diagnosis do not work well with the train axle box. To solve this problem, an effective method of axle box bearing fault diagnosis based on multifeature parameters is presented in this paper. This method can be divided into three parts, namely, weak fault signal extraction, feature extraction, and fault recognition. In the first part, a db4 wavelet is employed for denoising the original signals from the vibration sensors. In the second part, five time-domain parameters, five IMF energy-torque features, and two amplitude-ratio features are extracted. The latter seven frequency domain features are calculated based on the empirical mode decomposition and envelope spectrum analysis. In the third part, a fault classifier based on BP neural network is designed for automatic fault pattern recognition. A series of tests are carried out to verify the proposed method, which show that the accuracy is above 90%

    Multiple-fault detection methodology based on vibration and current analysis applied to bearings in induction motors and gearboxes on the kinematic chain

    Get PDF
    © 2016 Juan Jose Saucedo-Dorantes et al. Gearboxes and induction motors are important components in industrial applications and their monitoring condition is critical in the industrial sector so as to reduce costs and maintenance downtimes. There are several techniques associated with the fault diagnosis in rotating machinery; however, vibration and stator currents analysis are commonly used due to their proven reliability. Indeed, vibration and current analysis provide fault condition information by means of the fault-related spectral component identification. This work presents a methodology based on vibration and current analysis for the diagnosis of wear in a gearbox and the detection of bearing defect in an induction motor both linked to the same kinematic chain; besides, the location of the fault-related components for analysis is supported by the corresponding theoretical models. The theoretical models are based on calculation of characteristic gearbox and bearings fault frequencies, in order to locate the spectral components of the faults. In this work, the influence of vibrations over the system is observed by performing motor current signal analysis to detect the presence of faults. The obtained results show the feasibility of detecting multiple faults in a kinematic chain, making the proposed methodology suitable to be used in the application of industrial machinery diagnosis.Postprint (published version

    Multipoint Optimal Minimum Entropy Deconvolution Adjusted for Automatic Fault Diagnosis of Hoist Bearing

    Get PDF
    Multipoint optimal minimum entropy deconvolution adjusted (MOMEDA) is a powerful method that can extract the periodic characteristics of signal effectively, but this method needs to evaluate the fault cycle a priori, and moreover, the results obtained in a complex environment are easily affected by noise. These drawbacks reduce the application of MOMEDA in engineering practice greatly. In order to avoid such problems, in this paper, we propose an adaptive fault diagnosis method composed of two parts: fault information integration and extracted feature evaluation. In the first part, a Teager energy spectrum amplitude factor (T-SAF) is proposed to select the intrinsic mode function (IMF) components decomposed by ensemble empirical mode decomposition (EEMD), and a combined mode function (CMF) is proposed to further reduce the mode mixing. In the second part, the particle swarm optimization (PSO) taking fractal dimension as the objective function is employed to choose the filter length of MOMEDA, and then the feature frequency is extracted by MOMEDA from the reconstructed signal. A cyclic recognition method is proposed to appraise the extracted feature frequency, and the evaluation system based on threshold and weight coefficient removes the wrong feature frequency. Finally, the feasibility of the method is verified by simulation data, experimental signals, and on-site signals. The results show that the proposed method can effectively identify the bearing state

    Adaptive Multiscale Weighted Permutation Entropy for Rolling Bearing Fault Diagnosis

    Get PDF
    © 2020 The Author(s). This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.Bearing vibration signals contain non-linear and non-stationary features due to instantaneous variations in the operation of rotating machinery. It is important to characterize and analyze the complexity change of the bearing vibration signals so that bearing health conditions can be accurately identified. Entropy measures are non-linear indicators that are applicable to the time series complexity analysis for machine fault diagnosis. In this paper, an improved entropy measure, termed Adaptive Multiscale Weighted Permutation Entropy (AMWPE), is proposed. Then, a new rolling bearing fault diagnosis method is developed based on the AMWPE and multi-class SVM. For comparison, experimental bearing data are analyzed using the AMWPE, compared with the conventional entropy measures, where a multi-class SVM is adopted for fault type classification. Moreover, the robustness of different entropy measures is further studied for the analysis of noisy signals with various Signal-to-Noise Ratios (SNRs). The experimental results have demonstrated the effectiveness of the proposed method in fault diagnosis of rolling bearing under different fault types, severity degrees, and SNR levels.Peer reviewedFinal Accepted Versio

    Automatic condition monitoring of electromechanical system based on MCSA, spectral kurtosis and SOM neural network

    Get PDF
    Condition monitoring and fault diagnosis play the most important role in industrial applications. The gearbox system is an essential component of mechanical system in fault identification and classification domains. In this paper, we propose a new technique which is based on the Fast-Kurtogram method and Self Organizing Map (SOM) neural network to automatically diagnose two localized gear tooth faults: a pitting and a crack. These faults could have very different diagnostics; however, the existing diagnostic techniques only indicate the presence of local tooth faults without being able to differentiate between a pitting and a crack. With the aim to automatically diagnose these two faults, a dynamic model of an electromechanical system which is a simple stage gearbox with and without defect driven by a three phase induction machine is proposed, which makes it possible to simulate the effect of pitting and crack faults on the induction stator current signal. The simulated motor current signal is then analyzed by using a Fast-Kurtogram method. Self-organizing map (SOM) neural network is subsequently used to develop an automatic diagnostic system. This method is suitable for differentiating between a pitting and a crack fault

    Time-Frequency Tracking of Spectral Structures Estimated by a Data-Driven Method

    Get PDF
    International audience—The installation of a condition monitoring system aims to reduce the operating costs of the monitored system by applying a predictive maintenance strategy. However, a system-driven configuration of the condition monitoring system requires the knowledge of the system kinematics and could induce lots a false alarms because of predefined thresholds. The purpose of this paper is to propose a complete data-driven method to automatically generate system health indicators without any a priori on the monitored system or the acquired signals. This method is composed of two steps. First, every acquired signal is analysed: the spectral peaks are detected and then grouped in more complex structure as harmonic series or modulation sidebands. Then, a time-frequency tracking operation is applied on all available signals: the spectral peaks and the spectral structures are tracked over time and grouped in trajectories, which will be used to generate the system health indicators. The proposed method is tested on real-world signals coming from a wind turbine test rig. The detection of a harmonic series and a modulation sideband reports the birth of a fault on the main bearing inner ring. The evolution of the fault severity is characterised by three automatically generated health indicators and is confirmed by experts

    Current-Based Detection of Mechanical Unbalance in an Induction Machine Using Spectral Kurtosis with Reference

    Get PDF
    This article explores the design, on-line, of an electrical machine’s healthy reference by means of statistical tools. The definition of a healthy reference enables the computation of normalized fault indicators whose value is independent of the system’s characteristics. This is a great advantage when diagnosing a broad range of systems with different power, coupling, inertia, load, etc. In this paper, an original method called spectral kurtosis with reference is presented in order to designa system’s healthy reference. Its principle is first explained on asynthetic signal. This approach is then evaluated for mechanicalunbalance detection in an induction machine using the stator currents instantaneous frequency. The normalized behaviour ofthe proposed indicator is then confirmed for different operatingconditions and its robustness with respect to load variationsis demonstrated. Finally, the advantages of using a statisticalindicator based on a healthy reference compared to a raw faultsignature are discussed

    Investigation of the Heating Processes and Temperature Field of the Frequency-controlled Asynchronous Engine Based on Mathematical Models

    Get PDF
    The study of the temperature field of the engine for non-stationary modes is done. A numerical simulation of a non-stationary thermal process using dynamic EHD, the characteristic of the rate of rise of temperatures is done. An increase in the temperature of individual parts in the idle interval, when the power of heat release is significantly reduced, is established, and the reverse of the heat flow through the air gap is established. It is shown that the EHD method, in contrast to the FEM, is self-sufficient, which determines its practical value. In various parts of the speed control range in the implementation of various laws of regulation. At the same time, the main electrical, magnetic and additional losses associated with the fundamental voltage harmonics (FVH), and mechanical losses, as well as additional electrical and magnetic losses associated with the higher voltage harmonics, change. When using serial asynchronous engines as frequency-controlled. Permissible under the conditions of heating power is significantly reduced by the power of serial engines. Depending on the synchronous speed, the reduction is from 10 % to 20 %. Given the additional overheating due to higher voltage harmonics, as well as the deterioration of the cooling conditions when adjusting the rotational speed "down" from the nominal, it seems very relevant
    corecore