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Failure of the train axle box bearing will cause great loss. Now, condition-based maintenance of train axle box bearing has been
a research hotspot around the world. Vibration signals generated by train axle box bearing have nonlinear and nonstationary
characteristics. The methods used in traditional bearing fault diagnosis do not work well with the train axle box. To solve this
problem, an effective method of axle box bearing fault diagnosis based on multifeature parameters is presented in this paper.
This method can be divided into three parts, namely, weak fault signal extraction, feature extraction, and fault recognition. In
the first part, a db4 wavelet is employed for denoising the original signals from the vibration sensors. In the second part, five time-
domain parameters, five IMF energy-torque features, and two amplitude-ratio features are extracted. The latter seven frequency
domain features are calculated based on the empirical mode decomposition and envelope spectrum analysis. In the third part, a
fault classifier based on BP neural network is designed for automatic fault pattern recognition. A series of tests are carried out to

verify the proposed method, which show that the accuracy is above 90%.

1. Introduction

As one of the key components of railway vehicles, the
operation condition of the axle box bearing has a significant
effect on traffic safety. Effective fault diagnosis of axle box
bearing, by using condition-based maintenance (CBM) to
replace the current widespread use of time-based mainte-
nance and failure repair, not only can avoid train accidents,
but also can reduce the operation cost of rail transport
greatly. Fault diagnosis of the bearings based on vibration
signal analysis is one of the basic fault diagnosis methods
in the industry. During the past several decades, the Fourier
spectrum analysis has been widely used in the field of signal
analysis. However, there are some crucial restrictions to the
use of Fourier transform. For example, the signal generated
by the inspected machine must be linear and stationary;
otherwise, the results of Fourier spectrum would have little
physical sense. Unfortunately, the vibration signals generated
by the train axle box bearing are often nonstationary and
nonlinear. Therefore, Fourier transform cannot meet the

requirements of fault diagnosis of the axle box bearings when
the train is in operation.

To overcome the limitations of the Fourier transform,
Huang proposed the empirical mode decomposition (EMD)
method [1]. This method can effectively handle nonlinear
and nonstationary signals by decomposing the signal into a
series of single frequency components of the IMFs. Many
researchers have used the EMD in nonlinear and nonsta-
tionary signal processing. In 2006, Yu and Junsheng [2]
analyzed the vibration signal of rolling bearing in terms of the
EMD energy entropy and calculated the IMF energy as the
fault feature. In 2007, Yang et al. [3] analyzed IMF envelope
spectrum and calculated the fault feature amplitude ratio and
used support vector machine for fault classification. In 2010,
Tang et al. [4] extracted the fault features of rolling bearings
by combining morphology singular value decomposition
with EMD. In 2012, Bin et al. [5] combined wavelet packet
decomposition with EMD to make a contrast between IMF
energy and IMF energy-torque and extracted IMF energy-
torque as the incipient fault feature of the rotating machinery.



The majority of the literature takes the single type of
feature parameters as a fault feature vector. In order to fully
reflect the health condition of train axle box bearing, this
paper proposes a fault diagnosis method based on multifea-
ture parameters for train axle box bearings. In this diagnosis
method, firstly, wavelet decomposition method is employed
to eliminate noises in the vibration signals; then the EMD
decomposition method on the denoised signals is employed
for feature extraction. The bearing fault diagnosis system
extracts 12 features, which include 5 statistical parameters
in the time domain, 5 IMF energy-torque features, and 2
amplitude-ratio features. These 12 features can distinguish
four types of state of a bearing, namely, normal bearing, outer
ring fault, inner ring fault, and rolling body fault. In the end,
a fault classifier based on BP neural network is realized to
identify train axle box bearing fault automatically.

2. Principle of EMD Algorithm

The EMD algorithm proposed by Huang is employed to
analyze the nonstationary signals by gradually partitioning
the signal in different scale fluctuations or trends to produce
a series of single frequency components of IMFs. The EMD
algorithm can better reflect the local characteristics of the
signals [6] compared with the wavelet analysis method.
Before using the EMD method to decompose a complex
signal, the following assumptions will be made [1]: the signal
consists of a series of IMFs; each IMF has the same extreme
points and zero-crossing point number; both of the envelope
curves covering the local maxima and local minima have
zero mean. EMD can be regarded as an adaptive filtering
processing and the steps can be described as follows.

(1) Calculating the upper envelope line of the signal. For
a given signal x(¢), determine all the local maximum values of
the signal and then use the order spline interpolation method
three times for fitting into the upper envelope line of the
signal.

(2) Calculating the lower envelope line of the signal.
Determine all the local minimum values of the signal and
then use the order spline interpolation method three times
to get the lower envelope line of the signal.

(3) Calculating the mean value m,;(f) of the upper
envelope line and the lower envelope line, with the original
signal x(t) being subtracted from the envelope mean value
m; (t), we get the difference

By (£) = x () —m, (2). M

(4) Determine whether A, (t) satisfies the IMF condition;
if not, execute a second screening and take A, (t) as the new
original data. Repeat step (1) to step (3); then the subtraction
between h, (¢) and its envelope mean value m,, (t) is

hyy (8) =hy (8) —my, (B). (2)

If hy,(t) still does not satisty the IMF condition, then
repeat the above process k times until /1, (¢) can satisfy the
condition. The first IMF of the signal x(t) is denoted as ¢, (t):

c (t) = hy (1) (3)
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FIGURE I: Original vibration signal.

(5) Separate ¢, (t) from the original signal x(t); then the
residual term , (t) can be obtained:

r () =x(t)-¢ ). 4)

Repeat the above process by taking the residual term r, (t)
as the new original data until the residual term r,(t) is a
monotonic function or less than a given value after n times.
At this time, the decomposition process of the original signal
x(t) is completed and can be expressed as

x(8) =) 1) +r, (). (5)

i=1

By using the above method, we will get n IMFs and a
residual term r,(t), which shows that the cycle length of
the random signal is greater than the sampling frequency
components and the cycle length is usually shown as a linear
or slow changing trend error which is also known as the signal
trends. It is often neglected in the subsequent analysis.

3. The Analysis of Fault Signal Based on EMD

Shown in Figure 1 is the original vibration signal of an axle
box bearing with outer ring fault.

To extract the effective fault features of axle box bearings,
the original vibration signal is denoised at the beginning. The
actual signals and noised signals in the wavelet domain are
of different properties and the wavelet coeflicient amplitudes
have different change trends with wavelet decomposition
scales. With the wavelet decomposition scale increasing, the
amplitude of the actual signal wavelet coefficient remains
constant, while the amplitude of the noise signal wavelet
coefficient will reduce to zero at a larger rate. Thus, wavelet
decomposition method is a very effective signal denoising
processing method. Up to date, several wavelet bases have
been developed. Among them, the DB series, especially the
DB4 wavelet basis, are widely used in the field of transient
signal detection. The noises in fault detection signal from the
train axle box are typical transient signals, so the DB4 wavelet
basis is very effective in removing them. In this paper, 5-layer
DB4 wavelet is employed to eliminate the noise. The denoised
signal is shown in Figure 2.

By decomposing the denoised vibration signal with the
EMD algorithm, 11 IMFs and 1 residue will be obtained.
Because the EMD algorithm has the end effect, the decompo-
sition will produce false IMF components. This paper adopts
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TaBLE 1: The various IMFs and the correlation coefficients of the denoised vibration signals.
IMF C C, Cs C, Cs Cs C, Cq Cy Cy Cy
Correlation coeflicient 0.140 0.179 0.191 0.335 0.521 0.513 0.310 0.172 0.079 0.081 0.042
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FIGURE 2: Denoised vibration signal.

the correlation coefficient method to eliminate the false IMF
components [7]. Various IMFs and the correlation coefficient
of the denoised vibration signal are shown in Table 1, from
which it can be seen that the ¢, ¢y, and ¢;; of the IMFs are
obviously false components and they should be incorporated
into the residue. In this paper, the 8 IMFs and 1 residue are
selected by the correlation coefficient method, as shown in
Figure 3, from which it can be seen that the 8 components all
conform to the features of IME.

4. Fault Feature Extraction

4.1. Feature Extraction Based on Time Domain Statisti-
cal Parameters. Time domain statistical parameters were
divided into two types, dimensional and dimensionless. The
shortcomings of the dimensional statistical parameters are
that their values will change with the changes of the load,
the speed, and other conditions. While the dimensionless
statistical parameters do not have these shortcomings, this
paper adapts five time domain dimensionless parameters;
they are kurtosis value, crest factor, clearance factor, impulse
factor, and shape factor. The calculations for these five factors
are shown as follows.
Kurtosis value is as follows:

4
Z?:l Xi

K, = nxt ©)
Crest factor is as follows:
C; = z"—: @)
Clearance factor is as follows:
CL, = xf::k. )
Impulse factor is as follows:
1= ©)
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FIGURE 3: EMD decomposition results after being selected by
correlation coeflicient.

Shape factor is as follows:

X,
S =
R

(10)

where X, max{|x;|} is the peak value; x,,, =

\(1/n) Y, x? is root mean square value; x, =

((1/n) Z:’zl \/m)2 is root square amplitude value; and
x| = (1/n) Y-, |x;| is mean absolute magnitude.

Not only do these time domain feature parameters have
higher sensitivities on the fault of axle box bearing, but also
they have a stable corresponding relationship with the fault
condition of an axle box bearing.

4.2. Feature Extraction Based on IMF Energy-Torque. The
time scale and the energy distributed with the time scale
are the two main parameters of a signal in the fault feature
extraction. Compared with the vibration signal from normal
bearing, the signal’s energy of the vibration signal from fault
bearing would be much different in the same frequency band.
The energy of vibration signal coming from failure bearing



will increase in a certain frequency band while the energy will
decrease in another frequency band. Furthermore, different
types of faults will show different distributions; therefore,
the fault identification of an axle box bearing can be done
according to the energy and the distribution regularity of
various frequency components of the signal.

The vibration signal from an axle box bearing contains
many nonlinear and nonstationary components. Most feature
extraction methods based on EMD are to decompose the
signal into a series of IMF components. Although using the
energy and the energy entropy to analyze IMF achieves a
better effect, it ignores the time parameters and cannot better
reflect the essential features of a signal. While the feature
extraction method using energy-torque instead of energy and
energy entropy and taking distribution characteristics of the
IMF on a time axis can better describe the essential features
of signal and has more advantages in fault feature extraction
than the methods based on energy and energy entropy [5],
the steps of IMF energy-torque calculation are as follows.

(1) First, apply a wavelet denoising treatment to the
original vibration signal of axle box bearing to eliminate noise
interference.

(2) Decompose the denoised vibration signal by using
the EMD method; then IMF ¢(t) (i = 1,2,3,...,n) will be
obtained.

(3) Choose the proper IMF components and calculate
energy-torque from the decomposition results of step (2); the
IMF energy-torque can be calculated as

E = jm tle ()] dt. 1)

—00

For discrete signals, the formula to calculate the energy-
torque is

E =) (k-Af)|glk- A (12)
k=1

in which m is the total number of sampling points, k is
sampling points, and At is sampling period. For each chosen
IME the energy-torques, E;, E,, ..., can be calculated from
formula (12).

(4) Construct the feature vector T in the elements of the
energy-torque:

T=[E, E, - E,]. (13)

When the energy-torques are larger numerical, normalize T
to get the normalized feature vector T":

T = EE &]

E E E a4)

where

n 1/2
E-= (Z |Ei|2> : (15)
i=1

The formula for calculating IMF energy-torque is

E = Im )| dt. (16)
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Comparing the calculation formula of IMF energy with
that of IMF energy-torque, it can be seen that the energy-
torque considers the size of energy and the distribution status
of the energy with time parameters, so it can better reveal the
essential features of nonlinear and nonstationary signals.

The fault information of an axle box bearing mainly
lies in the high frequency band, thus selecting the first 5
IMF components to calculate its energy-torque from the
decomposition results of EMD.

4.3. Feature Extraction Based on IMF Envelope Spectrum.
Vibration signals of axle box bearing usually show modula-
tion characteristics. When the fatigue spalling failure of axle
box bearing occurs, it will generate low frequencies periodic
impact impulse signals. At the same time, the low frequencies
periodic impact will stimulate the bearing’s high frequency
inherent vibration and exhibit modulation phenomenon.
The regular envelope lines of the modulated wave can be
employed to represent the low frequencies impact impulse
signals generated by the fatigue spalling failure bearing, so the
fault information is usually contained in the envelope of the
signal. The signal envelope reflects the impact and the severity
of each rotation cycle.

The EMD method can be seen as an adaptive filter whose
bandwidth and center frequency change with the signal
itself. Each IMF obtained by EMD is a single component
modulation signal. These characteristics can be used to
separate the modulation components produced by the axle
box bearing with failure [8]. It can effectively extract the
features of the original signal by this way.

Hilbert transform is a very efficient signal demodulation
method. In this paper, the Hilbert transform is adopted
to calculate the envelope signal of high frequency IMF
component; the formula is

Hlg®)] = % Jm Mdr. 17)

—00 =T

After (17), the analytic signal of IMFs can be constructed
as

z(0) = 6 () + jH [ ()] = a (1) 7, (18)

where the amplitude function g,(t) is

a; () =\ (t) + H? [¢ (1)]. (19)

The amplitude functions a;(t) are the IMF envelope
signals which are needed by the later analysis process.
The phase function 6,(¢) is

H [ (1)]
G

According to formulas (18) to (20), each IMF component
can be expressed as

¢ () =a;(t)cos[6; ()] . (21)

0, (t) = arctan (20)

It can be seen from (21) that each IMF component is a
single component modulation signal which can be amplitude
or frequency modulation.
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According to the knowledge of rolling bearing, when
a bearing with outer ring fault is running, a certain peak
value (the peak value is called bearing fault frequency in the
bearing industry) will appear in the frequency spectrum of
the vibration signals from the failure bearing. The calculation
formula for the certain peak value can be calculated [9]:

n Bd
F 4= zfr<l— P—dcosqb), (22)

where f, is the relative rotation frequency between inner
circle and outer ring, » is the number of the rolling elements,
Bd is the roller elements’ diameter, Pd is the pitch diameter of
axle box bearing, and ¢ is the contact angle. The parameters
of the bearing tested in this paper, respectively, are as follows:
pitch diameter Pd = 39.04mm, the diameter of rolling
element Bd = 7.94 mm, the number of the rolling elements
n = 9, contact angle ¢ = 0, and rotation frequency f, =
29.83 Hz. Taking these parameters into formula (22), we will
get the fault frequency of outer ring fault axle box bearing
F,4 = 106.93Hz.

The envelope of the first IMF of a vibration signal from an
axle box bearing with outer ring failure is shown in Figure 4.
The envelope signal is obtained by the Hilbert transform
demodulation method described as expressions (17) to (19).

Apply fast Fourier transform to the envelope signal shown
in Figure 4, and obtain the IMF envelope spectrum, shown
in Figure 5, from which it can be seen that the envelope
spectrum of IMF component shows obviously the peak value
106.96 Hz which corresponds to the feature frequency of
outer ring fault and its harmonics.

Similarly, the IMF envelope spectrum analysis method
can also be used to recognize the failures which appear on
the inner circle, rolling body of the axle box bearing. For
normal axle box bearing, the envelope spectrum of IMF com-
ponent has obvious peaks only at the corresponding rotation
frequency and has no obvious peak at other frequencies.

Based on the envelope spectrum of IMF component,
two very effective fault features named amplitude ratios are
proposed [3]. They are defined as the ratio between the
amplitude of the fault frequency of axle box bearing outer
ring, inner circle fault frequency, and the rolling body fault
frequency; these amplitude ratios are

A (ford)

LA(f)] 03
_ A(fird)
o= A(fpa)

where A(f,.4) is the amplitude of outer ring fault frequency,
A(fiq) is the amplitude of inner circle fault frequency, and
A(fpy) is the amplitude of rolling body fault frequency.

5. Fault Pattern Recognition

Error backpropagation (BP) neural network has been widely
used in the fault pattern recognition because of the advan-
tages of association, memory, reasoning ability, nonlinear
characteristics, and system parallel processing [10]. This
paper adapts BP neural network as the fault expert system to
identify the health status of an axle box bearing.

The fault diagnosis algorithm of an axle box bearing based
on BP neural network has three processes, that is, construc-
tion of the network, training, and fault classification and
identification. In this paper, 12 feature parameters belong to
the time domain statistical parameters, IMF energy-torque,
and feature amplitude ratios of the IMF envelope spectrum.
The feature parameters are divided into two groups, one for
the training of BP neural network and the other group for
testing the classification capability of the trained BP neural
network.

The fault diagnosis process of an axle box bearing based
on BP neural network can be described as follows.

(1) Determining the input vector of the BP neural
network. Extract 12 feature parameters as the fault feature
vectors and arrange them as the input vectors of the BP neural
network X = [xl,xz,...,xlz]T.

(2) Coding the fault types of axle box bearing. The outputs
of BP neural network correspond to different fault types of the
axle box bearing; the expected output for normal bearing is
(1,0,0,0), the expected output for outer ring fault bearing is
(0,1,0,0), the expected output for inner circle fault bearing
is (0,0, 1,0), and the expected output for rolling body fault
bearing is (0,0, 0, 1).

(3) Determining the relative parameters of the BP neural
network. The axle box bearing fault diagnosis system pro-
posed in this paper adopts a three-layer BP neural network.
The input feature vector is the 12 feature parameters of the axle
box bearing and the network outputs are the four conditions
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TABLE 2: The node numbers of the hidden layer and the corresponding output errors.

Node number 8 9 10 11 12 13 14 15 16 17

Output error 0.8806 0.7618 1.0974 0.5284 0.6335 0.6840 1.1221 1.4976 0.9287 0.8793

Best training performance is 0.00099588 at epoch 81
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FIGURE 6: The error curve based on the multiple feature parameters
of BP neural network.

of the axle box bearing. Each output contains 4 elements. So
the node number of input layer is 12; the node number of
output layer is 4. If the node number of the hidden layer is
too small, it is difficult to reach the training requirements;
whereas if too much, it will increase the training time. In this
paper, the following empirical formulas are adopted:

I=2n+1,
(24)
I=vn+m+a.

In (24), I is the node number of the hidden layer neuron,
n is the node number of the input layer neuron, m is the
node number of the output layer neuron, and a is a constant
between 1 and 10.

The empirical formula is only a rough estimation of the
node number of the hidden layer. In practical application, an
interval is set and the values are taken from the interval; then,
by the trial and error method, the optimal node number of the
hidden layer is determined. To avoid the impact of the node
being too little or too much, the interval is set from 8 to 17. The
corresponding network output error is shown in Table 2. It
can be seen that when the BP neural network achieves smaller
output error, the node number of the corresponding hidden
layer is 11.

In this paper, the linear transfer function purelin is
selected as the output layer transfer function and the tangent
type S transfer function tansig is selected as the hidden layer
transfer function; it means that hidden layer outputs are real

Best training performance is 0.0094788 at epoch 1000
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FIGURE 7: The error curve based on the time domain statistical
parameters of BP neural network.

numbers from —1 to 1. The trainscg is selected as the learning
training function, which has the advantages of small memory
space requirement and fast convergence rate. Also, when the
training procedure does not converge, it will automatically
stop training. The three network training parameters related
to the conjugate gradient method are set as follows: the
maximum number of training is set to 1000, the learning rate
is set to 0.05, and the target error is set to 0.001.

(4) The training of the BP neural network. Each of the
four kinds of conditions of an axle box bearing has 20 groups
of fault feature vectors, including normal bearing, outer ring
fault, inner circle fault, and rolling body fault. Take 10 groups
of samples to be used in training the BP neural network and
the other 10 groups of samples as the tester. The training error
curve of BP neural network is shown in Figure 6, and it can be
seen that when the number of training reaches 81 times, the
error reaches 0.001 and meets the requirements of precision.
The training time lasts 1.

(5) Fault recognition using BP neural network. For the
four conditions of axle box bearing, the diagnosis results are
shown in Table 3. For the four kinds of conditions of axle box
bearing, the correct diagnosis rates achieve 100%, 100%, 90%,
and 90%, respectively.

(6) Time domain statistical parameters as the input of
BP neural network for fault recognition. Five time domain
statistical parameters are adopted as the input vectors; the
node number of the network input layer is 5, the node number
of the hidden layer is 11, the node number of the output layer
is 4, and other parameters remain unchanged. Figure 7 is the
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TABLE 3: The results of BP neural network diagnosis.

Outer ring  Inner circle Rolling
N 1
Type orma fault fault body fault
Correct 19094 100% 90% 90%
rates

TABLE 4: The diagnostic result based on the time domain statistical
parameters of BP neural network diagnosis.

Type Normal Outer circle  Inner circle Rolling

P fault fault body fault
Correct 00, 90% 90% 90%
rates

TaBLE 5: The diagnostic result based on the IMF energy-torque of
BP neural network diagnosis.

Type Normal Outercircle  Inner circle Rolling

P fault fault body fault
Correct 19094 90% 90% 100%
rates

TABLE 6: The diagnostic result based on the feature amplitude ratio
of IMF envelope spectrum of BP neural network diagnosis.

Type Normal Outer circle  Inner circle Rolling

P fault fault body fault
Correct 80% 100% 50% 0%
rates

training error curve of the BP neural network. The error is
only 0.009 when the maximum number of training reaches
1000; the training does not meet the error requirements and
the process lasts 10 seconds. The change of the error is very
small if the training continues; the diagnostic result of BP
neural network is shown in Table 4. IMF energy-torque is
given as the input vector of the BP neural network for fault
recognition. Five IMF energy-torque feature parameters are
adopted as the input vector of the BP neural network; the
node number of the input layer is 5, the node number of the
hidden layer is 9, the node number of the output layer is 4, and
other parameters remain unchanged. The training error curve
is shown in Figure 8. It can be seen that the error reaches 0.001
when the number of training reaches 446 times in 5 seconds,
and it meets the precision requirements. The fault recognition
result of the BP neural network is shown in Table 5.

(7) The amplitude ratios of IMF envelope spectrum as
the input vectors of BP neural network for classification. Two
amplitude ratios of IMF envelope spectrum are adopted as
the input features of BP neural network; the node number of
the network input layer is 2, the node number of the hidden
layer is 6, the node number of the output layer is 4, and other
parameters remain unchanged. The training error curve is
shown in Figure 9; the error is only 0.087 when the maximum
number of training reaches 1000. It does not meet the error
requirement and the process lasts 10 seconds. The variation of
the error is too small to continue the training. The diagnostic
result of BP neural network is shown in Table 6.

Best training performance is 0.00099741 at epoch 446
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FIGURE 8: The error curve based on the IMF energy-torque of BP
neural network.

Best training performance is 0.087244 at epoch 1000

Mean squared error (mse)

0 100 200 300 400 500 600 700 800 900 1000
1000 epochs

—— Train --- Goal

--- Best

FIGURE 9: The error curve based on the feature amplitude ratio of
IMF envelope spectrum of BP neural network.

(8) Result analysis. From the above results, the fault
recognition of an axle box bearing has a higher accuracy
based on the BP neural network. Taking the multiple feature
parameters as the network input vectors, it will have faster
convergence and higher precision. Only taking the time
domain statistical parameters as the network input vectors,
the convergence rate is slow and the precision is also low. Only
taking the IMF energy-torque as the network input vectors,
the convergence rate is slow but the accuracy can meet the
requirements. Only taking the amplitude ratios features of
IMF envelope spectrum as the network input vectors, it will
have slow convergence and low accuracy. The training results
are shown in Table 7.



TaBLE 7: Comparison of training results of BP neural network.

The network input vector Iraining T'ralnmg Tr'fumng
error time (s) times

Multiple feature parameters 107 1 81

Time domain statistical 10 10 1000

parameters

IMF energy-torque 107 5 446

Feature amplitude ratios of 107! 10 1000

IMF envelope spectrum

6. Conclusions

(1) The vibration signals of railway vehicle axle box
bearings contain rich fault information. Aiming at
vibration signals with nonlinear and nonstationary
characteristics, a fault feature extraction method
combining wavelet denoising and EMD is proposed.
The EMD is based on adaptive decomposition of the
signal and is suitable for dealing with nonlinear and
nonstationary signals, and it is an effective feature
extraction method.

(2) There are end effects in the EMD which will produce
false IMF components. The false IMF components
that contain no fault information can be removed by
using the correlation coefficient method to calculate
the IMFs and the correlation coefficients of the
original signals.

(3) The fault diagnosis method proposed in this paper
can achieve above 90% accuracy. The fault diagnosis
system with multiple feature parameters as the input
has better advantage both on convergence rate and on
diagnosis accuracy.
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