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Abstract—This article explores the design, on-line, of an elec-
trical machine’s healthy reference by means of statistical tools.
The definition of a healthy reference enables the computation
of normalized fault indicators whose value is independent of
the system’s characteristics. This is a great advantage when
diagnosing a broad range of systems with different power, cou-
pling, inertia, load, etc. In this paper, an original method called
spectral kurtosis with reference is presented in order to design
a system’s healthy reference. Its principle is first explained on a
synthetic signal. This approach is then evaluated for mechanical
unbalance detection in an induction machine using the stator
currents instantaneous frequency. The normalized behaviour of
the proposed indicator is then confirmed for different operating
conditions and its robustness with respect to load variations
is demonstrated. Finally, the advantages of using a statistical
indicator based on a healthy reference compared to a raw fault
signature are discussed.

Index Terms—Spectral Kurtosis, Condition Monitoring, Statis-
tics, Healthy Reference, Normalized Fault Indicator, Mechanical
Unbalance, Induction Motor, Instantaneous Frequency, Fault
Diagnosis.

NOMENCLATURE

µ Mean

σ Standard Deviation

B1 Low level of mechanical unbalance

B2 Medium level of mechanical unbalance

B3 High level of mechanical unbalance

ff Supply frequency

fr Rotation frequency

fs Sample frequency

I(t) Stator current

Iα(t) Stator current in α-axis

Iβ(t) Stator current in β-axis

IA(t) Stator current instantaneous amplitude
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INPT, UPS, LAPLACE (Laboratoire Plasma et Conversion d’Énergie), EN-
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IF (t) Stator current instantaneous frequency

K Kurtosis

Nmov Length of the tested set

Nref Length of the reference set

s Slip of the induction machine

SK Spectral kurtosis

SKR Spectral kurtosis with reference

X(f) Fourier Transform of variable X(t) at frequency f

I. INTRODUCTION

D IAGNOSIS and condition monitoring of electrical ma-

chines has become a major topic of concern among in-

dustrial and academic research. Unexpected failures in electro-

mechanical systems may indeed lead to important losses

of production, safety issues and additional costs. For these

reasons, developing efficient and robust diagnosis systems is

a priority for electrical machines’ manufacturers.

Numerous monitoring methods are based on vibratory sig-

nals’ analysis and enable an efficient detection of mechanical

faults [1]-[4]. However, these methods require accelerometers

which are expensive devices. They are only profitable for high

power systems where vibration sensors represent a negligible

part of the total cost. Therefore, research has focused on

diagnosing machine failures through the analysis of current

signals due to their availability for control purposes. These

methods are mainly based on the Motor Current Signature

Analysis (MCSA). A review of MCSA techniques can be

found in [5]. These methods generally focus on failures gener-

ating fault signatures at specific frequencies. These harmonics

are predicted by MCSA and can be tracked with signal

processing tools in order to obtain specific fault indicators

[6]-[12]. In the case of mechanical unbalance detection, the

current spectral signatures at frequencies ff ±fr proved to be

efficient fault indicators [13]-[14]. MCSA may also be used on

other electrical quantities extracted from stator currents such as

active and reactive power [15], current instantaneous frequency

[16]-[17] or demodulated current signals [18].

However, recent researches pay little attention to unavoid-

able constraints faced in diagnosing a manufacturer’s broad

range of machines. Most works focus on the study of a single

machine operating at a particular functioning point but MCSA

fault indicators may vary a lot for healthy and faulty conditions

depending on the system’s characteristics and operating point.

For example, Bellini et al. showed in [19] the influence of



the load inertia level on fault signatures related to broken

bar detection. It has also been shown in [13] that the load

level could significantly affect current signatures linked to

mechanical unbalance. Thus, classification systems based on

neural networks (NN) or fuzzy logic (FL) have been developed

in order to automatically determine a machine’s health state

while taking into account its characteristics and operating

conditions. Relevant applications of NNs based on stator

currents are presented in [20]-[23]. Bearing fault detection is

also studied by Raj et al. in [24] with a FL-based surveillance

system. All these classification methods require faulty and

healthy learning sets at different operating points for training.

During the functioning time of the system, each new data set

is compared to the different learning sets in order to determine

the machine’s health condition. Fault severity may as well

be evaluated if faulty learning sets have been realized for

different levels of the considered degradation. Unfortunately,

it seems impossible for a machine’s manufacturer to obtain

such an amount of information, especially faulty learning sets,

for every machine model. Moreover, these information may

depend on the machine environment such as the load inertia

or the coupling for example.

In this context, it seems more profitable to create a ma-

chine’s healthy reference during its initial working period by

statistical means and with a protocol which takes into account

the influence of the operating point. After this reference period,

each new recording will be tested to find out whether the

system has drifted from its referenced behaviour or not. The

aim is therefore to detect faulty workings and the estimation

of the fault severity is not targeted here since no faulty

learning sets are used. The present article explains how new

implementations of the spectral kurtosis (SK) make this

kind of monitoring possible. SK is a signal processing tool

complementing the Power Spectrum Density (PSD) represen-

tation. Its rules and properties are explained in [25]. Recent

works [26]-[28] have shown that SK may be an efficient

tool for monitoring faults generating impulses in vibration

or current signals such as bearing or gear faults. Moreover,

SK can also be successfully used to detect generalized-

roughness bearing fault, as shown in [29]. However, SK is

unsuitable for detecting long term changes within a signal in

its classic implementation. Indeed, a slowly increasing spectral

component is considered as stationary on each local part of

the signal by the SK. A different approach is presented in

a previous work [30] with new protocols of computation of

the SK. These SK calculations no longer use only a single

signal’s recording but several recordings in order to detect

a developing mechanical unbalance in an induction machine

(IM) via stator phase currents.

In this context, this article aims to enhance the design of

normalized fault indicators independent of a machine’s type,

power and operating point by using a statistical reference.

This healthy reference is provided thanks to the spectral

kurtosis with reference (SKR) presented in [30] and detailed

in this paper. Moreover, new experimental tests have been

carried out at several load conditions and current instantaneous

frequency (IF) is now used to monitor mechanical unbalance

development. Applications targeted in this paper are indus-

trial systems such as fans, pumps or compressors driven by

induction motors. These latter are fed by open-loop inverters

which enable the selection of one or several supply frequencies

dedicated to the monitoring phases. In Section II, definition

and properties of the classic implementation SK are presented

to remind its principle of operation. In section III, the SKR

computation protocol is designed in order to overcome the

limitations of the SK. SKR performance are then tested in

Section IV for detection of a developing mechanical unbalance

via current IF. These experiments are performed at several load

conditions in order to verify the normalized character of SKR

indicators. SKR robustness when faced to load variations is

also tested. Finally, advantages of SKR for the diagnosis of

a broad range of machine are discussed and perspectives are

detailed.

II. MATHEMATICAL BACKGROUND AND CLASSICAL USE

OF SPECTRAL KURTOSIS

A. Kurtosis

Let x be a random variable with mean µ and standard

deviation σ. In high order statistics, the excess kurtosis of the

random variable x is defined in (1) as

K(x) =
κ4

κ2
2

(1)

where κi is the ith cumulant of x and is defined as

κi = mi −

i−1
∑

k=0

(

k − 1

i− 1

)

κkmi−k (2)

with mi is the ith moment of x. For clarity reasons, the excess

kurtosis will be simply referred as kurtosis from now on.

In statistics, kurtosis is the second shape factor (after

the skewness) and reflects the sharpness of a distribution.

The sharper the distribution of x, the higher its kurtosis.

Reciprocally, the flatter the distribution, the lower its kurtosis.

However, kurtosis may also be used to detect outlier elements

within a distribution. For instance, let us consider a sample of

a random variable x whose probability density function (PDF)

is illustrated in Fig. 1 (top). The kurtosis of this sample, where

there is no outliers and whose elements are well gathered

around the sample’s mean, has a low value (examples: 0 for

a Gaussian sample, -1,2 for a uniform sample). Now, let us

consider the same sample in which were added some extreme

(and rare) elements around 10. Its PDF is plotted in Fig. 1

(bottom). This time the sample’s kurtosis has a high value

caused by the outliers’ presence. This property is the basic

principle used in SK computation for detecting non-stationary

components within a signal.

B. Classic Spectral Kurtosis

Let x[k] ∈ R be a digital signal and X(f) its Discrete

Fourier Transform. Its spectral component at a specific fre-

quency fi is a complex random variable, noted X(fi). Thus,

the spectral kurtosis of x(k) is noted SKx(f) and is defined

as the kurtosis of the random variable X(fi) at each frequency

fi [26]

SKx(fi) = K(X(fi)) =
κ4(X(fi))

κ2
2(X(fi))

(3)
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Fig. 1. Probability density function and kurtosis value of a normal distribution
without outliers (top) and with some outlier elements around 10 (bottom). The
presence of outliers within a distribution is responsible for the increase of its
kurtosis value.

Therefore, a minimum number of spectra is required to prop-

erly estimate a signal’s SK. In practice, this number is reached

by using the STFT whose principle is to split the signal x

into N segments (with or without overlap) and to compute a

FFT on each one. When a spectral component |X(f)| has

a stationary behavior, its distribution is similar to the one

presented in Fig. 1 (top). Thus, SKx(f) has a low value. On

the contrary, when this spectral component is non-stationary,

its distribution is closer to the one presented in Fig. 1 (bottom).

More explanations about the principle of operation of SK and

its computation protocol are detailed in [30].

This algorithm is therefore suitable to detect fault signatures

with a non-stationary behaviour during a recording period,

such as bearing faults. However, an innovative SK implemen-

tation is presented in the following section in order to design

normalized fault indicators for other types of degradation.

III. DEFINITION OF A MACHINE’S HEALTHY REFERENCE

VIA A NEW IMPLEMENTATION OF SPECTRAL KURTOSIS

In the case of the monitoring of an electrical machine,

phase currents (or other useful measures) are recorded for a

certain amount of time Trecording at regular intervals, once

a day for example. Each recording contains L samples. As

shown in section II, SK would be an efficient indicator to

detect fault signatures with a non-stationary behaviour over

time Trecording , such as some bearing faults signatures. How-

ever, many faults occurring in electro-mechanical systems are

more likely to produce signatures with a stationary behaviour.

Indeed, a mechanical unbalance slowly increasing in a venti-

lation system will induce fault signatures growing over large

time scale but locally constant on each recording. A shaft

misalignment provoked by a maintenance phase would do the

same but more suddenly. Therefore, this section focuses on the

design of normalized fault indicators with the aim of detecting

two successive increases of the level of a simulated mechanical

unbalance.

In order to simulate a mechanical unbalance in a rotating

system, let us consider a synthetic signal IF (t) representing

the current instantaneous frequency. To obtain this variable,

Iα(t) and Iβ(t) are first computed by applying Concordia

matrix on phase currents I1(t), I2(t) and I3(t). Instantaneous

frequency (IF) and instantaneous amplitude (IA) of stator

currents are then defined as

IF (t) =
1

2π

dφ(t)

dt
(4)

IA(t) = |Ic(t)| (5)

with Ic(t) = Iα(t) + iIβ(t) and φ(t) = arg(Ic(t)). The

authors of [14] indeed proved that faults producing load

torque oscillation also cause phase modulations (PM) of stator

currents. Thus, IF is a relevant quantity for detecting these

kinds of faults because it reveals PM harmonics of currents.

The impact of a mechanical unbalance on the current IF can

reasonably be modelled as

IF (t) = ff + β · cos(2πfrt+ φr) + n(t) (6)

This signal is composed of:

1) a constant component of amplitude ff → the current

fundamental frequency;

2) a fault component with an amplitude equal to β at the

rotation frequency fr → relative to the unbalance level;

3) a noise component n(t).

In this example, the signal IF (t) is composed of 400 5s-

recordings and the fault severity β evolves over the recordings

as shown in Fig. 2. This profile is representative of two
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Fig. 2. Evolution of the modulation index (or fault severity) β over the 400
recordings. This profile models two successive increases of the simulated fault
severity.

successive increases of the fault component of IF at frequency

fr.

A. Spectral Kurtosis

First, the classical implementation of the SK is tested on

the synthetic signal IF . It is computed on each IF recording

by using STFT windows of 8000pts with 75 % overlap.

Specific explanations on the choice of the window length

and the overlap are given in [25] and [27]. The SK of the

simulated current IF at frequency fr is presented in Fig. 3. It

can be observed that the indicator SK(fr) decreases from

about 0 to −0.8 after the first increase of the modulation
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Fig. 5. SKR applied on the simulated fault harmonic IF (fr) for Nref =
50 and Nmov = 1 (dark blue line with circles), Nref = 25 and Nmov = 1
(light blue line with triangles) and Nref = 50 and Nmov = 4 (magenta line

with stars). The ratio R =
Nref

Nmov
greatly impacts the indicator’s behaviour.

excessive because its length also conditions the duration of the

reference phase. A good compromise between a trustworthy

reference and a short referencing phase is Nref = 50. Now

let us consider the choice of the parameter Nmov . As it is

visible in Fig. 5, the reaction of indicator SKR is strongly

related to the ratio R =
Nref

Nmov
. Indeed, SKR reacts stronger

for high R values but it is also noisier. In any case, the

detection sensitivity is not affected by parameter Nmov as long

as the ratio R is much higher than 1. Nmov = 1 is a good

choice since it ensures the highest possible value of R for a

given value of Nref . In this way, the indicator SKR tests the

membership of the latest value of the considered fault signature

to its reference achieved during healthy working. The couple

{Nref = 50, Nmov = 1} is not the unique possibility but the

indicator SKR thus created is robust and easy to interpret.

This choice will therefore be retained in the rest of the study.

Finally, an improvement of the SKR can be easily achieved.

It may indeed be useful to subtract the kurtosis value of the

reference set to the SKR value in order to correct the non-

Gaussianity of the considered variable. In this way, SKR has

always a quasi-zero value during healthy period, even if the

random variable is not Gaussian.

IV. EXPERIMENTAL RESULTS

A. Test Bench Description

An experimental test bench has been set up in order to

illustrate the efficiency of SKR for the detection of a mechan-

ical unbalance occurring in an electro-mechanical system. The

experimental bench is composed of:

1) a 5.5 kW Leroy Somer IM with two poles pairs, 28 rotor

bars and a wye connection;

2) a direct current motor (DCM) used as a generator in

order to produce the desired load torque level;

3) an iron disk placed on the shaft between both machines.

Several weights may be associated with it in order to

create different levels of mechanical unbalance.

An overall view of the test bench is presented in Fig. 6. The

IM is fed by an open-loop inverter and all tests presented in

this section are realized with a supply frequency ff = 40Hz.

A data acquisition system is used to measure the IM phase

Fig. 6. Experimental test bench composed of a 5.5 kW induction machine
(right), a direct current motor to produce the load torque (left) and a iron disk
placed on the shaft to create the different levels of mechanical unbalance.

currents with a sample frequency fs = 10kHz and a digital

resolution of 18 bits. Currents recordings are achieved by

means of three synchronous channels in order to make the

computation of the current IF possible. The unbalance levels

B1, B2 and B3 are mechanically generated by means of

different weights m1, m2 and m3 placed on the iron disk as

illustrated in Fig. 7. A weight m attached at a distance R from

R

Ω

θ

Weight m

Iron disk

Fig. 7. Photography (left) and schematic representation (right) of the iron
disk used to generate the three levels of mechanical unbalance B1, B2 and
B3. The different weights m1, m2 and m3 are attached on the iron disk at
a distance R from the rotation axis in order to generate the desired level of
mechanical unbalance.

the system’s rotation axis generates load torque oscillations

Γosc(t) at the frequency rotation fr which are defined by

Γosc(t) = m ·R · g · cos(2πfrt) (7)

with g the gravitational acceleration. For example, this kind

of degradation usually happens in industrial fans due to blade

clogging by grease and dust accumulation or the break of a fan

blade. Once detected, the mechanical unbalance may easily be

fixed in order to prevent a premature wear of the mechanical

components, especially bearings.

B. Tests at no load condition

250 5s-recordings of the IM currents have been measured

on the machine. They are composed of:

1) 100 recordings with no mechanical unbalance and cor-

responding to the healthy state of the machine;

2) 50 recordings with the low level of mechanical unbal-

ance B1 created by a small weight m1 = 77.5g fixed to

the iron disk at a distance R = 7.5cm from the rotation

axis. This level of mechanical unbalance produces load



torque oscillations at fr with a theoretical amplitude of

0.15% of the IM rated torque;

3) 50 recordings with the medium level of mechanical

unbalance B2 created by a small weight m2 = 133g
fixed to the iron disk at a distance R = 7.5cm from

the rotation axis. This level of mechanical unbalance

produces load torque oscillations at fr with a theoretical

amplitude of 0.27% of the IM rated torque;

4) 50 recordings with the high level of mechanical unbal-

ance B3 created by a small weight m3 = 274g fixed to

the iron disk at a distance R = 7.5cm from the rotation

axis. This level of mechanical unbalance produces load

torque oscillations at fr with a theoretical amplitude of

0.55% of the IM rated torque.

The spectral component of the current IF at frequency f is

noted ˆIF (f). It is shown in [14] that a mechanical unbalance

produces a phase modulation (PM) of the current fundamental

(of frequency ff ) at the rotation frequency fr. So, mechanical

unbalance signature appears in the current IF spectrum at

frequency fr. In order to tolerate small variations of the system

operating point while monitoring spectral components, we

redefine the variable IF (f) as

IF (f) = max{ ˆIF (f −∆f : f +∆f)} (8)

with ∆f chosen to be 0.2Hz. In this case, IF (f) corresponds

to the maximal value of the current spectrum in the frequency

range [f−∆f, f+∆f ]. The spectral component IF (fr) have

been computed for the 250 recordings and results are plotted

in Fig. 8. It is first visible in Fig. 8 that IF is indeed a proper
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Fig. 8. Illustration of |IF (fr)| (green solid line) and |IA(fr)| (red
dotted line) evolutions for the different health states of the induction machine
(healthy, B1, B2 and B3).

variable for the detection of load torque oscillations due to

a mechanical unbalance. Although the harmonic IF (fr) is

noisy, its value remains stable during the healthy working

period. Then, its evolution well reflects the different stages of

mechanical unbalance. Even the lowest unbalance level visibly

affects the mean level of IF (fr) while it produces extremely

weak load oscillations. The harmonic IA(fr) has also been

illustrated in Fig. 8. It can be noticed that IA also reflects the

increase of the mechanical unbalance level (especially the two

highest levels), but to a much lower extent than IF. Indeed,

IA is more sensitive to degradation generating amplitude

modulation (AM) of phase currents, such as eccentricity faults.

Thus, a joint study of IF and IA may enable the detection

and differentiation of many mechanical faults occurring in a

system.

However, although it may seem easy to choose a fault

threshold for the fault indicator IF (fr), the healthy level of

this harmonic depends on many factors. Electrical machines

with different rated power, poles number, inertia, etc... may

have different healthy levels of fault signatures. In order to

illustrate this issue, let us monitor the harmonic IF (fr) during

two experiments, both in healthy conditions and at the same

load level but with two different total inertia. The difference

of inertia in the two experiments is only due to the addition

of the iron disk on the shaft. Of course, no unbalance weights

were fastened on the iron disk during this test. Results of

both indicators are shown in Fig. 9. It is well perceptible
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Fig. 9. Fault signature |IF (fr)| during healthy conditions with different
configuration of the monitored system : with the inertia disk (light blue solid
line) and without the inertia disk (dark blue dotted line).

in Fig. 9 that both healthy indicators have different mean

values µ1 = 0.0068 and µ2 = 0.0094 ≈ 1.4µ1, while

the same machine was monitored at the same load level.

When considering diagnosis of a broad range of machines

and applications, choosing an a priori robust fault threshold

is therefore tricky. It seems unavoidable to study the behavior

of fault signatures during the initial working period of the

system, when it can be considered as healthy. In this way, the

system’s reference created is thus specific to each monitored

system, which is a key point of the proposed approach.

It has been shown in section III that SKR can be used

both to create a system’s reference and to compare each

new recording to it. This second step enables the user to

evaluate if the system has drifted from its healthy reference

or not. In order to test SKR efficiency for the detection of

a mechanical unbalance, this algorithm has been computed

on the fault signature IF (fr). This computation has been

achieved according to the protocol presented in Fig. 4 with

Nref = 50 and Nmov = 1. Results are shown in Fig. 10

(green solid line). First, it is visible in Fig. 10 that SKR

is an efficient indicator for detecting the different levels of

mechanical unbalance. This statistical treatment holds the

information contained in the fault signature IF (fr). However

it normalizes the healthy values around 0 which makes the

detection of abnormal behaviours easier. After the reference

period, the SKR(fr) value remains close to 0 during the

healthy operation period. Its value then increases with the

severity of the mechanical unbalance. The application of the

SKR on the fault signature IF (fr) thus enables the creation

of a normalized fault indicator. Indeed, SKR-based indicators
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Fig. 10. SKR applied on current IF at fault frequency fr in the healthy
state and for the different unbalance levels B1, B2 and B3. Different values

of the ratio R =
Nref

Nmov
are used and simulation results are confirmed.

will always have a value about equal to zero during healthy

condition whereas classical energy indicators may have many

different levels, depending on the system characteristics (type

of motor, operating point, etc.). This point is major when con-

sidering the diagnosis of a wide range of electro-mechanical

systems. Finally, the influence of the ratio R =
Nref

Nmov
on the

SKR is experimentally verified. SKR sensitivity is indeed

directly related to the R level. The choice Nref = 50 and

Nmov = 1 guarantees a good detection sensitivity and an easy

interpretation. It will be conserved in the rest of the study.

C. Tests at different load conditions

The same experiments have been carried out for multiple

load conditions in order to confirm the previous results. As

mentioned in section IV-B, the application of SKR on fault

signatures enables the creation of normalized fault indicators.

But also, a single fault threshold may be associated to these

normalized indicators, whatever the system or the fault con-

sidered. Indeed, let SKR(fr) be the SKR applied on current

IF at frequency fr. The fault threshold t1% is defined by

P(SKR(fr) > t1%) = 1% (9)

Therefore, the normalized fault indicator SKR(fr) exceeds

t1% only 1% of the time during healthy working conditions. If

the exceeding rate of SKR(fr) above t1% is much more higher

than 1%, the system has then drifted from its healthy reference.

A maintenance phase is thus necessary. For Nref = 50 and

Nmov = 1, the fault threshold t1% is about equal to 0.2.

For every experiment at the different load levels, SKR

has been computed on the fault component IF (fr). The

percentage by which SKR exceeds the fault threshold t1% is

then calculated for each health state (healthy, lowest unbalance

(B1), middle unbalance (B2) and highest unbalance (B3)). The

results of this test campaign are presented in Table I. First, it

can noticed that, as expected, the exceeding rate of SKR is

always about equal to 1 % during healthy conditions. It is a

key point of this reference-based monitoring system because

no false alarms are generated, for all load conditions. Then,

it can also be observed that the indicator sensitivity seems to

decrease with the load level. Indeed, the lowest unbalance level

B1, which is extremely low, is only clearly detectable at no

TABLE I
PERCENTAGE BY WHICH THE INDICATOR SKR APPLIED ON IF (fr)

EXCEEDS THE FAULT THRESHOLD t1% FOR EACH HEALTH STATE AND

LOAD LEVEL.

Load level (% of rated load)

Health
state

0% 25% 35% 45% 60% 70%

SKR

applied on
IF (fr)

Healthy 0 0 1 0 1 0

B1 44 7 0 0 1 2

B2 100 100 68 42 72 9

B3 100 100 100 100 100 100

load condition. Two reasons may explain the loss of SKR(fr)
sensitivity with the load level. First, energy indicators are

more noisy for high load levels. Then, their faulty levels also

decrease with the increase of the load level. However, both

unbalance levels B2 and B3 seems well detectable for every

load conditions (except the middle unbalance level at 70%

load).

D. Toward an automatic referencing and monitoring protocol

in the torque-speed plane

The previous tests proved the normalization and sensitivity

properties of the SKR at different load conditions. However, a

reference was necessary per operating point in order to ensure

the proper functioning of the indicator. It is impossible, in

practice, to associate a reference per every possible working

point in the torque-speed plane because it would require a

infinite number of references.

The aim here is therefore to associate a reference to a

relatively large area in the torque-speed plane, and not to a

singularity. To achieve this, areas must be designed such that

the considered fault signature has a stable behaviour on each

of them. Experimental results showed that the healthy level

of the fault signature IF (fr) varies moderately with the load

level. At a specific supply frequency ff , the load axis may

therefore be split into M relatively large zones and a reference

is created per load area.

Experimental results also showed that the healthy level of

the considered fault signature could have large variations along

the speed axis. To ensure a good robustness and sensitivity of

the SKR indicator, it should be split into a great number of

speed zones. However, most industrial systems such as fans,

pumps, or compressors, which are targeted in this study, are

fed by open-loop inverters. This way, the supply frequency

ff may be changed during the monitoring phases in order to

always realize the diagnosis at one or a few supply frequencies.

The tests presented in section IV-C can be reorganized by

selecting an adequate division of the load axis and a specific

supply frequency chosen to perform the diagnosis phases. The

monitoring parameters have been selected as follows:

1) the supply frequency selected to achieve the monitoring

phases is equal to ff = 40Hz;

2) the load axis is split into M = 4 areas wide by 25% of

the rated load.



In this way, a unique reference of the fault signature IF (fr) is

designed for each quarter of the load axis. The reference of the

first quarter is built by using Nref recordings acquired at both

0% and 25% of the rated load. In the same way, the reference

of the second quarter is designed with Nref values of the fault

signature IF (fr) extracted from recordings at both 35% and

45% of the rated load. Similarly, the reference of the third

quarter of the load axis is achieved by using the recordings

obtained at 60% and 70% of the rated load. At each new

recording, the SKR applied on the fault signature IF (fr) is

computed by using the reference corresponding to the load

level of the system. The percentage by which SKR exceeds

the fault threshold t1% is then calculated for each health

state (healthy, lowest unbalance (B1), middle unbalance (B2)

and highest unbalance (B3)) and for the different load areas.

Results are presented in Table II. It can be noticed that the false

TABLE II
PERCENTAGE BY WHICH THE INDICATOR SKR APPLIED ON IF (fr)

EXCEEDS THE FAULT THRESHOLD t1% FOR EACH HEALTH STATE AND

LOAD AREA.

Load area (% of rated load)

Health
state

[0%→25%] [25%→50%] [50%→75%]

SKR

applied on
IF (fr)

Healthy 0 1 1

B1 20 1 3

B2 99 47 41

B3 100 100 100

alarm rate is not affected at all by using a single reference per

load area. The robustness of the proposed approach is therefore

maintained. Moreover, the SKR sensitivity is hardly affected

by the use of a reference covering a wide zone of the load

axis. Indeed, the exceeding rate in a load area is often close

to the mean of the exceeding rates of each functioning point

included to this area. For example, the exceeding rate under

the lowest unbalance level B1 in the first load quarter is equal

to 20. The exceeding rate at 0% of the rated load and the one

at 25%, presented in Table I are respectively equal to 44%
and 7% giving a mean exceeding rate equal to 25.5%. Both

values are close and the little loss of sensitivity observed is due

to the slight non-homogeneity of the variable IF (fr) over the

considered load area. Finally, this referencing process could be

repeated for different supply frequencies in order to minimize

the impact on the application.

To conclude this experimental section, SKR seems to be an

efficient monitoring protocol for the diagnosis of a broad range

of induction machines operating with different characteristics

(type of load, inertia, coupling, etc.). It should be recalled

that the tested unbalance levels remains rather low, from

B1 = 0.15% to B3 = 0.55% of the IM nominal torque. The

test campaign presented in Table I shows that a single fault

threshold with a statistical meaning is sufficient to ensure a ro-

bust detection of these different levels of mechanical unbalance

without false alarms. The creation of several references (one

for each load condition) enables a good detection of low levels

of mechanical unbalances. Because references are created on-

line, SKR indicator is therefore independent of the type of

machine, of load characteristics and others parameters which

can affect classical MCSA indicators as the ones presented in

Fig. 8. Moreover, tests realized in section IV-D showed that

this method may easily be adapted to ensure a robust diagnosis

in the torque-speed plane.

V. CONCLUSION

In this paper, an efficient diagnosis protocol based on the

computation of a system’s healthy reference has been pre-

sented. Normalized indicators well adapted for the condition

monitoring of a broad range of machines were designed

thanks to this statistical reference. In section II, the kurtosis

has been defined and its ability to detect outliers within a

reference distribution has been demonstrated. In section III, an

innovative indicator, the SKR, based on the kurtosis has been

designed by including a reference set. SKR ability to generate

a system’s healthy reference and to detect any drift from it

has been tested on synthetic signals. Finally, an experimental

test bench has been set-up in order to verify SKR efficiency,

when applied on current IF, for the detection of low levels

of mechanical unbalance. Tests performed at several load

conditions have proven the SKR detection capacity with a

single fault threshold for all load conditions. The creation of

the system’s healthy reference thus enabled a robust detection

of weak mechanical unbalances without any false alarms for

different operating conditions. Moreover, its robustness to load

variations has been demonstrated.

Future work will focus on the definition a generic mon-

itoring protocol in the torque-speed plane which specifies

the references’ area of validity and optimizes the indicator’s

sensitivity while conserving its robustness and minimizing

the impact of the monitoring protocol on the application.

Moreover, the proposed approach showed good performance

for mechanical unbalance detection in an IM and it will be

interesting to confirm these results for other kinds of faults

(eccentricity, bearing faults, etc.) and for different systems.
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Jean-Marie Andréjak got his MSc in Electrical Engineering from EN-
SEEIHT Toulouse, France in 1978. After having worked in JEUMONT-
SCHNEIDER, in electronics E&D department for 10 years, he joined Moteurs
Leroy Somer in Angoulême, France, in 1989. He is the Power Electronics
E&D manager.

Pascal Maussion got his MSc and PhD in Electrical Engineering in 1985
and 1990 from Institut National Polytechnique (INP) Toulouse, France. He
is currently full Professor with the University of Toulouse and with the
Laboratory of Plasma and Energy Conversion (LAPLACE), Toulouse. His
research activities deal with control and diagnosis of electrical systems
(power converters, drives, lighting) and with the design of experiments for
optimisation in control and diagnosis. He is currently Head of Control and
Diagnosis group in LAPLACE. He teaches control and diagnosis in a school
of engineers.


