1,103 research outputs found

    NASA space station automation: AI-based technology review

    Get PDF
    Research and Development projects in automation for the Space Station are discussed. Artificial Intelligence (AI) based automation technologies are planned to enhance crew safety through reduced need for EVA, increase crew productivity through the reduction of routine operations, increase space station autonomy, and augment space station capability through the use of teleoperation and robotics. AI technology will also be developed for the servicing of satellites at the Space Station, system monitoring and diagnosis, space manufacturing, and the assembly of large space structures

    The development of a human-robot interface for industrial collaborative system

    Get PDF
    Industrial robots have been identified as one of the most effective solutions for optimising output and quality within many industries. However, there are a number of manufacturing applications involving complex tasks and inconstant components which prohibit the use of fully automated solutions in the foreseeable future. A breakthrough in robotic technologies and changes in safety legislations have supported the creation of robots that coexist and assist humans in industrial applications. It has been broadly recognised that human-robot collaborative systems would be a realistic solution as an advanced production system with wide range of applications and high economic impact. This type of system can utilise the best of both worlds, where the robot can perform simple tasks that require high repeatability while the human performs tasks that require judgement and dexterity of the human hands. Robots in such system will operate as “intelligent assistants”. In a collaborative working environment, robot and human share the same working area, and interact with each other. This level of interface will require effective ways of communication and collaboration to avoid unwanted conflicts. This project aims to create a user interface for industrial collaborative robot system through integration of current robotic technologies. The robotic system is designed for seamless collaboration with a human in close proximity. The system is capable to communicate with the human via the exchange of gestures, as well as visual signal which operators can observe and comprehend at a glance. The main objective of this PhD is to develop a Human-Robot Interface (HRI) for communication with an industrial collaborative robot during collaboration in proximity. The system is developed in conjunction with a small scale collaborative robot system which has been integrated using off-the-shelf components. The system should be capable of receiving input from the human user via an intuitive method as well as indicating its status to the user ii effectively. The HRI will be developed using a combination of hardware integrations and software developments. The software and the control framework were developed in a way that is applicable to other industrial robots in the future. The developed gesture command system is demonstrated on a heavy duty industrial robot

    Aerospace medicine and biology: A cumulative index to a continuing bibliography (supplement 345)

    Get PDF
    This publication is a cumulative index to the abstracts contained in Supplements 333 through 344 of Aerospace Medicine and Biology: A Continuing Bibliography. Seven indexes are included -- subject, personal author, corporate source, foreign technology, contract number, report number, and accession number

    Safe navigation and human-robot interaction in assistant robotic applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Virtual and Mixed Reality in Telerobotics: A Survey

    Get PDF

    Robots learn to behave: improving human-robot collaboration in flexible manufacturing applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Adaptable videogame platform for interactive upper extremity rehabilitation

    Get PDF
    The primary objective of this work is to design a recreational rehabilitation videogame platform for customizing motivating games that interactively encourage purposeful upper extremity gross motor movements. Virtual reality (VR) technology is a popular application for rehabilitation therapies but there is a constant need for more accessible and affordable systems. We have developed a recreational VR game platform can be used as an independent therapy supplement without laboratory equipment and is inexpensive, motivating, and adaptable. The behaviors and interactive features can be easily modified and customized based on players\u27 limitations or progress. A real-time method of capturing hand movements using programmed color detection mechanisms to create the simulated virtual environments (VEs) is implemented. Color markers are tracked and simultaneously given coordinates in the VE where the player sees representations of their hands and other interacting objects whose behaviors can be customized and adapted to fit therapeutic objectives and players\u27 interests. After gross motor task repetition and involvement in the adaptable games, mobility of the upper extremities may improve. The videogame platform is expanded and optimized to allow modifications to base inputs and algorithms for object interactions through graphical user interfaces, thus providing the adaptable need in VR rehabilitation

    Preventing and monitoring work-related diseases in firefighters: a literature review on sensor-based systems and future perspectives in robotic devices.

    Get PDF
    : In recent years, the necessity to prevent work-related diseases has led to the use of sensor based systems to measure important features during working activities. This topic achieved great popularity especially in hazardous and demanding activities such as those required of firefighters. Among feasible sensor systems, wearable sensors revealed their advantages in terms of possibility to conduct measures in real conditions and without influencing the movements of workers. In addition, the advent of robotics can be also exploited in order to reduce work-related disorders. The present literature review aims at providing an overview of sensor-based systems used to monitor physiological and physical parameters in firefighters during real activities, as well as to offer ideas for understanding the potentialities of exoskeletons and assistive devices

    Symbiotic human-robot collaborative assembly

    Get PDF
    • …
    corecore