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In human-robot collaborative assembly, robots are often required to dynamically change their pre-planned tasks to collaborate with human operators in 
a shared workspace. However, the robots used today are controlled by pre-generated rigid codes that cannot support effective human-robot 
collaboration. In response to this need, multi-modal yet symbiotic communication and control methods have been a focus in recent years. These methods 
include voice processing, gesture recognition, haptic interaction, and brainwave perception. Deep learning is used for classification, recognition and 
context awareness identification. Within this context, this keynote provides an overview of symbiotic human-robot collaborative assembly and highlights 
future research directions. 
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1.	Introduction	

Human‐robot	 collaboration (HRC) in a manufacturing context 
aims to realise an environment where humans can work side by 
side with robots in close proximity. In such a collaborative setup, 
the humans and the robots share the same workspace, the same 
resources, and in some cases the same tasks. The main objective 
of the collaboration is to integrate the best of two worlds: 
strength, endurance, repeatability and accuracy of the robots with 
the intuition, flexibility and versatile problem solving and sensory 
skills of the humans. Using HRC, higher overall productivity and 
better product quality can be achieved. In any HRC system, 
human safety is of paramount importance. 

In the last decade, research efforts on HRC have been numerous. 
Varying approaches to facilitating multimodal communication, 
dynamic assembly planning and task assignment, adaptive robot 
control, and in-situ support to operators have been reported in 
the literature. Nevertheless, confusions exist in the relationships 
between robots and humans: coexistence, interaction, cooperation, 
and collaboration. The roles of humans when working with robots 
are less clear. The lack of standards and safety solutions results in 
a low acceptance of the human-robot combination. A systematic 
review and analysis on this very subject is needed, which is the 
motivation and objective of this keynote paper. 

This paper starts with a classification of the human-robot 
relationships and then provides detailed treatments on relevant 
issues with a focus on symbiotic HRC assembly. The remainder of 
this paper is organised as follows: Section 2 gives the definition 
and characteristics of HRC after classifying the human-robot 
relationships; Section 3 reviews the existing technologies for 
sensing and communication in HRC; Section 4 introduces the 
available safety standards and systems for collision avoidance; 
Section 5 presents reported solutions for dynamic context-aware 
task planning and assignment, assisted by deep learning; Section 
6 provides insights on programming-free adaptive robot control 
through algorithm embedding and a brainwave-driven method; 

Section 7 reveals different techniques and systems for mobile 
worker assistance. Section 8 points out the remaining challenges 
and future research directions; and finally, Section 9 concludes 
this keynote paper. Depending on the context, worker, operator 
and user are used to represent a human working with a robot. 

2.	Classification,	definition	and	characteristics	

2.1.	Classification	of	human‐robot	relationships	

The relationship of humans and robots in a shared work 
environment is a many-faceted phenomenon which is classified 
according to a number of different viewpoints [96]. Schmidtler et 
al. [220] analysed a human-robot cell in terms of working time, 
workspace, aim and contact. Wang et al. [257] identified 
workspace, direct contact, working task, simultaneous process, 
and sequential process as the shared contents between a robot 
and a human. In general, shared	workspace refers to whether the 
human and the robot are working in the same working area with 
no physical or virtual fences for separation. Direct	 contact 
indicates whether there is a direct physical contact between the 
robot and the human. Shared	working	 task represents whether 
the human and the robot work on the same operation towards 
the same working objective. Simultaneous	process means that the 
human and the robot are working at the same time, but the task 
can be the same or different. In contrast, the sequential	process 
indicates that the operations of the human and the robot are 
arranged one after another with no overlap in the temporal scale. 
Accordingly, the classification of human-robot relationships can 
be summarised as follows (also in Table 1). 

 The basic situation is coexistence when a robot and a human 
are placed within the physical space but without overlapping 
each other’s workspace. There is no direct contact between 
the human and the robot. The work object might be 
exchanged between them, but the process is performed 
independently and simultaneously. 
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 Interaction happens if a human and a robot sharing the same 
workspace are communicating with each other. One party 
guides or controls the other, or any physical contact (either 
planned or unintended) occurs between them. Both the 
human and the robot can work on the same task but complete 
the task step by step in a sequential order. 

 Cooperation can be developed among human and robot agents 
who have their own autonomy (expressed in terms of goals, 
objectives, utility or profit) [237]. In the hope of mutual 
benefit, cooperating agents may temporarily share some of 
their physical, cognitive or computational resources, even 
though they are pursuing their own interests. The parties can 
share a partially overlapping workspace but direct contact is 
not typical between them. They can work simultaneously, but 
at times have to wait for the availability of the other agent(s). 

 Collaboration is the joint activity of humans and robots in a 
shared workspace, with the definite objective to accomplish 
together a set of given working tasks. It requires typically a 
coordinated, synchronous activity from all parties [177] 
where physical contact is also allowed. In any case, 
collaboration assumes a joint, focused goal-oriented activity 
from the parties who share their different capabilities, 
competences and resources. 

 
Table	1. Features of different human-robot relationships. 

  Coexistence Interaction Cooperation Collaboration 

Sh
ar

ed
 

Workspace     

Direct contact     

Working task     

Resource     

Simultaneous 
process 

    

Sequential 
process 

    

 
2.2.	Definition	of	human‐robot	collaboration	

In the context of production and according to the standard 
terminology, HRC is a ‘state in which a purposely designed robot 
system and an operator work on simultaneous tasks within a 
collaborative workspace’, i.e., where the robot system and a 
human can perform tasks concurrently or even jointly [84]. This 
implies that there is no temporal or spatial separation of the 
robotic and humans’ activities (like semaphores or fences). 

HRC is motivated by a number of factors: the combination of 
complementary human and robotic skills and intelligence holds 
the promise of increased productivity, flexibility and adaptability, 
increased robustness and higher degree of resilience, improved 
ergonomics, and more attractive work conditions. HRC is also in 
demand in distributed manufacturing work environments and 
systems due to the limitation of automation and the maturation of 
agent technologies [170]. While it is broadly assumed that robotic 
agents may be multiple and form a team, at present HRC typically 
only involves a single human – the operator or worker. 

HRC has been a subject of systematic analysis and classification 
efforts both in the general sense [261] and also with a special 
concern on production and assembly [256]. Due to its specific 
constraints, industrial production usually occupies a subset of 
possibilities. Key properties that define distinct classes of HRC 
instances across all applications are multiplicity and autonomy. 
Agent multiplicity distinguishes single, multiple, and team 
settings (Fig. 1), the latter being a group acting together by 
consensus or coordination, and interacting with the environment 
and other agents in a specified way (e.g., via a “speaker”). Multiple 
agents can compete for tasks, resources and/or other agents’ 
services (e.g., one robot serving several manned workstations). 
Agent	 autonomy and closely related leader–follower	

relationships express how much of robot action is directly 
determined by human agents, and vice	versa. In any case, an agent 
needs to take the responsibility and leadership when performing 

the given task. Task execution scenarios can be partitioned along 
the autonomy of participating agents (see Fig. 2). During task 
execution, either the human or the robot may assume an active 
(leading) role, or only support it (as a follower, performing 
auxiliary actions on-demand, serving as a fixture, etc.) or behave 
inactively (not taking part in the task, merely being present as an 
obstacle). Adaptive robots and intuitive humans are able to re-
assign leader/follower roles on-the-fly. With some few exceptions 
[24,177], recent research assumes that the roles are assigned 
before task execution. 

 
Fig.	1. Possible cases of the human and robotic agents’ multiplicity [256]. 

 

 
Fig.	 2. Possible combinations of the human and robotic agents’ roles 
(adapted from [256]). 
 
2.3.	Symbiotic	human‐robot	collaboration	

Symbiotic	 cognitive	 computing takes place when human and 
machine agents co-exist in a physical space to interact with each 
other so as to solve hard tasks requiring large amounts of data 
along with significant mental and computational effort. Such tasks 
are typically information and knowledge discovery, situation 
assessment, and strategic decision making [57,93,125]. A modern 
symbiotic cognitive environment is equipped with a number of 
multimodal communication techniques such as displays, tablets 
and cameras, microphones and speakers, motion and haptic 
sensors, speech and gesture recognition devices that facilitate the 
context-dependent presentation, manipulation, and analysis of 
data. The main emphasis is on directly interacting with data as 
easily, directly, and naturally as possible. The original idea goes 
back to 1960 when a tentative forecast was made as of the role of 
computers in supporting complex human decision-making 
processes. In such a setting, problems requiring intuition from 
the human’s side could be solved better or more effectively would 
computers be interactive, cooperative and able to turn up flaws of 
reasoning or reveal unexpected turns in the course of the solution 
process [126]. By now, state-of-the-art sensor and 
communication technology, accompanied with almost unlimited 
data storage capacities and computing power serving faculties of 
data analytics and reasoning made this vision a reality [57]. 
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Symbiotic	 human‐robot	 collaboration places the interplay of 
human and machine into a cyber-physical environment [171,182] 
where human and robotic agents interact in a shared work 
environment to solve some complex tasks which require the 
combination of their best, complementing competencies. They 
form a society of agents which is capable of solving problems the 
individual members alone would not be able to tackle in a 
dynamic, as well as only partially structured, observable and 
predictable work environment. The main traits of symbiotic HRC 
are the following (see also [57]). (1) While all the parties possess 
their own autonomies, they form together a team or group which 
is responsible for the successful and efficient performance of a set 
of tasks. Leadership, and in general, roles are assumed and 
changed dynamically, as the actual situation and the tasks require 
(see Fig. 2, bottom right cell). (2) The agents are context‐aware, 
i.e., their actions and decisions are grounded on the actual 
physical and cognitive circumstances. The shared work 
environment provides the ways for all parties to communicate 
their availability, and offers means for identifying humans, 
following their activity and tracking and tracing the objects – both 
physical and computational – they manipulate. (3) The symbiosis 
continuously engages humans and robots with each other, in an 
ongoing manner. Multimodal and bidirectional communication is 
supported between any two or multiple parties, by removing 
cognitive barriers, distractions, and interruptions as far as 
possible. (4) The agents apply at least partially shared 
representations of the environment they are operating in, which 
is the prerequisite for aligning their (joint) goals, roles, plans and 
activities. This shared virtual representation should be mapped 
via sensors dynamically, in real-time with the physical production 
environment and its temporal evolution, providing its digital	
twin. (5) The performance of a symbiotic system improves over 
time. Hence, the environment provides performance feedback to 
all parties who have a capability to adapt to changing conditions 
and to learn both from failures and successes. (6) Finally, in the 
shared work environment, safety of human agents is warranted 
even under unexpected conditions. 

All in all, a symbiotic HRC system possesses the skills and ability 
of perception, processing, reasoning, decision making, adaptive 
execution, mutual support and self-learning through real-time 
multimodal communication for context-aware human-robot 
collaboration. Compared with fully automated systems and 
purely manual operations, symbiotic HRC combines the skills of 
humans and robots, and offers the opportunity of improved 
manufacturing performance. Better work ergonomics can also be 
achieved with the help of flexible in-situ operator supports. 

 

 
Fig.	3. Multimodal symbiotic human-robot collaboration [166]. 

However, today’s robot control approach based on rigid native 
codes can no longer support symbiotic HRC. The smartness of a 
symbiotic HRC system must be enabled by a new means that is 

multimodal and symbiotic to facilitate any changes during 
collaboration. Fig. 3 illustrates an exemplified symbiotic HRC 
system that is driven by voice commands, gesture instructions, 
haptic interactions, and even human thoughts captured in the 
form of brainwaves, in a shared setting. 

 
2.4.	Characteristics	of	HRC	assembly	

During HRC assembly,	objects are arranged in	space by actions	
in	time so that products specified by design can be realised. The 
space is densely populated not only by parts of the product but 
also by the applied technological resources and humans, whereas 
key objectives require the execution of actions within as short a 
timeframe as possible. Objects and actions involved in HRC 
assembly are strongly related and constrain each other in many 
ways, due to technology, product structure, and geometry 
[100,101]. In assembly, the workplace design that allows efficient 
and dynamic human-robot task allocation is characteristic to safe, 
ergonomic and symbiotic HRC assembly [163]. 

Given an assembly environment, task allocation to robots and 
humans may change over time due to availability and suitability 
of the resources against the allocated time. This characteristic of 
human-robot task assignment was investigated and modelled as a 
search problem [233]. An intelligent decision making method was 
implemented using a tree representation to derive efficient task 
assignments between humans and robots, enabling the allocation 
of sequential tasks assigned to a robot and a human in separate 
workspaces (Fig. 4). The focus is rather given to the human-robot 
coexistence for the execution of sequential tasks, in order for the 
automation level in manual or even hybrid assembly lines to be 
increased. 

 

 
Fig.	4. A) Dashboard assembly case, B) Gantt chart of the best alternative 
[233]. 

3.	Sensing	and	communication	

3.1.	Sensor	

In a collaborative environment where human and robot occupy 
the same workspace at the same time, a robot requires accurate 
information regarding human intention, physical parameters at 
points of haptic interaction, as well as geometric interpretation of 
the environment to (1) carry out effective HRC tasks, and (2) to 
comply with the safety aspects for collaborative operation 
outlined by International Organisation for Standardisation (ISO): 
safety‐rated	 monitored	 stop, hand‐guiding	 operation, speed	 &	
separation	monitoring and power	&	force	limiting [85]. The need 
for improving the effectiveness and efficiency as well as reducing 
the safety risks in HRC has led to increased interest in sensor-
related research and development for HRC. 

Sensors deployed in the HRC environment can be categorised 
into two families: contact‐based and contact‐less. 

 

3.1.1.	Contact‐based	sensing	

The main application of physical contact-based sensing is one 
type of human gesture recognition (using wearable sensors, e.g., 
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gloves) as opposed to camera-based gesture recognition methods. 
Gestures have been an integral part of human communication 
throughout history. Naturally, the gesture of human hand and its 
coordination have been at the forefront of research in HRC, 
resulting in the category of wearable sensors for gesture 
recognition, serving as an important human-robot interface 
[10,36,50,79,191,136]. A combination of accelerometer and 
gyroscope has been described by Asokan et al. [10] to sense the 
orientation of the hand by placing the sensors on the back of the 
palm, and potentiometer mounted on the acrylic strip attached to 
the finger to measure the angle as finger moves. However, one of 
the main issues with traditional wearable sensors is sensor 
rigidity, which causes issues such as poor adaptability to the hand 
as well as reduced hand mobility. Thin, elastic materials, on the 
other hand, can undergo a wide range of reversible deformation 
and therefore have become the leading candidate in fabricating 
wearable sensors that are both reliable and comfortable. 

For example, Cha et al. [36] integrated flexible polyvinylidene 
fluoride-based (PVDF) piezoelectric sensors into a glove to detect 
the angles of finger joints by converting the angular velocity of 
the finger motions into voltage. The sensor material is light-
weight and self-powered, enabled by the piezoelectric effect. The 
PVDF piezoelectric sensors are further investigated for wrist 
mount, generating robot control signal through the coordination 
of hand gestures [50]. The PVDF sensor can be easily delaminated 
from the skin and reused from one wrist to the other. 

Graphene-based piezoelectric sensors [79,191] have also been 
investigated. These sensors are made of ultrathin nanomaterials 
and piezoelectric polymers with superior adaptability to the skin 
and improved aesthetics due to its near transparent appearance. 
Further advantages include high signal-to-noise ratio and low 
power consumption. The sensors proposed by Hong et al. [79] 
have demonstrated the capability of accurately recognising wrist 
movement such as stretching and compressing. Park et al. [191] 
further integrated the sensors into an elbow band to detect the 
elbow bending angle. Similarly, a graphene hybrid structure with 
ultrafast dynamic pressure response was reported by Liu et al. 
[136]. The graphene-based resistive pressure sensor is shown to 
be capable of frequency-independent sensing with no phase-lag. 
It also has high sensitivity to subtle pressure or movement. 

 

 

Fig.	5. Pictures of the realised flexible PCB before (left) and after (right) 
the optoelectronic components mounting [43]. 

 
In HRC, robots are expected to physically interact with humans 

and objects. Being able to sense pressure/force, hardness and 
texture at the points of contact are essential for both 
effective/delicate robot reaction when normal contact occurs and 
compliance to safety requirements during incidental contact. 
Common scenarios include controlling robot pressure/force such 
that the object being handled is not damaged and the human is 
not harmed during incidental contact. The data from the tactile 
sensor provides the basis for a robot to intelligently reason about 
the haptic interaction scenario and react appropriately during the 
contact. Cirillo et al. [43] presented a flexible tactile sensor based 
on optoelectronic technology to detect both the position of the 
contact point and the three components of the applied force. The 
working principle is based on the array of sensing modules, each 
comprised of four taxels and one optical LED/phototransistor 
pair, as show in Fig. 5. The deformation of the sensing module 
under contact pressure produces variations of LED light reflected 
by the taxels and consequently, the photocurrents that can be 

measured and used to determine the mechanical stimuli. Li et al. 
[124] developed a flexible thin tactile sensor based on the dual-
mode Triboelectric nano-generators (TENGs). Unlike the sensor 
by Cirillo et al. [43], this sensor is self-powered and can not only 
detect tiny pressure/force but also distinguish the hardness of 
the contact material by quantifying the shape change at the 
current peak. For example, as shown in Fig. 6, in the case of stiff 
materials such as copper and glass, the current increases 
suddenly, which is significantly different from the slow and 
continuous change in the case of soft materials, such as terylene 
and polydimethylsiloxane (PDMS). A detailed review of various 
tactile sensors for manipulation and grasping applications was 
provided by Kappassov et al. [97]. 
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Fig.	6. Shapes of current peak for different contact materials by tactile 
sensor based on dual-mode Triboelectric nano-generators (TENGs) [124]. 
 
3.1.2.	Contact‐less	sensing	

Contact-less sensing, such as a laser, radar or vision system, 
helps reconstruct the geometric information of the surroundings 
in an HRC environment, guiding the robots to move around the 
workspace avoiding obstacles and work collaboratively with 
humans by identifying and locating the working parts. In recent 
years, development of computer vision techniques has enabled 
context-aware interpretation of the environment, allowing robots 
to acquire complex skills. 

The principles of contact-less sensing can be classified into 
passive and active methods. In passive sensing, the measurement 
system does not illuminate the target; instead, the light from the 
target is either reflected ambient light or the light produced by 
the target itself. Common passive techniques include traditional 
optical/infrared camera and stereo vision. Stereo vision is the 
extension to 3D information from traditional 2D images. It 
requires the reference point (marker) on the target to be 
captured by multiple cameras from different projection angles 
and fused to reconstruct in the 3D space through suitable 
transformation. In active sensing, the measurement system 
illuminates the target and captures the pattern of the reflected 
light. Common active sensing techniques include structured light, 
time of flight (ToF) and triangulation, which can natively capture 
the depth information that has to be inferred in passive 
techniques [197]. In structured light, different light patterns are 
projected onto the object and a camera captures the reflected 
patterns from a different angle. By analysing the distortion or 
curvature information from the pattern, the 3D geometry of the 
object can be reconstructed. The depth determination from a ToF 
image is based on the principle of the speed of light. By 
computing the travel time or phase delay of the reflected light 
(i.e., a laser pulse), the depth information of each point on the 
object can be obtained and added to the traditional 2D image. In 
triangulation, a light beam is first projected on to the surface of 
the object and a charge-coupled device (CCD) at a different angle 
receives the reflected light, as illustrated in Fig. 7. As the surface 
of the object moves away from its initial position, the relative 
position of the reflected laser point on the CCD sensor also moves 
and the distance of the object surface to the reference point can 
be determined through geometrical relations. Radar system also 
falls into the category of active sensing. Compared with 
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structured light or ToF, the radar-based technology is not affected 
by lighting conditions. 

 

 
Fig.	7. Illustration of laser triangulation [197]. 

 
Contact-less sensing has a wide range of applications in HRC. 

Wang et al. [254] analysed the sequence of traditional 2D images 
of human motion in assembly for context-aware recognition. A 
method to monitor the degradation of industrial robots was 
introduced by Qiao and Weiss [205], by coordinating different 
cameras to measure 7D information (time, X, Y, Z, roll, pitch, and 
yaw). In this research, two main criteria are implemented: (1) the 
pose accuracy (position and orientation accuracy) of a robot 
system's tool centre position (TCP), and (2) the ability of a robot 
system’s TCP to remain in position or on-path when loads are 
applied. Project Soli, a gesture recognition technology based on 
miniature radar to reach sub-millimetre accuracy for motion 
detection, is developed by Google. It allows a human hand to 
become a natural, intuitive interface for a robot [255]. Berri et al. 
[20] demonstrated the capability of human face tracking as well 
as gesture recognition using a web camera and a depth camera 
from Microsoft Kinect, respectively. The depth camera in Kinect 
uses an infrared projector for active depth sensing [132]. 

 
3.2.	Smart	sensor	network	and	sensor	data	fusion	

Different sensing techniques provide different aspects for 
varying interests [130]. For example, Fig. 8 summarises the 
sensing techniques for human hand gesture recognition. This 
section provides an overview of the techniques and a wide range 
of applications of sensor data fusion and integration reported for 
HRC, where measurement accuracy and robustness are improved 
and complex assembly procedures are coordinated. 
 

Sensors for Gesture 
Recognition
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Fig.	8. Multimodal sensors for gesture recognition. 

 
3.2.1.	Localisation,	mapping	and	tracking	in	HRC	

For robots to be truly interactive, they must have the ability to 
navigate the physical world autonomously to assist human 
operators. This leads to an application in localisation, mapping 
and tracking. Probabilistic data fusion methods are generally 
based on Bayes’ rule for combining the prior and the observed 
information. They provide a means of inferring about an object 
described by a state, give the observations, and are the dominant 
techniques used [102,223]. Probabilistic data fusion requires the 
assumption of conditional independence among the observations. 
Based on this assumption, the object state update process enables 
asynchronous sensor data fusion [52]. As the task of localisation, 

mapping and tracking is most commonly based on a contact-less 
sensing system, which is subject to occlusions and environmental 
variation, e.g., changing lighting condition, the probabilistic data 
fusion provides enhanced robustness to these adverse conditions. 
For example, the method will still work even if some sensors stop 
working. Among the probabilistic fusion techniques, Kalman	filter 
(KF) and Particle	filter (PF) are the most widely used [223]. 

The combined localisation and mapping problem has been 
known as simultaneous localisation and mapping (SLAM), which 
refers to the simultaneous estimate of both robot and landmark 
locations, as shown in Fig. 9. Durrant-Whyte and Bailey [52] 
reported the SLAM solutions based on extended Kalman filter 
(EKF) and PF using vision system data. Canedo-Rodríguez et al. 
[31] argued that the SLAM based on vision system alone usually 
fails when there is not enough geometric variation (such as 
indoors) and when people are walking around as they cause 
occlusions. They proposed a PF-based sensor fusion method from 
data generated using multimodal sensors such as laser 
rangefinder, Wi-Fi, cameras and magnetic compass to overcome 
the limitation. Performance from different combinations of 
sensors were evaluated. The authors also discussed different 
aspects of enhancement provided by specific sensor. For example, 
the compass helps in terms of refining the orientation. 
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Fig.	 9. The SLAM problem. x: robot state vector (i.e., position and 
orientation); u: control vector; m: landmark location; z: robot observation 
of landmark location. Subscript indicates time step [52]. 
 

An accurate and reliable knowledge of the position and 
orientation of the robot component, especially the robot arm, is 
essential to effective operation and human safety. Position and 
orientation estimation of robot has been another active area 
where sensor data fusion finds applications. Liu et al. [129] 
proposed a multi-sensor combination measuring system (MCMS) 
to improve the pose accuracy of the robot arm. In particular, a 
closed-loop measurement system was set up. A high precision 
industrial 3D photogrammetry system was used to dynamically 
track and measure the robot pose in real time. The 
photogrammetry system is composed of 4 motion-sensitive CCD 
cameras set on top of the robot. KF and multi-sensor optimal 
information fusion algorithm (MOIFA) were investigated in the 
research to improve accuracy. An up to 78% improvement in 
pose accuracy of the robot manipulator was reported. Moreover, 
a joint-angle estimation method using low-cost inertial sensors 
was presented by Cantelli et al. [32]. Specifically, three cascaded 
EKFs have been used to estimate the joint angles by the fusion of 
the outputs of tri-axial gyroscopes and accelerometers. 

As robots are becoming more mobile, the ability to differentiate 
humans from the environment and being able to track and follow 
their motion is of paramount importance in HRC. Colombo et al. 
[44] proposed a wearable device (for the user) with tri-axial 
accelerometer, gyroscope, magnetometer and a network of 
external camera nodes to achieve position tracking of the user. 
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The user position is measured by cascading two EKFs. Outside the 
probabilistic method, a less intrusive method was proposed by 
Knoop et al. [103] for human tracking which fuses 2D and 3D data 
using the extended Iterative Closest Point approach. The sensors 
deployed include a colour camera, time-of-flight camera and a 
laser rangefinder, which were placed on the robot. This method is 
marker-less and gives complementary information about the 
tracked body, enabling not only tracking of depth motions but 
also turning movements. The approach of vision and inertial data 
fusion was investigated by Martinelli [153], which consists of a 
monocular camera, three orthogonal accelerometers and 
orthogonal gyroscopes. A closed-form solution has been derived 
which expresses the states in terms of the sensor measurements. 
Other notable alternatives to the probabilistic data fusion include 
fuzzy logic and Dempster-Shafter method [223]. 

 
3.2.2.	Human‐robot	collaborative	assembly	

The complimentary nature of different sensing modalities, such 
as vision, voice and pressure/force, motivates the consideration 
of synergistically integrating them for improved effectiveness and 
efficiency in the advancement of symbiotic HRC assembly 
towards human-like capabilities. As an example, a vision system 
allows the robot to gain surrounding information such as 
environmental geometry and human intention, which is crucial 
for trajectory and action planning/control as well as collision 
avoidance. On the other hand, the perception of pressure and 
force enables compliance to the local constraints, required by 
specific tasks. This indicates that complex assembly procedures 
can be coordinated autonomously for enhanced HRC. 

One application of sensor integration is the screwing task 
proposed by Shauri et al. [221], where the trajectory of the robot 
arm is controlled based on the measurement from the vision 
system and the robot hand configuration is adjusted based on the 
pressure/force data. The vision/force integration is also explored 
in the context of collaborative screw fastening [40], where the 
data from Kinect, black/white camera and force sensor, deployed 
to track human hand, screw and contact force, respectively, are 
used alternately for robot control. De Gea Fernández et al. [62] 
extended sensor data integration from IMU, RGB-D (red, green, 
blue, depth) camera and laser scanner to robot whole-body 
control. The RGB-D and laser scanner are responsible for human 
tracking while the IMU, integrated into the operator’s clothes, 
recognises the human intention through gestures. 

Further application of data fusion/integration in HRC has been 
reported by GarcÍa et al. [61]. In their research, data from 
resolvers/encoders, a wrist force/torque (F/T) sensor and an 
inertial sensor were fused through a robot tool dynamics model 
and extended Kalman filter. The goal was to estimate the contact 
F/T and eliminate the effects of non-contact F/T, such as those 
produced by inertial and gravitational effects. Koch et al. [104] 
presented an approach that combines vision, force and 
acceleration sensor data for contour following tasks (such as 
machining using an industrial robot). The vision data drives the 
robot along the workpiece while the force-feedback control 
maintains the desired contact force, the acceleration sensors are 
used to compensate the force measurements for inertial forces, 
and the contact forces between the robot and the environment 
are used to adjust the measurements from the triangulation-
based vision system to compensate for the environmental 
variation or deformation. Pfitzner et al. [199] fused structured 
light with a ToF camera for 3D surface mapping of objects by 
determining the suitable transformation between the two 
sensors. Héliot and Espiau [78] proposed the fusion of thigh 
inclination, shank inclination and insoles pressure of human walk 
for improved phase estimation in cyclic motion using KF as well 
as a dynamical system approach. In HRC, the improved phase 
information can be used for tele-operating robot synchronised 
with external signals, such as real human walk. A tool for 
supporting human operators in shared industrial workplaces has 

also been reported in the form of a software application for 
wearable devices, such as smartwatches, which provides 
functionalities for direct interaction with the robot [67]. The 
results indicate that the approach can significantly enhance the 
operators’ integration in an HRC assembly system. 

4.	Active	collision	avoidance	

4.1.	Safety	standards	and	systems	

Human safety is of upmost importance in any HRC system. Fig. 
10 summarised the causes of potential accidents in HRC into 
three categories: (1) engineering failures, (2) human errors, and 
(3) poor environmental conditions [33,239]. Engineering failures 
include the failures of a robot’s components. For example, if the 
sensor detects that the distance between a human operator and a 
robot can be hazardous, but the control system does not respond 
properly due to faulty algorithm, it may lead to a collision. Human 
errors in an accident include design mistakes and unintended 
interaction errors. Design mistakes are caused by faults or defects 
introduced during design, construction, or any post-production 
modifications to a robotic cell. Interaction errors are caused by 
faults introduced by inadvertent violations of operating 
procedures. Environment factors refer to extreme temperature, 
poor sensing in difficult weather or lighting conditions, which is 
common in vision-based approaches. All of these failures can lead 
to incorrect response by both the robot and human operator. 

 
Failure

Engineering Human Environment

Effector

Sensor

Control
System

Power

Communications Design Interaction

Mistake Slip

 

Fig.	10.	Taxonomy of failures, adapted from [33] and [239]. 
 

Standards and directives aim to standardise the design and 
prevent engineering failures from the design phase (Tables 24). 
In general, ISO 13855 [86] defined the positioning of safeguards 
with respect to the approaching speeds of parts of a human body. 
As one type of machinery, robotic cells shall have the minimum 
distances to a hazard zone from the detection zone or from 
actuating devices of safeguards. However, differences between 
HRC assembly and conventional industrial manipulation requires 
that safety and reliability standards be rethought [25,215]. Direct 
contact is inevitable in HRC and the minimum distance and 
hazard zone need to be re-defined. As a result, ISO/TS 15066 [85] 
was published to define the biomechanical limits for HRC. The 
main output is the limit of transferred energy and moving speed. 

Table	2. EU directives [163]. 

Title Description 

2006/42/EC Machinery Directive (MD) 

2009/104/EC Use of Work Equipment Directive 

89/654/EC Workplace Directive 

2001/95/EC Product Safety Directive 

2006/95/EC Low Voltage Directive (LVD) 

2004/108/EC Electromagnetic Compatibility Directive (EMC) 

Table	3. Indicative general standards [199]. 

Title Description 

EN ISO 12100 Safety of machinery – General principles for design – Risk 
assessment and risk reduction 

EN ISO 13949-1/2 Safety of machinery – Safety-related parts of control systems 
– Part 1: General principles for design, Part 2: Validation 

EN 60204-1 Safety of machinery – Electrical equipment of machines – 
Part 1: General requirements 
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EN 62061 Safety of machinery – Functional safety of safety-related 
electrical, electronic and programmable electronic control 
systems 

Table 4. Robot standards [199]. 

Title Description 

EN ISO 10218-1 Robots and robotic devices – Safety requirements for 
industrial robots – Part 1: Robots 

EN ISO 10218-2 Robots and robotic devices – Safety requirements for 
industrial robots – Part 2: Robot systems and integration 

ISO/PDTS 15066 Robots and robotic devices – Collaborative robots 

 
From the design’s perspective, Bdiwi et al. [17] classified the 

human–robot interaction (HRI) into four levels. In every level, 
different kinds of safety functions are developed, linked and 
analysed. Kulic and Croft [115,114] proposed planning and 
control strategies based on explicit measures of danger during 
interaction. The level of danger was estimated based on factors 
influencing the impact force during a human-robot collision, such 
as the effective robot inertia, the relative velocity and the distance 
between the robot and the human. 

In recent years, many approaches have tackled the safety issues 
to guarantee the human safety assuming that the physical contact 
is unavoidable. Michalos et al. [163,160] summarised the robot 
safety in three categories, i.e., crash safety (only ‘safe’/controlled 
collisions allowed), active safety (stopping the operation in a 
controlled way), and adaptive safety (intervening in the operation 
of and applying corrective actions). Based on assembly process 
specifications, different control, safety and operator support 
strategies have to be implemented in order for the human safety 
and the overall system’s productivity to be ensured. 

Based on the control method, Heinzmann and Zelinsky [77] 
described the formulation and implementation of a control 
strategy for robot manipulators which provides quantitative 
safety guarantees for the user of assistive robots. A control 
scheme for robot manipulators was developed to restrict the 
torque commands of a position control algorithm to values that 
comply to pre-set safety restrictions. Yamada et al. [260] 
evaluated the human pain tolerance for the purpose of 
establishing a human safety space. Then they attained velocity 
reduction on the robot side activated by the incipient contact 
detection at the surface, and gave the human side an interval 
margin for the purpose of any reflexive withdrawal motion to 
avoid more severely interactive situations where the contact goes 
beyond the limit of safety space. Similarly, Haddadin et al. [69,71, 
72] summarised a systematic evaluation of safety in HRI, covering 
various aspects of significant injury mechanisms. Evaluation of 
impacts between robot and human arm or chest, up to a 
maximum robot velocity of 2.7 m/s, were presented to give the 
operators a ‘safety’ feeling [73]. They also approached the safety 
problem from a medical injury analysis point of view in order to 
formulate the relation between robot mass, velocity, impact 
geometry and resulting injury qualified in medical terms [70]. 

From an energy perspective, Laffranchi et al. [116] presented 
an energy-based control strategy to be used in robotic systems 
working closely or cooperating with humans. The presented 
method bounds the dangerous behaviour of a robot during the 
first instants of the impact by limiting the energy stored in the 
system to a maximum imposed value. Meguenani et al. [158] 
proposed physically meaningful energy related safety indicators 
for robots sharing their workspace with humans. The kinetic 
energy of the robotic system and the amount of potential energy 
that is allowed to be generated within an HRC system during 
physical contact are utilised, to limit the amount of dissipated 
energy in case of collision and modulate the contact forces, 
respectively. 
 
4.2. HR collision detection 

It is crucial to detect any collision between a robot and a human 

operator before any severe accident occurs. Different approaches 
have been taken by researchers in the past years, many of whom 
detect the force and contact in real time as they directly relate to 
a potential collision. Fig. 11 shows the classification of undesired 
direct contact scenarios between a human and a robot. 

 

 

Fig. 11. Classification of undesired contact scenarios between a human 
and a robot [69]. 

 
Some of the research modifies the fundamental robot structure. 

The Institute of Robotics and Mechatronics of German Aerospace 
developed a light-weight robot based on the integrated torque-
controlled mechanism [26,137]. The integrated joint torque 
sensors are deployed in all robotic joints, and potentiometers are 
added to the common motor position sensors, allowing for the 
implementation of safety features. Based on variable stiffness 
actuation (VSA) motors, Tonietti et al. [231] proposed to improve 
the actuators control in real-time. Both the reference position and 
the mechanical impedance of the moving parts in the machine are 
manipulated in such a way to optimise the performance while 
intrinsically guaranteeing safety. Similarly, Park et al. [190] 
proposed a safe joint mechanism composed of linear springs and 
a modified slider-crank mechanism achieved by passive 
mechanical elements. Geravand et al. [64] developed a closed 
control architecture to detect the collision based on the outer 
joint velocity reference to the robot manufacturer’s controller, 
together with the available measurements of motor currents and 
joint positions. An online processing of the motor currents allows 
for distinguishing between accidental collisions and intended 
human-robot contacts, so as to switch the robot to a collaboration 
mode when needed. 

In parallel, the forces applied can be limited by an industrial 
robot manipulator during contact without the use of external 
sensors [105,48,252]. Using a time-invariant dynamic model in 
combination with artificial neural networks, the current and 
torque required by each joint for a given trajectory are estimated 
with satisfying precision. Focusing on the torque changes at the 
joints, De Luca et al. [141,143] developed a physical collision 
detection/reaction method based on a residual signal, and a 
collision avoidance algorithm based on depth information of the 
HRC. If a collision takes place, a momentum-based method can 
apply the reaction torque to the joints, reduce the effective robot 
inertia seen at the contact, and let the robot safely move away 
from the collision area [139,140,142]. Morinaga and Kosuge 
[173] proposed a collision detection system based on a nonlinear 
adaptive impedance control law. The system detects collisions 
based on the difference between the actual input torque to the 
manipulator and the reference input torque. The manipulator 
stops when a collision is detected. Similarly, Lu et al. [138] 
developed a neural network and model-based method to detect 
the collision forces and disturbance torques on the joints of a 
robot manipulator. 

Some other researchers utilised machine vision to develop 
image-based inspection mechanisms to detect potential collisions, 
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based on normal 2D cameras. Lin [127] used polyhedrons to 
model a non-convex object and refined polyhedral approximation 
for a curved boundary as well, to quickly detect the collision from 
both convex and non-convex objects. In 2002, Ebert and Henrich 
[55] presented a collision-detection method based on images 
taken from several stationary cameras in a work cell. The 
collision test works entirely based on the images and does not 
construct a representation of the Cartesian space. Krüger et al. 
[108] utilised multiple 2D cameras to monitor the workspace, and 
then calculated a three-dimensional model of the scene. This 
model is used to determine the spatial distance between the 
worker and the robot and therefore governs the decision whether 
to intervene in the control programme of the robot. 

In recent years, depth sensor has become a popular approach to 
detecting the collision between a robot and unknown objects (in 
most cases, human operators) [34], as it can output the dynamic 
reflection of objects in 3D models directly. Fischer and Henrich 
[58] developed a method to detect the minimum distance to any 
obstacle, which is used to limit the maximum velocity. Flacco et al. 
[59] developed a fast method to evaluate distances between the 
robot and possibly moving obstacles (including humans), based 
on the depth data. The distances are used to generate repulsive 
vectors that are used to estimate the obstacle velocity and control 
the robot accordingly. 

Combining virtual 3D models of robots and real camera images 
of operators, an augmented environment can be established to 
achieve real-time active collision avoidance [251]. Similarly, 
Morato et al. [172] utilised multiple Kinects to build an explicit 
model of the human and a roll-out strategy, which can simulate 
the robot’s trajectory in the near future. The real-time replication 
of the human and robot movements inside a physics-based 
simulation of the work cell is established, which enables the 
evaluation of the human-robot separation in a 3D Euclidean space 
and can be used to generate safe motion goals for the robot. 

 

4.3.	Active	collision	avoidance	

An HRC environment requires the coexistence of both humans 
and robots. The consistent safety of humans in such environment 
is paramount, including both the passive collision detection and 
active collision avoidance by monitoring human movements and 
controlling the robots, respectively, to achieve human safety at 
all-time [218]. 

Early research on collaborative robots was reported by Bi et al. 
[22], which was extended with a dynamic control model for 
better performance by Bi and Wang [23]. An effective online 
collision avoidance in an augmented environment, where sensor-
driven virtual 3D models of robots and real images of human 
operators from depth cameras are used for monitoring and 
collision detection [166,264]. 

Several recent approaches for HRC have also been reported. 
Argavante et al. [1] and Monje et al. [169] introduced a control 
system for humanoid robot to carry out a joint operation with an 
operator. Takata and Hirano [227] presented a solution that 
adaptively allocates human operators and industrial robots in a 
shared assembly environment. Bobka et al. [27] developed 
specialised simulation tools using real-world geometrical data to 
investigate different algorithms and safety strategies. Chen et al. 
[37] introduced an optimisation process with multiple objectives 
based on simulation for assignment and strategy generation of 
human-robot assembly tasks. Krüger et al. [111] highlighted the 
merits and available technologies of HRC assembly cells. Using a 
human-robot shared approach can reveal both the reliability of 
robots and the adaptability of humans [244]. Anton et al. [6] used 
the sensor’s depth data from the environment and then the 
processing power of a workstation to detect humans and robots. 
Using skeleton tracking, a software agent is able to monitor the 
movements of the human operators and robots, to detect 
possible collisions, and to stop the robot motion at the right 

time. Augustsson et al. [11,12] presented an approach to 
transferring data to the robot communicating the human’s 
position and movements, forcing the robot to respond to the 
triggers, and visualising the information about the settings and 
assembly order to the human. 

On the other hand, such a system can provoke additional stress 
to human operators if implemented in poorly designed assembly 
lines. Therefore, Arai et al. [7] measured an operator’s mental 
strain caused by the location and speed of a robot with respect to 
the operator, intending to establish a beneficial hybrid assembly 
environment. Furthermore, Kulic and Croft [113] used robot 
motion as a stimulus to estimate the human effective state in real 
time; the developed system analysed the human biological 
indicators including heart pulse, perspiration level and facial 
expression. 

Several recent approaches attempted to successfully detect and 
protect operators in locations shared by humans and robots. Two 
methods were widely considered: (1) using a vision system to 
perform 3D inspection [112,265] through 3D models as well as 
skin colour detection to perform 3D tracking of human body in a 
robotic cell, and (2) inertial sensor-based approach [45] using 
geometry representation of human operators through a special 
suit for motion capturing. Real-world experiments indicate that 
the latter approach may not be considered as a realistic solution 
as it relies on the existence of a particular uniform with sensing 
devices and the inadequacy of capturing the movement around 
the person wearing the uniform, leaving the neighbouring objects 
unsupervised. This can create a safety leak as there may be a 
possibility of collision between a moving object and a standing-
still operator. More details of varying sensing methods can be 
found in the literature surveys [21,263]. 

Among vision-based methods, the efficiency of collision 
detection has been the motivation for many researchers. For 
example, Gecks and Henrich [63] implemented a multi-camera 
collision detection system, whereas a high-speed emergency stop 
was utilised in the work by Ebert et al. [54] to avoid a collision 
using a specialised vision chip for tracking. A projector-camera 
based approach was presented by Vogel et al. [241], which 
consists of defining a protected zone around the robot by 
projecting the boundary of the zone. The approach is able to 
dynamically and visually detect any safety interruption. Tan and 
Arai [228] reported a triple stereovision system for capturing the 
motion of a seated operator (upper-body only) by wearing colour 
markers. Nonetheless, relying on the colour consistency may not 
be suitable in uneven environmental lighting conditions. In 
addition, the tracking markers of mobile operators may not 
appear clearly in the monitored area. Instead of markers, a ToF 
(time-of-flight) camera was adopted for collision detection [216], 
and an approach using 3D depth information was proposed by 
Fischer and Henrich [58] for the same purpose. Using laser 
scanners in these approaches offers suitable resolution but 
requires longer computational time, since each pixel or row of the 
captured scene is processed independently. On the other hand, 
ToF cameras provide high performance solution for depth images 
acquisition, but with insufficient level of pixel resolution (capable 
of reaching 200200) and with rather high cost. Recently, Rybski 
et al. [213] acquired data from 3D imaging sensors to construct a 
three-dimensional grid for locating foreign objects and 
identifying human operators, robots and background. Ahmad and 
Plapper [2] also introduced a ToF sensor-based information 
collection and intelligent decision methodology in order to 
localise the unknown, un-programmed obstacles and propose a 
safe peg-in-hole. More recently, an integrated approach for 
collision avoidance using the depth information from Kinect 
sensors was reported [59,60,218]. Depth image processing for 
collision avoidance is illustrated in Fig. 12. 

In addition, Dániel et al. [46] used both an ultrasonic sensor and 
an infrared proximity sensor directly on a robotic arm to avoid 
collisions with industrial considerations, i.e., (1) redundant 
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robotic arms, (2) reconfiguration of the robot not with moving 
the end-effector during avoidance, and (3) automatic stop and 
warning function when the avoidance is impossible without 
moving the end-effector. Moreover, other researchers like 
Cherubini et al. [39] incorporated both F/T sensors and vision 
systems into a hybrid assembly environment to provide a direct 
interaction between a human and a robot with safety protection. 

 

 

Fig.	 12. Procedures and outcomes of depth image processing, adapted 
from [218]. 

 
Calinon et al. [30] proposed an active control strategy based on 

task space control with variable stiffness, and combined it with a 
safety strategy for tasks requiring humans to move in the vicinity 
of robots. A risk indicator for human-robot collision is also 
defined, which modulates a repulsive force distorting the spatial 
and temporal characteristics of the movement according to the 
task constraints. 

Sensor data can be used for programming a robot’s motion and 
controlling the program’s execution in a fenceless setup [151], as 
shown in Fig. 13. Safety is ensured with the use of 3D sensing 
devices, while the tasks’ coordination is managed by the so-called 
station controller. The programming approach combines both 
offline and online methods, in an intuitive manner. Schlegl et al. 
[217] proposed a sensor and control method that mimics the 
behaviour of whiskers by means of capacitive sensors to achieve 

short response time. After the installation of capacitive proximity 
sensors, robots can sense when they approach a human (or an 
object) and react before they actually collide. Osada and Yano 
[187] proposed a novel collision avoidance method for meal-
assisting robot with a SwissRanger SR3000 3D camera under a 
dynamic environment. Similar to an assembly environment, the 
potential map using diffusion equation is employed to control the 
behaviour of the manipulator to avoid collision between the 
manipulator and an obstacle or a user. 

 

 
Fig.	13. (a) Human signals the start of a task, (b) human task execution, 
and (c) human ends the task [151]. 

 
In addition, other researchers focused on combining different 

sensing techniques to track humans and robots on shop floors 
[46,207,135,212,157,259] which used both ultrasonic and 
infrared proximity sensors to establish a collision-free robotic 
environment. Among commercial systems of safety protection 
solutions, SafetyEYE [200] of Pilz is a popular choice. It 
computes 2½D data of a monitored region using a single stereo 
image and detects violation of predefined safety zones. Accessing 
into any of the safety zones would trigger an emergency stop of 
the monitored environment. However, these safety zones cannot 
be updated during robotic operations. 

5.	Dynamic	task	planning	

5.1.	Context	awareness	and	resource	monitoring	

Assembly tasks shared by humans and robots in HRC assembly 
are dynamic in nature [253]. They are often planned for and 
assigned to available and capable resources (humans and robots) 
at the time of collaboration [188]. This requires constant resource 
monitoring for better context awareness. 

Lee and Rhee [121] developed a context-aware 3D visualisation 
and collaboration platform in three layers as shown in Fig. 14. 
The context layer maintains contexts from various resources. It 
facilitates reasoning and execution of those contexts for providing 
context-aware services. The interface layer supports interactions 
between physical devices (or software modules) and the context 
layer. Thus, all the devices and services can be easily registered, 
searched, and executed. The service layer provides various task-
related services, e.g., augmented reality (AR) based visualisation, 
collaboration services, and pre- and post-augmented services 
considering the contexts. On the other hand, resource monitoring 
is supported by sensors, 3D models, point clouds and remote 
computing resources [23,166,245,247,248,250,258,214]. 

 

 

Fig.	14. Context-aware information framework [121]. 
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Fig.	16. Deep learning for human motion recognition and prediction [254]. 
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Fig.	17. Sample video frames (top); sequence of recognised human motions (middle); sequence of identified objects (bottom) [254]. 

Within the context, an efficient HRC system should be able to 
understand a human operator’s intention and assist the operator 
during assembly [208]. Since the operator’s (work-related) 
motions are limited and repetitive, an assembly task can be 
modelled as a sequence of human motions. Existing human 
motion recognition techniques can then be applied to recognise 
the human motions associated with an assembly task. Mainprice 
and Berenson [146] categorised human actions through the use 
of Gaussian Mixture Models (GMMs) and Regression (GMR). 
During task execution, the category that best fits the real 
movements of the human is selected and used as a predictor of 
the human movements. This prediction is finally considered in 
order to generate the optimal robot trajectory. In parallel, Liu and 
Wang [133] modelled the recognised human motions in a Hidden 
Markov model (HMM). A motion transition probability matrix is 
then generated after solving the HMM. Based on the result, 
human motion prediction becomes possible. The human intention 
is analysed with the input of predicted human motion, which can 
be used as input for assistive robot motion planning. The 
industrial robot can thus be controlled to support and collaborate 
with the human based on the planned robot motions. The 
workflow of human motion prediction in HRC is shown in Fig. 15.  
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Fig.	15. Workflow of human motion prediction in HRC [133]. 

Recently, deep learning has gained attentions as a reliable and 
practical method for human motions recognition and prediction 
for timely context awareness [14,208,131]. Visual observation of 
humans’ motion provides informative clues about the specific 
tasks to be performed, thus can be used to establish reliable 
context awareness. Wang et al. [254] investigated deep learning 
as a data-driven technique for continuous human motion analysis 
and prediction, leading to improved robot planning and control in 
accomplishing a shared task. Fig. 16 shows the architecture of a 
convolutional	neural	network for human motion recognition and 
prediction. An engine case study was carried out to validate the 
feasibility of the proposed method, as shown in Fig. 17. 

 
5.2.	Dynamic	assembly	planning	

5.2.1.	Task	planning	and	scheduling	

In HRC assembly like ROBO-PARTNER	[162], the	focus is given 
to combining robot strength, velocity, predictability, repeatability 
and precision with human intelligence and skills to achieve a 
hybrid solution that facilitates the safe cooperation of operators 
with adaptive robotic systems. As part of assembly planning, task 
planning and scheduling is essential for on-demand assembly 
operations (Fig. 18). 

The aim of task planning and scheduling is to allocate and 
dispatch the tasks to be performed and required by the assembly 
process to the available resources (e.g., workers, machines and 
robots), so that the assembly operations are optimised according 
to a given criterion (e.g., time and energy consumption [167]). 
Several constraints have to be considered, such as the ability of 
the resources to perform a task, the availability of all the 
necessary tools, the time required by each of the resource for 
performing the task [227,95,242,183,28,175]. 

In symbiotic HRC assembly, real-time planning and scheduling 
play a key role in the generation of a plan and its robust execution 
[186]. Indeed, in comparison to the planning and scheduling 
problems of fully automated systems [184,230], the presence of 
the human in the loop introduces a temporal and controllable 
uncertainty. On one hand, the time required to execute a task by a 
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human is not predefined and depends on the expertise of the 
worker, on his/her state of health, attention and fatigue. On the 
other hand, the presence of the worker in the process together 
with the need for his/her safety, comfort and ergonomics may 
require a continuous and dynamic adjustment of the assigned 
tasks. The adjustments, small or relevant on the basis of the 
specific situation, can lead to the assignment of a new task to the 
robot (e.g., the posture assumed by a worker in the execution of a 
task may make the goal of the robot reachable or unreachable to 
perform a second simultaneous task) or to the modification of 
robot task trajectory (e.g., the robot path and/or the robot speed 
have to be modified to avoid a collision or make the human 
worker more comfortable). 

 

 
Fig.	18. ROBO-PARTNER in automotive industry [162]. 

In order to cope with the presence of human in the loop, the 
task plan is generally constructed at an abstract, high and discrete 
level and continuously evaluated to decide how and when to 
execute a planned task, considering temporal/causal constraints, 
spatial/geometric constraints and controllable/uncontrollable 
activities. The definition of the plan can rely on Planning Domain 
Definition Language (PDDL) [155,65,128] or on timeline planning 
approaches [176,66,16]. PDDL is the standard encoding language 
for ‘classical’ planning tasks, based on a domain – containing 
predicates and actions for world definition – and on a set of 
objects – describing initial state and goal specification. Timeline 
planning is based on the use of a set of timelines. Each timeline is 
characterised by a sequence of states, i.e., temporally extended 
predicates consisting of a proposition and a list of parameters, i.e., 
start, end, and duration times. States are associated with 
temporal intervals (with given lower and upper bounds), instead 
of exact temporal occurrences. Relationships among the timelines 
are managed by a set of domain rules (also known as 
compatibilities) that incorporate explicit constraints on the 
parameters of the states. Despite PDDL-based methods, timeline-
based approaches [122,204,15] rely on an explicit representation 
of time and its temporal constraints, allowing the simultaneous 
resolution of planning and scheduling problems while taking into 
account coordinated and synchronous tasks as well as temporal 
flexibility and uncertainty. 

Even if based on timelines, the majority of the planners and 
schedulers available in the literature today are unable to manage 
uncontrollable events and/or humans without strongly relying on 
re-planning mechanisms, thus showing limited applicability in 
HRC applications. Controllability issues, initially investigated by 
Vidal [240], have been further investigated by others through the 
generation of dispatchable execution approaches [53,174]. A 
hierarchical timeline-based planning approach was developed as 
a general-purpose planning framework called EPSL (extensible 
planning and scheduling library) [154,186]. The framework 
models a human as a planned variable where all values are 
uncontrollable, thus getting closer to the optimisation of the 
planning and scheduling problems in HRC. This approach was 
extended by taking into account and optimising robot motion 
planning strategies [196]. 

5.2.2.	Robot	motion	planning	

In the last decade, a large part of the literature has focused on 
how to generate robot trajectories for human-robot collaborative 
tasks. In such a context, literature may be divided into two main 
groups: online motion planning and offline motion planning 
[222]. In offline motion planning, a robot trajectory is defined 
offline or just before its execution, thus requiring possible online 
adjustments in terms of speed, acceleration or path in order to 
guarantee human safety and avoid possible dynamic obstacles in 
the scene. In online motion planning, the robot is instructed with 
runtime commands heavily depending on the current situation 
(e.g., a locally optimal robot speed or desired goal is evaluated 
and then sent to the robot). 

Among offline methodologies, Mainprice et al. [147] worked on 
the automatic generation of robot paths when the robot has to 
hand an object over to a human. A robot trajectory is planned on 
the basis of a map representing human’s visibility, human’s arm 
comfort and human-robot distance with the idea that the robot 
has to stay as visible as possible and as far from the human as 
possible, and that the goal has to be in a comfortable position to 
be reached by the human. Pandey and Alami [189] presented 
another approach based on the generation of maps. The method 
is to identify an optimal robot trajectory considering two maps 
representing both human and robot perceived reachability and 
visibility. 

Among the online planning methodologies, Lasota et al. [120] 
proposed the use of a Markov Decision Process (MDP), where 
human actions and the process of human decision making are 
modelled as a stochastic transition function influencing real-time 
robot actions and states. Similarly, McGhan et al. [156] adopted 
an MDP to model unsynchronised human-robot collaborative but 
independent tasks (i.e., the human and the robot have to work on 
different pre-allocated tasks sharing the same workspace). They 
proposed the adoption of two MDPs: the first MDP is used for 
predicting the human behaviour, and the second MDP is used to 
determine the robot action. The use of a Partially Observable 
Markov Decision Process (POMDP) was proposed by Karami et al. 
[98] in order to determine the best robot action, when the belief 
state is represented by human’s intention. The human and the 
robot actions are unsynchronised, i.e., the human and the robot 
have to work in the same workspace on different uncorrelated 
goals. Extending the applicability to a higher number of human 
possible tasks and to industrial robots, Pellegrinelli et al. [195] 
introduced a framework for human-robot workspace sharing 
(unsynchronised tasks) based on hindsight optimisation [92]. The 
approach defines a distribution probability on human’s goal on 
the basis of the movements of the human’s hand. This distribution 
probability is used by a POMDP to define the belief state of the 
robot and to select the best robot action (i.e., twist). 

When dealing with HRC assembly tasks, offline and online 
approaches for robot trajectory generation present advantages 
and disadvantages. On one hand, online generated trajectories are 
more flexible than offline generated trajectories and able to easily 
take into account variations in the environment and in the human 
behaviour. On the other hand, the obtained trajectories may have 
smoothness problems and can lead to frequent robot failures 
(generally due to high-exerted force/accelerations). Moreover, 
the estimation of the robot execution time represents a critical 
issue currently limiting the applicability of these techniques in 
real industrial contexts for which the task time is a relevant 
constraint. Indeed, the continuous definition of robot actions, and 
the continuous re-planning of robot paths and/or speed make it 
hard to be aware of the time required by the robot to execute the 
assigned task. This information is however of great interest to 
optimally plan and schedule assembly tasks. A first attempt to 
solve this issue was proposed by Pellegrinelli et al. [195,196], 
where the robot execution time is estimated on the basis of 
statistical methods taking into account human behaviours and a 
predefined robot path. 
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5.3.	On‐demand	job	dispatching	

Tsarouchi et al. [233] proposed a method for task planning in a 
hybrid assembly cell which includes both humans and robots. A 
model is structured addressing in a unified manner both humans 
and robots as the cell’s resources. The sequence of the human and 
robot tasks is structured in three levels (Fig. 19). The evaluation 
of the alternative human and robot task plans is based on multi-
criteria, such as average resource utilisation, mean flow time, and 
ergonomics. The proposed method was implemented into a 
graphical software tool and applied to an automotive case study, 
comprising a dual arm robot and a human operator. 

 

 
Fig.	19. Hybrid cell model and workload model [233]. 

 
Job rotation is the common practice in industry. It provides 

employees with a more engaging work environment, resulting in 
far less monotonous and repetitive tasks. A dynamic job rotation 
tool would allow for the efficient allocation of assembly tasks to 
suitable operators, at any point of time, leading to more balanced 
workload distribution and thus, achieving soft ‘dynamic line 
balancing’. A hierarchical approach to multi-criteria and decision-
making algorithms is used for the implementation of the tool. The 
tool can generate alternative rotation schedules and evaluates 
them against predefined criteria [161]. 

Makris et al. [148] discussed the distribution of information in 
real time using pushlets/comet technology. In addition, RFID 
(radio-frequency identification) based identification techniques 
are used to track products and operators on the shop floor in real 
time. This identification triggers the automatic transmission of 
assembly instructions and multimedia materials to handheld or 
stationary terminals, reducing the time required to retrieve and 
assimilate the information. They also discussed the architecture 
design and the implementation aspects of a pushlet-based 
wireless information environment. The system was validated in a 
truck assembly line as shown in Fig. 20. 

 

 
Fig.	20. RFID enabled assembly station [148].	

 
Tsarouchi et al. [233,235] reported a method for the 

coordination of assembly tasks requiring the cooperation of 
humans with a robot. A ROS-based architecture is used. The 
assembly sequence of these tasks and their characteristics were 
modelled in a neutral XML format generated offline. As shown in 
Fig. 21, a ROS-based system was developed for different modules 
to communicate and coordinate their actions through message 

exchange. The human is able to review the past and upcoming 
tasks in a graphical user interface. For the execution of the 
assembly tasks, the Process Simulate tool [224] is used.  

 

 
Fig.	21.	Software system architecture [235]. 

6.	Adaptive	robot	control	

6.1.	Multimodal	programming	

The high effort for conventional (re)programming of industrial 
robots (online and offline) in relation to the decreasing lot sizes 
of customised production motivates the development of robotic 
programming and control with higher degree of adaptability. In 
the recent decades, different scientific approaches have been 
followed in order to integrate intuitive forms of programming 
into robot control based on modular software architectures. 

Especially for SMEs, robot programming and the requirement of 
expert knowledge for robot reprogramming is one of the major 
obstacles for the use of robots in industrial applications. Manual 
online programming, as the major programming method, often 
turns out to be a bottleneck. Typically, training courses for the 
programming of industrial robots take from several days up to 
several weeks [47]. 

In the teach‐in mode, the approach of the targeted pose 
represents an intuitive process of demonstration, although the 
need to press buttons on an operator panel is an obstacle. 
Furthermore, the reached positions finally need to be integrated 
in a textual programme sequence. Play-back programming offers 
a more direct approach of interaction through haptic guidance of 
the robot. The automatic programme generation based on the 
demonstration process leads to a further significant simplification 
of programming. A practical disadvantage is however the limited 
transferability of this programming method to robot systems 
with large workspaces. 

The programming paradigm ‘Programming	 by	Demonstration’ 
(PbD) pursues a comprehensive approach to make the 
programming of industrial robots more intuitive. This refers to 
learning by imitation with the aim of transferring human 
capabilities to the robot. In the meantime, this is a broad field of 
research that often involves the fields of artificial intelligence, 
image processing, path planning and motor control in addition to 
human-robot interaction. At the heart of PbD is the sensorial 
observation (perception) of actions that are usually performed by 
a human user. Based on this information, it is attempted to 
automatically derive a task or a programme for the robot which 
imitates certain behaviours of the action being taken. 

Multimodal intuitive programming offers opportunities for 
robot programming without specialised expert knowledge. 
Multimodality means the use of diverse communication channels 
between human and robot at the same time. Today, this plays an 
essential role for the design of natural human-robot interaction 
and control systems. Different publications [192,19,164,99] have 
shown that multimodal design of industrial control and 
programming systems increases productivity. Precondition for 
this is the application oriented design of the systems. Multimodal 
control systems combine, for example, gestures (finger, hand, 
touch), speech and different forms of feedback. 
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In the project MORPHA, results were achieved between the 
years 2000 and 2003, which showed to be fundamental for 
numerous subsequent research activities in the field of intuitive 
control and programming for industrial and service robots with 
basic programming systems based on speech [211] and touch 
instructions [68,3]. In the project SMErobot [179], speech and 
gesture based instructions were used for intuitive programming 
of industrial robots. Also, haptic guidance of the robots was 
applied for applications in gluing and path welding [262]. In an 
experimental setup, Vogl [243] showed that based on a pointer 
device in combination with AR, the programming time could be 
reduced by over 30% compared to teach-in methods [209]. 

In numerous research projects, gestures are applied as a form 
of nonverbal human communication. According to Pavlovic et al. 
[192], gestures describe intended movements, usually the arms 
and hands, with a manipulative or communicative character (Fig. 
22). Manipulative gestures are used to manipulate objects (e.g., 
translation, rotation, deformation). Communicative gestures 
include a communicative purpose, that is, communicative intent. 
Information is transmitted to a recipient at different levels. The 
gesture-based exchange of information can be considered at the 
pragmatic level (linguistic action), semantic level (meaning of the 
signs) and syntactic level (signs and rules). In a natural HRC 
environment, the communicative gestures are typically 
accompanied by speech. Furthermore, communicative gestures 
can be subdivided into symbols or actions. The symbols have a 
linguistic function, which can either have referential character, 
for example, by the imputation of an object, or a modal function, 
for example, for the symbolic extension of a linguistic statement. 
Gestures whose intention has a direct connection to the 
movement itself can be considered as action gestures. Mimetic 
gestures call for the imitation of the suggested action, whereby 
deictic gestures (pointing gestures) represent a local reference to 
the content of the action. 

 
Gestures

Intended Unintended

Communicative

By pointing Command gestures
(symbolic)

Direction Pose Trajectory Explicit Implicit Pushing Turning

Interaction with virtual
or real objects

Manipulative

 

Fig.	22. Taxonomy of gestures in control and programming of industrial 
robots (adapted from [192]). 
 

Based on the classification of hand gestures according to 
Pavlovic et al. [192], Fig. 22 shows general applications of the 
gesture-based input for controlling and programming industrial 
robots. Main applications of communicative gestures are 
commands for the motion guidance of the robot. In the case of 
motion guidance, a distinction should be made in terms of 
concept and content between manual motion control and manual 
motion specification. 

 

 Motion	control: The robot movements occur simultaneously 
with the movement of the user. The definition of trajectories 
or poses is relative, starting from the current position. 

 Motion	 specification: The user defines the spatial 
parameters of the robot program absolutely. For this, the 
user is located in the workspace of the robot. The transfer of 
the movements to the robot takes place after the interaction 
has ended. 

 
As a further application scenario, control commands can be 

derived from the gesture-based manipulation of objects. In the 
following, the suitability of the various applications of hand 

gestures in the spatial programming system is examined in more 
detail. A detailed discussion of various marker-less gesture-based 
interaction principles in robot programming can be found in the 
literature [117]. 

Ong et al. [185,42] used a mobile AR application based on an 
HMD to spatially define trajectories via a handheld marker. This 
marker is tracked via the camera of the HMD or an external 
stereo camera system. In addition to the visualisation of the 
trajectories, the approach includes a kinematic simulation of the 
trajectories by a virtual robot, which is placed over a real robot. 
The presented programming system is in principle mobile and 
can therefore be used as a process-oriented programming 
method. The definition of trajectories via gesture-based 
modelling is made possible. This approach describes an intuitive, 
natural way of defining trajectories, albeit using the marker as an 
artificial tool. The presented system is, however, limited to the 
definition of trajectories. Spatial manipulation of the paths as well 
as a more complex programme management and interfaces to 
common industrial robot manufacturers are not considered. 
Although a transfer of the gesture-based definition of trajectories 
to the field of application of orbital welding [41] was discussed, in 
practice it is not pursued. Task-oriented spatial programming is 
also not considered. 

 Lambrecht and Krüger [118] introduced a method for spatial 
robot programming by hand and finger gestures based on a 
stationary 2.5D sensor in combination with a mobile 2D camera 
in a handheld device. This approach allows adaptation to defined 
robot trajectories by drawing single points with finger gestures in 
an augmented reality environment (Fig. 23). 

 

 

Fig.	23. Pose adaptation for intuitive spatial robot programming by hand/ 
finger gestures [118]. 
 

In the playback method, the robot is haptically guided by the 
operator. The control system records individual points or entire 
trajectories via the axis coordinates. To flexibly guide the robot, 
force-moment sensors and a corresponding compliance control 
are needed. If these are not available on the addressed robot 
system, movements can also be recorded via an additional 
programming or phantom device and be transferred to the 
addressed robot. A typical application is the programming of 
painting robots. In master-slave programming, movements are 
recorded by passing an alternative robot system and transmitted 
to the target system. Due to the similarity of the method, this 
programming method can be assigned to the playback method. 
Beside playback programming, the haptic guidance of a robot by 
the human can be applied for programming-free robot control. 

Lightweight collaborative robots, such as those that have come 
to the market for assembly applications in recent years [110], 
allow human haptic guidance [82,35], in particular, to enable 
intuitive and efficient teach-in of individual poses or playback of 
movement profiles. Due to the low load-bearing capacity, they are 
not intended to relieve the physical burden on humans in the 
context of collaborative task execution [219]. Humanoid dual-arm 
lightweight robots often utilise playback recording for dual-arm 
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operations. As there are no offline programming environments 
available for industrial dual-arm robots yet, intuitive online 
programming techniques such as play-back or teach-in offer 
alternative approaches. Surdilovic et al. [226] proposed an object-
oriented programming approach to simplify dual-arm robot 
compliance programming by formulating bimanual actions which 
can be used for assembly operations such as BI-Approach, BI-
Hold or BI-Insert-Extract in a natural way. Makris et al. [152] 
extended this approach to a hierarchical model, which maps 
bimanual operations to different assembly steps and levels to 
support a designer to identify options for automation of assembly 
operations. 

Fig. 24 shows a method for intuitive programming of a dual-
arm robot [152]. A task-oriented programming procedure is 
applied, including a dual-arm robotics library. The robotics 
library represents human-like capabilities and implements bi-
manual operations. This intuitive programming framework is 
based on a service-oriented system architecture and developed in 
ROS. The user can easily interact with a dual-arm robot through 
depth sensors, noise cancelling microphones and GUIs [107]. 

 

 
Fig.	24. Human gesture UP for moving away from loading bank (left); a 
dual-arm robot moves up (right) [152]. 
 

In the coming years, robot programming software tools are 
expected to be more intuitive and user friendly. Tsarouchi et al. 
[232] proposed a method for simplifying robot programming 
using visual sensors detecting the human motions. A vocabulary 
of body and hand gestures was defined, allowing the movement 
of robot in different directions. An external controller application 
was used for the transformation between human and robot 
motions. On the robot side, a decoder application was developed 
translating the human messages into robot motions. The method 
was integrated in an open environment based on ROS, enabling 
the easy extensibility with new functionalities. 
 
6.2.	Smart	algorithms	embedding	

Intuitive programming of robots based on modalities, such as 
gestures, speech and haptics, requires embedding of complex 
algorithms with different levels of abstraction. Typically, a 
sophisticated function such as recognition of a pointing gesture 
by a robot, is composed of various sub-functions, e.g., image 
processing, pattern recognition and coordinate transformation. 
The underlying system architecture for embedding smart 
algorithms has a significant impact on the effort for integration 
and implementation of high-level functions for intuitive robot 
programming and symbiotic collaboration between humans and 
robots. In the last two decades, different architecture models 
have been proposed in order to structure the complexity of 
software for robot control on different levels. Based on the so-
called 5C’s principle of separation of concerns [29,203], which 
separates the communication, computation, coordination, 
configuration and composition aspects of software functionality, 
Vanthienen et al. [238] developed a methodology for 
programming of complex robot tasks called instantaneous Task 

Specification and estimation using Constraints (iTaSC). Task 
specification is also the focus of the LightRocks framework [49]. 

ROS provides a common framework for the development of 
robot control including complex functionality from image 
processing to pattern recognition [206]. Makris et al. [152] 
propose a service-oriented architecture based on ROS for user 
interaction with a dual-arm robot. The multimodal interaction is 
based on gestures, voice commands and graphical user interfaces. 
In this concept, a hierarchical model decomposes different 
specific activities in the ‘order’, ‘job’, ‘task’ and ‘operations’ levels. 

One of the essential benefits of the ROS framework is the high 
reusability of the software. Though, like other frameworks 
mentioned before, it only provides support for developers. With 
the focus on the support of end-users, Andersen et al. [5] propose 
a system-independent execution framework for adaptive and 
interactive robotic applications. Their concept, the DTI Robot 
CoWorker (RCW) is oriented to the creation of agile robots, which 
can easily be reconfigured for new tasks. The concept was 
evaluated for complex industrial assembly and handling 
scenarios. A general overview about robotic frameworks and 
architectures was given by Kortenkamp and Simmons [106]. 

Another approach to algorithm embedding is the use of function	
blocks (FBs) [249]. FBs are described in IEC 61499 [83], as an IEC 
standard for distributed industrial processes and control systems, 
particularly for PLC control. It is based on an explicit event-driven 
model and provides for data flow and finite state automata-based 
control. According to IEC 61499, FBs may exist in different types. 
The definition of an FB describes the external interface and 
internal behaviour of a particular type of FBs. Fig. 25 shows the 
external structure of a basic FB and a composite FB. A basic FB 
defines the fundamental functional relationships of events and 
data, from which a composite FB can be built. It uses an 
appropriate language (such as Structured Text or Java) to define 
its states and algorithms. The algorithms are encapsulated inside 
the basic FB and can be accessed by the basic FB itself only. A 
composite FB may consist of several basic and/or composite FBs 
connected by events and data, but the composite FB itself does 
not contain any algorithms. 
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Fig.	25. Function block structures: a basic FB (left) and a composite FB 
(right). 
 

Wang et al. [246] defined the mating relationships in assembly 
as basic assembly features (e.g., inserting, riveting, press fitting, 
and screwing), and mapped the assembly features to basic FBs. 
Thus, a complex assembly process can be decomposed into the 
assembly features and handled by FBs for the ease of robot 
control. FB-embedded algorithms enable online runtime decision-
making for trajectory planning and motion control. For example, 
Fig. 26 presents (a) the graphical definition of an inserting FB, and 
(b) its execution control chart (ECC). The graphical definition 
gives the details of the inputs/outputs of events and data, as well 
as embedded algorithms and variables. The ECC is a finite state 
machine, which specifies the transitions from the events to their 
corresponding algorithms for event-driven execution. 
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(a) Graphical definition of an inserting FB 
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(b) Execution control chart of the AF-FB 

Fig.	26. Graphical design of an inserting FB and its ECC [246]. 
 
During robotic assembly, the insertion task is decomposed into 

two steps: picking up a pin and inserting the pin into a hole, as 
shown in Fig. 27, along a series of positions of the end-effector of 
a robot. How to accomplish the insertion task is purely driven by 
the embedded algorithms based on environmental data. 
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Fig.	27. Step-wise procedure of pin insertion by FBs [246]. 
 
6.3.	Programming‐free	robot	control	

While mostly a robot is programmed for repetitive tasks, there 
are various applications in assembly where high flexibility needs 
either control without programming or auto-adaptation of tasks 
by the robot without explicit reprogramming by a human. 

A very intuitive form of symbiotic HRC can be achieved by the 
direct haptic guidance of the robot by an operator. This mode can 
be used not only for online programming scenarios such as 
teaching or programming by demonstration [8], but also for 
direct collaborative workpiece handling in assembly. 

In recent years, larger robots for haptic collaboration with 
humans have been introduced, whose construction aims at 
symbiotic collaboration in such a way that a human brings in 
his/her superior cognitive and sensorimotor capabilities and the 
robot contributes with its mechanical power in order to reduce 
the physical strain of the human worker. The basis is the control 
algorithms, which ensure both the safety of the human in the 
haptic connection with the robot, and at the same time allows an 

efficient support of the human by the robot [109,225]. The 
control system is based on sensor systems integrated in the 
robot, which enable the robot to record the control parameters 
specified by the operator. The main control parameters for the 
haptic coupling are 6-DOF force and torque signals, from which 
variables for position, velocity and acceleration of the robot are 
derived in the control. Beside haptic guidance of a robot, other 
modalities for instruction of the robot were also developed, 
including speech and gestures [3,68,179,211,229]. With respect 
to automatic adaptation of the robot to changing tasks and 
environmental parameters, methods and algorithms from the 
field of machine learning show a high potential. Levine et al. [123] 
demonstrated the high potential of deep learning algorithms for 
automated flexible robotic grasping of different objects in 
undefined poses. Maeda et al. [144] proposed a method to achieve 
fast and fluid human–robot interaction by estimating the 
progress of the movement of the human. Their method (Fig. 28) 
allows the progress, or the phase of movement, to be estimated 
even when observations of the human are partial and occluded; a 
problem typically found when using motion capture systems in 
cluttered environments. It can generate a corresponding robot 
trajectory before the human finishes his/her movement. 
 

	

Fig.	28. Action recognition and trajectory generation [145]. 
 
6.4.	Brainwave‐driven	robot	control	

Brainwave-driven robotics, or brain	robotics, is a fast emerging 
field that will positively impact symbiotic HRC assembly in the 
near future. In brain robotics, electroencephalography (EEG) is 
used to analyse and understand the behaviours of human brains, 
the results of which are used to communicate with robots and 
control the robots directly. Recently, Mohammed and Wang [168] 
proposed using human brainwaves as a means for robot control 
in HRC assembly, where an Emotive Epoc+ device was chosen as 
the EEG measuring headset to record brain activities (Fig. 29). 
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Fig.	29. Locations of electrodes of an Emotive Epoc+ device [168]. 

 
In order to retrieve a stable and true mental command from a 

human operator, a set of preparatory training sessions is needed. 
After proper training, the mental command in the form of multi-
channel brainwave patterns can be recorded, which is then used 
for robot control. Fig. 30 illustrates the framework of brainwave-
driven robot control for HRC assembly. At the control level, an FB 
triggered by the mental command is used to generate a trajectory 
together with other control parameters, and move the robot for 
programming-free control. 

Two major advantages were reported in their research work: 
(1) it frees the hands of an operator, allowing the operator to 
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control a robot while performing a related task shared with the 
robot, and (2) it provides an auxiliary channel for multimodal 
symbiotic HRC assembly in addition to voice, gesture and haptic 
commands. Using mental commands can overcome the difficulties 
in noisy environment when voice commands are used alone. The 
challenge is the reliability of the mental commands. 
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Fig.	30. Brainwave-driven robot control [168]. 

7.	Mobile	worker	assistance	

7.1.	Mobile	worker	tracking	and	identification	

In HRC assembly, the environment is mostly structured except 
humans and mobile objects. 3D models can be used to represent 
the structured environment, whereas the humans and the mobile 
objects can be captured by vision/motion sensors [218]. As 
shown in Fig. 31, physical sensors are linked to a collision 
avoidance system to drive the behaviour of the 3D models and 
monitor the human in real time. By reading the joint values of the 
robot from its controller, the present pose of the robot can be 
introduced to the HRC environment and visualised using the 3D 
models. At the same time the human can be tracked and 
represented as a point cloud with the help of vision sensors. 

In their research, Kinect sensors are employed for surveillance 
of unstructured foreign objects in the robotic cell, including the 
operator who lacks the representation in the 3D space. To sustain 
the rapid processing, the closest range between the 3D model of 
the robot and the point cloud of the human is used to detect any 
collision in an augmented environment. With the calculated 
relative distance between the two, a suitable decision can be 
made to actively control the robot so as to effectively avoid a 
possible collision. In order to track a human operator for safety 
reasons, three Kinect sensors can be used to eliminate blind spots 
in the shared environment, as shown in Fig. 32. For worker 
identification, a quick response (QR) code is used, which is affixed 
to the worker’s uniform or helmet. Alternatively, an RFID chip can 
be embedded in the worker’s ID. 

Fig. 33 illustrates one view of a user sharing its workspace with 
a KUKA LWR4 manipulator, with the experimental setup used to 
track and detect the human operator and control the robot in a 
closed loop [158]. The system tracks the human using two Kinect 

sensors. The distance between the human and the robot is used to 
constrain the kinetic energy of the robot so as to limit the amount 
of dissipated energy in case of a collision. The amount of potential 
energy that is allowed to be generated in the HRC system during 
physical contact is used to modulate the contact forces. 

 

 

Fig.	31. Mobile worker tracking in augmented environment [218]. 
 

 
Fig.	32. Mobile worker tracking by three Kinect sensors. 
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Fig.	33. Human tracking and detection in robotic environment [158]. 
 

7.2.	AR‐based	in‐situ	decision	support	

Existing and evolving trends and paradigms in manufacturing, 
such as mass customisation and personalisation, call for better 
communication among product design and production execution. 
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Specifically, the lack of information feedback from and to shop 
floors can lead to lower product quality and increased production 
times. In state-of-the-art industrial practices, the most common 
visual interface devices for communication comprise control unit 
terminals, TFT monitors mounted over workstations, as well as 
the growing trend of mobile PCs and tablets. New technologies, 
such as AR, have also been considered in academic research for 
decision support in process simulation, operator guidance, and 
training. 

To be useful, a decision-support system should provide instant 
and intuitive in-situ support to human workers based on real-
time information feedback on shop floors in the HRC assembly 
context. AR technologies have been found instrumental to this 
requirement. According to Azuma [13], an AR system shall 
possess three characteristics: (1) the system should combine real 
and virtual worlds; (2) the system is interactive in real time; and 
(3) the system is registered in three dimensions. In HRC 
assembly, an AR system enables intuitive graphical display which 
allows a human worker to understand the assembly tasks 
immediately so as to prevent assembly errors. 
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Fig.	34. Architecture of an AR-based worker support system [134]. 

 

 

Fig.	35. An example of AR-based in-situ worker support. 
 
Fig. 34 shows the system architecture of one AR-based in-situ 

decision-support system [134], consisting of four sub-systems: 
AR-based instruction system, task sequence planning & re-
planning system, worker monitoring system, and industrial robot 
control system. The AR-based instruction system is responsible 
for in-situ support to workers by receiving and delivering 
assembly instructions in the HRC context. Assembly instructions 
are placed at the correct location at the right time when the 
corresponding assembly parts are detected in the real-world 
coordinate system. The detection is achieved by comparing the 
real assembly parts captured by the vision sensor with the 
corresponding ones saved in a database. An AR device of any type 

receives the registered graphical information and displays the 
information according to the real-world coordinate system. 
Finally, a human worker performs the assembly task with the 
support of the AR-based graphical information (Fig. 35). 

Another tool reported by Gkournelos et al. [67] is to support 
operators in shared HRC workplaces. The tool was developed in 
the form of a software application for wearable devices, such as 
smartwatches in Fig. 36. It provides functionalities for direct 
interaction with a paired robot. Interfaces to audio commands, 
manual guidance applications, and AR visualisation systems were 
implemented. The development of the smartwatch application 
was carried out in the ROS framework. 

 

 

Fig.	36. Interfaces for AR functionalities [67]. 
 
To aid operators in HRC assembly, Makris et al. [149] designed 

and implemented an AR tool to provide production and process 
related information as well as to enhance the operators’ 
immersion in a safe HRC environment. The developed system has 
been integrated with a service-based station controller, which is 
responsible for orchestrating the flow of information to the 
operators, according to the task execution status. 

The role of the AR-based system reported by Michalos et al. 
[159] is to provide multimodal support, e.g., AR, video and text-
based instructions and assembly status updates. The system is 
also aimed at enhancing the operator safety and HRC acceptance 
through the immersion capabilities of AR. Real-time visualisation 
of robot trajectory as well as the actively monitored areas where 
the robot is allowed/forbidden to enter are indicative examples. 
A hardware landscape including AR equipment and markers, 
handheld devices for user input and network infrastructure for 
interfacing the robot with a storage database was provided. The 
software architecture for coordinating the AR system with the 
assembly process and the data retrieval from the robot controller 
was also presented. The tool has been tested on a pilot assembly 
case of a rear axle as shown in Fig. 37. 

 

 

Fig.	37. Multi-modal visualisation of assembly models [159]. 
 

AR technologies are also applied to robot path planning and 
trajectory planning to arrive at collision-free solutions [178,38]. 
Fig. 38 demonstrates one example of user-guided planning of the 
orientation of a robot end-effector, resulting in a collision-free 
geometric path on the target surface. 

Despite the aforementioned AR applications, how to combine 
AR with simulation has remained as a challenge for many years. 
This challenge was tackled in final assembly operations [150]. 
This study adopted an assembly sequence generation algorithm 
for the creation of assembly sequences and steps, and carried out 
by engineers with the use of CAD data and any additional input 
concerning a given product. This information is then delivered to 
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an AR module, which is responsible for the visual instructions of 
the assembly task. The AR module is based on an algorithm that 
creates the virtual instructions as the base assembly sequence of 
a specific product. The instructions are stored in the form of a 
template. Fig. 39 highlights the instructions of assembling a cap to 
the casing of a differential. 

 

 

Fig.	38. AR-based collision-free path planning [178]. 
 

 

Fig.	39. Virtual instructions for finalising the assembly of a cap to the 
casing of a differential [150]. 

 
Pintzos et al. [201] proposed a novel use of AR goggles, coupled 

with other mobile devices for communication with people, 
working on shop floors and in engineering offices. The proposed 
methodology tries to address the challenges, related to the use of 
both technologies (and their respective interfaces) by presenting 
an integrated approach: the use of a mobile device as an input 
device and as a fiducial marker for the positioning of a virtual 
screen in front of the user. After the presentation of the concept, 
its advantages and disadvantages, compared with current 
practices as well as with the rest of the relevant academic work, 
were presented. The technical implementation to be realised, 
including specific software frameworks that will be used was also 
described. Special attention is given to the data models that will 
support the implementation of this approach and to show how 
they can be integrated into the existing systems and practices. Fig. 
40 shows how information is delivered on a monitoring screen 
over a handheld device. 

 

 

Fig.	40. Monitoring screen over a handheld device [201]. 

AR can help close the gap between product development and 
manufacturing operation, mainly because of its ability to reuse 
and reproduce digital information and knowledge intuitively, 
while supporting assembly operators. For example, a semantic-
based AR system [210] was reported for integrating existing 
information and knowledge available in CAD/PDM systems, and 
for supporting human operators in real time. This study is 
supported by an algorithm used for generating AR instructions 
based on the product and process semantics. The results are 
demonstrated in an automotive use case as shown in Fig. 41. 

 

Fig.	41. Full assembly visualisation [210]. 
 
7.3.	Ergonomic	and	psychological	challenges	

7.3.1.	Aspects	of	ergonomics	

Collaborative robots are currently used in assembly as human 
companions and helpers, making the human and the robot a team 
[76,18,39,193,198]. In any case, the way in which a robot 
performs an assigned task, i.e., the way in which it moves and 
operates, substantially affects the final performance of the whole 
human-robot team. Specifically, the robot(s) should change 
its/their behaviours to make the human comfortable and to 
increase his/her ergonomics performance, while keeping low the 
time necessary to the team to perform all the tasks. An essential 
aspect of HRC is how to cope with human ergonomics, process 
time, emotions and reaction during collaboration, and safety 
aspects. 

The assessment of ergonomic performance metrics of an HRC 
setting can be performed by virtual manufacturing tools which 
are equipped with digital human models for the simulation of 
manufacturing tasks. For instance, the ErgoToolkit system [4] 
implements ergonomic analysis methods, already available in the 
literature or in industrial practice, into a state-of-the-art virtual 
manufacturing software. The particular ergonomic tools handle 
posture definition and recognition, as well as stress screening. 
The former provides the functionality of defining and 
automatically recognising digital human postures, while the latter 
evaluates any unfavourable situations in a manual work process. 
It is shown that they are viable tools in detecting ergonomic 
problems, early in a development process, prior to physical 
installation. The study concludes with presenting the application 
of the tools in an automotive case study (see Fig. 42). Such a 
virtual commissioning is also applied to a flexible assembly cell, 
which includes a dual-arm robot in cooperation with humans for 
assembly tasks typically performed by operators [151]. 

Ergonomics involves not only physical but also mental stress 
whereas monotony and other forms of “underload” are to be 
avoided on the one hand, just like “overload” (fatigue and burnout 
due to persisting overstrain and lacking degrees of freedom in 
choices, pace, transparency, etc.) on the other hand. While the 
former is clearly alleviated by HRC, handling overload in a 
collaborative robotic work environment calls for psychological 
considerations. 
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Fig.	42. Sequence of assembly operations of a car (snapshot from DELMIA 
V5 simulation) [4]. 

 
7.3.2.	Psychological	challenges	in	human‐robot	collaboration	

In order to understand how to improve the efficiency of a 
human-robot team, several papers focused on the identification of 
a set parameters of the robot trajectory that influence human 
behaviour. Analysing the robot’s movement, relevant factors to be 
considered are the legibility and predictability of the robot’s 
trajectory [51] which can result in the correct identification of the 
final goal of the robot on the basis of its initial trajectory (action 
to goal) and the expectation of the human towards the robot’s 
followed trajectory (goal to action). They proved that, on the one 
hand, trajectories are more legible if the probability to reach a 
certain goal given the current position is higher. On the other 
hand, trajectories are more predictable if their cost given in terms 
of the sum of squared velocities is lower. Moreover, it is shown 
that the optimisation of the legibility may lead to the generation 
of highly unpredictable trajectories and some unpredictability is 
often necessary to convey intent. A similar study [189] was aimed 
at optimising human visibility, reachability and ergonomics 
during handing-over tasks. 

On the level of assembly cell design, it is demonstrated that the 
robot speed, the distance between the robot and the human, as 
well as the ability to communicate in advance the robot motion to 
the worker have an influence on the human propensity to accept 
the robot [7,119,163,202,236]. It is recognised that high robot 
speed, small distances and the lack of a signal communicating the 
start of the robot motion drastically reduce the human 
acceptance of the robot. Similarly, a properly designed HRC 
assembly cell can lead to about 6% time reduction toward 
assembly tasks completion, 20% more concurrent motion, and 
3% less human idle time. 

An important aspect affecting human propensity to work with a 
robot companion is the ability of the robot to dynamically change 
and adapt its operation in line with human behaviour and actions. 
According to the state-of-the-art, robot actions can be optimised 
on the basis of human behaviour [75,180,194]. A step forward in 
this direction is represented by a set of studies [81,181], showing 
that the success of a human-robot team also depends on the 
human level of adaptability in different situations. The robot 
should be able to interpret the setting and in particular, the level 
of human adaptability, and act properly. 

Indeed, when the human can easily adapt, the robot can exploit 
human adaptability to guide the human towards a certain 
strategy. When the human is stubborn and she/he is not willing 
to comply, the robot should respect human preferences and 
optimise its choices considering the human preferences as a set of 
constraints. This leads to the development of the concept of 
mutual	adaptation, where the human trust is considered during 
the definition of the robot strategy. 

For a human-robot team to accomplish its goal, humans must 
trust that a robotic teammate will protect the interests and safety 
of every other individual in the team. The level of trust in the 
team is particularly critical in high-risk situations, such as in HRC 
assembly. Trust is important in these contexts because it directly 
affects the willingness of human to accept any robot-produced 
information, follow robots’ suggestions, and thus benefit from the 
advantages inherent in an HRC system. In other words, trust 
affects much the decisions that humans make in uncertain or 
risky environments [74]. For example, the less an individual 
trusts a robot, the sooner he or she will intervene as it progresses 
toward task completion. In Fig. 43, Hancock et al. [74] 
summarised the factors that affect trust through a meta-analysis 
and classified them into three broad categories: human-related 
factors (including ability-based and human characteristic factors), 
robot-related factors (including performance- and attribute-
based factors), and environment-related factors (including team 
collaboration and task-based factors). 
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Fig.	43. Factors of trust development in HRC [74]. 
 
Finally, while social and emotional dimensions are apparently 

less subject to formal specifications, they, too, have been a focus 
of research in recent years. Jimenez and Dunkl [94] summarised 
the psychological aspects of work situations, where the authors 
pointed out the vital degrees of freedom (degree of autonomy, 
buffered resources, etc.) and comprehensible relations to the 
working and social environment (team alignment, goals, rewards, 
fairness, etc.) must lie within a preferable range. Regardless of 
cultural differences in consistent teamwork and management 
styles, the emotional alignment of the individual with the team 
has long since been recognised as vital both for performance and 
sustained mental health [165]. Various modelling approaches 
allow the mapping of the individual’s attitude and group 
sentiment, both with surveys building a general corpus of 
conventions and customs within a given working culture, as well 
as with physiological measurement and machine learning 
techniques that respond to variations of the individual or 
deviations from past patterns and cultural average [165]. 
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8.	Future	research	directions	

8.1.	Towards	new	industrial	standards	of	HRC	

The potential of collaborative work of teams of multiple human 
and robotic agents creates such a new scenario of industrial 
production which requires not only novel scientific insights and 
technological solutions but also a new regulatory framework. ISO 
standards 10218-1 and -2 [84,87], amended with ISO/TS 15066 
[85] define requirements for human–robot collaboration with an 
emphasis on safety (see Tables 2–4). Current standards for 
collaborative robotic environments already take an integrated 
approach with the compound of control, robot, end-effector, 
workpiece and task being simultaneously subject to assessment. 
This is a favourable starting point for further enhancement 
towards a complex multi-agent team. ISO/TS 15066 also 
distinguishes four modes of collaborative operation in a shared 
safeguarded area (safety-rated monitored stop, hand guiding, 
speed and separation monitoring, power and force limiting), 
taking the first step in removing rigid cell barriers of robotised 
workstations. These modes of operation will certainly determine 
possible ways of robots participating in collaborative teams that 
include humans. Nonetheless, ISO 10218 and ISO/TS 15066 deal 
with physical (mechanical) aspects only—mental and emotional 
issues remain largely unspecified. 

Mental workload is though the subject of standards under ISO 
10075 [88–90], which take it as pairs of (1) stimuli, originating in 
task requirements, physical conditions, as well as social, 
organisational, and societal factors, and (2) effect, resulting in 
mental strain reactions of the human (like activation and 
warming-up as facilitating effects, and mental fatigue, monotony, 
reduced vigilance and satiation as impairing effects). ISO 10075 
clarifies that working environments should optimise mental 
stress to avoid both monotony and other forms of underload, as 
well as overload, fatigue and burnout. In this context, work 
equipment, ambient and social environment, and tasks are 
usually regarded as separate categories; however, it is expected 
that the introduction of social collaborative robots, and complex 
work environments that act as a team, will cross over the 
category limits, requiring a new integrated perspective in 
assessing, as well as designing such systems. While ISO 10075 
does not specifically address such views, the perspectives of the 
standard are a consistent starting point for further synthesis. ISO 
10075 largely remains on the level of the individual, and higher-
level perspectives are taken by the ISO 26000 on the “Guidance 
on social responsibility” [91]. These ethical guidelines are, 
however, too generic to be subjected to formal auditing or to 
provide firm specifications for human-robot teams working on 
the shop floor. 

All in all, current standards do not yet address many key issues 
of mixed teams of humans and robots. Nevertheless, they outline 
some of the key aspects of a roadmap for such socially aware 
collaborative environments that set the baselines for a safe, 
anthropometric, mentally and socially satisfying environment for 
HRC. Intensive standardisation activities are ongoing and more 
realistic standards are anticipated. 

 
8.2.	Modelling	the	human	worker	

Continuous observation of behaviours and models of human 
disposition and emotion at workplace have been investigated 
intensively; however, industry-ripe application to work execution 
control at assembly workstations are still missing. There is a need 
to elaborate and populate models of human workforce and 
develop task execution control and HMC adaptation approaches 
that can establish individual worker preference profiles, pick up 
transient changes in the state of the individual worker, and tune 
both communication and acquired models accordingly. 

 
8.3.	Digital	twin	for	symbiotic	HRC		

Designing, planning, operating, supervising and controlling 

assembly workcells where humans and robots collaborate 
requires accurate and almost in real-time updated digitalised 
models. However, here more is needed than a kind of replica of 
the devices, equipment, processes or even human operators. A so-
called digital	twin should combine and align all relevant aspects 
of modelling the function, structure and behaviour of the robotic 
cell including the worker, together with capturing the symbiotic 
interplay of the human and robotic agents. This includes 
representing the multimodal and bidirectional channels of 
communication and control as well. In the HRC context, the basis 
of the digital twin can be a linkage mechanism, which is capable 
of representing the geometric and kinematic relations of all static 
and moving objects in the workcell [80]. Time and again, the 
digital twin should be efficiently tuned – i.e. calibrated – to the 
real environment by using the actual measured data, so that both 
robot programming and operator instructions can automatically 
adapt to the actual situation. 

 

8.4.	Optimising	and	adapting	plans	of	redundant	robots	

Redundancy—when the robot has more degrees of freedom 
than needed for performing a task—provides much opportunity 
for optimisation and adaptation, because, at least in principle, 
infinitely many joint configurations may result in executing the 
same task. However, when executing a set of tasks in a complex 
work environment which is characteristic to HRC assembly in 
particular, a number of technological and geometric constraints 
must be met. The solution requires a bi-directional transition 
between the task and configuration spaces for generating 
relevant and collision-free configurations only [56]. The 
computational complexity of such an approach is still too 
demanding for supporting real-time adaptive robot control. 

 

8.5.	Shared	tasks	and	team	formation	

In today’s industrial practice of assembly, collaborative 
workstations exist already. However, they do not exhibit all 
characteristics of a working environment hosting multiple 
collaborating humans and robotic agents. As discussed above, 
advanced methods of perception and sensor fusing, situation 
recognition, variable task assignment considering also skill levels, 
dynamic and adaptive planning, load balancing, as well as of 
human–robot mixed-initiative motion generation are known; 
however, it is still open how to harmonise autonomous decisions, 
change levels of autonomy and responsibility, and leave more 
abstract decisions to humans where conscious judgement is 
needed. In a multi-agent setting, the agents need to be aware of 
each other’s states (and intentions), as well as the state of objects 
to successfully work together or safely coexist within the same 
physical space. For robots, a proper degree of awareness depends 
on the adequate implementation of communication or 
information acquisition channels and their introduction into their 
control. Being more autonomous but less predictable and reliable 
actors, humans need more support for being aware of the current 
situation. All these are prerequisites of true shared task execution 
and adaptive team formation in collaborative environments. 
 

8.6.	Handling	of	exceptions,	emergency	and	recovery	

Exceptions occur if the flow of processes involved is close or 
has passed the nominal limits; however, the processes can be 
brought back to normal without interruption, and the situation 
does not endanger the integrity or safety of human. Emergencies 
occur when danger of irrevocable damage is imminent. The latter 
case requires fast and guaranteed mitigation. Therefore, certain 
modes of communication do not apply to emergency signals. In 
addition, emergency mechanisms may have direct effect (e.g., 
emergency power-down by a single circuit breaker) that usually 
does not occur with communication in the usual sense. 

 

8.7.	Work	execution	and	training	–	learning	by	doing	

Current industrial practice does not explicitly foresee the 
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integration of normal production operations with the handling of 
exceptions and emergencies and with recovery operations. Even 
though some methodologies address early fault prevention and 
detection, this is not necessarily equal to continuous feedback 
regarding operation results. Not only does this often result in the 
costly temporal and spatial separation of training from work 
execution, it also hampers orientation of the worker in ad-hoc 
work situations, e.g., in construction of individual products, or in 
the maintenance of poorly documented legacy equipment. Since 
training and quality check are typically separated from task 
execution, gradual skill development, live assistance and real-
time feedback are obstructed. Industry-proof integrated process, 
robot and human models adequate in the context of HRC 
assembly must be elaborated where performance evaluation 
results (including those of quality checks) are fed back to support 
the improvement of the overall team. In any learning-by-doing 
scheme, the safety requirements must be continuously observed. 

 

8.8.	Adaptive	work	instructions	

Human–robot interfaces, especially those conveying work 
instructions, often provide adaptability to the given worker in 
discrete steps, namely, by skill level categories. Adaptation to the 
worker’s current (and changing) fitness for the current assembly 
task is, however, not part of industrial practice. The devices 
keeping track of the worker’s awareness primarily serve safety 
purposes only. AR-based in-situ decision support to workers in 
dynamic HRC assembly environments deserves more attention to 
be both intuitive and mental stress-free. Work instructions needs 
to be adaptive to not only the changing competence level of 
individual workers but also the declining focus and concentration 
during the day or within the week. 

 

8.9.	Programming‐free	robot	control	

One potential application of data fusion in HRC assembly that 
should be actively explored is the multimodal fusion of human 
commands, for example, integration of both hand gestures and 
voice, to further improve the human command recognition rate 
and contribute to programming-free robot control. 

Despite the increasing use of gestures and voice commands in 
HRC for robot control, they are less natural or practical in busy 
and noisy work environments. Instead of defined gestures and 
voice commands, recognition and prediction of human motions 
through deep learning provides better context awareness and 
less interruption to normal performance induced by signalling 
gestures. Haptic interaction with collaborating robots, especially 
for legacy industrial robots with few embedded sensors, is 
another way to achieve programming-free robot control. As an 
emerging research direction, brainwave-driven robot control can 
enhance symbiotic HRC assembly. ‘Think ahead’ combined with 
human motion prediction contributes to timely cognition and 
assistance from the robots, and adds value to the intelligence of 
an HRC system. Programming-free robot control can be facilitated 
by the use of event-driven function blocks with smart decision 
algorithms for detailed adaptive robot control, whereas the high-
level commands (e.g., gesture, voice, gaze, haptic, brainwave) 
serve as the triggering events to the function blocks for task 
execution. This unique combination paves the way towards the 
multimodal symbiotic HRC assembly. 

 

8.10.	HRC	as	social	activity	with	trust	

Although rarely applied in industrial production, research has 
already elaborated approaches for the modelling of emotional 
and social processes, as well as acquisition of individual or 
cultural profiles and their tuning to newly perceived changes. 
Existing results, therefore, provide a solid starting point for the 
elaboration of similar solutions for industrial applications in the 
HRC context. What is missing is the formation of mutual models 
of trust. When adding humans to shared robotic environments, 
this aspect is unavoidably important and deserves attention. 

8.11.	Social	responsibility	of	a	new	type	of	automation	

An HRC team forms a meta society where each team member 
bears certain social responsibilities for others such as safety and 
work ethics. The social stability of the team contributes to the 
level of automation for seamless HRC assembly. In such a new 
automation environment, mental stress and even psychological 
discomfort leading to any potential accident can be monitored 
and diagnosed via the brainwaves of human workers, which can 
be collected by sensors embedded in a safety helmet. Although an 
ethical issue, it contributes to safety assurance in workplaces. 

 
8.12.	Limitations	and	challenges	

The wide interest of research and industry in the HRC related 
topics is proportional to the increased productivity and flexibility 
of production lines, as it combines human and robot capabilities 
[9,234]. However, the deployment of HRC in wide industrial 
applications is facing big challenges. Safety is the first concern. 
Although advanced methods/mechanisms have been developed 
in the past years, most of these methods are established in the lab 
environment. The hardware utilised are prototype-level devices 
that cannot be transferred to industry directly. More mature 
devices at higher Safety Integrity Level (SIL) are needed to 
further improve and exploit the research results. Moreover, the 
feasibility of the HRC solutions have been well evaluated, but the 
safety performance needs to be assessed systematically. For 
example, the stability, robustness, response time, redundant 
safety, backup solutions and emergency handling needs to be 
evaluated in a structured and standardised way. 

As a result, the collision avoidance research need to impact the 
future standardisation as well. The current standards focus on 
distance and force/torque/energy limits to protect humans from 
severe injuries. However, there is no complete standard for the 
new technologies, e.g., vision-, ultrasonic-, depth-based sensing 
systems. The standards need to include those new technologies as 
a part of the robotic solutions. 

Additionally, the social impacts of the collision avoidance need 
much attention as the operator needs to interact with the robot in 
an HRC setting without any wearable protections in daily work. 
The psychological reactions may change if the operator works 
with the robot for a long period. Sometimes, such changes may 
not be noticed by the operator himself/herself. Thus, more efforts 
as mentioned in Sections 8.10 and 8.11 are needed. 

9.	Conclusions	

This paper presents the state-of-the-art of symbiotic human-
robot collaborative assembly. Research on HRC has been active 
for many years. Despite the advancement of HRC in recent years, 
confusions exist in different forms of human-robot relationships: 
coexistence, cooperation, interaction, and collaboration. There is 
a need to classify these relationships, and identify their unique 
features and characteristics with clear definitions. This paper is 
aimed to address these issues together with existing challenges 
and recent technological advancements. Within the context of 
symbiotic HRC assembly, topics covered include sensing and 
communication techniques, human safety assurance, dynamic 
assembly planning, programming-free robot control, and in-situ 
decision support to operators. 12 future research directions and 
challenges are also identified, hoping to shed some light on 
further advancement in the years to come. With the support of 
the latest technologies of sensing, communication, AI, AR and 
robot control, HRC will find its way to practical applications on 
shop floors in factories of the future. 
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