2,708 research outputs found

    Discovering Evolving Temporal Information: Theory and Application to Clinical Databases

    Get PDF
    Functional dependencies (FDs) allow us to represent database constraints, corresponding to requirements as \u201cpatients having the same symptoms undergo the same medical tests.\u201d Some research eforts have focused on extending such dependencies to consider also temporal constraints such as \u201cpatients having the same symptoms undergo in the next period the same medical tests.\u201d Temporal functional dependencies are able to represent such kind of temporal constraints in relational databases. Another extension for FDs allows one to represent approximate functional dependencies (AFDs), as \u201cpatients with the same symptoms generally undergo the same medical tests.\u201d It enables data to deviate from the defned constraints according to a user-defned percentage. Approximate temporal functional dependencies (ATFDs) merge the concepts of temporal functional dependency and of approximate functional dependency. Among the diferent kinds of ATFD, the Approximate Pure Temporally Evolving Functional Dependencies (APE-FDs for short) allow one to detect patterns on the evolution of data in the database and to discover dependencies as \u201cFor most patients with the same initial diagnosis, the same medical test is prescribed after the occurrence of same symptom.\u201d Mining ATFDs from large databases may be computationally expensive. In this paper, we focus on APE-FDs and prove that, unfortunately, verifying a single APE-FD over a given database instance is in general NP-complete. In order to cope with this problem, we propose a framework for mining complex APE-FDs in real-world data collections. In the framework, we designed and applied sound and advanced model-checking techniques. To prove the feasibility of our proposal, we used real-world databases from two medical domains (namely, psychiatry and pharmacovigilance) and tested the running prototype we developed on such databases

    Approximate Data Mining Techniques on Clinical Data

    Get PDF
    The past two decades have witnessed an explosion in the number of medical and healthcare datasets available to researchers and healthcare professionals. Data collection efforts are highly required, and this prompts the development of appropriate data mining techniques and tools that can automatically extract relevant information from data. Consequently, they provide insights into various clinical behaviors or processes captured by the data. Since these tools should support decision-making activities of medical experts, all the extracted information must be represented in a human-friendly way, that is, in a concise and easy-to-understand form. To this purpose, here we propose a new framework that collects different new mining techniques and tools proposed. These techniques mainly focus on two aspects: the temporal one and the predictive one. All of these techniques were then applied to clinical data and, in particular, ICU data from MIMIC III database. It showed the flexibility of the framework, which is able to retrieve different outcomes from the overall dataset. The first two techniques rely on the concept of Approximate Temporal Functional Dependencies (ATFDs). ATFDs have been proposed, with their suitable treatment of temporal information, as a methodological tool for mining clinical data. An example of the knowledge derivable through dependencies may be "within 15 days, patients with the same diagnosis and the same therapy usually receive the same daily amount of drug". However, current ATFD models are not analyzing the temporal evolution of the data, such as "For most patients with the same diagnosis, the same drug is prescribed after the same symptom". To this extent, we propose a new kind of ATFD called Approximate Pure Temporally Evolving Functional Dependencies (APEFDs). Another limitation of such kind of dependencies is that they cannot deal with quantitative data when some tolerance can be allowed for numerical values. In particular, this limitation arises in clinical data warehouses, where analysis and mining have to consider one or more measures related to quantitative data (such as lab test results and vital signs), concerning multiple dimensional (alphanumeric) attributes (such as patient, hospital, physician, diagnosis) and some time dimensions (such as the day since hospitalization and the calendar date). According to this scenario, we introduce a new kind of ATFD, named Multi-Approximate Temporal Functional Dependency (MATFD), which considers dependencies between dimensions and quantitative measures from temporal clinical data. These new dependencies may provide new knowledge as "within 15 days, patients with the same diagnosis and the same therapy receive a daily amount of drug within a fixed range". The other techniques are based on pattern mining, which has also been proposed as a methodological tool for mining clinical data. However, many methods proposed so far focus on mining of temporal rules which describe relationships between data sequences or instantaneous events, without considering the presence of more complex temporal patterns into the dataset. These patterns, such as trends of a particular vital sign, are often very relevant for clinicians. Moreover, it is really interesting to discover if some sort of event, such as a drug administration, is capable of changing these trends and how. To this extent, we propose a new kind of temporal patterns, called Trend-Event Patterns (TEPs), that focuses on events and their influence on trends that can be retrieved from some measures, such as vital signs. With TEPs we can express concepts such as "The administration of paracetamol on a patient with an increasing temperature leads to a decreasing trend in temperature after such administration occurs". We also decided to analyze another interesting pattern mining technique that includes prediction. This technique discovers a compact set of patterns that aim to describe the condition (or class) of interest. Our framework relies on a classification model that considers and combines various predictive pattern candidates and selects only those that are important to improve the overall class prediction performance. We show that our classification approach achieves a significant reduction in the number of extracted patterns, compared to the state-of-the-art methods based on minimum predictive pattern mining approach, while preserving the overall classification accuracy of the model. For each technique described above, we developed a tool to retrieve its kind of rule. All the results are obtained by pre-processing and mining clinical data and, as mentioned before, in particular ICU data from MIMIC III database

    On the Use of Multipole Expansion in Time Evolution of Non-linear Dynamical Systems and Some Surprises Related to Superradiance

    Full text link
    A new numerical method is introduced to study the problem of time evolution of generic non-linear dynamical systems in four-dimensional spacetimes. It is assumed that the time level surfaces are foliated by a one-parameter family of codimension two compact surfaces with no boundary and which are conformal to a Riemannian manifold C. The method is based on the use of a multipole expansion determined uniquely by the induced metric structure on C. The approach is fully spectral in the angular directions. The dynamics in the complementary 1+1 Lorentzian spacetime is followed by making use of a fourth order finite differencing scheme with adaptive mesh refinement. In checking the reliability of the introduced new method the evolution of a massless scalar field on a fixed Kerr spacetime is investigated. In particular, the angular distribution of the evolving field in to be superradiant scattering is studied. The primary aim was to check the validity of some of the recent arguments claiming that the Penrose process, or its field theoretical correspondence---superradiance---does play crucial role in jet formation in black hole spacetimes while matter accretes onto the central object. Our findings appear to be on contrary to these claims as the angular dependence of a to be superradiant scattering of a massless scalar field does not show any preference of the axis of rotation. In addition, the process of superradiance, in case of a massless scalar field, was also investigated. On contrary to the general expectations no energy extraction from black hole was found even though the incident wave packets was fine tuned to be maximally superradiant. Instead of energy extraction the to be superradiant part of the incident wave packet fails to reach the ergoregion rather it suffers a total reflection which appears to be a new phenomenon.Comment: 49 pages, 11 figure

    Second CLIPS Conference Proceedings, volume 1

    Get PDF
    Topics covered at the 2nd CLIPS Conference held at the Johnson Space Center, September 23-25, 1991 are given. Topics include rule groupings, fault detection using expert systems, decision making using expert systems, knowledge representation, computer aided design and debugging expert systems

    Explainable temporal data mining techniques to support the prediction task in Medicine

    Get PDF
    In the last decades, the increasing amount of data available in all fields raises the necessity to discover new knowledge and explain the hidden information found. On one hand, the rapid increase of interest in, and use of, artificial intelligence (AI) in computer applications has raised a parallel concern about its ability (or lack thereof) to provide understandable, or explainable, results to users. In the biomedical informatics and computer science communities, there is considerable discussion about the `` un-explainable" nature of artificial intelligence, where often algorithms and systems leave users, and even developers, in the dark with respect to how results were obtained. Especially in the biomedical context, the necessity to explain an artificial intelligence system result is legitimate of the importance of patient safety. On the other hand, current database systems enable us to store huge quantities of data. Their analysis through data mining techniques provides the possibility to extract relevant knowledge and useful hidden information. Relationships and patterns within these data could provide new medical knowledge. The analysis of such healthcare/medical data collections could greatly help to observe the health conditions of the population and extract useful information that can be exploited in the assessment of healthcare/medical processes. Particularly, the prediction of medical events is essential for preventing disease, understanding disease mechanisms, and increasing patient quality of care. In this context, an important aspect is to verify whether the database content supports the capability of predicting future events. In this thesis, we start addressing the problem of explainability, discussing some of the most significant challenges need to be addressed with scientific and engineering rigor in a variety of biomedical domains. We analyze the ``temporal component" of explainability, focusing on detailing different perspectives such as: the use of temporal data, the temporal task, the temporal reasoning, and the dynamics of explainability in respect to the user perspective and to knowledge. Starting from this panorama, we focus our attention on two different temporal data mining techniques. The first one, based on trend abstractions, starting from the concept of Trend-Event Pattern and moving through the concept of prediction, we propose a new kind of predictive temporal patterns, namely Predictive Trend-Event Patterns (PTE-Ps). The framework aims to combine complex temporal features to extract a compact and non-redundant predictive set of patterns composed by such temporal features. The second one, based on functional dependencies, we propose a methodology for deriving a new kind of approximate temporal functional dependencies, called Approximate Predictive Functional Dependencies (APFDs), based on a three-window framework. We then discuss the concept of approximation, the data complexity of deriving an APFD, the introduction of two new error measures, and finally the quality of APFDs in terms of coverage and reliability. Exploiting these methodologies, we analyze intensive care unit data from the MIMIC dataset

    Proceedings of the 1994 Monterey Workshop, Increasing the Practical Impact of Formal Methods for Computer-Aided Software Development: Evolution Control for Large Software Systems Techniques for Integrating Software Development Environments

    Get PDF
    Office of Naval Research, Advanced Research Projects Agency, Air Force Office of Scientific Research, Army Research Office, Naval Postgraduate School, National Science Foundatio

    Deductive verification of object-oriented software : dynamic frames, dynamic logic and predicate abstraction

    Get PDF
    Software systems play a central role in modern society, and their correctness is often crucially important. Formal specification and verification are promising approaches for ensuring correctness more rigorously than just by testing. This work presents an approach for deductively verifying design-by-contract specifications of object-oriented programs. The approach is based on dynamic logic, and addresses the challenges of modularity and automation using dynamic frames and predicate abstraction

    PERICLES Deliverable 4.3:Content Semantics and Use Context Analysis Techniques

    Get PDF
    The current deliverable summarises the work conducted within task T4.3 of WP4, focusing on the extraction and the subsequent analysis of semantic information from digital content, which is imperative for its preservability. More specifically, the deliverable defines content semantic information from a visual and textual perspective, explains how this information can be exploited in long-term digital preservation and proposes novel approaches for extracting this information in a scalable manner. Additionally, the deliverable discusses novel techniques for retrieving and analysing the context of use of digital objects. Although this topic has not been extensively studied by existing literature, we believe use context is vital in augmenting the semantic information and maintaining the usability and preservability of the digital objects, as well as their ability to be accurately interpreted as initially intended.PERICLE

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore