
NASA Conference Publication 10085

erence Proceedings
Volume 1

Proceedings of a conference sponsored by
the CLIPS Users Group and hosted by

Lyndon B. Johnson Space Center
Houston, Texas

September 23-25, 199 1

https://ntrs.nasa.gov/search.jsp?R=19920007350 2020-03-17T12:55:52+00:00Z

NASA Conference Publication 10085

Conference Proceedings
Volume 1

Proceedings of a conference sponsored by
the CLIPS Users Group and hosted by

Lyndon 6. lohnson Space Center
Houston, Texas

September 23-25, 199 1

NASA Conference Publication 70085

2nd CLIPS
erence Proceedings

Volume 1

Joseph Giarratano, Editor
University of Houston - Clear Lake

Houston, Texas

Christopher Culbert, Editor
NASA Lyndon B. Johnson Space Center

Houston, Texas

Proceedings of a conference sponsored by
the CLIPS Users Group and hosted by

Lyndon B. Johnson Space Center
Houston, Texas

September 23-25, 1991

National Aeronautics
and Space Administration

Scientific and Technical
Information Branch

1991

FOREWORD

I am very pleased to have helped bring about the compilation and
presentation of the papers in these proceedings for the 2nd CLlPS
conference. The papers provide a breadth of topics from teaching with
CLlPS to extensions of the CLlPS code. The many applications of CLIPS
attest to its worth as a focus for the conference and to the
appropriateness of the CLlPS Users Group itself.

As president of the CLlPS Users Group, I was particularly happy to be
able to see many of the people with whom 1 have had contact over the past
year. It was also rewarding to observe the richness of the interchange
between conference attenders. The efforts of the presenters, helpers, and
organizers seemed to be genuinely appreciated.

In addition to the professional interaction associated with the
presentations and demonstrations, the banquet and receptions provided an
opportunity for social interaction as well. It was good to see that many
spouses attended these activities. Without question, the excellent
presentation by astronaut Dr. Linda Godwin provided an ideal setting for an
evening of good will and enjoyment. All of us who attended the conference
can be proud for helping to provide an enhancing experience for everyone.

The quality of the papers presented can be readily observed in these
proceedings. However, we would also like for the reader to be aware of
the significant benefits that come from attending the conference and
actively participating in the forum of discussion that is focused through
CLIPS.

The reader is also encouraged to consider joining the CLlPS Users
Group. The new CLlPS Board and the new slate of officers are
enthusiastically planning more benefits to membership and the next CLlPS
Conference.

To Bob Savely, Chris Culbert, Gary Riley, Brian Donnell, Joe Giarratano,
Carl Armstrong, Marty Buff, Linda Cook, Linda Martin, Matt Berry, and Pat
Mortensen -- and to all of the members of the CLlPS family of users, I
send as my last official act as president of the CLIPS Users Group,

Best Wishes!

Len Myers

1 October 1991
San Luis Obispo, California

Fellow CLIPS users,

It is my distinct pleasure to provide some remarks to accompany the Proceedings of the
Second Annual CLIPS Conference. The conference was both enjoyable and productive,
and a quick look through these papers will confirm the many successes being had using
the CLIPS language.

A successful conference requires the hard work of many people. I would like to
personally thank everyone who helped out with this conference and especially thank Dr.
Joe Giarrit tano, Gary Riley, Brian Donnell and Carla Armstrong for all their hard work.
Last, but not least, I would like to recognize and thank my predecessor, Dr. Len Myers,
whose tireless efforts on behalf of the Users Group and the Conference have not gone
unnoticed. In recognition of his unwavering support the CLIPS Users Group Board of
Directors has established the "Len Myers Best Student Paper Award" to be awarded at
each subsequent CLIPS Conference. Thank you Len.

Finally, I would like to encourage you to join the CLIPS Users Group. Besides
sponsorship of the Third Annual CLIPS Conference we have several other activities
planned including the continuation of our newsletter, establishment of an online CLIPS
applications library and continued liaison with the CLIPS developers. With your support
we can make our plans a reality.

Looking forward to seeing you at the next CLIPS conference.

Cheers!

~ o d n a y l e Raioes III
rraines @ polyslo.calpoly .edu
President
CLIPS Users Group. Inc.

Johnson S ~ a c e Center
COSMIC
382 E. Broad St.
Athens, GA 30602
(404) 542-3265

A Tool for the Development and Delivery of Expert Systems

CLIPS is a productive development and delivery expert system tool which provides a complete
environment for the construction of ~ l e andlor object based expert systems. CLlPS was created by the
Software Technology Branch of the Information Systems Directorate at NASAJJohnson Space Center
(JSC) with support from the USAF. CLlPS is the first language to provide a verificatiorWalidation utility for
the development of expert systems. CLIPS enabled the use of expert system technology in the JSC
Mission Control Center and is being used by over 3,000 users throughout the public and private
community including: all NASA sites and branches of the military, numerous federal bureaus, government
contractors, 160 universities, and many companies. The key features of CLlPS are:

Knowledge Representation: CLlPS 5.0 provides a cohesive tool for handling a wide
variety of knowledge with support for three different programming paradigms: rule-based,
object-oriented and procedural. Rule-based programming allows knowledge to represented as
heuristics, or "rules of thumb", which specify a set of actions to be performed for a given
situation. Object-oriented programming allows complex systems to be modeled as modular
components (which can be easily reused to model other systems or to create new components).
The procedural programming capabilities provided by CLlPS are similar to capabilities found in
languages such as C, Pascal, Ada, and LISP.

Portablllty: CLlPS is written in C for portability and speed and has been installed on many
different computers without code changes. Computers on which CLlPS has been tested
include IBM PC compatibles, Macintosh, VAX 11/780, Sun 31260, and HP9000-500. CLlPS can
be ported to any system which has an ANSI compliant C compiler. CLlPS comes with all source
code, approximately 40,000 lines of C, which can be modified or tailored to meet a user's specific
needs.

lntegratlon/~xtensiblllty: CLlPS can be embedded within procedural code, called as a
subroutine, and integrated with languages such as C, FORTRAN and ADA. CLlPS can be easily
extended by a user through the use of several well-defined protocols.

lnteractlve Development: The standard version of CLIPS provides an interactive, text
oriented development environment, including debugging aids, on-line help, and an integrated
editor. An interface providing features such as pulldown menus, an integrated editor, and
multiple windows has been developed for the Macintosh (and similar interfaces will soon be
available for MS-DOS, Windows 3.0, and X-Windows environments).

VerlflcatlonNalldatlon: A unique utility called CRSV aids in verification and validation of
rules by providing cross referencing of patterns, style checking, and semantic error checking.

Fully Documented: CLlPS comes with extensive documentation including a full Reference
Manual and a Useh Guide. An Architecture Manual provides a guide to the source code and
internal operations of CLIPS. A 650-page college textbook, Expert Systems Principles and
Programming, using CLlPS is available from PWS Kent publishers.

ADA Version: A version of CLlPS developed entirely in Ada and fully syntax compatible with
the C version of CLlPS is currently available for VAX and UNlX workstations.

Avallablltty: CLlPS version 5.0 is currently available. CLlPS is free to NASA, USAF, and their
contractors for use on NASA and USAF projects by calling the Software Technoktgy Branch Help
Desk between the hours of 9:00 AM to 4:00 PM (CST) Monday through Friday at (713)
280-2233. Government contractors should have their contract monitor call the Software
Technology Branch Help desk to obtain CLIPS. Others may purchase CLlPS (including all
documentation) from COSMIC at a nominal fee for unlimited copies with no royalties. An
electronic bulletin board containing information regarding CLIPS can be reached 24 hours a day

. at (713) 280-3896 or (713) 280-3892. Communications information is 300, 1200, or 2400 baud,
no parity, 8 data bits, and 1 stop bit.

W19 1

vii
pwCEB\NG PAGE D!, ki:X NCT FILibK'l:!

Johnson Space Center
SOFTWA3E TECHNOLOGY a3AMCD.P

COSMIC
382 E. Broad St.
Athens, GA 30602
(404) 542-3265

Version 5.0 Announcement

The Software Technology Branch of the Information Technology Division at NASAIJohnson Space
Center announces the upcoming release of version 5.0 of CLIPS. CLlPS is a powerful development and
delivery expert system tool which provides a complete environment for the construction of rule-based
expert systems. CLIPS is free to NASA, USAF, and their contractors for use on NASA and USAF projects
by calling the CLlPS Help Desk between the hours of 9:00 AM to 4:00 PM (CST) Monday through Friday
at (713) 280-2233. Government contractors should have their contract monitor call the CLlPS Help desk
to obtain CLIPS. Others may purchase CLlPS from COSMIC. The key new features of CLlPS 5.0 are:

Object Orlented Programming: The primary addition to version 5.0 of CLIPS is the CLlPS
Object-Oriented Language (COOL). COOL supports many of the features found in commercial
object-oriented languages such as Common Lisp Object System (CLOS) and SmallTalk. The
features of COOL include: classes with multiple inheritance, single and multi-valued sbts (with
slot daemons), instances with encapsulation, and message-passing (with before, after, primary,
and around message-handlers). COOL is not tightly integrated with the rule system (i.e. you
cannot pattern match against instances on the LHS of a rule, and rules are not instances of the
rule class). However, an extensive query system is provided for finding andlor performing
actions on sets of instances which meet arbitrary user-defined restrictions. Coordination
between rules and objects can be achieved easily by explicit programmer control. (A future
release of CLlPS will support direct pattern-matching on objects).

Deffunctions: Procedural code (called deffunctions) can be defined directly in CLIPS.
Deffunctions may be used to add new capabilities to CLlPS without having to write new code in C
and recompile CLIPS.

Generic-Functions: Procedural code (called generic-functions) can be defined directly in
CLIPS. Generic-functions can be used to overload functions in a manner similar to, but much
more powerful than, languages such as Ada and C++. A user may also use generic-functions to
add new capabilities to CLlPS without having to write new code in C and recompile CLIPS.

Global Varlabies: Variables that are global in scope may be defined in a manner similar to
procedural languages. These variables can then be accessed or set from within rules,
message-handlers, generic-function methods, etc.

Integer Data Type Support: An integer data type is supported which is represented
internally as a C long integer. Fbating point values are now stored internally as C double
precision numbers for greater accuracy.

Conflict Resoiutlon Strategies and Salience Extensions: Seven conflict resolution
strategies are provided including depth, breadth, lex, meal simplicity, complexity, and random.
Salience values can be expressions and contain global variables. Salience values can also be
dynamically evaluated each time a new activation is added to the agenda or every cycle of
execution.

Deftemplate Fleld Checking: Type, value, and range checking for deftemplate field values
are now supported both statically (when rules are loaded) and dynamically (when new facts are
asserted) .
Incremental Reset: Newly added rules are automatically initialized when defined, and any
new activations are placed on the agenda. Rules may also be "refreshed" which adds previously
executed activations which are still valid for a rule to the agenda.

Truth Maintenance: Facts can be made logically dependent upon the existence or
non-existence of other facts.

viii

CONTENTS

Volume 1

Page

AGENDA . 3

SESSION 1

Rule Groupings: An Approach Towards Verification of Expert
Systems . 21

Enhanced Use of CLIPS at the Los Alamos National
Laboratory . 25

SESSION 2A

Using a CLIPS Expert System to Automatically Manage TCP/IP
Networks and Their Components . 41

NMESys: An Expert System for Network Fault Detection 52
A Mission Executor for an Autonomous Underwater

Vehicle . 58

SESSION 28

The Automated Army ROTC Questionnaire (ARQ) 71
Decision Blocks: A Tool for Automating Decision Making

inCLlPS . 76
Automated Predictive Diagnosis (APD): A Three Tiered

Shell for Building Expert Systems for Automated Predictions
and Decision Making . 89

ICADS: A Cooperative Decision Making Model With CLIPS
Experts . 102

SESSION 3A

A CLIPSJX-Window Interface . 115
Application of Machine Learning and Expert Systems to

Statistical Process Control (SPC) Chart Interpretation 123
Application of Software Technology to Automatic

Test Data Analysis . 139

SESSION 36

Acquisition, Representation and Rule Generation for Procedural
Knowledge . 1 49

Projects in an Expert System Class . 162
Using CLIPS as the Cornerstone of a Graduate Expert Systems

Course . 166

Page

SESSION 4A

CRNSEXP - Expert System for Statistical Quality Control 1 73
Distributed Semantic Networks and CLIPS . 1 77
Object-Oriented Knowledge Representation for Expert

Systems . 186

SESSION 48

Linkfinder: An Expert System that Constructs Phylogenic
Trees . 199

Generating Target System Specifications from a Domain
Model Using CLIPS . 209

The Management and Security Expert (MASE) 227

Volume 2

SESSION 5A

Adding Run History to CLlPS . 237
CLlPS Application User Interface for the PC 253
Expert Networks in CLlPS . 267
ECLIPS: An Extended CLlPS for Backward Chaining and

Goal-Directed Reasoning . 273

SESSION 5%

Extensions to the Parallel Real-Time Artificial Intelligence
System (PRAIS) for Fault-Tolerant Heterogeneous
Cycle-Stealing Reasoning . 287

PCLIPS - Parallel CLlPS . 294
Separating Domain and Control Knowledge Using

Agenda . 307
Integrating CLlPS Applications into Heterogeneous Distributed

Systems . 308

SESSION 6A

Data-Driven Backward Chaining . 325
Automated Information Retrieval Using CLlPS 332
Proposal for a CLlPS Software Library . 344

Page

SESSION 6B

improving NAVFAC's Total Quality Management of
Construction Drawings with CLIPS . 357

Validation of an Expert System Intended for Research in
Distributed Artificial Intelligence . 365

Testing Validation Tools on CLIPS-Based Expert Systems 382

SESSION 7A

Design Concepts for Integrating the IMKA Technology with
CLIPS . 395

A CLIPS-Based Tool for Aircraft Pilot-Vehicle Interface
Design . 407

On the Generation of Graphical Objects and Images from
within CLIPS Using XView . 41 7

SESSION 78

Passive Acquisition of CLIPS Rules . 423
YUCSA: A CLlPS Expert Database System to Monitor

Academic Performance . 436
A CLlPS Based Personal Computer Hardware Diagnostic

System . 445

SESSION 8A

PVEX - An Expert System for ProducibilityNalue
Engineering . 455

Rule Groupings in Expert Systems Using Nearest Neighbour
Decision Rules and Convex Hulls . 464

Debugging Expert Systems Using a Dynamically Created
Hypertext Network . 475

SESSION 88

Implementing a Frame Representation in CLIPSICOOL 497
Application of a Rule-Based Knowledge System Using CLlPS

for the Taxonomy of Selected Opuntia Species 505
The Nutrition Advisor Expert System . 51 1

2 N D C L I P S C O N F E R E N C E

AGENDA

Gilruth Center. Johnson Space Center. Houston, TX.

September 23 - 25, 1991

sponsored by the CLIPS Users Group with support by NASAIJohnson Space Center

welcome
C L I P S C O N F E R E N C E

September 23 - 25, 1991
Gilruth Center. Johnson Space Center. Houston, TX.

sponsored by the CLlPS Users Group with support by NASNJohnson Space Center

Co-d ir ect ors : Joseph Giarratano Administrative Chair: Carla Armstrong
Leonard Myers Registration Chair: Marlon Buff

* a * * * * *

CLlPS Users Group
The CLlPS Users Group is a nonprofit corporation organized to promote the interchange of information

about CLIPS, the C Language Integrated Production System developed by the Software Technology Branch of
the Information Technology Division at NASNJohnson Space Center.

The CLlPS Users Group Conference is open to all parties who pay the appropriate registration fees.
Although the presentations are associated with the use of CLIPS, all persons interested in knowledge based
systems will find topics of general usefulness in the field.

CLlPS Users Group Officers 1990-1 991 :
President Leonard Myers California Polytechnic State University (CAL POLY)
Vice-President Matthew Barry Rockwell International Corporation
Vice-president Ray Foster United States Army
Treasurer Marlon Buff United States Army
Secretary Linda Cook Independent Consultant
Secretary Linda Martin Rockwell International Corporation

- - * * -

* * * We gratefully acknowledge the assistance of June Muecke and the Clear Lake Area
Convention and Visitors Bureau for providing the "goodie bags" and registration services.
* * *
.

AGENDA

MONDAY. SEPTEMBER 23

07:30 - 16:OO Registration Main Entrance Gilruth Center

08:OO - 08:15 WELCOME ADDRESS Ballroom

Host: Joseph Giarratano
Speaker Aaron Cohen, Director, Johnson Space Center

08:15 - 08:45 CLIPS - Visions Ballroom
Host: Joseph Giarratano
Speakers: Robert Savely, Software Technology Branch, NASNJSC.

Chris Culbert, Software Technology Branch, NASNJSC.
The status and direction of CLlPS will be discussed.

3

PRECEBiNG PAGE BkB:f PsC: i 1." ,s,eilbf:i3 "

08:45 - 09:45 sEssKW.1 Ballroom

Cont~nul ty . . Host: Leonard Myers
The presenters for this session were asked to followup on the

papers they presented at the first CLlPS conference.

08:45 - 9:15 Rule Groupings: An Approach towards Verification of Expert
Sys tems. Mala Mehrotra, Vigyan Inc.

Knowledge-based expert systems are playing an increasingly important role in NASA space and aircraft
systems. However, many of NASA's software applications are life- or mission-critical and knowledge-
based systems do not lend themselves to the traditional verification and validation techniques for highly
reliable software. Rule-based systems lack the control abstractions found in procedural languages. Hence,
it is difficult to verify or maintain such systems. Our goal is to automatically structure a rule-based
system into a set of rule-groups having a well-defined interface to other rule-groups.

9:15 - 9:45 Enhanced Use of CLIPS at the Los Alamos National Laboratory.
K. H. Duerre, W. J. Parkinson, J. J. Osowski, Los Alamos National
Laboratory.

Early efforts in producing Expert Systems for engineering applications used a limited subset of CLlPS
features. In this paper we discuss the implementation details of previous Expert Systems and of the current
Expert System, which is used for training operators in the control of Isotope Separation System.

09:45 - 10:OO Refreshment BreaQ

10:OO - 11:30 SESSION 2 CONCURRENT GROUPS, A AND B

G r o u ~ 2A:
Host: Yuh-jeng Lee

Ballroom

10:OO - 10:30 Using a CLIPS Expert System t o Automatically Manage
TCPIIP Networks and Their Components. Ben Faul, TRW.

This paper describes an expert system than can directly manage networks components on a TCPIIP network.
Previous expert systems for managing networks have focused on managing network faults after they occur.
However this proactive expert system can monitor and control network components in near real time. The
ability to manage directly network elements from CLlPS is accomplished by the integration of the Simple
Network Management Protocol (SNMP) and an Abstract Syntax Notation (ASN) parser into the CLlPS
artificial intelligence language.

10:30 - 11:OO NMESys: An Expert System for Network Fault Detection.
Peter Nelson and Janet Warpinski, University of Illinois at
C hiigo.

The problem of network management is becoming an increasingly difficult and challenging task. It is very
common today to find heterogeneous networks consisting of many different types of computers, operating
systems, and protocols. The complexity of implementing a network with this many components is difficult
enough, while the maintenance of such a network is an even larger problem. This paper presents a prototype
network management expert system, NMESys (pronounced nemesis), implemented in CLIPS. NMESys
concentrates on solving some of the critical problems encountered in managing a large network. The major
goal of NMESys is to provide a network operator with an expert system tool to quickly and accurately
detect hard failures, potential failures, and to minimize or eliminate user down time in a large network.

11:OO - 11:30 A Mission Executor for an Autonomous Underwater
Vehicle.
Yuh-jeng Lee and Paul Wilkinson, Naval Postgraduate School.

The Naval Postgraduate School has been conducting research into the design and testing of an Autonomous
Underwater Vehicle (AUV). One facet of this research is to incrementally design a software architecture
and implement it in an advanced testbed, the AUV II. As part of the high level architecture, a Mission
Executor is being constructed using CLlPS version 5.0 The Mission Executor is an expert system designed
to oversee progress from the AUV launch point to a goal area and back to the origin. it is expected that the
Executor will make informed decisions about the mission, taking into account the navigational path, the
vehicle subsystems health and the sea environment, as well as the specific mission profile which is
downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted
obstacles, waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a
submarine captain) are required. Many of the vehicle subsystems are modeled as objects using the CLlPS
Object Oriented Language (COOL) embedded in CLlPS 5.0 Additionally, truth maintenance is applied to the
knowledge base to keep configurations updated.

Group 28;
Host: Michael Steib

Room 217

10:OO - 10:30 The Automated Army ROTC Questionaire (ARQ).
David Young, U. S. Army.

The Reserve Officer Training Corps Cadet Command (ROTCCC) takes applications for its officer training
program from college students and Army enlisted personnel worldwide. ROTCCC asked the Artificial
Intelligence Center at Fort Monroe for an inexpensive and reliable way of automating their application
process. After reviewing the process, the Center determined that an expert system with good end-user
interface capabilities could be used to solve a large part of the problem. The system captures the knowledge
contained within the regulations, enables the quick distribution and implementation of eligibility criteria
changes, and distributes the expertise of the admissions personnel at Cadet Command to the education
centers and colleges worldwide. The expert system uses a modified version of CLlPS that was streamlined
to make the most efficient use of its capabilities. A user interface with windowing capabilities provides the
applicant with simple and effective way to input hislher personal data.

10:30 - 11:OO Decision Blocks: A Tool for Automating Decision Making
in CLIPS. Christoph Eick, University of Houston
and Nikhil Mehta, GE Government Services.

The human capability of making complex decision is one of the most fascinating facets of human intelligence,
especially if vague, judgmental, default or uncertain knowledge is involved. Unfortunately, most existing
rule-base forward-chaining languages are not very suitable to simulate this aspect of human intelligence,
because of the lack of support for approximate reasoning techniques needed for this task, , and due to the
lack of specific constructs to facilitate the coding of frequently reoccurring activities in decision making
processes. The paper advocates to extend CLlPS by a new component called decision block to provide better
support for the design and implementation of rule-based decision support systems. A language called
BIRBAL, which is defined on the top of CLIPS, for the specification of decision blocks is introduced.
Empirical experiments involving the comparison of the length of CLIPS-program with the corresponding
BIRBAL-program for three different applications are surveyed. The results of these experiments suggest
that for decision making intensive applications a CLIPS-program tends to be about three times longer than
the corresponding BIRBAL-program.

11:OO - 11:30 Automated Predictive Diagnosis (APD): A Three Tiered
Shell for Building Expert Systems for Automated
Predictions and Decision Making.
Michael Steib, Vitro Corporation.

The APD software features include: On-line help, Three-level architecture, (Logic environment,
SetupIApplication environment, Data environment), Explanation capability, and File handling. The kinds of
experimentation and record keeping that leads to effective expert systems is facilitated by: a) a library of
inferencing modules (in the logic environment), b) An explanation capability which reveals logic strategies
to users, c) Automated file naming conventions, d) An information retrieval system, e) On-line help. These
aid with effective use of knowledge, debugging and experimentation. Since the APD software anticipates the
logical rules becoming complicated, it is imbedded in a production system language (CLIPS) to insure the full
power of the production system paradigm of CLlPS and availability of the procedural language C. This paper
discusses the development of the APD software and three example applications: toy, experimental, and
operational prototype for submarine maintenance predictions.

11:35 - 12:25 SPECIAL DEMONSTRATION*
Host: Leonard Myers

Ballroom

ICADS: A Cooperative Decision Making Model With CLlPS Experts.
Yens Pohl and Leonard Myers, California Polytechnic State University

This paper describes a cooperative decision making model comprising six concurrently executing domain
experts coordinated by a blackboard control expert. The focus application field is architectural design, and
the domain experts represent consultants in the areas of daylighting, noise control, structural support, cost
estimating, space planning, and climate responsiveness. Both the domain experts and the blackboard have
been implemented as production systems, utilizing an enhanced version of the basic CLlPS package. Acting in
unison as an Expert Design Advisor, the domain and control experts react to the evolving design solution
progressively developed by the user in a 2-D CAD drawing environment. A Geometry Interpreter maps each
drawing action taken by the user to real world objects, such as spaces, walls, windows, and doors. These
objects, endowed with geometric and non-geometric attributes, are stored as frames in a semantic network.
Object descriptions are derived partly from the geometry of the drawing environment and partly from
knowledge bases containing prototypical, generalized information about the building type and site conditions
under consideration.

special thanks to IBM Corporation and Buster Malenek
for the loan of an RS16000 system and extra installation
of software for the demonstration.

12:30 - 13:25 LUNCH Ballroom

Note: Room 206 is the Demonstration Room. Feel free to use the equipment to
demonstrate, test and share CLlPS software. Please observe common
courtesy protocol and all legal requirements. If you have any problems with
the equipment and can not find the room monitor person, report your
difficulty to the registration desk.

Also Note: The announcement of CLlPS 5.1 availability will be made in the CLIPS
Technical Session, following Session 3.

13:30 - 15:OO SESSION 3 CONCURRENT GROUPS, A AND B

Host: J. R. Stagner
B a l l r o o m

13:30 - 14:OO A CLIPSIX-Window Interface.
Kym Pohl, CALPOLY.

This paper describes the design and implementation of an interface between the CLIPS expert system
development environment and the graphic user interface development tools of the X-Window system. The
underlying basis of the CLIPSIX-Window interface is a client-server model in which multiple clients can '

attach to a single server that interprets, executes and returns operation results, in response to client
action requests. Implemented in an AIX (Unix) operating system environment, the interface has been
successfully applied in the development of graphics interfaces for production rule cooperating agents in a
knowledge-based CAD system. Initial findings suggest that the client-server model is particularly well
suited to a distributed parallel processing operational mode in a networked workstation environment.

14:OO - 14:30 Application of Machine Learning and Expert Systems to
Statistical Process Control (SPC) Chart Interpretation.
Mark Shewhart, Air Force Logistics Command.

Statistical Process Control (SPC) Charts are one of several tools used in Quality Control. Other tools
include flow charts, histograms, cause-and-effect diagrams, check sheets, Pareto diagrams, graphs, and
scatter diagrams. A control chart is simply a graph which indicates process variation over time. The
purpose of drawing a control chart is to detect any changes in the process, signalled by abnormal points or
patterns on the graph. The Artificial Intelligence Support Center (AISC) of the Acquisition Logistics Division
(ALDIJTI) has developed a hybrid machine-learninglexpert-system prototype which automates the process
of constructing and interpreting control charts.

14:30 - 15:OO Application of Software Technology to Automatic Test Data
Analys is . J. R. Stagner, Jet Propulsion Laboratory.

The verification process for a major software subsystem was partially automated as part of a feasibility
demonstration. The methods employed are generally useful and applicable to other types of subsystems.
The effort resulted in substantial savings in test engineer analysis time and offers a method for inclusion of
automatic verification as part of regression testing.

G r o w 38;
Host: Kwok-bun Yue

R o o m 217

13:30 - 14:OO Acquisition, Representation and Rule Generation for
Procedural Knowledge. Chris Ortiz, Johnson Space Center,
Sachin Mithal, Tim Saito, Computer Sciences Corporation,
R, Loftin, University of Houston.

This paper describes current research into the design and continuing development of a system for the
acquisition of procedural knowledge, its representation in useful forms, and proposed methods for automated
CLIPS rule generation. TARGET (Task Analysis and Rule Generation Tool) is intended to permit experts,
individually or collectively, to visually describe and refine procedural tasks. The system is designed to
represent the acquired knowledge in the form of graphical objects with the capability for generating
production rules in CLIPS. The generated rules can then be integrated into applications such as NASA's ICAT
(Intelligent Computer Aided Training) architecture. The paper concludes by describing proposed methods for
use in translating the graphical and intermediate knowledge representations into CLIPS rules. Systems such
as TARGET have the potential to profoundly reduce the time, difficulties, and costs of developing knowledge-
based systems for the performance of procedural tasks.

14:OO - 14:30 Projects In An Expert System Class.
George Whitson, The University of Texas at Tyler.

Many universities now teach courses in expert systems. In these courses students study the architecture
of an expert system, knowledge acquisition techniques, methods of implementing expert systems and
verification and validation techniques. A major component of any such course is a class project consisting
of the design and implementation of an expert system. This paper discusses a number of techniques that we
have used at The University of Texas at Tyler to develop meaningful projects that could be completed in a
semester course.

14:30 - 15:OO Using CLIPS as the Cornerstone of a Graduate Expert
Systems Course.
Kwok-bun Yue, University of Houston - Clear Lake.

This short article describes the effective use of CLlPS as the cornerstone in a graduate expert systems
course. The course included about 8 to 9 hours of in-depth lecturing in CLIPS, as well as a broad coverage
of major topics and techniques in expert systems. As part of the requirement of the course, students
solved two small yet non-trivial problems in CLlPS before going on to develop a toy expert system in CLlPS
in an incremental manner as the term project. Furthermore, students were required to evaluate CLlPS
programs by the classmates. An anonymous questionnaire at the end of the semester revealed that the
students responded very favorably about the course, especially their experience with CLIPS.

15:OO - 16:30 CLIPS USERS GROUP MEETING Bal lroom
Host: Leonard Myers

Secretary's Report
Treasurer's Report
By-Laws Report
Election of Board Members

NOTE: Five members are to be elected to the Board of Directors. This "CLIPS Board" will
then be responsible for the selection of President, Vice-President, Secretary and Treasurer for
the CLlPS Users Group. The officers need not be members of the Board, and the offices of
Secretary and Treasurer may be held by one person.

It is anticipated that the new Board members will meet during the conference to discuss such
matters as the selection of officers, the production of a newsletter, additional services of the
Users Group, and the Third Conference.

The receptions on Monday and Tuesday will enable members to meet the Board members and
provide suggestions for the oncoming year of CLlPS activities.

On Wednesday the Board will have an opportunity to address the members in the first meeting
of the new CLlPS Board.

16:30 - 17:30 RECEPTION (Cash Bar) Room 217

17:30 - 19:OO BANQUET Bal lroom
Host: Joseph Giarratano
Speakec Astronaut Linda Godwin

We are delighted to have Linda provide us with a change of pace from our CLlPS emphasis
and give us a bit of that unique experience that only those few who have been in space can
relate. Linda's presentation will follow the dinner.

TUESDAY, SEPTEMBER 24
08:30 - 16:OO Late Registration Main Entrance Gilruth Center
08:45 - 10:15 SESSION 4 CONCURRENT GROUPS, A AND B

Grout, 4A; Bal l room
Host: Stephen Scott

08:45 - 09:15 CRNSEXP - Expert System for Statistical Quality Control.
Mariana Hentea, Interactive Business Systems.

The purpose of the Expert System CRNSEXP is to help the user to check the quality of the coils at two very
important mills: Hot Rolling and Cold Rolling in a steel plant. The system interprets the statistical quality
control charts, diagnoses and predicts the quality of the steel. Measurements of process control variables
are recorded in database (ADABAS) and sample statistics such as the mean and the range are computed and
plotted on a control chart. The chart is analyzed through patterns using CLIPS and forward chaining
technique to reach a conclusion about the causes of defects and to take management measures for the
improvement of the quality control techniques. The Expert System combines the certainty factors
associated with the process control variables to predict the quality of the steel. The paper presents the
approach to extract data from database, the reason to combine certainty factors, the architecture and the
use of the Expert System. however, the interpretation of control charts patterns requires the human
expert's knowledge and lends to Expert Systems rules. The conclusions reached with this system help the
management and the quality engineers to eliminate the special causes of the process control variable
variations and to correct about 85% of the problems from these mills.

09:15 - 09:45 Distributed Semantic Networks and CLIPS.
James Snyder and Tony Rodriguez, CAL POLY.

Semantic networks of frames are commonly used as a method of organizing and reasoning in many types of
problems. In most of these applications the semantic network exists as a single entity in a single process
environment. Advances in workstation hardware provide support for more sophisticated applications
involving multiple processes, interacting in a distributed environment. In these applications the semantic
network may well be distributed over several concurrently executing tasks. This paper describes the
design and implementation of a frame-based, distributed semantic network in which frames are accessed
both through CLIPS expert systems and procedural C++ language programs. The application area is a
knowledge-based, cooperative decision making model utilizing both rule-base and procedural experts.

09:45 - 10:15 Object-Oriented Knowledge Representation for Expert
Sys tems. Stephen Scott, Hughes Information Technology.

Object-oriented techniques have generated considerable interest in the Al community in recent years. This
paper discusses an approach for representing expert system knowledge using classes, objects, and message
passing. The implementation is in version 4.3 of NASA's CLIPS, an expert system tool that does not provide
direct support for object-oriented design. The method uses programmer-imposed conventions and keywords
to structure facts, and rules to provide object-oriented capabilities.

G r o u ~ 48: Room 217
Host: Mark Miller

08:45 - 09:15 LinkFinder: An Expert System That Constructs Phylogenic
T r e e s . James lnglehart and Peter Nelson,
The University of Illinois at Chicago.

An expert system has been developed using CLIPS that automates the process of constructing DNA sequence-
based phylogenies - trees or lineages that indicate evolutionary relationships. LinkFinder takes as input
homologous DNA sequences from distinct individual organisms. It measures variations between the
sequences, selects appropriate proportionality constants, and estimates (if possible) the time that has
passed since each pair of organisms diverged from a common ancestor. it then designs and outputs a
phylogenic map, summarizing these results. LinkFinder can find genetic relationships between different
species, and between individuals of the same species, including humans. It was designed to take advantage
of the vast amount of sequence data being produced by the celebrated Genome Project, and should be of great
value to evolution theorists who wish to utilize this dat, but who have no formal training in molecular
genetics.

09:15 - 09:45 Generating Target System Specifications From a Domain
Model Using CLIPS. Vijayan Sugumaran, Hassan Gomaa and
Larry Kerschberg, George Mason University.

The quest for reuse in software engineering is still being pursued and researchers are actively investigating
the domain modeling approach to software construction. There are several domain modeling efforts
reported in the literature and they all agree that the components that are generated from domain modeling
are more conducive to reuse. Once a domain model is created, several target systems can be generated by
tailoring the domain model or by evolving the domain model an then tailoring it according to the specified
requirements. This paper presents the Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain
model is created using multiple view, namely, aggregation hierarchy, generalization/specialization
hierarchies, object communication diagrams and state transition diagrams. The architecture of the
Knowledge Based Requirements Elicitation Tool (KBRET) which is used to generate target system
specifications is also presented. The preliminary version of KBRET is implemented in CLIPS.

09:45 - 10:15 The Management and Security Expert (MASE). Mark Miller,
Stanley Bart, Coranth Gryphon, Jeff Keegan, Catherine Kniker and
Patrick Krolak, University of Massachusetts at Lowell.

Today's computing environments are increasingly complex: they often consist of large networks of
computers that include multiple vendors and operating systems. The various systems and the
communications between them must be kept running at their peak performance levels to meet the demands of
the user community. They must also be kept safe from malevolent intruders and damaging viruses. The
Management and Security Expert (MASE) can help. MASE is a distributed expert system that monitors the
operating systems and applications of a network. It is capable of gleaning the information provided by the
different operating systems in order to optimize hardware and software performance; recognize potential
hardware and/or software failure, and either repair the problem before it becomes an emergency, or notify
the systems manager of the problem; and monitor applications and known security holes for indications of an
intruder or virus. MASE can eradicate much of the guess work of system management.

10:30 - 12:30 SESSlON 5 CONCURRENT GROUPS, A AND B

G r o u ~ 5A; Ballroom
Host: Peter Homeier

10:30 - 11:OO Adding Run History to CLIPS.
Sharon Tuttle and Christoph Eick, University of Houston.

To debug a CLIPS program, certain 'historical' information about a run is needed. It would be
convenient for system builders to be able to ask questions requesting such information. For
example, system builders might want to ask why a particular rule did not fire at a certain time,
especially if they think that it should have fired then, or they might want to know at what periods
during a run a particular fact was in working memory. It would be less tedious to have such
questions directly answered, instead of having to rerun the program one step at a time or having
to examine a long trace file. This paper advocates extending the Rete network used in
implementing CLIPS by a temporal dimension, allowing it to store 'historical' information about a
run of a CLIPS program. We call this extended network a historical Rete network. To each fact an
instantiation are appended time-tags, which encode the period@) of time that the fact or
instantiation was in effect. In addition, each Rete network memory node is partitioned into two
sets: a current partition, containing the instantiations currently in effect, and a past partition,
containing the instantiations which are not in effect now, but which were earlier in the current
run. These partitions allow the basic Rete network operation to be surprisingly unchanged by the
addition of time-tags and the resulting effect that no-longer-true instantiations now do not leave
the Rete network.

11:oO - 11:30 CLIPS Application User Interface for the PC. Jim Jenkins,
Rebecca Holbrook, Mark Shewhart, Joey Crouse and Stuart Yarost,
Air Force Logistics Command.

The majority of applications that utilize expert system development programs for their knowledge
representation and inferencing capability require some form of interface with the end user. This interface
is more than likely an interaction through the computer screen. When building an application the user
interface can prove to be the most difficult ant time consuming aspect to program. Commercial products
currently exist which address this issue. To keep pace CLlPS will need to find a solution for their lack of an
easy-to-use Application User Interface (AUI). This paper represents a survey of the DoD CLIPS' user
community and provides the backbone of a possible solution.

11 :30 - 12:OO Expert Networks i n CLIPS. Susan Hrushka, A. Dalke,
J. Ferguson and R. Lacher, Floriday State University.

Rule-based expert systems may be structurally and functionally mapped onto a special class of neural
networks called expert networks. This mapping lends itself to adaptation of connectionist learning
strategies for the expert networks. Following a process introduced by Kuncicky, Hruska, and Lacher, a
parsing algorithm to translate CLlPS rules into a network of interconnected assertion and operation nodes
has been developed. The translation of CLlPS rules to an expert network and back again is illustrated.
Measures of uncertainty similar to those used in MYCIN-like systems are introduced into the CLlPS system
and techniques for combining and firing nodes in the network based on rule-fireing with these certainty
factors in the expert system are presented. Several learning algorithms are under study which automate
the process of attaching certainty factors to rules.

12:OO - 12:30 ECLIPS: An Extended CLIPS for Backward Chaining and
Goal-Directed Reasoning. Peter Homeier and Thach Le,
The Aerospace Corporation.

Realistic production systems require an integrated combination of forward and backward reasoning to
reflect appropriately the processes of natural human expert reasoning. a control mechanism that consists
solely of forward reasoning is not an effective way to promptly focus the system's attention as calculation
proceeds. Very often expert system programmers will attempt to compensate for this lack by using data to
enforce the desired goal-directed control structure. This approach is inherently flawed in that it is
attempting to use data to fulfil the role of control This paper will describe our implementation of backward
chaining in CLIPS, and show how this has shortened and simplified various CLlPS programs.

D 5R; Room 217
Host: Richard Adler

10:30 - 11:OO Extensions t o the Parallel Real-time Art i f icial Intell igence
System (PRAIS) for Fault-tolerant Heterogeneous Cycle-
stealing Reasoning. David Goldstein, University of Texas,
Arlington.

Extensions to an architecture for real-time, distributed (parallel) knowledge-based systems called
the Parallel Real-time Artificial Intelligence System (PRAIS) are discussed. PRAIS strives for
transparently parallelizing production (rule-based) systems, even under teal-time constraints.
PRAIS accomplished these goals (presented at the first annual CLlPS conference) by incorporating
a dynamic task scheduler, operating system extensions for the fact handling, and message-passing
among multiple copies of CLlPS executing on a virtual blackboard. This distributed knowledge-
based system tool uses the portability of CLlPS and common message-passing protocols to operate
over a heterogeneous network of processors. Results using the original PRAIS architecture over a
network of Sun 3's, Sun 4's and VAX;s are presented. Mechanisms using the producer-consumer
model to extend the architecture for fault-tolerance and distributed truth maintenance initiation
are also discussed. Also, recently designed approaches and extension, including improvements to
RETE and an entirely new pattern matching algorithm to meet hard-real-time deadlines are
discussed.

11:oo - 11:30 PCLiPS - Parallel CLIPS. Coranth Gryphon and Mark Miller,
University of Massachusetts at Lowell.

PCLlPS (Parallel CLIPS) is a set of extensions to the CLIPS expert system language. PCLlPS is intended to
provide an environment for the development of more complex, extensive expert systems. Multiple CLlPS
expert systems are now capable of running simultaneously on separate processors, or separate machines,
thus dramatically increasing the scope of solvable tasks within the expert systems. PCLlPS allows for an
expert system to add to its fact-base information generated by other expert systems, thus allowing
systems to assist each other in solving a complex problem. This allows individual expert systems to be
more compact and efficient, and thus run faster or on smaller machines.

11 :30 - 12:OO Separating Domain and Control Knowledge using Agenda.
Paul Haley, The Haley Enterprise.

Controlling the behavior of CLlPS applications usually involves the use of salience and/or the introduction of
control conditions into the conditions of most rules. Using more than a few levels of salience facilitates poor
rule-based programming technique and inhibits incremental refinement and maintenance of a knowledge base
by implicitly encoding procedural control throughout the knowledge base. To avoid the problem of overusing
salience, developers of CLlPS (and OPS5) programs necessarily introduce conditions representing
procedural state into their rules. When the rule base is embedded within an application, the controlling
program, in addition to the rules themselves, assert and retract facts which instantiate the control
conditions which are distributed throughout the rule base. Although effective, this technique is tedious,
reduces sharing, increases match volatility, involves database overhead, and - most importantly - couples
control and domain knowledge such that certain operators which may usefully be applied in several (but not
all)(control contexts, must be implemented redundantly albeit with distinct control conditions. We describe
an extension to CLlPS which allows a rule to be declared as belonging to one of several agenda. Using this
capability, we show how the need for rule salience and control conditions can be eliminated from rules using
a standard procedural language, such as C, to control the execution of rule activations among agenda.
Examples are given that show how eliminating salience and control conditions from rules makes knowledge
bases easier to comprehend. We also show how eliminating control information from rules improves
efficiency and reduces space requirements. We conclude that, using these capabilities, any flow-chartable
control flow can be imposed on the knowledge base without rule saliences or control conditions.

12:OO - 12:30 Integrating CLIPS Applications into Heterogeneous
Distr ibuted Systems. Richard Adler, Symbiotics, Inc.

SOCIAL is an advanced, object-oriented development tool for integrating intelligent and conventional
applications across heterogeneous hardware and software platforms. SOCIAL defines a family of "wrapper"
objects called Agents, which incorporate predefined capabilities for distributed communication and control.
Developers embed applications within Agents and establish interactions between distributed Agents via non-
intrusive message-based interfaces. This paper describes a predefined SOCIAL Agent that is specialized for
integrating CLIPS-based applications. The Agent's high-level Application Programming Interface supports
bidirectional flow of data, knowledge, and commands to other Agents, enabling CLlPS applications to initiate
interactions autonomously, and respond to requests and results from heterogeneous, remote systems. The
design and operation of CLlPS Agents is illustrated with two distributed applications that integrate CLIPS-
based expert systems with other intelligent systems for isolating and managing problems in the Space
Shuttle Launch Processing System at NASA Kennedy Space Center.

12:30 - 13:25 LUNCH Ballroom

13:30 - 14:30 CLIPS SPECIAL SESSION Ballroom
Hosts: Brian Donnell and Gary Riley

Brian Donnell and Gary Riley will make presentations and answer technical
questions about CLIPS.

The availability of CLlPS 5.1 will be announced.

14:30 - 14:45 -
14:45 - 16:15 6 CONCURRENT GROUPS, A AND B

Grour, 6A:
Host: Ken Porter

R o o m 204

14:45 - 15:15 Data-Driven Backward Chaining.
Paul Haley, The Haley Enterprise, Inc.

CLlPS cannot effectively perform sound and complete logical inference in most real-world contexts. The
problem facing CLlPS is its lack of goal generation. Without automatic goal generation and maintenance,
Forward chaining can only deduce all instances of a relationship. Backward chaining, which requires goal
generation, allows deduction of only that subset of what is logically true which is also relevant to ongoing
problem solving. Goal generation can be mimicked in simple cases using forward chaining. However, such
mimicry requires manual coding of additional rules which can assert an inadequate goal representation for
every condition in every rule that can have corresponding facts derived by backward chaining. in general,
for N rules with an average of M conditions per rule the number of goal generation rules required is on the
order of N*M. This is clearly intractable from a program maintenance perspective. We describe the
support in Eclipse for backward chaining which automatically asserts as it checks rule conditions. Important
characteristics of this extension are that it does not asset goals which cannot match any rule conditions,
that two equivalent goals are never asserted, and that goals persist as long as, but no longer than, they
remain relevant.

15:15 - 15:45 Automated information Profil ing with CLIPS.
Rodney Raines, U. S. Coast Guard.

Rapid analysis and dissemination of information is critical to the success of many computer centers. With
advances in information technology, greater volumes of information pass through computer networks and
into storage. Much of this information is extraneous, consuming valuable storage space and wasting CPU
time. Without proper management, this volume of information can reduce the performance of the computer
center and the end user.

15:45 - 16:15 Proposal for a CLIPS Software Library.
Ken Porter, Harris Corporation.

This paper is a proposal to create a software library for CLIPS, the C Language Integrated Production
System expert system shell developed by NASA. Many innovative ideas for extending CLlPS were
presented at the First CLIPS Users Conference, including useful user and database interfaces. CLlPS
developers would benefit from a software library of re-usable code. The CLlPS Users Group should
establish a software library -- this paper proposes a course of action to make that happen. Open discussion
to revise this library concept is essential, as only a group effort is likely to succeed. At the end of the
paper is a response form intended to solicit opinions and support from the CLlPS community.

G r o u ~ 6B;
Host: Chin-Gang Chang

14:45 - 15:15 Improving NAVFACSs Total Quality Management of
Construction Drawings with CLIPS.
Albert Antelman, Naval Civil Engineering Laboratory.

This paper describes a diagnostic expert system to improve the quality of Naval Facilities Engineering
Command (NAVFAC) construction drawings and specification. CLIPS and CAD layering standards are used in
an expert system to check and coordinate construction drawings and specifications to eliminate errors and
omissions.

15:15 - 15:45 Validation of an Expert System Intended for Research in
Distr ibuted Ar t i f i c ia l Intell igence.
C. Grossner, J. Lyons and T. Radhakrishnan, Concordia University.

The expert system discussed in this paper is designed to function as a testbed for research on cooperating
expert systems. Cooperating expert systems are members of an organization which dictates the manner in
which the expert systems will interact when solving a problem. The Blackbox Expert described in this paper
has been constructed using CLIPS, C++, and X widowing environment. CLIPS is embedded in a C++ program
which provides objects that are used to maintain the state of the Blackbox puzzle. These objects are
accessed by CLIPS rules through user-defined function calls. The performance of the Blackbox Expert is
validated by experimentation. A group of people are asked to solve a set of test cases for the Blackbox
puzzle. A metric has been devised which evaluates the "correctness" of a solution proposed for a test case
of Blackbox. Using this metric and the solutions proposed by the humans, each person receives a rating for
their ability to solve the Blackbox puzzle. The Blackbox Expert solves the same set of test cases and is
assigned a rating for its ability. Then the rating obtained by the Blackbox Expert is compared with the
ratings of the people, this establishing the skill level of our expert system.

15:45 - 16:15 Testing Validation Tools on CLIPS-Based Expert Systems.
Chin-Liang Chang, R. Stachowitz and J. Combs Lockheed
Software Technology Center.

The Expert systems Validation Associate (EVA) is a validation system which was developed at the Lockheed
Software Technology Center and Artificial Intelligence Center between 1986 and 1990. EVA is an integrated
set of generic tools to validate any knowledge-based system written in any expert system shell such as
CLIPS, ART, OPS5, KEE and others. Many validation tools have been built in the EVA system. In this paper,
we describe the testing results of applying the EVA validation tools to the Manned Maneuvering Unit (MMU)
Fault Diagnosis, Isolation, and Reconfiguration (FDIR) expert system, written in C Language Integrated
Production System (CLIPS), obtained from the NASA Johnson Space Center.

16:30 - 17:30 BOARD RECEPTION (Cash Bar) Nassau Bay Hilton
It's Happy Hour at the Marina Via - with free hor d'ouvresl

WEDNESDAY. SEPTEMBER 24

08:45 - 10:15 SESSION 7 CONCURRENT GROUPS, A AND B

Host: Terry Feagin
Ballroom

08:45 - 09:15 Integrating the IMKA Technology with CLIPS.
David Scarola, Carnegie Group, Inc.

This presentation will share our experiences in evaluating the technical alternatives for integrating the
IMKA frame-based knowledge representation system with CLIPS. The initiative for Managing Knowledge
Assets (IMKA), consisting of Carnegie Group, Inc., Digital Equipment Corporation, Ford Motor Company,
Texas Instruments Incorporated and U S WEST, In., was formed to foster the cooperative funding and
development of a software technology that will meet each company's and their clients' needs for capturing
and managing complex, corporate-wide knowledge. The IMKA Technology is a frame-based knowledge
representation system for developing knowledge-based applications. lntegrating the IMKA technology with
CLIPS allows application knowledge to be encoded naturally using both frames and rules, and allows the
knowledge stored in frames to be reasoned about using rules. lntegrating a frame-based system with a
RETE-based rule. system is a challenging task because the approach to accessing data is very different in
each system. We found three integration models that can be used to address the different data access
methods of IMKA and CLIPS. This presentation provides an overview of the features of the IMKA
technology, describes the challenges of integrating the IMKA technology with CLIPS, and discusses the three
integration models and the circumstances under which each is appropriate.

09:15 - 09:45 A CLIPS-Based Tool for Aircraft Pilot-Vehicle Interface
Design. Tom Fowler, CAL POLY, and Steven Rogers,
Anacapa Sciences.

The Pilot-Vehicle lnterface of modern aircraft is the cognitive, sensory, and psychomotor link between the
pilot, the avionics modules, and all other systems on board the aircraft. To assist Pilot-Vehicle lnterface
designers a CLIPS-Based tool has been developed that allows design information to be stored in a table that
can be modified by rules representing design knowledge Developed for the Apple Macintosh, the tool, allows
users without any CLlPS programming experience to form simple rules using a point and click interface.

09:45 - 10:15 On the Generation of Graphical Objects and Images
From Within CLlPS Using XView.
Terry Feagin,University of Houston - Clear Lake.

A variety of features that support the generation and manipulation of graphical objects and images in CLlPS
are described. These features provide the CLlPS programmer with the ability to develop an enhanced user
interface. Windows and objects within the windows (such as buttons, sliders, text, etc.) can be created,
hidden, redisplayed, given new values, properties, or positions, and manipulated in various other ways.
Menus can be generated for any window or object and displayed when desired. Interaction with the user is
primarily via mouse movements and mouse button selections made over windows, item, or menus. User
input is recorded in the form of fact assertions. Limited animation of objects is also supported.

oup 7R; Room 217
Host: George Whitson

08:45 - 09:15 Passive Acquisition of CLIPS Rules.
Vincent Kovarik, Software Productivity Solutions, Inc.

The automated acquisition of knowledge by machine has not lived up to expectations and knowledge
engineering remains a human intensive task. Part of the reason for the lack of success is the difference in
cognitive focus of the expert. The expert must shift his or her focus from the subject domain to that of the
representation environment. In doing so, this cognitive shift introduces opportunity for errors and
omissions. This paper presents work which observes the expert interact with a simulation of the domain.
The system logs changes in the simulation objects and the expert's actions in response to those changes.
This is followed by the application of inductive reasoning to move the domain-specific rules observed to
general domain rules.

09:15 - 09:45 YUCSA: A CLIPS Expert Database System to Monitor
Academic Performance. Anestis Toptsis, Frankie Ho, Milton
Leindekar, Debra Low Foon and Mike Carbonaro, YORK University.

This paper present YUCSA (York University CLlPS Student Administrator), an expert database system
implemented in CLIPS, for the monitoring of the academic performance of undergraduate students at York
University. The expert system component of the system has been already implemented for two major
Departments and it is under testing and enhancement for more Department. Also, more elaborate user
interfaces are under development. We describe the design and implementation of the system and also
discuss the problems encountered, as well as our immediate future plans. The system has excellent
maintainability and it is very efficient (assessment of one student takes less than one minute.)

09:45 - 10:15 A CLIPS Based Personal Computer Hardware Diagnostic
System. George Whitson, The University of Texas at Tyler.

Often the person designated to repair personal computers has little or no knowledge of how to repair a
computer. This paper describes a simple expert system to aid these inexperienced repair people. The first
component of the system leads the repair person through a number of simple system checks such as making
sure all cables are tight ant that the dip switches are set correctly. The second component of the system
assists the repair person in evaluating the error codes generated by the computer. In the final component
the system applies a large knowledge base to attempt to identify the component (components) of the personal
computer that is (are) malfunctioning. We have implemented and tested our design with a full system to
diagnose problems for an IBM compatible system based on the 8088 chip. In our tests, the inexperienced
repair people found the system very useful in diagnosing their hardware problems.

SFSSION 8 CONCURRENT GROUPS, A AND B

G r o u ~ 8A:
Host: Craig Boyle

Ballroom

10:30 - 11:OO PVEX - An Expert System for Producibility/Value
Engineering. Chun Lam and Warren Moseley,
The University of Alabama in Huntsville.

This paper describes PVEX, an expert system that solves the problem of selection of the material and
process in missile manufacturing. The producibility and value problem has been deeply investigated in he
past years, and was written in dBase Ill and PROLOG before. This project represents a new approach to it in
the the solution is achieved by introducing hypothetical reasoning, heuristic criteria integrated with a simple
hypertext system and shell programming. PVEX combines KMS with Unix scripts which graphically depicts
decision trees. The decision trees convey high level qualitative problem solving knowledge to users, and a
stand-alone help facility and technical documentation is available through KMS. The system the authors
developed is considerably less development in development costs than any other comparable expert system.

11:OO - 11:30 Rule Groupings in Expert Systems Using Nearest Neighbor
Decision Rules, and Convex Hulls.
Stergios Anastasiadis, McGill University.

Expert System shells lack in many areas of software engineering. Large rule-based systems are not
semantically comprehensible, difficult to debug, and impossible to modify or validate. Partitioning a set of
CLIPS rules, into groups of rules which reflect the underlying semantic subdomains of the problem, will
address adequately the concerns stated above. In this paper we introduce techniques to structure a CLIPS
rule-base into groups of rules that inherently have common semantic information. The concepts involved
are imported for the fields of A.I., Pattern Recognition, and Statistical inference. Techniques focus on the
areas of feature selection, classification, and a criteria of how "good" the classification technique is, based
on Bayesian Decision Theory. We discuss a variety of distance metrics for measuring the "closeness" of
CLIPS rules and describe various Nearest Neighbor classification algorithms based on the above metrics.

11 :30 - 12:OO Debugging Expert Systems using a Dynamically Created
Hypertext Network.
Craig Boyle and John Schuette, Texas A&M University.

The labor-intensive nature of expert system writing and debugging has motivated this study. Our
hypothesis is that a hypertext based debugging tool is easier and faster than one traditional tool, the
graphical execution trace. HESDE (Hypertext Expert System Debugging Environment) uses Hypertext nodes
and links to represent the objects and their relationships created during the execution of a rule based expert
system. HESDE operates transparently on top of the CLIPS rule-base system environment and is used during
the knowledge-base debugging process. During the execution process HESDE builds an execution trace. Use
of facts, rules and their values are automatically stored in a Hypertext network for each execution cycle.
After the execution process the knowledge engineer may access the Hypertext network and browse the
network created. The network may be viewed in terms of rules, facts and values. An experiment was
conducted to compare HESDE with a graphical debugging environment. Subjects were given representative
tasks. For speed and accuracy, in eight of the eleven tasks given to subjects HESDE was significantly
better.

G r o u ~ 8B;
Host: Scott Huse

Room 217

10:3O - 11:OO Implementing a Frame-Based Representation with
CLIPS/COOL. LeonardMyersandJamesSnyder, CALPOLY

The purpose of this paper is to describe and evaluate an implementation of kames in COOL. The test case is
a frame-based semantic network previously implemented in CLlPS Version 4.3 as part of the Intelligent
Computer-Aided Design System (ICADS) and reported in the first CLlPS conference.

11:oo - 11:30 Application of a Rule-Based knowledge System Using
CLIPS for the Taxonomy of Selected Opuntia Species.
Bart Heymans, Joel Onema and Joseph Kuti,Texas A & I University

A rule-based knowledge system was developed in CLIPS (C-Language lntegrated Production System) for
identifying Opuntia species in the family Cactaceae, which contains approximately 1,500 different species.
This botanist expert tool system is capable of identifying selected Opuntia plants from the family level down
to the species level when given some basic characteristics of the plants. Many Opuntia species are cultivate
as ornamental plants and some are significant as food crops. Opuntia plants are becoming of increasing
importance because of their nutrition and human health potential especially in the treatment of diabetes
mellitus. The expert tool system described in this paper can be extremely useful in an unequivocal
identification of many useful Opuntia species.

11 :30 - 12:OO The Nutrition Advisor Expert System.
Scott Shyne and Scott Huse, Rome Laboratory.

The Nutrition Advisor Expert System (NAES) is an expert system written in the C Language Integrated
Production System (CLOPS)/ NAES provides expert knowledge and guidance into the complex world of
nutrition management by capturing the knowledge of an expert and placing it at the user's fingertips.
Specifically, NAES enables the user to: (1) obtain precise nutrition information for food items, (2) perform
nutritional analysis of meal(s), flagging deficiencies based upon the United States Recommended Daily
Allowances, (3) predict possible ailments based upon observed nutritional deficiency trends, (4) obtain a
top-ten listing of food items for a given nutrient, and (5) conveniently upgrade the database. An explanation
facility for the ailment prediction feature is also provided to document the reasoning process.

12:05 - 13:OS LUNCH Ballroom

13:lO - 14:lO BOARD MEETING (open to all) Room 217
The primary purpose of this meeting to is provide the new Board members with an opportunity to present
their initial ideas for the CLlPS Users Group and to formally hear from the CLlPS Users Group members.

.
INFORMATION FORM
if you need to change information for the mailing of the proceedings from that on your
original registration, please fill out the following and return it to the registration table.

Second Annual CLlPS Users Group Conference
September 23-25, 1991 Gilruth Center, Johnson Space Center, Houston, TX

(please print)
Name - - T i t l e ----------

Address ---------- ---- Phone -------- --

Ci t y State - Zip

SESSION 1

- Rule Groupings: An Approach towards
Verification of Expert Systems

Mala Mehrotra
Vigyan Inc.

30, Research Drive

Hampton, Va 23666.

mm@airl&. larc. nasa.gov

Knowledge-based expert systems are playing an increasingly important role in NASA
space and aircraft systems. However, many of NASA's software applications are life- or
mission-critical and knowledge-based systems do not lend themselves to the traditional ver-
ification and validation (V&V) techniques for highly reliable software. Rule-based systems
lack the control abstractions found in procedural languages. Hence, it is difficult to verify
or maintain such systems. Our goal is to automatically structure a rule-based system into
a set of rule-groups having a well-defined interface to other rule-groups. Once a rule base
is decomposed into such "firewalled" units, studying the interactions between rules would
become more tractable. Verification-aid tools can then be developed to test the behavior of
each such rule-group. Furthermore, the interactions between rule-groups can be studied in
a manner similar to integration testing. Such efforts will go a long way towards increasing
our confidence in the expert-system software.

There are two main reasons why expert systems defy verification and validation efforts.
First, rapid prototyping and iterative development form key features of any expert system
development activity. This has led to the development of ad-hoc techniques for expert-
system design without any software engineering guidelines. Second, due to the data-driven
nature of expert systems, as the number of rules of an expert system increase, the number
of possible interactions between the rules increases exponentially. The complexity of each
pattern in a rule compounds the problem of testing even further. This makes exhaustive,
or even systematic, testing of large knowledge bases infeasible. As a result, large expert
systems tend to be incomprehensible, difficult to debug or modify, and almost impossible
to verify or validate.

This situation is not wholly unlike that which faced traditional software development be-
fore the introduction of structured software engineering.Conventional software yields more
easily to verification efforts because control is explicitly represented as procedures which
can be structured to encapsulate run-time abstractions. Modules can be designed in con-

2 1 /"! IC&l44t+
PMCEDING PAGE NC?-7 F;"E"s,mD

ventional software, each consisting of a manageable unit with a well-defined interface. Fur-
thermore, procedures can be grouped into packages or objects which share an internal data
structure. These units can then be subjected to unit /integration testing techniques. In ex-
pert systems, rules play a role analogous to paths through procedures. However, each rule
in an expert system is data-driven, since the presence or absence of data controls the flow
of execution. Hence, V&V techniques for expert systems have to view interactions between
all pairs of rules. For large expert systems, this is quite difficult and can be prohibitively
expensive.

Our research efforts address the feasibility of automating the identification of rule
groups, in order to decompose the rule base into a number of meaningful units. Each such
group can then be viewed as a procedure. Identification of the intra-group and inter-group
items for a group of rules would be analogous to defining local variables and parameters for
procedures in conventional software. A verification-aid tool could then test the behavior of
each such unit under all possible values of inputs [I].

The grouping of rule bases can play an important role in verification and validation
of flight-critical systems at NASA. In such systems one needs to identify critical regions,
assert various criticality levels [2] for them, and test such regions both analytically and
exhaustively. If one is able to isolate the group of rules that deal with the critical features
of the problem domain, certain safety properties of the system can be verified. Knowledge
of the function of a group of rules would allow us to choose the distribution of inputs
in such a way that typical situations where functioning of the system is critical could be
studied in isolation [?I. Moreover, if support existed for specifying what rules should not get
fired under certain circumstances, backward flow analysis techniques [3] could be used to
locate critical paths. An additional advantage of modularization would be the identification
of modules and data items that are necessary in a degraded (fail-soft) processing mode.
Validating such modules is clearly critical to confidence in the reliability of the software.

Validation of conventional software systems relies on systematic testing, since exhaus-
tive testing of such systems is generally infeasible. Such systematic testing is based on
abstractions such as procedures, functions and other control structures. Along with such
explicit abstractions, other testing techniques, such as data flow and path testing, take into
account implicit dependencies between different parts of the program. Rule-based systems
lack the control abstractions found in procedural languages. Although the non-procedural
nature of rule-based systems is sometimes cited as an advantage, the subsequent lack of
control abstractions makes it difficult to verify and maintain these systems.

Towards this goal, we would like to structure a rule base into a set of groups consisting
of related rules. We have taken a pattern-matching approach for this grouping of rules. In
this approach, the commonality of items in the rules determines the distance between them.
Our rule grouping process consists of three stages. First, the distance between each pair
of rules is computed and stored in a distance matrix. In the second stage, the computed
distances are modified so that all distances satisfy the triangle inequality. That is, we
replace the distance between two rules by a shorter distance, if there exists an intermediate
rule through which a shorter path can be created. This procedure thus extracts transitive
dependencies between rules. Finally, we apply a clustering algorithm to form our groups.

In [4, 5, 61, we have studied three types of distance metrics and two approaches to
clustering. The first one is an automatic clustering algorithm based on graph-partitioning
approaches. The second requires the user to designate certain rules as "primary rules"
or "seed rules" around which the clustering algorithm will form groups. These primary
rules typically reflect key concepts from the domain; thus, the resulting clusters correspond
closely to the user's conceptual model of the problem domain. Two independent evaluation
criteria were developed to measure the effectiveness of the grouping strategies.

Based on our results so far, we believe a comprehensive set of distance metrics can be
designed which would be effective in grouping all types of rule bases. By applying our
grouping tool to more complicated and larger rule bases, we hope to obtain more insight
into parameters that play a critical role in grouping. A significant outcome from our study
will be the formulation of software engineering guidelines for the design of rules, which
would promote the grouping process without sacrificing programming flexibility. In fact
these guidelines may actually aid in programming by providing guidance and discipline,
similar to the aid that structured programming gives in maintaining intellectual control
of traditional software. This is also analogous to work in language design which is driven
by the ease of proof rules for verification. A good style of rule-based programming will
make the underlying relationships between key concepts more transparent and easier to
understand and verify.

In future, we intend to study the interplay of distance metrics, clustering criteria, objec-
tive functions to be optimized and software engineering guidelines on grouping. We would
also like to formulate rigorous evaluation criteria to judge the quality of groups formed.
A handle on the definition of what constitutes a "good grouping" will feed back into the
criteria t o be used for formation of good groups. A set of software engineering requirements
could then be laid out that are necessary for producing useful partitions in a rule base from
the point of view of testing them. The "quality" of grouping is very much dependent on
the motivation behind grouping. For maintainability and ease of comprehension of the rule
base one would want the groupings to "match" human expectations. However, for testing
and verification, this aspect is less important. In fact, one could argue that "unnatural"
groupings would force the software engineer to see the rule base in a new light which could
give insight into its behavior - particularly its unexpected behavior.

Our research plans are designed to give us insight into the factors that lead to mean-
ingful rule groupings after which we intend to develop automatic verification aid tools for
unitlintegration testing of well-partitioned rule bases. Each partition or group obtained
through our grouping process can be viewed as a procedure. Our software tool would be
extended to allow identification of the common intra-group and inter-group items for a
group of rules, which would be analogous to local variables and parameters for procedures
in conventional software. Such groups can be formed into software modules with "fire-
walls," having well-defined inputs and outputs. Formation of such modules can be seen
as the first step towards managing their complexity for verification and validation. The
interface of the modules can then help in the automatic generation of test suites required
for verification and validation. Validating such modules is clearly critical to confidence in
the reliability of the knowledge-based system software.

References

[I] C. Culbert and R. T. Savely. Expert system verification and validation. In Proceedings,
Validation and Testing Knowledge-Based Systems Workshop, August 1988.

[2] S. C. Johnson. Validation of highly reliable, real-time knowledge-based systems. In
SOAR 88 Workshop on Automation and Robotics, July 1988.

[3] N. G. Leveson. Safety-critical software development. In T. Anderson, editor, Safe 8
Secure Computing Systems, chapter 9, pages 155-162. Blackwell Scientific Publications,
1989.

[4] M. Mehrotra. Rule groupings: A software engineering approach towards verification of
expert systems. Technical Report NASA CR-4372, NASA Langley Research Center,
Hampton, VA., May 1991.

[5] M. Mehrotra and S. C. Johnson. Importance of rule groupings in verification of expert
systems. In Notes for the AAAI-90 Workshop on Verification, Validation and Testing
of Knowledge-Based Systems, July 1990.

[6] M. Mehrotra and S. C. Johnson. Rule groupings in expert systems. In Proceedings,
First CLIPS Users Group Conference, Aug 1990.

[7] D. L. Parnas, J . van Schouwen, and S. Po Kwan. Evaluation of safety-critical software.
Communications of the ACM, 33(6):636-648, June 1990.

N92- l t " , s ' ; rO
ENHANCED USE OF CLIPS

AT
THE LOS ALAMOS NATIONAL LABORATORY

K. H. Duerre
W. J. Parkinson
Group MEE-9

and
J. J. Osowski
Group MEE-4

Los Alamos National Laboratory
Los Alamos,NM 87545

ABSTRACT

Early efforts in producing Expert Systems for engineering applications used a
limited subset of CLIPS features. In this paper we discuss the implementation
details of previous Expert Systems and of the current Expert System, which is

used for training operators in the control of the Isotope Separation System.

INTRODUCTION

Three CLIPS-based Expert systems1 were developed to assist in solving
engineering problems at the Los Alamos National Laboratory (LANL). These
systems were justified by The Laboratory's need to save corporate knowledge that
might be lost by personnel attrition and by the requirement to transfer the
technology to industry. Two of the systems were advisors designed to aid in the
selection of the 'best' equation of state models for process design2, and to screen
enhanced oil recovery methods3. These advisors were not used for control nor did
they include explanation facilities. The third Expert system4 to assist in the
production of silicon carbide whiskers is similar in function to that of our current
system. As can be seen in Fig. 1, whisker growth is a complex process. Although
whisker growth is difficult, if not impossible, to model mathematically, "excellent"
whiskers can be grown by a human expert.

The LANL Materials Science and Technology Group MST-3 is responsible for
research and development of systems and equipment for the handling and
processing tritium, the heavy radioactive isotope of hydrogen. The group runs
the Tritium Systems Test Assembly (TSTA) in which equipment and processes
are tested for use with a fusion reactor fuel cycle.

The Isotope Separation System (ISS) shown schematically in Fig. 2, is one
of the systems housed in the TSTA. It utilizes cryogenic distillation columns to
separate hydrogen isotopes (protium, deuterium and tritium) into pure component
streams. Controllers, which are conventional and of 10 year-old technology,
require frequent manual adjustments of setpoints to accommodate the non-
steady state nature of the ISS. A large amount of data must be monitored by
operating personnel. System interactions are complex, making optimum
operation difficult to attain.

The operation and control of the system is an art that is understood by only a
few technical personnel who have long experience with the system. Even these
experienced personnel have problems assimilating and reconciling variables in a
timely manner. It was decided that an Expert System should be developed to
collect and document the knowledge of the few experts in the ISS operation.
This system could then be used to assist the technicians who normally operate
the system and to train new personnel.

The success of earlier Expert Systems was largely instrumental in
considering the use of an expert advisor for this system. The Whisker Production
Advisor is currently being transferred to industry.

DESIGN CONSIDERATIONS

Whisker Production Advisor

We felt that any usable expert system should be executable with an
inexpensive shell and an easily available computer. The PC version of CLIPS
was chosen for this task. The search trees associated with production run setup
and run control had five levels, so they required a good search algorithm in order
to obtain a reasonable response. CLIPS'S RETTE atgorithm was adequate for the
task.

ISS Advisor

Since the resident experts were approaching retirement age, the knowledge
base constructed should be easy to maintain and should be as complete as
possible. The operators had considerable experience in seeing the data appear
on graphic devices and, although an easy interface was not top priority, we soon
learned that it made acceptance of this tool much easier. Available hardware was
limited to the IBM AT class of personal computers. The size of program
developed should fit in available memory (~ 6 4 0 kbytes). Finally, the program
should be easy to maintain.

THE PROGRAMS

The Whisker Advisor

Figure 3 shows the organization of the whisker advisor. The two parts, run
setup and control system, were developed separately, and each was embedded
in the CLIPS shell. The operator interacts with the system through the computer
keyboard and screen. Figure 4 illustrates a partial sample dialog for a
hypothetical run.

The ISS Advisor

The structure and information flow of the ISS advisor is shown in Fig. 5.
The main program is written in ANSI C. It provides the user interface, whether
the interface is textual or graphics, obtains the initial conditions, and asserts the
facts obtained in the main program, to the embedded CLIPS rules. The main
program retrieves the advice generated by CLIPS and displays it to the operator.

The program begins by giving the user a brief description of the program's
purpose. The CLIPS environment is then initialized and rules from the file
ISS.CLP are loaded into the system. The program now has the 'brain' necessary
to make decisions based on data to be input later. The user then enters the main
loop of the program.

The main loop initially gives the user a list of possible options pertaining to
the type of problem to be solved. Depending on the users answer, the program
searches for data pertaining to the specified problem. The user is also permitted
to input fresh data via Option 6. The program loads in data and the user is
permitted to make adjustments. The user is also permitted to input 'no data
available' for any combination of data cells. Figure 6, shows the data for a
default scenario, the cursor is positioned at the data cell to be changed and new
data can replace that shown. Compare this with the elicitation scheme shown in
Fig. 4.

Once data is available, it is asserted to the rule base (brain) and the
appropriate action is determined based on the given information. Figure 7
illustrates the types of rules created from the asserted information (could be
specified or measured). If blanks are input into the data, the value '99999' is
asserted to the rule base. This number is used to numerically mark (becomes a
flag) to indicate 'no data available.' Any rule finding '99999' as data will not
fire. As rules fire, a queue is filled containing text or display information that is
sent back to the main C driver program from the rulebase, placed on a stack,
and sorted. The text statements or display information is then shown as
suggestions to the user. This completes a pass through the main loop of the
program; however, the user is permitted to cycle through the loop as many times

as requested with new and/or reused data.

Three versions of the ISS advisor exist: (1) ISS.EXE (a color text version);
(2) ISSL.EXE (a black and white version for lap-top personal computers); and (3)
ISSIS.EXE (a graphics version which has proven to be the most popular of the
three versions).

Figure 8 is a sample screen produced by the advisor. The amount of
information presented is much greater and more compact than simple textual
dialog.

CONCLUSIONS

A friendlier interface was obtained by embedding CLIPS inside a main C
program than for our earlier versions of Expert Systems. Preliminary versions of
the ISS advisor have shown that the memory limitation has been avoided by the
careful use of files for the verbose advice indexed by the 'firedN rules and also by
placing the initial conditions for various scenarios in data files. The use of
templates has helped in the documentation of the rules and has generally
improved the readability of the code.

It would have been helpful if rounded floating point data were available to
be passed back in string form to the main program. CLIPS version 5.0 was
received too late for use in this project.

Although testing the advisor against the actual operation of the Isotope
Separation System has been limited, the use of graphics has greatly enhanced
the acceptance of the advisor.

REFERENCES

1. W. J. Parkinson, G. F. Luger, and R. E. Bretz,"Three CLIPS-Based Expert
Systems for Solving Engineering Problems,' Proceedings of The First Annual
CLIPS User's Conference, Houston, Texas, Vol. 1, pp. 3-17, August 13-1 5,
1990.

2. W. J. Parkinson, G. F. Luger, and R. E. Bretz,"Using PC-Based Shells to
Write an Expert Assistant for Use with the ASPEN Computer Code," Paper
presented at the AlChE Annual Meeting, Session on Applications of Artificial
Intelligence in Chemical Engineering, April 2-6, 1989, Houston, Texas.

3. W. J. Parkinson, G. F. Luger, R. E. Bretz, and, J. J. Osowski,"An Expert
System for Screening Enhanced Oil Recovery Methods,' Paper presented at
The 1990 Surnrner National Meeting of The American Institute of Chemical
Engineers, San Diego, California, August 19-22, 1990.

4. W. J. Parkinson, P. D. Shalek, E. J. Peterson, and G. F. Luger, "Designing an
Expert System for the Production of Silicon Carbide Whiskers," Paper
presented at the TMS Annual Meeting, Symposium--Expert System
Applications in Materials Processing & Manufacturing, February 19-22, 1990,
Anaheim, California.

PROCESS
GAS IN

Figure 1. Los Alarnos Silicon Carbide
Whisker Production Reactor.

K
N

O
W

LE
D

G
E

W

N

Fi
gu

re
 3

.
W

hi
sk

er
s

Ex
pe

rt
Sy

st
em

.

What is the desired average whisker length ?
(in inches 0. to 3.5)

We recommend reactor type B, which will you use ?
(A or B)

What is the desired average whisker diameter ?
(in microns, 0 to 12)

We recommend the manganese based catalyst, which
one will you choose ? (manganese or iron)

manganese

We recommend that you vary the CO concentration according to
time-concentration profile A. What profile will you use ?

Figure 4. Sample Dialog for The Whiskers Advisor.

S
av

ed
 U

se
r

D
at

a
. .

.
. .
 . .
 .

 . .

.

.
..

I

Ve
rb

os
e

A
dv

is
e

(IS
S

.T
X

T)

Fi
gu

re
 5

.
IS

S
 A

dv
is

or
 S

tr
uc

tu
re

.

P
r
e

s
s

u
r
e

< t

o
r

r
)

:

D
i
f

f
.

P
r
e

s
s

u
r
e

(n

n
>

:

F
lo

w
-C

L
C

n
)C

4
l/

n
in

)
:

R
e

k
o

il
e

r

le

v
e

l
(c

n
)

:

R
e

k
o

i l
e

r
 S

e
t

(e

n
)

:

M
-C

L
IC

C

o
n

p

<

n
.f

.
H

e
 H

2

D
T

T

2
)

:

M
-C

L
H

C

C
o

n
p

(
n

.f
.

0
2

0
1
)

H
-C

L
D

C

C
o

n
p

(n

.
f
 .

0
2

)

M
-C

L
T

C

C
o

n
p

(
n

.f
.

T
2

)

R
-C

L
H

A

R
a

d
ia

t
io

n
 C

c
i/

n
A

3
>

W
o

u
ld

y
o

u

l
i
k

e
 t

o
 c

h
a
n
g
e

th
e
s
e

s

e
t
t
in

g
s

(

y
'o

r

n

)
?

F
ig

ur
e

6.

IS
S

 In
pu

t E
di

to
r
D

is
pl

ay
 S

cr
ee

n.

Fi
gu

re
 7

.
IS

S
 R

ul
eb

as
e.

. ,., , ,,- , ,,,,.,
F-CLHA F'- CLUA

4 .6 l /nin 0 . 4 l/nin 0 . 2 I/nin

F-CLIB
3.3 l/nin 0 . 0 I/niri

- - - - -*--

0,3 Reset F-CLIB F l o w .
0,8 Reset F-CLIG F l o w . 3,8 Resrt F-CLTG F l o u .
i , 3 Reset F-CLHB F l o u .
1'8 Rasat F-CLHA F l o w .
L,!? N o r n o l radiation in TUT strean.
2 , 3 RISI t F-CLDB F l o w

Figure 8. ISS Sample Output Graphics Display.

0R156P4f;L PAGE BS
OF QUALlW

SESSION 2 A

USING A CLIPS EXPERT SYSTEM TO AUTOMLlhTICAILEY
MANAGE TCP/IP NETWORKS AND THEIR COMPONENTS

Ben M. F a u l

TRW Systems Engineering & Development Division
Carson, California

Abstract. This paper describes an expert system that can directly
manage networks components on a TCP/IP network. Previous expert
systems for managing networks have focused on managing network
faults after they occur. However this proactive expert system can
monitor and control network components in near real time. The
ability to manage directly network elements from CLIPS is
accomplished by the integration of the Simple Network Management
Protocol (SNMP) and an Abstract Syntax Notation (ASN) parser into
the CLIPS artificial intelligence language.

INTRODUCTION

Networking is one of the fastest growing segments of the computer market.
Networks can be as simple as several PCs on a LAN to a corporate-wide area
network composed of hundreds of machines to a global network comprised of
hundreds of local area networks and hundreds of thousands of machines.

The emergence of network-based applications and even operating systems demands
the network components operate as efficiently and effectively as possible.

Managing a network can be an arduous task, as there are numerous components that
comprise the network, originationg from many vendors. In addition, the components
are usually dispersed over a large geographic area. But, even if the network
components were co-located, most of the network devices don't even have an
operator's console.

All of these factors add up to a nightmare when things go wrong in the network,
Traditional system operation concepts deal with problems as they arise. In a
network, just locating a downed component can be a major task, All the while,
applications and users are idle while technicians scour the campus looking for
the problem. Several CLIPS applications have been described previously that aid
in the isolation and diagnosis of problems [Leigh A.] by using a question and
answer session with a human,

The next logical step in managing a network, is to look for, and solve, problems
under expert system control. This is a natural application for an expert system
like CLIPS. However, to utilize CLIPS as a solution, the expert system shell must
incorporate several new features it does not currently have.

4 1 155(dr~
PKCEDiNG PAGE RJCX F!L%EB

NEW CLIPS FEATURES TO FACILITATE NETWORK MANAGEMENT

The US Government and commercial vendors recognized the need for developing a
v e n d ~ r - i n d e ~ e n d e n t m e c h a n i s ~ n for managing networkcomponents, largely because of
the network management chaos that erupted after networking became so prevalent.

Typical automated network management systems rely. on a specific vendor's
diagnostic hardware. One has even been written in CLIPS. [Hansen & Flores].
However, vendor-dependent network management solutions have only limited
application in a network comprised of elements from different vendors.

To answer this need for vendor-independent networkmanagement the US Government's
Network Working Group developed the Simple Network Management Protocol or, SNMP
[Case, Fedor, Schoffstall, & Davin].

By integrating SNMP into the CLIPS language, expert systems can then be built
that can take direct control of network elements; thus obviating the need for
most human interaction.

SNMP Architectural Model

Implied in the SNMP architecture is a collection of network management stations
and network elements. The network management station executes the applications
that monitor and control network elements. Network elements are devices on the
network such as hosts, routers, gateways, terminal concentrators, PCs, etc. that
communicate on the network, The SNMP is used to communicate the management
information to the network elements. The CLIPS program will be the manager for
the network. The various hardware components on the network will be the network
elements that CLIPS will manage.

The first goal of the SNMP integrated into CLIPS is to explicitly minimize the
number and complexity of functions used by the manager program. This will result
in the reduction of new language constructs in CLIPS; hence maintaining the
portability and integrity of the language.

Another goal of the SNMP/CLIPS integration is to provide a paradigm for monitor
and control that can accommodate unanticipated aspects of network management. As
time and network products progress, the CLIPS manager will be extendible at the
expert system shell level. This will tend to eliminate further extensions to the
language itself .
The third and most important goal is that the resultant system will be
independent of the architecture and mechanisms of the particular network
elements. Achievement of this goal allows the CLIPS network manager to control
network elements from any vendor.

Representation of Management Information

The information communicated using SNMP is represented using the ASN.1 language
[IS0 Standard 88241. Use of the ASN.1 language internal to SNMP is key to its
machine independence and eventual conformance with GOSIP mandates.

The information communicated using ASN.1 is called the management information
base (MIB). There is a standard MIB, that all the conforming network products

recognize,

An example ASN.l variable in the MIB is represented in Table 1.

Table 1 , An ASN.1 Definition

The example in Table 1 will be referenced in the following paragraphs to
illustrate CLIPS network management via the SNMP.

Protocol Operations

The SNMP functions integrated into CLIPS operate as inspections or modifications
of variables that correspond to entries in the MIB. The manager specifies the MIB
variable to view or alter, and the managee (also called "agent") does the
appropriate get variable or set variable action. Notice in the above example that
the variable is read-onlx. Thus the manager may view, but may not modify this
variable.

Usingthe MIB, the variables become accessible in amachine-independent form. The
CLIPS manager does not care what the network element's internal representation
is of the variable or how it is derived and maintained.

Primarily, the CLIPS manager works by polling the network element agents for the
appropriate information.

There are no imperative commands in the protocol. The manager merely sets a MIB
variable to some value. The network element agent then decides what to do with
the value, The example given in Request for Comments (RFC) 1157 [Case, Fedor,
Schoffstall, & Davin] is that of a "reboot command". Rather than explicitly
implementing a REBOOT command, this action might be invoked by simply setting a
parameter indicating the number of seconds until the system reboots.

Identification of Object Instances

The variables (or names) of all object types in the MIB are defined explicitly
in the Internet-standard MIB [Rose M. 1, known as the MIB-I1 of RFC 1158. The
entries in this standardized MIB make it possible for CLIPS to manage TCP/IP
network elements in a vendor-independent fashion. Referencing RFC 1158, the CLIPS
developer can access any of the defined variables on any network element that
supports the SNMP.

Each instance of any object type defined in the MIB is identified with a variable
name. The MIB is organized in a hierarchical fashion, thus making it easy to
"walk the MIB" to obtain aggregate information. An example of walking a portion

of the MIB is to obtain all the information under the variable name "system",

In SNMP the objects are identified with fully qualified variable names in "x,y"
format, where "x" is the name of a non-aggregate object defined in the MIB and
"y" is the object identifier that is specific to the desired instance. This
naming strategy admits exploitation of contiguous lexicographic retrieval of
related variables, which makes MIB walking possible.

For example, the fully qualified ASN.1 name that represents how long a network
element has been up and running, "upTime", is:

The numbers underneath the definition show the integer representation that
defines the variable, The CLIPS programmer references variables by the text ASN.l
name, the ASN.l parser converts the name into the array of integers that
correspond to the name for actual transmission over the SNMP. Notice from Table
1 the last statement was the assignment : := {system 2). Working backwards one can
see that "mib : := { mgmt 1)", "mgmt : := {internet 2)", and so on,

It is possible to obtain the system up time from a remote network element by
asking for this variable, Alternatively, all system variables could be retrieved
from the network element by requesting "iso.org.dod.internet.mgmt.mib.system".

As a short cut, all the variables are presumed to be preceded with
"iso.org.dod.internet.mgrnt.mib". Thus a request for system uptime merely becomes
"system. sysUpTime, 0".

There are about one hundred variables defined in the MIB. For purposes of example
in this paper, and to eliminate confusion, only a portion of the internet MIB and
variables are presented. The MIB variables used in the code fragments presented
in this paper are defined in Table 2.

The variables defined implement self-explanatory functions, with the possible
exception of ip. ipInDiscards.0, This variable is a counter in the network element
that tallies network packets that were destroyed because the network element
couldn't process them. Usually this means that there wasn't enough buffer space
to process the message. Obviously, if the number of discards goes up, the more
problematic the operatiorl of the network will become. It is this variable,
ip.ipInDiscards, that will be examined in the further examples.

INTEGRATION OF SNMP WITH CLIPS

The SNMP protocol and an ASN.1 parser have to be built in order to access the MIB
in the remote network entities. Fortunately, neither the SNMP protocol nor the
ASN.1 parser are particularly hard to come by in the "C" language. There are two
public sources of SNMP, one is from Carnegie Mellon University, and the other is
from the Massachusetts Institute of Technology, Both are distributed without
charge, if you follow their liberal licensing agreement.

The Carnegie Mellon University SNMP was chosen because of the author's
familiarity with other CMU efforts and was thus comfortable with their code.

The SNMP code from CMU implements an ASCII database of MIB variables for SNMP,
an ~sN.1 parser, the SNMP protocol over TCP/IP, and a set of applications
programs that allow one to access the MIB variables on the network elements, The
SNMP system is designed to run under the UNIX operating system. For the
management station, the CLIPS system was built on an Everex 80386 system running
the SCO Open Desktop (UNIX System v . 3 2) operating system.

The first step in the process was to build the application programs and use them
to access the MIB variables of network elements.

There were two germane applications: "snmpget" and "snmpwalk". The snmpget allows
one to get a variable from the network element. The syntax is "snmpget <host-
name> <access-control) Casn.1 name>. The access control parameter is the
"password" that allows one to access the variables. For read-only purposes
"public" will do. Table 3 shows what the snmpget command will return if issued
against a network element named "gandalf".

T a b l e 3 . The SNMPGET Command

However, there was no "snmpsett' provided so one was coded using the CMU
snmp1ib.a application library. Then it was possible to both view and modify the
variables (if allowed), In Table 3, the system contact name on the remote element
will be viewed, then changed.

T a b l e 4 . View Then Set a Variable

From now on, any one requesting the system contact name of element gandalf will
get the new contact name "Ben Faul".

Once familiar with the application programs and the SNMP library, integration
with the CLIPS expert system was an easy process. The three application programs
were then modifiedto be incorporated into CLIPS. The UNIX syntax was preserved
in the language to allow the application programs' documentation to be used with
CLI PS .
Using standard CLIPS implementation methodologies the language was extended to
include the following new constructs: (snmp-get), (snmp-getnext), (snmpset).

Surprisingly, these are the only new constructs required in the language to
facilitate SNMP access.

Get An Instance Variable

To get the value of a variable on the network element, the (snmp-get) command is
used. The form of the command is:

(snmp-get <host> <variable-name> <access>)

The <host> parameter defines the symbolic name of the element being queried. The
<variable-name> is the ASN.l name of the variable. The <access> parameter is used
for authenticating privilege to view or modify the variable. Usually for this
command the <access> variable is set to "public".

The snmp-get returns a multi-field variable, The first field is the return code.
The second field is the type (integer or string), which is used to field the
returned variable in the third field (if integer) or fourth field (if string).
~f an error occurs a -1 is returned in the type field, with an error string
contained in the fourth field.

Get The Next Instance Variable

For getting contiguous variables in the MIB, the snmp-get-next command is
provided. The form of the command is:

(snmp-get-next <host> <variable-name> <access>).

The <host> parameter defines the symbolic name of the element being queried. The
<variable-name> is the ASN.1 name of the variable fragment. The <access>
parameter is used for authenticating privilege to view or modify the variable.
Usually for this command the <access> variable is set to "public",

The snmp-get-next returns a multi-field variable, The first field is the return
code. The second field is the type (integer or string), which is used to field
the returned variable in the third field (if integer) or fourth field (if
string), The fifth field is a string that identifies the fully qualified name
being returned. If an error occurs a -1 is returned in the type field, with an
error string contained in the fourth field.

Each successive call to the snmp-get-next returns the next variable that was
contiguous with the previous variable, until the MIB variables in that fragment
is exhausted. In this manner one may examine the MIB by "walking down the
branches". Indeed, the entire MIB may be returned by successive calls using the
ASN.1 variable: "iso.org.dod.internet.mgmt.mib"

Set An Instance Variable

To set a variable in a network element, the (snmp-set) command is used, assuming
that one has authority to do so. The form of the command is:

(snmp-set <host> <variable-name> <access> <new-value)).

The <host> parameter defines the symbolic name of the element being queried. The

<variable-name> is the ASN.l name of the variable. The <access> parameter is used
for authenticating privilege to view or modify the variable. Usually for this
command the <access> variable is set to "private".

The snmp-set returns a multi-field variable, The first field is the return code.
~f the code is 1 then the replacement was successful. Otherwise, 0 indicates an
error occurred with the third field containing an applicable error string.

The architecture of the SNMP/CLIPS integration, and how it is applied to manage
a sample network is described in Figure 1.

Mainframe
TCPllP 8

MACINTOSH
TCPnP 6 SNMP

UNlX Workstation with
CUPS/SNMP Expert System

TCPiIP 8
SNMP

I INTERNAL \

VIEW
\

/ \

/ RULES J
CUPS ENGINE t

I

ASN.1 PARSER NETWORK DATA

NETWORK

Figure 1, SNMP/CLIPS Integrated Architecture

The network elements, such as the gateway, terminal concentrator, and host
interface are all controlled, automatically from the host running the CLIPS
expert system. The expert system gathers SNMP data from the network elements and
stores it in the data file. The data file is used as feedback to the expert
system to change the network element parameters based on trend analysis and
knowledge contained within the expert system.

EXAMPLE CLIPS NETWORK WAGEMEW SYSTEM

The previous sections dealt with building the infrastructure in CLIPS to enable
it to do the work of network management. The concepts of proactive network
management will be discussed in this section and displayed in the code fragment
in Table 5, below.

Network Initialization

The network manager expert system must obtain the element names of the various
network entities to be managed on the network. These are simply stored in an
ASCII database from which the expert system reads upon initialization,

A more flexible approach would be to utilize a database for the network elements,
but that would complicate the design for example purposes.

Network Status Information

The network manager expert system polls the network elements for various
performance parameters. The information returned is stored in an ASCII flat file
for future reference.

Problem Detection

Problem detection is accomplished by applying rules against the ASCII flat file
that holds network status information. Upon finding a potential problem, the
expert system asserts the facts determined by the current and historical status
as determined from analyzing the ASCII file.

Problem Correction

The network manager expert system's problemcorrection rules attempt to solve the
problem by class of failure. In the case of overloaded gateways, routing tables
may be adjusted to alleviate traffic in this element. In the case of an interface
card reporting many transmission errors, a diagnostic printout showing the
location of the unit and the type of error condition may be printed.

ILLUSTRATIVE EXAMPLE

To see how well SNMP and CLIPS work together, consider the CLIPS code fragment
presented in Table 5 .

Table 5. CLIPS/SNMP Sample Code

As can be seen in Table 5, the addition of the SNMP capability to CLIPS does not
greatly influence the character and flavor of the language. However, the addition
of the SNMP access allows the full power of the language to be used to influence
the performance of a network of SNMP compliant commercial products.

CONCLUSIONS

The application of CLIPS to SNMP has proved to be quite successful. The network
manager expert system is capable of detecting faults and does a credible job of
proactive management.

To enhance the proactive management capabilities, the expert system should
utilize an SQL database to store the polled data. This would permit more
extensive trend analysis to be done,

The SNMP library from CMU utilizes a synchronous network connection. This means
that the (snmp-get) hangs until the message is returned to CLIPS or the read

times o u t , To manage a v e r y l a r g e number o f e lements e f f i c i e n t l y w i t h i n CLIPS,
non-synchronous network 1/0 w i l l be requ i red .

The u s e r i n t e r f a c e of t h e network manager is a s imple X Window System/MOTIF GUI
t h a t u s e s v e r y s imple i cons t o r e p r e s e n t t h e d i f f e r e n t e n t i t i e s , A f u l l f e a t u r e d
X Window System i n t e r f a c e t h a t is t r u l y o b j e c t - o r i e n t e d is a must f o r b u i l d i n g
a s e r i o u s network management product .

REFERENCES

Case, J . , Fedor, M. , S c h o f f s t a l l , M . , Davin M. (1990) A Simple Network Management
P r o t o c o l , DARPA RFC 11 57.

Hansen, R.F., F l o r e s , L.M., (1990) JESNET Exper t A s s i s t a n t , First CLIPS
Conference Proceedings, Houston, pp.140-146 .

IS0 S tandard 8824 (19871, " S p e c i f i c a t i o n o f A b s t r a c t Syntax Nota t ion One (ASN.l),
International Organization for Standardization

Leigh, A.B. (1990) The Network Management Exper t System Pro to type f o r Sun
Works ta t ions . First CLIPS Conference Proceedings, Houston, pp , 148-154.

Rose, M . (e d) (1990) Management In format ionBase f o r NetworkManagement of TCP/IP
based I n t e r n e t s : MIB-11, DARPA RFC 1158

NMESys: AN EXPERT SYSTEM FOR NETWORK FAULT
DETECTION

Peter C. Nelson and Janet Warpinski

Department of Electrical Engineering and Computer Science
University of Illinois at Chicago
Chicago, IL 60680

Abstract. The problem of network management is becoming an increasingly difficult and challenging
task. It is very common today to find heterogeneous networks consisting of many different types of
computers, operating systems, and protocols. The complexity of implementing a network with this many
components is difficult enough, while the maintenance of such a network is an even larger problem. This
paper presents a prototype network management expert system, NMESys (pronounced nemesis),
implemented in CLIPS. NMESys concentrates on solving some of the critical problems encountered in
managing a large network. The major goal of NMESys is to provide a network operator with an expert
system tool to quickly and accurately detect hard failures, potential failures, and to minimize or eliminate
user down time in a large network.

1.0 INTRODUCTION

The problem of network management is becoming an increasingly dficult and challenging task.
Networks can fail at many different components, connections and levels, often potentially
disrupting service to many users. Sometimes, portions of the network can detect a failure in other
portions of the network. Other times, the fault may go undetected by the network. NMESys
(Network Management Expert System) is a prototype network management system which monitors
alarms in a network and helps a network operator determine points of failure. NMESys is able to
receive and decipher information from components in the network about detected failures.
NMESys also has the ability to proactively interrogate the network to find undetected failures. The
primary goal of NMESys is to detect and isolate faults so they can be repaired with minimal or no
user down time.

2.0 SYSTEM OVERVIEW

There are many problems to be solved when managing a large heterogeneous network. First, just
determining that a failure has occurred can be a difficult problem, even if the failing component or
an adjacent component has detected the failure. Often large networks post many types of messages
to report conditions which may or may not warrant operator intervention. Operators may be bogged
down researching dead ends, while some major component is in a state of failure. NMESys is able
to filter out the messages which do not indicate hard failures. This allows operators to concentrate
on the problems which pose the greatest threat to the integrity of the network.

Another problem in managing the network is determining conditions which are degrading
the network. Often error messages do not necessarily indicate a hard failure, but rather some

temporary error condition. Since the component recovers, these conditions often go unattended.
With many of these types of messages being generated in a large network, operators do not have the
time to research and resolve each one. However, this type of event can be an indicator of a more
severe problem which is starting to manifest itself. If the problem goes on long enough, it may
result in an extended outage of a component which could have been repaired before the hard failure
occurred. NMESys tracks a l l conditions which have been reported to it, even if the indication was
non-fatal. For degrading conditions, threshholds are utilized to determine when a non-fatal
condition warrants attention. If a threshhold has been exceeded within a certain time frame, then an
error message is posted to the network operator indicating that a potentially serious condition has
developed. Thus the problem can be addressed before the failure even occurs.

NMESys always knows the status of each component in the network, since it receives all
messages which indicate changes in state of the components. The system can always give an
operator the current status of any component or set of components. This can be very helpful to an
operator to know how many components are down at any one time. NMESys also has the ability to
show the message history for any component so that problems can be researched. Ln addition,
NMESys can give an operator a list of events which have occurred in the network which need
action. As operators take care of these events, they are acknowledged. This allows the system to
always have a current list of events warranting attention.

NMESys has the ability to interrogate components in the network about their current status.
This functionality provides a proactive approach to detect conditions which, for whatever reason,
have not been reported properly. Often, error conditions can go undetected by either the failing
component or any component communicating with it. NMESys periodically initiates these integrity
checks to determine whether its current view of the state of the network is correct. If some error is
detected, then the condition is handled just as a reported failure would have been.

3.0 THE METHODOLOGY OF NMESys

NhESys is currently implemented on a DOS machine. This PC is connected to the network so that
it becomes the network monitor. The interface to the network is implemented in C. The alarm
processor and user command processor are implemented in CLIPS. These are used for the
interpretation and tracking of alarms. This design strategy makes NMESys more flexible since only
the C component would need major changes if a new type of network were being monitored.
NMESys has three major components: the alarm and user interface, the alarm processor, and the
user command processor. The basic architecture of NMESys and the interaction between the
components is shown in Figure 1.

3.1 THE ALARM AND USER INTERFACE

The alarm and user interface handles incoming alarms, timing for integrity checking, and the user
input menu. This portion is written in C for three reasons. First, this task must be able to
communicate with external devices. Second, it must be able to receive new alarms from the
network as well as detect that the user has initiated a command from the menu. Third, it is the
component in the system which implements time. Since NMESys is a prototype system and is not
connected to a network at this time. the alarm and user interface also contains a random alarm
generator. When an alarm is generated, it is passed to the CLIPS alarm processor. The current
time is also sent to CLIPS so that degrading conditions beyond their threshhold can be properly
determined The user menu is also presented from this process. If a command is initiated, then the
appropriate command request is passed to the CLIPS user command processor. In both cases,
control is returned to the alarm and user interface when processing is completed In addition, every
five minutes a command is automatically generated for CLIPS to initiate any integrity checks which
are due. This command tells CLIPS the current time so that the appropriate calculations can be
made.

Figure 1. NMlESys architecture

N

E

T

W

0

R

K

3.2 THE ALARM PROCESSOR

The alarm processor is written in CLIPS. It contains a list of all alarm types which can be generated
by the network. Thus the new state of the component can be determined by the type of alarm which
has been received. Since the alarm types and their characteristics are facts to CLIPS,
implementation of a new type of network would involve only redefining the new alarms to CLIPS.
The received alarm is always logged for site history purposes. If the alarm indicated a DOWN
condition, an alert is generated and posted to the screen. The alert is logged so that an operator can
always see the current list of alerts. If the alarm indicated a DEGRADING condition, then CLIPS
checks if the threshhold for that alarm has been exceeded. If so, an alert is posted. If the alarm
indicates an UP condition, any alerts which are active for this site are automatically removed from
active status. Thus, if alerts have been logged for a condition, but service has been restored, the
preceeding alerts disappear from the active alert list. If this were not the case, then an operator
would be forced to investigate each condition, only to find that the outage has been restored. By
watching the active alert list, the operators only need to look into conditions which reflect the
current status of the network.

The alarm processor also handles integrity checking. Integrity checking provides an
additional level of confidence in the accuracy of the status of the network. Without a method of
detecting failures, the network management system is only as powerful as the failure detection
process of its weakest component. When an integrity check message is received from the alarm and
user interface, CLIPS determines the last time each site received an integrity check. If one is due,
then the appropriate message is sent to the interface so that it can be in turn sent to the appropriate
site. NMESys knows what type of equipment is at each site. It also knows the format of the
proper integrity check message by the equipment type. These are the two pieces of information

User

User
command
request

Integrity check message

I

Alarm
processor

t t
New alarms

A i m and
user interface

Integrity Check

User
command

4
processor

which must be sent to the interface. Once again, the implementation of a new piece of equipment or
an entirely new network would only involve definition of the new type(s) of equipment and the
appropriate integrity message.

.3.3 THE USER COMMAND PROCESSOR

The user command processor is also implemented in CLIPS. The commands which are
implemented in the user menu are shown in Figure 2. The command processor contains commands
to show all sites which are UP, DOWN, or DEGRADED. The operator can also show all a l m s
for a particular site, show all active alerts, or acknowledge a particular alert. The commands to
show UP, DOWN, or DEGRADED sites allow the operator to get a current status of the network at
any point in time. This is also useful when a network user is reporting a problem. The operator
can check the status to see if any of the received alarms could be causing the reported failure. There
is also a command to view the history of alarms for a particular site. This is most useful when
diagnosing a problem to try to determine the exact point of failure. Network operators typically
must research failure conditions which have originated from either user complaints or from received
alarms. When a network user calls in a complaint, the actual point of failure may not be as obvious
as when an alarm is reported. Thus, a network operator must have the ability to view the history
and status of many of the components in the network to determine the exact point of failure.

There are also two alert commands which are most useful to the network operator
diagnosing problems from conditions which have been reported through the network rather than
user reported problems. One of the principles of NMESys is that it can filter alarms which do not
need attention from an operator. An alert is a detected condition which warrants action. Thus, an
alert may be initiated by a single alarm, or by some combination of alarms which indicate a failure.
The command to view all active alerts is probably the most utilized command. This allows the
operator to see all events which require some action. The network operator's job is to resolve each
of these events one by one. If no events are on the list, then a l l conditions have either been resolved
or are in the process of being resolved. The command to acknowledge an alert allows the operator
to tell NMESys that the alert has been recognized. This does not necessarily mean that the situation
has been resolved. It might mean a repair technician has been dispatched or that the appropriate
agency responsible for the equipment has been notified. By acknowledging the alert, the active alert
list can be maintained as only the events which still require operator action.

Menu

1) Show DOWN sites
2) Show DEGRADED sites
3) Show UP sites
4) Show all alarms for a site
5) Show active alerts
6) Acknowledge an alert

0) Exit

Enter selection:

Figure 2. The user menu

4.0 RESULTS

NMESys is a prototype expert system, programmed in CLIPS, used to perform the task of network
management. CLIPS made the alarm processing and user command processing tasks quick and
easy to write. Information parsing and error checking routines can be implemented in just a few
lines of code. This made it very simple to write and test routines quickly. Ln the future,
enhancements will be implemented and evaluated without a large investment in programming effort.
This is obviously an excellent type of environment for prototyping systems. CLIPS can also
interface with system level commands, in this case, DOS commands. Thus, CLIPS can be used in
conjunction with any other tool or user program. If there is some task that CLLPS cannot
accomplish, the task can be written in another language and interfaced to CLLPS. This was the case
in NMESys where C was utilized to communicate with the network

The use of DOS presented some problems, mainly because of the lack of multitasking. C
was utilized so that NMESys could process network messages while waiting for user commands.
The requirements of NMESys do not allow the use of the CLIPS read statement for user input. If
the CLIPS read statement were used, then the operator could be at a read prompt while alarms were
coming in from the network and NMESys would not be able to process the alarms. There would be
no way to limit how long the operator remained at the prompt. All input from the operators had to
be implemented in C and interfaced to CLIPS.

NMESys also brought out some application level discoveries and problems. It was initially
thought that the status type commands would be most helpful to the network operator. However, it
soon became apparent that the alert portion of the system was more helpful. The active alert list
became the work queue for the network operator. This section of the system seems to have the
most potential for expansion to further aid the network operator and produce more accurate
diagnosis.

5.0 CONCLUSIONS AND FUTURE WORK

NMESys has a number of benefits to assist in the task of network management. First, the network
operators's job is eased since NMESys does all the tracking of equipment states as well as events
which require action. The system provides more accurate real time status than a human operator
could provide. This allows the network operators to have timely information when network users
call in to report problems. NMESys also maintains the work queue for the network operator by
defining the active alerts. The network operators only need watch the alert list to determine what
areas in the network need attention. NMESys is also flexible since a different type of network
could easily be implemented by only changing the C interface and defining the facts for the types of
alarms and equipment in the new network

There are many potential enhancements which are planned for NMESys to increase its
functionality. First, a chronic function should be implemented. This function would alert an
operator when a site has posted too many alarms in a certain time period. For example, a site may
post many alarms which clear very soon afterward. An operator might not even see the alarms if
they clear quick enough since NMESys will remove active alerts when an UP condition is detected.
Or, if different operators work on the problems, they may not realize that the site has actually
exhibited many problems. Another condition which could occur is that the alarms are diagnosed as
no trouble found situations. In this case, the operator might be able to clear the problem by
executing some sequence of commands at the computer site. In both of these situations, the
operators should be alerted that a particular problem is occurring over and over again. This would
give the operators the indication that these are not random harmless failures, but possibly the result
of a problem which is manifesting itself. Thus, similar to the threshhold concept for degrading
conditions, sites which show many short spans of down time can be diagnosed as to the true cause
of the failure.

Another enhancement which could be very helpful would be to expand how active alerts are
purged from the list when an UP condition is detected. For example, an UP condition for some
type of DOWN alarm might not always mean that all DOWN conditions have been restored. An
example would be if a DOWN alarm indicated a failure on a particular connection to another
computer and another DOWN alarm meant that the printer was not working. If the computer
connection comes back UP, this does not mean that the printer has also been. restored. NMESys
should contain an alarm cross reference table to indicate which alarms are related. Thus, when an
UP condition is received, only related DOWN alarms are removed from the active alert list.

Many enhancements could also be made to the functionality of the alert list. When an
operator acknowledges an alert, a reason for the resolution should be requested from the operator.
For example, the operator might indicate that the disk drive was replaced, or that there was no
trouble found. This allows NMESys to begin to help the operator diagnose the potential cause of
the failure before researching the problem. Over time, trends can be developed on the types of fxes
which occurred depending on the reported alarm code. The operator could query NMESys on the
past history of a certain alarm code. NMESys could indicate the percentage of each kind of
resolution code for the history of alarms. This feature would be extremely helpful to the less
experienced network operators. These are just a few of the areas where NMESys could further help
the network operator to perform the job more accurately and efficiently. As NMESys continues to
grow, more and more enhancements can be envisioned, each building toward a fully automated
network monitoring and diagnosis system.

6.0 REFERENCES

[I] Callahan, P., "Expert Systems for AT&T Switched Network Maintenance", AT&T Technical
Journal, Jan. 1988

[2] Giarratano, Joseph, Riley, Gary, "Expert Systems Principles and Programming", PWS-KENT
Publishing Company, 1989

[3] Harmon, Paul, et al., "Expert Systems Tools & Applications", John Wiley & Sons, Inc., 1988

[4] Vesonder, G. et al., "ACE: An Expert System For Telephone Cable Maintenance", UCAI
(1983) pp. 116-121

[5] Waterman, Donald A., "A Guide to Expert Systems", Addison-Wesley Publishing Company,
1986

A MISSION EXECUTOR FOR AN AUTONOMOUS UNDERWATER
VEHICLE

Yuh-jeng Lee and Paul Wilkinson

Computer Science Depamnent
Naval Postgraduate School
Monterey CA 93943

Abstract. The Naval Postgraduate School has been conducting research into the design and testing of
an Autonomous Underwater Vehicle (AUV). One facet of this research is to incrementally design a software
architecture and implement it in an advanced testbed, the A W 11. As part of the high level architecture, a
Mission Executor is being constructed using CLIPS version 5.0. The Mission Executor is an expert system
designed to oversee progress from the A W launch point to a goal area and back to the origin. It is expected
that the Executor will make informed decisions about the mission, taking into account the navigational path,
the vehicle subsystems health and the sea environment, as well as the specific mission profile which is
downloaded from an offboard mission planner. Heuristics for maneuvering, avoidance of uncharted obstacles,
waypoint navigation, and reaction to emergencies (essentially the expert knowledge of a submarine captain) are
required. Many of the vehicle subsystems are modeled as objects using the CLIPS Object Oriented Language
(COOL) embedded in CLIPS 5.0. Additionally, truth maintenance is applied to the knowledge base to keep
configurations updated.

AUTONOMOUS UNDERWATER VEHICLE RESEARCH

The development of autonomous vehicles has been an ambition for decades. Automated weapons
such as the Tomahawk missile now have a proven record of achievement in hazardous conditions.
The MAZLATIAAI Pioneer, a remotely-piloted vehicle (while not fully autonomous), similarly
has a capable record in high-risk environments, as evidenced by the Gulf War. Several marine
autonomous and remotely-piloted vehicles are already in use for such diverse functions as
underwater cable inspection, hydrography, and mine-hunting. The practical advantage of low-risk
to humans coupled with the potential ability to operate at over-the-horizon distances from the
control platform make the autonomous underwater vehicle a highly desirable project. While there
are several operational autonomous underwater vehicle testbeds in the United States, until
recently most underwater vehicles have been tele-operated or merely data autonomous while
receiving power via an umbilical cable.

Many software architectures have been proposed and are currently being tested for a fully
autonomous underwater vehicle. One of the well-known is MIT's Sea Sprite Vehicle which
adapted the layered control architecture proposed by Brooks (Bellingham 1990, Brooks 1986).
The KBIEAVE (Knowledge-Based Experimental Autonomous Vehicle) AUV program of the
University of New Hampshire's Marine Systems Engineering Lab essentially uses a subsumption
architecture (as generally described by Brooks). High level and low level tasks are divided in
hardware. The software uses the "focus of attention" approach to keep upper-level reasoning
foremost while low-level behaviors occur (Blidberg 1990). International Submarine Engineering

of Canada also uses a layered control architecture with behaviors classified as reflexive, logical,
and trained. These require reasoning on several levels, with planned and learned responses,
encoded in a scripting language instead of a traditional A1 language (Zheng 1990).

The Naval Postgraduate School has been conducting research into the design and testing
of an Autonomous Underwater Vehicle. Both high-level and low-level software have gone
through several versions of development. Currently, the software is destined to reside on a
GESPAC MPU30HF processor board using the OS-9 operating system on a Motorola 68030
centtal processing unit. From a software architecture standpoint, the AUV software can best be
designed in a hierarchical structure and viewed at different levels of abstraction for different
purposes, for example, mission planning, mission execution, world modeling, collision avoidance,
and vehicle control. This software has to perform both numeric computing and symbolic
reasoning. Most of the computations also involve real-time constraints and time-dependent
representations of the states of the AUV and the environment. In addition, many tasks are
knowledge intensive and require domain specific information. For example, the collision
avoidance routine needs to interpret sensor input, react to uncharted obstacles, replan a new
vehicle path or mission based on available choices, and so on.

The NPS AUV I1 software is partitioned into several main modules, including an off-line
mission planner, mission executor, guidance system , autopilot system, navigation system, sonar
data processor, on-board mission replanner, and vehicle system monitor (Healy et al. 1990).
Each of the modules contains submodules performing more specific tasks. For example the
autopilot system includes routines for digital-analog data conversion, for hydrodynamic surfaces
control, and for main motor control; the guidance system includes a local path planner for
creating postures form waypoints and the tracking controller for providing desired postures to the
autopilot (Cloutier 1990, Lee et al. 1991). Figure 1 shows the dataflow diagram of the AUV I1
baseline system.

DESIGN OF SKIPPER

The high-level design of the AUV I1 is the result of an incremental development which began
in 1988 with AUV I. Initially, vehicle control was essentially lower-level closed-loop.
Evolutionary changes in subsequent software designs resulted in the need for a high-level control
module to coordinate the functionalities of various subsystems. The Mission Executor, SKIPPER,
attempts to do this while integrating decisions based on input from three worlds: the vehicle's
internal systems, the environment, and the mission. The design of Mission Executor essentially
consists of a rule base and an object base. The major equipments aboard the submarine are
modeled as objects to be monitored. Further, each obstacle encountered by the submarine sonar,
whether planned for or not, is modeled as an object. Decisions on courses of action to take are
modeled as objects for the purpose of easy retrieval via hyperlinks (this will be more self-evident
shortly). All of these are linked together in the SKIPPER'S Display, a blackboard subset of all
of these. The SKIPPER'S Display is a composite of the most vital information and consists only
in the c m n t decisions, obstacles which are still active (those in a 180-degree arc about the bow
of the submarine), and the current state of the system monitors. This intelligent database is
frequently updated and queried by the rule base.

While the vehicle's different states are updated and monitored by querying objects (and
firing attached daemons), the heuristics for the three worlds (internal, environmental and mission)

M
IS

S I
O

N
 L
O
G

O
B

ST
A

C
L

E
S

E
N

V
IR

O
N

hl
E

N
T

A
L

D

A
T

A
B

A
SE

R
E

FE
R

E
N

C
E

PO

ST
U

R
E

S

C
O

M
M

A
N

D
E

D

R
A

N
G

E

D
A

TA
 SO

N
A

R
S

VE
HI
CL
E

-
4

SY

ST
E

M
S

ST
A

TU
S

Fi
gu

re
 1

.
A

U
V

 S
ys

te
m

 D
at

af
lo

w
 D

ia
gr

am

are contained in the rule base, which is partitioned into divisions of vehicle maneuvering rules,
system monitor rules, navigation rules, environmental hazard rules and specialized missioi rules.
Input to the Mission Executor consists in both the internal vehicle configuration and mission
plans (designed as vehicle postures of nineteen variables at the various waypoints). Output from
the Mission Executor consists of final reference postures passed .directly to the lower level
Guidance system. Lower level Guidance reacts by controlling the autopilot at the next level.
Figure 2 shows this decision process.

Input mission postures are f ~ s t given to a Mission Interpreter which places a posture into
the proper object format and designates the high-level classification of the configuration as transit
or specialized mission. It further determines a lower level of configuration as a turn, ascent, dive
or surfacing based on the succeeding posture. Navigation rules determine whether the next
waypoint will be made on time. Obstacles or elapsed time may determine that a new or updated
waypoint be constructed. The Navigator Module (external to the Mission Executor) is invoked
by SKIPPER for this purpose. In the event that an obstacle or obstacles force a detour in the
path execution of the AUV, an Obstacle Avoidance DecisionMaker invokes the replanner (also
external to the Mission Executor) to plan a new route to the goal mission area. The new route
is evaluated for both proximity to the old route and ability of the AUV to reach the destination
and cany out the mission with available battery power.

Measures of uncertainty are used for initial sonar obstacle determinations which SKPPER
receives from the Obstacle Avoidance Decision Maker. As the classification improves, certainty
of the obstacle's location better fixes the progress of the transit or mission. It also allows for
determination of whether the obstacle(s) in question requires avoidance maneuvers.

IMPLEMENTATION IN CLIPS 5.0

The decision to build a Mission Executor in CLIPS was made in the fall of 1990 based on the
rapid prototyping capability of CLIPS. Its LISP-like rules, relative compactness and low-cost are
attractive features for a control system designed to fit in a compact real-time testbed. Further
strengthening the argument for CLIPS is an evaluation by William Mettrey of Bell-Northem
Research which compared U P S against other rule-based tools. CLIPS outperformed three of
the other four tools (all commercial) (Mettrey 1991). Balanced with its low-cost, it was clearly
the winner.

Initial development actually focussed on modeling the internal world of vehicle systems.
The model of this internal world turned out much like the model Giarratano used for his Joe's
Object Oriented Database (JOD) (Gianatano 1991a). The implementation is somewhat different.
This is not meant to be a user-interfaced advisory system. Using low salience , a monitor-health-
continuously rule checks the state of thirteen instances of various equipment objects (nearly as
a background function). The equipment objects all share the common attributes that they are
being monitored for their respective higuow redline thresholds and higMow guardline
thresholds. The system monitor class is further broken down into a sonar class (there are four
sonars on the testbed), a control system class, an onboard computer class, a navigation
instruments class with instances of dead-reckoning analyzer (DRA) and Global Positioning
Satellite (GPS) receiver, and an environmental sensors class [figure 33. Through queries and
daemons, the changing object states cause pattern matches in the system monitor rules.

Decision-making, while contained in the rule base, is preserved in the object base by the

decision-objects. This is because some decisions may require knowledge of previous decisions.
This is particularly true for the high-level mission decisions. The design of the decision objects
incorporates slots for high-level mission decisions, lower-level manuever decisions, navigation
decisions, system-monitor decisions, and special-mission decisions. In addition, provision is made
for time-stamping the decision. Literally any decision-change will cause a new decision-object
to be created, as a record must be maintained of all decisions. The instance current is copied to
another unnamed instance using definction calls, as shown in the following example:

(deffunction copy-old-instance (?instance)
(send (symbol-to-instance-name ?instance) put-rnission-decision

(send [current] get-mission-decision))
(send (symbol-to-instance-name ?instance) put-maneuver-decision

(send [current] get-maneuver-decision))
(send (symbol-to-instance-name ?instance) put-sysmonitor~decision

(send [current] get-sysmonitor-decision))
(send (symbol-to-instance-name ?instance) put-navigation-decision

(send [current] get-navigation-decision))
(send (symbol-to-instance-name ?instance) put-special-rnission-decision

(send [current] get-special-mission-decision))
(send (symbol-to-instance-name ?instance) put-justification

(send [current] get-justification))
(send (symbol-to-instance-name ?instance) put-decision-time)

(send [current] get-decision-time)))

(defclass DECISION (is-a USER)
(slot mission-decision (multiple))
(slot maneuver-decision)
(slot sysmonitor~decision)
(slot navigationdecision)
(slot special~mission~decision)
(slot justification)
(slot decision-time))

(deffunction maneuver-decision-change-obstacles (?change ?justification)
(bind ?name (gensym*))
(make-instance ?name of DECISION)
(copy-old-instance ?name)
(send [current] put-maneuver-decision ?change)
(send [current] put-justification ?justification)
(send [current] put-decision-time (time)))

Certain physical changes to the vehicle's environmental or internal world may improve the state

of the vehicle somewhat. Yet, the mission-world must dominate behavior. If a mission decision
was previously made to continue-with-restrictions or abort-mission, improvement in the other
two worlds may or may not justify improvement to continue unrestricted. To prevent a collision
of defrules, another basis must be used, such as the justification for the continue with restrictions
state. Retrieval of the justification for the previous mission status may involve searching back
over several state changes. This should not involve a lengthy amount of traversal. This is more
easily done with hyperlinks between objects or a simple query rather than a linked-list. The
following example of a post-casualty vehicle recovery rule highlights this. While the left-hand
side (LHS) conditions indicate that the mission may be fully recoverable, the right-hand side
query hunts for the existence of the only possible justification for full recovery. This further
requires a call to a deffunction to determine if the mission is physically recoverable in terms of
mission parameters mission-critical power and distanceltime-to-go (called from the navigation
module external to the Mission Executor).

(deffunction recovery-mission-evaluation (?location)
(if (or (< (send [battery] get-power-status) ?*mission-critical-power*)

(> (navigator-update-from ?location) ?*recovery-time*)) then
(send [current] put-mission-decision Abort-Mission)
(send [current] put-justification mission-deviation-nonrecoverable)

else
(send [current] put-mission-decision Continue-Unrestricted)
(send [c m n t] put-justification mission-deviation-recoverable)))

(deh le vehicle-recovery-state
(mission-status Continue-with-Restrictions)
(sys tem-monitors normal)
(location ?location)
(or (redundant-systemonline ?system)

(normally-operating ?system))
=>
(do-for-instance ((?ins DECISION)) (eq mission-deviation

(send ?ins get-justification))
(recovery-mission-evaluation ?location)))

Certain high-level behaviors, such as the overall mission decision are modeled using the
Artificial Neural Paradigm implementation suggested by Giarratano (Giarratano 1991). This
application of salience is useful in differentiating between a high-level, less frequent rnacro-action
and a lower-level frequently performed action. The philosophy for using salience in this manner
is that a situation (pattern match) which may cause a mission abort usually requires immediate
or timely reaction and certainly takes precedence over a routine action such as a normal turn or
depth change in a deep-water open-ocean environment. The emergency-action rule must be
guaranteed firing before other semantically lower-priority rules on the agenda. This (however
loosely) heuristically models a submarine commander's "situational awareness" in an emergency

(d
ef

ru
le

 e
m

er
ge

nc
y

-e
va

si
ve

-m
an

eu
ve

r
(d

ec
la

re
 (s

al
ie

nc
e

10
00

))

(o
bs

ta
cl

e-
pr

ox
im

ity
 ?

di
re

ct
io

n
da

ng
er

-c
lo

se
)

(m
an

eu
ve

r-
av

ai
la

bl
e ?

m
an

eu
ve

r)

(s
ys

te
m

-m
on

ito
rs

 ?
st

at
us

)
(n

ot
 (
pr
ev
io
us
~m
is
si
on
~d
ec
is
io
n ab

or
t-m

iss
io

n)
)

(a
ss

er
t

(e
m

er
ge

nc
y-

gu
id

an
ce

 ?m
an

eu
ve

r)
)

(a
ss

er
t

(m
is

si
on

-d
ec

is
io

n
al

te
r-

tr
ac

k)
)

(R
ep

la
nn

er
 g

et
-n

ew
-r

ou
te

 ?
po

si
tio

n)
)

(d
ef

ru
le

 b
at

te
ry

-p
ow

er
-g

ua
rd

lin
e

(d
ec

la
re

 (
sa

lie
nc

e
?*

sy
sm

on
ito

r-
sa

lie
nc

e*
))

(m

is
si

on
-p

er
ce

nt
ag

e ?
pe

rc
en

t&
:(<

 ?
pe

rc
en

t
70

))

(b
at

te
ry

 ?
nu

m
be

r
at

-g
ua

rd
lin

e)

=>

(b
in

d
?*

sy
sm

on
ito

r-
sa

lie
nc

e*
 (+

 ?
*s

ys
-m

on
ito

r
sa

lie
nc

e
10

0)
)

(a
ss

er
t

(m
is

si
on

-s
ta

tu
s c

ri
tic

al
))

)

Fi
gu

re
 4

.
Se

tt
in

g
Pr

ec
ed

en
ce

 w
ith

 S
al

ie
nc

e i
n

SK
IP

PE
R

[figure 41.
Salience is also used in some background functions such as the sequencing of the mission

timer and the loop which causes the slots of the respective system monitors to be queried on a
nearly continuous basis. Still, it is used sparingly. SKIPPER still retains a strong declarative
nature. The rest of the rule base pattern-matches on the objects are of normal undeclared
salience.

CONCLUSION

Successful software for an AUV must incorporate techniques from artificial intelligence, real-time
processing, environmental sensing, and vehicle maneuverability into a compact integrated
package. This is due to an AUV's lack of human control during mission execution and the
inability for human intervention in the event of unforeseen problems. In addition, many tasks are
knowledge-intensive and require domain-specific information. Therefore, the ability to include
autonomous intelligent decision-making on an AUV is essential for its satisfactory performance.
With the accumulated experience in submarine operation, we believe many of the onboard
problem-solving and reasoning can be adequately modeled using a rule-based system. The
Mission Executor is designed to (1) monitor relevant vehicle variables, component parameters,
and environment data; (2) ensure the progress of pre-planned mission execution; and (3) in the
event of unplanned interruptions during a mission, be able to diagnose the problematic situations
and enable the vehicle to adapt to the unexpected environment by manipulating and changing
vehicle and mission parameters.

A prototype for the Mission Executor has been completed and will be incorporated in the
testbed as dependent modules are finished. The design is one that is extensible. Further, its
object-oriented nature allows for incremental construction and testing of modules in relative
isolation. The specific mission modules are areas for more fine-grained research. Because of
the specialized nature of each of the mission modules, they are excellent areas for application of
object-oriented tools like CLIPS 5. 0.

ACKNOWLEDGMENT

This paper was prepared in conjunction with research funded by the Naval Postgraduate School.

REFERENCES

Bellingham, J. G., T. R. Consi, R. M. Beaton and W. Hall (1990). Keeping Layered Control
Simple, Proceedings of IEEE Symposium on Autonomous Underwater Vehicle
Technology, Washington, DC, June 1990.

Blidberg, D. R., S. Chappell, J, Jalbert, R. Turner, G. Sedor, P. Eaton (1990). The EAVE AUV
Program at the Marine Systems Engineering Laboratory, Proceedings of the IARP
Workshop on Mobile Robots for Subsea Environments, Monterey, California, October,
1990.

Brooks, R. A.(1986). A Layered Intelligent Control System for a Mobile Robot, in Gangeras and

Girald (eds), Robotics Research, MIT Press, Boston.
Cloutier, M. J. (1990). Guidance and Control System for an Autonomous Vehicle, M.S. Thesis,

Naval Postgraduate School, June 1990.
Giarratano, J. C. (1991). CLIPS User's Guide Volume I : Rules, CLIPS Version 5.0, NASA-

Lyndon B. Johnson Space Center Information Systems Directorate Software Technology
Branch, January 1991.

Giarratano, J. C. (1991a). CLIPS User's Guide Volume 2: CLIPS Object Oriented Language,
NASA-Lyndon B. Johnson Space Center Information Systems Directorate Software
Technology Branch, April 199 1.

Healy, A. J. , R. B. McGhee, R. Cristi, F. A. Papoulias, S. H. Kwak, Y. Kanayama and Y. Lee
(1990). Proceedings of the IARP Workshop on Mobile Robots for Subsea
Environments, Monterey, California, October, 1990.

Lee, Y., Luqi and R. B. McGhee (1991). Automating the Construction of Real-Time Software
for an Autonomous Underwater Vehicle through Prototyping, Proceedings of the 7th
International Symposium on Unmanned Untethered Submersible Technology, Durham,
New Hampshire, 23-25 September 199 1.

Mettrey, W. (1991). A Comparative Evaluation of Expert System Tools. IEEE Computer, Vol.
24, No. 2, February 1991, pp. 19-3 1.

Zheng, X., E. Jackson, and M. Kao (1990). Object-Oriented Software Architecture for Mission-
Configurable Robots, Proceedings of the IARP Workshop on Mobile Robots for Subsea
Environments, Monterey, California, October, 1990.

SESSION 2 B

THE AUTOMATED ARMY ROTC QUESTIONNAIRE (ARC?)

David L. H. Young

U.S. ARMY
HQ TRADOC BLDG 5 #GI 03
ATTN: ATRM-K
FT. MONROE VA 23561

Abstract. The Reserve Officer Training Corps Cadet Command (ROTCCC) takes applications for
its officer training program from college students and Army enlisted personnel worldwide. Each
applicant is required to complete a set of application forms prior to acceptance into the ROTC
program . These forms are covered by several regulations that govern the eligibility of potential
applicants and guide the applicant through the filling out forms . These forms and regulations are
maintained by personnel at Army Education Centers, college ROTC departments and career
placement off ices. Because these individuals are not normally involved in ROTC admissions
completion process, they are not thoroughly familiar with the filling out of forms or the eligibility
criteria established by the regulations. Eligibility criteria changes as Army regulations are
periodically revised. The distribution of revised regulations is a costly venture for ROTCCC. It
results in missing or outdated regulations being maintained at the colleges and education
centers. Outdated information results in a loss of applications attributable to frustration and
error.

ROTCCC asked the Artificial Intelligence Center at Fort Monroe, for an inexpensive and
reliable way of automating their application process. After reviewing the process, the Center
determined that an expert system with good end-user interface capabilities could be used to
solve a large part of the problem. The system captures the knowledge contained within the
regulations, enables the quick distribution and implementation of eligibility criteria changes, and
distributes the expertise of the admissions personnel at Cadet Command to the education
centers and colleges worldwide.

The expert system uses a modified version of CLIPS that was streamlined to make the
most efficient use of its capabilities. A user interface with windowing capabilities provides the
applicant with simple and effective way to input hislher personal data.

DESIGN METHODOLOGY

The process of encoding the ROTC application form questions into CLIPS code was a
straight-fonnrard task. The true complexity occurred in trying to streamline CLIPS, the
ROTC CLIPS code, and designing a compatible windowing interface. The design is
based on an iteration process handling data based on the concept of a LIFO queue.
The data is collected and analyzed with the appropriate results being displayed and
the data on a potential cadet is saved.

MIsrdg
PECEDIFJG PAGE " p&":

The design steps are :

(a) stage one : understanding ROTC policy with the help of a domain expert;
(b) stage two : what was ROTC looking for in an automated program;
(c) stage three : designing prototype knowledge bases that demonstrate stage
one and two are mastered;
(d) stage four : embedding the ROTC policy for GREEN TO GOLD, High
School, and College Students into CLlPS code and testing with help of a
domain expert;
(e) stage five : designing prototype C functions to handle problems that CLlPS
cannot;
(f) stage six : using C functions to store collected information into a data file;
(g) stage seven : streamline C prototype functions and design a generic
end-user interface for CLIPS;
(h) stage eight : modify ROTC CLlPS code to take advantage of CLIPS
hieratical lookup table, the improved C functions, and the end-user interface
commands;

The ROTC process is a vast and complex system of paper work. The ARQ was
created to reduce this process. The ARQ does not cover all possibilities at this time.
As the ARQ expands, it becomes more and more thorough.

This program is not meant to replace the current ROTC system already in place
but to aid and reduce paperwork. None of the benefits listed by this program are a
guarantee, as ROTC reserves the right of all final decisions.

ARQ SPECIFICATIONS

The ARQ was required to do the following :

(a) operate in a 640 k ram environment on a 286 or 386 IBM 1 Compatible
machine.
(b) use a language easy to learn, update, and maintain a program.
(c) be efficient and thorough.
(d) save the information collected on a potential candidate.
(e) for the program to fit on one or two disk.

The design and structuring was the author 's.

DESIGN STRUCTURE OF ARQ

The design of the AUTOMATED ARMY ROTC QUESTIONNAIRE (ARQ) takes
advantage of what CLlPS has to offer. Each feature of CLlPS was used where it was
most beneficial to the program or saved memory. All C code written for the ARQ does
functions that CLlPS does not provide.

The Rules are structured to assert new facts or carry out specific commands.
Ninety percent of all printout statements have been removed from the rules.
This allowed for smaller rules and more rules could be added and processed.

With a few exceptions, all statements, questions, and instructions are kept in a
text file accessed by the hieratical lookup table. Exceptions are :

(a) statements found in the code.
(b) one line statements printed in color to attract the user's attention.

Information collected on a user is stored as facts. Select facts shall be used to
"firen other rules. Each program iteration stores the user's information to a DBASE file
for future reference by ARMY ROTC.

Program templates provide quick and direct checking or modifying a stored
information. One template retains the scores for select data comparison. The
programmer can conveniently modify the scores list when test values change without
changing the program or a particular rule. Some lists are not templates, and are
stored as facts to save on memory. They are only traversed for particular value.

The Facts architectural design is modeled after the OOD (OBJECT ORIENTED
DESIGN) principle to allow facts to integrate with future object oriented versions of
CLIPS. Some facts do not follow this principle. They consist of one or two straight-
forward words and control switching between processing phases.

The end-user interface is a popup windowing package written in Microsoft C 5.1
(a TURBO C compatible version is under development.) The windows for ARQ are
basic and limited. (More advance window functions are under development.) The
popup windows and menus displaying information to the screen allow for a friendly
interface between the user and the computer. Window functions are called from
CLIPS and do not consume much memory. Due to the time limit and all the possible
combinations of facts, rules, and window functions, the actual number of windows
open at one time is currently unknown. The program has ninety-two rules, the facts
vary in number, and a maximum of four windows are opened at once.

There are other C functions for interfacing and are needed to run the ARQ.
The ARQ screens three different ROTC candidate profiles:

(a) The GREEN TO GOLD candidate (active duty enlisted soldier.)
(b) The On-Campus College candidate.
(c) The college bound High School candidate.

There are general questions which apply to all the prospects which are followed
by three different sets of questions which were tailored to address the unique
characteristics of a given profile. There is a rule for each profile which asserts a group
of facts spontaneously. There is a question protocol. The facts channel relevant and
related rules into proper firing sequence.

ARQ operates in a modified CLIPS 4.3. ARQ can be upgraded to run with
CLIPS 5.0 assuming no memory limitations occur. All C code will have to be modified.
The CLIPS Ver. 4.3 is the version of choice. Version 5.0 in a 640k ram environment
requires further testing.

THE ARQ OPERATION

The ARQ asks the user questions by using popup windows and menus to obtain
information. The questions asked, pertain only to the users. The number of questions
vary depending on the user's responses. Each response is used for firing new rules
or is stored as a fact. As the user answers the questions, informative statements will
appear in a popup window. When the user finishes the questionnaire, input (data) is
gathered into one template. The template is then written as a record in a DBASE Ill
file. ARQ then prompts the user to run again.

If for any reason the program is exited before completion all data collected is
destroyed upon exiting. No information will be saved to the DBASE Ill file.

BENEFITS OF USING THE ARQ

The ARQ allows users to quickly determine eligibility for the ROTC program. This
makes the process less confusing. It provides the ARMY with a reliable upto date
record of all individuals who are eligible and interested in ROTC. ARMY ROTC can
follow up and refine the leads provided by ARQ.

The simplicity of ARQ means that anybody can use it without instructions.
ARQ setves as a tutorial to teach, inform, and update ROTC education and

guidance counselors.
Common "What ifn scenarios now have solutions. Estimating or second

guessing is not necessary.

FUTURE GOALS

The next version should contain additional profiles thus making ARQ more thorough.
The rules should be divided into single or like candidate files and a main rule file used
for running the ARQ. The main file would give a menu selection of all the candidate
types, select, and load in the corresponding candidate rule file and run.

A more advance windowing package built for CLIPS with graphics pictures
should tempt more users to try the ARQ. The graphics should enhance the program
and make the ARQ more palatable. Advanced window functions will make CLIPS
more user friendly.

The ability to provide multiple drive access is needed for writing output to disk
storage or for files located in different drives and directories.

The incorporation of the ROTC LOGO would give the ARQ a more authentic feel
to the user.

Long term goals are to send and maintain the ARQ electronically world wide
and to upload and down-load the ARQ on a main-frame.

The long term goals will involve a substantial investment in technical and

manpower resources.

SUMMARY

ARQ is a versatile and portable tool. It has the flexibility to keep expanding and still be
extremely efficient and reliable.

The CLIPS language is easy to learn and makes it easy to update the ARQ.
Since the ARQ reduces paperwork, the ROTC application process can execute

faster and smoother.

DECISION BLOCKS: A TOOL FOR AUTOMATING DECISION
MAKING IN CLIPS

Christoph F. Eick
Department of Computer Science
University of Houston
Houston, TX 77204-3475
e-mail: ceick@cs.uh.edu

Nikhil N. Mehta
GE Government Services
1050 Bay Area Boulevard
Houston, TX 77058
e-mail: nmehta@ 146.154.10.168

Abstract. The human capability of making complex decision is one of the most fascinating facets of
human intelligence, especially if vague, judgmental, default or uncertain knowledge is involved.
Unfortunately, most existing rule-based forward-chaining languages are not very suitable to simulate this
aspect of human intelligence, because of their lack of support for approximate reasoning techniques needed
for this task, and due to the lack of specific constructs to facilitate the coding of frequently reoccurring
activities in decision making processes. The paper advocates to extend CLIPS by a new component called
decision block to provide better support for the design and implementation of rule-based decision support
systems. A language called BIRBAL~, which is defined on the top of CLIPS, for the specification of
decision blocks is introduced. Empirical experiments involving the comparison of the length of CLIPS-
program with the corresponding BIRBAL-program for three different applications are surveyed. The results
of these experiments suggest that for decision making intensive applications a CLIPS-program tends to be
about three times longer than the corresponding BIRBAL-program.

I. INTRODUCTION

Very often in human life we are forced to make guesses in order to decide where certain objects are
located, for reconstructing events that happened in the past, or for building plans in order to
achieve a certain goal. The human capability of making complex decisions is one of the most
fascinating facets of human intelligence. Usually, decision making involves multiple knowledge
sources from which the expert extracts different clues by frequently using a set of fuzzy rules,
which encode the expert's general and domain-specific knowledge. Finally, the expert comes up
with a decision by combining the evidence received from the individual clues.

The problem of how to design and implement larger systems that rely on these approaches
has widely been ignored by current research (some exceptions to this point will be discussed
below). There is a lack of programming languages that integrate these approaches of the rule-based
expert system shells that support reasoning involving imperfect knowledge adequately, and of
knowledge engineering methodologies that can cope with large amounts of imperfect knowledge.
Programming involving imperfect knowledge, will be referred to as fuzzy programming in the
following sections, still seems to be quite far away for commercial applications. Experimental

t Birbal was a famous minista in the 16th century India, who served as an advisor to king Akbar.

systems that do support reasoning involving imperfect knowledge such as PROSPECTOR([14]),
or MYCIN([lO]), mostly use "single-valued approaches" for reasoning under uncertainty; that is,
they assign a probability-like value to each predicate of interest. However, single-valued
approaches have problems coping with ignorance and with different degrees of reliability in
different knowledge sources. Two-valued approaches that intend to overcome these problems have
been advocated in the literature; most of these approaches use Dempster/Shaferts theory of
evidence as the underlying knowledge representation framework ([I], [24], [28]) or they assign
priorities to rules and use these priorities in a pragmatic way when combining evidence [36]. These
approaches are capable of assigning --- in addition to probabilities --- reliabilities to predicates and
rules and have no difficulties with representing ignorance, which makes them very attractive for
automating human decision making in uncertain environments. The RUM-system([7]) advocates
the use of a 3-layered reasoning strategy, which distinguishes between representation, inference,
and control, which is defined on the top of a two-valued approach. Two other experimental
systems, INFERN0([27]) and ARIES ([I]), that rely on two-valued approaches have been
described in the literature. Finally, some efforts have been made to integrate approximate reasoning
methods with Prolog ([4], [2 11).

The main topic of this paper is the discussion of techniques and concepts that facilitate the
implementation of rule-based decision support systems that have to cope with imperfect
knowledge. A language construct, called decision block, that facilitates the automation of decision
making is proposed, and its features and its integration with rule-based forward chaining languages
are discussed in some detail. The paper is organized as follows: Section 2 introduces decision
blocks and a language BIRBAL that supports decision blocks. Section 3 discusses the
implementation of BIRBAL.

11. DECISION BLOCKS

In this section we are going to provide the programmer with a language construct, called decision
block. This construct eases the automation of the more general aspects of decision making by
reducing the number of rules as well as the complexity of individual rules. Decision Blocks rely on
the technique called decision making by evidence combination @BE) that can be characterized as:

(1) Rules in a rule-set are assumed to be independent, providing positive or negative
evidence for or against making a certain decision in a certain situation. Rules approximate
the basic principles of a particular domain.
(2) Smooth decision making is supported. If the left hand side (LHS) of a rule is only
partially true the amount of evidence provided by the rule will be decreased.
(3) After the rules of a rule-set have been processed completely, the evidence provided for
different decisions is combined and the best decision is selected That is, a two-layered
inference strategy is used that separates decision making h m decision execution.

When using this approach, no artificial dependencies between rules need to be introduced,
and errors in a rule-set can be more easily detected, because each rule-set returns a ranking of the
available decisions and no longer only the chosen decision. Using the above approach rule-sets that
encode decision making processes look as follows:

(R1 (if A) (then provide evidence for Dl with amount al))
(R2 (if C) (then provide evidence for Dl with amount a2))
(Rg (if B) (then provide evidence for D;! with amount a3))
(% (if "truen) (then provide evidence for Dg with amount a4))

In general, assuming that the decision with the highest amount of positive evidence is
chosen, a pdcular selection a1 ,...,a4 is correct, as long as it satisfies the following equations:

The symbol (3 refers to the operator that combines evidence received from different rules in
the context of the underlying method for approximate reasoning. For example, the first equation
expresses that the result of combining the amount of evidence a1 and a2 has to be greater than the
amount a3, reflecting that if both A and C are present Dl and not D2 should be selected. Or, to
give another example, a3 has to be greater than a2, because D2 is preferred if B and C, but not A
are observed.

So far, our discussion abstracted from the underlying approach for approximate reasoning.
We consider a method M to automate approximate reasoning to be a pair M=(O, T) that consists of
a set of Operators 0 operating on the type T. In order to be suitable for decision making by
evidence combination, we require that 0 provides at least the following operators:

A E T x T + Tiscalledtheand-operam
v E T x T + Tiscalledthem-operator
not E T + T is called the not-operator
- E T x T + T is called the modus-ponens-tor
$ E T x T + T iscalled thecombinationsperator
r E T x T + BOOLEAN. Furthemore, r; has to be an order relation:

it has to be reflexive, anti-symmetrical, and transitive.

T represents the type used by the underlying methodology to measure the truth of imperfect
knowledge. In a Bayesian system T would be set to [0 11, in the case of MYCIN certainty factors
T would be [-I 11, and in the case of two-valued interval approach T would be:

{(x,y) E 3 I O S x S y S I); where3 is a set of real numbers.

In general, various abstract data-types have been proposed in the literature, e.g. ([I], [6], [7],
[lo], [27]), that are suitable for decision making by evidence combination. In the following we
assume that the above operators are applied in infix-form. For example, if the following rule R

(R (if (A and (B or not (C))) then (provide evidence for D amount x))

is processed, its amount of evidence for D would be computed as follows:
(a A (b v (not(c))) -+ x

in which a, b, c, x E T, describes the belief associated with A, B, C, and with the rule R
respectively. Or, in our original example D2 is considered to be better than D 1 if:

(a -+ al) 6B (C --) a2) s (b -+ a3)

In summary, when automating decision making relying on the above framework, we will
first apply the operators to process the LHS of a rule, then we will use the operator --+ to
compute the evidence provided by a particular rule, and then we will combine the evidence inferred
by different rules for the same predicate using the operator 6~ for each decision candidate. Finally,
the order relation s is used to select the best decision candidate(s).

Decision blocks enable programmers of decision support systems to identify independent
units of decision making. More specifically, a decision block consists of (see Figure 1):

Decision Block

Figure 1. Components of a Decision Block

(1) A decision specification that enumerates decision candidates from which the best
decision(s) has (have) to be selected, and which associates an action with each decision
candidate which will be executed in the case that a particular decision is chosen.
(2) An environment which consists of a set of context variables that describe the context in
which a particular decision has to be made.
(3) A rule-set, whose members provide positive and/or negative evidence for or against
the particular decision candidate. Rule-sets are further subdivided into disjoint ruleclusters
that represent rules that are related to the same knowledge source. Evidence provided by
rules from belonging to different ruleclusters is considered to be independent evidence,
whereas rules belonging to the same rulecluster are assumed to provide dependent
evidence. Furthermore, exceptions can be associated with rules. Exceptions are
represented by augmenting production rules by an exception LHS and an alternate right
hand side (RHS). In the case that the rule's LHS and the exception's LHS are satisfied,
the corresponding alternate RHS is executed.
(4) A decision making policy that encodes the decision procedure for selecting a decision or
a set of decisions after all clues relevant for the decision making have been analyzed.

Phase 1 Phase2 Phase3 Phase 4

Figure 2. Phases of a Decision Block

Evidence Germation

Rules and Wir associated
exceptions are evaluated
giving preference to the

, most specZic exception.

Decision blocks automate rule-based decision making by using a four layered inference
strategy, as depicted in Figure 2. First, rules and their associated exceptions are evaluated, giving
priority to the most specific exception which is applicable for the rule. Second, dependent
evidence within each rulecluster, and independent evidence associated with different ruleclusters is
combined. For combining dependent evidence a second evidence combination function was
provided, which is given in Appendix 1, and whose properties are discussed in more detail in
([15]). Third, a set of decisions is selected according to the strategy outlined in the decision
block's policy. Decision making policies supported by decision blocks, which are evaluated with
respect to the operator s include: select the best decision, select the best n decisions, select all
decisions, or the best n decisions better than a threshold value a (0 s a s 1). Fourth, the selected
decisions are carried out, executing the actions associated with the selected decisions.

Evidence Combination

Evidence received from
dierent rules is combined.

Decision Selection

A set of decisions is selected
depending on the decision
making policy.

Decision Execution

The selected decisions are
carried out by executing
their associated actions.

Figure 3. gives an example (for detailed explanation of different examples see [25]) of a
typical decision block, nmed scholmhigs, which encodes the awarding of scholarships to the
students on the basis of their academic performance, experience as teaching assistant and age.

(environment (?univ))

((qual-of ?ssno ?univ) with (?lb ?ub))

(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(%curr-perform ?cgpa)
(%overall-perform ?ogpa)
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))

([fbexpas-TA ?expTA)

(student (ssno ?ssno) (univ ?univ) (fin-need ?fneed))
(%financial-need ?fneed)

(infer (qual-of ?ssno ?univ) with (0.75 1.0)))

(student (ssno ?ssno) (univ ?univ) (age ?age))

Figure 3. Example of a Decision Block: scholarships

Before a decision block can be used, all fuzzy functions (that is, functions that return
intervals as results) with it's arity (i.e., number of arguments) have to be identified. The action-
specifications of the decision block enumerates the decision candidates, which are represented as
LHS patterns

((qualsf ?ssno ?univ) with (?lb ?ub)),

and RHS gives the action($ which has(have) to be performed, if the corresponding decision is
selected. For example, if a student from the university of Houston with ?ssno equal to 123456789
is selected depending upon the decision making policy then "Qualified Student is 123456789
Houston" is printed out. The environment definition defines the context variables used by the
decision block. These variables have to be initialized by the call of the decision-block. These
variables are local to the decision-block and need to be passed (in this case ?univ) whenever the
decision-block is invoked. The decision making policy specifies what decisions need to be selected
from the set of decisions taken, here the decision making policy applied is specified as

"(select ALL decisions with mv > 0.8)"

i.e. the combined evidence received from each of the rules from the rule-set should have the mean-
value greater than 0.8.

Now let's see what each rule in the rule-set expresses. First we will see intuitively what is
being signified by intervals specified (interested reader should refer to the Appendix 1) with the
Twevalued approach we have taken. We can express the fact that we know nothing about certain
proposition P by assigning interval [0 11, i.e., unknown can be directly expressed in the interval
approach. Also the usage of classical probability becomes the special case of Twevalued approach
because we can express single probability values by assigning same lower and upper bounds,
e.g., [0.4 0.41, where uncertainty is 0 and reliability is 1, and we are sure about the proposition.
Intuitively speaking if the difference between the lower and upper bound increases the uncertainty
of the proposition increases and if the difference between them decreases certainty about the
proposition increases. Also the evidence provided for the proposition is considered as negative if
the mean-value of the interval is less than 0.5.

The LHS of any rule could be any valid CLIPS LHS pattern plus the fuzzy function(s) (C
functions), if any, identified by '%' followed by the arguments of the functions. Let's take the
frrst rule scl which provides the evidence towards the qualification of the student depending on
the academic performance of the student, i.e.,. student's current GPA and overall GPA. The
performance of the student depending on GPA is difficult to quantify since the student having
overall GPA of 3.75 and other having 3.80 lies in the same category. Also same can be said for
current GPA , but the combined performance might differ extensively since the current GPA will
affect the overall GPA drastically depending upon the value. Hence the combined performance is
fuzzy. The infer statement in the fmt rule suggests that it has higher contributing power towards
the final decision since the interval applied to it is [0.9 1.01. The second rule sc2 will contribute
towards the final decision depending upon the experience as teaching assistant but the rule has
lower contributing power than the first one since the interval applied to it is 10.8 1.01. Similarly
other rules will contribute towards the final decision.

The evidence provided by the LHS fuzzy predicates such as performance, experience,
financial-need and age will be used in computations using logical connectives (A, v, not) which in
our case is A, and modus ponen functions (-+) and new evidence interval will be computed. This
new value will be contributed by each rule towards the final decision, i.e., qualification of the
student for receiving a scholarship. Each rule can either provide positive or negative evidence.
Next the evidence provided by each rule is combined repeatedly using the operator @ until the
evidence provided by each rule towards the final decision is combined. In the third phase
depending upon the decision making policy the decision regarding the qualification is made from
the set of competing candidates and in the last phase the action specified by action-specifications is
taken, in our case it's simply printing out all the candidates whose mean-value of the interval is
greater than 0.8. In general the action-specifications can be used to sort the candidates in the
ascending order of mean-values or could involve further computations for the final selection or
could invoke another decision-block or simply prints the first 10 candidates called for the interview
putting other candidates on the waiting list, etc. We can see from the previous discussion how
smooth the entire process is and how simple it is to code the decision-block. We will see in the
next section implementation of the decision-block, that if we need to do all that is specified in the

previous discussion using pure CLIPS how much extensive coding is required and burdensome
for the programmer which is not the case with the decision block since the compiler takes away that
burden from the programmer.

111. IMPLEMENTATION OF DECISION BLOCKS

In this section, we will discuss the implementation of a rule-based language that supports decision
blocks, and will report on some empirical results concerning the benefits of decision blocks.
More specifically, we will report on the integration of decision blocks into a rule-based forward
chaining language called CLIPS([19]), which was developed by NASA. The extended language is
called BIRBAL. A BIRBAL-programmer can in addition to CLIPS rules define decision blocks
and call these decision blocks within a CLIPS-program.

BIRBAL
Prosrclm

CLIPS
Pragram

Figure 4. Implementation of Decision-Blocks

Decision
Blocks

CLIPS
Rules

A precompiler has been provided, as a part of a Master's thesis ([25]), that maps a
BIRBAL-program that consists of decision blocks and CLIPS rules into a program that uses pure
CLIPS (see Figure 4). The precompiler is written in C has about 1400 lines of symbolic code. It
was developed using the UNM-compiler generating tools lex and yacc. The developed
precompiler relies on a rule-mapping that maps BIRBAL-rules into CLIPS rules; that is, every rule
defined within a decision block is transformed into a single CLIPS-rule that simulates its behavior.
However, the generated CLIPS rules are much larger in size, which can be attributed to:

-

Special
Rules

-a

General

CLIPS which does not support reasoning under uncertainty. This means that
computations involving operators for approximate reasoning have to be provided
manually for each rule.

CLIPS does not support context variables, which implies that they have to be stored as
assertions in the CLIPS working memory. The variable management is further complicated
by the fact that there could be multiple active decision blocks, which use equally named
variables,

Exceptions are not supported; therefore they have to be programmed out by the
programmer.

It has to be made sure that evidence providing rules are only fired in phase 1 of the
execution of a decision block; or, in more general terms, the context under which
evidence-providing rules are allowed to fire has to be expressed by adding additional LHS
conditions to the generated CLIPS-rule.

Rules

In order to make the above comments more transparent and to give the reader a better feeling what
a programmer has to do if no decision blocks are provided, let us see how our precompiler maps
the rule (refer to Figure 5).

In CLIPS'S syntax a rule's LHS and RHS are separated by => symbol, and all condition
elements that appear in a rule's EHS are assumed to be connected by 'and'. Furthermore, in
CLIPS match-variables are prefixed by I?. The above rule starts with two control assertions
(active-db- scholarships) and (status- scholarships phase 1) that make sure that the generated rule
is only fired when the decision block scholarships is active and in phase 1. The rule scl refers to
one context-variable. Context variables are represented in the U P S environment by assertions of
the form (v a ~ <db-name> <var-name> <var-value>); e.g., (var- scholarships univ Houston),
expresses that variable 'univ' of decision block scholarships has the value Houston. The values of
the context variables have to be retrieved by adding one LHS condition to the rule. Furthermore,
the LHS conditions of the BIRBAL-rules have to be simulated. Non fuzzy-conditions do not pose
any particular problem; they are simply copied into the generated CLIPS-rule. In this particular
case, it is the test pattern which checks whether the GPA of the student is within the valid range or
not. The implementation of the fuzzy conditions is much more complicated. First we assume that
the C-functions that implement the definition of curr-perform and overall-perform has been
provided by the user.

(~ 1
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(%cum-perform ?cgpa)
(%overall-perform ?ogpa)
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))
=>
(infer (qual-of ?ssno ?univ) with (0.9 1.0)))

The above rule scl is transformed into the following CLIPS-rule:
(defiule scl-phase1

(declare (salience 555))
(active-db- ?db-namee&schoWps)
(status- ?&name- phase ?phase-&l)
(v a ~ ?db-name univ ?univ)
(student (ssno ?ssno) (univ ?univ) (cgpa ?cgpa) (ogpa ?ogpa))
(test (and (between ?cgpa 0.0 4.0) (between ?ogpa 0.0 4.0)))
=>
(bind ?ll-ul- (curr-perform ?cgpa))
(bind ?11- (nth 1 (strexplode ?ll-ulJ))
(bind ?ul- (nth 2 (str-explode ?ll-ulJ))
(bind ?l2-u2_ (overall-perform ?ow))
(bind ?l2- (nth 1 (strexplode ?l2-&)))
(bind ?u2_ (nth 2 (str-explode ?l2-a_)))
(bind ?yl- (* ?11- ?12_))
(bind ?y2- (* ?ul- ?&J)
(if (and (!= ?yl- 0) (>= (+ ?yl- 0.9) 1) (>= (+ ?y2_ 1.0) 1)) then

(bind ?lb- (/ (- (+ 0.9 ?ylJ 1) ?ylJ)
(bind ?ub- u (- (+ 1.0 9 2 3 1) ?y23)
(assert (scl ?db-name 2 qual-of ?ssno ?univ with ?lb- ?ubJ)))

Figure 5. Rule Transfmation from Decision Block d e to CLIPS rule.

Each of these functions returns an interval, measuring the performance of the student for
which it were called. Second, the approximate reasoning methods described in section 11, have to
be used to compute the rule's evidence for the qualification of the students. In this particular case
two fuzzy conditions are used, which means that the belief in the rule's LHS can be equated to the
academic performance of a particular student, if the test conditions for GPAs are satisfied. The fust
eight RHS actions call the C-functions curr-perform and overall-perform, bind the returned
intervals, and bind the lower and upper bounds to variables ?yl- and ?y2- after applying logical
connectives (see Appendix 1) to the returned intervals. The rest of the rule's RHS simulates the
operator ' -+I and computes the rule's amount of evidence. In case that the amount of positive
evidence is [0 11 then the rule does nothing; otherwise it asserts an assertion specifying the amount
of evidence provided for the decision candidate. For example, if the rule scl provides a positive
evidence of [0.75 1.01, the following pattern

"(scl scholarships 2 qual-of 123456789 Houston with 0.75 1.0) "

would be asserted. These assertions are used later in phase 2 to combine the different pieces of
evidence associated with the same student. It is also important to note that the generated code
would become much more complicated in case that the LHS of the rule references more than two
fuzzy conditions connected by different logical connectives and with the presence of exception
conditions (see [25]). In that case, it would be necessary to add code that simulates the
com bination of v, a and not operators.

In general, the example demonstrates that implementing the approximate reasoning methods
by hand is highly complicated and time consuming, if no methods for approximate reasoning
have been integrated into a rule-based language. Even worse, these computations have to be
provided for every rule of a rule-set, even if the computations are similar or the same.

Moreover, the precompiler transforms a decision block's decision making policy into a
rule that generates assertions, parameterizing the computations of general rules that simulate the
selected decision making policy. Also the decision blocks decision specification is transformed
into rules, whose right hand sides consists of the actions associated with a decision candidate,
whereas the LHS of the generated rule checks for assertions that state that the corresponding
decision has been selected by the decision making policy. Additionally to the rules that are
generated specifically for a particular decision block, our implementation relies on a set of general
rules that perform general tasks such as evidence combination, switching between the phases of
the implementation of a decision block, management of calls of decision blocks, and removal of
trash (see Figure 6).

We also made some experiments comparing the length of a decision block with the length
of the generated CLIPS program that implements the decision block. These experiments included
a slightly more complex version of the scholarships decision block, the decision blocks that
simulate the assignment of scholarships at a university, and a larger decision block for a problem
of medical parasitology. The results are summarized in Table 1. We claim that these numbers give
a good indication of the benefits of decision blocks with respect to a programmeis productivity in
decision making intensive applications, such as those analyzed in the benchmark. A pair (a, b) in
the Table 1 indicates that the corresponding program has 'a' lines and 'b' characters.

In general, the experiment suggests that the generated CLIPS program is about 4 times
longer than the corresponding decision block if DBE is implemented, which makes it quite
apparent why the conventional approach has been used quite frequently in practice, and not
decision making by evidence combination @BE). Due to the lack of supportive constructs in
commercial forward-chaining languages the received programs tend to be very long, if DBE is
used. However, if higher order constructs such as decision blocks are integrated into a rule-based
languages, this remark is no longer true. We even go further and claim --- that programs
developed using decision blocks tend to be significantly shorter than programs that were
developed using the conventional approach. Moreover, the development of a precompiler was not
very complex, which demonstrates that decision blocks can be provided at a low cost on the top of

rule-based languages such as CLIPS([191), OPS([18]), or ART([2]), and that decision blocks can
be easily integrated into forward chaining systems. In summary, the availability of decision blocks
or similar constructs is an important prerequisite to develop decision support systems at reasonable
cost that rely on decision making by evidence combination.

u - Action-Executing Rules

:

Rule-Selection

Library of General Rules h Y
* Phase-Switching Rules

Evidence-Combination Rules

%'
Policy-Simulating Rules

Call-Managing Rules

Figure 6. Mapping Decision Blocks to a Rule-Based Language

I CLIPS 1 (174.5'743) I (701,22486) I (180,4720) I
-

Table 1. Comparison of the Complexity of CLIPS and BIRBAL

T

Scholarship
Awarding

Exampk Opening-bid
in the game
of Bridge

Medical
Parasitology

IV. CONCLUSION

This paper studied the problem of designing and implementing complex decision support systems.
Computerized decision making that treats decision making as a problem of evidence combination
was introduced A language construct called decision block that facilitates the implementation has
been proposed. A language called BIRBAL that integrates decision blocks with CLIPS has been
provided. Decision blocks offers several advantages over classical rule-based languages such as
ART, CLIPS and OPS for automating complex decision making processes. First, the availability
of exception handling facilities and evidence combination techniques enables one to program close
to the expert level, which is very important for explaining the system's behavior and for system
validation. Second, our approach supports smooth decision making. Minor changes will only
slightly affect the final ranking of the decision candidates. Third, decision blocks provide
encapsulation and allow to modularize complex decision making processes. Fourth, we claim that
decision blocks increase a programmer's productivity significantly because the precompiler takes
care of many tasks such as reasoning under uncertainty, combination of evidence, removal of
trash, ranking of decision candidates, or execution of decisions, which no longer have to be coded
by a BIRBAL-programmer. Finally, we showed that decision blocks can be provided at a low cost
on the top of existing rule-based programming languages, such as CLIPS.

REFERENCES

[l] L. Appelbaum, and ERuspini, "ARIES An Approximate Reasoning Inference Engine," in [18], pp. 745-765.
[2] Inference Corporation, ART Reference Manuai. Los Angeles Inference Corporation, 1986.
[3] J.F. Baldwin, and N. Gould, "Feasible Algorithms for Approximate Reasoning using Fuzzy Logic," Fuzzy Set

Systems, vol. 3, pp. 225-251, 1980.
[4] J.F. Baldwin, "Evidential Support Logic Programming," Fuzzy Sets and System, Vol. 24, pp. 1-26, 1987.
[5l V. Barker, and D. O'Comor, "Expert Systems for Configuration at Digital XCON and Beyond," CACM, Vol.

32, NO. 3, pp. 298-318, 1989.
[q A. Basu, and A. Dutta, "Reasoning with Imprecise Knowledge to Enhance Intelligent Decision Support," IEEE

Transactions on Systems, Man and Cybernetics, Vol. 19, No. 4, pp.756-770, 1989.
171 P. Bonissone, S. Gans, and K. Decker, "RUM A Layered Architecture for Reasoning in Uncertainty," in Proc.

10th IJCAI-conference, Milan, pp.891-898, 1987.
[8] P. Bonissone, D. Cyrluk, J. Goodwin, and J.Stillrnan, "Uncertainty and Incompleteness Breaking the

Symmetry of Defeasible Reasoningn in 5th Workshop on Uncertainty in AI, pp. 34-45, Detroit, 1989.
[91 L.Browston, R. Farrell, E. Kant, and N.Martin, Programming Expert Systems in OPS5, Reading Addison-

Wesley, 1985.
[lo] B. Buchanan, and E. Shgtliffe, Rule-Based Expert Systems, Reading Addison Wesley, 1984.
[l 11 P. Cheeseman, "Probabilistic versus Fuzzy Reasoning," in L. Kanal, Uncertainty in AI, Amsterdam North

Holland, pp. 85-102, 1986.
[12] P. Cohen, Heuristic Reasoning about Uncertainty An Artificial Intelligence Approach, New York Pitman

Publishing Limited, 1985.
[I31 AP. Dempster, "A Generalization of Bayesian Inference," Jour. Royal Stat. Soc., B, V 30, pp. 205247.1968.
[I41 R. Duda, J. Gaschnig, and P. Hart, "Model Design in the PROSPECTOR Consultant System for Mineral

Exploration," in Michie's Expert Systems in the Micro Electronic Age, Edinburgh University Press, 1979.
[I51 C.F. Eick, 'WnceWty Management for Fuzzy Decision Support Systems," in Proc. 4th Workshop on

Uncertainty in At, StPaul, August 1988, pp. 98-108.
[I61 C.F. Eick et al., "Computer Bridge - A Challenge for AI," in 2. Ras (eds.), Methodologies for Intelligent

Systems, 5. New York North-Holland, pp. 59-67, 1990.
[17] C.F. Eick, Yao and H. Fu, "More FIexible Use of Variables in Rule-Based Programming," in Proc. 2nd Int.

Symposium on Artificial Intelligence, Monterrey, Oct. 1989.
[18] C. Forgy, "OPS83 Report," Technical Report, Dept. of Computer Science, Carnegie-Mellon University, 1983.
[I91 J. Giarxatano, and G. Riley, Expert Systems Principles and Programming, Boston PWS-Kent Pub. Co., 1989.
[20] M. Gupta, A. Kandel, W. Brandlet, and J. Kiszka, Approximate Reasoning in Expert Systems, Amsterdam,

North Holland, 1985.
1211 CJ. Hinde, "Fuzzy Prolog," Int. Journal of Man-Machine Studies, pp. 569-595, 1986.

1221 A, Kandel, Fuzzy Mathematical Techniques with Applications, Read Addison Wesley, 1986.
[23] R. Loui, "Evidential Reasoning in a Network Usage Prediction Testbed," Proc. 4th Workshop on Uncertainty

in AI, St. Paul, 1988, pp. 257-265.
[24] S. Lu, and H. Stephanou, "A set-theoretical framework for the processing of uncertain information," in Proc.

AAAI-conference, Austin, 1984, pp. 216-221.
[25] NN. Mehta, "BIRBAL - A Rule-Based Language for Decision Making," Master's Thesis, University of

Houston, December 1990.
[26] J. Prugh, "A Knowledge-Based Approach to Bridge Defense," Master's Thesis, University of Houston, May

1989.
[27] J. Quinlan, "INFERNO - A Cautious Approach to Uncertain Inference," Computer Jour., Vol. 26, pp. 255-

266, 1983.
[28] G. Shafer, A Marhematical Theory of Evidence. Princeton University Press, 1976.
[29] N. Shirouzu, Norihiko Time for Some Fuzzy Thinking, in TIME September 25, 1989, pp. 79.
[30] E.Soloway, J.Bachant, and K. Jensen, "Accessing the Maintainability of XCON-in-RIME Coping with

Problems of a VERY Large Rule-Base," in Proc. 6th National Conf. on ArtjtScial Intelligence, Seattle, 1987,
pp. 824-829.

1311 H. Stephanou, and A. Sage, Terspectives on Imperfect Information Processing," IEEE Trans. on Systems,
Man, and Cybernetics, Vol. 17, no. 5, pp. 780-798, Sept. 1987.

1321 D. Touretzky, The Mathematics of Inheritance Systems, Los Altos M. Kaufman Pub., 1986.
[33] E. Trillas, and L. Valverde, "On Mode and Implication in Approximate Reasoning," in 1181, pp. 157-166.
[34] C. Tsen, "A Knowledge-Based Approach to Bridge Bidding," Masts's Thesis, University of Houston, June

1988.
[35l D. Vaughan, B. Perrin, R. Yadrick, and P. Holden, "Comparing Expert Systems Built using Different

Uncertain Inference Systems," in Proc. Fjfth Workshop on Uncertainty in AI, Detroit, August 1989, pp. 369-
376.

[36] R. Yager, "Nonmonotonic Reasoning via Possibility Theory," in Proc. 4th Workshop on Uncertainly in AI,
St.Paul, 1988, pp. 368-373.

[371 L.A. Zadeh, 'The Role of Fuzzy Logic in the Management of Uncertainty in Expert Sys.," in 1181, pp. 3-31.

APPENDIX 1. BIRBAL'S UNCERTAINTY MANAGEMENT

This section describes the operators that are supported in BIRBAL for approximate reasoning.
BIRBAL relies on a two-valued interval approach to automate approximate reasoning which
measures the belief that a certain proposition P is true by assigning an interval [a b] to P,
expressing the following semantics:

(1) The probability that P is true is at least a.
The c o ~ m t i o n of P is a: conf[a b] = a

(2) The probability that P is false is at least (1-b).
The disconfinnation of P is (1-b): disconf([a b]) =1-b.

(3) The uncertainty of our belief concerning P is measured by unc([a b]) = b-a.

(4) The mem-value of our belief concerning P is measured by {F}: mv([a b]) = pib} -

For example, if we assign an interval [0.40 0.991 to P we express the following, the confirmation
of P is 40% and the disconfmation of P is 1%. That is, 40% of the probability is assigned to P,
and 1% of the probability is assigned to (not P). It is unknown how the remaining probability
(59%) is distributed we don't know how much of this probability is assigned to P and how much
is assigned to (not P). The uncertainty is 59%, and the mean-value is 69.5%. A special case is the
interval [0 11, which expresses the fact that we know nothing about a proposition P. We used the
following operators for V, A, not, + , @, and r; in the project, whose definitions are as follows:

Let [a b], [C dl, [11 ul] , [I2 1121 be intervals:
[a b] A [C dl := [min(a, c) min(b, d)]
[a b] v [c dl := [rnax(a, c) max(b, d)]
not(la bl) := [l-b 1-a]
(a b) -4 (c d) := if (a it 0 A (c+a 2 1) A (b+d r 1))

[c+;-l b+t- 1 1 then - -
else [O 11

The operators for and-, or-, and negation are identical to those advocated by Fuzzy Logic -- only
generalized in the context of intervals. The modus ponens operator -+ is used as follows to
associate evidence with predicates appearing on the LHS of rules. For example, if we have a rule:

(R (if E) (then (infer H with [c dl))),

and our belief in E is measured by [a b], then the above rule provides evidence for H, whose
amount is measured by: (a b) 4 (c d).

The proposed modus ponens operator generalizes a modus ponens operator given in ([33])
for intervals. The proposed operator supports smooth decision making, as can be seen for the rule
r 1, given below

(rl (if (tall $x)) (then (infer (strong $x) with (0.5 0.9))))

Varying our belief assigned to the tallness of a person, we receive,

Interval for the rl's Positive
Tallness Evidence
[1.0 1.01 [0.500 0.9003
[0.9 0.91 [0.444 0.8891
l0.8 0.81 [0.375 0.8751
10.7 0.71 [0.285 0.8571

Note that the mean-value of the rule's conclusion decreases if the probability of the LHS decreases
means that conclusions based on uncertain knowledge are less reliable and provide less positive
evidence. In the above framework negative evidence is treated as positive evidence for the
negation of the hypothesis of interest, e.g., when processing: (rl (if E) (then not(H) with (0.7 I))), we
will infer an interval that describes the positive evidence for not(H), and convert this interval to
negative evidence for H by applying the negation function, introduced before, to the received
interval. In the example, if E is definitely true [1 11, an interval [0 0.31 will be associated with H.

The operator $, we use for combination of evidence, is Dempster's rule of combination
([13]). Intervals can easily be interpreted as probability assignment functions. If an interval [a b] is
assigned to a predicate P the corresponding probability assignment function would be: m(P) = a,
m(not(P)) = 1-b, m(0) = b-a, and m(0) = 0. By applying Demster's rule of combination the above
formula is obtained. Finally, we use the mean-value of intervals to rank decision candidates,
giving preference to decisions with the highest mean-value for the combined evidence. For
example, if an interval of [0 11 is associated with Dl and an interval of [0.1 0.81 is associated
with D2, Dl is preferred because its mean-value is 0.5, whereas the mean-value associated with
D2 is 0.45, which is less than 0.5.

AUTOMATED PREDICTIVE DIAGNOSIS (APD):
A THREE TIERED SHELL FOR BUILDING EXPERT SYSTEMS
FOR AUTOMATED I)%a%ED%CYI"FQN§ AND DECISION MAKING

Michael Steib
Vim Corporation

Abstract. The APD software features include: On-line help, Three-level architecture, (Logic environment,
Setup/Application environment, Data environment), Explanation capability, and File handling. The kinds
of experimentation and record keeping that leads to effective expen systems is facilitated by: a) a library of
inferencing modules (in the logic environment), b) An explanation capability which reveals logic strategies
to users, c) Automated file naming conventions, d) An information retrieval system, e) On-line help. These
aid with effective use of knowledge, debugging and experimentation Since the APD software anticipates
the logical rules becoming complicated, it is imbedded in a production system language (CLIPS) to insure
the full power of the production system paradigm of CLIPS and availability of the procedural language C.
This paper discusses the development of the APD software and three example applications: toy,
experimental, and operational prototype for submarine maintenance predictions.

INTRODUCTION: FROM SHELL TO TOY TO OPERATIONAL PROTOTYPE

This paper describes the Automated Predictive Diagnosis (APD) environment for development of
expert systems and discusses three example applications. It is for readers familiar with production
system programming and the development process for building expert systems. After a
prelirmnary look at the output of an operational prototype, the paper begins the discussion with a
presentation of the assumptions on which the development was based and an overview of the
Automated Predictive Diagnosis software. Once its features and how it is used are described, the
architecture of the APD environment and its filing system are explained. This explanation is
followed by a recount of the development from the APD shell to Toy Application to an Operational
Prototype based on an Experimental Environment with real data. The Operational Prototype for
Submarine Maintenance generates printouts of the following type:

SHIP: shp rf

name of part 1
VALUE: value 1 THRESHOLD: threshold1
SAT UNTL: mm-yyy~

name of part 2
VALUE: value2 THRESHOLD: threshold2

UNSAT

NAME: name
DATE. date

... and so on for the parts of the steering and diving of the submarine. The command to run the
computer program and shp, rf, name, and date from the heading on the top two lines are all that is
input from the terminal. Of these, only the refit number and the ship number are used by the
processing of the software. The sat unsat designations relate to satisfactory and unsatisfactory
status of the respective parts of the ship, shp, at the date determined by rf. The latter two, name

and date, are used only for identification. Computer Nes support the rest of the infmt ion:
derivations to obtain trendable data from sets of untrendable data, parameters needed to run the
APD software and predictions. These files contain constant defaults and updated measurement
information. The "lJNIE" field is left blank in cases where no prediction can be estimated as to
when trendable values derived from data sets would cross the threshold

A demonstration at this level would consist of a command to start the pmgam, entering the
four, shp, rf, name, and date, letting the software run and taking the printout from the printer. In
the following discussion, APD refers to the environment to build The APD First Toy Application,
The APD Experimental Environment for Submarine Predictions, and The APD Operational
Prototype for Submarine Maintenance. It begins with the assumptions on how APD is to support
the standard evolutionary incremental build strategy for developing expert systems.

PHILOSOPHY OF THE SOFTWARE: BASIC ASSUMPTIONS WITHIN AN
EVOLUTIONARY PROCESS MODEL

The philosophy of the APD software stems from a desire to support.standard expert system
development procedures like the Evolutionary Spiral Model being formalized by the Software
Productivity Consortium, Herndon, VA . The APD concept is based on the following
assumptions:

1) Unbundled software capabilities are becoming more readily available, so that the APD
software should leave graphic user interface or data base management capabilities to other
packages with open interfaces.
2) APD is to be used for expert systems projects where an incremental, evolutionary
development process is needed. There will be emphasis on risk management and need for
repeated experimental runs with changes in logic, parameters, and data. A standard
knowledge acquisition process for expert systems is assumed. 2a) Incremental testing of
expert systems should be facilitated. 2b) Software maintenance to update and improve the
expert systems is needed. 2c) Programming language capabilities and the production
system paradigm are important.
3) The ability to run on 640K is needed.
4) Performance time is not a constraint In the Operational Prototype for Submarine
Maintenance saving operator time is emphasized while saving computer time is not. In the
Experimental Environment, ease of maintenance, automated filing, modularity, computer
memory, minimal input from a terminal and the ability to scale up were given higher
priority than perfonnance time. APD supported this. Of course, in some situations, fast
performance saves operator time.
5) Reusable modules are an advantage. A judicious choice of logic modules coupled with
an application specific choice of setup parameters should result in the creation of new
applications by non-programmers.
6) Standardized utilities across logic modules is an advantage.
7) Predictive diagnosis has priority over other expert system application areas.

The state of the art in expert system shells leaves many of the above to the programmer and
often emphasizes coordination with other software (all too often interfaces with particular software
as opposed to open interface), or quick prototyping. APD supports these indirectly. Programming
power is derived from CLIPS and C, coordination with other software packages is left to open
interfaces and portability of the C language, and quick prototyping is supported by the CLIPS
production system paradigm and the APD reusable logic and setup modules. To date, no English
like user interface has been added to the front of APD. Part of the rational for APD is the desire to
support the rigors of the stan expert system development process rather than relegate
development to application-programming environments that do not require it. An overview of the
APD shell elucidates the development path from the assumptions to the printout of the introduction.

THE API) PURPOSE: AUTOMATED INFERENCINGIDIAGNOSIS

The general purpose of the APD software is to automate inferencing processes. The goal is
software that automates the process of deriving conclusions from assumptions/data. The APD
envimnment supports experimenting with the process and improving domain assumptions. The
software also facilitates record-keeping on domain assumptions and conclusions related to different
data sets. More specifically, the purpose is to help automate the process of developing/deriving
predictions, especially those related to maintenance needs, from diagnostic domain data and
information. The APD software incorporates a methodology that facilitates modularization, a tiered
sharing of setup and logic modules, helpful utilities shared across applications, and levels of
transparency. Users and programmers may work with changes to the software on three main
levels: (1) programming changes (minimum transparency), (2) leaving the programs as is and
editing setup files to alter program behavior, and (3) answering queries from front end programs
that automatically change these setup files (maximum transparency).

The APD software is designed to facilitate the development of software systems for real-world
situations where the logical rules governing the situation may become complicated by exceptions,
complex interrelationships, uncertainty, and sometimes differing ideas and opinions. These kinds
of complications are expected under assumption 2 above and suggest the following characteristics
of the APD software:

1) The logical rules are embedded in the production system paradigm of the CLIPS
language so that:

a) The full power of the production system (rule based) language plus a
conventional procedural language, C, is available,
b) Porting to an even more powerful language (Inference Corporation's ART) is
facilitated,
c) Source code in C for the production system language is available.

These advantages help to handle possible complex relationships and exceptions to logical rules.

2) Features that facilitate the experimentation suggested by assumption 2, the convenience
of assumption 6 and the reusability of assumption 5 include:

a) APD shares reasoning techniques between applications via a library of
inferencing modules,
b) An explanation capability reveals reasoning strategies to users,
c) Automated file naming conventions associate assumptions, data, and
conclusions via file names,
d) An information retrieval system for data, assumptions, and logic responds to
user requests,
e) On-line help is available via a menu system.

These features aid in debugging and possible indecisions and misunderstandings
concerning characteristics of domain logic and data. They facilitate the kinds of experimenting and
record-keeping that lead to resolutions via the empirical evidence from instantiations of special
cases. The remaining assumptions (1,3,4,7) which lead to the coordination with the unbundled
approach to software, ability to run on 640K of memory and favoring the expert system application

area of predictive diagnosis are supported by the design details and implementation of APD md
applications. Thus the APD software uses the off-the-shelf capabilities of CLIPS and facilitates
repeated additions as the logic, setup, and data modules are built and saved. The CLIPS Help
Facility is used to furnish on-line help for the APD software, its organization, methodology, and
capabilities, as well as for the CLIPS software.

USE: CREATING MODULES AND RUNNING APD

There are two major steps in using the APD software. Step 1 is preparing the modules for a
particular application area and application situation. Step 1 requires the least amount of work when
the needed logic, setup, and data modules already exist for the application situation. If the data
module does not exist, then it must be created. This may be done by:

1) Using an existing data module that works with the setup and logic, and
2) Changing the data element values, manually or programmatically.

Similarly, if the setup module for the application area does not exist, it can be created using an
existing setup module that works with the logic.

Finally, the most work is required if none of the existing logic modules can be set up to
serve the application. Creation of the logic module often requires more than changing another logic
module template. It could require a production system programming effort to either alter another
logic module or develop one using logical rules gleaned from a knowledge acquisition process.
These jobs require a programmer and domain expert. Developing the logic module in an abstract
form for use with other applications, although labor-intensive, helps increase the usefulness of the
APD software. In the above cases, certain syntax requirements must be followed to ensure
coordination with the APD software features: explanation capabilities, data and information
retrieval capabilities, and file handling capabilities.

Step 2 is running the software with the appropriate logic, setup, and data to automatically
derive conclusions. The files created in step 1 are loaded into CLIPS with APD software, and run
to generate the files that contain the conclusions along with files that contain the information and
data for automated explanation and data retrieval capabilities. User queries and menu choices can
be used. The CLIPS Help Facility can be used to furnish APD as well as CLIPS on-line help.

COMPARISON TO OTHER SOFTWARE: PRODUCTION SYSTEM POWER

Although APD software capabilities may be developed and progpmmted in several programming
paradigms (including functional, procedural, and object-oriented languages), APD was developed
and coded in the production system paradigm of the language, CLIPS, to ensure that the full power
of CLIPS is available. This UIPS availability gives the APD software an advantage over off-the-
shelf products. Of course, this advantage is not needed unless the complexity of an application
requires it. Off the shelf products often provide English like user interfaces that require only
minimal programming efforts. However, the cost of continuing past the simplistic environment of
the first quick prototype may include an expensive customizing effort or redo. With the source
code of the off-the-shelf product unavailable and yet the methodology already in place, the first
prototype may need to be abandoned in favor of a more robust programming environment like that
furnished via the APDICLIPS environment.

ARCHITECTURE: INFERENCING MODULES AND UTILITIES

The APD inferencing software is organized into three major sets of modules: logic, setup, and
data. The modules in the logic set provide gened logic sbnac-s used for differing applications.
Each module in setup tailors a logic module for a specific application area. Each module in data
furnishes the measurements for a specific situation in the application area. Thus a logic module
could be used with several application areas, each characterized by a setup module. Each setup
module could be used with several situations each characterized by a data module.
Program modules that are useful across application areas and situations relate to filing, file naming
conventions, on-line help, query capabilities, explanation capabilities, and data handling. These
features as well as the design of the APD software support the expert system development process.
The programs and files of APD are in the following directory structure:

The directory APD is the top directory. It contains the other directories.
The addhelp directory contains help files to furnish information to users on CLIPS and
APD.
The data directory contains the data files.
The help directory contains programs and utility files to help manipulate the environment
where APD is run.
The loaders directory contains programs and files to determine the selection of which data,
setup and logic files are included in a run.

There are two methods suggested for running a choice of modules. One uses
loader files which specify modules in the APD system to load into CLIPS and run.
The other uses a program which loads the modules of a user specified list. In this
method, the lists are all in one file, a list of lists. In each of these methods there is
the opportunity to run modules in small enough sets to accommodate the 640K
memory constraint of DOS. Indeed in the Operational Prototype a batch file does
this with the second method. The batch reuses the loading program and takes the
place of the user to set up the software sequentially, part after part.

The directory, loaden, contains a file to tell APD which type computer is being
used. Some of the development was done on the Macintosh, some on the IBM PC
AT. The filing softwm was made general and instantiated to the particular
operating system. Except for this, the filing system is the same on the two
platforms.

The logic directory contains the logic program modules.
A simple example of a bit of logic is that a flag is set if a data element value crosses
a threshold. A setup file then tells which data element and what value to use for the
threshold check. In the following a detailed example of logic is given in the Toy
Application.

The programs directory contains the programs for explanation capabilities, retrieval
capabilities, comment capture, and a filing system.

For each of the following functions, there is a module in the programs directory:

Prepare the data.
Extract the data from prepared data bases.
Deeve the trendable data in the Experimental Environment and Operational Prototype.
Automatically alter the setup files to operator specification.
Automatically reinitialize the setup files for reuse.
Translate the results for display to operator.
File the information for query response and explanations.

Save operator comments.
Display requested results and information.
Explain the results of a run.
Provide a menu for choosing desired information retrieval.

The menu options are chosen with numbers or first letters:

1 (show data elements)
2 (show data value)
3 (show groups)
4 (show result explanation)
5 (show results)
6 (show satisfied criteria)
7 (show satisfied groups)
8 (show tests)
9 (show test criteria)

Explain certain CLIPS enor messages for expected user errors.
Help coordinate between APD modules.

The results directory contains the directories, outputs and comments.
Outputs contains the logical results of runs.
Comments contains the user comments.
Comments is usually used only during experimental and test runs.

The setup directory contains the fdes that are used to instantiate the logic programs.
For instance, if a logic program sets a flag when the value of some data element
crosses a threshold, then the setup file instantiates the logic with a data element and
value for the threshold.

When automated filing is chosen, it uses this directory structure to organize the run results: outputs
and comments stored in the results directory.

The design of the APD software supports modularization and layering. The modularization
is implemented with the division of the software into data fries, setup fries, logic programs, and
utility programs. This m o d u l ~ t i o n is augmented by layering. Layering relates to the level of
transparency with respect to details of functionality. For the APD software there are three main
levels of transparency. These three are variations on instantiating the core logic programs. The
first instantiation level is the programming which creates the logic programs. These programs
comply with formats needed to use the APD utilities. The programming effort requires enough
knowledge of how the logic programs work to yields general programs. They are instantiated on a
second level by setup files and data fiies. This requires less knowledge about the details of APD
implementation. However, this editing still quires knowing format requirements for the APD
files. The third level of transparency is furnished by programs which automatically insert the setup
and data information. At this third level a user answers queries on what to use in the setup and data
files and does not need to be concerned with the formats of the files since the input into these fries
is automated,

These three levels have the customary property: each layer needs to interface with only the
next layer down. So to write new programs to query for the setup and data information, the
formats for these files must be understood, but not the implementation of the logic programs.
Using modularization and layering in this context furnishes an environment for reusable modules,
standardized utilities and accommodation of a 640K memory constraint.

THE FILING SYSTEM: AUTOMATED DEVICE FOR ASSOCIATING INPUTS
AND OUTPUTS

The APD filing has conventions for directory structure and file names in DOS. The diagnostic
logic, setup and data files have common name extensions. The setup files are named nnnapdst.eee
where nnn is chosen by the user (a number between 001 and 999 is often used) and eee is the file
name extension of the logic file. Similarly, the data file is named nnnapdat.eee, where nnn is
chosen by the user (a number between 001 and 999 is often used) and eee is the file name
extension of the logic file.

Other files have a name that uses the f i t two characters to designate what type of file they
are, the next three characters to designate the associated setup file, the next three characters to
designate the associated data file, and finally, the extension of the logic file. For instance, if the
setup file is 001apdst.dO5, the data file is 002apdat.dO5, and the logic file has file name extension
d05, the facts file created by APD would have name ft001002.dO5. The user is given the option of
not using these filing conventions. The Software queries for either user supplied names or the OK
to use automated naming for the results files. For the comments files, the operator supplies the
names and depends on the APD software to capture comments and "process location" of
comments.

DEVELOPMENT EXPERIENCE: A SEQUENCE OF PROTOTYPES FROM TOY
TO OPERATIONAL

The development of the APD software led to an Operational Prototype application for day to day
use in predicting submarine maintenance requirements. It began with the implementation of a
preliminary shell for development of experimental environments. This was tested with the Toy
Application Program. Then the prototype Experimental Environment for predicting submarine
maintenance requirements for steering and diving parts was developed. Finally the modules from
the Experimental Environment were used to develop a day to day Operational Prototype. This
prototype assesses the steering and diving parts, ship by ship, as they arrive and generates a
printout like in the introduction to this paper. The following discusses the development of these
applications.

REQUIREMENTS: DATA, SETUP, LOGIC, AND PROGRAMS

The programs that furnish a foundation of utilities for APD applications require a compliance to
format in the three APD modules: data, setup, and logic. So the programs and files of the three
modules are implemented with adherence to the APD fonnats as well as CLIPS syntax. The
following are the example applications built in CLIPS within the APD environment

THE TOY APPLICATION: BASIC TEST AND DEMONSTRATION OF THE APD
SOFTWARE

The first example application was a toy program. In this program data was entered at a terminal
since the data base size was manageable. The program was run with test data and the APD shell
was debugged. This was accomplished with a domain expert other than end users. However the
development of the Experimental Environment and Prototype Application used the target operators
as domain experts. The Toy environment depends on checks to see if values exceed thresholds. If
a sufficient number of the measurements do exceed the related thresholds, then a "check group" of
such threshold checks is called satisfied. When this happens, a postponement of maintenance is

recommended. The following presentadon of the toy logic is designed to be readable, yet
somewhat like the implementation code. The ?'s signify variables.

SAMPLE RULES IN THE COMPROMISE LANGUAGE FOR TOY LOGIC ENVIRONMENT

DEER-MAINTENANCE-1 Suggests postponing rnabtenmce

IF
1. lead time for ?x is ?lead-time for ?maintenance planning
2. ?x is scheduled for next ?maintenance at time ?maintenance-time
3. present time is ?present-time with ?present-time < ?maintenance-time -?leadadtime
4.result number ?n - ?x at time ?present-time has ?maintenance status not needed for a time
interval of ?timeetill-maintenance-is-needed
5. ?x has ?maintenance scheduled at intervals of length ?time-beween-maintenance-perfonnance

THEN
IF
the time interval ?time-till-maintenance-is-needed > (?maintenance-time - ?present-time) +
?time-beween-maintenan~e~perfonnance
ASSERT
result number - - at time ?present-time the condition of ?x indicates that maintenance
?maintenance should be postponed at least until the regularly scheduled maintenance time for
?maintenance after this next one derives from result number ?n
AND
IF
the time interval ?timeetiUmaintenanceceis-needed > (?maintenance-time - ?present-time)
ASSERT
result number - - at time ?present-time the condition of ?x indicates that maintenance
?maintenance may be postponed until (?present-time + ?time-tiU-maintenance-is-needed)
derives from result number ?n
END OF RULE

INCREMENT COUNTER FOR SATISFIED CRITERIA Increments counter by 1 for each time
the criterion for a check in a check group is satisfied

1. result number - - ?x has check counter ?check-counter for check group ?check_group at
time ?present-time
2. for ?x the check ?check-test in check group ? c h e c k s u p at time ?present-time satisfied the
criterion

THEN
ASSERT
result number - - ?x has check counter (?check-counter + 1) for check group ?check-group at
time ?present-time
END OF RULE

QUALIFICATION FOR A TIME PERIOD BEFORE MAINTENANCE Notes status of an item
in the case when there is satisfaction of criteria for a l l the checks in a group which is associated
with a time period before maintenance is needed.

IF
1. the number of check tests for ?x in check group ?check_group is ?number-of-checks
2. result number ?n - ?x has check counter ?number-of-checks for check group ?check-up at
time ?present-time
3. for ?x the check group ?check_group is associated with maintenance ?maintenance and with
postponement time interval ?time-tiU-maintenance-is-needed

THEN
ASSERT
result number - - ?x at time ?present-time has ?maintenance status not needed for a time
interval of ?time-till-maintenance-is-needed derives from result number ?n
END OF RULE

SIMPLE ABOVE THRESHOLD Notes satisfaction of criterion that a data element has value
above a threshold.

1. ?check-test is a check in the check group ?check-group for ?x
2. the criterion for ?check-test is that data element ?data is greater than the threshold ?threshold
3. the data element ?data > ?threshold at time ?present-time

THEN
ASSERT
for ?x the check ?check-test in check group ?check_group at time ?present-time satisfied the
criterion
END OF RULE

The following are example setup and data to be used in running the toy example application.

;;EXAMPLE SETUP INPUT

(deffacts example-setup "sets up the software for the checks and groups of checks to be made"
(the setup file is "001apdstd05") (lead time for part-1 is 2 for replace-bushings planning)
(part-1 has replace-bushings scheduled at intervals of length 20)
(the number of check tests for part-1 in check group check-bushings is 3)
(result number -1 part-1 has check counter 0 for check group check-bushings at month apd-date
0 derives from counting satisfied criteria)
(for part-1 the check group check-bushings is associated with maintenance replace-bushings and
with postponement time interval 40)
(test-1 is a check in the check group check-bushings for part-1)
(the criterion for test-1 is that data element measurement-1 is aeater than the threshold 1)
(test-2 is a check in the check group check-bushings forpart1l)
(the criterion for test-2 is that data element measurement-2 is greater than the threshold 3)
(test-3 is a check in the check group check-bushings for partll)
(the criterion for test-3 is that data element measurement-3 is greater than the threshold 1))

;;EXAMPLE DATA INPUT

(deffacts example-data "data to be checked
(the data file is "001apda~d05")
(part-1 is scheduled for next replace-bushings at month apadate 5)
(the present is at apd-date 0)
(the data element measurement-1 has value 2 at month apd-&te 0)

(the data element measurementZ has value 4 at month apd-date 0)
(the data element measurement-3 has value 2 at month apd-date 0))

EXPERIMENTAL ENVIRONMENT FOR PREDICTIONS: HANDLING REAL
DATA

The second example application was with real submarine measurements taken at the steering and
diving parts and stored by computer. Availability of this computer readable information and the
larger size of the data set suggested a departure from the terminal input of the Toy example. The
APD Experimental Environment included programs to automatically create a data input file h m the
computer readable measurements, and a C program to format the data for use by the APD
prototype software. Since the prototype required that the data input file receive trendable data, the
software was designed to transform the sets of measurements to trendable derived data. The trends
of the derived data were used to determine predictions on when predetermined thresholds were
crossed. These threshold crossings were the desired outputs. So, the success of the Experimental
Environment for Submarine Maintenance Predictions depended on:

(1) deriving trendable data elements and values,
(2) the trending methods, and
(3) the threshold values. All three of these were supplied by users who served as domain
experts. The system was implemented with:
(1) data preparation software in the "C" language to create files that facilitated APD
extraction,
(2) setup files to determine how the data extractions and derivations were made,
(3) data extraction and derivation programs that extracted the data from the prepared
source files and derived the data elements for trending,
(4) data fdes for storing the derived data
(5) setup files to determine thresholds and how the trending was to be done,
(6) logic programs that did the trends and compared values with thresholds,
(7) Programs that saved and explained results.

Note that the setup files of (2) and (5) furnished convenient means of changing the way that
the extraction and derivations of (3) were made and the way that the trending and comparisons of
(6) were done. These setup files fumish convenient generality, a way of using (3) and (6) in
different application environments. The choices made available by the setup for extraction and
derivation include:

the list of ships to be processed,
constraints on what data is acceptable,
designation of file to store information on inappropriate data,
location of data elements in the lines of the original files,
lines of original fde to be processed,
years to be processed,
where to find dates in the original data fde,
designation of original file of data,
designation of storage file for derived data,
names of the data elements,
configuration of data use by derivation program,
names of data to be used in result files.

The choices made available by the setup for the trend logic include:

group result names (or a "not used" designation),
names of tests made in the data groups,
criteria names for the checks in data groups,
parameters for estimating last maintenance actions,
parameters for appearance of printouts,
names for files produced,
type of trending.

In runs through the submarine maintenance measurements where there was enough data to yield a
sequence of the derived data over time, trends were made. Predictions on timing of maintenance
requirements were presented in the form of:

(1) pictures fashioned for ascii character printouts,
(2) tables to be used by graphics packages and
(3) information to be used by the APD utilities.

The utility programs, in turn, responded to user queries on what data values, setup parameters, and
logical inferencing was used to get the predictions. The following files were generated by the APD
software:

(1) the derived data files,
(2) the "unusable data" files and
(3) the setup files with parameters of the run.

For later reference, data, setup, logic and predictions were associated via file naming conventions
for debugging. This will also be useful if and when improvements or updates to the domain
assumptions are considered. The main part of these assumptions relate to selection of derivations
and trend logic to apply to the different data sets. Since the original data elements were not
trendable in a meaningful way, they were grouped into sets which led to files of derived data which
was trendable. Creation of the setup files, both for extraction and derivation and for the trend logic
was done via editing template setup files. The output files were handled by the automated filing
system (except when capture of operator choice of file names was being tested). The Operational
Prototype is a sequence of special cases of the software in the Experimental Environment and the
following section on this Prototype augments this discussion.

OPERATIONAL PROTOTYPE FOR SUBMARINE MAINTENANCE: A BATCH
CONFIGURATION

The third example application of the APD system uses the modules of the second example in a
batch mode and assumes all setups constant in the sense that they are not changed as in
experimentation with different parameters and logic. These setups do vary from part to part,
automatically. When in the batch the user is not bothered with choices. The batch program is set
up for the routine job of deciding where to apply maintenance resources for ships when they
arrive. It uses a setup which asks the user to stipulate only the ship and date. For this date and for
each part, the system returns either unsat or sat depending on whether the derived value has
crossed the threshold or not. A special module to present this information part by part for this
special status date was added to the Operational Prototype. (The experimental environment
presents the date when a value crosses a threshoid rather than the status at a "special status date.")

The Operational Prototype batch run does the following:

It erases the output files from previous runs.
It erases the data files from previous runs.
It reinitializes the setup files for data extraction and derivation of trendable data.
It prepares the data for the M D Operational Prototype.
It queries the user for the ship, special status date, user name and date of the run and files
this information to be sent to the printer.
It edits the setup files to include the information on ship and special status date.
For each part:

It selects the data derivation for the part.
It selects the extraction and derivation setup file.
It selects the trending setup file.
It makes the prediction on when the derived data is expected to cross threshold.
It files the results in the results directory and generates the printout.

Some thresholds are lower thresholds, some are upper thresholds. The trends are based on
trendable values derived from the data elements extracted from the data bases. The different data
element values are date dependent. A date is considered a valid date only if all the data elements
required to derive a trendable data value for that date are found in the data base. The predictions,
along with the derived data values at all the valid dates are filed. The predictions are saved for the
printout and the values at valid dates are saved for inclusion in visual explanations of the
predictions. Also the program for comparison of derived values and threshold at the special status
date is included in the run and the resulting sat-unsat status at the special status date is filed for
printout. This is done for each special status date that is valid. The file for saving information for
the printout is considered complete when the above has been executed for all parts. The input to the
batch run consists of four pieces of information. They are the (1) ship and (2) special status date
for stipulations of the setup files (3) users name and (4) date of the run. The latter two are for
identification on the printout. The ship and special status date are constant throughout the batch
run. The output is a list of the parts, the status, sat or unsat, and for each part marked satisfactory,
a prediction as to when the derived value for the part will cross threshold (unless there is not
sufficient data).

CONCLUSION: APD FACILITATES THE EXPERT SYSTEM DEVELOPMENT
PROCESS

The APD software furnishes automated capabilities which aid in the execution of the evolutionary
process of expert system development. Storage of information that characterizes experimental runs,
retrieval of information on runs, explanation of the inferencing, modular organization, and levels
of transparency are emphasized to help make accepted expert system practices convenient without
losing the power to work with the complexity of real world problems. The APD shell was used
with three main prototypes: a Toy Application, an Experimental Environment with real data, and an
Operational Prototype. On-line help was coordinated with the CLIPS help facility. The software
was developed on an IBM PC AT, a Zenith Laptop IBM AT compatible, and a Macintosh. Its
modularization supports running on only 640K of memory by running small enough groups of
modules, one after another. In the Operational Prototype, this was done in batch mode.

REFERENCES

Boehm, B. (1988). A Spiral Model of Software Development and Enhancement, Computer, May:
6 1-72.

Software Productivity Consortium. (1991). Evolutionary Spiral Process Guidebook, SPC-91076-
MC. Herndon, Virginia

LCADS: A COOPERATIVE DECISION MAKING MODEL WITH
CLIPS EXPERTS P t

Jens Pohl and Leonard Myers

CAD Research Unit
California Polytechnic State University, San Luis Obispo

Abstract. This paper describes a cooperative decision making model comprising six concurrently
executing domain experts coordinated by a blackboard control expert. The focus application field is
architectural design, and the domain experts represent consultants in the areas of daylighting, noise control,
structural support, cost estimating, space planning, and climate responsiveness. Both the domain experts
and the blackboard have been implemented as production systems, utilizing an enhanced version of the basic
CLIPS package. Acting in unison as an Expert Design Advisor, the domain and control experts react to
the evolving design solution progressively developed by the user in a 2-0 CAD drawing environment. A
Geometry Interpreter maps each drawing action taken by the user to real world objects, such as spaces,
wails, windows, and doors. These objects, endowed with geometric and non-geometric attributes, are stored
as frames in a semantic network. Object descriptions are derived partly from the geometry of the drawing
environment and partly from knowledge bases containing prototypicd, generalized information about the
building type and site conditions under consideration.

INTRODUCTION

Commencing in 1987 with the participation of an interdisciplinary team of researchers the CAD
Research Unit at the California Polytechnic State University, San Luis Obispo, undertook the
development of a prototype working model of a computer-based environment supportive of the
design function as it is practised in architecture and engineering. Impetus for the project came
directly from the shortcomings of current CAD systems that focus almost entirely on the
production of drawings rather than the design decisions that produced the artifacts represented by
the drawings.

The CAD Research Unit team proposed an intelligent computer-aided design system
(ICADS) model comprising three integrated components: an intelligent CAD DBMS, an Expert
Design Advisor, and a Multi-Media Presentation Facility (Fig. 1).

The CAD DBMS component provides on-line access to information resources in direct
support of the design function. From the perspective that design involves predominantly the
refining, adapting and combining of prototype solutions of previous similar projects, the ICADS
model includes several knowledge bases in the CAD DBMS component. These knowledge bases
are intended to capture design context experience and serve as a basis for reasoning during the
earliest decision-making stages.

Within the CAD DBMS component the evolving design solution is represented as a
network of hierarchically related objects. Collectively, these objects provide a comprehensive
description of the current state of the design solution. Individually, the description of each object
consists of information units or design entities comprising an integrated set of geometric definitions
and non-geometric attributes. This information representation drives a network of intelligent design
tools (IDTs) coordinated within the Expert Design Advisor by a Blackboard Control System.

I 1 1 1 EX"" I I MULTI-MEDIA I
D E S I G N ADVISOR PRESENT*TION

EXTERNAL

CAD DRAWING
FUNCTION 3 CAD SYSTEM

PRESENTATION
PRODUCTION

FACILITIEI

SHELL

BASES BASES

Figure 1. Figure 2.
Conceptual ICADS Model Intelligent CAD System Shell

The availability of appropriate design knowledge is central to any computer-based design
environment. In this respect the ICADS model is foremost an information management and
synthesizing system, and may be viewed as a shell that binds together an assortment of internal and
external design resources (Fig.2). The drawing function, which dominates existing CAD systems,
assumes the secondary role of providing a medium for visualizing and communicating the design
decisions that have been made within a largely non-graphical problem-solving context.

The work described in this paper represents the first version of an ICADS working model
(Pohl et al. 1988, Myers and Pohl 1989). ICADS DEMOl has been developed mostly with off-
the-shelf software systems. Where the necessary tools were inadequate, enhancements were added
and modifications made. The relational DBMS, SQL-RT (Oracle), was found to be entirely
adequate for accommodating the Building Type, Sitmeighborhood and Reference elements of the
design knowledge component of the ICADS model. The CLIPS expert system shell, developed by
the Artificial Intelligence Section at NASNJohnson Space Center, was used for all parts of the
Expert Design Advisor (NASA,1989). Availability of CLIPS source code ('C' language) allowed
several enhancements to be made to the basic CLIPS package to pennit the Blackboard Control
System to execute in a dismbuted environment with several CPUs.

The CAD Research Unit was fortunate to obtain permission from Accugraph Corporation
(El Paso, Texas) to incorporate its MountainTop computer-aided drawing package in ICADS
DEMOl. Some modifications were made to this commercially available CAD system to provide
direct access to the data structure of the drawing currently displayed on the screen.

THE ICADS EXPERT DESIGN ADVISOR

The principal component of the ICADS DEMOl model is the Expert Design Advisor, consisting of
six domain experts (IDTs), the Blackboard Control Expert, two knowledge bases and several
sources of reference data (Pohl et al. 1989).

QWiGjNfiL Pj!gGE 13
OF $QQR QUALITY

The scope of the implementation environment has been restricted in terms of both the
breadth of information available to the designer and the range of design functions supported. The
information resources provided by the working model are drawn from the architectural design
application area and include Building Type and SiteLNeighborhood knowledge bases, as well as a
Reference database containing material and constructional information.

A schematic diagram of the ICADS working model is shown in Fig.3. The Expert Design
Advisor is responsible for the evaluation of the evolving design solution and the resolution of
conflicts that may arise when solutions in one domain interfere with solutions in another domain. It
consists of advisory components, a control expert and operational components, as shown below:

advisory components: Geometry Interpreter
Access domain expert
Climate domain expert
Cost domain expert
Lighting domain expert
Sound domain expert
Structure domain expert

control expert: Conflict Resolver

operational components: semantic network of frames
Message Router
Attribute Loader

f PROTO'IYPEDATABASE 7

Figure 3.
ICADS DEMO1 System Diagram

Central to the operation of the Expert Design Advisor is a semantic network of frames that
represent the current state of the design solution within the context of the project. The term
semantic network is used here to refer to a classification framework of design object frames. Each
frame incorporates slots that may contain several types of information, such as values of geometric
and non-geometric attributes of the current solution model, and relation linkages (Fig.4).

The attribute values represent a fact-list that chives the domain experts and the Conflict
Resolver. Indeed, attribute slot names have identical counterparts among the fact names in the
latter. This provides a direct interface mechanism that allows the domain experts and the Conflict
Resolver to react quickly to any changes in the current state of the design solution. Values in the
fact-list are derived from two sources:

1. Geometric facts describing the geometry of the design solution are extracted by the
Geometry Interpreter in terms of the nature, physical dimensions and relative locations of
the following seven design objects:

FLOOR, SPACE, WALL, DOOR, WINDOW, SEGMENT and SYMBOL

The SEGMENT object refers to any part of a WALL object that is demarcated either by the
intersection of another wall or has been drawn by the designer as a distinct wall
component. The SYMBOL object represents directly by name any closed shape or icon
within a SPACE object (e.g., column, chair, table).

2. Attribute facts describing the context of the project and the non- geometric characteristics of
the current design solution. These attribute facts are derived from the Building Type and
Site/Neighborhood knowledge bases, directly or indirectly through the extrapolation of
several information items. Non-geometric attribute values are included in the fact-list in
association with the following five design objects:

PROJECT, NEIGHBORHOOD, SITE, BUILDING and FLOOR

The differences between the geometric and non-geometric design object sets are entirely
consistent with the nature of the information they contribute to the fact-list. The design knowledge
bases that support the design process in the ICADS model encompass a much wider view of the
design space than can be represented by any instance of the geomemc design solution. For
example, while regional and neighborhood parameters are an important part of the design decision-
making process they are no longer discernable as discrete information items in the drawing of the
geometric model. At that level they are embedded under several layers of synthesis and are
therefore an implicit rather than explicit part of the geometry of the artifact.

In the ICADS working model the distinction between design context and design solution
has led to the separation of the semantic network of design objects into two logical sections
(Fig.5).

PROJECT DESIGN OBJECT FRAMES: comprising one frame for each design object
represented in the design program (design specifications), which is a subset of the Building
Type and SitehVeighborhood knowledge bases. Slots in these frames are used to store non-
geometric attributes that have either direct equivalents in the Building Type and
SiteNeighborhood knowledge bases, or are inferred from several values by the Attribute
Loader.

SOLUTION DESIGN OBJECT FRAMES: comprising one frame for each (geometric)
design object analysed by the Geometry Interpreter. Slots in these frames represent the
geometric descriptions of the particular design object identified by the Geometry Interpreter
and the solution evaluation results generated by the domain experts under the coordinating
role of the Blackboard.

\

CURRENT STATE
OF DESIGN CONTEXT

n n fl n

BLACKBOARD

Figure 4. Figure 5,
Semantic Network of Design Objects Logical Division of Design Objects

In the current ICADS working model the slot values of the 'project design object' frames
cannot be changed by the designer during the design process. They are established by the Attribute
Loader at the beginning of a design session and remain as static members of the input templates of
individual domain experts, and to a lesser extent the Conflict Resolver, throughout the design
sessio

THE DESIGN KNOWLEDGE BASES

The structure of the Building Type and Site/Neighborhood knowledge bases in the ICADS model
have been reported previously (Pohl et al. 1988). These knowledge resources are intended to
capture the experience and standard solution strategies associated with a given building type, and
the specific conditions of the site and its surrounding environment, respectively. Collectively, they
provide views of the design project from several vantage points represented by different interest
groups (e.g., owner, user(s), designer, community and government authorities).

The Building Type knowledge base is included in the Expert Design Advisor to provide
prototype information relating to the type of building under consideration. In this context a
prototype is defined as a body of knowledge relevant to the definition and solution of a related set
of design problems. The prototype includes generalizations derived from specific instances,
elements of previously tested solutions, decriptions of typical solution components, and solution
boundary constraints. The boundaries within which the prototype is applicable is provided by the
Site/Neighborhood knowledge base, in terms of the requirements and characteristics of the owner,
and the physical, environmental, social and economic context of the project location.

THE DOMAIN EXPERTS

The current state of the design solution, represented as object descriptions (containing both
geometric definitions and non-geometric attributes), drives six domain experts with evaluation
capabilities in the areas of space access determination, construction cost projections, daylighting,
sound control, structural system selection and thermal behaviour. Each domain expert, executing
continuously in background under a separate process, extracts information pertaining to the
particular design object under consideration from the available design knowledge bases and
commences to evaluate the design solution based on its expertise (Fig.4).

For example, the Lighting expert will evaluate the degree to which each space in the current
design solution satisfies the requirement for daylight. The evaluation consists of two components.
First, the requirements are established. This may be a trivial task, requiring only the generation of a
simple query to a Reference database to obtain recommended task and background illumination
levels for the type of space under consideration. Or, it may be a much more complicated
undertaking involving the analysis of qualitative and quantitative design criteria such as:

OWNER considers energy efficiency to be very important;
USER GROUP (A) consider energy efficiency to be optional;
USER GROUP (B) consider energy efficiency to be desirable;
DESIGmR considers energy efficiency to be important;

Recommendations for each SPACE based on past experience:

x% of background illumination by daylight;
y% of task illumination by daylight;

Second, the Lighting expert will estimate the daylight illumination on the workplane at the
center of each space in two parts. The Daylight Factor is estimated based on the geometry of the
space, the geometry of windows in external walls and the reflectances of the internal wall, ceiling
and floor surfaces. This Daylight Factor value is converted into an equivalent illumination level
subject to an external daylight availability calculation for a particular month, day and time.

The results obtained by each domain expert are added to the appropriate design object
frames. In the current ICADS working model both the input and output templates of each domain
expert are predetermined sets of attributes and only the values of these attributes are variable. The
Conflict Resolver, resident in the Blackboard, examines the values posted by the domain experts
and arbitrates conflicts. For example, the Sound expert may have generated the requirement that the
north wall of the conference room should have no windows. This is in conflict with the current
design solution (based on the Geometry Interpreter) and the Lighting expert who has determined
that the '% of background illumination by daylight' for this room is already 15% below the
'requirement'. Based on its own rules the Conflict Resolver determines that the windows in the
north wall should be reduced by 20% and double glazed to minimize noise transmission.
Apparently the reduction in the availablity of daylight is warranted in view of the noise
transmission problem

The Blackboard posts these new values to the appropriate frames and thereby initiates a
new round of evaluations by those domain experts whose previous results are now in conflict with
the Blackboard's determination. If the Blackboard had decided that the windows must be deleted
from the north wall of the conference room then it would have requested permission for this radical
action from the designer. The interaction between the designer and the Blackboard is limited to
extreme circumstances in the current ICADS working model. Such circumstances may arise:

1. If the decision of the Blackboard requires a modification of the drawing. In the above
example, during the conceptual design stage a 20% reduction in the window area of the

north wall can be accommodated without modification of the 2-D representation of the
space. However, the deletion of all windows from the wall would require the drawing to
be changed.

If the Blackboard cannot resolve a conflict set. Again, in the conference room example, it is
conceivable that certain design specifications could rnandate daylighting and sound control
requirements that will not allow a compromise to be made. Under these conditions, the
Blackboard will interrupt the designer and request guidance.

At any time during this evaluation process the designer can request to review the current
conflict state of the Expert Design Advisor (i.e., the interactions of the Conflict Resolver with the
six domain experts). This is accomplished through the Design Interface on a second monitor.

THE CONFLICT RESOLVER

The Blackboard Control Expert is primarily implemented as the Conflict Resolver in the ICADS
DEMO1 model. While it is envisaged that 'planning' will play an important role in future
implementations of the ICADS model, at this time the resolution of conflicts appears to be
sufficient to coordinate the activities of the advisory components in the Expert Design Advisor.

The principal purpose of the Conflict Resolver is to assert 'current value' frame slots,
representing the current state of the evaluation process performed by the domain experts, onto the
semantic network resident in the Blackboard. To accomplish this the Conflict Resolver requests
from the Message Router all of the 'solution design object' frames which contain results generated
by the domain experts. Current values fall into one of three basic categories: values which result
from solutions proposed by a single domain expert; values which result from solutions proposed
by several domain experts for a common current value; and, values which must be inferred from
solutions proposed by several domain experts.

In the case of the fmt category, which represents solution values unique to a single domain
expert, the Conflict Resolver does not change the values proposed by the expert. The proposed
solution values are simply asserted as current values into the appropriate frame slots. In the second
category two or more domain experts propose differing values for the same solution parameter. In
such direct conflict situations it is the responsibility of the Conflict Resolver to either determine
which of the values is most correct or to derive a compromise value. The process of resolution may
cause the Conflict Resolver to change several current values in addition to those in direct conflict.
An example of such a change is given below:

Structural expert: 'suggested roof material type' = A
Climate expert: 'suggested roof material type' = B

Rule 1: i fA == B then
current value 'suggested roof material type' = A

Rule 2: if A == timber and B = concrete then
current value 'suggested roof material type' = concrete

Rule 3: if A == concrete and B = timber then
current value 'suggested roof material type' = concrete

and
,current value 'suggested roof struct.systemt = concrete plate

and
current value 'required roof struct. depth' = 4

and
current value 'roof insulation thickness' = 3

The Conflict Resolver incorporates resolution rule sets which determine the best current
values from those proposed. There is a resolution rule set for each possible direct conflict. In the
development of each rule an attempt has been made to achieve a desirable balance between the
various design issues. At this level the Conflict Resolver can be consider an expert whose
knowledge is the ability to achieve this balanced integration. In the above example, let us assume
that the Structural expert proposes 'timber' (A) and the Climate expert proposes 'concrete' (B).
Under these circumstances the Conflict Resolver recognizes that:

- the solutions for the roof structure proposed by the Structural and Climate domain expens
are substantially different;

- the 'concrete' solution proposed by the Climate expert suggests a need for thermal
storage;

- the 'timber' solution proposed by the Structural expert cannot be readily modified to
provide thermal storage;

- in most cases a structural timber system can be replaced by a concrete system (there are
exceptions to this rule of thumb (e.g., seismic risk) and the Structural expert should be able
to recognize such circumstances and, if necessary, refuse to agree with the Conflict
Resolver's proposed compromise);

- the energy conservation savings provided by a passive thermal building are likely to
exceed the higher capital costs of a concrete roof system.

In the third category the Conflict Resolver deals with proposed solution values that are
indirectly in conflict with other proposed solution values and current values. The resolution rules
for this category allow the Conflict Resolver to make the necessary modifications to any of the
values involved. Under these conditions, in addition to changing proposed solution values the
Conflict Resolver may also change current values as shown in the following example.

current value 'roof construction system' = A
current value 'roof U-value (B?"U/HR-SF-F)'= B
current value 'roof insulation thickness' = C
current value 'roof thermal lag (HR)' = D

Climate expert: 'suggested roof construction system' = E

Rule 1: if A o E then
look up Reference database and change B, C, D to appropriate values for the suggested

roof construction system 'E'

In this example the Climate expert has suggested a new roof construction system. The
Conflict Resolver recognizes that several current values must be changed so that they match the
new roof construction system. Similar to the direct conflicts discussed under the second category,
each indirect conflict must also have a set of resolution rules.

Not all conflicts can be resolved by the system. In some cases, usually those requiring
changes to the drawing or 'project design object' frames, the Conflict Resolver will ask for
assistance from the designer. Under these circumstances operation of the Expert Design Advisor is
suspended until the designer responds.

SOME IMPLEMENTATION ISSUES

The model of the ICADS Expert Design Advisor described above presents several issues of
concern that are of an operational nature.

The first concern is to prevent the Conflict Resolver from entering into an 'endless
argument' state that may arise when two domain experts always return with conflicting values for
the same solution parameter. For instance, in reference to the previous example the Structural
expert may insist for good reasons that the roof construction system should be 'timber'. For
reasons that are different but just as persuasive, the Climate expert may be unwilling to deviate
from its original proposal of a 'concrete' roof system. The two domain experts are now locked into
an ad absurdum argument. In the current ICADS working model the Conflict Resolver monitors
this type of situation by checking for repetitive cycles in current values.

A second concern is related to the timeliness of the conflict resolution process. In the
implemented model of the Expert Design Advisor, the Conflict Resolver will not post a current
value to the Blackboard until it has seen all of the 'solution design object' frames which are
involved in a given conflict. In a full ICADS implementation it may be desirable for the Conflict
Resolver to post a current value based on partial information (i.e., based on only some of the
required 'solution design object' frames). This current value could be updated when the Conflict
Resolver receives additional information. In the implemented model the Conflict Resolver waits
until it has all of the necessary values from the domain experts before asserting a new current
value.

The potential for a 'cascading' condition which may arise when a minor change by a
domain expert causes a major re-evaluation of the current solution by several domain experts, is
another concern. In the DEMOl implementation of the Expert Design Advisor the possibility of
such a condition occurring is exacerbated because domain experts will fue on any change to a
current value and the Conflict Resolver will respond to any proposed changes posted by the
domain experts. An attempt has been made to forsee events that could conceivably lead to this
undesirable condition. Where appropriate, tests have been included in the rules of domain experts
to determine whether the current divergence between the most recent suggestion and the
corresponding current value (proposed by the Conflict Resolver) is sufficiently large to warrant
further action by the domain expert.

CONCLUSION

The implementation of the first prototype working model represents a three-year milestone in the
ICADS project. Although ICADS DEMOl is limited in scope, it will provide a vehicle for the
collection of a body of knowledge relating to the performance characteristics of a computer-based
design environment. Extensive explorations can now be conducted to determine the impact of an
Expert Design Advisor that dynamically responds to the actions of the designer in its continuous,
unobtrusive evaluation of the evolving design solution.

REFERENCES

Myers L. and J.Pohl (1989); 'ICADS DEMOl: A Prototype Working Model'; Fourth
Eurographics Workshop on Intelligent CAD Systems, Paris, France, April 24-7. NASA (1989);
CLIPS Architecture Manual: Version 4.3; Artificial Intelligence Section, Lyndon B.Johnson Space
Center, NASA, USA.

Pohl J., A.Chapman, L.Chirica, R.Howel1 and L.Myers (1988); 'Implementation Strategies for a
Prototype ICADS Working Model'; Technical Report: CADRU-02-88, CAD Research Unit,
Design Institute, California Polytechnic State University, San Luis Obispo, California.

Pokl,J., L.Myers, A.Chapman and J.Cotton (1989); 'ICADS: Working Model Version 1';
Technical Report: CADRU-03-89, CAD Research Unit, Design Institute, School of Architecture
and Environmental Design, California Polytechnic State University, San Luis Obispo, California.

SESSION 3 A

A CLIPSIX-WINDOW INTERFACE

Kym Jason Pohl

CAD Research Unit
California Polytechnic State University, San Luis Obispo

Abstract. This paper describes the design and implementation of an interface between the CLIPS expert
system development environment and the graphic user interface development tools of the X-Window
system.

The underlying basis of the CLIPSIX-Window interface is a client-server model in which multiple
clients can attach to a single server that interprets, executes and returns operation results, in response to
client action requests. Implemented in an AIX (Unix) operating system environment, the interface has been
successfully applied in the development of graphics interfaces for production rule cooperating agents in a
knowledge-based CAD system. Initial findings suggest that the client-server model is particularly well
suited to a distributed parallel processing operational mode in a networked workstation environment.

INTRODUCTION

Graphic user interfaces are gaining in importance in all computer application areas. Once the
almost exclusive domain of CAD users such as architects and engineers, who have traditionally
used drawings to visualize design solutions, they are today the preferred medium for virtually all
computer-user interactions. A recent study of experienced and novice workstation users in
business offices indicated a significant increase in productivity and quality of tasks performed with
graphical user interfaces, for both groups (Temple et al. 1990).

Clearly, navigation through applications and the selection of functional options in a
window environment with pointing devices is far superior to typed commands and keyed data
entry. However, an equally important advantage of graphical user interfaces is the greatly increased
2-D and 3-D visualization capabilities that can be integrated into the application environment.
Particularly with the emergence of more complex application systems involving expert systems,
distributed databases and integrated parallel processing in networked workstation environments,
the need for complex data display capabilities has become no less important than operational
efficiency.

Several considerations drove the development of the GXI graphics interface builder. First,
it was recognized that data displays should convey not only values but also the context in which the
data values exist (Tufte 1990, Abler 1989). Unfortunately, the majority of data displays seen
today, such as tables and point line graphs, are two-dimensional in character. This does not
recognize the fact that the human user lives in a three-dimensional world and has excellent facilities
for perceiving and reasoning about complex solid images. With the decidedly higher level of
computer-based graphics capabilities available today data displays should no longer suffer from
these limitations. Utilizing advanced graphics programming tools, such as MIT's X-Window
system, data can now be expressed in three-dimensional graphs or real world solid objects.

Second, recent advances in computer hardware, examplified by IBM's RS/6000 and
Hewlett Packard's HP-700 workstations, provide support for more sophisticated applications
software systems. Representing a third generation of workstations with greatly improved reduced

instruction set computing (RISC) technology, these computers provide speeds in excess of 50
million instructions per second (MIPS) and more than 64 million bytes (MB) of fast memory.
Combined with a multi-tasking operating system, such as UNIX, these workstations are capable of
supporting applications software packages in which multiple processes interact with each other.
For example, knowledge-based design systems in which several expert systems interact with each
other through a blackboard control mechanism, while they evaluate the evolving design solution in
real-time (Myers et al. 1991). While multi-tasking has opened a wide range of new applications
opportunities, it has also added a new perspective to the object-oriented software design approach.
Software objects can be treated as semi-autonomous processes, executing concurrently on one or
more workstations and communicating with each other through sockets or similar inter-process
communication facilities.

Third, an increasing involvement of applications experts with limited computer science
knowledge and skills in software development is establishing a demand for higher leveI
programming tools. It can be argued that since this trend is likely to lead to more useful and
effective applications software, every effort should be made to provide software tools that are
relatively easy to apply and yet do not unnecessarily constrain the applications developer within
simplistic structures and paradigms.

The fourth motivating factor for the development of GXI deals with a crucial limitation of
many A1 language environments. In the current state of AI, most high level programming
environments such as the CLIPS expert system shell are limited in that they have virtually no
graphics facilities. Therefore, the programmer is considerably restricted in the quality of the
interface that can be presented to the user. To solve this limitation, a set of routines may be
developed to extend the CLIPS language to include the interface facitilies offered in such graphical
environments as X-Window. Such an extension would allow for considerably more robust and
interactive applications in an A1 environment.

Within the context of these considerations the development of the GXI interface builder
was undertaken by the author in response to several needs that arose in the CAD Research Unit of
the School of Architecture and Environmental Design at Cal Poly, The interdisciplinary nature of
the various project teams established the need for a set of higher level tools that could be used by
architects and engineers for prototyping software modules. Typically, this work includes expert
systems, databases and procedural programs. Any meaningful evaluation of these prototype
models requires the involvement of practising architects and engineers, who would be unduly
influenced in their assessments by operational complexities and unrealistic user interfaces. For this
reason the availability of a graphics interface builder, serving as a high level development tool for
applications experts with limited software engineering background, became a high priority
requirement.

ALTERNATIVE APPROACHES

Two main approaches were considered during for the design of the GXI interface builder. The fmt
was based on the concept of providing a set of client graphics calls along with their implementation
in one physical process. This approach brings with it some distinct advantages. It allows the client
requestor and the graphics server to exist as one cohesive process. Accordingly, all graphics
actions can be centralized on a single machine alleviating the need for the software developer to
deal with the complexities of a networked environment. The second advantage is also related to
programming simplicity. The single process approach allows the programmer to link directly to a
library of robust graphics routines, for creating interactive menuing systems and graphical objects.

However, the single process approach also has several inherent disadvantages. As
mentioned earlier, both the graphics requestor and the graphics server reside in the same process.
Therefore, several graphics applications running concurrently cannot be physically or logically
connected. Each exists as an independant entity completely insulated from the other. This must
inevitably lead to duplication of code and sequential processing of graphics requests.

A second deficiency arises when the application system resides in a networked
environment. The single process approach makes provision only for dealing with the local domain
environment. In view of the numerous advantages of telecommunication networks, the requirement
for interprocess communication across a network has become a high priority consideration. m e
single process approach provides no facilities for interprocess communication on the current
machine let alone across a network. This limitation simply becomes too costly when application
systems of larger size are considered.

The third, and perhaps most serious disadvantage of the single process approach is related
to the architecture of the X-Window graphics system, which was mandated as a precondition for
the targeted user environment. X-Window provides a collection of graphics primitives to the
application programmer. However, these primitives exist in basic form and require extensive
programming knowledge of the X-Window graphics environment. While the GXI interface builder
was expected to utilize these tools extensively, it was considered important that the complexities of
the low level tools be hidden from the software developer.

It is relevent, at this point, to briefly discuss the method used by X-Window to accept,
perform and reply to application graphics requests. When the application makes a request of the X-
Window server an event is placed on an output queue located on the server side. This output queue
is unique to each application client and can be readily accessed by its owner. Event structures
contain all of the information required by the X-Window server to bring into existance the
particular request or event. When the application wishes to execute an event, it simply removes this
prepackaged event from the queue and dispatches it through a series of calls to the X-Window
server. To simplify this process even further, the application has the option of entering into an
event loop which monitors the application's output event queue. When an event is loaded onto the
queue, it is immediately dispatched. At any given time if there are no more events left on the queue,
the application may choose to block (ie., sleep) until another event is posted to the queue. Such
events can be sent as the result of either a client graphics request or a mouse interaction by the user
with an active menu button.

Adhering to this single cohesive unit approach means that the X-Window server must give
up control to the application once it has fulfilled the clients request. This has two serious
shortcommings. The first is related to a peculiarity common to most large scale graphic tools
systems. As mentioned earlier, the X-Window system is a complex system consisting of several
processes which have the ability to communicate with each other across a network. Using the
single process approach, control moves from the client application to the request server upon the
issuence of a graphics request. With control delegated to the server side, the client is put to sleep
while the server attempts to carry out the particular request. This is analogous to the situation
which arises when a program wishes to read a number from the keyboard. Once the program has
issued the appropriate system input call, control moves from the program to the operating system.
The client program is simply blocked until the user enters a character and presses the 'return' key.
As soon as the user has completed the entry sequence, control is returned to the program.
However, during the interval the operating system is able to capture other requests or events
independent of the particular client application. This is due to the fact that the operating system
itself consists of several processes. It is therefore apparent that in the case of an operating system,
control actually resides in several places at the same time. The ability of the operating system to be
receptive to multiple client application requests is typical of most client-server relationships.

The X-Window environment is also based on the client-server model. In this environment
it is by no means a trivial matter to remove control from the X-Window system. Any attempt to
artificially break the event catching and dispatching loop of X-Window can cause serious
synchronization problems between the client and the server. For example, it is certainly possible
for a series of queued menu creation events to be dispatched in non-chronological order resulting in
the display of a menu without buttons. The ability of X-Window to block itself and subsequently
wake itself up again, is typical of many large scale graphics tool systems. It was considered
important that the GXI interface-builder be compatible with this kind of control environment.

This concept of movement of control throughout the system illustrates the second
shortcomming of the single process approach. Once the graphics server has carried out the

particular client request, there is no other option but for the server to relinquish control to the client.
This means that the server has been literally put to sleep, and remains in this dormant state until the
the client makes another request to the server. Since the very essence of an interactive interface is
predicated on continuous receptiveness to I/O activity, the single process approach is highly
undesirable.

Figure 1.
Client-Server Model

Figure 2.
GXI Application

A second, and considerably more favorable, approach to solving the design problem posed
by the GXI interface-builder involves multiple processes (Fig.1). One of these processes is a
graphics request server. Similar to the previous models, client applications make graphics requests
of the server which in turn performs the necessary work and returns the results (ie., a handle to the
graphics object). The clients making the requests need not be concerned how their graphics
requests are being carried out. Thus, the client application is removed from the complexities of
internal graphics processing and representation.

The advantages of the client server approach are threefold. The first advantage deals with
the problem of control. As mentioned earlier, serious synchronization conflicts can arise when
control is forced upon the system. Using a client-server design, the server along with each of its
client applications resides in its own process. Therefore, similar to the operating system case
discussed previously, control resides in several places concurrently. These independent entities
communicate with each other through a message passing procedure, thus allowing the server the
freedom of blocking and subsequently waking itself. Therefore, the server can be receptive to any
interactive activity taking place under the direction of the user, independantly of the current state of
the clients.

Second, the logical and physical connection which was lacking in the single process server
design is now present in an organized and complete fashion. There exists only one graphics server
which performs all of the graphics work requested by each client. This is true no matter which
client on which networked machine is actually making the request. The server can be thought of as
an invisible workhorse running in background somewhere on the system. Each client simply
requests a connection to the server at the beginning of the session. Since all requests are made to a
centralized server, there now exists a logical and physical connection between each of the server's
clients. Even though all information is channeled through the server, graphics data can be easily
passed from one client to another via the server.

The third advantage deals with the potential for distributing the work load generated by a
sizable applications system over several networked workstations. The distributed processing model
allows the client processes and displays to be assigned independently of each other to any
machinelmonitor on the network.

IMPLEMENTATION OF THE GXI INTERFACE-BUILDER

The GXI server is designed to accept any number of client applications written in either the 'c
programming language or the U P S expert system shell (Fig.2). Since the design of GXI is based
on a client-server model, it adheres closely to the guidelines commonly set forth for such
environments; namely, multiplicity of clients, parallel request handling, management of the client
environment and a common communication protocol (Stevens 1990, Tanenbaum 1987). The two
principal entities of the client-server model, the server and the client, must be designed to support a
cooperative environment in which requests from its various clients are satisfied with minimum
delay.

Typically the server exists in an endless loop performing three basic functions: accepting a
client request; performing the requested work; and, then returning the results of the operation to the
client. To allow parallel request handling, these three functions are divided between a mother
server and a client request handler.

The fzst function, to accept requests from any of the clients, is accomplished through the
use of internet sockets. The server simply waits on the socket for the next request. Once a
prospective client has requested a connection to the server, the mother server forks an identical
image of itself to handle the request of that particular client. This child process is referred to as a
client request handler.

In the GXI implementation, as soon as the client request handler has been created, the
mother server is free to return to the top of the loop where it waits for the next client connection
request. The child server performs the same three functions as the mother server, however,
dealing exclusively with its own client. This request handler will repeat these functions until the
client requests termination of its GXI session. At this point the child server terminates itself.

Functions Module

Communication

GXI 'C' GXI CLPS

Functions Module

Communication

Figure 3.
GXI Server Architecture

Figure 4.
GXI Client Architecture

To aid the child sewer in managing the particular environment its client is creating, it keeps
an environment table. Among other information this environment table keeps track of the
relationship of the graphic objects the client has created and the specific handle of each object that
was returned to the client upon creation (Fig.3). To be more specific, each graphic object, such as
a menu or a graph, has an associated handle which is used by the client to identify that particular
object at a later time.

In addition to these tasks the client request handler also performs maintenance on the
client's graphic environment. This may take the form of redrawing a newly exposed region of an
object, or maintaining a color table. By caching the color values in a hash table a significant
increase in performance is achieved.

The tasks described above for the child server are performed in a manner which is
transparent to the client. A communication module which handles the dialogue between the client
and the server is attached to each client (Fig.4). When the client issues a request to the server, a
message is formulated according to a common communication protocol. This protocol is designed
to allow for the transfer of both static and dynamic information. For example, client requests
dealing with the number of buttons to be displayed in a menu or the number of points to be used
for defining a polygon are not predefined from the point of view of the server. They require a
dynamic data transfer capability that must be accommodated by the communication protocol. Once
the message has been sent to the server, the client assumes a sleeping state until the results of the
requested operation are returned.

The following is an example of an interractive session between a client and the GXI server.
In this example the client creates a simple user interface in the GXI environment.

(deffacts buttons (Buttons "Access Database"
"File System"
"Help"
"Exit")

)

(dehle CreateThermahterface
(Buttons $?MenuButtons)

=>
********* Request a Connection to GXI *************

7

(bind ?Sheet (XClnit ?Client ?ColorFile ?XPos ?YPos
?Height ?Width ?Borderwidth
?Bordercolor ?BkgColor

. ********* Create an Interface Banner *************

(bind ?Banner (XCBanner ?Sheet ?BannerText ?Borderwidth
?Length ?Textcolor ?BkgColor
?Fonts tyle

1

; ********* Create the Main Menu *************

(bind ?Menu (XCMenu ?Sheet NULL ?Banner ?Borderwidth
?Bordercolor ?Textcolor ?BkgColor
?Horizontal ?NumButtons
$?MenuButtons

)

(assert(ThermalSheet ?Sheet))
(assert(Therma1Banner ?Banner))
(assert(Therrna1Menu ?Menu)

)
At this point the client may choose to read from the menu it has just created. After the user

has made his or her menu selection, GXI utilizes the extensive pattern matching capability offered
in the CLIPS environment. The client rule having the appropriate button pattern will fire thus
performing the action corresponding to the selected button. Each menu button should have an
associated action rule adhering to the following format:

(defrule AccessDatabase

?Selection c- (Thermal "Access Database")
=>

; ********* Perform Thermal Database Access *************

(retract ?Selection)
1

TYPICAL APPLICATION

The GXI interface builder was first applied in the computer-aided design field, in the domain of
architectural design. In the building design process it is useful for the designer to examine hourly
temperature data for an average year for the site. By comparing these values with the range of
human comfort, the designer can establish which times during the year require heating, and which
require cooling. This information is usually presented in a table with rows of months, and
columns of hours in the day.

However, using the client-server model of GXI, these climatic data are passed from an
expert system, to a graphic display program connected as a client to the GXI server. Using the
lines, polygons, and other primitives provided by GXI, the data are represented graphically as a 3-
D contour model, with the x-axis representing months, the y-axis representing hours of the day,
and the z-axis representing temperature. By filling each polygon in the contour model with a color
relating to its level of comfort (shades of blue for cold areas and red for hot areas), the relationship
of temperature to human comfort is also incorporated. More detailed information about a certain
month or time of day, can be displayed by taking sections of the contour model. These sections,
selected by the user, are displayed as 2-D graphs, and multiple sections can be chosen and
superimposed on each other to compare different months or times of day. Each graph can be
resized and rotated, and by saving data from the expert system in a file, multiple climates can be
displayed side by side, allowing comparison of different sites.

The entire client is mouse driven, using buttons, dialog boxes, and pull-down menus
provided by the GXI server. By using GXI to display climatic data graphically, the user is able to
examine hundreds of points of data, define custom views, and quickly evaluate the climatic
conditions of the site.

A second application involved the generation of space layouts during the earliest stages of
building design. GXI was used to build a graphic display facility for a layout advisor written in
CLIPS (NASA 1989). In this case, GXI provided a rich selection of graphic object manipulation
tools embedded as user defined external functions in the CLIPS programming environment.

CONCLUSION

The GXI graphics interface builder responds to the needs of an increasing number of domain
experts who wish to build technically sophisticated applications software, incorporating high
quality graphical user interfaces, without having to deal with the complexities of low level
procedural languages. The client-server implementation model was found to be particularly suitable
to multi-process applications in which the performance of the application system as a whole
depends largely on the efficacy of interprocess communications.

REFERENCES

Abler F.(1989); 'Metashapes: Voxel Data Analysis for Computer Aided Design'; Design Methods
and Theories, 23(4) (pp. 1088-99).

B yrd L.(199 1); 'PROLOG and Client/Server Information Systems'; Computer Language, March
(pp.37-43).

Myers L., J,Pohl and A.Chapman (1991); 'Computer-Based Intelligent Design Assistance:
Concepts and Strategies'; First International Conference on Artificial Intelligence in Design,
Edinburgh, Scotland, June 25-27.

NASA (1989); 'CLIPS Reference Manual (Version 4.3)'; Artificial Intelligence Section, Lyndon
B.Johnson Space Center, NASA, May.

Stevens W.(1990); 'UNIX Network Programming'; Prentice Hall (pp. 137- 169,258-339).

Tanenbaum A.(1987); 'Operating Systems: Design and Implement- ation'; Prentice-Hall (pp.40-
2, 51-75).

Temple, Barker and Sloan Inc.(l990); 'Smile when you say GUI'; Trends to Watch, Computer-
Aided Engineering, September (pp.23).

Tufte E.(1990); 'Envisioning Information'; Graphics Press.

APPLICATION OF MACHINE LEARNING AND EXPERT SYSTEMS TO
STATISTICAL PROCESS CONTROL (SPC) CHART INTEFQBWTATIION

Mark Shewhart
B *a Air Force Logistics Command (AFLC)

Acquisition Logistics Division I
Joint Technology Application Office (ALDIJTI)
Artificial Intelligence Support Center (AISC)
Wright Patterson AFB, Ohio 45433

Abstract. Statistical Process Control (SPC) Charts are one of several tools used in Quality Control.
Other tools include flow charts, histograms, cause-and-effect diagrams, check sheets, Pareto diagrams,
graphs, and scatter diagrams. A control chart is simply a graph which indicates process variation over
time. The purpose of drawing a control chart is to detect any changes in the process, signalled by
abnormal points or patterns on the graph. The Artificial Intelligence Support Center (AISC) of the
Acquisition Logistics Division (ALDIJTI) has developed a hybrid machine-learninglexpert-system
prototype which automates the process of constructing and interpreting control charts.

INTRODUCTION

The Air Force Logistics Command (AFLC) has provided TQM and Quality Control training
to its employees for several years now. In particular, Statistical Process Control has been
emphasized in this effort. While many data collection efforts have been undertaken within
AFLC, the SPC Quality Control tool has been under-utilized due to the lack of experienced
personnel to identify and interpret patterns within the control charts. The AISC has developed
a prototype software tool which draws control charts, identifies various chart patterns, advises
what each pattern means, and suggests possible corrective actions. The application is easily
modifiable for process specific applications through simple modifications to the knowledge base
portion using any word processing software.

The remainder of this paper consists of the following sections :

(1) CONTROL CHARTS
(2) SOFTWARE FUNCTIONALITY
(3) SOFTWARE DESIGN
(4) MACHINE LEARNING
(5) EXPERT SYSTEM
(6) CONCLUSION

Section (1) provides a more in-depth explanation of the purpose of control charts. Section (2)
details the initial functional requirements for the SPC software, and section (3) outlines the
design approach used to implement the system requirements. Sections (4) and (5) examine in
detail the roles of machine learning and expert system techniques respectively. Finally, section
(6) offers some basic conclusions resulting from this effort. Two attachments are included
after the references. ATTACHMENT A provides a list of the chart patterns of interest and
their methods of identification. ATTAC B enumerates and explains the twenty
statistical features used by the machine learning tool.

CONTROL CHARTS

An example of a control chart is given below in FIGURE 1. A pun chart is a plot of a process
measurement (e.g. bore diameter or time to process an insurance claim for example) on the
vertical axis (y-axis) against time on the horizontal axis (x-axis). A control chart is simply a
run chart with statistically determined upper (Upper Control Limit - UCL) and lower (Lower
Control Limit - LCL) lines drawn on either side of the process average. These limits are
calculated by running a process untouched, taking samples of the process measurement, and
applying the appropriate statistical formulas (references [3-91).

The random fluctuation of points within the limits results from variation built into the process.
Such random variation is natural, results from common causes within the system (e.g. design,
choice of machine, preventative maintenance, etc.), and can only be affected by changing the
system itself. However, points which fall outside of the control limits or which form
"unnatural" patterns indicate that some of the variation within the process may be due assignable
causes. Assignable causes of variation (e.g. measurement errors, unplanned events, freak
occurrences, etc.) can be identified and result from occurrences that are not part of the process.

The purpose of drawing the control chart is to detect any unusual causes of variation in the
process, signalled by abnormal points or patterns on the graph. The AISC developed software
tool automatically identifies nine types of patterns which indicate the presence of assignable
causes of variation in a process. Examples of these patterns are given in FIGURES 2 - 10.
Each such pattern is associated with generic advice about what may be happening at that point
in the process. More detailed information about each of the nine patterns is given in
ATTACHMENT A.

...
Y-axis :
Process --"-----"-----"---------------------------*---------------------------

-v ;.- s.k

:>
Measurement , , . . .? I? . ,

, . . , 5 ,
2 .

P.
s . , . . .

: ': , *
. . . .

.Q..... .: - I

.G.,.. j .+ .I G., .-%.a,*' I - a , , .. :
'.,-d : - .b "0 S

UCL

Average

... I X-axis : Time
C I

Figure 1. Sample Control Chart

I I

Figure 2. Increasing Trend

LCL

.

..
,,"..>%

. , 1
* .*..* - .*. '. "., e... -*-. . O

End

Figure 3. Decreasing Trend

Figure 4. Shift Up

lkgh;;: ------ ;;,;;;,:;;- --- -;;;--:;;:- --- A:;-;:::;;;- --11
<: ..

'- - 2
i. : a,. : :. .. b..., b. ..': ,! ':, ..e <>

..
End. ...

1 I

Figure 6. Cycle

I I

Figure 8. Stratification

..
.. ..I

.......

Figure 5. Shift Down

I I

Figure 7. Run

.
.... Begin- b J, i' :... ?;::.u, t -S-r - e-::?: ~1'.

. *v... -... ..*' *...*.." . .
. . 't: .., :
b 'd

... 1 ...

I I
Figure 9. Freak Pattern

.

Figure 10. Freak Point

SOFTWARE: F'UNCTIONALITY

An overview of the functionality of the application (referred to as SPQ is given below :

(1) SPC determines which type of control chart is appropriate by asking a series of
questions about the nature of the user's process data. The appropriate control chart
is selected from the following types of charts (See References [3,4,5,6]) :

(a) X-Bar R Chart
ibj p Chart
(c) pn Chart
(d) u Chart
(e) c Chart

(2) SPC graphically displays the chart(s) selected in (1).

(3) SPC identifies the following patterns in the chart(s) which indicate the presence
of assignable causes of variation :

(a) increasing trends
(b) decreasing trends
(c) shifts up
(d) shifts down
(e) cycles
(f) rllns
(g) stratification
(h) freak patterns
(i) freak points

(4) SPC graphically displays and highlights each chart pattern identified in (3).

(5) SPC displays text in a window-like fashion which provides generic advice on the
meaning of each chart pattern identified in (3).

SOFTWARE DESIGN

The basic approach to developing SPC was to integrate machine learning, expert systems, and
conventional programming techniques. The machine learning portion of SPC was developed
using the Abductory Induction Mechanism (AIM) by AbTECH Inc. The expert system portion
of SPC was developed using an embedded application of the forward chaining expert system
tool CLIPS along with a generic end-user interface also developed by the AISC. Turbo C+ +
was used as the conventional language into which the machine learning and expert system
applications were embedded.

The task for the machine learning portion of SPC is to classify every sub-sequence of the
control chart according to the presence or absence of five specific chart patterns : increasing
trends, decreasing trends, shifts up, shifts down, and cycles. The remaining four chart patterns
are identified by conventional methods.

The expert system is initially utilized to help the user select the appropriate type of control
chart. This determination is based upon the type of data being collected and the constancy of
the sample sizes.

Another function of the expert System is to interpret the classification results of the trained AIM
Network. A control chart with 40 data points will generate over 600 classification results;
with nine types of patterns this amounts to over 5500 individual pieces of classification
information. This interpretation function represents an ideal expert system application. What
requires a few hundred lines of difficult-to-comprehend C code can be implemented using an
expert system with only three simple rules (TABLE 9)! This classification information is boiled
down to about one to ten patterns which are reported to the final expert system application.

The final role of the expert system is to provide advice based upon the types of charts and the
chart patterns present. The advice currently provided by SPC is of a generic nature. For
example,

"A shzj2 up in the R chart indicates that the process is becoming less consistent. This
may be due to some sudden change in the process."

However, the knowledge base is designed to allow for quick modifications to provide process
specific advice. For example,

"A shiji up in the R chart has historically been associated (90%) with a loose bearing
in the preprocessing machine."

Conventional software is used to graphically display the control charts, utilize the AIM
Networks, provide an end-user interface, and integrate the entire application.

MACHINE LEARNING

Role Of Machine Learning

The task of chart interpretation can be summarized as follows. A control chart is simply a
sequence or array of floating point numbers. The art of chart interpretation is to determine
whether or not sub-sequences similar to several standard patterns are present within the chart.

The function of the machine learning tool is to generate code (trained AIM Networks) which
can effectively classif a specific sub-sequence of a control chart (array) according to the
presence or absence o ?' several standard patterns. With this classification function generated by
machine learning techniques, all sub-sequences of the control chart are exhaustively
(conventionally) classified by five AIM Networks. The AIM Network classification results are
asserted into the fact-list of the CLIPS expert system application.

Justification For The Use Of Machine Learning Techniques

Machine learning techniques are used to classify five types of chart patterns - increasing trends,
decreasing trends, shifts up, shifts down, and cycles. We could find no references which
provide an algorithm for determining whether or not a sequence of real numbers is
representative of one of these patterns. In fact, most references on control charts define these
patterns by example! The most mathematical approaches to this problem are found in
references [1,2] on time series analysis and forecasting. Despite being mathematical in nature,
these references still do not describe a deterministic decision procedure. Rather, they provide
mathematical heuristics. A sampling of these rules-of-thumb for a times series of length N are
given below :

(1) The number of increasing steps in an increasing trend may be significantly larger
than (N- 1)/2.

(2) The number of discordances in a decreasing trend is usually larger than the
expected number of discordances in a random sequence which is N*(N-1)/4.

(3) The autocorrelation coefficient sequence of a cycle is usually cyclic.

(4) The average of the first half of a shift down is always greater than the average
of the second half.

Notice that most of these heuristics are in the form of rules with confidence factors. This
would seem to suggest the possibility of using a production system for the classification
procedure. However, it is almost always the case that the pattern-type (the attribute for which
we wish to determine a value) is on the left-hand side of the rule.

This is very similar to some medical diagnosis problems whose domain knowledge is in the
form "Disorder A usually causes symptoms 1, 3, & 4 and may cause symptom 2." In cases
such as these, the best knowledge-based approach is to use some form of a Hypothesize-and-
Test (HT) model. Although the HI' approach appears to model the domain very well, we did
not pursue this option for the following reasons :

(1) We do not have a Hypothesize-and-Test knowledge-based development tool
available for use.

(2) To my knowledge, there are no HT systems which can be embedded into an
application in a manner similar to CLIPS.

(3) The HT knowledge-based system approach involves the solution of a minimal
covering problem. This would probability cause the classification process to be
unacceptably slow.

Attempting to implement such applications using a rule-based system with confidence factors
ultimately boils down to an iterative process of re-adjusting confidence factors and re-testing
the rule base on a set of examples. This iterative process, however, is quite analogous to the
process of training a neural network or a machine learning tool on a set of examples. Given
this analysis and the fact that most references on control charts define these patterns by
example, we elected to implement a portion of the classification process using a machine
learning tool.

Representation Of Control Chart Sub-sequence

The function of the machine learning tool is to classify a specific sub-sequence of a control
chart according to the presence or absence of several standard patterns. A key question relating
to the use of machine learning tools, is how do we represent an arbitrary length sub-sequence
of an arbitrary length sequence of numbers as a fixed length vector of real numbers. The
approach is to represent a sub-sequence of a control chart as a fixed length vector of statistical
features.

Twenty (20) statistical features are extracted from each sub-sequence X[l..NJ under
consideration. Features 1 - 10 are raw statistical features while features 11 - 20 are Boolean
type indicator variables. The features and their definitions are listed in ATTAC T B.

Training And Test Sets For Machine Learning Tool

Over 70,000 sample chart sub-sequences were generated to train and test the AIM Networks.
Most of these sub-sequences were generated by adding random noise to existing control charts
with existing patterns. Each hart sub-sequence generated a trainingltest vector of dimension
25 - 20 real-valued Network inputs (statistical features) and 5 bi-polar (-1 or 1) outputs. One
AIM Network was trained for each of the 5 outputs. Each AIM Network required from two
to six hours to train on a 386 machine with math co-processor.

Machine Learning Test Results

The results of the AIM Networks applied to control chart patterns not present in the training
sets is presented below in TABLES 1 - 5.

Actual # Class. as # Class. as
Pattern total Inc Trend Not Inc Trd % Correct

inc trd 1596 1572 24 98.5

notinc 1066 44 1022 95.9

Overall 2662 97.5 -
'ABLE 1. Test Data Set Results For Increasing Trend Network

Actual
Pattern

dec trd

not dec

Overall

FABLE 2. Test Data Set Results For Decreasing Trend Network

total

1605

1058

2663

Class. as
Dec Trend

1568

35

97.3

Class. as
Not Dec Trd

37

1023

% Correct

97.7

96.7

Overall 1 1990 1 1 98.8]
TABLE 3. Test Data Set Results For Shift Up Network

Actual
Pattern

Shft Up

Not SU

TABLE 4. Test Data Set Results For Shift Down Network

Class. as
Shift Up

775

10

total

789

1201

Actual
Pattern

Shft Dn

Not SD

* Most (95%) of these errors occurred i n the short saw-toothed patterns u i t h added noise. I f the saw-
toothed pattern i s deemed by experts/customers t o be very inportant, a separate netxork could be developed
fo r the sau-toothed pattern. This uould increase the overal l cyc l ic % correct t o about 96% and provide a
better recognition ra te fo r noisy, short sau-toothed patterns.

Class. as
Not Shft Up

14

1191

Class. as
Not Shft Dn

14

1191

Actual
Pattern

Cycle

NotCyc -
Overall

I I

TABLE 5. Test Data Set Results For Cycle Network

% Correct

98.2

99.2

Overall

total

789

1201

% Correct

98.1

99.2

Class. as
Shift Down

774

10

1990

% Correct

89.8 *
96.0

92.0

total

11826

10666

22492

98.8

Class. as
Cycle

10502

410

Class. as
Not Cycle

1324

10256

EXPERT SYSTEM

Role Of Expert System

The role of the expert system in SPC is three-fold. One knowledge base helps the user select
the type of control chart to be used, another interprets the AIM Networks' classification results,
and the third knowledge base provides expert advice on the meaning of any identified patterns.

Selecting Appropriate Control Chart Type

The knowledge base for this portion of the expert system application in SPC is given below in
TABLE 7. In short, the type of control chart is selected based upon (1) whether the data is
attribute data or measurement data, (2) whether the logical group size is constant or variable,
and (3) whether the (attribute) data is measuring defectives or defects.

Interpreting AIM Network Classification Results

A major issue during the development of SPC was how to interpret the AIM Networks'
classification results. An example of a portion of the results of the AIM Networks'
classification during the exhaustive conventional search is given in TABLE 6. The classification
results of the AIM Networks are asserted into the CLIPS fact-list in the format :

(chart-type pattern-type begin-index end-index network-score) .

cycle 1 13 0.743)
inc trend 5 17 0.098)
shi?t up 6 18 0.282)
inc trend 6 17 0.819)
inc-trend 6 16 1.000)
inc-trend 7 17 0.829)
inc-trend 6 15 1.000)
inc-trend 7 16 0.874)
inc-trend 6 14 0.991)
inc-trend 7 15 1.000)
inc-trend 6 13 0.951)
inc-trend 7 14 1.000)
inc-trend 8 15 0.973)
inc-trend 6 12 0.807)
inc-trend 7 13 0.997)
inc-trend 8 14 0.961)
inctrend 9 15 0.841)
inc-trend 7 12 0.904)
inc-trend 10 15 0.917)
inc-trend - 10 14 0.895)

I I

TABLE 6. Sample CLIPS Fact-List Generated
By AIM Networks

(defrule data type
(initial-fact)

=>
(ask - question "question.idxtt Itget typen "data typeM)) * - -

(defrule XBAR-R-Chart
(data - type value)

=>
(assert (chart - type XBAR R))) -

(defrule group size
(data - type attribute)

=>
(ask question "question.idx81 "get sizet8 "group sizeu)*
(ask-question - t8question. idxu "get-att typet1 ttaftributew)) * - -

(defrule PN Chart
(group size constant)
(attrizute defectives)

=>
(assert (chart - type PN-Chart)))

(defrule C Chart
(group size constant)
(attrihte defects)

=>
(assert (chart - type C-Chart)))

(defrule P Chart
(group size variable)
(attrihte defectives)

=>
(assert (chart type P Chart))) - -

(defrule Chart
(group-size variable)
(attrihte defects)

=>
(assert (chart type U-Chart))) -

The function ask west ion i s provided by the CLIPS Application User Interface (AUI) also developed by the
AISC a t Uright-Patterson AFB, Ohio.

ABLE 7. Knowledge Base To Select Chart Type

Notice in TABLE 6 that from points 6 to 17 there are 17 sub-sequences which the AIM
increasing trend Network gave high scores to! Clearly we cannot report to the user all 17
patterns. The expert system application which interprets the AIM Networks' classification
results is composed of three rules :

(1) The first rule eliminates from consideration any pattern whose AIM Network
score is below a certain threshold. The sensitivity of the pattern recognition can be
adjusted by altering these thresholds in the deffacts statement.

(2) The second rule eliminates from consideration any pattern which is contained
entirely within another existing pattern of the same type. It is assumed that the first
rule has previously been applied. For example, the fact (X inc-trend 8 14 0.961)
would be retracted due to the presence of the fact (X inc-trend 6 16 1.0).

(3) The third rule eliminates from consideration any pattern which overlaps another *

existing pattern of the same type but with a higher AIM Network score. It is
assumed that the first two rules have previously been applied. For example, this rule
would retract the fact (X inc-trend 8 14 0.961) due to the presence of the fact
(X inc-trend 7 13 0.997).

Expert Advice On Meaning Of Chart Patterns

The majority of the expert system interaction that the user will see involves explanations and
advice regarding any patterns that the AIM Networks have identified as indicators of assignable
causes of variation. At the most basic level, this expert knowledge simply consists of triples
of the form < chart-type, pattern-type, advice-text > . The current AISC SPC software consists
of knowledge at this level of complexity only. A sample of the CLIPS implementation of such
knowledge is illustrated in TABLE 8.

However, the rule-based representation is justified for the following reasons :

(1) The interpretation of control charts with multiple patterns is more complex than simple
chart-pattern-advice triples. The representation scheme must be powerful enough to
accommodate future enhancements to the system.

(2) One requirement for the SPC software is that it be easily modifiable to process specific
applications. Without knowing what type of reasoning process might be required for such
customized applications, we selected the more flexible representation scheme provided by
a production system.

(defrule R shift up
(R shifE - up ?a ?b ?score)

=>
(write - paragraph "advice. idxIt "R - shift - upw)) *

The f m c t i o n wr i te mraaraph i s provided by the CLIPS Application User Interface (AUI) also
developd by the A I S C a t Uright-Patterson AFB, Ohio. I

I 1
TABLE 8. Sample Rule To Provide Expert Advice

CONCLUSION

SPC is a good example of a hybrid system which integrates machine learning, expert system,
and conventional programming techniques. It is a classic example of pattern recognition and
is an excellent demonstration of problem representation techniques necessary when using
machine learning or neural network tools.

(deffacts thresholds
(threshold run 0.99)
(threshold inc-trend 0.95)
(threshold dec-trend 0.95)
(threshold shift-up 0.95)
(threshold shift down 0.95)
(threshold stratTfication 0.99)
(threshold freak-point 0.99)
(threshold freak-pattern 0.99)
(threshold cycle 0.95))

(defrule simple threshold
(resolve thresholds)
?pattern <- (?chart ?type ?a ?b ?score)
(threshold ?type ?thresh)
(test (< ?score ?thresh))

=>
(retract ?pattern))

(defrule subset
(resolve subsets)
(?chart ?type ?a1 ?bl ?scorel)
?subset pattern <- (?chart ?type ?a2 ?b2 ?score2)
(test (not (and (= ?a1 ?a2) (= ?bl ?b2))))
(test (and (<= ?a1 ?a2) (<= ?b2 ?bl)))

=>
(retract ?subset - pattern))

(defrule overlap
(resolve overlap)
(?chart ?type ?a1 ?bl ?morel)
?pattern2 <- (?chart ?type ?a2 ?b2 ?score2)
(test (not (and (= ?a1 ?a2) (= ?bl ?b2))))
(test (>= ?score1 ?score2))
(test (or (and (<= ?a1 ?a2 ?bl) (< ?bl ?b2))

(and (<= ?a2 ?a1 ?b2) (< ?b2 ?bl))))
=>

(retract ?pattern2))

I 1
TABLE 9. Knowledge Base To Interpret Classification Results

Two features distinguish SPC from most other control chart software :

(1) SPC automatically identifies and highlights unusual chart patterns. Most related
commercial software simply draws the chart and explains to the user what unusual
patterns to look for. We found no commercial software which automatically
identified trends, shifts, or cycles.

(2) SPC provides expert advice on the meaning of all identified unusual chart
patterns. Over 50% of available commercial software only construct the control
chart for the user and go no further.

The first version of SPC is scheduled to be available by September 1991 and will be distributed
with an AFLC sponsored course on Statistical Process Control. . The AISC plans to provide
software enhancements to SPC based upon future customer feedback and demand. Also, the
AISC hopes to provide some customers with customized versions of SPC for process specific
applications. Copies of SPC and reprints of this paper are available to government agencies
upon request.

REFERENCES

[1] Spyros Makridakis and Stephen C. Wheelwright, "Forecasting: Methods and
Applications", WileyIHamilton, 1978.

[2] Sir Maurice Kendall and J Keith Ord, "Time Series", Oxford University Press, 1990.

[3] SPC Course Materials, Decision Dynamics Inc., 1990

[4] Kaoru Ishikawa, "Guide to Quality Control", Asian Productivity Organization, 1982.

[5] Perry Johnson Inc., "SPC Chart Interpretation", Perry Johnson, Inc., 1987.

[6] J.M. Juran, Dr. Frank M. Gryna, Jr., and R.S. Bingham, Jr., "Quality Control
Handbook" ,Third Edition, McGraw-Hill, 1974.

[7] Western Electric Company, "Statistical Quality Control Handbook", Western Ellectric Co.,
Inc., 1958.

[8] H. Besterfield, "Quality Control", Second Edition, Prentice-Hall.

[9] Douglas C. Montogomery, "Introduction to Statistical Quality Control".

Patterns To Be Identified And Methods Of Identification

(1) Freak Point - This is any point which falls outside of the three sigma control limits. This
is conventionally identified.

(2) Freak Pattern - This is any sequence of points for which a large percentage fall more than
a given amount away from the mean. This definition is vague since many experts and source
materials disagree on what conditions to use. This is conventionally identified. The following
criteria are used to identify a freak pattern:

(a) Two out of three points in a row outside of the 2 sigma limits. Reference [3].
(b) Four out of five points in a row outside of the 1 sigma limits. Reference [3].

(3) Stratification - Sometimes referred to as "hugging the center line." This is any sequence
of points for which a large percentage fall less than a given amount away from the mean. This
definition is vague since many experts and source materials disagree on what conditions to use.
This is conventionally identified. The following criteria are used to identify a stratification
pattern:

(a) Ten or more points in a row which are within the 1 sigma limits.

(4) Runs - This is any sequence of points for which a large percentage fall on the same side
of the mean. This definition is vague since man experts and source materials disagree on what

a freak pattern:
J conditions to use. This is conventionally identi led. The following criteria are used to identify

(a) More than 5 (some say 7 and others say 8) points in a row on the same side of the
mean.

(b) Ten of 12 on the same side of the mean.

(5) Increasing Trends - This pattern is identified with C code generated by the machine
learning tool AIM. *Current accuracy is 97.5% based upon a test set of 2662 patterns.

(6) Decreasing Trends - This pattern is identified with C code generated by the machine
learning tool AIM. 'Current accuracy is 97.3% based upon a test set of 2663 patterns.

(7) Shifts Up - This pattern is identified with C code generated by the machine learning tool
AIM. 'Current accuracy is 98.8% based upon a test set of 1990 patterns.

(8) Shifts Down - This pattern is identified with C code generated by the machine learning
tool AIM. 'Current accuracy is 98.8% based upon a test set of 1990 patterns.

(9) Cycles - This pattern is identified with C code generated by the machine learning tool
AIM. 'Current accuracy is 92.0% based upon a test set of 22492 patterns.

* For further details, see Machine Learning Results.

ATTACHMENT B

Statistical Features Used To Represent Chart Subsequences

(1) RMS-SU - This is the root-mean-squared difference between X[1. .N] and an "ideal"
shift-up pattern.

(2) RMS-SD - This is the root-mean-squared difference between X[l..N] and an "ideal"
shift-down pattern.

(3) A - This is the simple linear regression coefficient when trying to approximate the time
series X[t] using X[t] = A + Bt.

(4) B - This is the simple linear regression coefficient when trying to approximate the time
series X[t] using X[t] = A + Bt.

(5) SIGMA-1 - This is the standard deviation of the first half X[1. .N/2] of the sequence
X[l..N].

(6) SIGMAZ - This is the standard deviation of the second half Xm/2+1..N] of the
sequence X[l..N].

(7) R-root-N r - The percentage of the first N/4+ 1 autoconelation coefficients r(k) for
which abs(r(kJ) > 11.96/sqrt(N).

(8) CHI-SQTEST - This is the Box-Pierce Q-statistic which is capable of determining
whether several autocorrelation coefficients are significantly different from zero. This is
defined in reference [1 ,p 2691

(9) CONCORD - This is the number of concordances Q in X[l..Nl divided by the
maximum possible number N(N-1)/2 of concordances. hisi is defined in reference i2,pp
21-23].

(10) DISCORD - This is the number of discordances P in X[l..N] divided by the
maximum possible number N(N-1)/2 of discordances. This is defined in reference [2,pp 2 1-
231.

(1 1) TEN-PLUS - An indicator variable used to indicate if X[1. .N] has length less than
ten. This is important since many statistical significance tests are ineffective for small
sample sizes.

(12) CCRD-LOW - An indicator variable used to indicate whether CONCORD is less than
0.7. The value of 0.7 was chosen since a database analysis indicated that a high percentage
of increasing trends had CONCORD > 0.7.

(13) DCRD-LOW - An indicator variable used to indicate whether DISCORD is less than
0.7. The value of 0.7 was chosen since a database analysis indicated that a high percentage
of decreasing trends had DISCORD > 0.7.

(14) HIGH-ISD - An indicator variable used to indicate whether RMS-SD is greater than
1.8. The value of 1.8 was chosen since a database analysis indicated that a high percentage
of shifts-up had RMS - SD > 1.8.

(15) HIGH-ISU - An indicator variable used to indicate whether RMS-SU is greater than
1.8. The value of 1.8 was chosen since a database analysis indicated that a high percentage
of shifts-down had RMS-SU > 1.8.

(16) GOOD-INC-MM - An indicator variable used to indicate when the sequence
minimum was early and the sequence maximum was late. The first 20% and last 20% was
chosen since a database analysis indicated that a high percentage of increasing trends had
their minimum and maximum within the first 20% and last 20% respectively of the
sequence.

(17) GOOD-DEC-MM - An indicator variable used to indicate when the sequence
maximum was early and the sequence minimum was late. The first 20% and last 20% was
chosen since a database analysis indicated that a high percentage of decreasing trends had
their maximum and minimum within the first 20% and last 20% respectively of the
sequence.

(18) HIGH-R-root-N - An indicator variable used to indicate whether R-root N-r is
greater than 0.1. The object of introducing this variable was to help draw a dizinction
between random sequences and cycles. The value of 0.1 was chosen since a database
analysis indicated that a high percentage of cycles and a low percentage of random
sequences had R-root-N-r > 0.1.

(19) SMALL-A - An indicator variable used to indicate whether the absolute value of A
is less than 0.8. The object of introducing this variable was to help draw a distinction
between random sequences or cycles and the other chart patterns. The value of 0.8 was
chosen since a database analysis indicated that a high percentage of cycles and random
sequences and a low percentage of other types of patterns had abs(A) < 0.8.

(20) MAYBE CYCLE - An indicator variable used to indicate when both R-root-N-r
> 0.1 and AB~(A) < 0.8. This is the logical AND of variables 18 and 19.

Application of Software Technology to Automatic Test Data Analysis

J.R. Stagner

Jet Propulsion Laboratory
California Institute of Technology

Abstract. The verification process for a major software subsystem was partially automated as part of a
feasibility demonstration. The methods employed are generally useful and applicable to other types of
subsystems. The effort resulted in substantial savings in test engineer analysis time and offers a method
for inclusion of automatic verification as part of regression testing.

INTRODUCTION

One area of interest for the application of new software technologies is the automation of labor
intensive functions performed as part of the overall testing process. A specific problem area is
analysis of the results from test runs to verify correctness of software under test. Currently,
most analysis of data resulting from test runs is performed manually. Data from one test run
can take up to 60 hours to analyze. Hence, this is a candidate problem area for machine-aided
or automatic analysis. The work, described below, was performed as a proof of concept
experiment to demonstrate the feasibility and usefulness of rapid prototyping and production
system programming techniques in the solution of this recurrent class of test problem. The
expected benefits are to conserve test resources and improve the quality and thoroughness of test
analysis.

The software selected for this proof of concept experiment was the Data Monitor and
Display (DMD) subsystem (Figure- 1 .),
which is part of the new Space Flight
Operations Center (SFOC) under
development at JPL. The SFOC is a
multi-mission ground data system. The
DMD is an end-point in the Ground Data
System telemetry data flow and provides
visibility into the data processing. It's
major input is channelized telemetry data
(TLM). It's major outputs are displays of
the data in human readable form,
including a hard-copy dump called the
Latest Available Data (LAD). The DMD
makes use of several tables, contained

the Parameter Figure 1. DMD Test Run Data Flow
(CPT), coefficient table (COEF), and

TLM I

CPT I '
COEF

CCL I-'

* -

DMD

-

--LAD
-

Channel Conversion Language (CCL) files.
The raw telemetry data (TLM) are in Data Number @N) units. Data numbers are

converted to Engineering Units 0') by means of a table lookup or polynomial computation.
Conversion tables and polynomial coefficients are contained in the COEF file.

The CPT contains, for each channel, tRe data type (integer, unsigned integer, floating
point, status, ASCII, digital data, etc.), the subsystem where it originated (usually a spacecraft
subsystem) and any limit tests that are to be performed.

CCL is a language that specifies processing for each channel. Some examples would
include channels derived by (1) averaging three other channels, or (2) taking the arc-cosine of
a channel and adding a constant factor or (3) multiplying a channel by a constant to convert from
radians to degrees.

The LAD contains a dump of raw telemetry (input) DN, DMD computed EU values and
alarm states based on DN and information contained in the CPT, COEF and CCL files. This
information is provided over a time window established by the test engineer in the data collection
process.

To verify that the DMD correctly computed an EU value for a given channel, the CCL
listing must be examined to determine if any processing has been applied. Relevant information
from the COEF listing is used to manually compute the EU value so it can be compared with
the DMD computed value contained in the LAD listing. Similarly, the alarm state indicators
in the LAD data must be verified by manually applying the alarm limit criteria found in the CPT
listing. The problem of verifying the approximately 3400 data channels, for just one mission
(Magellan), becomes apparent.

Manual analysis of test results is usually a straight-forward but laborious task. We would
like to have a computer program that does what the test engineer (TE) does. That is, stand in
the place of the TE and do the analysis. We would expect it to perform, in minutes, what the
TE would do in days and the results would be more accurate and of higher quality. It would
be economically feasible to systematically analyze all the data channels, for every software
delivery throughout the software lifecycle, instead of using a sampling technique.

A program like that needs the TE's knowledge about all of the various elements that he
checks when he analyzes data channels. In the DMD, for example, the analysis program must
be able to read the electronic versions of the various listings, determine how to convert digital
numbers @N) to engineering units (EU) and, given an EU, how to determine the alarm state.
With this knowledge and supporting facts about alarm limit types and values and coefficients or
tables to be used in the DN to EU computations, the program should be able to examine output
from DMD, channel by channel, determine what DMD thinks the EU and alarm states are,
decide if the TE would agree with the answer produced by DMD and signal the results of this
analysis somehow.

PROGRAMMENG TOOLS

The programming tools used in this work were AWK, CLIPS and UNM. AWK (Aho, et al.
1988) is a programming language that is well suited for exploratory programming. AWK syntax
is close to C and provides simplified program control, 110, character string functions, and
regular expressions, which make AWK very useful for low-level data filter operations and report
generation.

The " C" Language Production System (CLIPS-4.3) (Giarantino 1989) was developed by
Johnson Space Center (JSC) and is the expert system shell used for this task. It provides a
forward-chaining inference engine and interactive development environment in support of the
prototyping, execution and debugging of knowledge bases. CLIPS syntax is similar to other
production systems (e.g. OPS5, OPS83, ART). Interactive production system programming
techniques supported by CLIPS encourage the acquisition of knowledge about the analyses and
sub-problems in manageable units which are encoded in the form of rules. Each rule is easily
modifiable, immediately executable and its effects on the analysis can be quickly evaluated. The
turn-around time from concept to evaluation is quite rapid. Since rules execute opportunistically,
control is hidden and knowledge is explicit. Therefore, rules are generally easier to understand
than an equivalent "C" program where program control must also be made explicit within the
code.

A significant benefit of both AWK and CLIPS is portability between PC's and UNIX
work-stations. Much development was performed on a PCIAT (MSDOS 3.3). The AWX
scripts and CLIPS knowledge bases were subsequently ported to the host computer. For some
general guidelines on the types of problems suitable for solution using a production system, see
(Brownston, et al. 1986) pp 19-29.

The UNIX Cshell (Sobell 1985) was used to integrate all of the AWK data filter and
CLIPS analysis functions to define the end-to-end processing task (Figure-3). Cshell provides
an impressively simple, high-level and flexible mechanism for integrating CLIPS into a
traditional programming environment to perform an analysis task. It also provides many other
useful services, in a simplified fashion compared to an equivalent C program. For example,
tests were performed to verify that the input files physically exist before the analysis is started.
Timing information is displayed for performance measurements. The DN-EU and alarm-limits
analyses are forked as separate sub-processes to run in parallel and take advantage of
inputloutput overlap. The entire analysis process can be run in the background, thus clearing the
terminal for other work.

APPROACH

Problem Definition

Initially, the problem was ill-defined. The number of analyses was fured at two, but the number
of sub-problems was unknown. This characteristic points to an evolutionary programming
approach. Knowledge acquisition was performed by means of an interview, prototype and
evaluate cycle. Incremental improvements in the analysis capabilities were made at each cycle.
This process quickly produced an end-to-end analysis capability, for a large subset of data types.

The DMD TE was interviewed to gain an understanding of the contents and format of
the data to be analyzed and the steps he uses in verifying that the results are correct. A
prototype was developed using the AWK and CLIPS programming languages (described below)
to create a set of functions that perform the analyses so that the TE could see some results. This
initial prototype was built around the CLIPS expert system shell. Thus the initial prototype
clarified functional issues and was highly interactive and programmer-oriented.

From this initial prototype, it was learned that the TE really wanted a UNIX command-
line function that could be used to analyze multiple sets of input files. Therefore, the final
prototype addressed encapsulation issues and became user-oriented, taking into account how the
TE wanted to perform actual work. That is, operational details were hidden in order to simplify
the user interface.

Merged Data Base

-
The merged database product proved not only to be useful for gaining insight into the

analysis process, but it also provided a dramatic improvement in manual analysis productivity.
It is estimated that the manual analysis of 1000 channels previously took 20 man-hours. Using
this reformatted data set, manual analysis could be performed in about Chours. Improvement

In order to help the test engineer
articulate the steps he performs during
manual analysis of data, a tool was
written (Figure-2) which merged all of the
information for each of the given channels
from the diverse inputs. The goal of this
tool was to provide a displayable database
with information clustering and minimal
filtering.

The merged database product is
probably the best way to begin the
knowledge acquisition process for this
kind of problem. Bringing all of the

in productivity was achieved by consoiidation of information behueen the four different listings
and the clustering of information distributed within the listings.

-
BROWSE

= E M : : ; : D
-
LAD BASE

(=#I)

Analysis Data Flow

relevant information together at a figure 2. Tool Assisted Test Results Analysis ad
point is requisite for any kind of analysis ~l~~
program. It also helped the test engineer
organize his thinking about how he
analyzes channels and avoids references to four separate stacks of printout, a time consuming
process. All of the relevant information is collected together in a single display. This minimally
filtered product facilitated the discovery process of ways to partition the overall analysis problem
into sub-problems and their associated analysis technique. We were able to map these analysis
sub-problems into software modules implemented either by AWK programs or CLIPS rule bases.

Figure3 shows a Data Flow Diagram for the final analysis prototype. Although the DMD data
listings are human readable, the formatting did not allow for easy detection of problems by
humans. It is easy to miss problems buried in many pages of printout. Embedded character
strings add clutter which make it even more difficult to notice anomalies in large volume
P M ~ U ~ .

The filter program was designed to
automatically sense the type of input and
format the relevant data from the CEYT
and COEF files as CLIPS-world data
structures (fact-lists) . The relevant LAD
data are output as ordinary lines of data to
be read by CLIPS, one at a time, and
analyzed.

The number of CLIPS-world
records are counted for comparison with
a count of input COEF, CPT and LAD
records. This provides a check to verify
that no data were lost in the filtering
process. The CPT fact-list and alarm
knowledge base are input to CLIPS as
part of the initialization procedure for an
alarm analysis. Similarly for the COEF
fact-list and DN-EU knowledge base.

1-4 F I L T - 4 ALARMS I 41 SUMMARY I I

I i l (CUPS) I Y (A W I 1

Figure 3. Automatic Test Results Analysis Data
Flow

Filtering

Data filtering is a necessary part of the overall problem solution. Too little filtering allows too
much bad or irrelevant material to pass and requires more analysis (human or otherwise) to
validate the results. Too much flltering can obscure some valid results. The task of filter
programs is similar to their electronic counter-parts, that is, to eliminate irrelevant information
such as page headings, blank lines, unwanted keyword-like character strings, new-page
characters, etc. They also convert multi-line records to a single line format in order to further
simplify subsequent processing.

The format structures for CPT, COEFF and LAD data, were similar since they were
computer generated. That is, single or multiple-line records with interspersed page headings,
footers, and short, blank or null lines. The fields within records sometimes consisted of
character string data identifiers, like "RED" for red-alarms and "HI" for the upper alarm limit
etc., followed by an equal sign and the data-item itself. Some data items are given as a list,
where the list items are separated by a comma or white space delimiters. It should be noted that
the test engineer has considerable flexibility in formatting these outputs. For example, he can
choose the data-item mnemonic, spelling and case, or none at all.

The filters described below were "tuned" for the particular printout formatting employed
by the DMD test engineer. Regular expressions were adequate for filtering these data. A better
solution might have been to employ the inferencing capabilities of CLIPS to provide more
flexible data-item specification and/or location and extraction.

The CCL specifies all data channel definitions and processing in a FORTRAN-like
programming language. The optimum way to extract relevant information from this file is to
use a parser. The author decided to avoid building a parser, as part of this initial effort, by
focusing on non-derived data channels for which regular expressions could be used to extract
the relevant information for analysis purposes. But parsing is a well understood type of
knowledge and should be implementable in CLIPS. It is not clear (to the author) that a parser

could have been developed faster with CLIPS than using the UNIX utilities lex and yacc. A
parser implemented with CLIPS would probably be easier to maintain and would avoid having
to use yet another language dialect to implement analysis related processing.

Knowledge Bases

The CLIPS knowledge bases contain the TE's knowledge about the various ways to compute EU
from a knowledge of DN and how to determine the different types of alarm states. With this
knowledge and supporting facts about actual alarm limit values and tables to be used in the DN
to EU computations, the CLIPS analysis functions examine output from DMD, channel by
channel, to determine what DMD thinks the EU and alarm states are and if the TE would agree
that DMD produced the right answer.

This latter decision was implemented in a straight-forward mathematical way. CLIPS
computed values are assumed to be correct. DMD and CLIPS computed values must agree to
a certain level of precision in order to be acceptable. This rule takes into account differences in
precision between printouts and the CLIPS internal representation of numbers. The great
majority of channels tested were determined to be correct, but this precision criteria was good
enough to catch the anomalies described below. If such an anomaly is found, a highly visible
flag is set in the white space of the printout to catch the TE's attention should he decide to
browse the output.

A post-process AWK function extracts those cases that have been flagged as described
above and presents not only the analyzed output but also the corresponding information from the
original CPT, LAD, and COEF input files. Although simple and unorthodox in implementation,
this feature is a kind of explanation facility common to most expert systems. The TE has, in
one convenient place, without having to flip through many pages of output, all of the supporting
information as to why the test analysis tool thinks there is a problem. Now the TE can be the
final authority, as to whether the anomaly is real and decide what action might be required.

Anomalies Detected

In exercising the above tools, some anomalies (unexpected behaviors) were detected. Two
channels had both upper and lower alarm limit thresholds set to zero and their DN values were
also zero. DMD and the analysis tool gave different alarm state answers for these channels.
This reflects differences in the way the CLIPS analysis tool and the DMD handle pathological
cases. Alarm limits were not yet established for some channels in the CPT database.

Another example is that a certain digital bit channel had an inconect timetag and a wrong
bit value. Using the merged database tool, it was discovered that this channel was not defined
in the CCL file, but a value from some old data was present and displayed. At present it is not
known if this behavior is a bug since the problem can be corrected by defining the channel in
the CCL database. Thus, the DMD analysis tool caught certain problems which might have
gone un-noticed.

CONCLUSIONS

We believe the methods described above can be extended to a wide range of processors. ~f this
proves to be the case for all, or even a strategic subset of processors within a system, then we
can make automatic test data analysis part of regression testing.

A simple tool to reformat the subsystem inputs and output into a merged display provided
an unexpected level of productivity enhancement, compared to strictly manual verification. In
retrospect, the reason is clear. Merging and clustering of information saved the test engineer's
time in cross-referencing four separate and voluminous printouts. Hence, significant test results
analysis quality and productivity can be achieved without full automation. In addition, this tool
proved to be useful during the problem definition and knowledge acquisition phase of program
development.

In creating the analysis tool, we did not attempt to explicitly duplicate functionality of
the software under test. Instead, we tried to emulate operations the test engineer performs when
he verifies the software. That is, information collection and verification that the various
computations were done correctly.

The current analysis tool could have been implemented without an expert system shell.
This was not known at the outset. However, analysis capability for derived channels has not yet
been achieved, due to the complexity of language parsing. Parsing is a form of expertise and
a CLIPS-based inferencing approach may prove to be a simpler solution to this problem than,
for example, a "C" language lexlyacc solution.

Mechanisms exist for inclusion of expertise, such as parsing, but the complexity of
incorporating knowledge of this type is unknown. The scope of the present effort did not allow
for a reasonable evaluation of this. Encoding test analysis knowledge in the form of rules was
easier to review and maintain compared to an equivalent "Cn program.

We have tried to strike a balance between production system programming and
conventional programming to achieve a useful tool for the automation of test results analysis for
a particular subsystem. We used CLIPS to encapsulate the analysis particulars, AWK and sort
for data clustering, sorting and merging and UNIX Cshell for integration. The boundary
regarding which processing tasks are best done within CLIPS and those best performed by an
external function is changing, because CLIPS is changing and becoming more powerful with
each release.

This work demonstrated the general usefulness of CLIPS and the ease with which expert
systems or other types of production system applications can be integrated into a traditional
computing environment. CLIPS applications can be combined with UNIX utilities to perform
processing tasks.

ACKNOWLEDGEMENTS

The author gratefully acknowledges the following individuals for their valuable contributions to
this effort: D. Klemp, R. Wells, T. Kratz, P. Harmon, H. Avant and D. Hermsen.

The research described in this paper was carried out by the Jet Propulsion Laboratory,
California Institute of Technology, under a contract with the National Aeronautics and Space
Administration.

Reference herein to any specific commercial product, process or service by trade name,
trademark, manufacturer, or otherwise, does not constitute or imply its endorsement by the
United States Government or the Jet Propulsion Laboratory, California Institute of Technology.

Aho, A., Kernighan, B. and Weinberger, P. (1988). The AWK Programming Language,
Addison- Wesley, Reading.

Brownston, L., Farrell, R., Kant, E. and Martin, N. (1986). Programming Expert Systems in
OPS.5: An Introduction to Rule-Based Programming, Addison-Wesley , 1986.

Giarratano, J. (1989). CLIPS Users Guide, Version 4.3 of CLIPS, Artificial Intelligence Section,
Lyndon B. Johnson Space Center.

Sobell, M. (1985). A Practical Guide to UNZX System V, The Benjamin-Cumrnings Publishing
Co.

SESSION 3 B

PRECEDING PAGE BbAZK H48T f;"IL,kdE3

Acquisition, Representation and Rule Generation for
Procedural Knowledge

Chris Ortiz
Software Technology BranchlPT4, NASAIJohnson Space Center, Houston, Texas 77058.

(ortiz@gothamcity.jsc.nasa.gov)

Tim Saito
Computer Sciences Corporation, 1651 1 Space Center Boulevard - M30, Houston, Texas 77058, U.S.A

(tsaito@nasarnail.nasa.gov)

Sachin Mithal
Computer Sciences Corporation, 1651 1 Space Center Boulevard - M30, Houston, Texas 77058,

(sachin@gothamcity.jsc.nasa.gov)

R. Bowen b oft in*
Department of Natural Sciences, University of Houston-Downtown, One Main Street,

Room 813-N, Houston, Texas 77002, U.S.A., and NASAIJohnson Space Center
(blofiin@nasamail.nasa.gov)

Historically knowledge acquisition has proven to be one of the greatest barriers to the
development of intelligent systems. Current practices generally require lengthy interactions
between the expert whose knowledge is to be captured and the knowledge engineer whose
responsibility is to acquire and represent the expert's knowledge in a useful form. Although
much research has been devoted to the development of methodologies and computer
software to aid in the capture and representation of some types of knowledge, little attention
has been devoted to procedural knowledge. NASA personnel, on the other hand,
frequently perform tasks that are primarily procedural in nature.

This paper describes current research into the design and continuing development of a
system for the acquisition of procedural knowledge, its representation in useful forms, and
proposed methods for automated CLIPS rule generation. TARGET (Task Analysis and
Rule Generation Tool) is intended to perrnit experts, individually or collectively, to visually
describe and refine procedural tasks. The system is designed to represent the acquired
knowledge in the form of graphical objects with the capability for generating production
rules in CLIPS. The generated rules can then be integrated into applications such as
NASA's ICAT (Intelligent Computer Aided Training) architecture. The paper concludes by
describing proposed methods for use in translating the graphical and intermediate
knowledge representations into CLIPS rules.

Systems such as TARGET have the potential to profoundly reduce the time, difficulties,
and costs of developing knowledge-based systems for the performance of procedural tasks.

INTRODUCTION

Processes and software designed to aid knowledge acquisition can be characterized by the nature of their
delivery and implementation methods and styles as well as their ability to extract knowledge. Various
authoring tools have evolved to solve the problems associated with the creation of a specific expert system

* Address all inquiries to R. B. Loftin, Mail Code PT4, NASA/Johnson Space Center, Houston, TX 77058,
(7 13) 483-8070, bloftin@nasamail.nasa.gov.

(Boose, 1989). Historically, most knowledge-acquisition-oriented tool designs were directed toward
rating or categorizing problems or knowledge. To use such tools to capture specific knowledge, the
developer distinguished between types of knowledge methodslapproaches. Although sharing many of the
same goals, the existing methodologies are numerous, ranging from frame modeling to case-based
reasoning models to repertory-grid rating structures. The various knowledge types addressed by these
s y s tems-from semantic/taxonomic to declarative to procedural-affect the design and performance
decisions of researchers and implementers (Gaines, 1988). Knowledge representations, including frames,
objects, rules, and decision trees, are used to capture and execute expertise. At this point, most would
agree that no one tool accommodates all of the cognitive styles needed to gather the inforrnation/knowledge
necessary for the creation of an expert system in one contiguous process. It is clear that viable standards
have yet to be fully established and accepted.

Procedural knowledge acquisition via task analysis is a reasonable candidate for graphical representation
modes. Decomposing a complex set of steps that make up a specific mission or task requires cognitive
visualization and the ability to formulate and reformulate the decomposition of those steps or actions. The
specific heuristic procedures that most subject matter experts (SMEs) employ share certain levels of
organization and recall (de Kleer, Doyle, Steele, Jr., and Sussman, 1985). The path in which a procedure
evolves starts with specific agendas and goals. The last or final action of reaching or satisfying those actual
goals would end the procedure. On the other hand, any actions that would restart a process (i.e., a loop)
would occur before the goal-oriented or last action. Decisions may be made during a task that direct the
expert along alternative paths that may or may not be taken in other performances of the same task. In
cases where the processes offer one or more options to complete a task, the process diverges into as many
paths as necessary to meet the optional requirements. Each path would then contain specific values for
technique evaluation or other modes of feedback. These types of complexities lend themselves to
representation in a visual form.

ENVIRONMENTAL FACTORS AT NASA

As in other environments, getting and maintaining an SME's attention, time, commitment, help, and data
sources at NASA is usually difficult at best. SMEs tend to differ in their communication abilities and
styles, willingness to cooperate, availability, and degree of computer literacy, potentially affecting the
overall success of the knowledge acquisition process (Littman, 1988). The strategy of providing the SME
with a tool that can be used to document his mission(s) or task(s), on his own and within his schedule,
would serve to resolve some of the difficulties associated with a knowledge engineer constantly "hovering
over" an SME. However, the disadvantages of such a strategy may include the lack of positive
reinforcement or external motivation (i.e,, SMEs might put off documenting their task/mission unless
periodically reminded or encouraged).

Other constraints affecting the type of tools delivered and used could be those associated with budget
problems or deficits. Where exotic workstations might be required for more sophisticated KA tools,
NASA may only have dated or under-powered PC hardware in certain areas of need. Distribution of KA
tools to NASA personnel who have access to inadequate equipment to use in documenting their procedures
could prove frustrating. SMEs tend to use their PCs or MacIntoshes for spreadsheets, databases, or word
processing where KA is not a daily issue in their operation. The need to deliver tools that do not require
SMEs to alter their current work style and environment (hardware, software, operating systems, methods,
etc.) is, therefore, critical.

THE CLIPS FACTOR

In the NASAIJohnson Space Center environment, CLIPS (C-Language Integrated Production System) is
widely used as an expert system development and delivery vehicle. Within the ICAT metaphor the overall
procedure or task is decomposed into sets of tasks/subtasks that are termed actions. For most effective
use, actions are expressed, within reason, at the lowest possible level. At any point in an ICAT training
session, the expert expects the trainee to perform some action. Each action, as defined by the expert, is
represented as a CLIPS fact (Figure 1) in the following pattern:

(message-sender-to-receiver cstep numben <action type) <argument><argument> . . .)
Figure 1. CLIPS Fact for ICAT Environment

An action itself comprises at least two <argument> fields that define one single action decomposed into a
hierarchical structure of two or more subactions of the form (<action> <argument>). Each <argument>
may itself be an <action> at the next lower level. For example, (argl arg2 ... argn) can be decomposed
into at least two levels: (argl arg2) and (arg2 . . . argn). The first pair, (argl arg2), is an (<action>
<argument>) pair at the top level where the action argl has one argument, arg2. In turn, (arg2 ... argn) is
another (<action> <argument>) pair at the second level where arg2 has one or more arguments, depending
on the value of n. The structure for each action may be different and the number of arguments that belong
with each action is variable. The expert is free to decompose the actions and arguments into hierarchies that
fit his or her specific domain.

This paper details the design and implementation of a knowledge acquisition system tailored to the
acquisition and representation of procedural knowledge associated with the performance of complex tasks.
The primary goal of this effort has been the production of a system with an easy-to-learn and
"comfortable" user interface that provides powerful mechanisms for the visual expression of procedural
knowledge. The ultimate goal of this work is the expression of acquired knowledge in the form of
production rules to facilitate the use of the acquired knowledge in expert systems for mission support and
training.

THE TARGET (Task AnalysisIRule GEneration Tool) APPROACH

TARGET and Desim Stratew

Balancing non-programmer usability, design sophistication, and hardware portability requirements, the
Task Analysis/Rule GEneration Tool (TARGET) is designed to provide a knowledge acquisition
environment for users of commonly-available computer systems (IBMB PCs and Apple@ MacintoshesB).
The forte of TARGET is the gathering of task or procedural knowledge to be expressed and analyzed
graphically as well as contextually. TARGET provides users the ability to graphically decompose a task or
procedure using a box-flow presentation/manipulation style within a windowed environment.

TARGET is designed to let the SMEs start documenting their job or task with minimal training in its use
and no absolute need for knowledge engineer intervention. If the SME is unable to find time to work on
the knowledge acquisition process alone, TARGET does allow the knowledge engineer and SME to work
together in iterative sessions. It is tailored to accommodate a wide range of users, from the novice to the
expert. Users can develop a discrete representation of tasks and subtasks within their domains (Payne and
Green, 1986). The system then manages the information entered and represents the knowledge in a "top-
down" reporting format that can then be used for rule induction and generation.

In order to support the development of intelligent computer-aided training (ICAT) systems, TARGET
implements its rule representations using the rule types and structures originally developed for ICAT
systems. TARGET is designed to deal with a series of tasks/subtasks that are performed procedurally or in
steps. TARGET supports three action types: required, optional and flexible (as defined in the ICAT design
architecture). Steps are defined as the progression from one required action to the next. Steps are
represented by numerals and their values increase with the progression of the task.

TARGET User Interface

TARGET maintains a fragile balance between ease of use and design complexity/intricacy. Although it
does not possess the "bells and whistles" of more sophisticated systems like Aquinas and Protege,
TARGET provides enough knowledge modeling (procedurddeclarative) functionality to allow the SME or
knowledge engineer to build a moderately elaborate knowledge base without sacrificing the attractiveness
of its user interface (Figure 2).

1 "a*, I I

I n ~ e ~ a n e [W~-Q.TR 1 L ~ I 1 TOP LEVEL

Figure 2. TARGET Interface

TARGET provides a windowed environment through which decomposition can be organized and
recorded. Ultimately the user, knowledge engineer or SME, is responsible for the overall quality checking
of the knowledge base before its representation in or transfer to other applications. TARGET'S report
facilities offer some assistance in this quality checking process. Reports can be generated to provide
moderately high-level feedback to the knowledge engineer and SME. TARGET produces the following
reports:

Task hierarchy: keeps a sequentialhierarchical account of tasks
User Scratch Pad: keeps notes on conditions, states or other user-supplied details.

TARGET supports the identification and conceptualization phases of knowledge acquisition with its
network approach to knowledge representation. Duties, tasks/subtasks, or steps/substeps within a process
can be defined, documented, and structured to reflect these relationships to other duties, tasks/subtasks, or
steps/substeps.

Given its developmental state, TARGET provides a reasonably comprehensive mechanism for generating
simple representations at the very first knowledge acquisition session. The next sessions may be used to
embellish what has already been elicited or to create new or modified versions of the knowledge base. The
TARGET knowledge acquisition interface gives the user the freedom to generate as complex a hierarchy of
knowledge as necessary. However, the disadvantage to such freedom is the ability to create a completely
abstract knowledge base with relatively few standards for input. Some guiding controls from the TARGET
interface could provide structure to the knowledge acquisition process and greatly enhance the ability of the
user to create a "useful" knowledge base.

Task-Action Conce~ts build in^ Blocks)

TARGET employs a free-form flow charting strategy. Users can explain procedural processes by the use
of various flow chart icons manipulated in the work area. Tasks can then be linked together using directed
arcs to represent procedural flow.

The task icons are separated into five major categories. The shape of the task box is an important key to
determining its function. TARGET also works reasonably well on monochrome systems with the
combination of shapes and colors.

The first category consists of the actions that are required to complete a process (Figure 3). The required
actions are denoted by using a blue rectangular box on the screen. Likewise, optional tasks are represented

using grey rectangles. The use of color representing various tasks has been reduced to just two, grey for
optional tasks and blue for all others.

Figure 3. Required Tasks

A third task type, a hexagonal shaped box, shows where decisions are made. The connection labels reflect
the choices allowed. For example, a decision box may ask if a process has been completed. This decision
may branch to two other paths (Figure 4). The first arc leaving the decision may be labeled "YES" and the
other labeled "NO". The arc labels represent the only possible choices allowed by the decision point.
Decisions are not limited to binary operations but can have many unique arcs as necessary. The minimum
number of arcs from a decision task is two.

Match 1
F

A

K

Figure 4. Decision Task

The fourth task type is a control structure. Control structures are used as a "go-to" or looping mechanism.
They are ellipse-shaped to distinguish them from other tasks (Figure 5). Controls can only jump to other
tasks that are on the current layer (see discussion of layers below). However, they may not jump directly
to other controls. TARGET ensures that an endless loop can not exist. In addition, the control task cannot
be further decomposed. TARGET will also prevent any changes to a task which a control structure is
pointing to.

Figure 5. Control Structure

The fifth structure is a goal or an end of a process. Goal boxes are used to terminate the process or
procedures. Goal tasks are denoted by using an rectangle with thick borders to distinguish them from other
tasks (Figure 6). TARGET enforces certain rules regarding goals that cannot be further decomposed and
may not have links originating from them.

Figure. 6 Goal Structure

TARGET attempts to address the issue of parallel tasks whrere two or more sets of tasks are performed
simultaneously. They are not assigned task shapes but are created whenever two or more arcs emanate
from a rectangular box. Figure 7 shows a parallel task configuration. Each task chain represents a parallel
process which will be executed independently until the paths converge.

Fig. 7. Parallel Tasks

TARGET provides users with the ability to decompose various tasks into lower level tasks. Mouse
manipulation makes navigating through task hierarchies fairly simple.

Example: Creating a Task

The following example will create a task which will activate a kitchen light. After selecting the create/edit
icon from the toolbox and clicking on an open area in the user interface, a dialog box above will appear
(Figure 8).

--

Action Genera l Specif ic S ta te

2 1 Turn I Swltch I Kltche

Enter Task Type

@ Required 0 Dedrion

0 Opttonal 0 Control

0 Flexible 0 Goal

Enter Task Comment

Turn on the kitchen light.

Figure 8. Dialog Box Template

In this example, the user has entered a free form task description "Turn on the kitchen light" and has
chosen "Required" as the task type. Finally information used to generate rules is entered. The rule
information will assert a fact that the kitchen light has been turned on. The user may enter a number of
facts that will be asserted from this dialog box. Other CLIPS functions can be used as well as user defined
functions. The rule generated from this task will assert the following fact (kitchen switch turn on).

To insure that information asserted into CLIPS is consistent, a action template is provided. Entering
information from the template is done from left to right. The first column represents the number of facts to
be asserted. In Figure 9, the "Action" column will contain second person/present tense verbs that reflect
the action within the domain. Once a verb has been selected, a "General" column is generated listing all
objects associated with the selected action. Each object is then broken down further, into a list of
"Specific"objects. The last column represents all valid "States" for each specific object. The user may, at
anytime, insert new actions, objects or states into the network by selecting the (NEW) option.

Action General Specific State

I I I Turn I Switch I Kitchen) Off I

I (E W) I
Figure 9. Semantic Format for Specified Action

RULE GENERATION METHODOLOGY

Knowledge Representation in CLIPS

The Rule generation component of TARGET takes the graphical description of a process and translates it
into CLIPS rules. This section focuses on the graphics-to-CLIPS translation methodology using examples
with CLIPS rules.

TARGET was originally designed to produce rules which could be incorporated directly into an ICAT
(Intelligent Computer Aided Training) expert system architecture. In the ICAT architecture, the procedural
rules interface with, and are controlled by, other CLIPS systems using a blackboard architecture. The
following rule format will provide a simple control mechanism for the rules in this paper (Figure 10).

(defrule control-rule
?step <- (next-step ?number)

=>
(retract ?step)
(assert (step ?number))

1
Figure 10. Simple Control Rule Format

The control rule acts like a traffic controller. It will receive a fact with the field next-step. The control rule
will then retract this fact from the fact list and assert a new fact called step. The step fact will then trigger a
TARGET rule which in turn will assert a next-step fact.

The rules, in Figure 11, produced conforms to a simple guideline. The rule will match on a control fact
signifying the previous task has been executed. The rule will then retract that fact, call a series of functions
needed to complete the current task, and finally assert a fact that this task has successfully completed its
operation.

(defrule name
?step <- (previous task has been completed)

=>
(retract the previous task from the fact list)
(do zero or more functions (printout, assert, user defined, etc))
(assert a fact that this task has completed)

)
Figure 1 1. Rule Template in English

The following examples are intended to unite the TARGET graphical representation with skeletal CLIPS
rules. In the following examples each task is labeled with the control facts using the same labeling
approach.

In the simplest case, all the tasks are linear. In the following example, task A must be executed before task
B and so on (Figure 12). The rule generated for task B can only fire only after the previous step has
completed. The control fact is then removed from the fact list. A series of functions are performed and a
new control fact is asserted representing the completion of task B.

(defrule basic-caseB
?step <- (step A)

=>
(retract ?step)
(function 1)
(function N)
(assert (next-step B))

)
Figure 12. Sequential Tasks

Control task rules in Figure 13 will fire only after the previous task has completed but will not process a
function. They are only used to assert a control fact which will activate the task they are pointing to.

(defrule goto-rule
?step <- (step G)

=>
(retract ?step)
(assert next-step A)

1
Figure 13. Control Task Rule

A rule derived from a goal task (Figure 14) will retract the previous control fact, process functions, but
will not assert a control task, thus ending a process.

(defrule goal-rule-Z
?step <- (step Y)

=>
(retract ?step)
(function)
(function)

)
Figure 14. Goal Task Rule

A more complex rule is generated when decisions and branching are involved. In the following example,
Figure 15, decision A has two possible answers represented by Match 1 and Match 2. Depending on the
outcome of the decision, one path B or G will be activated. When the two paths converge, task L must
insure that either task F or task K has been successfully completed.

Match 1
F

K

(defrule decision-rule-B (defrule end-decision-rule-L
?step <- (step A) ?step <- (step FIK)
(question-A match 1) =>

=> (retract ?step)
(retract ?step) (function 1)
(function 1) (function N)
(function N) (assert (next-step L))
(assert (next-step B))

(defrule decision-rule-G
?step <- (step A)
(question-A match2)

=>
(retract ?step)
(function 1)
(function N)
(assert (next-step G))

1
Figure 15. Parallel Alternative Paths

The CLIPS rules generated for parallel tasks are similar to those generated by decisions but differ in a few
significant ways (Figure 16). First, matching on a decision fact is not required by the rules generated for B
and G. In other words, once Task A has been completed, the two rules, B and G are both activated.
Secondly, in rules B and G, the control fact from the previous step is not retracted from the fact list. If the
control fact was retracted from the fact list, the first rule firing would prevent other tasks from being
activated. The fact will remain on the fact list until it is removed when the parallel task chains merge.
Finally, the rule associated with task L must not fire until tasks F and K have completed.

(defrule parallel-rule-B
(step A)

=>
(function 1)
(function N)
(assert (nex t-step B))

1

(defrule parallel-rule-G
(step A)

(defrule end-decision-rule-L
?step 1 <- (step F)
?step2 <- (step K)
?start <- (step A)

=>
(retract ?step 1 ?step2 ?start)
(function 1)
(function N)

=>
(function 1)
(function N)

1

(assert (next-step G))
)

(assert (next-step L))

Figure 16. Parallel Simultaneous Paths

DEVELOPMENT OF CISCO (CENTER INFORMATION SYSTEMS COMPUTER
OPERATIONS) ICAT

TARGET is being deployed to acquire knowledge of the mainframe computer operations at JSC. The
operating environment being modeled is the IBM VM (Virtual Machine) Operating System on an IBM
3090 super-mainframe CPU. TARGET tracked specific procedures for which operators were responsible.
TARGET'S ability to transform two-dimensional sequential events into a one-dimensional top-down report
was appropriate for the type of tasks facing a mainframe systems operator. Procedures ranged from
powering up and down of the CPU and its associated peripheral hardware to the initial program load and
shutdown from its console monitor. After TARGET captured procedures from various sources (CIS-B
Operator's Manual, SMEs, etc.), task hierarchy reports were generated and verified with the SMEs. This
provided the foundation from which an CLIPS rules-based Intelligent Computer-Aided Training ICAT
system was to be developed. The following is a description of the strategies taken within TARGET to
generate the procedural rules for the CISCO (Center Information System Computer Operations) ICAT
knowledge base.

As a procedural KA tool, TARGET models the intricate procedures which an IBM mainframe operator
performs as a part of of hislher job. Such tasks as powering upldown mainframe and associated
equipment, IPLs (Initial Program Loading), and system shutdowns are captured and converted to a
knowledge base that will be used by the CISCO ICAT for mainframe operators at all levels.

Procedures for powering up an IBM mainframe system have been groomed for CLIPS interface. The
following actions paired with the relevant translations is displayed in Table 1. Each task or discrete step
consists of a specific action and its associated parameters. Through documentation of this action and its
components, via the TARGET U.I., the CLIPS rule could be composed. A CLIPS rule requires several
pieces of information extracted from a specific step. Figure 17 describes the transformation of a procedural
step in the following manner:

Task# 1.1 Verify 208 VAC on voltmeter

Corresponding rule in ICAT format:

1 (defrule verify-208-VAC
2 (step ?s&lO)
3 (environment ? AMD-plr-208-VAC present)
4 =>
5 (assert (message-E-to-I ?s require at-AMD-plr ver-plr VAC-208)
6 (next-step 20)))

Description of the above example:
1 Unique name of rule.
2 Checks the step number.
3 Environment state is checked; AMD-plr-208-VAC is the action which contains all the relevant

information. The desired state is present.
5 Assert message-E-to-I is the message from expert to the fact-list. The word require signals that this

task is a required one. This is followed by an action and a set of parameters. Any parameter may be
a combination of an action and parameters.

6 Go to step 20.
Figure 17. Single Task Step with Corresponding CLIPS Rule Content

The succession of task steps (Table 2) from the task hierarchy then becomes associated with CLIPS
represen tations that will run within the CLIPS environment. Each action entry accumulated from the
graphical interface will have its associated argumentslstates (MOTOR-ON, GEN-ON, RESET-
OVERVOLTAGE, GEN-OUTPUT, etc.). As a real application example, CISCO ICAT will use the
CLIPS code generated from the TARGET environment to control a learning session concerning the
operation and various scenarios within the mainframe computer environment.

T
as

k
H

ie
ra

rc
hy

 o
f

<C
IS

-B
 P

O
W

E
R

 U
P>

3.
1.

1
A

M
D

A
H

L
 P

ill
er

 P
ow

er
 U

p
V

er
ify

 2
08

 V
A

C
 o

n
vo

ltm
et

er

Pr
es

s R
E

SE
T

 O
V

E
R

V
O

L
T

A
G

E
 S

W
IT

C
H

Ve
ri
fy
 O

W
F

F
 H

A
N

D
L

E
 (f

ar
 le

ft)
 O

N
 (r

ed
) D
om

ai
n

E
xp

er
t <

A
ct

io
n>

 a
nd

 <
A

rg
um

en
ts

>
(m

es
sa

ge
-E

-e
l <

st
ep

>
re

qu
ire

 <
ac

tio
n>

<a

rg
um

en
t>

 ..
.)

Pr
es

s
(b

la
ck

) M
O

T
O

R
 O

N
 B

U
T

T
O

N

(g
rn

 S
T

A
R

T
 L

IG
H

T
 O

N
 n

ow
)

ST
A

R
T

 L
IG

H
T

 O
N

 >
 4

0
se

co
nd

s?
 <
N
O
>

Pr
es

s (
bl

ac
k)

 G
E

N
E

R
A

T
O

R
 O

N
 B

U
?T

O
N

V

er
ify

 (
re

d)
 G

E
N

E
R

A
T

O
R

 O
U

T
PU

T
 li

gh
t O

N

V
er

ify
 (r

ed
) L

O
C

A
L

 S
E

N
SI

N
G

 li
gh

t O
N

V

er
ify

 tw
o

G
E

N
E

R
A

T
O

R
 V

O
L

T
A

G
E

 li
gh

ts
 O

N

ST
A

R
T

 L
IG

H
T

 O
N

 >
 4

0
se

co
nd

s?
 <

Y
E

S>

Pr
es

s r
ed

 M
O

T
O

R
 O

FF
 B

U
lT

O
N

C

al
l A

M
D

A
H

L
 C

E

G
ot

o
'V

er
ify

 2
08

 v
ac

 o
n

vo
ltm

et
er

'

at
-A

M
D

-p
lr

ve
r-

pl
r 2

08
-V

A
C

at

-A
M

D
-p

lr
pr

s-
pl

r-
sw

 R
E

SE
T

-O
V

E
R

V
O

L
T

A
G

E

at
- A

M
D

-p
lr

ve
r-

pl
r O

N
-O

FF
-H

A
N

D
L

E

A
M

D
-p

lr-
O

N
-O

m
;-H

A
N

D
L

E
 O

N

at
-A

M
D

-p
lr

pr
s-

pl
r-

bt
n

M
O

T
O

R
-O

N

at
-A

M
D

-p
lr

ve
r-

pl
r S

T
A

R
T

-L
IG

H
T

at
-A

M
D

-p
lr

pr
s-

pl
r-

bt
n

G
E

N
-O

N

at
-A

M
D

-p
lr

ve
r-

pl
r G

E
N

-O
U

T
PU

T

at
-A

M
D

-p
lr

ve
r-

pl
r L

O
C

A
L

-S
E

N
SI

N
G

at

-A
M

D
-p

lr
ve

r-
pl

r G
E

N
-V

O
L

T
A

G
E

-1

at
-A

M
D

-p
lr

ve
r-

pl
r G

E
N

-V
O

L
T

A
G

E
-2

at
-A

M
D

-p
lr

pr
s-

pl
r-

bt
n

M
O

T
O

R
-O

E
F

co
rn

-A
M

D
-C

E
 re

pa
ir-

pl
r

E
nv

ir
on

m
en

t S
ta

te
 (o

n
L

H
S)

(e

nv
ir

on
m

en
t 0

 <
va

ri
ab

le
>

<
st

at
e>

)

A
M

D
-p

lr-
20

8-
V

A
C

 p
re

se
nt

A
M

D
-p

lr-
ST

A
R

T
-L

IG
H

T
 O

FF

A
M

D
-p

lr-
G

E
N

-O
U

T
PU

T
 O

N

A
M

D
-p

lr-
L

O
C

A
L

-S
E

N
SI

N
G

 O
N

A

M
D

-p
lr-

G
E

N
-V

O
L

T
A

G
E

- 1
 O

N

A
M

D
-p

lr-
G

E
N

-V
O

L
T

A
G

E
-2

 O
N

T
ab

le
 1

.
T

as
k

A
ct

io
ns

 a
nd

 th
ei

r
C

L
IP

S
E

qu
iv

al
en

ts

ActionIAr~umen t Action NameIIn~ut # of A r u

at- AMD-pLr Stand at AMDAHL pillar 1
ver-plr Venfy AMDAHL pillar component 1
prs-plr-sw Press switch 1
prs-plr-btn Press button 1
corn-AMD-CE Call AMDAHL CE 1
repair-plr Repair AMDAHL pillar 0
208-VAC 208 VAC on voltmeter 0
RESET-OVERVOLTAGE RESET OVERVOLTAGE SUITCH 0
ON-OFF-HANDLE ONIOFF HANDLE at far left 0
MOTOR-ON Black MOTOR ON BUTTON 0
START-LIGHT Green START LIGHT 0
GEN-ON Black GENERATOR ON BUTTON 0
GEN-OUTPUT Red GENERATOR OUTPUT light 0
LOCAL-SENSING Red LOCAL SENSING light 0
GEN-VOLTAGE- 1 First white GENERATOR VOLTAGE light 0
GEN-VOLTAGE-2 Second white GENERATOR VOLTAGE light 0
MOTOR-OFF Red MOTOR OFF BUTTON 0

Table 2. Examples of actions and arguments followed by their meaning and number of arguments.

The generated rule conforms to a general ICAT paradigm. However, translation to other knowledge base
paradigms or architectures is feasible. The crucial issue is the extraction of actions and parameters from a
task. This format is based on a general ICAT architecture developed by the programmers at Computer
Sciences Corporation and the Software Technology Branch (PT4) at NASAIJohnson Space Center. The
generated rule form is compatible with the ICAT architecture. Further work is being done for rule
generation for other paradigms and architectures. The important issue is to extract actions and parameters
from a task.

CONCLUSION

The CLIPS world offers TARGET a reasonable paradigm in which to produce knowledge representation
from a knowledge acquisition effort. Whereas, TARGET offers the CLIPS world a mechanism in which
to generate a knowledge base. As a CLIPS front-end, the system has been able to function as a knowledge
engineering mediator for SMEs, programmers, managers and computer novices alike. Whether building a
decision tree or a highly complex process network, TARGET provides latitude for a user to document their
tasks or jobs with minimal prompting. In addition, the CLIPS code derived from the system would still
provide a functional procedural model of the user's world. Overall, TARGET could significantly impact
development of various ICAT systems as well as other intelligent systems. For any procedural knowledge
acquisition task, it can enhance the ability of the expert to visualize and organize a task or process.
Procedural visualization of this type will become more popular as more tools with organizational diagnosis
capabilities evolve (Akscyn, McCracken, and Yoder, 1988).

As computer hardware power evolves, more latitude in presentation methods will be available. Visual
conception and communication of abstract information will become more common. The strategic fusion of
graphical display (bit-map, meta-graphic, etc.) and graphical input device (mouse, light-pen, trackball,
etc.) technologies will facilitate visual as well as textual representation of knowledge (Messinger, Rowe,
and Henry, 1991). Drawing tools already allow the user to produce and manipulate complex graphics. The
role of these tools can also combine with organizational algorithms to create more intelligent diagrams,
flow charts and interactive decision trees. With users becoming more adept at employing systems with
pictorial modeling capabilities, the mode of procedural KA will also benefit from such advances.

As knowledge acquisition evolves as a discipline within artificial intelligence, more tools to assist in the
knowledge acquisition process will also become available in useful forms. TARGET, and tools like it, will

be employed within their own "niche" and will also be integrated with other methodologies in the future.
Although TARGET currently models the sequence within the task hierarchy structure for rule induction,
we will dedicate additional efforts to encapsulating additional knowledge into the steps within a network.
In particular, we intend to address issues such as gathering artifact data, selected action rationale, and
interactive verification and validation of rules.

REFERENCES

Akscyn, R. M., McCracken, D. L. & Yoder, E. A. (1988). "KMS: A Distributed Hypermedia System for
Managing Knowledge in Organizations", Communications of the ACM, July, 3 1 (7), 820-834.

Boose, J. H. (1989). A survey of knowledge acquisition techniques and tools. Knowledge Acquisition,
March, 1 (I) , 3-37.

de Kleer, J., Doyle, J., Steele, G. L., Jr. & Sussman, G. J. (1985). AMORD: Explicit Control of
Reasoning. in Readings in Knowledge Representation, Brachman, R. J. & Levesque, H. J., Eds., Los
Altos, CA: Morgan-Kaufmann Publishers, Inc., 345-355.

Gaines, B. R. (1988). An overview of knowledge-acquisition and transfer. in Knowledge Acquisition
for Knowledge-Based Systems, Gaines, B. R & Boose, J. H., Eds., Knowledge-Based Systems, Vol.1,
New York: Academic Press, 3-22.

Littman, D. C. (1988). Modelling human expertise in knowledge engineering: some preliminary
observations. in Knowledge Acquisition for Knowledge-Based Systems, Gaines, B. R. & Boose, J. H.,
Eds., Knowledge-Based Systems, Vol. 1, New York: Academic Press, 93- 104.

.Loftin, R. B., Wang, L., Baffes, L. & Hua, G. (1988). An Intelligent Training System for Space Shuttle
Flight Controllers. Proceedings of the 1988 Goddard Conference on Space Applications of Artificial
Intelligence, held May 24, 1988, at NASA/Goddard Space Flight Center, Greenbelt, Md, 3- 10.

Loftin, R. B., Wang, L., Baffes, P. & Hua, L. (1989). An Intelligent System for Training Space Shuttle
Flight Controllers in Satellite Deployment Procedures. Machine-Mediated Learning, 3,43-47.

Messinger, E. B., Rowe, L. A. & Henry, R. R. (1991). A divide-and-conquer algorithm for the layout of
large directed graphs. IEEE Transactions on Systems, Man, and Cybernetics, 2 1 (I), 1- 1 1.

Payne, S., & Green, T. (1986). Task-action grammars: a model of the mental representation of task
languages. Human-Computer Interaction, 2,93- 133.

PROJECTS I N AN EXPERT SYSTEM CLASS

George M. Whitson

Computer Science Department
The University of Texas at Tyler
Tyler, Texas 75701

Abstract. Many universities now teach courses in expert systems. In
these courses students study the architecture of an expert system,
knowledge acquisition techniques, methods of implementing expert systems
and verification and validation techniques. A ma jot component of any such
course is a class project consisting of the design and implementation of
an expert system. This paper discusses a number of techniques that we
have used at The University of Texas at Tyler to develop meaningful
projects that could be completed in a semester course.

HISTORY

As expert systems theory became a major subset of Artificial
Intelligence, many universities introduced courses on his subject.
Initially, there were few texts in the field and little software
that was available for classroom use. Today there are many texts
and inexpensive software systems to support classroom instruction.
A problem in the teaching of expert systems, since such courses
have been offered, is designing classroom projects that are both
meaningful and that can be done in a one semester period. This
paper discusses a number of projects that I have assigned over the
past few years. The type of project assigned depends on the
emphasis of the expert systems course, as we will illustrate in the
next two sections. For those courses based on a high level shell,
like CLIPS, we feel we have developed a very good method for having
class projects that are both meaningful and do-able.

TYPES OF EXPERT SYSTEMS COURSES

Although the expert system field is quite young there have been a
number of different types of expert systems courses. Until I
started using CLIPS two years ago we tried a lot of different
approaches to teaching expert systems. At our university I have
taught the course with each of the following emphasis:

1. In our first expert systems course, taught in 1984, we
emphasized artificial intelligence and discussed all aspects
of the theory of expert systems in terms of artificial
intelligence. For example, we did not look at fact

representation until we had done a complete coverage of
knowledge representation.
2. In our second approach to teaching expert systems we gave
a quick introduction to artificial intelligence, a solid
coverage of all of the different implementation languages
that were in use, including LISP, PROLOG and GOLDWORKS.
3 . In our third major revision of the expert systems course
we gave a brief introduction to artificial intelligence, an
introduction to logic programming and spent the remainder of
the course looking at techniques for implementing expert
systems in PROLOG.
4. In our fourth approach to teaching expert systems we
expanded the definition of an expert system to include many
systems that were not rule-based. In particular, we spent a
good deal of time looking at artificial neural systems and how
they were related to rule-based expert systems.
5. In our final and current approach to teaching an expert
systems course we quickly introduce the ideas of a rule-based
expert system, get the students started on a major project and
then lecture on other important topics, like fuzzy logic and
artificial neural systems.

EXPERT SYSTEM PROJECTS

In each of the different types of expert systems courses we used
different types of projects. It is interesting to consider how
these projects have changed as the course content has changed. A
sketch of the projects we gave in each of the above types of
courses is:

1. When we stressed artificial intelligence we alway gavs
a project to develop an expert system shell in LISP. The
sketch given in [Winston, 19891 the approach we usually used.
The projects were interesting from the systems point of view,
but, as one can well imagine, the students spent all their
time developing the shell and little time using it.
2. When we stressed a comparison of the different languages
and shells used to develop expert systems, we found that we
would always take a simple project so that we could implement
it in several shells. Each student did the same problem in
two different ways. All projects were presented to the class
and then a test covering all approaches was given. As one
could easily guess, we spent most of our time learning the
syntax of the different tools.
3. When we based our expert systems course on PROLOG we were
able to develop a fairly complex project, but fond that much
explanation of logic programming was needed. Some of the
specific techniques of PROLOG, especially unification,
required a lot of explaining as well. While we still use
PROLOG occasionally as a tool, we still find that we cannot
spend as much time as we want on the real topics of expert
systems, like knowledge acquisition, because of the need to
explain programming language details.
4. When we emphasized artificial neural systems in our

expert systems course, the project consisted of developing an
artificial neural system and an expert system to solve the
same problem. While it was interesting to compare the two
techniques, we realized at the end of the project that the
rule-based system was not as complex as desired. This
resulted from our desire to be sure we had selected a problem
that had a solution in both technologies.
5. When we based our expert systems course on a shell for the
project we found that with a little work we were able to
develop a fairly complicated project in a single semester.
While all of our previous methods of teaching the course were
successful, we feel that the current approach is ideal for
today in that the students spend all of their time developing
and testing a real expert system rather than doing other
things.

PROJECTS IN A CLIPS BASED COURSE

There are many techniques used to develop a project in an expert
systems course. The one we most often hear presented at meetings
is to simply require each student to develop a project on their
own. The instructor provides guidance and controls the quality of
the project, but the student selects the topic and finds the domain
expert. While this is fine for students who are domain experts, we
don't think it works very well for those who are not. We have
developed a method for selecting projects that we feel is very
good. This method has resulted in our developing several nice
prototypes as a part of the class and has been enthusiastically
received by our students. We now list some of the key components
of our method of doing projects in an expert system course.

1. We define a high level tool that everyone will use
to do their project. For the past two years we have used
CLIPS and plan to continue to use CLIPS in the future. CLIPS
is easy to use and has all the features we really want in our
expert system shell. In addition, students can do much of
their development work at home. We have also used GOLDWORKS
and EXSYS, but prefer CLIPS.
2. I select a single project for the entire class and line
up some domain experts who have an interest in developing an
expert system. So far we have found domain experts who would
participate in our project in several ways. In one case we
found that we had four personal computer repair people in a
class, in another we found several Biologists we wanted to see
a diagnostic expert system for plant disease developed, and in
another we found a local manager who needed to have his
knowledge built into a system.
3. The class is divided into teams of about five students
each. This division is dictated by our access to experts.
Each team selects people to acquire the knowledge, code the
system, test the system and develop the system documentation.
All students are responsible for all phases of the
development, but selected students are leaders in certain
parts (like knowledge acquisition.)

4 . The class project is described early and students begin
developing the system shortly after the first week of class.
This means that the expert systems theory about topics like
knowledge acquisition and system verification are often
covered in the lecture after students have practiced some of
the ideas in their own system.
5. A major emphasis of our course is on knowledge
acquisition via the traditional techniques of observation,
interviewing and becoming a pseudo-expert. We spend several
weeks each semester on knowledge acquisition and cover several
automated techniques as well as the traditional methods.
6. Each team develops a complete prototype system. The
systems are usually similar since I work with each team and
present an overall suggested system design at the start of the
course. But each project always has its own unique flavor.
Members of the team do both verification and validation of the
system as well as developing a user's manual. These
prototypes have often been developed into full systems after
the course is finished. At the end of the course each team
demonstrates their system to the class and all systems are
discussed and evaluated by the class as a whole.

SUMMARY

As one teaches an expert systems course with different emphases,
projects take on different forms. Some projects develop expert
system tools, some survey the current tools and some concentrate on
the art of building real expert systems. After experimenting with
many different types of course and projects, I have come to the
conclusion that it is best to teach an expert systems course that
concentrates on developing a real system. For such a course I have
found that a single class project implemented by teams is best.

REFERENCES

Giarantano and Riley (1989). Expert Systems: Principles and
Programming, PWS-KENT, Boston.

Hayes-Roth, Waterman and Lenat (1983). Building Expert Systems,
Addison-Wesley, Reading, Mass.

Malpas, John (1987). PROLOG: A Relational Language and its
Applications, Prentice-Hall, Englewood Cliffs, New Jersey.

Waterman, Donald (1985). A Guide to Expert Systems, Addison-
Wesley, Reading, Mass.

Winston and Horn (1989). LISP, 3rd Edition, Addison-Wesley,
Reading, Mass.

USING CLIPS AS THE CORNERSTONE OF A GRADUATE EXPERT
SYSTEMS CQURSE

Kwok-bun Yue

University of Houston - Clear Lake
2700 Bay Area Boulevard, Houston, TX 77058

Abstract. This short article describes the effective use of CLIPS as the cornerstone in a graduate
expert systems course. The course included about 8 to 9 hours of in-depth lecturing in CLIPS, as well
as a broad coverage of major topics and techniques in expert systems. As part of the requirement of
the course, students solved two small yet non-trivial problems in CLIPS before went on to develop
a toy expert system in CLIPS in an incremental manner as the term project. Furthermore, students
were required to evaluate CLIPS programs by their classmates. An anonymous questionnaire at the
end of the semester revealed that the students responded very favorably about the course, especially
their experience with CLIPS.

INTRODUCTION

This article describes the experience of teaching and using CLIPS as the expert system shell
language in a graduate expert systems course in the Spring semester of 1990. The
department of computer science at the University of Houston - Clear Lake offered two
graduate courses in the artificial intelligence area. The first course, Artificial Intelligence,
is a survey course of general searching techniques and knowledge representation issues, as
well as various application areas such as learning, natural language processing, vision, etc.
The second course, Expert Systems, is intended to include an in-depth coverage of expert
systems theory and programming techniques. Currently, the department also offers a
graduate course in Artificial Neural Systems.

There were several papers in the literature describing the teaching of expert systems
courses (Bahill and Ferrell 1986, Brown 1987, Warman and Modesitt 1989, Wolf and
Rozanski 1990). (Bahill and Ferrell 1986) discussed the advantages of using an expert
system shell and emphasized the importance of a student term project. However, the course
did not cover many expert system techniques such as those in the areas of uncertainty
handling and knowledge acquisition. (Brown 1987) emphasized the evaluations of expert
systems and were more suitable for students majoring in business rather than computer
science. Both (Warman and Modesitt 1989) and (Wolf and Rozanski 1990) centered their
courses on group projects and were quite practically oriented.

When we developed our course, we felt that it is more suitable to have a relatively
complete coverage of major topics in expert systems, especially since the technology has
matured sigTuficantly in recent years. On the other hand, we would also like to teach an

expert system shell language quickly and in-depth so that the students can develop their
expert system term projects as soon as possible and with confidence.

CLIPS was used because it is relatively simple and can be mastered in relatively short
time. CLIPS is also free and a copy of it (version 4.0) is enclosed in our textbook,
(Giarratano and Riley 1989). Furthermore, most of our students are working in NASA
related companies that use CLIPS extensively.

The first week of the course was devoted to the introduction and general theory of
expert systems. To enable the student to develop skills in CLIPS as early as possible, we
covered CLIPS in the second to fourth weeks of the course for a total of about 8 to 9 hours.
This encompassed Chapters 7 to 12 in (Gianatano and Riley, 1989). Various assignments,
as described in the next section, were assigned to the students to enhance their CLIPS
programming skills.

Since CLIPS is a forward chaining expert system language, we spent time to cover
languages in other paradigms to complement CLIPS. For example, an hour was used to
lecture on VP-Expert and M1 to illustrate backward chaining shell languages. Framed-based
systems and object-oriented based systems were also discussed. The exception is logic-based
systems, which were assumed to be well covered in the prerequisite graduate Artificial
Intelligence course.

From the fifth week on, various important topics in expert systems theory were
elaborated. This included languages and tools, evaluation techniques, verification and
validation, and explanation facilities. We spent especially generous amount of time in
knowledge acquisition, where more than 75% of the materials in (McGraw and Harbison-
Briggs 1989) were covered, and uncertainty handling, where techniques as advanced as
Dempster-Shafer theory and f k q logic were elaborated. The last class was used for student
presentations of selected term projects.

HOMEWORK ASSIGNMENTS

Believing that active participation is the best way of learning, a heavy dose of assignments
was included in our courses. A brief description of the assignments is shown in Table 1 in
the next page. Our assignments have the following characteristics.

(a) Nearly all assignments are related to CLIPS. It is hoped that this concentration
on a single language will allow the students to develop true expertise in the language.
(b) Two somewhat traditional yet non-trivial problems were included to enhance
student programming skills in CLIPS.
(c) Evaluation of other classmate programs were emphasized. This forced the
students to read programs and learn by comparison and contrasting.
(d) The final term project was built in an incremental manner which better imitates
how expert systems are constructed.

Each ..assignment is described in more details now. The purpose of the first
assignment is to let the students to compare the flavor of a rule-based programming
language (CLIPS) to a more traditional language like Lisp.

textbook. Briefly discuss the relative merits and difficulties of your LISP

Homework #2: Extend the CLIPS program for the block world problem in Homework
#1 to handle multiple move-goals. Test your new CLIPS program with sufficient
number of cases and hand in both the program and the output.

Homework #3: Design and write a CLIPS program that serves as an interpreter of
nondeterministic finite state machines. Again, test it with sufficient number of cases.
Describe briefly the difficulties that will encounter if you were using LISP or PASCAL.

Homework #4: Interview an expert in any problem of your interest. Hand in:
(1) a brief description of the problem,
(2) a brief listing of the reasons for selecting the problem, and
(3) about 10 non-trivial rules that the expert may use and that may form the
core of a small expert system (be sure to start in a high enough level of

Homework #5: Implement the rules you obtained in Homework #4 in CLIPS. Be sure
to include enough information so that other people can use your toy expert system.
Hand in three copies.

Homework #6: Evaluate two toy expert systems by your classmates.

Project: Develop and refine your toy expert system into a more powerful one in
CLIPS with at least 40 non-trivial rules. Write a report about your expert system. You
may need to give a presentation of its implementation. Hand in two copies.

Final Examination (Take home):
(1) Evaluate one of your classmates' expert systems.
(2) Answer several questions.

Table 1. Homework assignments and project.

The second and third assignments aimed to strengthen students CLIPS programming
skills. Whereas there are ample of exercises in (Giarratano and Riley 1989), they are
relatively easy and are much simpler than the complexity of an actual expert systems. Of
course, students can develop CLIPS programming skills while developing their term projects.
However, there are many tasks, such as problem definition, knowledge acquisition and

representation, in developing an expert system to distract the students from concentrating
on practicing CLIPS. It is thus desirable to find some problems that are clearly defined,
have relatively short solutions and are non-trivial.

The second and third assignments fitted these requirements well. In the second
assignments, students were asked to modify the elegant solution (only 4 rules) in (Giarratano
and Riley 1989) for planning in the block world of Winograd to handle the satisfactions of
multiple goals (such as to move block A on top of block B B on top of C). We were
amazed that more than 5 different approaches were collected and though the solution has
only about 10 rules, no student produced a correct solution which is also optimal (minimal
number of movements of blocks). Same thing can be said of the third assignment, which
implements an interpreter of nondeterministic finite state machines. Although the solution
has only six rules, the rules are quite intricate and no student got everything right (most
students overlook a potential infinite loop problem).

The remaining assignments were essentially the incremental development of a toy
expert system and the evaluations of other classmate works. One major difference between
our term project and the projects described in other literatures is that the students were
requested to turn in prototypes (Homework #5) of their toy expert systems. This is used
to emphasize the incremental nature of expert systems development. Another difference
is the requirement to evaluate other classmates' expert systems. This reinforced the
importance of the ability to evaluate expert systems as well as forcing students to read
CLIPS programs. In general, we think that reading programs is an invaluable experience
for gaining expertise in computer languages and it is not emphasized enough in many
computer science curricula.

As in other expert systems courses, a wide variety of student expert systems were
collected. The students reported no difficulty in implementing their expert systems in CLIPS
and their CLIPS code are in general competent. On the other hand, some students had
problems in identifying suitable expert system applications and finding experts. Two projects
turned out not to be suitable for expert systems technology and it was obvious that at least
two projects were not based on a JWIJ expert. The identification of suitable applications and
experts will be of utmost importance in the future.

DISCUSSION AND CONCLUSION

Student evaluations at the end of the semester revealed that the course was very well
received by the students, indicating that it is feasible to use CLIPS effectively as the
cornerstone of an expert systems course.

An independent in-depth anonymous questionnaire were also filled by the students
at the end of the semester. The student responses on the usefulness of lectures on various
topics may range from 7 (most useful) to 1 (least useful). The average student response on
the usefulness on the overall lectures is 6.1 whereas the average response to the lectures on
more theoretical topics (such as verification and validation and uncertainty handling) ranged
from 5.3 to 5.9. As a contrast, the average response of the usefulness of lectures on CLIPS
is 6.7. This is signhcantly better than that of other topics.

There may be many reasons for the relatively low enthusiasm for more theoretical
topics. For example, the theory on uncertainty handling requires solid mathematics

background. Topics like verification and validation of expert systems are still immature and
are thus less organized and structured. Time limitation dictated that theory of knowledge
acquisition can only be discussed in lectures but not practiced in the classroom, making it
much less interesting and useful.

On the other hand, the responses positively indicated that the students were very
interested in learning an expert system shell, CLIPS in our case, thoroughly so that they can
practice the theory and develop their expert systems immediately. We feel that CLIPS is
especially a good choice since it is concise, efficient, practical, free and can be mastered in
relatively short time.

The student fondness of CLIPS was also shown in their responses on the usefulness
of the assignments. Of all assignments, the response for the term project was the best with
an average of 6.8. The two CLIPS assignments (homework assignments #2 and #3) draw
an average response of 6.4 each. In contrast, the average responses of other assignments
ranged from 4.9 (evaluation of an expert system shell) to 6 (development of the prototypes
of the toy expert systems).

In conclusion, we believe that CLIPS can be used effectively as the cornerstone of a
relatively complete graduate expert systems course, especially now that CLIPS version 5.0
provides object-oriented features to complement its rule-based programming paradigm.
Well designed CLIPS problems are very helpful to the students for developing CLIPS
programming expertise. A collection of such small yet illustrative problems should be very
beneficial in teaching CLIPS in the future.

REFERENCES

Bahill, A. and Ferrell W. (1986). Teaching an Introductory Course in Expert Systems, IEEE
Expert, Vol. 1, No. 4, pp.59-63.

Brown, D. (1987). A Graduate-Level Expert Systems Course, AI Magazine, Vol. 6, No. 3,
pp.33-39.

Giarratano, J. and Riley, G. (1989). Expert System - Principles andhgmmming, PWS-Kent,
Boston, Massachusetts.

McGraw, K and Harbison-Briggs, K (1989). Knowledipe Acquisition - Primple and
Guidelines, Prentice-Hall, Englewood Cliffs, New Jersey.

Wolf, W. and Rozanski E. (1990). Expert Systems: An Applied Course, SIGCSE Bulletin,
Vol. 23, No. 4, pp.23-24.

Warman, D. and Modesitt, K. (1989). Learning in an Introductory Expert Systems Course,
IEEE lhped, Vol. 4, No.1, pp.45-49.

SESSION 4 A

CRM5EXP - EXPERT SYSTEM FOR STATISTICAL QUALITY CONTROL

M a r i a n a H e n t e a , S e n i o r C o n s u l t a n t
I n t e r a c t i v e B u s i n e s s S y s t e m s , Oak B r o o k , I l l i n o i s

ABSTRACT. The p u r p o s e o f t h e E x p e r t S y s t e m CRN5EXP i s t o
h e l p t h e u s e r t o c h e c k t h e q u a l i t y o f t h e c o i l s a t two v e r y
i m p o r t a n t m i l l s : H o t R o l l i n g a n d C o l d R o l l i n g i n a s t e e l p l a n t .
The s y s t e m i n t e r p r e t s t h e s t a t i s t i c a l q u a l i t y c o n t r o l c h a r t s ,
d i a g n o s e s a n d p r e d i c t s t h e q u a l i t y o f t h e s t e e l . M e a s u r e m e n t s o f
p r o c e s s c o n t r o l v a r i a b l e s a r e r e c o r d e d i n d a t a b a s e (ADABAS) a n d
s a m p l e s t a t i s t i c s s u c h a s t h e mean a n d t h e r a n g e a r e c o m p u t e d
a n d p l o t t e d o n a c o n t r o l c h a r t . The c h a r t i s a n a l y z e d t h r o u g h
p a t t e r n s u s i n g CLIPS a n d f o r w a r d c h a i n i n g t e c h n i q u e t o r e a c h a
c o n c l u s i o n a b o u t t h e c a u s e s o f d e f e c t s a n d t o t a k e management
m e a s u r e s f o r t h e i m p r o v e m e n t o f t h e q u a l i t y c o n t r o l t e c h n i q u e s .

T h e E x p e r t S y s t e m c o m b i n e s t h e c e r t a i n t y f a c t o r s a s s o c i a t e d
w i t h t h e p r o c e s s c o n t r o l v a r i a b l e s t o p r e d i c t t h e q u a l i t y o f t h e
s t e e l . T h e p a p e r p r e s e n t s t h e a p p r o a c h t o e x t r a c t d a t a f r o m
d a t a b a s e , t h e r e a s o n t o c o m b i n e c e r t a i n t y f a c t o r s , t h e
a r c h i t e c t u r e a n d t h e u s e o f t h e E x p e r t S y s t e m . However , t h e
i n t e r p r e t a t i o n o f c o n t r o l c h a r t s p a t t e r n s r e q u i r e s t h e human
e x p e r t ' s k n o w l e d g e a n d l e n d s t o E x p e r t S y s t e m s r u l e s .

The c o n c l u s i o n s r e a c h e d w i t h t h i s s y s t e m h e l p t h e management
a n d t h e q u a l i t y e n g i n e e r s t o e l i m i n a t e t h e s p e c i a l c a u s e s o f t h e
p r o c e s s c o n t r o l v a r i a b l e v a r i a t i o n s a n d t o c o r r e c t a b o u t 8 5 % o f
t h e p r o b l e m s f r o m t h e s e m i l l s .

EXPERT SYSTEM OVERVIEW

T h e p u r p o s e o f t h e E x p e r t S y s t e m CRN5EXP i s t o h e l p t h e
u s e r t o t r a c k t h e q u a l i t y o f t h e c o i l s a t two v e r y i m p o r t a n t
m i l l s : h o t r o l l i n g (HSM) a n d c o l d r o l l i n g (CRN5). The u s e r
n e e d s t h i s s y s t e m t o f i n d o u t why t h e c o i l s a t CRN5 h a d g a u g e
v a r i a t i o n a n d w h a t i s t h e p r e d i c t e d q u a l i t y o f t h e c o i l s p r o d u c e d
a t HSM.

H o t R o l l i n g i s a n u p s t r e a m p r o c e s s a n d C o l d R o l l i n g i s a
d o w n s t r e a m p r o c e s s . The q u a l i t y o f t h e c o i l s i s m e a s u r e d
p r i m a r i l y ' by g a u g e , e v e r y c o i l p r o d u c e d a t CRN5 s h o u l d h a v e t h e
g a u g e o r d e r e d by c u s t o m e r . I f a c o i l d o e s n ' t h a v e t h e
d i m e n s i o n s r e q u i r e d by t h e c u s t o m e r t h e n it i s r e j e c t e d . A t CRNS,
t h e g a u g e v a r i a t i o n i s a f u n c t i o n o f t h e m i l l s e t - u p , s u c h a s :
work r o l l s , d i a m e t e r s , t o n s o f c o i l s r o l l e d b e t w e e n r o l l c h a n g e s ,
f r e q u e n c y o f r o l l c h a n g e s , m a i n t e n a n c e , h a r d n e s s o f work r o l l
s u r f a c e , r o l l f o r c e s , t e n s i o n , s p e e d , m o t o r p o w e r . A t H S M , t h e
g a u g e v a r i a t i o n i s a f u n c t i o n o f t h e f i n i s h i n g a n d c o i l i n g
t e m p e r a t u r e s .

T h e i m p l e m e n t e d s o f t w a r e i s a c o m p l e x o f NATURAL p r o g r a m s
w h i c h s e a r c h d a t a b a s e f i l e s (A D A B A S) f o r t h e c o i l s w h i c h h a v e
g a u g e v a r i a t i o n s . The p r o g r a m c o n t a i n s r o u t i n e s w h i c h c a l c u l a t e
t h e c o n t r o l c h a r t s u s i n g s t a t i s t i c a l me thod FORD. C o n t r o l c h a r t s

g i v e a g o o d i n d i c a t i o n o f w h e t h e r a n y p r o b l e m s a r e l i k e l y t o b e
c o r r e c t a b l e l o c a l l y o r w i l l r e q u i r e a managemen t a c t i o n . The
d a t a b a s e f i l e s (A D A B A S) , o n m a i n f r a m e I B M , s t o r e p r o c e s s c o n t r o l
v a r i a b l e s s p e c i f i c t o e a c h p r o c e s s : h o t r o l l i n g a n d c o l d r o l l i n g ,

T h e c o i l s w h i c h a r e n o t i n s t a t i s t i c a l c o n t r o l f o r t h e g a u g e
a t c o l d r o l l i n g a n d h o t r o l l i n g a r e d o w n l o a d e d f r o m d a t a b a s e
f i l e s t o PC f i l e s (A S C I I) w h i c h a r e t h e i n p u t d a t a f o r t h e E x p e r t
S y s t e m . The p r e s e n t E x p e r t S y s t e m c o n t a i n s r u l e s t o c h e c k t h e
v a r i a b l e s s p e c i f i c t o e a c h m i l l . The u s e r may s e l e c t t h e c o i l s
p r o d u c e d d u r i n g a p e r i o d o f time by e n t e r i n g t h e s t a r t i n g a n d
e n d i n g d a t e s .

SYSTEM FUNCTIONS:

CHECK THE COILS A T CRNS

CHECK THE COILS A T HSM

T h e u s e r f r o m c o l d m i l l i s i n t e r e s t e d t o f i n d t h e c a u s e s o f
t h e g a u g e v a r i a t i o n s f o r t h e c o i l s . T h e k n o w l e d g e a b o u t m i l l
s e t - u p a n d a c t u a l p r o c e s s c o n t r o l v a r i a b l e s h e l p t h e management
t o e l i m i n a t e s p e c i a l c a u s e s o f g a u g e v a r i a t i o n s a n d t o c o r r e c t
a b o u t 85% o f p r o c e s s c o n t r o l p r o b l e m s .

The E x p e r t S y s t e m r e a d s t h e d a t a f r o m t h e i n p u t f i l e , c h e c k s
t h e v a l u e s o f t h e v a r i b l e s a n d p r o v i d e s a d e t a i l e d r e p o r t o f t h e
r u n n i n g m i l l . A t CRNS, t h e p r o c e s s c o n t r o l v a r i a b l e s , s u c h a s :
t o n s o f c o i l s r o l l e d b e t w e e n r o l l c h a n g e s , work r o l l n u m b e r s ,
d i a m e t e r s , s u r f a c e , f r e q u e n c y o f r o l l c h a n g e s , r o l l f o r c e s ,
t e n s i o n , s p e e d , a n d m o t o r power a r e c o m p a r e d w i t h t h e c o m p u t e r
p r e d i c t e d v a l u e s . T h e E x p e r t S y s t e m a n a l y z e s t h e d a t a a n d i s s u e s
c o n c l u s i o n s r e g a r d i n g t h e s e v a r i a b l e s . The p r e s e n t S y s t e m i s
a b l e t o r e a c h more t h a n t w e n t y c o n c l u s i o n s . A t H S M , t h e s o f t w a r e
c h e c k s t h e c o i l i n g a n d f i n i s h i n g t e m p e r a t u r e v a l u e s .

T h e E x p e r t S y s t e m i m p l e m e n t s t w o f u n c t i o n s : c h e c k s t h e c o i l s
p r o d u c e d a t CRNS a n d t h e c o i l s a t H S M . I f t h e u s e r se lects t h e
o p t i o n t o c h e c k t h e c o i l s p r o d u c e d a t CRNS, t h e E x p e r t S y s t e m
a n a l y z e s t h e p r o c e s s c o n t r o l v a r i a b l e s r e c o r d e d a t CRNS. I f t h e
a c t u a l v a r i a b l e s a r e w i t h i n t h e s t a n d a r d s a l l o w e d f o r t h i s m i l l ,
t h e n t h e E x p e r t S y s t e m c h e c k s t h e v a r i a b l e s r e c o r d e d a t H S M . I f
t h e a c t u a l v a r i a b l e s , f i n i s h i n g a n d c o i l i n g t e m p e r a t u r e s , a r e
w i t h i n t h e s t a n d a r d s a l l o w e d f o r t h e H S M , t h e n t h e E x p e r t S y s t e m
a d v i c e s t h e u s e r t o s e a r c h p r o c e s s c o n t r o l v a r i a b l e s f r o m a n o t h e r
m i l l (p i c k l e) , w h i c h may h a d c a u s e d t h e g a u g e v a r i a t i o n s (n o t
i m p l e m e n t e d y e t) . I f t h e a c t u a l v a r i a b l e s f r o m CRNS a r e n o t
w i t h i n t h e s t a n d a r d s , t h e n t h e E x p e r t S y s t e m i s s u e s d i f f e r e n t
c o n c l u s i o n s a n d a d v i c e s m a n a g e r i a l a c t i o n s . I f t h e a c t u a l
v a r i a b l e s f r o m CRNS a re w i t h i n t h e s t a n d a r d s , t h e n t h e E x p e r t
S y s t e m c h e c k s t h e a c t u a l v a r i a b l e s r e c o r d e d a t H S M . I f t h e a c t u a l
t e m p e r a t u r e s a r e n o t w i t h i n t h e s t a n d a r d s , t h e n t h e E x p e r t S y s t e m
i n d i c a t e s t h e q u a l i t y o f t h e p r o d u c e d c o i l a t HSM. A t u s e r
r e q u e s t , t h e E x p e r t S y s t e m p r o v i d e s a n e x p l a n a t i o n f a c i l i t y w h i c h
g i v e s a d e t a i l e d r e p o r t a b o u t t h e v a l u e s o f a c t u a l t e m p e r a t u r e s
a n d t h e way t h e y i n f l u e n c e d t h e q u a l i t y o f t h e p r o d u c e d c o i l .
T h e f i n i s h i n g a n d c o i l i n g t e m p e r a t u r e s i n f l u e n c e t h e q u a l i t y o f

1 74

t h e c o i l w h i c h i s s t a t e d a s n o r m a l , s o f t o r h a r d . I f t h e u s e r
s e l e c t s t h e o p t i o n t o c h e c k t h e c o i l s p r o d u c e d a t H S M , t h e n t h e
E x p e r t S y s t e m c h e c k s t h e v a r i a b l e s r e c o r d e d a t H S M a n d p r e d i c t s
t h e q u a l i t y o f t h e c o i l . The E x p e r t S y s t e m h e l p s t h e u s e r f r o m
CRNS t o d e t e r m i n e t h e q u a l i t y o f t h e incomming c o i l s a n d b a s e d o n
t h a t t o c o m p u t e t h e v a l u e s f o r t h e m o d e l w h i c h a r e t h e s t a n d a r d s
f o r CRNS. T h e E x p e r t S y s t e m i s u s e d i n b o t h m i l l s t o i m p r o v e t h e
q u a l i t y o f t h e p r o d u c e d c o i l s .

EXPERT SYSTEM KNOWLEDGE

T h e p r e s e n t s y s t e m i m p l e m e n t s t h e k n o w l e d g e i n r u l e s b a s e d
o n t h e i n f o r m a t i o n a c q u i r e d f r o m t h e e x p e r t s (m e t a l l u r g i s t ,
c h e m i s t , q u a l i t y a n d p r o c e s s c o n t r o l e n g i n e e r s) . The m e t a l l u r g i s t
a n d q u a l i t y e n g i n e e r s c o n s i d e r t h a t t h e v a l u e s o f r o l l f o r c e s ,
t e n s i o n , s p e e d , a n d m o t o r power a r e d e t e r m i n e d by t h e t h e c o i l
h a r d n e s s . I f t h e r o l l f o r c e s a r e h i g h , a b o v e t h e p r e d i c t e d
v a l u e s , t h e n it is a n i n d i c a t i o n t h a t i ncomming c o i l is h a r d .
I f t h e r o l l f o r c e s a r e l o w , b e l o w t h e p r e d i c t e d v a l u e s , t h e n it
i s a n i n d i c a t i o n t h a t t h e incomming c o i l i s s o f t .

The p r o g r a m c h e c k s f i r s t a l l t h e v a r i a b l e s s p e c i f i c t o CRNS.
I f a l l t h e v a r i a b l e s a r e i n s t a t i s t i c a l c o n t r o l , t h e n t h e p r o g r a m
c h e c k s t h e v a r i a b l e s f r o m t h e u p s t r e a m p r o c e s s . The p r o g r a m
i m p l e m e n t s r u l e s t o s e t - u p t h e c e r t a i n t y f a c t o r s f o r d i f f e r e n t
t e m p e r a t u r e r a n g e s , b a s e d o n t h e s p e c i a l i s t ' s e x p e r i e n c e . F o r
e x a m p l e , i f t h e f i n i s h i n g t e m p e r a t u r e i s b e l o w o r a b o v e AIMS
t e m p e r a t u r e (s t a n d a r d v a l u e b a s e d o n t h e g r a d e o f t h e s t ee l) more
t h a n 30 d e g r e e s F a h r e n h e i t , t h e n t h e c o i l i s n o t c e r t a i n l y
n o r m a l : it is h a r d o r s o f t w i t h a c e r t a i n t y f a c t o r . The s y s t e m
d i s p l a y s t o t h e u s e r t h e term n p r o b a b i l i t y " . I f t h e f i n i s h i n g
t e m p e r a t u r e i s a b o v e t h e A I M S , t h e n t h e c o i l i s c o n s i d e r e d s o f t .
I f t h e f i n i s h i n g t e m p e r a t u r e i s b e l o w o f t h e A I M S t e m p e r a t u r e ,
t h e n t h e c o i l is c o n s i d e r e d h a r d .

I f t h e c o i l i n g t e m p e r a t u r e i s n o t w i t h i n t h e u p p e r a n d l o w e r
l i m i t s (s t a n d a r d v a l u e s b a s e d on t h e g r a d e o f t h e s t e e l) t h e n t h e
c o i l i s n o t c e r t a i n l y n o r m a l . I f t h e c o i l i n g t e m p e r a t u r e i s
a b o v e t h e u p p e r l i m i t t h a n t h e c o i l i s s o f t . I f t h e c o i l i n g
t e m p e r a t u r e i s b e l o w t h e l o w e r l i m i t t h e n t h e c o i l i s c o n s i d e r e d
h a r d . Even t h o u g h t h e t e m p e r a t u r e s a r e w i t h i n l i m i t s , t h e
c e r t a i n t y f a c t o r t h a t a c o i l i s n o r m a l i s r e d u c e d by t h e
c e r t a i n t y f a c t o r s o f e a c h t e m p e r a t u r e v a l u e . T h e c e r t a i n t y
f a c t o r s a r e c o m b i n e d u s i n g M Y C I N f o r m u l a s o r e x p e r t ' s e x p e r i e n c e
i n some c a s e s . I t d e p e n d s o f t h e t y p e o f e f f e c t e a c h t e m p e r a t u r e
h a s o n t h e q u a l i t y o f t h e h o t r o l l e d c o i l . The c o i l i n g i s a
v a r i a b l e m e a s u r e d b e f o r e f i n i s h i n g t e m p e r a t u r e s , s o i t s v a r i a t i o n
c a u s e s v a r i a t i o n s t o t h e f i n i s h i n g t e m p e r a t u r e s .

C h e c k i n g t h e c o i l s a t H S M may c o n c l u d e t h a t t h e t e m p e r a t u r e s
were n o r m a l . The a n a l y s i s o f t h e c o i l s w i t h g a u g e v a r i a t i o n p r o v e
t h a t t h e r e a r e a l l k i n d s o f c a u s e s f o r t h a t : p r o c e s s c o n t r o l
v a r i a b l e s o u t s i d e o f t h e r a n g e s a l l o w e d i n t h e m i l l , m a i n t e n a n c e
p r o b l e m s , wrong c o m p u t e r m o d e l .

USE OF THE SYSTEM

The E x p e r t S y s t e m i m p l e m e n t s t w o f u n c t i o n s d i s p l a y e d o n t h e ma in
menu. The u s e r c a n s e l ec t o n e o p t i o n a n d t h e p r o g r a m l o a d s t h e
f a c t s i n memory. T h e i n p u t d a t a i s r e a d f r o m t h e A S C I I Piles (
t h e v a r i a b l e s s p e c i f i c t o CRNS a n d H S M a r e s t o r e d i n s e p a r a t e
f i l e s) . The u s e r may c h e c k a c o i l p r o d u c e d a t CRNS o r a t H S M .
The E x p e r t S y s t e m i m p l e m e n t s a l s o a n e x p l a n a t i o n f a c i l i t y , t h e
u s e r c a n c h e c k why t h e h a r d n e s s o f t h e c o i l i s n o r m a l , h a r d , o r
s o f t . The u s e r i s i n f o r m e d a b o u t t h e v a l u e s o f c e r t a i n t y f a c t o r s
f o r t h e c o i l i n g a n d f i n i s h i n g t e m p e r a t u r e w h i c h i n f l u e n c e t h e
c e r t a i n t y f a c t o r f o r t h e h a r d n e s s o f t h e r o l l e d c o i l a t H S M . By
knowing t h e h a r d n e s s o f t h e c o i l e x p r e s s e d i n c e r t a i n t y f a c t o r ,
t h e p r o c e s s c o n t r o l e n g i n e e r s c a n t a k e m a n a g e r i a l a c t i o n s t o
i m p r o v e t h e m i l l s e t - u p .

EXPERT SYSTEM ARCHITECTURE

T h e s y s t e m c o n t a i n s e i g h t y r u l e s . T h e f a c t s f o r o p t i o n o n e
a r e l o a d e d f r o m t h e f i l e c o n t a i n i n g t h e p r o c e s s c o n t r o l v a r i a b l e s
s p e c i f i c t o CRN5. T h e f a c t s f o r o p t i o n t w o a r e l o a d e d f r o m t h e
f i l e c o n t a i n i n g t h e p r o c e s s c o n t r o l v a r i a b l e s s p e c i f i c t o H S M .

T h e s y s t e m r e a c h e s more t h a n t w e n t y c o n c l u s i o n s r e g a r d i n g
t h e q u a l i t y o f t h e c o i l a n d t h e m i l l s e t - u p .

T h e e x p l a n a t i o n f a c i l i t y u s e s a t e x t f i l e t o s t o r e a l l t h e
k n o w l e d g e w h i c h s u p p o r t s a c o n c l u s i o n f o r e v e r y o p t i o n . The
c e r t a i n t y f a c t o r s were u s e d t o c o m b i n e f a c t s a b o u t c o i l i n g a n d
f i n i s h i n g t e m p e r a t u r e s t o p r e d i c t t h e q u a l i t y o f t h e c o i l
(n o r m a l , h a r d , o r s o f t) .

EXPERT SYSTEM FOR STATISTICAL QUALITY CONTROL

T h e p r e s e n t E x p e r t S y s t e m i n t e r p r e t s t h e s t a t i s t i c a l q u a l i t y
c o n t r o l c h a r t s t o m o n i t o r , d i a g n o s e , a n d p r e d i c t t h e p o s s i b l e
q u a l i t y o f t h e c o i l .

I n many c o m p a n i e s , it i s a f r u s t r a t i n g s t r u g g l e t o t r a i n a n d
e d u c a t e t h e p e r s o n n e l o n t h e p r o p e r u s e o f c o n t r o l c h a r t s .
T h e r e f o r e , it is r e a s o n a b l e t o p r o v i d e a u n i f o r m i n t e r p r e t a t i o n
o f t h e c o n t r o l c h a r t s a n d t o e s t a b l i s h a s t a t e o f c o n t r o l d u r i n g
m a n u f a c t u r i n g p r o c e s s . The E x p e r t S y s t e m s i g n i f i c a n t l y i m p r o v e s
t h e q u a l i t y c o n t r o l t e c h n i q u e s .

REFERENCES

Hayes -Ro th , F . , D . A . Waterman a n d D . B . L e n a t (1 9 8 3) . B u i l d i n g
E x p e r t S y s t e m s . A d d i s o n - W e s l e y , R e d d i n g .

G i a r r a t a n o , J . C . a n d G . R i l e y (1 9 8 9) . E x p e r t S y s t e m s :
p r i n c i p l e s a n d p r o g r a m m i n g . PWS-Kent, B o s t o n .

DISTRIBUTED SEMANTIC NETWORKS AND CLIPS

James Snyder and Tony Rodriguez

CAD Research Unit, Design Institute
California Polytechnic State University, San Luis Obispo

Abstract. Semantic networks of frames are commonly used as a method of organizing and
reasoning in many types of problems. In most of these applications the semantic network exists
as a single entity in a single process environment. Advances in workstation hardware provide
support for more sophisticated applications involving multiple processes, interacting in a
distributed environment. In these applications the semantic network may well be distributed over
several concurrently executing tasks.

This paper describes the design and implementation of a frame-based, distributed semantic network
in which frames are accessed both through CLIPS expert systems and procedural C + + language
programs. The application area is a knowledge-based, cooperative decision making model
utilizing both rule-based and procedural experts.

INTRODUCTION

Currently, the CAD Research Unit is developing an Intelligent Computer Aided Design System
(ICADS). The purpose of ICADS is to provide an intelligent environment for cooperative
computer-based problem solving under the explicit control of the user using architectural design
as a test environment. ICADS allows a group of distributed, intelligent agents to converse about
a problem larger than any single agent's domain of expertise or knowledge, and provides advice
and suggestions to the user as to the state and compliance of the current problem solution.

From a high-level point of view, ICADS is composed of three major pieces: a
blackboard, a group of procedural and CLIPS-based expert systems referred to as Intelligent
Design Tools (IDTs), and a semantic network of frames. The ICADS components run as
distributed processes in a computer network.

To facilitate distributed expert system execution, a communication framework was
developed which allows CLIPS expert systems to assert facts to another expert system under the
control of a blackboard (Taylor 1990, Taylor and Myers 1990). In addition to controlling the
IDT communication, the blackboard has a conflict resolver which arbitrates between IDTs. The
conflict resolver establishes the system accepted values by evaluating suggestions made by IDTs
and is written in CLIPS. The current working model of ICADS has six CLIPS based expert-
systems. Each expert is controlled by the blackboard using the communication framework
described above and are in the following architectural domains: cost, access, lighting, thermal,
acoustics, and structure (Pohl 1989).

To allow C+ + programs to participate in the current problem solution, they have to
communicate with the blackboard and have access to the semantic network of frames at the same

level of representation as the CLIPS experts. The remainder of this paper will describe the
implementation of the distributed semantic network in the CLIPS and C+ + environments and
illustrate sample uses of the C+ + implementation used in conjunction with CLIPS-based
experts.

THE CLIPS FRAME REPRESENTATION

Within the CLIPS environment, the frame-based representation used in ICADS is implemented
as a set of CLIPS facts. A frame is a collection of information about a class or object. The
information is represented in CLIPS with a frame header fact and any number of slot facts.
Slots can define a particular value of the class or identify a relation to another class. In terms
of a node-link data structure, the frame is a node and a relation is a link (Barr and Feigenbaum
1981). It is important to note that this representation does not require any modifications to
CLIPS--it uses only CLIPS facts (Assal and Myers 1990). Unlike procedural paradigms, it is
not necessary to locate an entire frame when a piece of information is needed. Only the
pertinent slots are necessary and are accessed directly through CLIPS pattern matching. A frame
is represented by a set of facts that have one or more common fields to connect them together.
Each fact has a keyword in the first field to indicate the type of information it represents. The
keywords are: FRAME, RELATION, VALUE. The second field has the class name which is
used to connect all the instances of this class or establish a relation with another class.

CLIPS Frame Definition

CLIPS Value Slot Definition

Figure 1 illustrates the CLIPS fact format of
a frame header. The class field defines the
class to which the frame belongs. The in-

(FRAME < class > < instance >)

stance field uniquely identifies the frame. Figure 1 - Frame Fact Format
Having the frame header in a CLIPS left-
hand-side pattern is not always necessary, but it is useful in performing operations on the whole
frame; displaying and deleting are example operations.

Figure 2 shows the CLIPS fact
format of a value slot. This slot (VALUE <class > <attribute > <instance > < values > 1
provides the values for particular
attributes of a frame. It is impor- Figure 2 - Value Slot Fact Format
tant to note that these values are
multifield values and can contain mixed types of data. Note also that the instance of the frame
in contained within the value slot fact. This allows for direct pattern matching of the frame
attribute values.

CLIPS Relation Slot Definition

Figure 3 illustrates the CLIPS
fact format of a relation slot.
This relation slot represents a I I
has-a relationship. The class1 Figure 3 - Relation Slot Fact Format
and instance1 fields indicate
the owning class. The class2 and instance2 fields represent the frame instance which is pointed
to.

An Example CLIPS Frame

An example architectural object is a room or
space. Figure 4 contains an example space
frame with several values and relations. The
relations in the example indicate that the
LOBBY space has four walls. If a wall of a
particular space is to be referenced by a rule,
a pattern similar to the example would be
used.

(FRAME space 15)
(VALUE space name 15 LOBBY)
(VALUE space perimeter 1 5 108)
(RELATION space wall 1 5 1)
(RELATION space wall 15 2)
(RELATION space wall 15 3)
(RELATION space wall 15 4)

Figure 4 - An Example Architectural ~ r a h e
An Example Rule Using a CLIPS Frame

C + + IMPLEMENTATION OF FRAMES

Suppose the building code states that the area
of all bathrooms must be greater than or
equal to twenty square feet. The rule in
Figure to see if the area of a bath-
room is less than twenty square feet. If the
area of the space is too small an error riles-

sage is printed. This simple example illus-
trates how values slots can be used. Relation

The purpose of the frame classes is to provide an object-oriented representation for the frame
facts that are used by the CLIPS IDTs. In order to allow C+ + programs to work with the
current semantic network that is represented in CLIPS, a representation paralleling the CLIPS
frame data structures was implemented using C + + objects. Using the class method interface,
frames can be built explicitly and then added to the network; the user is responsible for creating
any necessary objects to insert into the frame--relations and values are examples. After the
frame has been built correctly it is then entered into the semantic network using net class

(defn.de building-code-check
(FRAME space ?id)
(VALUE space name ?id BATHROOM)
(VALUE space area)id)x&:(<)x 20))

=,
(printout t "The bathroom is too small" crlf)

slots are used in a simpler manner; the type Figure 5 - An Example Rule Using a Frame
of relation is included in the left-hand-side
pattern and can be used to reason about groups of objects at the same time. For example, a rule
could specify a pattern which references all the walls which belong to the BATHROOM space.

methods. The following sections explain the structure of the C+ + classes used to represent a
semantic network of frames.

The Net Class

The net class is basically a container class I I
that represents the entir; semantic network.
It is composed of frame objects. The net
class provides several methods for the addi-
tion, removal, and modification of frames, as
well as, query methods that allow questions
to be asked about the network. Figure 6
shows the class structure of the net class.
The frames data member is a dictionary of
frame objects. A dictionary is an associative

Net DlGtionaty

array where a name is to an actual kigure 6 - The Net Class Structure
I

instance of an object. In this case, the frame
instance name is7mapped to a frame instance
C + + object.

The Frame Class

The frame class is the central component of I 1
the semantic network. A frame is uniquely
identified by its name and instance number
and contains value and relation slots illustrat-
ed by Figure 7. The frame class has several
methods that permit the addition, and deletion
of value and relation slots, in addition to
methods that return information about the
frame itself.

1 Fnme Ust

f Name: \ hnnm,-~wn,, ... J
Instance:
Ownen: / Dictionary

The Slot Class

I I

Figure 7 - The Frame Class Structure

owner-name:
owner-Instance:

The slot class is an abstract class and is used
to derive new classes. This provides a stan-
dard interface for all the slot classes. With
this class the network can always make cer-
tain assumptions about the methods it can call
in any derived slot class. As Figure 8 shows
there are no actual data members present in
this class--this is why it is abstract.

Figure 8 - The Slot Class Structure

Slot

The Value Class

The value class is the C+ + representation of
the CLIPS value fact and is derived from the
slot abstract class. This class holds multifield
values in the form of strings, integers, and
floating points and provides methods for the
manipulation of these multifield items. The
structure represented in Figure 9 shows the
slot class abstract members as well as some
additional members--this is an example of
inheritance in C + + .

The Relation Class

The relation class, like the value class, is also
a direct representation of a CLIPS fact--the
relation fact; it is also derived from the slot
class. This relation represents a "has-a"
relationship, and when this object is inserted
as a slot in a frame object, it defines the
relationship between two frames. In addition,
when a relation is created, the frame pointed
to by the relation is notified that a relation-
ship has been established. This allows a
frame to know what frames have relations
pointing to it. Figure 10 shows the structure
of the relation class.

The Val Class

The val class is used to represent all the types
of data that could be used in a value class
(i.e. strings, integers, floating points).
Instances of this class are used by the value
class to store values for value facts; the value
class has a list of val objects as one of its
data items. Figure 11 depicts the structure of
the val class.

1 1 Name: 1 I

1 1

Figure 9 - The Value Class Structure

Screen:
Display:
value-list.

Relation -

Ust
-I vaLval.v al....

h a :

Owner:
Owner-name:
Owner-instance:

\ ,'
Figure 10 - The Relation Class Structure

Val Union

type-tag:
val:

Figure 11 - The Val Class Structure

TRE FRAME PARSER

An alternative to using class methods for constructing a network is the frame parser. The frame
parser was designed to accept an input language that specifies CLIPS facts in the same format
as the CLIPS representation uses and is listed in Appendix A. Using the frame parser relieves
the user from having to create new frame class instances, reducing the complexity of the coding
effort. This language does not provide queries about the network structure; the user must rely
on the class methods.

In addition to the fact information, an action is prepended to the fact to indicate what
action is to be taken with the fact. There are three supported actions: ADD, MODIFY, and
DELETE. For example, the keyword ADD is used to add a new frame to the semantic network.

EXAMPLE USES OF THE C+ + FRAME CLASSES
Several applications have been written which use the C+ + frames in a procedural environment.
The applications are suited to an environment such as C+ + much more than an expert system
shell like CLIPS; these types of programs are not easily expressed using CLIPS.

The Design Interface

One of the primary objectives of the Design Interface was to view changes in the semantic
network as they occurred; the user should be able to specify the desired slots to view, and the
Design Interface would automatically update the display as values change.

As facts come from the blackboard, they are parsed using the frame parser, described
previously, and are stored in the semantic network of the Design Interface. In addition, a
module in the Design Interface tries to match the incoming fact with a user-specified set of slots.
If there is a match, the values are then displayed or updated, which ever case is appropriate.

The Pre-Design Module

Within the ICADS model the Pre-Design Module (PDM) is used to construct a building design
starting with collections of objects that represent the spaces that are to be included in the final
building structure as denoted by the Project Design Object Frames (PDO). The PDOs are
loaded into the PDM via the frame parser which was described above.

Once the PDO frames are loaded into the system the PDM can now make queries about
these frames. The spaces frames (PDO frames that represent spaces) are displayed as circles
on the screen that the user can select and position as desired. Criteria are then specified by the
user to assist the PDM in choosing a central space for the layout of the structure.

After the layout is agreed upon by user the building layout is sent to a CAD system as
draw commands for display. A geometry interpreter notices these draw commands and sends
messages, that are basically equivalent to the grammar specified by the frame parser, to a
blackboard. Once these statements are received by the blackboard and a representation of the
semantic network is built in CLIPS, the same messages are sent to any IDTs that require them.

This technique allows IDTs to be written in either C++ or CLIPS. In the case of
CLIPS the messages sent from the blackboard are placed in the fact list and the CLIPS rules will

fire accordingly. If C + + is used the messages are handled by the frame parser which will build
the same semantic network structure using the frame classes. These frame classes can then be
used by functions written in C + +.

CONCLUSIONS

Executing expert systems in a distributed environment has allowed for an increased level of
complexity to be introduced. By having multiple representations, both procedural and expert
system, available to programmers, the appropriate strengths of each paradigm can be used for
a particular application.

The experiences of the ICADS project have proven both methods of representation to be
useful. The sample applications discussed previously would not be as easily implemented in the
CLIPS environment. Although, the introduction of the object paradigm to CLIPS 5.0 may
remove the need to implement the C+ + frames under certain circumstances. However, CLIPS
5.0 will never completely replace the C + + frame representation; the C + + representation
allows existing applications to interface into the semantic network in an intuitive and direct
manner.

REFERENCES

Assal, H. and L. Myers (1990). An Implementation of a Framebased Representation in CLIPS.
First CLIPS Conference Proceedings, Houston, Texas. pp. 570-580.

Barr, A. and E. Feigenbaum (1981). Frames and Scripts. The Handbook of Artificial
Intelligence. Vol. I., William Kaufmann, Stanford, CA.

Coyne, R. C., M. A. Rosenman, A. D. Radford, M. Balachandran and J.S. Gero (1990).
Knowledge-Based Design Systems. Addison-Wesley, Reading.

Giarratano J., G. Riley (1989). Expert Systems: Principles and Programming. PWS-Kent,
Boston.

Myers, L. and J . Pohl (1 99 1). Computer-Based Intelligent Design Assistance: Concepts and
Strategies. First International Conference on Artificial Intelligence in Design.
Edinburgh, Scotland, U.K.

NASA (1989). CLIPS Reference Manual: Version 4.3 of CLIPS. Artificial Intelligence Section,
Lyndon B. Johnson Space Center. Houston, TX.

Pohl, J., L. Myers, A. Chapman, L. Chirica, J. Snyder, H. Assal, J. Taylor, C. Johnson, D.
Johnson (1990). Knowledge-Based CAAD and the CLIPS &pen System Shell. Technical
Report, CADRU-04-90, CAD Research Unit, Design Institute, Cal Poly, San Luis
Obispo, CA.

Pohl, J., L. Myers, A. Chapman, J. Snyder, H. Chauvet, J. Cotton, C. Johnson, D. Johnson
(1991). ICADS Working Model Version 2 and Future Directions. Technical Report,
CADRU-05-91, CAD Research Unit, Design Institute, Cal Poly, San Luis Obispo, CA.

Pohl, J., L. Myers, A. Chapman, J. Cotton (1989). ICADS: Working Model Version 1.
Technical Report, CADRU-03-89, CAD Research Unit, Design Institute, Cal Poly, San
Luis Obispo, CA.

Taylor, J. (1990). A Framework for Multiple Cooperating Agents in an Intelligent Computer-
Aided Design Environment. (Masters Thesis). School of Architecture and Environmental
Design, Cal Poly , San Luis Obispo, CA.

Taylor, J. and L. Myers (1990). Executing CLIPS Expert Systems in a Distributed Environment.
First CZIPS Conference Proceedings, Houston, Texas. pp. 686-695.

APPENDIX A - Frame Parser Grammar

f a c t :
YaDD a d d a c t i o n s

I YMOD modact ions
I YDEL d e l a c t i o n s
i

a d d a c t i o n s :
YFRAME f r a m e g a r t

I YVALUE v a l u e g a r t
I
I YRELATION r e l a t i o n g a r t
i

modac t ions :
YVALUE v a l u e g a r t

i

d e l a c t i o n s :
YFRAME f r a m e g a r t

I
I YVALUE v a l u e g a r t
I
I YRELATION r e l a t i o n g a r t
i

f r a m e g a r t :
c l a s s i n s t a n c e

i

v a l u e g a r t :
c l a s s a t t r i b u t e i n s t a n c e v a l u e - l i s t

i

r e l a t i o n g a r t :
c l a s s c l a s s i n s t a n c e i n s t a n c e

i

v a l u e - l i s t :
v a l u e

I v a l u e - l i s t v a l u e
i

v a l u e :
YSTR

I Y INT
I YREAL
;

c l a s s :
YSTR

i

i n s t a n c e :
YINT

i

a t t r i b u t e :
YSTR

i

OB JECT-ORIENTED KNOWLEDGE REPRESENTATION
FOR EXPERT SYSTEMS

Stephen L. Scott

Hughes Information Technology Company
Washington Engineering Laboratory

Abstract: Object-oriented techniques have generated considerable interest in the A1 community in
recent years. This paper discusses an approwh for representing expert system knowledge using classes,
objects, and message passing. The implementation is in version 4.3 of NASA's CLIPS, an expert system
tool that does not provide direct support for object-oriented design. The method uses programmer-imposed
conventions and keywords to structure facts, and rules to provide object+riented capabilities.

1. INTRODUCTION

A typical expert system consists of a rules, facts, and an inference engine. Although many types
of problems can be addressed using this knowledge representation model, others may require
features afforded by logical, network, or frame based models (Mylopoulos and Levesque, 83).
Recent interest in object-oriented design has suggested an object-based view of knowledge
representation, combining elements of several of these mechanisms (Leung and Wong, 90).

Object-oriented design elements, such as classes, objects, and messages, can be
implemented in an expert system that does not directly support these capabilities by using facts
containing object-oriented keywords and using rules to manipulate these facts. A fact with an
object-oriented keyword will be referred to as a "structured fact". The use of facts that contain
keywords in certain fields bears similarity to the use of an IS-A or A-KIND-OF link in a semantic
network. The object-oriented keyword technique is used by (Assal and Meyer, 1990) in the
implementation of a frame-based knowledge representation mechanism. Before proceeding further
with the details of this approach, it may be useful to clarify the terminology, adapted from (Meyer,
88), that will be used in the remainder of this paper.

A class is a structure defined prior to run-time that identifies data and procedural
characteristics of a program entity. Classes can be implemented in an expert system using a set of
strucrured facts that describe f e a m s that characterize the class. An object is a run-time instance
of a class. An object can be represented in an expert system by a structured fact that uniquely
identifies the object. Additional structured facts can be used to store the current feature values of
the object. A feature is a data characteristic associated with a class. Features can be of any data
type, such as integer, real, character, or string. A method is a procedural characteristic associated
with a class. In an exprt system, methods can be implemented using rules. A message is a
structured fact that contains either a request for the current value of an object's feature, or a request
to initiate a method associated with an object. The use of messages is one of the distinguishing
characteristics of the object-oriented methodology.

2. IMPLEMENTING CLASS AND OBJECT STRUCTURES

2.1 Class Definition Using Facts

A class is &fined by asserting one or more facts of the form

(CLASS <class-name> <parent-class>)

This declaration indicates that <class-name> is a subclass of <parent-class>. By
convention, in the first CLASS declaration for a class, the identifiers used for <class-name> and
<parent-class> should be the same. This is required by the syntax of the rule used to instantiate
objects from class declarations. Note that multiple inheritance is accomplished by allowing
multiple class declarations, as in the following:

(CLASS
(CLASS
(CLASS

A class feature is specified as such

(HAS-FEATURE <class-name> <feature-name>
[default-feature-value(s)])

where [default-feature-value(s)] consist of one or more data items that comprise the &fault
values of this feature.

A class method is specified using a fact such as

(HAS-METHOD <class-name> unethod-name>)

The actual implementation of the method is not specified here, nor is any parameter
information given at this time.

The following example, employing the CLIPS deffacts fact structuring construct, illustrates
a typical class declaration. The length and width fields have been assigned arbitrary &fault values.

(deffacts rectangle-class
(CLASS rectangle rectangle)
(HAS-FEATURE rectangle length
(HAS-FEATURE rectangle width

2)

(HAS-FEATURE rectangle am3
5)
10)

(HAS-METHOD rectangle rectangle-area))

2.2 Object Instantiation Using Facts

An object is created by declaring the existence of the object and its features. The instantiation is
accomplished by asserting a fact of the following form

(INSTANCE <object-id> <class-name>)

where cobject-id> is a unique identifier associated with this object, and <class-name> is
the name of a parent class.

The features of the object are automatically asserted with appropriate default values by a
rule in the expert system that tests for the presence of a newly instantiated object. The rule asserts
facts that make the connection between this particular object and its features. For each feature, a
fact of the following form is asserted.

(HAS-FEATURE <object-id> <feature>
[default-value(s)])

Similarly, methods associated with an object can be declared by asserting facts such as:

(HAS-METHOD <object-id> <method-name>)

The following example, taken from the rectangle class presented earlier, illustrates a typical
object instantiation.

(INSTANCE a-box =tangle)
(HAS-FEATURE a-box length
(HAS-FEATURE a-box width

2)
5)

(HAS-FEATURE a-box area
(HAS-METHOD a-box rectangle-area)

10)

3. MANAGING OBJECTS

3.1 Top Level Object Management Facts

While these conventions provide a way to structure classes and objects, it is also useful to provide
some "system functions" to manage objects. Some typical operations might include getting and
setting object feature values, and creating and destroying objects. To get an object's values, a fact
of the following form is asserted.

(GET <object-id> <feature>)

An object's feature is set using a fact such as

These facts are used to trigger the GET and SET rules (see 3.2) that bring about the
appropriate functionality by reading or updating the feature of the object.

To create an object, a fact of this form is asserted

(CREATE <object-id> <class>)

An object is destroyed by asserting a fact of the following form

(DESTROY <object-id>)

These facts trigger the CREATE-INSTANCE and DESTROY-INSTANCE rules that
instantiate or remove the object and its associated features.

It is also useful to provide other functions to return cwent information about a given
object. Listing the f e a m s of an object may be accomplished by asserting the following fact

(SHOW-FEATURES <object-id>)

Similarly, listing the parent class or classes of an object may be accomplished by asserting
a fact such as this.

(SHOW-CLASS <object-id>)

These facts cause the SHOW-FEATURES and SHOW-CLASS rules to display the desired
information.

It should be noted that these are top level functions for the benefit of the programmer.
Analogues to the top level GET and SET functions are provided at the object level by the messages
RETURN-VALUE, REQUEST, and APPLY-METHOD, discussed in further detail below.

3.2 Top Level Object Management Rules

The fact structuring conventions described so far do not provide the functionality needed, although
they can be used to trigger rules that do. In the following discussion of the implementation of
these rules, it is necessary to introduce the syntax of the CLIPS expert system. A complete
presentation of the CLIPS language may be found in (Giarratano, 89) and in (Giarratano and
Riley, 89).

The GET rule is used to obtain the current value of a feature of a particular object. It is
implemented as follows.

(defrule GET
(GET ?object-id ?feature)
(INSTANCE ?object-id ?class)
(HAS-FEATURE ?object-id ?feature $?values)

=>
(printout t ?object-id " has feature " ?feature)
(printout t " with value " $?values crlf))

The SET rule is similar, however, it contains additional code to manage the retraction of the
old HAS-FEATURE and the assertion of a new HAS-FEATURE fact.

(defrule SET
(INSTANCE ?object-id ?class)
?x c- (SET ?object-id ?feature $?new-values)
?y c- (HAS-FEATURE ?object-id ?feature $?values)

=>
(retract ?x ?y)
(assert (HAS-FEATURE ?object-id ?feature $?new-values)))

Object instantiation is accomplished using a two-step process. First, CREATE-
INSTANCE recursively traverses the inheritance chain, asserting facts that declare this object to be
an instance of each of its ancestor classes. In the second phase, CREATE-FEATURES asserts
facts to declare this object's features, and CREATE-METHODS asserts facts to declare this
object's methods.

(defh.de CREATE-INSTANCE
(CREATE ?object-id ?class)
(CLASS ?class ?parent-class)

=>
(assert (INSTANCE ?object-id ?parent-class)))

(defrule CREATE-FEATURES
(INSTANCE ?object-id ?class)
(HAS-FEATURE ?class

?feahm $?&fault-values)
=>

(assert
(HAS-FEATURE ?object-id ?feature $?&fault-values)))

(defrule CREATE-METHODS
(INSTANCE ?object-id ?class)
(HAS-METHOD ?class ?method-name)

=>
(assert (HAS-IWZTHOD ?object-id ?method-name)))

Object deletion is accomplished similarly. Instances of an object and any features and
methods of the object must be removed. DESTROY-INSTANCE handles the former, and
DESTROY-FEATURES and DESTROY-METHODS the latter.

(defrule DESTROY-INSTANCE
(DESTROY ?objec t-id)
?x <- (INSTANCE ?object-id ?class)

=>
(retract ?x))

(defiule DESTROY-FEATURES
(DESTROY ?object-id)
?x c- (HAS-FEATURE ?object-id ?feature $?values)

=>
(retract ?x))

(defiule DESTROY-METHODS
(DESTROY ?object-id)
?x c- (HAS-METHOD ?object-id ?method-name)

=>
(retract ?x))

The SHOW-FEATURES rule displays all the features of a particular object. It is
implemented as follows:

(defiule SHOW-FEATURES
(SHOW-FEATURES ?object-id)
(INSTANCE ?object-id ?class)
(HAS-FEATURE ?object-id ?feature $?values)

=>
(printout t ?feature " with value " $?values crlf))

The SHOW-CLASS rule, listing the parent class or classes of an object, is similar.

(defiu,le SHOW-CLASS
(SHOW-CLASS ?object-id)
(INSTANCE ?object-id ?class)

=>
(printout t ?object " is instance of class " ?class crlf))

4. MESSAGE PASSING

A message can be either a request for data or the initiation of a procedural action. Both types of
messages can be implemented using structured facts and rules.

4.1 Feature Extraction Using Facts

In 3.2, the GET rule was used to print the value of a feature. It is also useful to extract an object's
feature value and make the information available for use by other objects. Such a request for data
can be made by asserting a fact of the following form:

(REQUEST <calling-object-id>
<target-object-id> <feature>)

The <calling-object-id> identifies the object that initiated the request, the <target-object-id>
shows which object is being queried, and <feature> indicates the feature of interest in the target
object. The REQUEST fact is detected by a general "request manager" (see 4.3) rule that removes
the REQUEST fact, polls the target object for the requested value, and creates a reply to the
message by asserting a fact of the following form:

(RETURN-VALUE <calling-object-id> <feature> <value>)

4.2 Method Invocation Using Facts

A request to invoke a method is accomplished by asserting a fact such as

(APPLY-METHOD <calling-object-id> <target-object-id>
<method> [optional parameters])

Again, the <calling-object-id> identifies the object that requested the invocation, the
<target-object-id> shows which object is being queried, and <method> indicates the method of
interest in the target object. In some method invocations, it may be necessary to pass one or more
parameters. Unlike the generalized REQUEST operation above, where a single rule can handle all
requests by all objects, each method requires a separate rule. The rule performs the necessary
computation, and creates a reply to the message by asserting a fact of the following form:

(RETURN-VALUE <calling-object-id> <feature> <value>)

4.3 A Rule to Implement Feature Extraction

The rule that manages REQUEST messages is as follows:

(&frule REQUEST-MANAGER
?x <- (REQUEST ?caller-id

?target-id ?feature)
(HAS-FEATURE ?target-id ?feature $?value)
(INSTANCE ?target-id ?target-class)

=>
(retract ?x)
(assert

(RETURN-VALUE ?caller-id ?feature $?value)))

The rule requires the following: a REQUEST fact must exist, the requested feature must be
declared as a feature of the target object, and the target object must have been previously
instantiated. The (retract ?x) statement removes the REQUEST fact.

4.4 Rules to Implement Method Invocation

Each method defined in a class must be accompanied by an appropriate rule to implement the
method. A uniform naming convention, such as the concatenation of the class name, a hyphen,
and the method name, can be very useful. The following rule is an example of a method to
compute the area of a rectangle.

(defrule rectangle-area
?x <- (APPLY -METHOD ?caller-id ?target-id

rectangle-area)
(HAS-FEATURE ?target-id length ?length)
(HAS-FEATURE ?target-id width ?width)
(INSTANCE ?target-id rectangle)

=>
(retract ?x)
(assert
(RETURN-VALUE ?caller-id area =(* ?length ?width))))

This rule requires the following: a request to apply the "area" method must exist, the target
object must have a length and width feature, and the target object must have been previously
instantiated. The RETURN-VALUE fact contains the desired arithmetic result, where the =(*
?length ?width) statement is used to calculate the result of the expression and store the value as a
field of a fact. The (retract ?x) statement removes the APPLY-METHOD fact.

4.5 Message Cleanup

In the featwe extraction rule (4.3) and the method invocation rule (4.4), statements were explicitly
included to remove the message fact that caused the rule to fue. It is useful to consider a general
purpose message cleanup method, similar to the "garbage collection" operation performed by most
symbolic computation implementations. A low priority rule can be used to remove all messages
and interim results after each message processing cycle. This ensures that old messages or return
value facts arr: not accidentally reused or misused at a later time.

In order to simplify the implementation of the garbage collection rule, a fact containing each
object-oriented command keyword is used. As command keywords are expected to occur in the
first field of a structured fact, any fact containing a command keyword in its fvst field at the end of
a message processing cycle can be assumed to be eligible for garbage collection.

A simple garbage collection rule can be implemented as follows. The list of commands is
stored in the COMMAND-LIST fact, and the garbage collection rule tests to ensure that the selected
fact contains a command.

(deffacts COMMAND-LIST
(COMMAND-LIST

RETURN-VALUE
CREATE DESTROY
SET GET
SHOW-ATIIIIBUTE SHOW-CLASS))

(defrule garbagecollec tion
(salience -5)
(COMMAND-LIST $?and-set)
?x <- (?cmd&:(member ?cmd $?and-set) $?cmd-tail)

=>
(retract ?x))

5. USING OBJECT-ORIENTED KNOWLEDGE REPRESENTATION

The techniques described in this problem were used as the basis for an object-oriented knowledge
base that was incorporated in the software prototype of a satellite metatdata information system.
This domain is typified by very large quantities of data, suggesting a fundamental need for
intelligent query and browse features. More thorough treatments of satellite information systems
can be had in (Corey and Carnahan, 90) and (Roeloffs and Campbell, 90).

The project constraints dictated that the expert system component had to be portable,
extensible, flexible, and robust. In addition, it had to be developed rapidly, and interface readily
with existing C and C++ software on UNIXl platforms. The NASA CLIPS tool was virtually
ideal for this task, although it lacked support for object-oriented modelling.

One of the lessons learned from this experience was that an object-oriented knowledge base
can be fairly easy to integrate with traditional software. The object-oriented approach allowed the
existing C programs to be minimally affected The expert system functioned transparently to the C
code, providing services through the use of the assert() and run() function calls.

The expert system software architecture was based on a "state-machine" model, with
control states similar in some respects to the "read evaluate print garbage-collect" cycle of a LISP
interpreter. The expert system, once initialized, entered a "read" state, where it waited for requests
for information. Messages, in the form of facts asserted into the knowledge base by procedural
C/C++ code, would either supply information about the constraints of the current query, or cause
the system to enter an "evaluation" state.

In the "evaluation" state, the expert system applied rules to find information meeting the
criteria dictated by messages. The derived information, typically tokens in the knowledge base that
matched the left-hand-side (LHS) of a rule, would be processed on the right-hand-side (RHS) of
the rule as parameters to a user defined C function that appended the information to a globally
available linked list structure.

After a given request was satisfied, the expert system entered a "garbage-collection" state.
All messages, commands, and intermediate facts were eliminated, and the system then returned to
the initial "read" state to wait for additional messages.

The application program that invoked the expert system handled the "print" phase.
Information was taken from the linked list structure generated by the expert system and used by the
C program.

This method made the interfaces between the C/C++ code and the expert system very
straightforward. The C programs made use of the expert system by including the <clips.h>

UNIX is a trademark of AT&T Bell Laboratories.

headers, loading and initializing selected rule and fact files, declaring a global linked list of strings
to hold query results, and proceeding with the application processing.

When information was needed from the expert system, a character string containing a
syntactically valid data request (typically in the form of a constraint or a command) was assembled
and "asserted" into the expert system. When all requests were in place, a call to the run(-1)
function was made, activating the expert system rules. When the expert system had finished, the
results of the query were available in a linked list. The C program could proceed at this point with
its processing, which typically involved presenting the information onto an X Windows2 dialog
box.

6. CRITICAL ASSESSMENT AND PERFORMANCE ISSUES

The use of structured facts and rules as suggested in this work is no different than the use of other
fact structuring conventions, such as the Object Attribute Value (OAV) triple or the IS-A or AKO
(A-Kind-Of) links in semantic networks. The approach offers more functionality than the OAV
model, since procedural and data elements can be associated with an object.

The method may offer certain performance advantages over more sophisticated systems,
since expert systems are optimized to process rules and facts, rather than objects and messages.
The method is reasonably portable, although rules may need to be recoded in order to
accommodate the particular syntax of the tool being used.

Perhaps the greatest advantage of this method is its high degree of flexibility. While a
number of expert system shells incorporate object oriented extensions, few if any allow the user to
completely redefine the syntax of the object manipulation language at will.

A detrimental performance aspect of this method is that using facts to implement inheritance
can cause a great many facts to be asserted when objects are instantiated If deep inheritance chains
are modeled, multiple instantiations of an object far down the chain may begin to pose memory and
speed problems on the expert system inference engine.

Other, more subtle problems also exist. The method does not account for feature
inconsistencies, hence it is possible for an object to inherit the same feature name from different
parent classes if the default values are different. This will result in an inconsistency, since the
object will manifest two features with the same name yet different values. Other object-oriented
concerns, such as selective inheritance, or precedence of local features or methods over inherited
features or methods are not addressed.

7. CONCLUSIONS

This paper has introduced a method for defining classes, objects, and messages in an expert
system. The method can be implemented using conventional hardware and very straightforward
expert system tools, and does not require a sophisticated run-time object or message manager. It
requires some programmer-imposed conventions on facts and rules, and calls for the use of
structured facts containing object-oriented keywords. Promising results have been obtained by
incorporating an expert system using object-oriented knowledge representation with traditional C
code.

The X Window System is a trademark of the Massachusetts Institute of Technology.

194

8. REFERENCES

(Assal and Myers, 90) Assal, Hisham, and Leonard Myers. "An Implementation of a Frame- based
Representation in CLIPS." First CLIPS Conference Proceedings, NASA Conference
Publication 10049, Volume IT, pp. 570-580.

(Corey and Carnahan, 90) Corey, Stephen M., and Richard S. Carnahan. "Knowledge Structure
Representation and Automated Updates in Intelligent Information Management Systems."
1990 Goddard Conference on Space Applications of Artificial Intelligence, NASA .'
Conference Publication 3068, May 1990, pp. 271-282.

(Giarratano and Riley, 1989) Gianatano, Joseph C., and Gary Riley. m m s : . .
Pro-. Boston, PWS-Kent Publishing, 1989.

(Giarratano, 1989) Giarratano, Joseph C. W S User's G*, Artificial Intelligence Section,
Lyndon B. Johnson Space Center, NASA. 1989.

(Leung and Wong, 90) Leung, K. S., and M. H. Wong. "An Expert System Shell Using
Structured Knowledge." IEEE Computer. March 1990. p38-47.

(Meyer, 88). Meyer, Bertram. W c t O r i e W Software Con-. New York, Prentice Hall,
Inc., 1988.

(Mylopoulos and Levesque, 83) Mylopoulos, John and Hector Levesque. "An Overview of
Knowledge Representation." in Brodie, M.L., Mylopoulos, J., and Schmidt, J.V.,(eds.)
On Conceptual Modelling: Peapectives from A m l a 1 w n c e . D d a s e s . and

. .
Progl.amminp, Springer-Verlag, New York, 1983.

(Roeloffs and Campbell, 90) Roeloffs, Larry H., and William J. Campbell. "Using Expert
Systems to Implement a Semantic Data Model of a Large Mass Storage System." 1990
Goddard Conference on Space Applications of Artificial Intelligence, NASA Conference
Publication 3068, May 1990, pp. 253-270.

SESSION 4 B

N92-pt:581 -d

LINKFINDER: AN EXPERT SYSTEM THAT CONSTRUCTS
PHYLOGENIC TREES

James Inglehart and Peter C . Nelson

Department of Electrical Engineering and Computer Science (M/C 154)
The University of Illinois at Chicago
Chicago, Illinois 60680 e-mail: inglehar@uicbert.eecs.uic.edu

Abstract. An expert system has been developed using CLIPS that automates the process of
constructing DNA sequence-based phylogenies-trees or lineages that indicate evolutionary relation-
ships. LinkFinder takes as input homologous DNA sequences from distinct individual organisms. It
measures variations between the sequences, selects appropriate proportionality constants, and esti-
mates (if possible) the time that has passed since each pair of organisms diverged from a common
ancestor. It then designs and outputs a phylogenic map summarizing these results.

LinkFinder can find genetic relationships between different species, and between individuals of the
same species, including humans. It was designed to take advantage of the vast amount of sequence
data being produced by the celebrated Genome Project, and should be of great value to evolution
theorists who wish to utilize this data, but who have no formal training in molecular genetics.

The mathematical basis of LinkFinder's DNA sequence analysis is remarkably simple. Evolu-
tionary theory holds that distinct organism carrying a common gene inherited that gene from a
common ancestor. Homologous genes vary from individual to individual and species to species, and
the amount of variation is now believed to be directly proportional to the time that has passed since
divergence from a common ancestor. The proportionality constant must be determined experimen-
tally; it varies considerably with the types of organisms and DNA molecules under study. Given an
appropriate constant, and the variation between two DNA sequences, a simple linear equation gives
the divergence time.

INTRODUCTION

Plants and animals have long been classified according to the similarities and differences
in their form and structure. When the concept of evolution was first proposed, biologists
naturally used these morphological features to establish phylogenies--evolutionary trees.
Proposed lineages were modeled as paths (from root to leaf) through the tree, and closely
related species were shown as parallel branches emanating from a common ancestor node.

Constructing a tree based on morphology has always been highly subjective, more of
an art than a science. Most classifications are based on anatomy, but microscopic species,
such as bacteria, are more commonly distinguished by chemical analyses. Morphology is
good for classifying evolutionary relationships at certain scales, but it indicates neither the
large-scale structure of evolution nor the fine details. Mice are clearly much closer cousins
to humans than bacteria, but the details of how we diverged from mice are obscure, despite

numerous anatomical similarities between mice and men. And bacteria seem so alien to
us (despite some common features) that the details of how we diverged from them seem
impossible to determine from morphology alone.

Fortunately, sophisticated new methods of genetic analysis have arisen to challenge
morphology as the prime determinant of family trees. We now understand that all life
processes are ultimately controlled by DNA. This self-replicating molecule is found in every
living thing, and it is the key to the structure and complexity of all life on earth. Because
of recent technological advances, biologists and geneticists are now able to ascertain the
atomic structure of an individual organism's DNA molecules. Since the common ancestor
of all life on earth is believed to have been a single, primal molecule of DNA, evolution can
be viewed as simply the development of new forms of DNA through accidental mistakes in
duplication.

Because all DNA is constructed exactly the same way (only the specific base sequence
differs from individual to individual), DNA analysis provides an objective basis for discern-
ing evolutionary relationships. Closely related species should have closely similar DNA
sequences. Distantly related species will have far more dissimilarities. But if all life is
truly related (through some primal common ancestor) then even the most disparate life
forms should share some similarities. All life shares the same chemical basis, so total DNA
sequence divergence (to the point of zero resemblance between distantly related organisms)
should not occur (Doolittle et al. 1986).

Some phylogenic trees based on genetic analyses are radically different from traditional
morphological trees, challenging our traditional views. For example, comparative studies
of the Ursidae, or bear family, and Procyonidae, or raccoon family, indicate that the giant
panda belongs in the bear family, whereas the red panda belongs in the raccoon family
(OIBrien et al. 1985). Phylogenically, then, there is really no such thing as a "panda,"
whereas bears and raccoons really exist.

Similar results have been obtained in primate studies. Comparative analyses of the
beta-globulin genes of humans and the great apes (the chimpanzee, gorilla, and orangutan)
indicate that humans are more closely related to chimpanzees than chimpanzees are to the
other great apes (Miyamoto et al. 1988). This contradicts the common notion (based on the
morphological similarities of apes) that humans diverged from the common ancestor of the
great apes. In fact, the semantic label "ape" has now lost its phylogenic connotation, since
it makes more sense to lump humans and chimpanzees together than to group chimpanzees
with the other great apes (Ueda et al. 1986).

The most controversial result (cf. Latorre et al. 1986) has been the "Mother Eve hypoth-
esis" of Rebecca Cann and her colleagues. Their studies of worldwide human mitochondrial
DNA indicate that all humans alive today have a common ancestor, a woman, who lived
in Africa roughly 200,000 years ago (Cann et al. 1987). Prior to this discovery, anthro-
pologists generally assumed that the the most recent common human ancestor must have
lived closer to one million years ago (S toneking et al. 1986).

The Genetic Code

The genetic information in DNA is encoded within strings of nitrogenous bases. There are

four of these: adenine (A), cytosine (C), guanine (G), and thymine (T). A DNA sequence
can be thought of as simply a long string of these four letters in some combination.

A string of three bases codes for an amino acid ; there are exactly twenty of these.
Proteins are simply long strings of amino acids. Thus, for any protein, there is some
corresponding base sequence that acts as a template for that protein; this template is
called a gene. Genes code for protein production, and chromosomes are simply long strings
of genes. A genome is the entire gene set of a single organism.

During reproduction, the genome is copied, to be passed on to future generations.
Usually the copy is perfect, but sometimes an incorrect base is substituted. Or a gene may
be damaged by something in its environment. If the mutation is a minor one (non-fatal) it
will be copied and passed on to future generations. Over time, these inheritable mutations
will lead to the development of new genotypes within a species, and ultimately to new
species.

Algorithmic Tree Construction

These considerations have led to the development of phylogenic tree construction algo-
rithms, which take as input DNA sequence data from living organisms. The input organ-
isms are then "clustered" into larger related units on the basis of their genetic similarities.
The more distantly related clusters are then iteratively clustered in turn, until a complete
tree is formed. Each internal node on this tree represents a hypothetical ancestor form, a
"missing link," joining separate lineages. Leaf nodes represent the input organisms living
today. The root node represents the common ancestor of all the leaves on the tree.

Detailed family trees of certain organisms, such as pedigreed animals, are already
known. These known trees can be used to test tree construction algorithms. Given genetic
data from present-day forms, a good algorithm should reconstruct the known trees. Fruit
flies are good test cases, since they have been bred in the laboratory for decades. Some
human genealogies extend more than 1,000 years. But no known trees go back far enough
in time to link distinct species, such as humans and chimpanzees.

Because known trees are so limited, tree construction algorithms are usually tested on
made-up data. An single ancestor DNA sequence is chosen at random, and descendent
generations are iteratively created by random base substitutions (Tateno 1985). A good
algorithm will correctly reconstruct the entire made-up tree from the DNA sequences of
its final generation.

In an accurate morphologically-based tree, the vertical height of lineages is made pro-
portional to the passage of time. Divergence times are deduced from accepted geological
time scales by examining the fossil record. Ideally we would like trees constructed by al-
gorithm to also show how long ago each pair of lineages diverged. But finding the correct
time scale is difficult, and highly organism-dependent. Bacteria, for example, can mutate
much faster than humans. Because of these difficulties, the vertical height of divergent
lineages in trees constructed by algorithm is usually made proportional to the "genetic
distance" between divergent pairs of organisms. This "distance" is the calculated (or es-
timated) percentage by which the genomes of the two organisms diverge. When a tree
is constructed from genetic data, some attempt is usually made to convert this "distance

scale" to a time scale. This conversion usually requires expert knowledge concerning the
fossil record, the types of organisms under study, and the types of genetic data being used.

LinkFinder automates the process of tree construction in two ways : 1) it automatically
constructs a tree from genetic data, and 2) it converts (if possible) the distance scale of the
initial tree to a time scale. The topology of the final tree is entirely determined by the input
data and the tree construction algorithm. But to convert the tree from a distance scale to
a time scale, LinkFinder requires an expert system. Our CLIPS-based system takes into
account the specific nature of the input data in choosing a conversion, considering both
the fossil record and known mutation rates before making a decision.

The fossil record remains the primary source of authoritative evidence on the divergence
times of major lineages, and LinkFinder's knowledge base is mostly derived from the
published literature on the fossil record. Its knowledge is thus limited to areas where
evidence of divergence times has already been found. Since the fossil record is incomplete,
there are considerable gaps in the knowledge base, which hopefully will be filled in the
future. Other techniques of estimating genetic divergence rates also exist (e.g., Nei and
Tajima 1983, Ferris et al. 1983, and Stoneking et al. 1986), and some of these estimates
are now being added to LinkFinder's knowledge base. Our primary reason for developing
LinkFinder was to take advantage of the explosion of new genetic data being produced by
the Genome Project-the ongoing worldwide effort to map and sequence the entire human
genome, as well as the entire genomes of several other organisms. We hope to continue
developing LinkFinder as the Genome Project progresses, adding new information to its
knowledge base as it becomes available. In its present form, LinkFinder is a powerful tool
for tree estimation, but it will not be a true, general purpose tree constructor until more
complete data is available on rates of divergence.

HOW LINKFINDER WORKS

LinkFinder constructs a phylogenic tree from input genetic data in two distinct stages :

1. The topology of the tree is determined by the unweighted pair-group (UPG) method.
At this stage, branch lengths in the tree are proportional to the calculated percent
difference between the clustered genotypes.

2. A CLIPS-based expert system attempts to determine an explicit time scale for the
tree. It considers known mutation rates and the fossil record (if any) of the organisms
in the tree before making a decision.

Estimating Tree Topology

There is as yet no known algorithmic method of tree construction which can reproduce
known phylogenic trees with unfailing accuracy. Reconstructed trees are therefore phylo-
genic estimates at best.

The UPG method utilized by LinkFinder is the simplest well-known tree construct ion
algorithm (first proposed by Sokal and Michener in 1958), but it has stood well the test
of time. Numerous, far more complicated tree construction algorithms have since been
proposed (e.g., Fitch and Margoliash 1967, Farris 1972, Moore et al. 1973, and Tateno et
al. 1982) but the overall performance of the UPG method still compares favorably with
these (Li 1981).

Genetic data is input to LinkFinder as a two-dimensional array, with each row contain-
ing sequence data from a single operational taxonomic unit (OTU), which can be a gene,
an individual, a population, a species, or a taxa of higher rank (Moore et al. 1973). Each
row also contains a unique label identifying the OTU.

Another input file classifies each OTU according to kingdom, phylum, class, etc. This
taxonomic information will be needed by LinkFinder's expert system.

Sequence data is coded either as a string of amino acids, or (more typically) as a string
of bases. The four possible bases can be coded with the four letters A, C, G, and T, and the
twenty possible amino acids can be coded using any convenient choice of twenty distinct
characters. OTU labels are distinct name strings chosen to identify the OTUs under study,
but in the examples below single letters will be used as labels for hypothetical OTUs.

The UPG method utilized by LinkFinder makes the following assumptions about its
OTU sequence data :

1. Genetic sequences have been chosen to be homologous between OTUs. I.e., if the se-
quence is a gene coding for some protein which varies from OTU to OTU, each OTU
must have inherited that gene from some common ancestor, so that each individ-
ual contemporary form represents divergence from the same ancestral form (Tateno
1985). For example, the gene for hemoglobin, found in some form in all mammals,
is homologous in mammals.

2. Contemporary homologous OTU sequences are assumed to have diverged from the
ancestral form because of random base (amino acid) substitutions in succeeding
generations. (Note that changing a single base in a group of three can also change
the amino acid that the group codes for.) These substitutions are assumed to be
random both in the choice of base (amino acid) and with respect to position in the
sequence. This assumption is well supported by our current understanding of genetic
mutations (Tateno 1985).

3. The number of base substitutions in all lineages is assumed to be linear over time,
i.e., all lineages are assumed to evolve at the same constant rate. This simplifying
assumption is realistic in many cases, but it is not strictly true. The actual number
of base substitutions in an evolutionary lineage over time is believed by many ge-
neticists to follow a Poisson distribution whose mean is the expected number of base
substitutions in that OTU over time. This implies that the actual numbers of base

substitutions in two lineages can differ considerably due to stochastic error (Tateno
1985). When the actual rates for different lineages are very different, tree estimation
by the UPG method is sometimes in error. This has motivated the development
of more complex tree construction algorithms. However, the UPG method is much
simpler to implement, and it works well in the majority of cases (Li 1981).

Assumptions (1) and (2) combined imply that all input genetic sequences must be exactly
the same length, with each containing the same number of bases (amino acids). All three
assumptions must hold for the constructed tree to be considered valid.

Given an input array of homologous sequence data for n distinct OTUs, LinkFinder
starts by computing the genetic distance between every pair of distinct OTUs, and loading
these values into an n x n distance matrix. Genetic distance is simply the percent difference
between two distinct sequences, which is calculated by direct comparison. If the pair of
bases (amino acids) in the ith position of two sequences don't match, a counter is bumped,
and the final count for that pair is divided by the total number of bases (amino acids) in
a sequence.

The tree topology is generated from the distance matrix by the following iterative
algorithm (from Li 1981) :

1. Choose the smallest non-zero distance in the distance matrix. These two closest
OTUs will now be clustered together into a single OTU. E.g., if dAB is the shortest
distance (as in Table I), then A and B are the closest OTUs, and the new OTU will
be- labeled (AB).

2. Draw vertical lines from the chosen nodes A and B to their presumed common
ancestor node (as in Figure 1). Make the lines proportional in length to dAB/2.

3. Construct a new, smaller distance matrix from the old one by taking the distance
between AB and any other OTU, say C, to be the arithmetic average of dAc and
dBc-i.e., d(AB)C = (d A ~ + dBC)/2 (as in Table 2).

4. Continue the process (1,2, and 3) until all the initial OTUs are clustered into a single
binary tree. The root node of this tree will represent the common ancestor of all the
initial OTUs, and the height of the tree will be proportional to the genetic distance
(percent divergence) between the hypothetical ancestor and all of its descendent leaf
nodes.

In the tables and figures, seven contemporary OTUs are labeled A, B, C, D, E, F,
and G, and their initial distance matrix (Table 1) indicates that (AB) should be the &st
cluster, since the sequences of A and B differ by the smallest amount (3%). The common
ancestor of A and B should thus differ 1.5% from each of its descendants, so the parent
node linking A and B is placed at a height of 1.5 percentage units (Figure 1).

The second distance matrix (Table 2) gives us (EF) as a cluster with a height of 2.5
units (Figure 2). The third (Table 3) joins (AB) with D to produce the cluster ((AB)D)
with an overall height of 3.75 units (Figure 3). Next we get ((EF)G), also 3.75 units high
(Figure 4). Then (((AB)D)C), 4.38 units high (Figure 5). We now have only two clusters
left, so our hypothetical common ancestor must lie between them. If we call this root node

Table 2. After one iteration.

(AB)
C
D
E
F

Table 3. After two iterations.

(AB) C D E F G
0 8.5 7.5 10.5 9.5 13.5

0 9 12 11 15
0 9 8 1 2

0 5 9
0 6

(AB)

Table 4. After three iterations.

Table 6. After final iteration.

(AB) C D (EF) G
0 8.5 7.5 10 13.5

((AB)D)
C

(EF)
G

Table 5. After four iterations.

Figure 1. Initial cluster : (AB).
21

((AB)D) C (EF) G ~.

0 8.75 9.25 12.75
0 11.5 15

0 7.5
0

((AB)D)
C

((EFIG)

Figure 2. Resultant cluster : (EF).

((AB)D) c ((EF)G)
0 8.75 11

0 13.25
0

Figure 3. Resultant cluster : ((AB)D).
4 4

O f l A B D E n F

Figure 4. Resultant cluster : ((EF)G).

3fl A B D E F G m
Figure 5. Resultant cluster : (((AB)D)C). m

A B D C
m

E F G

Figure 6. Resultant tree :
X

A B D C E F G

X, then our final tree (Figure 6) can be writ ten in line-form as (((AB)D)C)X((EF)G). Its
height of 6.06 units gives the average divergence of the seven present-day OTUs from their
presumed common ancestor : about 6%.

Estimating Divergence Times

LinkFinder's method of phylogenic tree estimation is a straightforward implementation of
the UPG method. It can produce a tree for any reasonable input set of sequence data.
However, the vertical axis of a true phylogenic tree represents time, not percent divergence.
To produce a true phylogenic tree, LinkFinder must convert the vertical axis to units of
time.

Unfortunately, there is no straightforward way to do this. Divergence rates vary greatly
for different organisms and different types of DNA. To make a reasonable conversion, Link-
Finder must proceed on a case-by-case basis. It must consider the available experimental
evidence on divergence rates for the specific data under study. It needs expert advice.

It was to solve this problem that LinkFinder was equipped with a CLIPS-based expert
system. LinkFinder's knowledge base contains current data on divergence rates and times
for many basic types of organisms. These data have been culled from selected books and
papers on evolution, the fossil record, and genetics. Given the taxa under consideration,
LinkFinder can usually make educated guesses about divergence times.

For example, it has been estimated that prokaryotic organisms (like bacteria) diverged
from eukaryotic organisms (like plants and animals) roughly 1.8 billion years ago. Plants
probably diverged from animals about 1 billion years ago, and animals diverged into ver-
tebrates and invertebrates about 500 million years ago. These facts (from Doolittle et
al. 1986) have been entered into LinkFinder's knowledge base, and LinkFinder can use
them to obtain conversion factors. Given homologous gene sequences from two OTUs,
one human, one bacterial, LinkFinder will assume that their linking ancestor existed 1.8
billion years ago. Based on this knowledge, LinkFinder will postulate a conversion factor
for a divergence-scaled tree containing these two OTUs. E.g., if the pair of homologous
genes (one human, one bacterial) coded for the metabolic enzyme triosephosphate ;so-
merase (found in both bacteria and humans), LinkFinder would find a 54% divergence
between the pair (Doolittle et al. 1986). This suggests a conversion factor of 33 million
years per percent divergence for a tree containing these two OTUs, which is exactly what
LinkFinder would propose. If the same tree contained other OTU pairs which were also
present in LinkFinder's knowledge base, then other possible conversion factors would also
be reported, along with the specific OTUs upon which each conversion was based. If there
is good agreement between the various calculated factors, this is strong evidence in favor
of an overall time-scale conversion. If the various factors do not agree, then various indi-
vidual clusters within the tree should probably be assigned their own separate time scales
based on the recommended conversions. In its present form, LinkFinder only recommends
possible conversions. It leaves the final decision on how to scale the overall tree to the
user.

LinkFinder's knowledge base is organized according to the usual taxonomic distinctions.
By examining the classification file for each OTU, it can quickly position each OTU within

the general biological categories in its knowledge base : prokaryote-eukaryote, plant-animal,
vertebrate-invertebrate, fish-amphibian-reptile-mammal, etc. Once it has categorized each
OTU, it searches for known divergence times for all OTU pairs. Each divergence time found
is reported as a possible time-scale conversion factor for the percent divergence-scaled tree.

LinkFinder's knowledge base is intended to be augmented as new information becomes
available. There are tens of millions of different species upon the earth, and divergence
rates in general are not known for a given pair of OTUs. Even if they were, it would take
considerable time to add so much information to LinkFinder's knowledge base. For now,
we have concentrated on entering divergence times of the most basic taxonomic units-
the kingdoms, phyla, and classes. In certain taxonomic areas (notably primates/humans)
more detailed information has been entered on individual species. Our main purpose in
creating LinkFinder has been to develop a prototype of the automated expert phylogenic
tree constructor of the future. The great volumes of sequence data being generated by the
Genome Project will be valueless without the proper analytic software tools, and detailed
phylogenic analyses of these data will be needed before we can determine with any certainty
the actual divergence paths taken by the myriad forms of life on earth.

REFERENCES

Cann, R.L., Stoneking, M., and Wilson, A.C. (1987). Mitochondrial DNA and human evo-
lution. Nature 325(1 Jan), 31-36.

Doolittle, R.F., Feng, D.F., Johnson, M.S., and McClure, M.A. (1986). Relationships of
human protein sequences to those of other organisms. Molecular Biology of Homo
Sapiens: Cold Spring Harbor Symposium on Quantitative Biology 5l(part I), 447-
455.

Farris, J.S. (1972). Estimating phylogenetic trees from distance matrices. Am. Nut. 106,
645-668

Ferris, S.D., Sage, R.D., Prager, E.M., Ritte, U., and Wilson, A.C. (1983). Mitochondrial
DNA evolution in mice. Genetics 105, 681-721.

Fitch, W.M. and Margoliash, E. (1967). Construction of phylogenic trees. Science 155,
279-284.

Latorre, A., Moya, A., and Ayala, F. J. (1986). Evolution of mitochondrial DNA in Dro-
sophilia subo bscum. Proc. Natl. Acad. Sci. U. S. 83, 8649-8653.

Li, W .-H. (1981). Simple method for constructing phylogenic trees from distance matrices.
Proc. Natl. Acad. Sci. U.S. 78, 1085-1089.

Miyamoto, M.M., Koop, B.F., Slightom, J.L., Goodman, M., and Tennant, M.R. (1988).
Molecular systematics of higher primates : Genealogical relations and classification.
Proc. Natl. Acad. Sci. U.S. 85, 7627-7631.

Moore, G.W., Goodman, M., and Barnabas, J. (1973). An iterative approach from the
standpoint of the additive hypothesis to the dendogram problem posed by molecular
data sets. J. Theor. Biol. 38, 423-457.

Nei, M. and Tajima, F. (1983). Maximum likelihood estimation of the number of nucleo-
tide substitutions from restriction sites data. Genetics 105, 207-217.

O'Brien, S.J., Nash, W.G., Wildt, D.E., Bush, M.E., and Benveniste, R.E. (1985). A mo-
lecular solution to the riddle of the giant panda's phylogeny. Nature 317(12 Sep),
140-144.

Sokal, R.R. and Michener, C.D. (1958). A statistical method for evaluating systematic re-
lationships. Univ. Kansas Sci. Bull. 38, 1409-1438.

Stoneking, M., Bhatia, K., and Wilson, A.C. (1986). Rate of sequence divergence estima-
ted from restriction maps of mitochondria1 DNAs from Papua New Guinea. Molec-
ular Biology of Homo Sapiens: Cold SpTing Harbor Symposium on Quantitative
Biology 5l(part I), 433-439.

Tateno, Y ., Nei, M., and Tajima, F. (1982). Accuracy of estimated phylogenetic trees from
molecular data. J. Mol. Evol. 18, 387404.

Tateno, Y. (1985). Theoretical aspects of molecular tree estimation. Population Genetics
and Molecular Evolution (Ohta, T . and Aoki, K., ed.), 293-312, Japan Sci. Soc.
Press, Tokyo/Springer-Verlag, Berlin.

Ueda, S., Watanabe, Y., Hayashida, H., Miyata, T., Matsuda, F. and Honjo, T. (1986).
Hominoid evolution based on the structures of immunoglobulin epsilon and alpha
genes. Molecular Biology of Homo Sapiens: Cold Spring Harbor Symposium on
Quantitative Biology 5l(part I), 429-432.

GENERATING TARGET SYSTEM SPECIFICATIONS FROM A
DOMAIN MODEL USING CLIPS

Vijayan Sugurnaran, Hassan Gomaa and Larry Kerschberg

Center for Software Systems Engineering
Department of Information and Software Systems Engineering
George Mason University, Fairfax, VA 22030

Abstract. The quest for reuse in software engineering is still being pursued and researchers are
actively investigating the domain modeling approach to software construction. There are several
domain modeling efforts reported in the literature and they all agree that the components that are
generated from domain modeling are more conducive to reuse. Once a domain model is created,
several target systems can be generated by tailoring the domain model or by evolving the domain
model and then tailoring it according to the specified requirements. This paper presents the
Evolutionary Domain Life Cycle (EDLC) paradigm in which a domain model is created using
multiple views, namely. aggregation hierarchy, generalizationlspecialization hierarchies, object
communication diagrams and state transition diagrams. The architecture of the Knowledge Based
Requirements Elicitation Tool (KBRET) which is used to generate target system specifications is
also presented. The preliminary version of KBRET is implemented in CLIPS.

1.0 INTRODUCTION

It is widelv believed that there is a direct relations hi^ between software reuse and comDuter
software pr6ductivity. Researchers are constantly explohg new methods and concepts to imirove
reuse - a problem that has been solved to a greater degree of success in the computer hardware
field. Several models and frameworks have been proposed and discussed in (Biggerstaff and
Perlis 89); however, the problem of reuse has not yet been solved satisfactorily. Domain Analysis
is a fundamental step towards reuse and is a key factor in the success of reusability. Domain
analysis artifacts a& more conducive to reuse because they capture the essential objects and
functions that characterize the domain.

Parnas initially proposed the idea that it will be more advantageous to build a framework
for a family of systems rather than build every individual system from scratch (Parnas 79). He
argues that it is worth considering a family of systems when there is more to be gained by
analyzing the systems collectively rather than separately, i.e. the systems have more features in
common than features that distinguish them. Domain modeling addresses the problem of
developing a family of systems in which the traditional system development activities like analysis,
specification and design are performed at the application domain level and not at the individual
system level.

(Prieto-Diaz 88) states that "In domain analysis, common characteristics from similar
systems are generalized, objects and operations common to all systems within the same domain are
identified and a model is defined to describe their relationships". Domain analysis also considers
the variations among the current systems and must evolve to accommodate unanticipated variations
as well.

Thus, a domain model is the representation of the common characteristics and variations
among a family of software systems in a given application domain. A computer-based domain
model generally captures the static and dynamic aspects of the application domain. The static

properties include objects of the domain, attributes of those objects and relationship among them.
The dynamic properties include the operations associated with objects and the messages passed
between objects. The domain model may also include integrity constraints that express the rules
which govern the behavior of objects in the domain.

The primary objective of the domain modeling approach to software construction is to
increase reuse, i.e., reuse not only of code modules but also of domain knowledge such as domain
requirements, specifications and designs. From the domain model, target systems can be
generated by tailoring the domain model, or by a combination of evolving the domain model and
then tailoring it. A target system is a member of the family of software systems. Thus, a target
system engineer can develop the specification for a target system in terms of the domain model,
specified previously by a domain analyst, and does not have to perform systems analysis every
time a new target system has to be constructed.

The recent Domain Modeling Workshop held at Austin, Texas, during May 91 and a
growing body of literature indicate the emphasis on domain modeling and reuse in software
development. Several institutions in industry and academia are pursuing research efforts in domain
analysis and domain modeling. At the Center for Software System Engineering at George Mason
University, we are involved in a software engineering project funded partially by NASA/Goddard
Space Flight Center through Computer Technology Associates. In this project, Gomaa et al. have
developed a software process model called the Evolutionary Domain Life Cycle (EDLC) model that
supports the evolutionary development of families of system (Gomaa et al. 89). From the EDLC
domain model, target system specifications can be generated. We are also developing a knowledge
based tool called Knowledge Based Requirements Elicitation Tool (KBRET) that will tailor the
domain model and generate target system specifications based on the requirements.

This paper is organized as follows: section 2 provides an overview of the EDLC
methodology and the environment, section 3 briefly describes the target system specification
generation process, section 4 describes the architecture/design of KBRET, section 5 &tails the
implementation of KBRET in CLIPS and its capabilities, section 6 is summary, section 7 is
acknowledgements and section 8 is references.

2.0 THE EVOLUTIONARY DOMAIN LIFE CYCLE MODEL

The Evolutionary Domain Life Cycle (EDLC) Model is a software life cycle model that eliminates
the traditional distinction between software development and maintenance (Gomaa and Kerschberg
91a). The various activities within the EDLC paradigm are shown in Figure 1.

Software systems evolve through several iterations. Hence, systems developed using this
approach need to be capable of adapting to changes in requirements during each iteration.
Furthermore, because new software systems are often outgrowths of existing ones, the EDLC
model takes an application domain perspective allowing the development of families of systems. A
complete description of the EDLC methodology and related activities is provided in (Gomaa et al.
89). The EDLC domain model supports the following multiple views:

(a) Aggregation Hierarchy. The Aggregation Hierarchy is a composition hierarchy, i.e. it
supports the IS-PART-OF relationship. It supports the decomposition of complex aggregate
objects (subsystems) into less complex objects eventually leading to simple objects at the leaves of
the hierarchy. Alternatively, associated objects may be grouped together into more complex
aggregate objects. The Aggregation Hierarchy is an important abstraction concept in domain
modeling, since it allows domain modelers to reason about complex aggregate objects instead of
two or more simpler objects.

b) GeneralizationlSpecialization Hierarchies. The Generalization/Specialization Hierarchy
supports the IS-A relationship. With the generalization/specialization classification approach,
similar objects are grouped into classes. These objects may have some features in common but
they may also have variations between them that need to be expressed. Specialization of a class
(object type) can be achieved by means of inheritance, which has been applied very effectively in
object oriented programming. Meyer (Meyer 88) has convincingly shown the potential benefits of

Domain Modeling

Target System Generation

Figure 1. The Evolutionary Domain Life Cycle Model

using inheritance for reuse. Inheritance allows a class to be tailored by adding features,
suppressing features or modifying features.

c) Objec~ Communication Diagrams. Objects in the real world are modelled as concurrent
processes (Jackson 83), which communicate with each other using messages. The object
comunication diagrams, which are hierarchically structured, show how objects communicate
with each other.

d) State Transition Diagrams. As each active object is a sequential process, it may be
defined by means of a finite state machine and documented using a state transition diagram
(although in some cases the finite state machine might be trivial). Each object maintains its own
state. An active object supports one operation for each message type that it may receive.

An example of applying the EDLC methodology to an Automobile Cruise Control Problem
is given in (Gomaa 90). The domain modeling concepts are currently being applied to NASA's
Payload Operations Control Center (POCC) domain at NASA Goddard Space Flight Center. To
test these concepts, a domain model has been constructed which captures the similarities and
variations of the POCC domain (Gomaa et al. 91b). The following section describes the proof-of-
concept demonstration that we are developing for NASA/Goddard.

2.1 EDLC Domain Modeling Environment

A proof-of-concept experiment is under way to develop software tools that support the domain
analysis and specification and target system requirements elicitation phases of the EDLC, The
experiment uses comercial-of-the-shelf software as well as specially developed software. We are
using Software Through Pictures (StP) to represent the multiple views of the domain model,
although semantically interpreting the views according to the domain modeling method. The
information in the multiple views is extracted, checked for consistency, and stored in an object
repository.

A knowledge based tool is used to assist with target system requirements elicitation and
generation of the target system specification. The tool, implemented in CLIPS, conducts a dialog
with the human target system engineer, prompting the engineer for target system specific
information. The output of this tool is used to adapt the domain specification to generate the target
system specification.

The EDLC domain modeling environment is depicted in Figure 2. In the EDLC paradigm,
the domain analyst starts the creation of the domain model by specifying the multiple views.
Helshe creates the Aggregation Hierarchy, Generalization/Specialization hierarchies, Object
Communication Diagrams, and State Transition Diagrams. The domain analyst is not restricted to
working with one diagram at a time. A complex system must be understood by a large community
of users and these multiple views provide an informal specification of the domain being
constructed. Software Through Pictures (StP) is used as the multiple viewpoint graphical editor.
StP provides limited form of consistency checking within each view. Additional consistency
checking among different views is done by special software that we have developed Once the
graphical views are determined to be consistent, the domain information from these graphical
views is extracted from StP's relational database and mapped into the object repository.

The object repository presents an object-oriented representation of the informal
specification which can now be enhanced with a formal specification of domain object types, their
attributes, their relationship to other object types, the operations associated with the object types,
constraints among object types etc. The domain analyst enters this information using the Domain
Object Editor. The domain object types are organized in terms of a "meta-schema" that governs the
inter-relationships among the objects represented in the multiple viewpoints. This knowledge is
used to determine consistency among view points and to evolve the object specification in a
consistent m n e r . The object repository is implemented in Eiffel.

The domain specification stored persistently in the object repository is augmented with
domain features (requirements), inter-feature dependencies and featurelobject dependencies. Inter-
feature dependencies capture the relationships among features. For example, a feature may require
the presence of some other feature(s) as prerequisite. Another example of inter-feature dependency

is that some features may be m~tually exclusive or mutually inclusive with each other. The
feature/object dependencies relate features to objects, i.e., they define the object types required to
support a particular feature. The domain analyst provides this feature-related information using the
Feature Object Editor and is stored in the object repository as well. The object repository interfaces
with knowledge-based tools such as KBRET and provides the informal and formal specifications
for Ruse. Thus, the object repository provides a unique and consistent specification of the domain
model, and this can be accessed by various tools. For example, we have developed a tool that
remeves the domain dependent information from the object repository and creates the domain
dependent knowledge sources for KBRET. This tool maps the object repository information into
CLIPS facts using the defSacts construct.

Once the domain modeling activity is completed, the domain specification serves as the
framework for generating target systems. The process of generating target systems calls for
knowledge-based tool support. This tool must not only have knowledge about the domain model,
but also contain procedural knowledge about constructing target systems. A knowledge-based
system called the Knowledge-Based Requirements Elicitation Tool (KBRET) is being developed
using CLIPS to automate the process of generating the specifications for target systems. When a
target system specification is generated, the corresponding multiple views are then generated by
tailoring the domain multiple views and displayed using S tP.

The paragraphs above have provided a brief overview of the EDLC methodology and the
different tools that are used in creating the domain model and generating the target system
specification. The following sections will describe the process of generating target system
specification, the knowledge-based tool used in this process, its architecture and implementation.

3.0 TARGET SYSTEM SPECIFICATION GENERATION

The EDLC domain model captures the reusable domain features (requirements) and the
dependencies among features and object types. These feature object dependencies provide a
powerful indexing mechanism to retrieve reusable components from the domain model, especially
object types and their informal and formal specifications. In other words, if a particular domain
feature is required in the target system, the object types required to support that feature can be
retrieved from the object repository. Thus, the process of generating a target system specification
essentially amounts to gathering the requirements in terms of the domain features and retrieving
from the domain model the corresponding components to support those features and reason about
inter-feature and featurelobject dependencies to ensure consistency. This process involves tailoring
the domain model and creating the target system specification.

The object types in the EDLC paradigm are classified as kernel, optional, or variant. A
kernel object is part of every member in the family of systems. An optional object supports a
domain feature and it may or may not be included in the target system. A variant object is a
specialization of a kernel or optional object and it also supports a certain domain feature. If
multiple variants of the same object type are included in the target system, they have to be
integrated to form one synthesized object. However, certain application domains may require the
existence of multiple specializations of the same object type, as for example, in the POCC domain,
multiple specialized experiments may co-exist on a mission.

Once the requirements have been gathered, the target system can be assembled by
including the kernel object types, the selected optional object types and variant object types and
integrating the variant object types, if necessary, with the help of the domain analyst. In general,
the target system specification generation process consists of the following activities:

(a) accessing and retrieving necessary components from the various knowledge
sources;

(b) displaying the information to the target system engineer,
(c) eliciting the target system requirements from the target system engineer,

(d) reason about the inter-feature and featurelobject dependencies to ensure
consistency;

(e) tailoring the domain specification to generate the target system (this step may or
may not require variant integration); and

(f) target system consistency checking.

In order to support the above activities, the target system specification generation tool should be
designed in such a way that the target system engineer could browse the domain model,
interactively specify the requirements for the target system. The tool should also have the
reasoning capability to ensure that a consistent specification for the target system has been
generated. The following section describes the architecture of the Knowledge Based Requirements
Elicitation Tool (KBRET).

4.0 KNOWLEDGE BASED REQUIREMENTS ELICITATION TOOL (KBRET)

KBRET accomplishes the task of generating the target system specification in several phases.
Some of the phases that KBRET may go through are: Browsing, Target System Requirements
Elicitation, Dependency Checking, Target System Generation, Variant Object Type Integration.

4.1 KBRET User Interface

The current version of KBRET uses a menu based approach for interacting with the target system
engineer. From the main menu, the browsing phase or the target system requirements elicitation
phase can be initiated. In the browsing phase, the target system engineer can browse the features
captured in the domain model and also get explanations for those features. When the target system
requirements elicitation phase is initiated, KBRET provides the domain features in a menu form
and the target system engineer can select from this menu the features desired in the target system.
Once the features required in the target system are selected, KBRET presents the selected features
in a menu form and the target system engineer can delete some of the features selected for the target
system.

Whenever a feature is selected or deleted, the dependency checking phase is invoked to
ensure consistency. The target system engineer has the flexibility to select or delete features at any
time during the target system requirements elicitation phase. When the requirements elicitation
phase is exited, the target system construction phase can be initiated by selecting that option from
the menu that KBRET provides. This menu also provides an option for specrfying features that are
not in the domain model. If this option is selected, KBRET suspends the session after gathering
information about these new features. This information is provided to the domain analyst to
enhance the domain model. When the new features are incorporated in the domain model, the
target system engineer can continue the session and finish generating the target system
specification. A sample session with KBRET is given in the Appendix.

To support this phased approach, KBRET utilizes various knowledge sources. These
knowledge sources can be categorized as domain independent and domain dependent. This
separation between the domain-independent and domain-dependent knowledge is essential for
providing scale-up and maintainability of domain specifications for large domains. The various
components, including the different knowledge sources of KBRET are schematically shown in
Figure 3 and discussed in the following sections.

4.2 Domain Independent Knowledge Sources

The domain independent knowledge sources provide procedural and control knowledge for the
various functions supported by KBRET. The Dialog Manager is responsible for carrying out a
meaningful dialog with the target system engineer and elicit the requirements for the target system.
It addresses such issues as how, and in what sequence the target system engineer should be

Target System
Requirements

Engineer
I

KBRET t
I Dialog Manager I

KBRET Knowledge
Sources

Domain Independent Knowledge Sources

Deletion Generator

Domain Dependent
Knowledge Sources 4

CLIPS
Inference
Ennine

Object Repository

f 1

Figure 3. Knowledge Based Requirements Elicitation Tool (KBRET)

KBRET-Object Repository
Interface

Target
System - Specification

prompted for various features, invoking and controlling the different phases of KBRET, the user
interface etc.

Before specifying the requirements for the target system, the target system engineer may
wish to browse through portions of the domain model in order to gain understanding of the
application domain under consideration. The Domain Browser knowledge source provides this
facility. It provides rules for initiating and terminating the browsing facility and also the
appropriate domain dependent knowledge sources to be accessed in order to facilitate the browsing
of those parts of the domain model which the target system engineer wishes to explore.

The Feature & Object SelectionlDeletion knowledge source keeps track of the selection or
deletion of features for the target system and the corresponding object types. This knowledge
source incorporates rules for selecting and deleting features and also invoking the appropriate rules
for checking inter-feature and featurelobject dependencies.

The Dependency Checker knowledge source cooperatively works with the Feature &
Object Selection/Deletion knowledge source. When a particular feature is selected for the target
system, the Dependency Checker enforces the inter-feature and featurelobject dependencies for that
feature. These dependencies are obtained from the Inter-Feature & Feature-Object Dependencies
knowledge source which is domain dependent, as shown in Figure 3. When a feature with some
prerequisite features is selected, the Dependency Checker ensures that those prerequisite features
are included in the target system. For example, in the POCC domain, the Verifying Real Time
Commands feature requires Sending Real Time Commands feature. If the Sending Real Time
Commands feature is not selected and the Verifying Real Time Commands feature is desired in the
target system, the Sending Real Time Commands feature will be included in the target system
before selecting the Verifying Real Time Commands feature.

Similarly, before deleting a feature from the target system, dependency checking is
performed to ensure that it is not required by any other target system feature. Using the example
from the previous paragraph, if both Sending Real Time Commands and Verifying Real Time
Commands features are selected for the target system, the Sending Real Time Commands feature
cannot be deleted from the target system as long as the Verifying Real Time Commands feature is
selected for the target system. Thus, the Dependency Checker knowledge source has rules to
enforce the inter-feature and featurelobject dependencies so that a consistent target system is
specified.

Once the feature selection for the target system is complete, the Target System Generator
knowledge source begins the process of assembling the target system. The domain kernel object
types are automatically included in the target system. Depending upon the features selected for the
target system, the corresponding variant and optional object types are included according to the
featurelobject dependencies. The Target System Generator would detect if more than one variant
(specialization) of a particular kernel or optional object type were included in the target system.
These multiple variant object types have to be "integrated" to produce one integrated variant object
type that would support the desired features in the target system. Some domains may require the
presence of multiple variants of certain objects and those variant objects should not be integrated.
For example, in the POCC domain, multiple variants of observatory related objects should not be
integrated.

If multiple specializations of a particular kernel or optional object have been selected and if
they have to be integrated, the Target System Generator would access the Multiple Views domain
dependent knowledge source and check the appropriate generalization/specialization hierarchy to
see if an integrated object type for those variant object types exists as a result of previous variant
integration processes. If such an integrated object type is present, then that object type is included
in the target system in lieu of those variant object types to be integrated. Once all the required
integrated variant object types have been included, the target system generation is complete.

If the integrated variant object type is not present in the domain model, the target system
generation process is suspended and the target system engineer is notified about the need for
variant integration and the variant object types to be integrated are presented to the domain analyst
for integration and enhancing the domain model. Variant integration is a non trivial task and may
require considerable domain knowledge. Hence, completely automating the variant integration

process will be a tremendous challenge. When the integrated variant object is made available to the
Target System Generator, the target system generation process is resumed.

4.3 Domain Dependent Knowledge Sources

As the name suggests, the domain dependent knowledge sources contain specific information
about a particular application domain. They are used by the domain independent knowledge
sources of KBRET in eliciting the requirements and generating the target system specification. The
domain dependent knowledge sources are derived from the domain specification, which is
persistently stored in the object repository. The KBRET-Object Repository Interface accesses the
object repository and creates these knowledge sources using a representation that is compatible
with the other knowledge sources of KBRET.

The Features and Object Types knowledge source contains a list of all the object types and
features that have been incorporated in the domain model. For each object type, its name and
properties are stored in this knowledge source. The properties of objects are: kernel, optional,
variant, aggregate, agh-root and gsh-root. The CLIPS implementation of this knowledge source
is essentially a list of facts - one fact for each object type and its properties and one fact for each
feature. Some example facts from this knowledge source for the POCC domain are given below:

(Object: Command-Load-Processor kernel aggregate)
(Object: Observatory~Instrument~TelemetrytryEquation~Processor optional gsh-mot)
(Feature: Sending Real Time Commands)

The various relationships and dependencies among features and between features and
object types are captured in the Inter-Feature & Feature-Object Dependencies knowledge
source.The prerequisite relationship between two features is captured in a CLIPS fact with the key
word "requires". For each feature, the object types required to support that feature are expressed
as CLIPS facts using the key word "supported-by". These dependencies are enforced during
feature selection or deletion by the Dependency Checker knowledge source. A few example
dependencies from the POCC domain are given below:

(Veifying Real Time Commands iequins Sending Real Time Commands)
(Verifying Real Time Commands supported-by Earth-Bound-Real-Th-Co-d Verifier)

The Multiple Views knowledge source contains the different views created using the EDLC
methodology, in particular, the aggregation hierarchy and the generalization/specialization
hierarchies. These hierarchies are accessed and utilized by the Target System Generator
knowledge source when the target system is being assembled. The parent-child relationship
between objects in the aggregation hierarchy is expressed as CLIPS facts using the key word "is-
part-of". The supertype-subtype relation between objects in the generalization/specialization
hierarchy is expressed as CLIPS facts with "is-a" key word. Sample CLIPS facts from this
knowledge source are given below:

(is-part-of Real-Time-C~mmand~Processor Satellite-Bound-Real-TimeeCommanddProcessor)
(is-a POCC-Mode-Selector POCC-Mode-Selector-With-Simulation)

5.0 KBRET IMPLEMENTATION IN CLIPS

A prototype of the Knowledge Based Requirements Elicitation Tool has been developed using
CLPS which is an expert system shell developed by the Artificial Intelligence Section of the
Mission Planning and Analysis Division at NASA/Johnson Space Center. CLIPS is written in 'C'
and supports backward and forward-chaining, Rete algorithm for pattern matching, wildcards and

single and multifield variables, externally defined functions in C or Ada or Fortran. Also, CLIPS
can be embedded in application programs written in C, Ada or Fortran.

The basic elements of CLIPS are: fact-base, knowledge-base and inference engine
(Giarratano 91). Facts are the basic form of information in a CLIPS system. Rules are fired based
on the existence or non existence of facts in the fact-base. A fact is constnacted. of several
positional fields separated by spaces or, a word followed by slots separated by parentheses. Facts
may be asserted into the fact-base prior to starting execution and may be added or removed as the
action of a rule firing.

A CLIPS knowledge base is represented in the form of production rules. The left hand
side (LHS) of a rule is a series of relation or patterns which represent the conditions that must be
satisfied for the rule to be fired. Logical operators may be used in the LHS for constraining the
patterns. The right hand side W S) of the rule is the action to be performed as a result of the rule
firing.

The inference engine examines the knowledge base to see if any rule's conditions have
been met by searching the fact-base. All rules whose conditions are met are activated and placed in
the agenda. The sequence in which these rules are executed is determined by the priorities
assigned to those rules. The top rule in the agenda is selected and its RHS actions are executed.
As a result of RHS actions, new rules may be activated or deactivated. This cycle is repeated until
all rules that can fire have done so or until the rule limit is reached. The number of rule firings
allowed in a cycle may be set apriori.

The domain independent knowledge sources of KBRET are implemented as CLIPS rules.
The domain specific information contained in the domain dependent knowledge sources are
expressed as CLIPS facts. These facts are asserted into the fact-base before the requirements
elicitation process begins. When KBRET begins execution, the Dialog Manager initiates the dialog
with the target system engineer. The rules in this knowledge source are written in such a way that
the course of the dialog and the invocation of the different phases are determined by the target
system requirements engineer's responses.

At the start of the dialog, KBRET prints the system banner and prompts the target system
engineer if helshe wishes to browse the domain model or would like to specify the requirements
for the target system, as shown in the sample dialog in the Appendix. If the response is to browse,
the browsing phase is initiated. The target system engineer can explore the domain model and get
explanations for the different features incorporated in the domain model. Once sufficient
familiarity with the domain model has been gained, the target system requirements specification
phase may be initiated,

The target system engineer is presented with the various features captured in the domain
model in the form of a menu, as shown in the Appendix, and the features &sired in the target
system can be selected Erom this menu. Whenever a feature is selected for the target system, the
dependency checking phase is initiated and the inter-feature and featmlobject dependencies are
checked and enforced. If a particular feature, say " F , requires the presence of other features, and
they are not selected for the target system, the target system engineer is informed of that fact and
those features are automatically included in the target system in order to support feature "F.

An example of this feature dependency checking is shown in the sample dialog in the
Appendix. When the target system engineer tries to select the Verifying Real Time Commands
(feature 7), KBRET comes back with a message saying that Verifying Real Time Commands
requires Sending Real Time Commands feature and it will be automatically included in the target
system, and requests the target system engineer's confirmation. When the target system engineer
types "y" to c o n f m the selection, KBRET includes both the Sending Real Time Commands
feature and the Verifying Real Time Commands feature in the target system and displays a message
to that effect, as shown in the Appendix.

When a feature is selected for the target system, the object types that are required to support
that feature are also selected in accordance with the featurelobject dependencies and the CLIPS fact-
base is updated to reflect that fact, The target system engineer thus, can specify the requirements
for the target system and the Feature & Object SelectionlDeletion knowledge source asserts new

facts into the fact-base to record those selections. Of course, the Dependency Checker would
ensure that the inter-feature and featdobject dependencies have not been violated

The target system engineer can also delete features that have been selected for the target
system. If a feature, say "F", is to be deleted, the Dependency Checker will check the fact-base to
see if any of the f e a m s selected for the target system require that feature "F". If so, the deletion
of feature "F" is disabled. An example this deletion dependency checking is shown in the sample
dialog. When the target system engineer tries to delete the Sending Real Time Commands (feature
6) from the target system, KBRET comes back with a message saying that the Sending Real Time
Commands feature is required by the Verifying Real Time Commands feature and since Verifying
Real Time Commands feature is currently selected for the target system, the Sending Real Time
Commands feature cannot be deleted, and the dialog continues. When a feature "F" is deleted, it
may cause the deletion of some other features if those features were included in the target system
solely because of the selection of feature "F" and if they are not required by any other feature
selected for the target system. The deletion of a feature also triggers the deletion of object types
that were included to support that feature.

If the target system engineer would like to specify a feature that has not been captured in the
domain model, the requirements elicitation phase is suspended and the domain analyst is called
upon to model that requirement and enhance the domain model. Then, the target system
specification and generation may be resumed.

Once the requirements for the target system have been completely specified, the target
system generation phase is invoked. KBRET prompts for a name for the target system that is
being generated so that it could be stored in the object repository for reuse. The fact-base is
examined and the features and the object types selected for the target system are gathered. KBRET
then presents the list of features that have been selected for the target system. The kernel object
types are included in the target system because they must be part of every member of the family of
systems. The selected variant and optional object types are examined to see if variant integration is
required. If variant integration is not required, then the target system specification is generated and
presented to the target system engineer.

In presenting the target system specification, KBRET provides two options. The target
system engineer may view only the leaf level object types or helshe can view both the aggregate
and leaf level object types. If the target system engineer chooses the second option, KBRET
provides the aggregation hierarchy for the target system, as shown in the Appendix. This is
accomplished by pruning the domain aggregation hierarchy, i.e., deleting from the domain
aggregation hierarchy the object types that have not been included in the target system. KBRET
presents the target system aggregation hierarchy in an indented form, as shown in the Appendix, to
reflect the various levels of the aggregation hierarchy.

If variant integration is required, the domain analyst is called upon to perform variant
integration. When the integration process is completed, the target system generation phase is
resumed and the target system specification is generated and presented to the target system
engineer.

6.0 SUMMARY

Domain modeling field is rapidly growing and early results show that domain modeling effectively
addresses some of the problems in reuse. We have given an overview of the Evolutionary Domain
Life Cycle (EDLC) model and the activities within this paradigm. A domain model of the
NASAIGoddard Payload Operations Control Center (POCC) domain is being developed as a
proof-of-concept of our EDLC methodology. From the EDLC domain model, several target
system specifications can be generated. We have discussed the target system generation process as
well as the tools used in accomplishing this task. The architecture of the Knowledge Based
Requirements Elicitation Tool (KBRET) and its implementation in CLIPS is also presented.
KBRET interacts with the target system engineer, elicits the requirements and generates the target
system specifcation by tailoring the domain specification.

7.0 ACKNOWLEDGEMENTS

We gratefully acknowledge the assistance of S. Bailin, R. Dutilly, J.M. Moore, and W.
Truszkowski in providing us with information on the POCC. This work was sponsored by NASA
Goddard Space Flight Center with assistance from Virginia Center of Innovative Technology. The
Software Through Pictures CASE tool was donated to GMU by Interactive Development
Environments.

8.0 REFERENCES

Biggerstaff, T.J, Perlis, A. J., (ed) (1989) Software Reusability Concepts and Models, Volume I
and N, ACM Press Frontier Series, Addison Wesley.

Giarratano, J. C. (1991). Clips User's Guide, Version 5.0, Software Technology Branch, Lyndon
B. Johnson Space Center.

Gomaa, H. (1990). A domain analysis, specification and design method for concurrent systems,
George Mason University Report, September.

Gomaa, H., Fairly, R., Kerschberg, L., Sugumaran, V., O'Hara-Schettino, E., and Tavakoli, I.,
(1989). Sustaining engineering: life cycle support for evolutionary software
development, Research Report Prepared for NASA Goddard Space Flight Center.

Gomaa, H., Kerschberg, L. (1991a). An evolutionary domain life cycle for domain modeling and
target system generation, Proc. of Domain Modeling Workshop, May 13, pp. 65-7 1.

Gomaa, H., Kerschberg, L., Sugumaran, V., O'Hara-Schettino, E., and Tavakoli, I., (1991b).
Revised domain model for the payload operations control center (pocc) domain, Research
Report Prepared for NASA Goddard Space Flight Center.

Jackson, M. (1983). System Development, Prentice Hall.

Meyer, B. (1988). Object-Oriented Software Construction, Prentice Hall.

Parnas, D. (1979). Designing software for ease of extension and contraction, IEEE Transactions
on Software Engineering, Vol. 5 No. 2, pp. 128-137.

Appendix. Sample Dialog with KBRET for the POCC domain.
..
* *
* KNOWLEDGE BASED REQUlREMENTS ELICITATION TOOL *
* (KBRET) *
* *
..

Requirements Elicitation for POCC domain
You may browse the features incorporated in the Domain Model, specify the requirements for the
Target System or quit KBRET.

Choices Perform ******* *******
1 Browse the Domain Model
2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit return: 1

Domain Model Browsing Phase
Please select one of the following choices to continue.

Choices Perform ******* *******
1 Explore the Features
2 Exit Browsing Phase
3 Quit KBRET

Please type your selection and hit return: 1

Feature Exploration ****************
For the description of a feature, please type its number.

Choices Feature to be described ******* **a***************

1 Mission Type One
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e Exit Browsing Phase

Please type your selection and hit return: 5

Data Collection of Simulated Telemetry:
Simulated Telemetry Data can be collected and analyzed.

Choices Feature to be described ******* ******#I***********

1 Mission Type One
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands

e Exit Browsing Phase
Please type your selection and hit return: e

Exiting the Browsing Phase
You may browse the features incorporated in the Domain Model, or specify the requirements for the
Target System or quit KBRET.

Choices Perform ******* *******
1 Browse the Domain Model
2 Specify requirements for Target System
3 Quit KBRET

Please type your choice and hit retum: 2

Target System Requirements Elicitation Phase
Now, you will be presented with the features incorporated in the Domain Model. If a feature is desired in the target
system, please type its number and hit retum. Please select one of the following choices to continue.

Choices Feature to be selected ******* *****************
1 Mission Type One
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real T i e Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit retum: 2
The Mission Type Two Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected ******* *****************

3 Experiment Type One
4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit retum: 3
The Experiment Type One Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected ******* *****************

4 Experiment Type Two
5 Data Collection of Simulated Telemetry
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit retum: 4
The Expeziment Type Two Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected ******* *****************

5 Data Collection of Simulated Telemetry

6 Sending Real Time Commands
7 Verifying Real Time Commands
e End selecting features

Please type your selection and hit return: 7
The Verifying Real Time Commands Feature requires Sending Real Time Commands Feature.
The Sending Real Time Commands Feature will be automatically included if the Verifying Real
Time Commands Feature is desired.

Please type 'y' to include or 'n' to not include the Sending Real Time Commands Feature. (y/n): y
The Sending Real Time Commands Feature has been selected for the Target System.
The Verifying Real Time Commands Feature has been selected for the Target System.

Please select one of the following choices to continue.
Choices Feature to be selected ******* *****************

5 Data Collection of Simulated Telemetry
e End selecting features

Please type your selection and hit return: e

Target System feature selection has been exited ...
The following features are currently selected:

Number Feature Name ******* ***********
2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform ******* *******

1 Select more features for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 2

Please select one of the following choices to continue.
Choices Feature to be deleted ******* ********I********

2 Mission Type Two
3 Experiment Type One
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: 6

Since the Sending Real Time Commands Feature is required by the Verifying Real Time Commands
Feature and since the Verifying Real Time Commands Feature is currently desired in the Target System, the
Sending Real Time Commands Feature may not be deleted now.

Please type (c) and hit return to continue: c

Please select one of the following choices to continue.

Choices Feature to be deleted ******* *****************
2 Mission Type TWO
3 Experiment Type One
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: 3
Since Experiment Type One Feature is not required by any other target system feature, it will be deleted
from the Target System Features.

Please type 'y' to delete or 'n' to abort the deletion of Experiment Type One Feature (yfn) : y
The Experiment Type One Feature has been deleted from the Target System.

Please select one of the following choices to continue.
Choices Feature to be deleted ******* *****************

2 Mission Type Two
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands
e End deleting features

Please type your selection and hit return: e

Target System feature deletion has been exi ted...

The following features are currently selected'
Number Feature Name ******* ***********

2 Mission Type Two
4 Experiment Type Two
6 Sending Real Time Commands
7 Verifying Real Time Commands

Please select one of the following choices to continue.
Choices Perform ******* *******

1 Select more feahures for Target System
2 Delete a feature from Target System
3 Specify features not in the Domain Model
4 Initiate Target System Generation Phase
5 Quit KBRET

Please type your selection and hit return: 4
Invoking the Target System Generation Phase.. ...

Target System Generation Phase:
Please input a name for the Target System: EXAMPLE

EXAMPLE Target System Components
The following features have been selected for the EXAMPLE Target System ...

Mission Type Two Feature
Experiment Type Two Feature
Sending Real Time Commands Feature
Verifying Real Time Commands Feature

Assembling the EXAMPLE Target System. Please Wait
The Target System Object Types have been assembled. To view those object types included in the Target System,
Please select one of the following choices:

Choices Perform ******* *******
1 View Leaf Level Object Types
2 View Aggregate and Leaf Level Object Types

Please type your selection and hit return: 2

The Aggregate and Leaf Level Objects of the Target System: ...
Payload Operations Control Center Domain (kernel aggregate)

Telemetry (kernel aggregate)
Telemetry Pre-Processor (kernel)
Spacecraft Telemetry Processor (kernel aggregate)

Mission Two SC Eng. Telemetry Analog Limits Checker With Eqn. Processing (variant)
Mission Two SC Engineering Telemetry Trend Analyzer (variant)
Mission Two SC Engineering Telemetry Equation Processor (variant)
Mission Two Discrete SC Engineering Telemetry Analyzer (variant)
Mission Two FDF Interface (variant)

Observatory Telemetry Processor (kernel aggregate)
Experiment Two Insuument Telemetry Analog Limits Checker (variant)
Experiment Two Insaurnent Telemetry Trend Analyzer (variant)
Experiment Two Discrete Inshument Telemetry Analyzer (variant)
Experiment Two Scientific Telemetry Analyzer (variant)

TAC Interface (kernel)
RUPS Interface (kernel)

Command (kernel aggregate)
Command Load Processor (kernel aggregate)

Satellite Bound Command Load Processor (kernel)
Earth Bound Command Load Verifier (kernel)
Command Load Data Store (kernel)
OBC Image Verifier (kernel)
CMS Interface (kernel)

Real Time Command Processor (optional aggregate)
Satellite Bound Real-Time Command Processor (optional)
Earth Bound Real-Time Command Verifier (optional)
Real-Time Command Data Store (optional)

Satellite Bound Command Problem Resolver (optional)
Flight Operations Analyst (kemel aggregate)

FOA STOL Interface (kernel)
POCC Mode Selector (kernel)
FOA Command Processor (kernel)
FOA NCC Pn>cessor (kernel)
FOA Telemetry Processor (kernel)
NCC Interface (kernel)

Histcsy (kernel w m g a t e)
Telemetry History (kernel)
Command History (kemel)
Flight Operations Analyst History (kernel)
Telemetry Block History (kemel)

The EXAMPLE Target System Generation is complete. The object types shown above have been included in it and
no variant integration is required.

The Management and Security Expert
(MASE)

Mark D. Miller, Stanley J. Barr, Coranth D. Gryphon,
Jeff Keegan, Catherine A. Kniker, Patrick D. ~ r o l a k l

University of Massachusetts at Lowell
Center for Productivity Enhancement

One University Ave
Lowell, Massachusetts 01854

A b s t r a c t

Today's computing environments are increasingly complex: they often consist
of large networks of computers that include multiple vendors and operating
systems. The various systems and the communications between them must be
kept running at their peak performance levels to meet the demands of the user
community. They must also be kept safe from malevolent intruders and
damaging viruses. The challenge facing today's systems manager is an enormous
one. Unfortunately, the conventional tools provided by manufacturers provide
only minimal assistance, leaving the system manager with the bulk of the work.

The Management And Security Expert (MASE) can help. MASE is a
distributed expert system that monitors the operating systems and applications
of a network. It is capable of gleaning the information provided by the different
operating systems in order to optimize hardware and software performance;
recognize potential hardware and/or software failure, and either repair the
problem before it becomes an emergency, or notify the systems manager of the
problem; and monitor applications and known security holes for indications of
an intruder or virus. MASE can eradicate much of the guess work of system
management.

In t roduct ion

The Management And Security Expert is a distributed system capable of monitoring
operating system resources and network statistics across an entire network. MASE will consist
of custornizable expert system modules running on each host in the network, along with the
addition of expert systems that provide special functions such as network security, network
performance, and network audit services.

l ~ a r k D. Miller, Project Manager; Stanley J. Barr, Research Assistant; Coranth D. Gryphon, Research Assistant;
Jeff Keegan, Research Assistant; Catherine A. Kniker, Research Assistant; Patrick D. Krolak, Center Director

MASE is implemented using PCLIPS, or Parallel CLIPS~, which comprises a set of
extensions to NASA's CLIPS language. PCLlPS was designed by the ULoweil's Center for
Productivity Enhancement (CPE) for rapid prototyping of distributed applications, and has
since expanded to include dynamic Construct creation, archival facilities, truth maintenance,
and alarm-timing mechanisms for cycling execution of Constructs, and timed expiration of facts
and instances.

PCLIPS is set up in a ClientIServer model. Under the current model, each PCLIPS client has it's
own PServer. When one expert system communicates with another, it does so by calling the
send-message function, which connects with the PServer, and transmits a send message, which
includes the outgoing fact. The PServer then in turn sends a PFACT out to the server of the other
PCLlPS client.

Host Level Manaaement and Security

MASE utilizies a series of diagnostic operations, or functions, written to monitor and check
various system parameters and resources. At this point in the development of MASE, we have
developed four types of diagnostic operations: the check, get, action, anddisplay operations.

The check operations are used for checking a system resource against either a system manager
defined threshold, or a previously saved system state. As the system manager configures each
expert system, s/he sets the frequency in which the check operations are run. (Ex. 30 seconds,
6 Hours, 1 Week, 1 Month) Examples of check operations:

check-disk-flood, check-boottime, check-sys-clock, check-rhosts

The get operations are used for retrieving system values and settings. They are used when
either the system manager or the CLIPS expert system is trying to solve a problem. Examples
of get operations:

get-load, get-boottime, get-users, etc.

The action operations are used for fixing situations. They can be initiated by the system
manager, or by the expert system. Examples of the action operations:

action-move-file, action-disuser-user, action-compress-file, etc.

The display operations are used for displaying system information in a form other than facts.
This is typically done using a graphic interface. This allows the system manager to remotely
monitor a situation, and take appropriate action if necessary. Examples of the display
operations:

display-cpu-usage, display-disk-usage, display-queue

Depending upon system configuration, these operations can be performed as run-time functions,
or they can be run as spawned (standalone) processes. When these operations are performed by
MASE, they generate facts, which are used to drive the controlling expert system. If a
particular operation is run as a run-time callable function, then the assert function is used to

~"PCLIPS: Parallel Clips", Coranth Gryphon, Mark Miller, Second Annual Clips Users
Conference

add the fact to the PCLlPS fact base. When the operation is run as a spawned function, it
connects to the PServer of the parent PCLlPS client, and sends a local fact (LFACT). The
PServer then passes the fact along to the client.

The facts that are generated by the diagnostic operations have the following form:

(RESULT <result> <type> cfunc-name> <tag> 'descriptive message')

The result field has one of five values:

success - This fact type is asserted when the operation completes successfully, and does
not find any problems. (Used in Check operations)

warning - This fact is asserted when the operation finds a problem with a system
resource. (Used in Check operations)

error - This fact type is asserted when the operation cannot successfully perform the
task it has been assigned. (Ex. Missing configuration file - Used in all four
types of operations)

outcome - This fact type is asserted when the operation has accomplished some task.
(Used in Action operations)

information - This fact type is asserted when the operation has obtained some information.
(Used in Get operations)

The type field has one of several values:

disk, memory, cd-rom, op-disk, network, process, op-sys, user, files, security, peripheral,
zones, server, misc, unknown, "some string" - reserved for later use.

The func-name field is the name of the function that generated the fact.

The tag field is used for distinguishing between facts created by different calls to the same
function. For instance, if the function is called twice, with two separate sets of parameters, the
tag field allows PCLlPS to distinguish between the two calls.

The "descriptive message" is the rest of the fact that has the actual result information in it.
For example, a warning fact generated by the check-disk-flood operation would look like this:

(RESULT warning disk check-disk-flood DEVICE "Idevlrzal" at SETTING 98 exceeding THRESH
9 5)

In the "descriptive message", the capitalized words (DEVICE, SETTING, THRESH) are used as
tags, signaling PCLlPS that the next field is information that should be extracted.

Confiaurina the host manaaement expert svstem

Since the system manager configures each expert system, the reactions of the expert system can
be tailored to the specific needs of the manager. For example, take the situation where the
expert system is monitoring the amount of space available on a disk. Disks, and their associated
storage space are critical resources to a running system. When a disk hits 100% capacity,
users can no longer write to it. This is especially critical to users who are in editors, or are
running applications that generate information that needs to be stored. During normal
operational hours, the situation may not become critical, because the system manager would be
able respond. However, at 3 a.m., there may not be any personnel around who can fix the
problem. Because of this possibility, the following scenario typifies how MASE might be

configured to solve a disk flooding problem on a Unix system. (See Fig. 1 for the user interface
that the system manager would use)

Initially, the function check-disk-flood would be set up with a frequency of once every 30
minutes. The threshold passed to the check function for checking disk space on a partition
might be 90% When this threshold is exceeded, the expert system notifies the system manager
of the situation, via a fact to the system manager's expert system controlled user interface. The
expert system then modifies the threshold to 95% and the frequency to 15 minutes.. If the
threshold is exceeded again, the system manager is appraised of the new circumstances. Since
the disk is approaching a completely flooded state, the expert system checks the time, which is
8:37 A.M. This time falls outside the range of normal system manager hours, so the expert
system checks to see if the system manager is logged on and active (This can be done by querying
other expert systems on the network). If the system manager is not available, the expert
system takes an active role in resolving the situation. It performs the following operations:

1) Notify all the users that there is a problem, and ask them to take action
themselves. (Clean up directories, compress files, etc.)
1) Check the temp directories on the disk (check-tmp-dirs), Purge any files older
than 2 days that are in these directories.
2) Check for core files on the disk (check-for-cores) that are more than 1 week old.
If any are found, compress them.
3) Check for any tar files on the disk (check-for-tars), and compress them.
4) Get a new reading of the disk space (get-disk-space).
5) If the percentage is below 90%, the problem has been corrected, so reset the
values in the check-disk-flood function.
6) If the percentage is between 90% and 95%, set the parameters lower on the
problem solving functions, such as using 1 day as a parameter for check-tmp-dirs.
7) If the percentage is higher than 95%, drastic actions may be required

a) Delete core files (check-for-cores) which generates a fact that
contains the pathname of each core file found. These facts will in turn
cause the rule that calls the function action-delete-file to fire.
b) Check the file system for a disk with more space.(check-fs-usage) If
one is found, it may become necessary to move files over to it. Create a
storage directory (action-create-directory) and move files over to it,
starting with tar files, Any time a file is moved, the owner of the file
must be notified of the move. (action-notify-user)

Notifying users becomes another issue. I f mail is used,
this may compound the flooding disk problem. So, the
expert system might check to see if the user is logged
on. I f so, a message is written to the user's screen. I f
the user is not available, one option might be to insert
a line in the .login of the user. Another option might be
to keep the name of the user in the factbase, and start
a check function that periodically checks to see if the
user is logged in. When the user does log in, write to
the screen of the user, and remoue the fact from the
fact base.

Currently, action-notify-user is set up to only to write to the screen of
the user. However, that function could realistically be converted to a
mini-expert system, which solves the problem of notifying the user
without using mail.

The critical element of this system is that it is completely system manager configurable at
startup, and modified dynamically at run-time. These operations are policy decisions, which
are made on a per-site basis.

Since security is vitally important on some installations, and not all that important on others,
the system manager can set the level of security for the MASE system, on each node. That way it
is possible to have a higher level of security on critical systems. The trade off is higher
security requires higher resource utilization for MASE (more CPU time, more memory, etc.).
At this point, we have three security stages defined. Stage 1 is the highest, Stage 2 is a medium
level of security, and Stage 3 is a low level of security. This will change in the future, as we
model national guidelines for computer security.12 Here are some examples of the security
levels for a BSD Unix system.

Stage 1 (High) - Inter-MASE messages would all be encrypted.
No device, including the console, would be set to secure. That way, no
user could log onto the system directly as root. Another account would
have to be used first, followed by an su.

Stage 2 (Medium) - Some inter-MASE messages would be encrypted, such as registration
messages.
Only the console could be set to secure, but the system manager could
override that.

Stage 3 (Low) - No inter-MASE messages would be encrypted. (Fastest system)
The system manager can set any device to secure.

There are two areas of interest in security at the host level. The first area is Hole Detection.
MASE can be programmed to check for holes in the operating system, such as a world writeable
password file, or world readable Idevlkmem. Since MASE is expert system driven, it is easy to
add the ability to check for a new hole, should a new one arise. If a hole is detected, MASE will,
depending upon it's configuration, either close the hole, or simply notify the manager. It
checks for weaknesses that have been created by users, intentionally, or not. For instance, on
some versions of the Unix operating system, there is a file that can be created by a user, called
the .rhost file. In it, the user can list what machines and accounts can log onto the user's
account, without the use of a password. In this file, the user is allowed to use a wildcard, which
creates a tremendous security hole. When a wildcard is specified in the username field, it
creates a hole that allows any user on the specified machine to log in on the account, without
specifying a password.
Examples of some of the hole detection check functions are:

check-0s-files-protection - This checks a list of os files that need specific protection settings.
check-suid-files - This checks for files with the suid bit set.
check-passwd-file - This checks for exploitable accounts (no passwords, unauthorized root uid

l " A Guide to Understanding Configuration Management in Trusted Systems", National
Computer Security Center, March 1988

"A Guide to Understanding Trusted Facility Management", National Computer Security
Center, October 1989

owners, etc.)

The second area of security at the host level is intruder detection, which is in the preliminary
stages of development. This requires MASE to monitor the areas of the operating system that are
prone to attack, such as password guessing. The following scenario shows how MASE could be
configured to handle a password guessing attack.

There is an attempt at logging onto the system. A valid username is provided, but the password
does not match. MASE detects the failure. If a second attempt is made, MASE then attempts to
determine where the login request is coming from. This information could be obtained through
intelligent utilities at the operating system level, or network packet analysis. If three attempts
fail (manager definable amount), MASE could then start putting up barriers.

1) If the attempt is being made from outside the manager's domain, it is possible, using an
intelligent network router, to disable incoming traffic from the offending system, or domain.
This is fairly drastic, but if the security of the system is deemed important enough by the
system manager, then it is a useful response.

2) Temporarily disuser the account, until the real owner of the account identifies him or
herself.

One of the advantages of MASE reacting to an intruder threat, instead of simply notifying the
system manager, is that valuable time could be lost waiting for the system manager to react.

Confiaurina the network manaaement expert svstem

At the network level , MASE can use both passive and active actions to diagnose network related
problems. In order for the system manager to understand the layout of the network, it is
important to generate a topological map of the network, which can be displayed for the system
manager. The topological map is created through the use of several different types of network
functions.

1) Pinging: This is an active function that uses network software to determine the existence of
an active node on the network. Using a list of expected nodes on the network, (/etc/hosts on
Unix systems) the pinging function will actively poll the various nodes on the network. If they
are alive, they will respond back to the ping. This gives MASE a initial picture of what nodes
are active on the network.

2) Routing Tracing: This is a second active function that allows MASE to trace what routing
paths would be used between two specified machines. This enables MASE to get a clearer picture
of the network topology. Using this technique, which uses UDP packets, MASE can determine
where gateways and routers are located, address-wise.

3) Ethernet Monitoring: Turning a Unix machine into promiscuous mode allows MASE to
monitor packets traversing the network. Using a filtering program, statistical information
based upon traffic patterns can be gathered. This can be used for simple informational
purposes, and it can also be used to diagnosing network problems, such as saturated subnets,
malfunctioning ethernet cards, run-away daemons, etc.

4) SNMP Capabilities: The Simple Network Management Protocol (SNMP) has become the de
facto standard for a network management protocol. At this point, most hardware vendors have
either delivered, or promised to deliver SNMP support with their network hardware. SNMP
support will allow MASE to gather network information from network machines, without having

to run MASE on each of the machines. This becomes even more important for network routers.
Routers are not multi-function machines. They are designed with one purpose in mind, which is
routing of network traffic. Instead of trying to get a MASE agent running on different routers,
MASE will use the SNMP protocol to get the same type of network information. This way, the
MASE developers do not have to port MASE to the various types of network hardware, such as
routers.

Eventually, MASE will progress to the point where the expert systems will act as a network
management adviser. Based upon statistical information gathered by MASE, it might suggest how
a network could be reorganized, based upon traffic flow, and resource utilization. For instance,
it may suggest, as a result of traffic analysis, that the insertion of a bridge at a certain point in
the network will reduce the load on each side of the bridge by 40%. Or, it may suggest how to
distribute a file system better, so that a particular node which is being over-utilized will share
some of its load with a second node.

Confiaurina the network securitv e x ~ e r t svstem

Computer security on a network can be analyzed at various levels. The lowest level is the
machine level. It could be argued that the security of a network is only as strong as the security
on the weakest node on the network. This is an overstatement, but not as irrelavent as one might
think.

At the network level, MASE will use it's packet monitoring capability for several security
checks. An example of one follows:

In every ethernet packet, the hardware address of the ethernet card which transmits the packet
is included. If it is an Internet Protocol (IP) packet, the IP address of the machine is included
also. Since MASE will be monitoring network traffic, it can compile a list of all the physical
ethernet addresses, and their associated IP addresses. One method of attacking a computer
network is to disguise one machine so it looks like another. This is done by changing the
internal networking information on the system. This type of attack would be detected by MASE,
however. Changing the IP address of a machine is fairly simple, given the right privileges.
However, changing the physical ethernet address of the ethernet card is not. When the disguised
machine starts transmitting packets using the false IP address, MASE will detect the anomaly
(conflicting physical addresses) and report the problem.

Since MASE is a distributed system, the various nodes can supply information that can lead to
detection of other types of intruder attacks. For instance, if one node reports that an account
was accessed improperly ten times (invalid passwords), then a problem may exist. However, if
a second machine reports shortly thereafter that it has an account that is being tested (multiple
password guesses), and the originating user is using the flagged account on the machine that
intially reported the password attack. This should raise the possibility of an intruder attack to a
much higher level.

User Assistance

One of the problems that users face on a network of computers is knowledge of, and access to,
network resources. MASE will assist users in this regard. It will keep track of the various
network resources, such as printers, disk drives, tape drives, application software,
development software, etc. This will be maintained in a database, which the user will then be
able to query against. Example:

A user has a dvi formatted file, that slhe wants to print out. A query would be made to MASE,
asking what machine has a dvi to postscript utility, a postscript printer, and access in some way
(User Account, Guest Account, e t~) .

System Manaaer's Interface

First, it is important that the system manager is shown what the network looks like,
topologically. Second, the system manager needs to be able to access information quickly on each
of the nodes. Third, the system manager needs to be able to configure MASE to meet the
requirements of the particular network. This includes thresholds, corrective actions,
notification levels, and frequency settings.

The MASE user interface is designed to handle each of these items. The display is set up
hierarchically, enabling the manager to move up and down throughout the network, displaying
items such as subnets, routers, individual nodes, node resources, and finally, the expert
systems that are being executed. Each item is represented iconically, allowing the user to select
an item, in order to obtain more information about the item. For instance, if the item selected
by the user is a subnet, then all the nodes on the selected subnet are displayed.

One of the features of this interface is a graph-building capability. This allows the system
manager to design and implement hislher own expert systems, for solving problems specific to
hislher own network.

Finally, one of the problems of user interfaces for complex systems, is information overload.
This is overcome in MASE, by using the manager's expert system to control the interface.
Messages coming in from across the network are prioritized. For instance, a message alerting
the system manager that a printer is down does not carry the same importance that "an intruder
detected" message does. The controlling expert system will use the priority scheme to
determine which information should be displayed before other information.

Conclusions

MASE is an on-going project that is continuously evolving. It is being funded through a RlClS
contract for NASA Johson Space Center. The first phase of the project was to develop an Alpha
version of MASE.. This included basic diagnostic function development, preliminary user
interface development, and expert system development.

MASE goes a step further than other network packages, by providing complex rule-generation
systems that allow system managers to create their own custom automated networking experts.
The ability to combine existing commands and expert systems into larger, more intelligent
systems is a more powerful and dynamic solution than today's rigid, stiff alternatives.

REPORT DOCUMENTATION PAGE

6. AUTHOR(S)
Joseph Gi arratano (UHCL) and Christopher Cu 1 bert (JSC)

Form Approved

I 1

4. TITLE AND SUBTITLE
2nd CLIPS Conference Pr~ceedi ngs
Volume 1

- OM8 NO. 0704-0 188

pual~c repontng burden for th~s <ollect~on of lnformatlon IS estimated to average 1 hour per response. including the tlme 'or revlewlng Instructlons, searching extstlng data sources, gather,ng and

~nclud~ng suggesttons for reductng this burden. to Washington Headquarters Se~lces. OlreaOrate for Information Operations and Rewrtr. 1215 Jefferson Oavls Htghway, Su~te 1204, arllngton "fi
222024302, and to the Office of Management and eudget. Paperwork Reduction Project (0704-0188). Washington. OC 20503

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
NASA Johnson Space Center
Software Technology Branch/PT4
Houston, Texas 77058

I 1 1. SUPPLEMENTARY NOTES 1

8. PERFORMING ORGANIZATION
REPORT NUMBER
S-662

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADPRESS(ES)
National Aeronautics and Space Administration
Washington, D.C. 20546-001

3 REPORT TYPE AND DATES COVERED 1 AGENCY USE ONLY (Leave blank)

10. SPONSORING 1 MONITORING
AGENCY REPORT NUMBER
CP 10085

I Subject Category 61 I I

2. REPORT DATE

12a. DISTRIBUTION /AVAILABILITY STATEMENT

Unlimited/Unclassified

13. ABSTRACT (Max~mum 200 words)
Papers presented at the 2nd CLIPS Conference held at the Lyndon B. Johnson Space Center
(JSC) September 23, 24, and 25, 1991 are documented herin. CLIPS is an expert system
tool developed by the Software Technology Branch at NASA JSC and is used at over 4000
sites by government, industry, and business. During the three days of the conference,
over 40 papers were presented by experts from NASA, Department of Defense, other
government agencies, universities, and industry.

i malntalning the data needed, and completing and revlewlng the collection Of lnformatlon Send comments regarding thls burden esttmate or any other aspect of th~s :ollect~on of Informatton ,

12b. DISTRIBUTION CODE

September 1991 Conference Publication I

14. SUBJECT TERMS
CLIPS, expert sytems, knowledge-based systems, Space Shuttle,
intell igent tutors, verification and validation, simulation

L I I I
Standard Form 298 (Rev 2.89)
Presirlbed by Ah51 Std. 239-18
298-112

15. NUMBER OF PAGES

16. PRICE CODE

I
20. LIMITATION OF ABSTRACT

Unl imi ted
17. SECURITY CLASSIFICATION

OF REPORT

I Unclassif led

18. SECURITY CLASSIFICATION
OF THIS PAGE
Unclassified

19. SECURITY CLASSIFICATION
OF ABSTRACT
Unclassified

