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Tag der mündlichen Prüfung: 1. Dezember 2010

Erster Gutachter: Prof. Dr. Peter H. Schmitt,
Karlsruher Institut für Technologie

Zweiter Gutachter: Prof. Dr. Arnd Poetzsch-Heffter,
Technische Universität Kaiserslautern





Acknowledgements

First of all, I would like to express my gratitude to my Doktorvater Prof. Dr. Peter
H. Schmitt for giving me the opportunity to undertake this project, for his scien-
tific guidance, for his continued support of my work, and for the trust he placed
in me.

I am thankful to Prof. Dr. Arnd Poetzsch-Heffter for agreeing to be the second
reviewer of this thesis, and for fulfilling his role with commitment. Thanks also
go to Prof. Dr. Ralf Reussner and to Juniorprof. Dr. Mana Taghdiri for being
examiners in the thesis defense.

I am highly grateful to my former and current colleagues Dr. Christian Engel,
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Zusammenfassung (German Summary)

Diese Arbeit entstand im Rahmen des Forschungsprojekts KeY. Kernbereich
des KeY-Projekts ist die deduktive Verifikation objektorientierter Software, also
die Überprüfung der Korrektheit objektorientierter Programme mittels logischen
Schließens. Das Ergebnis einer erfolgreichen deduktiven Verifikation ist ein for-
maler Beweis für die Korrektheit des untersuchten Programms. Das im Rahmen
des KeY-Projekts entwickelte KeY-System erlaubt die deduktive Verifikation von
Programmen, die in einer sequentiellen Teilmenge der Programmiersprache Java
geschrieben sind.

Die Bedeutung des Begriffs Korrektheit ergibt sich aus einer formalen Spezifika-
tion, die das gewünschte Verhalten eines konkreten Programms oder Programm-
teils beschreibt. Bei der vertragsbasierten Spezifikation (engl.: design by contract)
werden die Methoden des Programms mit sogenannten Verträgen versehen, die
mit Hilfe von Vor- und Nachbedingungen das Ein-/Ausgabeverhalten der Metho-
den beschreiben. Zusätzlich werden Objektinvarianten angegeben, die festlegen,
wann sich ein Objekt zur Laufzeit in einem “gültigen” Zustand befindet. Eine Art
De-facto-Standard für die vertragsbasierte Spezifikation von Java-Programmen
– und die bevorzugte Eingabesprache des KeY-Systems – ist die Java Modeling
Language (JML).

Ein zentrales Ziel bei der Verifikation objektorientierter Programme ist die
Modularität der Verifikation: Einzelne Programmteile (z.B. Methoden) sollen un-
abhängig von ihrem Programmkontext verifiziert werden, und eine einmal bewie-
sene Korrektheitsaussage soll bei Erweiterung des Programms erhalten bleiben.
Hierzu muss bereits die Spezifikation geeignet formuliert werden. Insbesondere
verwendet man in öffentlich sichtbaren Spezifikationen nicht die internen Daten-
strukturen des spezifizierten Programmteils, sondern führt sogenannte abstrakte
Variablen ein (die in zwei unterschiedlichen Ausprägungen auch als Modell- und
Geistervariablen bekannt sind). Abstrakte Variablen existieren nur auf der Ebene
der Spezifikation, und ihre Beziehung zu den konkreten Datenstrukturen wird als
Implementierungsgeheimnis behandelt.

Das Konzept der abstrakten Variablen ist zwar im Prinzip seit den 1970er
Jahren bekannt, aber im Detail mit einigen Schwierigkeiten verbunden, deren
Lösung bis heute Forschungsgegenstand ist. Interessant ist insbesondere das Zu-
sammenspiel von abstrakten Variablen mit Aussagen über die Speicherstellen, die
von einem Programmteil höchstens geändert werden dürfen (engl.: modifies clau-
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ses). Solche Aussagen sind für die modulare Verifikation unverzichtbar. Auch hier
dürfen in einer abstrakten Spezifikation nicht direkt die von der Implementierung
intern verwendeten Speicherstellen benutzt werden. Umgekehrt hängen die Werte
abstrakter Variablen von konkreten Speicherstellen ab, die im Allgemeinen eben-
falls nicht alle öffentlich sind. Das Kernproblem ist letztlich, unerwünschte Alias-
Effekte zwischen konkreten und/oder abstrakten Variablen auszuschließen, ohne
dabei alle beteiligten Speicherstellen explizit zu kennen. Eine ähnliche Problema-
tik ist mit Objektinvarianten verbunden, deren Gültigkeit in einem Programm-
zustand typischerweise ebenfalls von nicht-öffentlichen Speicherstellen abhängt.

Ältere Lösungsansätze für diesen Problemkreis sind entweder nicht modular,
oder sie basieren auf teils drastischen Einschränkungen der erlaubten Program-
me. Besitzbasierte Ansätze (engl.: ownership) erlauben eine effiziente Behandlung
vieler typischer Fälle, sind aber für nicht-hierarchische Objektstrukturen weni-
ger geeignet. Ein vor wenigen Jahren vorgeschlagener Ansatz ohne derartige Ein-
schränkungen ist die Verwendung sogenannter dynamischer Rahmen (engl.: dyna-
mic frames): abstrakte Variablen, deren Werte selbst Mengen von Speicherstellen
sind. Die für eine Methode oder eine abstrakte Variable relevanten Speicherberei-
che und ihre dynamische Veränderung zur Laufzeit werden hier mit Hilfe von Vor-
und Nachbedingungen und mengentheoretischen Operatoren explizit spezifiziert.
Trotz ihrer Einfachheit und Allgemeinheit hat diese Technik bisher noch keinen
Einzug in verbreitete vertragsbasierte Spezifikationssprachen wie JML gefunden.

Dynamische Logik ist ein etablierter Ansatz zur deduktiven Programmveri-
fikation. Dynamische Logik erweitert Prädikatenlogik erster Stufe um modale
Operatoren, die ausführbare Programmfragmente enthalten. Eine konkrete Vari-
ante der dynamischen Logik, bei der die Programmfragmente in Java geschrieben
sind, ist die Grundlage der Verifikation im KeY-System. Eine zentrale Neuerung
dieser Variante der dynamischen Logik ist das Konzept der expliziten Zustands-
aktualisierungen (engl.: updates), mit deren Hilfe Zustandsübergänge des Pro-
gramms syntaktisch in einer programmiersprachenunabhängigen Form dargestellt
werden. Dies erlaubt es, die deduktive Programmverifikation als eine symbolische
Ausführung des Programms zu fassen.

Auf dynamischer Logik basierende Verifikationsverfahren bieten bisher keine
Unterstützung für Ansätze wie dynamische Rahmen, und erreichen daher das
Ziel der Modularität nur in begrenztem Umfang. In der dynamischen Logik des
KeY-Systems ist eine Unterstützung von dynamischen Rahmen nicht unmittelbar
möglich, da die der Logik zugrundeliegende Modellierung des Halden-Speichers
mit sogenannten nichtrigiden Funktionssymbolen es zwar erlaubt, in logischen
Formeln über die Werte von Speicherstellen in Programmzuständen zu sprechen,
nicht aber über die Speicherstellen als solche.

Ein weiteres Ziel bei der deduktiven Verifikation objektorientierter Programme
ist die weitestmögliche Automatisierung des Verifikationsvorgangs. Neben Inter-
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aktionen zum Schlussfolgern auf prädikatenlogischer Ebene ist Benutzerinterak-
tion in einer Verifikationsumgebung wie dem KeY-System vor allem zur Behand-
lung von Schleifen in Programmen erforderlich. Schleifen können bei der symbo-
lischen Ausführung des Programms im Allgemeinen nicht automatisch behandelt
werden, sondern es müssen Schleifeninvarianten angegeben werden, also prädi-
katenlogische Formeln über den Variablen des Programms, die zu Beginn eines
jeden Durchlaufs der Schleife gelten.

Andererseits existieren außerhalb des Gebiets der deduktiven Verifikation Tech-
niken zur automatischen statischen Analyse von Schleifen. Diese basieren mehr-
heitlich auf der sogenannten abstrakten Interpretation, d.h. der Berechnung eines
Fixpunkts durch wiederholte, approximative, symbolische Ausführung der Schlei-
fe. In der Verwendung symbolischer Ausführung ähnelt abstrakte Interpretation
der Verifikation in KeY. Eine besonders eng verwandte Variante der abstrakten
Interpretation ist die sogenannte prädikatenbasierte Abstraktion (engl.: predicate
abstraction). Hier ist die symbolische Ausführung nicht approximativ, sondern die
für die Terminierung der Fixpunktberechnung nötige Approximation wird durch
explizite Abstraktionsschritte eingeführt, bei denen mittels automatischem Theo-
rembeweisens eine gültige boolesche Kombination einer Menge von vorgegebenen
Prädikaten über den Variablen des Programms ermittelt wird.

In dieser Arbeit wird die deduktive Verifikation objektorientierter Software
basierend auf dynamischer Logik verbunden mit der Spezifikation durch dynami-
sche Rahmen einerseits, und mit der Technik der prädikatenbasierten Abstraktion
andererseits. Es wird also zum einen die Modularität und zum anderen die Au-
tomatisierung der Verifikation mit dynamischer Logik verbessert. Im Einzelnen
sind die Beiträge der Arbeit:

• Eine vertragsbasierte Spezifikationssprache für Java wird vorgeschlagen, die
auf JML basiert und das Konzept der dynamischen Rahmen integriert.
Im Gegensatz zu gewöhnlichem JML erlaubt diese Sprache das Schreiben
modular verifizierbarer Spezifikationen für nichttriviale Java-Programme.

• Eine dynamische Logik mit expliziten Zustandsaktualisierungen für Java
wird definiert. Die Logik basiert auf der traditionell im KeY-System ver-
wendeten Logik, weicht aber in der fundamentalen Frage der Modellierung
des Halden-Speichers von dieser ab. Anstelle von nichtrigiden Funktions-
symbolen wird hier die sogenannte Theorie der Reihungen (engl.: theory
of arrays) verwendet und um spezialisierte Operatoren erweitert, die zum
modularen Schlussfolgern über Java-Programme nützlich sind. Der Kalkül
der Logik wird an die veränderte Speichermodellierung angepasst, und die
Korrektheit wesentlicher Regeln wird nachgewiesen. Insbesondere ergeben
sich vorteilhafte Auswirkungen auf die Schleifeninvariantenregel zum Be-
handeln von Schleifen mit Hilfe von Schleifeninvarianten.
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• Ein System von Beweisverpflichtungen wird definiert, welche die Korrekt-
heit eines Programms in Bezug auf eine Spezifikation in der eingeführten
Spezifikationssprache in der eingeführten dynamischen Logik formalisieren.
Dank der veränderten Speichermodellierung können dynamische Rahmen
unterstützt werden. Ergänzend zu den Beweisverpflichtungen werden ver-
tragsbasierte Kalkül-Regeln definiert, mit denen sich z.B. ein Methodenauf-
ruf während der symbolischen Ausführung mit Hilfe eines Vertrags modular
behandeln lässt. Es wird nachgewiesen, dass diese Regeln korrekt sind, so-
fern die zu dem Vertrag gehörenden Beweisverpflichtungen erfüllt sind.

• Ein Ansatz zur Integration von prädikatenbasierter Abstraktion in dynami-
sche Logik wird vorgestellt. Die Integration erlaubt es in manchen Fällen,
die für die Verifikation einer Schleife notwendigen Schleifeninvarianten au-
tomatisch zu ermitteln. Die Fixpunktberechnung zum Finden einer Schlei-
feninvariante ist dabei nahtlos in den eigentlichen Verifikationsprozess in-
tegriert; die symbolische Ausführung ist gleichzeitig deduktives Beweisen
und abstrakte Interpretation. Dadurch wird vermieden, die umfangreiche
Semantik der Programmiersprache redundant sowohl im Verifikationssy-
stem als auch in einem separaten abstrakten Interpretierer modellieren zu
müssen.

• Die vorgeschlagenen Ansätze sind im KeY-System implementiert und an
kleineren Beispielen erprobt worden.
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1. Introduction

1.1. Software Verification

Computer software plays a central role in modern society. The reliability of soft-
ware systems is important economically, and it is downright essential for safety-
critical systems such as those in the areas of automotive, aeronautical or medical
applications. At the same time, software flaws (“bugs”) are still considered to
be virtually inevitable; in all but the most safety-critical areas, it is generally
accepted that shipped software products do contain bugs. This is in contrast to
disciplines like electrical or mechanical engineering, which are older and more ma-
ture than computer science, and where faulty products are viewed as exceptions
rather than the norm.

This thesis is about improving the quality of software systems through for-
mal methods, i.e., techniques for describing, designing, developing and analysing
software systems with mathematical rigour. Although formal methods are not a
“silver bullet” that magically solves all problems of software reliability, they can
be expected to continuously gain importance in the future, complementing and
in some cases replacing traditional software engineering techniques.

More precisely, this thesis is about software verification on the source code
level: the goal is to ensure in a rigorous way that pieces of software written in a
real-world programming language are correct. In contrast, examples for formal
methods that are more oriented towards abstract design rather than source code
are modelling languages such as Z [Spivey, 1992], B and Event-B [Abrial, 1996;
Hallerstede, 2009], Alloy [Jackson, 2002], and Abstract State Machines [Börger
and Stärk, 2003].

The meaning of the notion of correctness is defined for an individual program
by a formal specification that describes the intended behaviour of the program
in a formal language. The description may cover the entire functional behaviour
of the code, or it may be concerned with specific properties only. A widely used
variety of rather specific formal specification—although not always thought of as
such—are the types of mainstream programming languages: the type of a variable
restricts the intended values that should be stored in the variable at run-time. As
stated by Pierce [2002], “type systems are the most popular and best established
lightweight formal methods”.
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A slightly less lightweight, but also widely popular kind of formal specification
are assertions, i.e., Boolean expressions in the programming language (or formu-
las in a more expressive language) that should always be satisfied when program
execution reaches a particular point in the code. The idea of attaching formulas
to program points was first introduced by Floyd [1967]. Assertions allow express-
ing more complex properties than usual type systems. As an example for their
popularity, Hoare [2003a] estimated that at the time there were about a quarter
of a million assertions in the code of Microsoft Office.

Design by contract is an extension of the assertion mechanism of standard
programming languages. Here, the procedures of an object-oriented program
are specified through pre- and postconditions, and its classes through object in-
variants. Building on earlier work such as that of Hoare [1969, 1972], the term
“design by contract” was coined by Meyer [1992, 2000] when designing the Eif-
fel programming language, which features built-in support for design-by-contract
specifications. Procedure and class specifications are viewed as contracts between
client and implementer of the procedure or class, defining mutual responsibilities
and facilitating modularisation of the program.

Techniques for verifying software with respect to a specification can be divided
into static and dynamic techniques. Static techniques operate on the source
code without actually executing it; an example is the type checking done by a
compiler. In contrast, dynamic techniques are based on executing the program
for concrete input values, i.e., on testing the program. Testing may or may
not be considered to be a (lightweight) formal method. It is today the primary
means for establishing software reliability, and industry is accustomed to spending
massive efforts on it. Even though testing will undoubtedly remain important in
the future, its reach is hardly satisfactory: for all but the most trivial software
systems, the state space is so large that exhaustive testing is utterly infeasible.
Thus, as Dijkstra [1972] famously put it, “program testing can be used to show
the presence of bugs, but never to show their absence”.

Assertions and design-by-contract specifications are today usually used for dy-
namic run-time checks, which can serve as test oracles that indicate whether a
test run has been successful or not. This thesis is about instead verifying such
specifications statically. More precisely, it is concerned with fully-fledged, heavy-
weight static verification, where the goal is to indeed show the absence of bugs
in a program. Static verification techniques (beyond simple type checking) can
be useful also in more lightweight flavours, where the goal is to just find bugs
earlier and more cheaply than through extensive testing. Heavyweight static ver-
ification is an undecidable problem. This may be taken as an indication of how
challenging a problem it is, but it does not imply that handling the practically
relevant instances is impossible. A vision in the area of static verification, put
forward as a “grand challenge” for computer science research by Hoare [2003b,c],
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is to devise a “verifying compiler” that checks the correctness of assertions much
like compilers perform type checking already today.

The form of static verification embraced in this thesis is deductive verification.
Deductive verification, which was pioneered by Hoare [1969], is arguably the most
formal verification technique of all: a program is verified by constructing a logical
proof of its correctness. Two other broad approaches to static software verifica-
tion, where logic may or may not play a role but where typically no formal proofs
are created, are abstract interpretation [Cousot and Cousot, 1977] and symbolic
software model checking [Henzinger et al., 2003; Clarke et al., 2004; Ball et al.,
2006]. Abstract interpretation emphasises the role of approximation for achieving
automation. It also plays a role in this thesis, although the focus is on deductive
verification. The idea of software model checking grew out of classical model
checking, where properties of finite-state systems are checked by explicit state
exploration. For checking source code, symbolic software model checkers may
use automatic abstraction techniques, much like in abstract interpretation. The
boundaries between deductive verification, abstract interpretation and symbolic
software model checking are not sharp, the reasons for the differentiation being
to some extent historical.

An important point to note is that even deductive verification, aiming at
soundly proving the absence of bugs in a program, is not about gaining absolute
certainty that a program works as intended. Absolute certainty is impossible
to achieve, for example because there is always a gap between the formal spec-
ification of a program and the human intention on what the program is really
supposed to do. The goal of deductive verification is a dramatic, but still only
gradual, increase in trust in the correctness of a piece of software. As a corollary,
and as argued in more detail by Beckert and Klebanov [2006], it is useful but not
necessary for a verification system to itself be strictly verified in some way; trust
in its functioning may also be gained by other means, such as, only seemingly
paradoxically, by means of testing.

1.2. KeY

The research underlying this thesis has been carried out as a part of the KeY
project [Beckert et al., 2007]. The KeY project started in 1998 at the University
of Karlsruhe, and is today a joint effort between the Karlsruhe Institute of Tech-
nology, Chalmers University of Technology in Gothenburg, and the University of
Koblenz. Its central topic is deductive verification of object-oriented software.

The main software product of the KeY project is the KeY system, a verifica-
tion tool for proving the correctness of programs written in the Java language
[Gosling et al., 2000]. More precisely, KeY supports the full Java Card language
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in version 2.2.1 [Java Card 2003], which is roughly a subset of sequential Java 1.4
with some smart card specific extensions, and it supports a few Java features be-
yond Java Card. On the side of specification, KeY accepts (customised versions
of) the Java Modeling Language (JML) [Leavens et al., 2006a] and the Object
Constraint Language [OCL 2006], in addition to its own input format.

Given a Java program with an accompanying specification, KeY first translates
it into proof obligations, which are formulas whose logical validity corresponds to
correctness of the program with respect to the specification. The logic used for
this purpose is a dynamic logic [Pratt, 1976; Harel et al., 2000], i.e., an extension
of first-order predicate logic with modal operators that contain executable pro-
gram fragments of some programming language. In the dynamic logic of KeY,
which we refer to as JavaDL here, these program fragments are written in Java.
As programs directly appear in dynamic logic formulas, the pre-processing step
of generating the proof obligations is relatively small. The rest of the verification
process is deductive: at its core, KeY is a theorem prover for dynamic logic. It al-
lows both for interactive proving using a special-purpose graphical user interface,
and for automatic proving with the help of automated proof search strategies.
The final outcome of a successful verification attempt is a proof for the logical
validity of a proof obligation.

An important novel feature of JavaDL, as opposed to other versions of dynamic
logic, is its concept of state updates [Beckert, 2001; Rümmer, 2006]. Updates are
an explicit, syntactic representation of state changes, which is independent of the
programming language being verified. With the help of updates, programs in
formulas are handled in the JavaDL calculus by performing a symbolic execution
of the program, where the verification process resembles executing the program,
using symbolic instead of concrete values for the variables of the program.

Symbolic execution ultimately removes programs from formulas, thereby re-
ducing the verification problem to the problem of proving the logical validity
of formulas in first-order predicate logic with built-in theories. These remain-
ing tasks are usually also handled within KeY itself. As an alternative, KeY
allows sending such verification problems to external satisfiability modulo theo-
ries (SMT) solvers such as Simplify [Detlefs et al., 2005] or Z3 [de Moura and
Bjørner, 2008]. These are then used as trusted “black boxes” that can automati-
cally determine the validity of some first-order formulas, thereby sacrificing some
traceability for sometimes better automation and performance than offered by
KeY itself.

Where SMT solvers are useful but non-essential add-ons in KeY, there are a
number of verification tools that use SMT solvers as their primary foundation,
namely most tools that follow the paradigm of verification condition generation:
the program and its specification are first translated into first-order formulas
called verification conditions, which are then passed to an SMT solver. Symbolic
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execution in KeY is related to verification condition generation, but differs in
that it may be intertwined with other forms of reasoning. Also, it is a deductive,
rule-based process, while verification condition generation usually is not. Tools
based on verification condition generation often compile the source code to an in-
termediate language before generating the verification condition. This multi-step
architecture is beneficial in that it facilitates modularisation of the verification
system, but the compilation is another non-deductive, black-box step. No explicit
proofs for the correctness of the verified program are created. For these reasons,
even though such tools may be considered deductive because of their use of logic
and SMT solvers, they are so to a lesser degree than KeY.

Examples of verifiers for object-oriented programs based on verification condi-
tion generation are ESC/Java [Flanagan et al., 2002], its successor ESC/Java2
[Cok and Kiniry, 2005], Spec# [Barnett et al., 2005, 2010], and a number of
offsprings of Spec# [Leino, 2008; Smans et al., 2008] that also use its backend
Boogie [Barnett et al., 2006] for generating verification conditions. In the spirit of
the “verifying compiler”, these tools are fully automatic, in the sense that when
executed, they run to termination without any interaction in between. Ideally,
this architecture should spare their users the need to understand their internals.
However, full automation of functional software verification is today way beyond
the state of the art. Thus, in practice, one does need to interact with these tools:
the interaction consists of guiding the tool along by writing auxiliary source
code annotations [Beckert et al., 2009a]. If the employed SMT solver—dealing
heuristically with instances of an undecidable problem—is unable to prove a valid
verification condition, verifying a correct program may fail; a human verification
expert may be able to solve this problem by adding appropriate annotations.
JACK [Burdy et al., 2003] and Krakatoa [Marché et al., 2004] are Java verifiers
based on verification condition generation that are unusual in that they target
interactive provers for higher-order logic (in particular Coq) for proving the ver-
ification conditions, in addition to SMT solvers.

Two tools for deductively verifying object-oriented programs that like KeY do
not follow the verification condition generation approach are KIV [Reif, 1995;
Stenzel, 2004] and Jive [Meyer and Poetzsch-Heffter, 2000; Darvas and Müller,
2007b]. Both use logics where programs are directly embedded into formulas, and
both allow constructing proofs for such formulas interactively. KIV, like KeY, uses
a dynamic logic, and performs the entire verification within one prover. Jive uses
a Hoare logic (which is similar to, but more restricted than dynamic logic), and
employs a separate, generic prover (Isabelle/HOL) or an SMT solver for proving
program-independent properties.

According to estimates of Klebanov [2009], the KeY system consists of roughly
124 000 lines of Java code, not counting comments; its calculus comprises about
1725 rules, of which about 1300 are symbolic execution rules that formalise the
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semantics of Java; approximately 30 person years have been spent on its de-
velopment. The system includes several add-on functionalities that build on its
theorem proving core, such as automatic generation of test cases [Engel and
Hähnle, 2007; Beckert and Gladisch, 2007] and symbolic debugging [Baum, 2007;
Hähnle et al., 2010]. The current release version is KeY 1.4, and the current
developer version KeY 1.5. Case studies of verification with KeY have, amongst
others, targeted parts of a flight management system developed by Thales Avion-
ics [Hunt et al., 2006], the Demoney electronic purse application provided by
Trusted Logic S.A. [Beckert et al., 2007, Chapter 14], a Java implementation of
the Schorr-Waite graph marking algorithm [Beckert et al., 2007, Chapter 15], a
Java Card implementation of the Mondex electronic purse [Schmitt and Tonin,
2007], and an implementation of the Java Card API [Mostowski, 2007].

1.3. Problems and Contributions

An important goal in deductive verification of object-oriented software is modu-
larity of the verification: parts of the program (e.g., methods) should be verified
independently from the rest of the program, and a proof that has been completed
once should not have to be redone when the program is extended later. To this
end, already the specification must be formulated in a modular way. In partic-
ular, public interface specifications must not use internal data structures of the
specified program part. Instead, one can introduce so-called abstract variables
[Hoare, 1972], which in two different forms are also known as model and ghost
variables. Abstract variables exist only on the level of the specification, and their
relationship with the concrete data structures of the program is treated as an
implementational secret to be hidden from the rest of the program.

Even though the basic concept of abstract variables has been known since the
1970s, some aspects of it are still a challenge for current research. A particularly
interesting area is the relationship between abstract variables and specifications
about the memory locations that may at most be modified by a program part
(so-called modifies clauses). Such specifications are necessary for modular verifi-
cation. Here, too, an abstract specification must not directly mention the memory
locations used in a particular implementation. Conversely, the values of abstract
variables depend on concrete memory locations, which in general are also not all
publicly visible. Ultimately, the problem is to prevent unwanted aliasing between
concrete and/or abstract variables, without knowing all involved locations explic-
itly. A similar problem occurs for object invariants, whose validity in a program
state typically also depends on the values of private memory locations.

Older approaches for solving these issues are either non-modular, or they are
based on sometimes drastic restrictions on what a programmer may write in a pro-
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gram. Approaches based on object ownership [Clarke et al., 1998; Müller, 2002]
allow for an efficient treatment of many typical cases, but they are ill-suited for
non-hierarchical object structures. Kassios [2006a] proposed an approach without
such limitations, namely the use of so-called dynamic frames. Dynamic frames
are abstract variables whose values themselves are sets of memory locations. The
set of memory locations that are relevant for a method or for an abstract variable,
and how this set changes dynamically at run-time, are then specified explicitly
through pre- and postconditions and set-theoretic operators. Even though it is
both simple and general, the approach of dynamic frames has not yet found its
way into widespread specification languages such as JML.

Verification techniques based on dynamic logic so far support neither dynamic
frames nor alternative approaches such as ownership, and thus achieve the goal
of modularity only partially. In JavaDL, handling dynamic frames is not directly
possible, because the underlying logical model of heap memory, based on so-called
non-rigid functions, allows talking in logical formulas about the values stored at
memory locations, but not about the locations as such.

Another goal in deductive verification is automating the verification process
as far as possible. Besides interactions on the level of first-order reasoning, hu-
man intervention is required mainly for handling loops in programs. Symbolic
execution (or verification condition generation) in general cannot handle loops
automatically, but rather expects that loop invariants are provided interactively,
i.e., first-order formulas that are valid at the beginning of each loop iteration.
Finding a sufficiently strong loop invariant for verifying a property at hand can
be a difficult task.

On the other hand, outside of the area of deductive program verification there
are techniques for statically analysing loops in an automatic way. These are pre-
dominantly based on abstract interpretation. In abstract interpretation, loops
are handled in a way that can be seen as repeated symbolic, approximative exe-
cution of the loop body until stabilisation at a fixed point. In its use of symbolic
execution, abstract interpretation resembles the verification process in KeY. A
form of abstract interpretation particularly closely related to deductive verifica-
tion is predicate abstraction [Graf and Säıdi, 1997]. Here, the symbolic execution
is itself not approximative, and the necessary approximation is instead introduced
through explicit abstraction steps, where automated theorem proving is used to
determine a valid Boolean combination of formulas from a predetermined set of
so-called loop predicates.

This thesis combines deductive verification of object-oriented software based on
dynamic logic with dynamic frames on one hand, and with predicate abstraction
on the other hand. It thus aims at improving the modularity and the automation
of verification with dynamic logic. In more detail, its main contributions are the
following:
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• A design-by-contract specification language for Java is presented, which is
based on JML and which integrates the essence of the theory of dynamic
frames. In contrast to ordinary JML, the language allows writing modularly
verifiable specifications for non-trivial Java programs.

• A dynamic logic with updates for Java is defined. The logic is based on
JavaDL as it is traditionally used in KeY, but differs in the fundamental
question of how to logically model the program’s heap memory. Instead
of non-rigid function symbols, it uses the theory of arrays of McCarthy
[1963] and extends it with specialised operators that are useful for modular
reasoning about Java programs. The JavaDL calculus is adapted to the
changed heap modelling, and the soundness of core rules is formally proven.
In particular, the change in heap modelling has positive effects on the loop
invariant rule for handling loops with the help of loop invariants.

• A system of proof obligations is defined, which use the introduced logic
to capture the correctness of Java programs with respect to specifications
written in the introduced specification language. The changed heap mod-
elling allows for supporting dynamic frames. The proof obligations are
complemented by contract-based calculus rules, which for example allow
reasoning about a method call during symbolic execution modularly with
the help of a contract for the called method. It is proven that these rules
are sound, provided that the proof obligations belonging to the employed
contract are logically valid. Parts of this material and of the underlying
logical foundation have been published as [Schmitt et al., 2011, 2010].

• An approach for integrating predicate abstraction into dynamic logic is pre-
sented. The integration sometimes allows determining the necessary loop
invariants for a loop automatically. The fixed-point computation for deter-
mining the loop invariant is deeply integrated into the verification process
itself: the resulting symbolic execution process is deductive verification and
abstract interpretation at the same time. This avoids having to redundantly
encode knowledge about the semantics of the programming language and
about the involved logical theories both in the deductive verification sys-
tem and in a separate abstract interpretation system that generates loop
invariants for the deductive system. These contributions have largely been
published as [Weiß, 2009, 2011], and include some additional ideas published
in [Bubel et al., 2009].

• The proposed techniques have been implemented in the KeY system and
tested on moderately sized examples.
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1.4. Outline

The thesis is divided into three parts, where Part I is about specification, Part II
about the modular verification of specifications, and Part III about improving
automation of the verification by generating loop invariants.

Part I begins with a review of JML, and thereby of the state of the art in
design-by-contract specification for Java, in Chapter 2. Chapter 3 then presents
the new specification language based on JML and on dynamic frames.

As the first chapter of Part II, Chapter 4 discusses several possibilities for mod-
elling heap memory in program logics. This provides motivation for Chapter 5,
which defines the dynamic logic based on JavaDL that uses a different way of
modelling the heap. Proof obligations and contract rules for verifying specifica-
tions in the language of Chapter 3 in this logic are presented in Chapter 6.

Part III first provides background on the theory of abstract interpretation in
Chapter 7, before introducing the approach for integrating predicate abstraction
into dynamic logic in Chapter 8.

The thesis ends with conclusions in Chapter 9.
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Part I.

Specification





2. Background on JML

The Java Modeling Language (JML) [Leavens et al., 2006a, 2008] is a language for
writing formal specifications about Java programs. Its authors classify it as a be-
havioural interface specification language [Hatcliff et al., 2009], i.e., a language for
specifying the functional behaviour of the interfaces of program modules (such as,
in an object-oriented setting, methods and classes). Using a metaphor proposed
by Meyer [1992], one can also call it a design by contract language: its specifica-
tions can naturally be understood as “legal contracts” between the clients and the
implementers of each module, where the responsibility for overall correctness is
split between the contracting parties. Some other examples for this general type
of specification language are Larch [Guttag et al., 1993], Eiffel [Meyer, 2000],
SPARK [Barnes, 2003], Spec# [Barnett et al., 2005] and OCL [OCL 2006]. In
the area of design-by-contract style specification for Java, JML can today be
considered the de facto standard, and it is supported by a large number of tools
(refer to Burdy et al. [2005] for a slightly outdated overview of JML tools).

The KeY tool accepts JML as one of its input formats, and translates it into its
verification logic JavaDL. Alternatively, specifications can be written in JavaDL
directly, but using JML usually means better readability and less verbosity, and
requires less special knowledge. The present chapter serves as an introduction
to the parts of JML relevant for this thesis, and, by this example, to the basics
of design-by-contract style specification for object-oriented software in general.
Particular emphasis is placed on the difficult issue of data abstraction in specifica-
tions. i.e., the question how classes and interfaces can be specified in an abstract
way, without referring to the concrete data structures used in any particular im-
plementation of the specified functionality. These issues motivate the extensions
to JML proposed in Chapter 3, and the changes in the definition of JavaDL in
Chapter 5, compared to the traditional definition of this logic as given by Beckert
[2001]; Beckert et al. [2007]. Just as the definition of JML [Leavens et al., 2008]
is written in natural language rather than in some formal notation, both the
present chapter and Chapter 3 have a less formal nature than later chapters of
this thesis. Formalisations of parts of JML are explored by Leavens et al. [2006b]
and by Bruns [2009].

Outline We start with a look at JML’s expression sub-language in Section 2.1.
Section 2.2 then introduces what is arguably JML’s most elementary specification
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feature, namely basic method contracts consisting of pre- and postconditions, mod-
ifies clauses, and sometimes diverges clauses. Besides method contracts, a second
main feature of design by contract specification for object-oriented software in
general and of JML in particular is that of object invariants, which are the topic of
Section 2.3. In Section 2.4 we take a look at the interplay between subtyping and
inheritance on one hand and JML specifications on the other hand. Section 2.5
deals with the question of data abstraction in specifications, and presents JML’s
answers to this question, namely ghost fields, model fields, data groups, and pure
methods with depends clauses. We conclude in Section 2.6.

2.1. Expressions

JML is a specification language dedicated to specifying Java programs. As such,
it aims to provide a flat learning curve for experienced Java programmers new to
formal specification, and strives to be as close to the Java language as possible. Its
expressions are mostly just Java expressions, which for pre- and postconditions
and invariants are of type boolean. The only restriction compared to Java
expressions is that JML expressions must not have side-effects on the program
state, in order to give them a logical, rather than imperative, character. This
means that Java expressions like i++ or calls to state-changing methods are not
legal JML expressions.

On the other hand, JML features a number of extensions over the expressions
allowed in Java. Two important such extensions are the universal quantifier
\forall and the existential quantifier \exists. An expression (\forall T x;

b1; b2), where T is a type, where x is a variable identifier bound in b1 and b2, and
where b1 and b2 are boolean expressions, means that for all instances x of type
T for which the expression b1 holds, expression b2 must also hold. Analogously,
an expression (\exists T x; b1; b2) means that there is an instance of type
T such that both b1 and b2 hold. One can also write (\forall T x; b) and
(\exists T x; b) to abbreviate the expressions (\forall T x; true; b) and
(\exists T x; true; b), respectively.

Some other extensions are only available in method postconditions. Here,
the method’s return value, if applicable, can be referred to using the keyword
\result. The value that an expression e had in the pre-state before method
execution (but after assigning values to its formal parameters) can be denoted
as \old(e). For an expression e of a reference type, \fresh(e) is a boolean

expression which is true if and only if the object to which e evaluates was not
yet created in the pre-state.

JML also features a meta-type \TYPE whose instances are the types themselves,
and a few operators for this type. Firstly, for every type T, \type(T) is an ex-
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pression of type \TYPE evaluating to T. Also, for every expression e, \typeof(e)
is an expression of type \TYPE which evaluates to the dynamic type of the value of
e. Thus, for example, “\typeof(3+4) == \type(Object)” is a JML expression
that always evaluates to false.

A problem with using Java expressions directly for specification is that in
Java, expressions do not have a defined value in every state; sometimes, trying to
evaluate an expression instead results in an exception being thrown. For example,
evaluating the expression x/y in a state where the sub-expression y has the value
0 will trigger an exception of type java.lang.ArithmeticException. Because
of this, Java’s boolean expressions used in JML to formulate, for example, pre-
and postconditions and invariants, are essentially three-valued formulas, which in
every state evaluate to either “true”, “false”, or “undefined” (if an exception is
thrown).

In specifications, we may nevertheless want to stay within the world of classical
two-valued logic, which is generally easier to handle in verification tools. A
common approach to achieve this, which used to be employed by JML, is known as
underspecification [Gries and Schneider, 1995]. Here, we use fixed, but unknown
(“underspecified”) regular values instead of a dedicated “undefined” value. This
works largely well, because “good” specifications avoid cases of undefinedness
anyway. For example, specifications may use Java’s short-cut evaluation of the
operators || and && to avoid throwing exceptions: in “y == 0 || x/y == 3”,
the value (or lack thereof) of x/0 is irrelevant, because the subexpression x/y is
never evaluated in a state where y has the value 0.

However, if the person writing the specification makes a mistake, specifications
can be insufficiently guarded against undefinedness, and in these cases simple
underspecification can lead to unexpected results. For example, the expression
“x/y == 3 || y == 0” throws an exception in Java if y has the value 0, but
evaluates to true with underspecification. Another example is “x/0 == x/0”,
which always throws an exception in Java, but which is always true if underspec-
ification is used: the value of x/0 may be unknown, but it is the same on both
sides of the equality operator.

After these discrepancies between the underspecification semantics of JML and
the semantics of Java had been criticised by Chalin [2007a], JML switched to
an approach called strong validity [Chalin, 2007b]. Here, a top-level pre- or
postcondition or invariant evaluates to true if it logically evaluates to true and if
it would not throw an exception in Java; it evaluates to false otherwise. In other
words, Java’s three-valued semantics is used, but at the top level of a specification
expression, the value “undefined” is converted into the value “false”. For example,
a top-level expression “x/0 == x/0“ and its negation “!(x/0 == x/0)” both
always evaluate to false: in both cases, the subexpression x/0 is “undefined”,
making the overall expression “undefined” also, which is then converted into the
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value “false”. Short-circuit evaluation is respected, so “true || x/0 == x/0”
is always true, while “x/0 == x/0 || true” is always false. Note that even
though—in contrast to the underspecification approach—a third truth value is
involved, this does not imply that a verification system supporting JML must
necessarily use many-valued logic; see for example the work by Darvas et al.
[2008].

2.2. Method Contracts

JML specifications can be written directly into Java source code files, where they
appear as comments that start with the character “@” to distinguish them from
other, non-JML comments. A first example for a Java class annotated with JML
is shown in Figure 2.1.

Those comments that precede method declarations in Figure 2.1 specify method
contracts (sometimes called just contracts, or specification cases in JML) for
the respective method. As a first approximation, we can see method contracts
as lists consisting of an arbitrary number of preconditions and postconditions
for the method. A method can be annotated with multiple contracts, sepa-
rated by the also keyword. For example, method get in line 27 has two con-
tracts, one starting with “public normal_behaviour” and one starting with
“public exceptional_behaviour”.

As demonstrated by these occurrences of the keyword public, Java’s visibil-
ity system extends also to JML specifications. Specification elements, such as
contracts, may refer only to fields and methods of higher (more public) visibil-
ity than the specification element itself. However, a field or method may be
marked as spec_protected or spec_public (as in lines 2 and 4 of Figure 2.1)
to increase its visibility in JML specifications, without changing it on the level
of Java. Beyond this syntactical requirement, visibilities do not carry semanti-
cal meaning. They may however influence the behaviour of a modular verifier
(Chapter 6).

The elements of method contracts that we consider in this section are pre- and
postconditions (Subsection 2.2.1), modifies clauses (Subsection 2.2.2), and di-
verges clauses (Subsection 2.2.3). Another element occurring as a part of method
contracts, the depends clause, is introduced later in Section 2.5.

2.2.1. Pre- and Postconditions

Method preconditions are declared with the keyword requires, followed by a
boolean JML expression. Postconditions are declared with the keyword ensures.
Their meaning is that if all the preconditions of a contract hold before method ex-
ecution and if the method terminates normally—i.e., it terminates not by throw-
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Java + JML

1 public class ArrayList {

2 private /*@spec_public nullable@*/ Object[] array

3 = new Object[10];

4 private /*@spec_public@*/ int size = 0;

5
6 /*@ private invariant array != null;

7 @ private invariant 0 <= size && size <= array.length;

8 @ private invariant (\forall int i; 0 <= i && i < size;

9 @ array[i] != null);

10 @ private invariant \typeof(array) == \type(Object[]);

11 @*/

12
13 /*@ public normal_behaviour

14 @ ensures \result == size;

15 @*/

16 public /*@pure@*/ int size() {

17 return size;

18 }

19
20 /*@ public normal_behaviour

21 @ requires 0 <= index && index < size;

22 @ ensures \result == array[index];

23 @ also public exceptional_behaviour

24 @ requires index < 0 || size <= index;

25 @ signals_only IndexOutOfBoundsException;

26 @*/

27 public /*@pure@*/ Object get(int index) {

28 if(index < 0 || size <= index) {

29 throw new IndexOutOfBoundsException();

30 } else {

31 return array[index];

32 }

33 }

34
35 /*@ public normal_behaviour

36 @ assignable array, array[*];

37 @ ensures size == \old(size) + 1 && array[size - 1] == o;

38 @ ensures (\forall int i; 0 <= i && i < size - 1;

39 @ array[i] == \old(array[i]));

40 @*/

41 public void add(Object o) {...}

42 }

Java + JML

Figure 2.1.: Java class ArrayList with JML specifications
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ing an exception—then all the postconditions declared with ensures must hold
afterwards. For example, lines 21 and 22 of Figure 2.1 state that if the method
get is called with an argument index that lies between 0 and size, and if the
method terminates normally, then its return value is the object contained in the
array array at position index.

Postconditions for the case of exceptional termination (i.e., termination by
throwing an exception) are specified using clauses of the form “signals(E e) b”,
where E is some subtype of class java.lang.Exception, where e is a variable
identifier bound in b, and where b is a boolean JML expression. The meaning
of such a signals clause is the following: if the method terminates by throwing
an exception e of type E (and if the preconditions held on method entry), then b

must evaluate to true in the post-state.
The keyword normal_behaviour at the beginning of a contract is essen-

tially “syntactic sugar” for a postcondition “signals(Exception e) false”: it
means that the method must not throw any exception if the contract’s precondi-
tions hold. Conversely, the keyword exceptional_behaviour is syntactic sugar
for “ensures false”, meaning that the method must not terminate normally.
Another abbreviation are clauses of the form “signals_only E1, . . . ,En”, which
can be spelled out as

signals(Exception e) e instanceof E1 || ... || e instanceof En;

For example, the second contract of method get in Figure 2.1 states that if
the method is called in a state where the argument index is out of bounds,
then the method may terminate only by throwing an exception of the type
java.lang.IndexOutOfBoundsException (or of a subtype). Like requires and
ensures clauses, multiple signals clauses are connected by conjunction, so if a
method terminates by throwing an exception of type E, then all signals clauses
about E or about any of its supertypes apply.

Note that JML specifications can only talk about the method’s post-state in
case of normal termination, or in case of termination by throwing an object whose
type is a subtype of java.lang.Exception. The possibility that an object could
be thrown that is of some other subtype of java.lang.Throwable, in particular
a subtype of java.lang.Error, is silently ignored. The rationale behind this is
that such events typically represent “external” problems, which are not directly
caused by the program itself. Two examples are java.lang.OutOfMemoryError

and java.lang.UnknownError. As we consider these errors to be out of the
program’s control, we do not demand that the program guarantees that they do
not occur, or that any conditions hold afterwards if they do occur.

Yet another abbreviation supported by JML is the keyword non_null. Affixing
this e.g. to a method parameter x or to a method return type means to add to all
contracts of the method an implicit precondition “requires x != null” or an
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implicit postcondition “\result != null”, respectively. Moreover, as proposed
by Chalin and Rioux [2006], non_null has become the default in JML: now the
non_null modifier is always implicitly present, unless something is explicitly
labelled as nullable. Thus, both contracts of method get in Figure 2.1 have
an invisible postcondition “\result != null”, and the contract of method add

has an invisible precondition “o != null”.

2.2.2. Modifies Clauses

If a method contract is to be useful for modular verification, where method calls
are dealt with only by looking at the called method’s contract instead of its
implementation, it must constrain what part of the state may be changed by the
method in addition to just how it is changed. This act of constraining is often
referred to as framing , the part of the state that may be changed as the frame of
the method, and the whole issue of framing as the frame problem [Borgida et al.,
1995].

In principle, framing can be done with a postcondition that just lists all the
unchanged memory locations, and uses something like the \old operator to state
that their current values are the same as their values in the pre-state. However,
doing so is at best cumbersome due to the typically high number of unchanged
locations, and at worst impossible if, in a modular setting, the program context is
not entirely available. One solution to this problem is to allow universal quantifi-
cation over memory locations. Another common solution, which is employed in
JML, is to extend method contracts with modifies clauses [Guttag et al., 1993].
A modifies clause is a list of the (typically few) locations that may be modified,
implying that all the others may not be modified.

In JML, modifies clauses are also called assignable clauses. This difference in
nomenclature hints at a subtle semantical difference: when defining the precise
meaning of modifies clauses, there is a choice on whether temporary modifications
to locations not in the modifies clause are to be allowed or not. If, as above,
modifies clauses are viewed as being essentially postconditions that frame the
overall effect of the method, then any temporary modification that is undone
before method termination can have no effect on the validity of the modifies
clause. However, as the name assignable clause suggests, JML imposes a stricter
policy: a method satisfies its assignable clause only if every single assignment
executed during its execution is covered by the assignable clause. In a concurrent
setting, this interpretation is advantageous, because then, modifies clauses also
constrain the intermediate states of execution, which allows them to be used
for reasoning about non-interference between threads. On the other hand, for
sequential programs the classical, more semantic, interpretation is completely
sufficient, and in this thesis we stick with it.
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Modifies clauses are declared in JML with the keyword assignable. The
expression after this keyword is not a normal expression, but a list of so-called
“store ref expressions” denoting sets of memory locations. The overall modifies
clause evaluates to the union of these individual sets. The store ref expression o.f,
where f is some field defined for the type of expression o, denotes the singleton
location set consisting of the field f of the object which is the value of o (and
not, as in a normal expression, the value of this location). Similarly, the store ref
expression a[i] denotes the singleton set containing the ith component of array
a. A range of array components, or all components of an array, can be denoted
as a[i..j] or a[*], respectively. By o.* we can refer to the set of all fields
of a single object o. There are also the keywords \nothing and \everything,
standing for the border cases of an empty set of locations and the set of all
locations in the program, respectively.

We see an example for a modifies clause in line 36 of Figure 2.1. If the con-
tract’s precondition holds when calling method add (i.e., if the method’s argu-
ment is different from null), then the method may modify only the field array

of the receiver object this, and the array components of the array pointed to by
this.array. Note that modifies clauses are always evaluated in the pre-state, so
the modifies clause refers to the array which is pointed to by this.array at the
beginning of the execution, which may be a different one than at the end of the
method. Another important thing to note is that modifies clauses only constrain
changes to locations on the heap (i.e., object fields and array components), but
never changes to local variables: these variables are internal to a method, and any
changes to them can be neither relevant nor visible to any of the method’s callers
anyway. Modifies clauses also never constrain the allocation of new objects, or
assignments to locations belonging to newly allocated objects. Thus, method add

is free to allocate a new array object and assign to its components (e.g., if the old
array is filled up completely), even though these locations are not (and cannot
be) mentioned in the modifies clause.

Specifying that a method has no side effects is an important border case of
modifies clauses. Such methods are called pure, and JML has a special key-
word pure which can be attached to method declarations in order to desig-
nate a method as pure. Examples for pure methods are size and get in Fig-
ure 2.1. The meaning of the pure modifier is essentially the same as adding
an implicit assignable \nothing to all contracts of the method (and using
diverges false for all contracts, see Subsection 2.2.3 below). It also deter-
mines whether a method may be used in specifications or not.

As JML’s modifies clauses implicitly allow the allocation and initialisation of
new objects, its pure methods are free to create, modify and even return a newly
allocated object. This definition of purity is known as weak purity , as opposed
to strong purity , where pure methods must not have an effect on the heap at
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all. The more liberal approach of weak purity is useful in practice: for exam-
ple, imagine a method that is to return a pair of integers, which it can do by
creating, initialising and returning an object of a class Pair, while being oth-
erwise free from side effects. However, weak purity complicates the semantics
of expressions. It is for example debatable whether the specification expression
newObject() == newObject(), where the weakly pure method newObject cre-
ates and returns a fresh object, should be considered as always true (because the
entire expression is evaluated in the same state and so both method calls return
the same object), or as always false (because, as in Java, the post-state of the first
method call is the pre-state of the second, and so the second call will allocate a
different object), or neither. It can also be argued that such an expression should
not be permitted in specifications at all [Darvas and Leino, 2007; Darvas, 2009].

2.2.3. Diverges Clauses

JML allows one to specify when a method must terminate (either normally or
by throwing an exception) using so-called diverges clauses. A diverges clause
is declared in a contract using the keyword diverges, followed by a boolean

expression. The meaning of a diverges clause diverges b is that the method
may refrain from terminating (may “diverge”) only if b held in the pre-state.
In contrast to other clauses in contracts, the default used in case of a missing
diverges clause is not the most liberal possibility, but rather the most strict
one, namely “diverges false”, which says that the method must terminate
under all circumstances (provided that the contract’s preconditions held in the
pre-state). Leavens et al. [2008] do not define how multiple diverges clauses
are to be understood; however, the natural way seems to be combining them
disjunctively, i.e., multiple diverges clauses allow the method to diverge if at
least one of the conditions holds in the pre-state.

2.3. Object Invariants

An object invariant (sometimes called class invariant or just invariant) is a con-
sistency property on the data of the objects of some class that we want to hold
“always” during program execution. Where method contracts constrain the be-
haviour of individual methods, object invariants are intended to constrain the be-
haviour of a class as a whole. The concept of object invariants goes back to Hoare
[1972]. In JML, object invariants are declared with the keyword invariant. Ex-
amples are the invariants of class ArrayList in lines 6–10 of Figure 2.1: for the
objects of this class, we want the array this.array to always be different from
null; we want the value of the location this.size to always be between 0 and
the array’s length; we want the array components between these bounds to be
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different from null; and finally, we want the dynamic type of the array to al-
ways be exactly Object[], not a subtype: otherwise, method add might trigger a
java.lang.ArrayStoreException, because the type of its argument might not
be compatible with the type of the array.

Like method parameters and return values, field declarations of a reference type
can be annotated with non_null and nullable to specify whether null values
are allowed or not. For a non_null field f, an object invariant “this.f != null”
is implicitly added to the specification. And like before, non_null is the default
that is used when neither annotation is given explicitly. Thus, the invariant in
line 6 of Figure 2.1 would not be necessary if we had not used nullable for the
declaration in line 2. The reason for the use of nullable is that on variables
of a reference array type, the effect of non_null goes beyond demanding that
the pointer to the array is not null: it also demands that all components of the
array be different from null. But since this is too strict for the example, where
some of the array components should be allowed to be null, we use nullable

to suppress the default, and spell out the appropriate invariants explicitly.

Above we stated that, in a correct program, invariants hold “always”. As
the quotation marks suggest, this is not entirely the truth: as soon as invariants
mention more than one field, requiring them to hold absolutely always is too strict
for practical purposes. For example, imagine a class that declares a field x of type
int and a field negative of type boolean, where we want negative to be true
exactly when x is negative. We can specify this in a natural way with an invariant
“negative == (x<0)”. Since the two fields cannot be updated both at the same
time, this invariant must sometimes get violated when the value of x changes, at
least for the short moment before a subsequent assignment to negative.

Another complication with invariants is that—in contrast to method contracts,
which confine a single method (or, at most, a hierarchy of overriding methods,
Section 2.4)—they are effectively global properties: for an invariant to hold any-
thing near to “always” for some object o, it must be respected not only by all
methods called on o, or even only by all methods defined for the class of o.
Rather, it must be respected by all methods in the entire program. This may
be surprising at first, because object invariants (as introduced above) are usu-
ally intended as constraints on a single class or on its objects, not on the entire
program. One might hope that methods outside the class of o have no way of vi-
olating an invariant on o. But—unless special measures are taken—this is wrong.
For example, the invariant could mention public fields, which can be assigned to
anywhere in the program; or, more subtly, it could depend on other objects that
can be manipulated directly, circumventing o. In Figure 2.1, if a method outside
ArrayList were to obtain a reference to the array object referenced by the field
array of some ArrayList object, it could modify this array directly, and thereby
break the invariant in line 8.

22



2.4. Subtyping and Inheritance

Because of these issues, the exact semantics of object invariants is much less
straightforward than it appears on first sight, and getting it “right” is a target
of active research (see for example the work of Poetzsch-Heffter [1997]; Barnett
et al. [2004]; Leino and Müller [2004]; Roth [2006]; Müller et al. [2006]). JML’s
current answer, as defined by Leavens et al. [2008], is its visible state semantics.
Essentially (we omit static methods, static invariants, and finalisers for the
sake of simplicity), this requires an invariant to hold for an object o in all states
that are visible for o. A state is called visible for an object o if it occurs either (i)
at the end of a constructor call on o, or (ii) at the beginning or at the end of a
method call on o, or (iii) whenever neither such call is in progress. In other words,
the invariants of o must hold always, except in situations where a method or
constructor call on o is currently in progress, and where also we are neither in the
post-state of a constructor call on o nor in pre- or post-state of a method call on o.

Returning to the above example, the visible state semantics solves the problem
that the fields which the invariant “negative == (x < 0)” depends on cannot be
updated simultaneously, because it permits a method to temporarily violate the
invariant for its this object, as long as no other methods are called on this before
the invariant is re-established. In cases where such a method call is necessary, one
can annotate the called method with the keyword helper. It is then exempt from
the visible state semantics, i.e., the receiver object’s invariants do not have to hold
in its pre- or post-state. The disadvantage of doing so is that helper methods
may not rely on the invariant for satisfying their contracts. In contrast, non-
helper methods are only required to satisfy their contracts for pre-states where
the receiver’s invariants hold. For example, method get in Figure 2.1 relies on
the value of array being different from null as guaranteed by the invariant, and
would not satisfy its normal_behaviour contract if it were a helper method.

2.4. Subtyping and Inheritance

A core element of object-orientation is the dynamic dispatch of method calls,
where the method implementation to be executed is determined at run-time based
on the dynamic type of the receiver object. Ideally, the caller does not have to
know what this dynamic type is, because the objects of any subtypes of the
receiver’s static type can be used as if they were objects of the static type itself.
This principle, which demands that subtypes conform to the behaviour of their
supertypes when accessed using methods declared in a supertype, is known as
behavioural subtyping [Liskov and Wing, 1994].

In formal specification, behavioural subtyping typically means that a method
which overrides another method has a precondition that is implied by the over-
ridden method’s precondition, and, conversely, a postcondition that implies the
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overridden method’s postcondition. If all subtypes are behavioural subtypes, then
this enables modular reasoning about a dynamically bound method call using only
the contract found in the static type of the receiver: if the precondition of this
contract holds, then this implies that the precondition of any overriding method
must also hold; and the postcondition found in the static type is guaranteed to
also be established by any overriding method. For this reason, JML globally en-
forces behavioural subtyping, even though this limits the programmers’ freedom
to (mis-)use the subtyping mechanism of Java.

Behavioural subtyping is enforced in JML by inheriting method contracts to all
subclasses: a method must always satisfy the contracts declared for any methods
that it overrides. Subclasses are free to introduce additional contracts. We can
see multiple contracts for the same method as syntactic sugar for a single, larger
contract [Raghavan and Leavens, 2000]. With this view, adding contracts for an
overriding method corresponds to weakening the precondition and strengthening
the postcondition of the overall method contract, as above.

Object invariants, too, are inherited, and additional invariants may be intro-
duced in subclasses. Note that the interplay between invariants and inheritance
is not unproblematic for modular verification. For example, according to the vis-
ible state semantics, when calling a method on an object, the invariants of this
object have to hold. In this situation, the invariant acts as a precondition for
the method call. Adding invariants in a subtype corresponds to strengthening
this precondition, which violates the principle that a behavioural subtype may
only weaken method preconditions. Approaches for the modular verification of
programs with invariants have to face these issues, in addition to those hinted at
in Section 2.3 above. We return to this subject in Chapter 3.

2.5. Data Abstraction

Abstraction, i.e, the process of simplifying away unnecessary details while keeping
something’s essence, is a fundamental concept in computer science. In software
development, abstraction is crucial because software systems are usually too com-
plex to be conceived or understood by a human mind in their entirety at any point
in time. Abstraction allows us to focus on some aspects of a system, while (tem-
porarily) blocking out others. For abstraction from program structures, we can
distinguish between control abstraction, which abstracts from control flow, and
data abstraction, which abstracts from data structures.

A module interface is an example of abstraction: it provides a simplified outside
view on the module’s behaviour, freeing its clients from having to consider its
internals and protecting them from being affected by changes to the internals,
as long as the interface itself is not changed. This is known as the principle of
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information hiding [Parnas, 1972]. Design by contract specifications can be a part
of such interfaces; in particular, a method contract can be seen as a description of
the externally visible behaviour of a method, abstracting from how this behaviour
is achieved. However, if such contracts are formulated directly over the internal
data structures used in the method’s implementation, then this abstraction is
brittle, and the principle of information hiding is violated. For example, the
contracts in Figure 2.1 are unsatisfactory in this regard, because they expose
the internal data structures of ArrayList with the help of the spec_public

modifier. If these internals are changed, then the specification is also affected.
What is missing is some form of data abstraction in the specifications.

Where abstraction is the process of going from a detailed to a simple model, the
notion of refinement refers to the other way round, i.e., going from an abstraction
to a more detailed model. This process is common during software development,
as the program being developed evolves from a vague idea to a running imple-
mentation. Various formalisations for such a refinement process exist, where the
program is first specified formally on an abstract level using some form of “ab-
stract variables”; where these are then refined into a representation on “concrete”
variables in one or multiple refinement steps; and where the correctness of these
steps is verified formally. Such techniques are for example described by Hoare
[1972]; Morgan [1990]; Abrial [1996]; Hallerstede [2009].

Even without a formal concept of refinement, the phenomenon of refinement
still occurs frequently in object-oriented software development. A typical case is
adding new subclasses for existing classes or interfaces. For example, instead of
providing class ArrayList in Figure 2.1 directly, we might have started with a
Java interface List, which would then be implemented by ArrayList. We might
also want to add other classes that use different implementation techniques than
an array, such as a class LinkedList. In order to specify the abstract List in-
terface independently of such future refinements, we again need data abstraction
in specifications. And unlike the situation above, where we only aimed at spec-
ifying ArrayList itself in an abstract way, here using spec_public is not even
an (albeit unsatisfactory) option: in a Java interface such as List, there are not
yet any internal data structures which could be exposed to the outside world.

For data abstraction, JML features ghost fields (Subsection 2.5.1), as well as
model fields and data groups (Subsection 2.5.2). Also, pure methods can be used
for data abstraction in specifications, especially when combined with depends
clauses (Subsection 2.5.3).

2.5.1. Ghost Fields

Ghost fields and ghost variables are fields and local variables that are declared,
read and written solely in specifications. They are not visible to a regular com-
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piler, and do not exist in the compiled program. Still, their semantics is exactly
the same as that of ordinary fields and variables. In JML, ghost fields and vari-
ables are declared with the keyword ghost, and they are assigned to using the
keyword set. An example is given in Figure 2.2, where the class ArrayList

of Figure 2.1 is split up into a Java interface List and into a separate class
ArrayList which implements the interface using an array. The behaviour of the
interface is specified abstractly using a ghost field contents. The declaration of
contents in line 2 uses the JML keyword instance; without it, a ghost field
declaration in an interface creates a static field. This mirrors the behaviour of
Java itself, where interfaces are not allowed to contain non-static fields at all,
and where thus all field declarations in interfaces are assumed static by default.

Abstract specifications can often be formulated naturally using basic mathe-
matical concepts such as sets or relations. For example, the desired behaviour of
the List interface is similar to the behaviour of a finite mathematical sequence.
Specification languages usually provide some form of mathematical vocabulary to
facilitate writing such specifications. JML is no exception, but—in pursuit of its
goal to stay as close to Java as possible—it does not introduce the mathematical
notions into the language directly as additional primitive types. Rather, it comes
with a library of so-called model classes, which try to sneak the mathematical
concepts in through the back door by modelling them as ordinary Java classes.
One such class, JMLObjectSequence, is used in Figure 2.2 as the type of the ghost
field contents. The intuition behind this is to think of contents as a sequence
of Java objects, and verification tools may attempt to map model classes like
JMLObjectSequence directly to the mathematical concepts that they represent
[Leavens et al., 2005; Darvas and Müller, 2007a]. Still, the elements of model
classes are first and foremost Java objects. This implies, for example, that the
equals method should be used for comparing two such elements instead of the
regular equality operator “==”, as in line 31. Otherwise, the references to the
objects are compared, which is rarely intended.

The specification of the List interface in Figure 2.2 has the same structure as
the public specification of ArrayList in Figure 2.1. Instead of size and array,
it uses calls to pure methods on the contents object, where method int_size

returns the length of the sequence, and where method get retrieves an element
out of the sequence.

The implementing class ArrayList in Figure 2.2 works exactly as in Figure 2.1.
However, for satisfying its inherited contracts, which talk about the ghost field
contents instead of the concrete data, all changes to the list must be applied to
the sequence stored in the ghost field, too. The constructor initialises the ghost
field to an empty sequence, and the add method appends its argument to the
end of the sequence. Note that the expressions occurring in set statements are
no exception to the rule that JML expressions must not have side effects; set
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Java + JML

1 public interface List {

2 //@ public ghost instance JMLObjectSequence contents;

3
4 /*@ public normal_behaviour

5 @ ensures \result == contents.int_size();

6 @*/

7 public /*@pure@*/ int size();

8
9 /*@ public normal_behaviour

10 @ requires 0 <= index && index < contents.int_size();

11 @ ensures \result == contents.get(index);

12 @ also ...

13 @*/

14 public /*@pure@*/ Object get(int index);

15
16 /*@ public normal_behaviour

17 @ assignable \everything; //imprecise

18 @ ensures contents.int_size() == \old(contents.int_size())+1;

19 @ ensures ...

20 @*/

21 public void add(Object o);

22 }

23
24 public class ArrayList implements List {

25 private /*@nullable@*/ Object[] array = new Object[10];

26 private int size = 0;

27
28 public ArrayList() {/*@set contents = new JMLObjectSequence();@*/}

29
30 /*@ /*first four invariants as in Figure 2.1*/

31 @ private invariant contents.equals(

32 @ JMLObjectSequence.convertFrom(array, size));

33 @*/

34
35 public int size() {...}

36 public Object get(int index) {...}

37 public void add(Object o) {

38 ...

39 //@ set contents = contents.insertBack(o);

40 }

41 }

Java + JML

Figure 2.2.: Java interface List specified using ghost fields, and class
ArrayList implementing the interface
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statements only modify the ghost field on the left hand side of the assignment.
This fits with the use of class JMLObjectSequence, because the objects of this
class are immutable in the sense that all their methods are pure. A method like
insertBack, which is used in line 39 of Figure 2.2, returns a new object that
incorporates the changes, instead of changing the original object itself.

The connection which is maintained between the abstract and the concrete
representation of the data is recorded as an additional object invariant, which
we can see in line 31 of Figure 2.2. It uses the convertFrom method of the
class JMLObjectSequence as a convenient way to construct a sequence out of the
first size elements of the array. The correctness of the methods size and get

depends on this invariant, because the inherited contracts are formulated using
the ghost field, while the methods read and return the actual data just as in
Figure 2.1. The invariant bridges this gap. Invariants in such a role are known
as gluing invariants in other contexts [Hallerstede, 2009].

An open problem in Figure 2.2 is the modifies clause of method add in line 17.
Obviously, any implementation of add has to modify contents. However, it
needs the license to modify more than just contents, namely, the concrete data
structures used to implement the list. In order to specify this, we would need to
enumerate the concrete data structures of all subclasses of List in the modifies
clause of add within the interface. But this is not an option, because it would
contradict the idea behind using an interface and an abstract specification in the
first place. The specification in Figure 2.2 circumvents the problem by resorting
to a trivial modifies clause of \everything. This makes the contract satisfiable
by overriding methods in subclasses, but it also makes the contract effectively
useless for modular reasoning about calls to add, because such a call must then
be assumed to have an unknown effect on the entire program state. This shows
that in the presence of data abstraction, framing becomes a difficult problem,
which ghost fields alone cannot solve. One possible solution is to use data groups.
These are connected to the concept of model fields, and the two notions are
discussed together in Subsection 2.5.2 below.

2.5.2. Model Fields and Data Groups

Like ghost fields, model fields [Leino and Nelson, 2002; Cheon et al., 2005] are
declared just as Java fields, but inside specifications. Reading a model field is
done using the same notation as for reading a regular Java field or a ghost field,
too. But at this point the similarity ends; despite being called “fields”, model
fields are in many ways more closely related to pure methods than to Java fields.
Where a Java field or a ghost field represents an independent memory location
(one per object), which has its own state that can be manipulated by assigning
to the field, both pure methods and model fields depend on the state of memory
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locations, instead of being locations themselves. Just like the value returned by
a pure method is determined by a method body, the value of a model field is
determined by a represents clause (also known as an abstraction function). In
JML, model fields are declared with the keyword model, and represents clauses
with the keyword represents. A variation of the List and ArrayList types
from Figure 2.2, where the specification uses a model field and a represents clause
instead of a ghost field and set assignments, is shown in Figure 2.3.

The List interface in Figure 2.3 is unchanged over Figure 2.2, except that
the keyword ghost is replaced by model, and except that the modifies clause of
add now uses contents instead of \everything. Ignoring the modifies clause
for the moment, we notice the represents clause for contents in line 26. The
symbol = separates the model field to be defined and its defining expression.
Here, the defining expression again uses the convertFrom method to construct a
JMLObjectSequence from the array. Where in Figure 2.2 this relation between
contents and the array was an object invariant, which was maintained by ex-
plicit set assignments (and which was sometimes broken in intermediate states,
in accordance with the visible state semantics), here contents by definition ad-
justs itself immediately and automatically whenever the right hand side of the
represents clause changes. This again mirrors the behaviour of (pure) methods,
whose return value also immediately changes whenever a location is modified on
which the return value of the method depends.

Represents clauses that use the = symbol are said to be in functional form.
There is also a relational form of represents clauses, which allows us to define
abstraction relations instead of only abstraction functions. The JML keyword
for relational represents clauses is \such_that. It is followed by a boolean

expression which describes the possible values of the model field. The functional
form can be reduced to the relational form. For example, the represents clause
in line 26 of Figure 2.3 can equivalently be written as

private represents contents

\such_that contents == JMLObjectSequence.convertFrom(array,size);

In Subsection 2.5.1, we observed that objects of model classes should usually
be compared with the equals method. Yet, here using “==” (either explicitly
as above, or hidden in the functional form of the represents clause) works as
intended. The represents clause—unlike the invariant in Figure 2.2—holds by
definition, and never needs to be actively established by the program. This gives
us the freedom to assume the stronger proposition that the objects are even iden-
tical, instead of just being equal with respect to equals. Note that the remark on
weak purity of pure methods in Subsection 2.2.2 directly extends to model fields,
too. In fact, contents is only weakly pure, because—as defined by the represents
clause—it allocates and returns a fresh object of type JMLObjectSequence.
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Java + JML

1 public interface List {

2 //@ public model instance JMLObjectSequence contents;

3
4 //@ ...

5 public /*@pure@*/ int size();

6
7 //@ ...

8 public /*@pure@*/ Object get(int index);

9
10 /*@ public normal_behaviour

11 @ assignable contents;

12 @ ensures ...

13 @*/

14 public void add(Object o);

15 }

16
17 public class ArrayList implements List {

18 private /*@nullable@*/ Object[] array = new Object[10];

19 //@ in contents;

20 //@ maps array[*] \into contents;

21
22 private int size = 0; //@ in contents;

23
24 //@ /*four invariants as in Figure 2.1*/

25
26 /*@ private represents contents

27 @ = JMLObjectSequence.convertFrom(array, size);

28 @*/

29
30 public int size() {...}

31 public Object get(int index) {...}

32 public void add(Object o) {...}

33 }

Java + JML

Figure 2.3.: Java interface List specified using model fields and data groups,
and class ArrayList implementing the interface

Another intricacy that we observe “along the way”, without being overly con-
cerned with it here, is the question of what happens if the value of the model field
cannot be chosen in every state such that the represents clause is satisfied. An
extreme case is a represents clause “represents x \such_that false”, which
is obviously impossible to satisfy in any state at all. More subtly, a represents
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clause “represents x \such_that y == 3”, where y is a Java field, is also
problematic, because a satisfying value for x can be found only in states where y

happens to contain the value 3. There is no “official” answer for how to under-
stand such represents clauses in the JML documentation [Leavens et al., 2008].
The simplest approach is to just consider represents clauses to be assumptions
that hold in all states by definition, to accept the fact that then an inconsistent
represents clause makes the entire specification trivially satisfied, and to consider
the person writing the represents clause responsible for avoiding such a situation.
Other, more involved solutions are explored by Breunesse and Poll [2003], Leino
and Müller [2006] and Leino [2008].

In line 11 of Figure 2.3, the model field contents is used in the modifies clause
of method add. Without further explanation, this would seem to be nonsensical.
After all, the model field is not a location that the program could assign to, and
thus this.contents should not be considered a legal store-ref expression. The
foundation for allowing the use of model fields in modifies clauses is the concept
of data groups [Leino, 1998]. A data group is a name referring to a set of memory
locations. In JML, model fields always have two faces: in addition to their regular
meaning, they are also data groups. In every state, a model field can be evaluated
both to a value, as we have seen before, and to a set of locations. When used in
a normal expression, a model field stands for its value, whereas at the top level
of a modifies clause, it stands for its set of locations. Thus, the modifies clause
in line 11 of Figure 2.3 refers to the locations in the data group interpretation of
contents, and it allows the add method to modify these locations.

Like the value of a model field is defined via a represents clause, its data group
interpretation is defined by declaring locations to be part of the data group
with the keyword in. As an example, the JML annotations in lines 19 and 22
of Figure 2.3 make the locations this.array and this.size part of the data
group of this.contents. The in annotation must be placed directly after the
declaration of the field to be added. This kind of inclusion, where a field of
an object becomes part of a data group of the same object, is known as static
inclusion. In addition, there are dynamic inclusions, where a field of an object
becomes part of the data group of some other object. These are declared using
the keywords maps and \into. For example, adding the location this.contents

in line 19 of Figure 2.3 is not enough; the components of the array pointed to by
this.contents must be included as well, which is achieved by the annotation in
line 20. Dynamic data group inclusions make data groups depend on the state: if
the array field is changed, then the locations denoted by contents also change,
because array[*] afterwards denotes a different set of locations than before.

In situations where only the data group aspect of a model field is desired,
the regular value can simply be ignored. The type of such a model field, which
is used only as a data group, does not matter. For documenting the inten-
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tion that only the data group is relevant, it is however customary to use the
type JMLDataGroup, which is another member of JML’s model class library
(which also contains JMLObjectSequence). We can use such a model field to
resolve the problem with the modifies clause for add in Figure 2.2, without
switching from ghost fields to model fields completely: we declare a model field
“model JMLDataGroup footprint” in addition to the ghost field contents, and
use footprint in the modifies clause of the add method. The ArrayList class
then needs to declare the data group inclusions for footprint as for contents

in Figure 2.3, but no represents clause is necessary.

2.5.3. Pure Methods and Depends Clauses

As we have seen in Subsection 2.5.2, model fields are in many ways similar to
pure methods. This correctly suggests that like model fields, we can also use
pure methods to achieve data abstraction in specifications. Using pure methods
has the appeal that, unlike model fields, methods are a native concept of the
programming language, and the necessary methods may already be present in the
program anyway. An example for this is again the List interface from Figures 2.2
and 2.3, which can also be specified using its own pure methods size and get as
shown in Figure 2.4.

The calls to methods of class JMLObjectSequence have been replaced by calls
to size and get in Figure 2.4. The fact that these pure methods are now them-
selves the basic building blocks of the specification is emphasised by their self-
referential postconditions in lines 6 and 13, which are trivially satisfied by any
implementation. The modifies clause of add is as problematic here as it is in the
approach based on ghost fields, because like ghost fields, pure methods do not
provide a means to abstract over sets of locations. This is solved in Figure 2.4
with the help of a model field footprint that is used only in its role as a data
group.

For modular reasoning about specifications that use pure methods, it is usually
necessary to limit the dependencies of these pure methods, that is, the memory
locations that may influence the result of a method invocation. An example is
the code in Figure 2.5. The precondition of m tells us that before the call to m,
the list is not empty. We expect that the list is still not empty in line 9, and that
thus the precondition of the first contract of method get is satisfied. However,
without looking into all implementations of size (thereby sacrificing modularity
of reasoning) and concluding that they do not depend on x, we cannot be sure that
the intervening change to x does not affect the result of size. This demonstrates
a general problem when using pure methods in specifications [Leavens et al., 2007,
Challenge 3]: without further measures, any change to the heap can affect the
value returned by a pure method in an unknown way.
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Java + JML

1 public interface List {

2 //@ public model instance JMLDataGroup footprint;

3
4 /*@ public normal_behaviour

5 @ accessible footprint;

6 @ ensures \result == size();

7 @*/

8 public /*@pure@*/ int size();

9
10 /*@ public normal_behaviour

11 @ requires 0 <= index && index < size();

12 @ accessible footprint;

13 @ ensures \result == get(index);

14 @ also ...

15 @*/

16 public /*@pure@*/ Object get(int index);

17
18 /*@ public normal_behaviour

19 @ assignable footprint;

20 @ ensures size() == \old(size()) + 1;

21 @ ensures get(size() - 1) == o;

22 @ ensures ...

23 @*/

24 public void add(Object o) {...}

25 }

26
27 public class ArrayList implements List {

28 private /*@nullable@*/ Object[] array = new Object[10];

29 //@ in footprint;

30 //@ maps array[*] into footprint;

31
32 private int size = 0; //@ in footprint;

33
34 //@ /*four invariants as in Figure 2.1*/

35
36 public int size() {...}

37 public Object get(int index) {...}

38 public void add(Object o) {...}

39 }

Java + JML

Figure 2.4.: Java interface List specified using pure methods and data groups,
and class ArrayList implementing the interface
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Java + JML

1 public class Client {

2 public int x;

3
4 /*@ normal_behaviour

5 @ requires 0 < list.size();

6 @*/

7 void m(List list) {

8 x++;

9 Object o = list.get(0);

10 ...

11 }

12 }

Java + JML

Figure 2.5.: Client code that uses the List interface of Figure 2.4

JML provides a (partial) solution to this problem, namely depends clauses,
also known as accessible clauses. Depends clauses are a dual concept to modifies
clauses. Where a modifies clause is used to specify which locations a method
may modify (which locations a method may write to), a depends clause is used
to specify which locations a method’s result may depend on (which locations a
method may read from). In JML, depends clauses are declared within method
contracts using the keyword accessible. Lines 5 and 12 of Figure 2.4 give
depends clauses for size and get. These use the already introduced data group
footprint, because the locations to be read by size and get are the same as
those that are to be modified by add. The method bodies in class ArrayList

(which are still those shown in Figure 2.1) satisfy these depends clauses.

In the example shown in Figure 2.5, the depends clause of size reduces the
problem of determining that the change to this.x does not affect the result of
list.size() to the problem of determining that this.x is not an element of
the data group list.footprint. This would be easy if only static data group
inclusions were permitted: then, we could conclude from the lack of an in clause
next to the declaration of x in line 2 of Figure 2.5 that x is not part of any
data group. In the presence of dynamic data group inclusions, it is more difficult,
because there could always be a maps ... \into clause in some subclass of List
that effectively puts this.x into list.footprint for some program states. We
return to this problem in Chapter 3.

Note that even though we have not considered these dependency issues in
Subsections 2.5.1 and 2.5.2, they are nevertheless present in all variations of the
specification of List. In the previous approaches, the dependencies of the pure
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methods declared in JMLObjectSequence are relevant, as well as the contents of
the involved data group.

As an aside, the usefulness of depends clauses goes well beyond reasoning about
pure methods in the context of data abstraction. For example, a second (related)
application of depends clauses is in the specification of object immutability [Haack
et al., 2007]: an immutable object is an object that does not change, so all its
methods must be pure. Additionally, one typically expects the return values
of these pure methods to remain the same from state to state. This can be
specified with depends clauses which express that the methods do not depend on
any mutable state outside of the immutable object. Also, the problem of secure
information flow [Sabelfeld and Myers, 2003] is in its basic form just a minor
generalisation of the verification of depends clauses, where one is interested not
only in the dependencies of the method return value, but in the dependencies of
any number of locations.

2.6. Conclusion

In this chapter, we have reviewed the basic concepts of design by contract speci-
fication for object-oriented programs, on the example of the Java Modeling Lan-
guage (JML). The main components of such specifications are method contracts
and object invariants. Both contracts and invariants are inherited to subclasses,
enforcing behavioural subtyping and facilitating modular reasoning about pro-
gram correctness. To allow for information hiding in specifications, and for re-
finement in the sense of adding new subclasses to existing classes and interfaces
without having to change the supertype’s specification, data abstraction mech-
anisms are necessary. In this area, JML offers ghost fields, model fields, data
groups, and the use of pure methods together with depends clauses.

By far not all features of JML have been covered in this chapter. Omitted
features include simple in-code assertions, loop invariants, static object invari-
ants, history constraints, model programs, and others. Also note that JML is
constantly evolving. This chapter is based on the state described in the newest
version of the reference manual available at the time of writing [Leavens et al.,
2008].

We have touched on a few problems with the current state of JML that we in-
vestigate more deeply in Chapter 3, concerning the semantics of object invariants
and the mechanism of data groups.
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In Chapter 2, we have reviewed design by contract specification with the Java
Modeling Language (JML). For modular static verification, where the goal is to
check the correctness of individual program parts locally—that is, without con-
sidering the program as a whole—the demands both on specifications and on the
specification language itself are higher than, e.g., for run-time checking of spec-
ifications. JML aims to satisfy the additional demands of modular verification,
but in its current state, it falls short of this goal. The main shortcomings are in
two related areas: object invariants on one hand, and data groups on the other
hand. In the present chapter, we investigate a solution for these issues, based on
an approach for framing in the presence of data abstraction proposed by Kassios
[2006a,b, 2010], called dynamic frames. Compared with alternative solutions, the
advantages of this approach are its simplicity and generality. We define a variant
of JML that incorporates central ideas of dynamic frames, which we call JML*.

Outline The necessity for modifying the specification language is justified in
Section 3.1. We sketch Kassios’ theory of dynamic frames in Section 3.2, before
transforming JML into its dynamic frames based variation JML* in Section 3.3. A
detailed example for the use of JML* is presented in Section 3.4, and a discussion
of how the changes to the language solve the previously identified problems is
contained in Section 3.5. There is a substantial amount of related work, which
we examine in Section 3.6, before concluding in Section 3.7.

3.1. Motivation

JML’s modularity problems are in the visible state semantics for object invariants
(Subsection 3.1.1), and in the mechanism of data groups, especially in the concept
of dynamic data group inclusions (Subsection 3.1.2).

3.1.1. Issues with Object Invariants

As we have seen in Chapter 2, the visible state semantics of JML requires that the
invariants of an object o must hold in a state s if s is a post-state of a constructor
call on o, if s is a pre- or post-state of a method call on o, or if no call on o is in
progress. This allows invariants to be broken temporarily, as long as a method is
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in the process of being executed on the object for which the invariant is broken.
We have also seen that whether a method is considered to be correct with respect
to its method contracts depends on the specified invariants: a method must be-
have according to its contracts only when certain invariants hold in the method’s
pre-state. For example, we regard method get in Figure 2.1 as correct, because
the implementation may assume that (in addition to at least one precondition)
the invariants of the receiver object hold upon method entry, and because under
this condition no NullPointerException or IndexOutOfBoundsException can
occur.

It is not unusual for a method to have to rely on the invariants of other objects
as well. For example, every time a method m calls a (non-helper) method on
some object o other than this, this call is allowed by the visible state semantics
only if the invariants of o hold at the time of the call. This is typically only the
case if the invariants of o held already when entering m. According to Leavens
et al. [2008], method m is indeed allowed to rely on the invariants of o being
satisfied in its pre-state, but only if no call on o is in progress at the time. If a
call on o is in progress, then the pre-state of m is “invisible” for o, and thus the
invariants of o may be violated in this state.

The problem with this definition is that the set of methods which are already
in the process of being executed when entering m is not a property of m itself.
Rather, it is a property of a particular call to m, or of the possible calls to m which
can occur in the program as a whole. A modular checker attempting to verify m

independently of the rest of the program is not able to know which other methods
are already on the call stack when entering m. Thus, the only invariants it can
safely assume to hold in the beginning are the invariants of the receiver object
itself. This is clearly not enough. For example, it is not enough to establish that
the call to a method on o in the body of m is admissible.

A second problem with object invariants is that any modification of the heap
can potentially break an invariant anywhere in the program. For example, the
unshown body of method add in Figure 2.1 needs to modify the array. Since any
invariant in the program might potentially depend on this array (via aliasing , i.e.,
by using another reference to the same array object, which might also be obtained
via a quantifier), we can only assure ourselves that this modification does not
break an invariant for any object which is in a “visible” state by considering all
invariants and all objects in the entire program.

A third problem occurs in the interplay of invariants with inheritance. As men-
tioned in Chapter 2, adding object invariants in a subtype implies strengthening
the effective preconditions of the methods inherited from its supertypes. Such
a strengthening is usually forbidden in behavioural subtyping for good reasons:
it breaks the ability to use an object of a subtype as if it was an object of a
supertype.
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As a fourth and final problem with object invariants, the visible state semantics
requires that all invariants of an object hold at the end of a constructor call which
initialises this object. This implies that if a constructor of a class C is executed on
an object of a subclass D (via an explicit or implicit super call in a constructor of
D), then all invariants of D must hold already in the post-state of this constructor
call in class C, even though the enclosing constructor call in class D is still in
progress. As the additional invariants of D typically constrain fields introduced
in D, it is unreasonable to expect that the constructor of C is able to establish
these invariants. This aspect of the visible state semantics thus leads to classifying
programs as incorrect that probably should be considered correct.

Overall, these issues render the visible state semantics plainly unusable for
modular verification. This fact is well-known in the JML community [Leavens,
2006; Leavens et al., 2008]. According to Leavens [2006], the expected future
solution is to include in JML some methodology that restricts how invariants may
be used and how programs may be written. Two concrete such methodologies,
which we take a look at in Section 3.6, are the relevant invariant semantics of
Müller et al. [2006] and the Boogie methodology of Barnett et al. [2004]; Leino and
Müller [2004]. Both are based on ownership types [Clarke et al., 1998; Müller,
2002] as a means to control aliasing. Dynamic frames allow for a different third
possibility, which we investigate in Section 3.3.

3.1.2. Issues with Data Groups

Data groups enable a specification to provide modifies and depends clauses, while
leaving a certain amount of freedom to implementations about the actual loca-
tions that can be modified or read. However, when reasoning about such specifi-
cations, data groups raise the problem of how we can determine which locations
are in a given data group and which ones are not. In a basic version of the data
group mechanism where there are only static data group inclusions [Leino, 1998],
we can determine a field’s data group memberships by checking the in clauses
at its declaration. This is so simple because there is no way a field can become
part of a data group other than an in clause at its declaration, and because the
inclusion does not depend on the state: for every object of the class, the field
becomes part of a data group of this very same object.

In the presence of dynamic data structures, where objects use other, dynam-
ically allocated objects to implement their functionality, it is necessary to allow
a data group of one object to contain locations of other objects. Such dynamic
inclusions into data groups are realised in JML via maps . . . \into clauses. Un-
fortunately, they complicate modular reasoning about data groups significantly:
without further measures, we cannot determine locally whether a given location
may be part of a given data group, because an applicable dynamic inclusion
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might occur in any subclass of the class or interface that declares the model field,
and because its meaning is state-dependent. We have seen an example for this
problem in Chapter 2, where in the context of the client code in Figure 2.5 it
is unknown which locations are in the data group of the List object and which
ones are not. Similar to the solutions for object invariants, an approach for solv-
ing this is to impose global restrictions on how dynamic inclusions may be used
in programs. Such an approach has for example been proposed by Leino et al.
[2002]. As defined by Leavens et al. [2008], JML currently features dynamic in-
clusions, but no such restrictions. Thus, its version of data groups is unsuitable
for modular verification.

A second, lesser issue is the question of how to specify dependencies for model
fields. We have seen in Chapter 2 how dependencies of pure methods can be
specified via depends clauses, but there is no equivalent mechanism for model
fields in JML. A natural solution is to consider the data group associated with
a model field as a built-in depends clause for the model field, i.e., to demand
that the contents of the data group must be a superset of the locations on which
the represents clause depends. Data groups even evolved out of a notion of
dependencies [Leino, 1995; Leino and Nelson, 2002], which is closely related to
the depends clauses of JML. The JML reference manual [Leavens et al., 2008]
recommends that one “should always” put the dependencies of a represents clause
into the corresponding data group, but does not state any consequences if this
recommendation is ignored. This appears to be merely an oversight, though.

Finally, a drawback of data groups which is of a rather aesthetic nature is their
coupling to model fields. This forces us to declare a model field of a dummy type
such as JMLDataGroup when only a data group is needed, as in Figure 2.4. It also
prevents us from using a “ghost” data group, where the data group contents are
manipulated via set assignments instead of via in and maps . . . \into clauses.

The more serious problem of dynamic inclusions mentioned above can be solved
by enforcing a set of restrictions, such as the one proposed by Leino et al. [2002].
Dynamic frames allow for an alternative solution, which also avoids the other,
minor downsides of JML’s data groups. We explore this solution in Section 3.3.

3.2. Dynamic Frames

Kassios [2006a] proposes a theory for solving the frame problem in the presence
of data abstraction, which he calls dynamic frames. The essence of the dynamic
frames approach is to elevate the ubiquitous location sets (data groups) to first-
class citizens of the specification language: specification expressions are enabled
to talk about such location sets directly. In particular, this allows us to explicitly
specify that two such sets do not overlap, or that a particular concrete location
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is not part of a particular set. This is an important property, which is called
the absence of abstract aliasing [Leino and Nelson, 2002; Kassios, 2006a]. For
example, this property is what is missing in the program of Figure 2.5, where
knowing that the location this.x is not a member of the set list.footprint

would allow us to conclude that the call to list.get satisfies the precondition
of its normal_behaviour contract.

Using JML terminology, what is called a dynamic frame in the theory of dy-
namic frames is a model field of a type “set of locations”, without an additional
attached data group. A dynamic frame is thus similar to a model field of type
JMLDataGroup in regular JML. However, it has no value other than the set of
locations, and it stands for this set of locations in any expression, not just in
special contexts (namely, in modifies and depends clauses). A dynamic frame is
“dynamic” in the sense that the set of locations to which it evaluates can change
during program execution, just like the value of any other model field can change.

Specifications may constrain the values of dynamic frames with elementary set
operations such as set membership, set union, and set intersection. Another op-
erator on dynamic frames defined by Kassios [2006a] is the modification operator
∆, which can be applied to a dynamic frame f within a postcondition, where ∆f
means that at most the values of the locations in f have been changed compared
to the pre-state. This is similar to the modifies clauses in JML. Conversely, the
framing operator frames plays the role of depends clauses: for a dynamic frame
f and a model field v, the expression f frames v is true in a state s if any state
change (starting in s) that preserves the values of the locations in the evaluation
of f in s also preserves the value of v. As dynamic frames are themselves model
fields, they may also occur on the right hand side of frames. It is even common
for a dynamic frame to “frame itself”: f frames f means that if the values of
the locations in the value of f are not changed, then the value of f itself also
remains the same.

The so-called swinging pivots operator Λ can be applied to a dynamic frame
f within a postcondition. The meaning of Λf is that if there are any locations
in the set f in the post-state that have not been there in the pre-state, then
these must belong to objects that have been freshly allocated in between. This
operator is useful for preserving the absence of abstract aliasing. For example, if
for some method execution we know that (i) the dynamic frames f and g do not
contain any unallocated locations in the pre-state, that (ii) f and g are disjoint
in the pre-state, that (iii) g frames itself in the pre-state (g frames g), that (iv)
only the values of the locations in f may be different in the post-state (∆f), and
that (v) the modification respects Λf , then we can conclude that f and g are still
disjoint in the post-state. The reasoning behind this is as follows. ∆f and the
disjointness of f and g together imply that the values of the locations in g are not
changed. Combined with g frames g, this implies that the location set g itself
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also remains the same. The set f may change, but Λf guarantees that if this
change adds to f any additional locations, then these locations were previously
unallocated. As the set g is unchanged and did not contain any unallocated
locations in the pre-state, the locations added to f cannot be members of g, and
so the sets must still be disjoint. We see a concrete application of this chain of
reasoning in Section 3.4.

Object invariants are modelled in the examples of Kassios [2006a] with the
help of a Boolean model field inv . Program-specific axioms are used to define
inv to be true for an object whenever the desired invariant properties hold for
the object. Instead of a global protocol for when invariants have to hold—such
as JML’s visible state semantics—specifications use inv to state explicitly where
the invariants of which object are expected to be satisfied. Typically, this.inv
is part of both the precondition and the postcondition of a method. Reducing
invariants to model fields in this way allows giving dependencies for invariants,
using the same mechanisms as for other model fields.

A disadvantage of the dynamic frames approach is that specifications based
on dynamic frames can be more verbose than others. On the other hand, the
core advantage of the approach is that it enables modular verification without
imposing any global, methodological restrictions. For example, properties akin
to Λf are hard-coded into the methodology in some other approaches [Leino and
Nelson, 2002; Leino et al., 2002], while dynamic frames allow choosing whether
to use them or not on a case by case basis.

The dynamic frames theory is formulated in an abstract higher-order setting.
Concrete implementations of dynamic frames have been devised by Smans et al.
[2008] and Leino [2008]. In Section 3.3, we develop another concrete version of
dynamic frames, in the framework of JML.

3.3. JML*

In this section we define a variant of JML, called JML* , that makes use of
dynamic frames. The basic idea is to decouple location sets (data groups) from
model fields, and to make them first-class elements of the language. To this end,
we start from a JML version where data groups and data group inclusions are
omitted. This implies that it is no longer allowed to use arbitrary model fields as
top level operators of modifies or depends clauses, because there are no associated
data groups that would give meaning to such modifies and depends clauses.

As the next step towards JML*, we introduce a type \locset into the specifi-
cation language. This type is a primitive type like int or boolean, not a subtype
of java.lang.Object like JMLObjectSet and JML’s other model classes. Seman-
tically, expressions of type \locset stand for sets of memory locations. These
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expressions replace JML’s “store ref expressions” as the expressions that are used
to write modifies and depends clauses. The primary difference between “store ref
expressions” and \locset expressions is that \locset is a proper type. This
for example allows us to declare model and ghost fields of this type. We use the
name dynamic frames for such model and ghost fields.

The singleton set consisting of the (Java or ghost) field f of the object o can be
denoted in JML* as \singleton(o.f), and the singleton set consisting of the ith
component of the array a as \singleton(a[i]). Like in JML, the set consisting
of a range of array components and the set consisting of all components of an array
are written as a[i..j] and a[*], and the set of all fields of an object is written
as o.*. The keywords \nothing and \everything are also present in JML*.
In addition, JML* features the following basic set operations on expressions of
type \locset, with the standard mathematical meaning: the set intersection
\intersect, the set difference \set_minus, the set union \set_union, the
subset relation \subset, and the disjointness relation \disjoint. (The more
obvious syntax \union for unifying sets is unavailable for a technical reason:
as defined by Gosling et al. [2000], the character sequence “\u” is in Java a
“Unicode escape sequence”, and the four characters following this sequence must
be hexadecimal digits encoding a single Unicode character. This holds even inside
comments, where the JML* keywords occur.)

The original JML store ref notations o.f and a[i] can still be used as short-
hands for the singleton sets \singleton(o.f) and \singleton(a[i]) in JML*,
but only in syntactical contexts where understanding them as representing the
value of o.f or a[i] does not make the overall expression syntactically valid. For
example, on the top level of a modifies clause, the expression o.f is equivalent
to \singleton(o.f) if f is a Java or ghost field of type int, but it denotes
the value of the field if the field is of type \locset. As another familiar short-
hand, a comma separated list s1, . . . ,sn can be used to abbreviate the union
of the \locset expressions si where this does not lead to syntactical ambigu-
ity.

JML* extends JML’s \fresh operator so that it can be applied to location
sets, in addition to applying it to objects. An expression \fresh(s), where s

is an expression of type \locset, is satisfied in a postcondition if and only if
all the locations in the post-state interpretation of s belong to an object that
was not yet allocated in the pre-state. Postconditions in JML* may also contain
boolean expressions of the form \new_elems_fresh(s), where s is of type
\locset. This is an abbreviation for \fresh(\set_minus(s, \old(s))): the
expression is satisfied if and only if all locations in the post-state value of s

are either fresh (in the sense of \fresh) or were already contained in s in the
pre-state. The \new_elems_fresh operator is the “swinging pivots operator” Λ
from Section 3.2.
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We do not introduce versions of the modification operator ∆ or of the framing
operator frames from Section 3.2. Instead, such properties are expressed in JML*
with modifies and depends clauses, just like in JML. While depends clauses for
pure methods are already part of ordinary JML, we generalise the mechanism
of depends clauses to model fields here. A depends clause for a model field is
declared inside a class, using the syntax “accessible m: s;”, where m is a
model field (defined for the class containing the depends clause) and where s is
an expression of type \locset. Such a depends clause means that m may depend
at most on the locations in s (in other words, s frames m must hold), provided
that the invariants of the this object hold in the current state. This is a contract
that all represents clauses for m must satisfy (in the current class or interface and
in its subclasses), just like a depends clause for a pure method is a contractual
obligation on all implementations of the method.

JML* does not use the visible state semantics, or any other global protocol,
to define which object invariants have to hold at what moments during program
execution. Instead, the concept of object invariants is reduced to the concept of
model fields. JML* features a built-in model field \inv of type boolean, which
is defined in java.lang.Object and inherited to all its subtypes. Invariant dec-
larations are syntactic sugar for represents clauses on \inv: together, the dec-
larations “invariant e1; . . . ; invariant en;” of a given class C (including
the invariant declarations inherited from its supertypes) stand for the represents
clause “private represents \inv = e1 && ... && en;”, which defines the
meaning of \inv for objects whose dynamic type is the class C.

The model field \inv can be used freely in specification expressions. The
expression o.\inv states that the invariants of object o are expected to be
true. By default, all method contracts (except those for constructors) contain
an implicit precondition requires this.\inv, as well as implicit postcondi-
tions ensures this.\inv and signals(Exception) this.\inv. These de-
faults correspond to the expected “standard” case, where a method relies on the
invariants of this holding on method entry, and guarantees to preserve these in-
variants both in case of normal and in case of exceptional termination. They can
be turned off by annotating the method with the helper keyword. If a method
requires the invariants of any other objects to hold, or takes care to preserve
them, then this must be specified with explicit pre- and postconditions.

When a method contract is attached to a constructor, the subject of this con-
structor contract is in JML only the body of the constructor as it appears in the
class. That is, it does not include the process of allocating the new object. In
contrast, in JML* constructor contracts apply to the object allocation and initial-
isation as a whole, i.e., to an allocation statement of the form new C(...). They
do not constrain the behaviour of nested constructor invocations via this(...);

or super(...); statements. Thus, for example, a constructor postcondition
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\fresh(this) is always false in JML, because this is already allocated when
entering the constructor; but it is always true in JML*. By default, constructor
contracts have the same implicit postconditions for \inv as contracts for regular
methods, but not the implicit precondition this.\inv. Since the this object
does not exist in the pre-state of the new C(...); statement, referring to this in
a constructor precondition is not even syntactically allowed in JML*. As usual,
the helper keyword turns off the default postconditions.

According to Leavens et al. [2008], the range of a quantifier over a reference
type “may include references to objects that are not constructed by the pro-
gram”. Adding an operator \created to JML, which would allow us to distin-
guish in specifications between objects that are already allocated (\created(o))
and those that are not (!\created(o)) has been discussed in the JML com-
munity, but at the time of writing, this has not found its way into the reference
manual. In JML*, there is no such operator, and quantification on reference types
always ranges only over objects that have so far been created by the program.
For example, the expression (\exists C o; true) is satisfied in a state only
if an object of class C has been allocated previously. Also, we demand that in
every program state, a model field of a reference type evaluates to an object that
is allocated in this state (or to null); if a represents clause demands otherwise,
then it is equivalent to a represents clause of false. Together, these properties of
JML* ensure that it is impossible to obtain a reference to a non-allocated object
in a JML* expression, just like this is impossible in a Java expression.

Analogously to the definition for reference types, quantification for the type
\locset ranges only over location sets where all members of the set belong
to allocated objects, and model fields of type \locset always evaluate to such
sets. Also, \everything evaluates to the set of all allocated locations. As there
is no JML* expression denoting an unallocated object, there also is no other
way of constructing an expression which denotes a set that contains unallocated
locations. In Section 3.4, we encounter an example for why it is useful that
dynamic frames in JML* never contain unallocated locations.

3.4. Example

A version of the List interface from Chapter 2, this time specified in JML*, is
shown in Figure 3.1. It includes an additional pure method contains, with an
unsurprising method contract. As in Figure 2.4, the specification of the interface
is based on the pure methods get and size. It is also based on a dynamic frame
footprint, which abstracts from the memory locations that represent the list in
possible subclasses. Like the data group in Figure 2.4, this dynamic frame is used
in the modifies clause of the add method, and in the depends clauses of the pure
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Java + JML*

1 public interface List {

2 //@ public model instance \locset footprint;

3 //@ public accessible \inv: footprint;

4 //@ public accessible footprint: footprint;

5
6 //@ public invariant 0 <= size();

7
8 /*@ public normal_behaviour

9 @ accessible footprint;

10 @ ensures \result == size();

11 @*/

12 public /*@pure@*/ int size();

13
14 /*@ public normal_behaviour

15 @ requires 0 <= index && index < size();

16 @ accessible footprint;

17 @ ensures \result == get(index);

18 @ also public exceptional_behaviour

19 @ requires index < 0 || size() <= index;

20 @ signals_only IndexOutOfBoundsException;

21 @*/

22 public /*@pure@*/ Object get(int index);

23
24 /*@ normal_behaviour

25 @ accessible footprint;

26 @ ensures \result == (\exists int i; 0 <= i && i < size();

27 @ get(i) == o);

28 @*/

29 public /*@pure@*/ boolean contains(Object o);

30
31 /*@ public normal_behaviour

32 @ assignable footprint;

33 @ ensures size() == \old(size()) + 1 && get(size() - 1) == o;

34 @ ensures (\forall int i; 0 <= i && i < size() - 1;

35 @ get(i) == \old(get(i)));

36 @ ensures \new_elems_fresh(footprint);

37 @*/

38 public void add(Object o);

39 }

Java + JML*

Figure 3.1.: Java interface List specified in JML* using pure methods and a
dynamic frame footprint
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methods of List. In lines 3 and 4 of Figure 3.1, depends clauses are additionally
given for the model fields \inv and footprint: their values, too, may depend at
most on the locations in footprint.

As none of the methods of List are annotated with the helper keyword,
all given contracts contain implicit pre- and postconditions which assert that
this.\inv is true before and after method execution. No other objects have to
satisfy their invariants before calling the methods of the interface. In particular,
the contracts allow calling method add with an argument o for which o.\inv

does not hold at the time of the call. This reflects the intention that the list is
only supposed to store references to these objects, without ever having to call
methods on them, and without being concerned with their invariants in any way.

The additional postcondition for add in line 36 demands that even though
the set footprint may change, all locations that are added to it must be fresh.
This grants an implementation of add the license to discard old data structures
in footprint and to add fresh ones as needed, but not, for example, to make
the locations of the parameter object o a part of footprint. For the other
methods of List, there is no need for a postcondition which describes their effect
on footprint. Roughly, this is because these methods are pure, and thus we
expect that they cannot affect footprint at all. This expectation is correct,
but the precise justification for this is more complex than it may seem at first
sight, because pure methods are allowed to allocate and initialise new objects,
and because without further knowledge, such a state change might affect the
interpretation of a model field such as footprint. Fortunately, JML* guarantees
that dynamic frames like footprint never contain any unallocated locations. We
know from the depends clause in line 4 that footprint “frames itself”, i.e., that
a change to locations that are not in the value of footprint cannot affect the
value of footprint. Thus, any change to previously unallocated locations in a
pure method is guaranteed to leave the value of footprint untouched.

Figure 3.2 shows a class Client which uses the List interface. Compared with
the client class in Figure 2.5, we have only inserted the additional precondition
in line 5: when entering m, the invariants of list must hold, and there must not
be abstract aliasing between list.footprint and the fields of the this object.
Unlike in Chapter 2, we are now able to conclude that the call to list.get in
the body of m satisfies the precondition of the applicable normal_behaviour

contract, by using only the code and specifications in Figures 3.1 and 3.2.

We reach this conclusion as follows. Since list.\inv holds in the pre-state
of m, the precondition of size is satisfied in this state. The disjointness of
list.footprint and this.* implies that this.x is not currently an element
of list.footprint. Thus, the depends clause of size guarantees that changing
this.x does not affect size. Therefore, 0 < list.size() still holds after the
change to this.x in line 9 of Figure 3.2. Analogously, the depends clause for \inv
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Java + JML*

1 public class Client {

2 public int x;

3
4 /*@ normal_behaviour

5 @ requires list.\inv && \disjoint(list.footprint, this.*);

6 @ requires 0 < list.size();

7 @*/

8 void m(List list) {

9 x++;

10 Object o = list.get(0);

11 }

12 }

Java + JML*

Figure 3.2.: Client code using the List interface of Figure 3.1

Java + JML*

1 public class ArrayList implements List {

2 private /*@nullable@*/ Object[] array = new Object[10];

3 private int size = 0;

4
5 //@ private represents footprint = array, array[*], size;

6
7 /*@ private invariant array != null;

8 @ private invariant 0 <= size && size <= array.length;

9 @ private invariant (\forall int i; 0 <= i && i < size;

10 @ array[i] != null);

11 @ private invariant \typeof(array) == \type(Object[]);

12 @*/

13
14 /*@ public normal_behaviour

15 @ ensures size() == 0 && \fresh(footprint);

16 @*/

17 public /*@pure@*/ ArrayList() {}

18
19 public int size() {...}

20 public Object get(int index) {...}

21 public boolean contains(Object o) {...}

22 public void add(Object o) {...}

23 }

Java + JML*

Figure 3.3.: Java class ArrayList implementing the List interface of Figure 3.1
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in List guarantees that list.\inv still holds after the change. Altogether, we
have established that list.\inv && 0 < list.size() holds in line 10 of Fig-
ure 3.2, which implies that precondition of the first contract of get must hold,
too. This property holds independently of the concrete implementations of List
that may occur as the dynamic type of list, as long as all these implementations
satisfy the specifications given in the interface.

A particular implementation of the List interface is shown in Figure 3.3. The
contents of the dynamic frame footprint are defined for objects of dynamic
type ArrayList via the represents clause in line 5. This represents clause fulfils
the same role as the in and maps . . . \into clauses in Figure 2.4. The repre-
sents clause satisfies the depends clause for footprint in Figure 3.1, because all
locations that its right hand side depends on are themselves part of the right
hand side. If we would omit array in the represents clause, then the depends
clause would be violated: the location this.array would then not be a member
of the value of this.footprint, but changing the value of this location would
still affect the value of the expression this.array[*] and thereby the value of
this.footprint.

The invariant declarations of ArrayList—including the one inherited from
List—together define a represents clause for \inv. This represents clause satis-
fies the depends clause for \inv specified in Figure 3.1, because it only accesses
locations that are part of footprint as defined in the applicable represents clause
for footprint. We do not consider array.length to be a location here, because
it is unmodifiable.

Line 15 of Figure 3.3 gives a postcondition \fresh(footprint) for the con-
structor of ArrayList. This postcondition is satisfied by the empty implemen-
tation of the constructor: the this object is in JML* considered to be fresh in
the postcondition of a constructor, and consequently the locations this.array

and this.size are also fresh. By the represents clause of footprint, its other
members are the locations of the array which is stored in array. This array is
freshly allocated by the constructor via the field initialiser in line 2 (which we
consider to be a part of the constructor body, even though it syntactically appears
elsewhere).

Figure 3.4 shows a class Set that forms a layer above List and ArrayList.
It uses a List object to implement a set of objects. Much like List, the public
interface of Set is described using a dynamic frame footprint, which frames
both itself and \inv. Internally, footprint is defined to consist of the fields of
the this object, and of the footprint of the nested list object which is used to
implement the set. Objects of class Set maintain the invariant that the invariant
of the list object holds, that the footprint of list does not overlap with the
fields of this, and that list is free from duplicates (the latter invariant is not
spelled out in Figure 3.4).
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Java + JML*

1 public class Set {

2 //@ public model \locset footprint;

3 //@ public accessible \inv: footprint;

4 //@ public accessible footprint: footprint;

5
6 private List list = new ArrayList();

7
8 //@ private represents footprint = this.*, list.footprint;

9
10 /*@ private invariant list.\inv;

11 @ private invariant \disjoint(list.footprint, this.*);

12 @ private invariant (*list contains no duplicates*);

13 @*/

14
15 /*@ public normal_behaviour

16 @ ensures (\forall Object x; !contains(x));

17 @ ensures \fresh(footprint);

18 @*/

19 public /*@pure@*/ Set() {}

20
21 /*@ public normal_behaviour

22 @ accessible footprint;

23 @ ensures \result == contains(o);

24 @*/

25 public /*@pure@*/ boolean contains(Object o) {

26 return list.contains(o);

27 }

28
29 /*@ public normal_behaviour

30 @ assignable footprint;

31 @ ensures (\forall Object x; contains(x)

32 @ == (\old(contains(x)) || o == x));

33 @ ensures \new_elems_fresh(footprint);

34 @*/

35 public void addToSet(Object o) {

36 if(!list.contains(o)) {

37 list.add(o);

38 }

39 }

40 }

Java + JML*

Figure 3.4.: Java class Set built on top of the List interface of Figure 3.1
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The constructor of the Set class establishes the invariants by assigning to
list a fresh object of class ArrayList. In particular, the initial disjointness of
list.footprint and this.* is implied by the postcondition \fresh(footprint)

of the constructor of ArrayList and by the fact that the Set object already ex-
ists at the time when the constructor of ArrayList is called. The pure method
contains is used to specify the functionality of the set. It depends only on the
locations in the Set object’s footprint.

The most interesting method of Set is addToSet. Using the specification of
List, we can deduce that addToSet indeed satisfies its contract. Roughly, this
deduction goes as follows. Since the contains method of List is pure, the
call to list.contains in line 36 of Figure 3.4 does not change the state of
allocated objects, in particular it does not change the values of the fields of
this and the values of the locations in this.list.footprint. If the call to
contains yields true, then nothing further happens. The invariant of the Set

object then follows from the fact that it held before the call to addToSet, and
from the fact that the model fields and pure methods of List that occur in
the invariant all have contracts which state that they may depend only on the
locations in this.list.footprint, whose values are unchanged. The ensures

postconditions also follow rather directly.

If the call to contains yields false, then method add is called on this.list,
which may change the values of the locations in this.list.footprint. Without
further knowledge about this dynamic frame, it could be any set of locations—
the add method could even change the list field of the this object, making
the postcondition of addToSet refer to a different List object than the one that
add has been called on. Fortunately, the invariant of Set tells us that the set of
changed locations is disjoint from the fields of this, which rules out this scenario.
This allows us to conclude from the postcondition of add that both the invariant
of this and the postcondition of addToSet are satisfied after the call to add.
In particular, the postcondition \new_elems_fresh(footprint) of add ensures
that the disjointness of this.list.footprint and this.* is preserved. This
follows by the kind of reasoning with the help of the “swinging pivots operator”
that we have seen in Section 3.2.

As a last step before closing the consideration of the example, we add to List

and ArrayList the method concatenate shown in Figure 3.5. The figure does
not give a complete specification for concatenate, but the intention is that the
argument list should be appended to the end of the receiver list. The contract
requires that the dynamic frames of the two lists are disjoint initially, but does
not demand that this disjointness is preserved. Rather, it allows locations of
l.footprint to be absorbed into this.footprint. This admits efficient im-
plementations of concatenate, which reuse existing data structures instead of
copying them. An example is the implementation in ArrayList shown in Fig-
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Java + JML*

public interface List {

...

/*@ public normal_behaviour

@ requires l.\inv && \disjoint(footprint, l.footprint);

@ assignable footprint;

@ ensures \new_elems_fresh(\set_minus(footprint, l.footprint));

@*/

void concatenate(List l);

}

public class ArrayList implements List {

...

public void concatenate(List l) {

if(size == 0 && l instanceof ArrayList) {

array = ((ArrayList)l).array;

size = ((ArrayList)l).size;

} else {

...

}

}

}

Java + JML*

Figure 3.5.: Additional method concatenate for the List interface from Fig-
ure 3.1 and for its ArrayList implementation from Figure 3.3

ure 3.5, which “swallows” the array of the second list if the first list is empty. A
LinkedList implementation of List could easily reuse the nodes of the argument
list. The price for allowing such implementations is that a client cannot assume
that the two lists are still independent after a call to concatenate.

3.5. Discussion

In this section, we analyse how the modularity problems of JML that we identified
in Section 3.1 are addressed in JML*. Comparisons with related work are drawn
in Section 3.6 below.

A general first observation is that like in JML, “correctness” is in JML* still
a global property. That is, the judgement on whether a method is “correct” or
“incorrect” with respect to its contracts is made in the context of a particular
program. For example, consider a program consisting of the classes List, Client
and ArrayList of Figures 3.1, 3.2 and 3.3, where the contracts for get in Fig-
ure 3.1 are omitted. Method m of class Client is still correct in this context
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even without the contracts for get, because the only available implementation
of get does not throw an exception for the call in line 10 of Figure 3.2, and
thus the normal_behaviour property of m is always satisfied. It may however
be incorrect in the context of a program which contains another (itself correct)
implementation of List, where get does throw an exception.

Modularity of verification means that when verifying a part of the program
(in particular, a method), we use the context of this part only in a limited way.
Adhering to the principle of information hiding, we refrain from making use of
properties which may hold in the current context but which are expected to
change. This has the desirable consequence that such changes do not invalidate
previously performed verifications. Typical “expected” changes in the object-
oriented world are adding new classes (possibly subclasses of existing classes), as
well as changing invisible fields, represents clauses and method bodies of existing
classes. A method may be correct with respect to its contracts in a particular
context, but not be verifiable in a modular fashion. An example is method m in
the context described above, where there is no contract for method get. JML*
improves upon standard JML by providing better facilities to write modularly
verifiable specifications (such as those in Section 3.4), not by making the notion
of correctness itself modular.

One main problem with the visible state semantics that we have seen in Sec-
tion 3.1 is that only the invariants of the this object can safely be assumed to
hold on method entry, not those of any other objects. JML* does not have this
problem, because here, specifications control explicitly which object invariants
are supposed to hold when invoking a particular method. In the verification of a
method, those invariants which are mentioned in the precondition may be used
as assumptions, no matter which other method calls may or may not already be
on the call stack when entering the method.

It is still the case in JML* that any modification of heap state might break
any object invariant. However, unlike in JML, there is no need for a verification
system to check after every assignment that this does not happen, because in
general JML* allows any invariant to be broken. The validity of an object in-
variant must be checked only on demand, such as in cases where the invariant is
needed to conclude that an occurring method call satisfies its precondition.

Strengthening invariants in subclasses does not negate the advantages of be-
havioural subtyping in JML*, because the invariants occur in preconditions only
as occurrences of the model field \inv. Modularly verifiable specifications treat
the \inv field of objects other than this as a “black box”: their correctness may
depend on the fact that \inv implies any publicly visible invariants, but they
may never assume that the represents clause of \inv does not contain any other,
invisible conjuncts. Thus, establishing that \inv holds for an object other than
this is possible only via mentions of \inv in method contracts, and via public
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depends clauses provided for \inv. Strengthening the representation of \inv in
a subclass does not invalidate such reasoning, because it affects only “invisible”
properties of \inv.

In contrast to other objects, for this even a modular verifier may use the pre-
cise meaning of \inv (and of other model fields). For example, the correctness of
add in Figure 3.3 relies on the precise definition of this.\inv. If a method and an
associated contract are inherited to a subclass, we have to consider the correctness
of the method with respect to the contract separately for both classes, because
the representation of any model fields occurring in the contract (in particular the
representation of \inv) may be different in the subclass than in the superclass.

As constructor contracts in JML* apply to whole allocation statements “new
C( . . . )”, they only need to be verified for the case where the dynamic type of
the receiver is exactly C, i.e., the class in which the constructor is declared. This
solves the last mentioned problem with invariants in JML, where a superclass
constructor running on an instance of a subclass is obliged, but probably un-
able, to establish the invariants declared in the subclass. The downside of this
solution is that it costs some degree of modularity: nested constructor calls with
this( . . . ); or super( . . . ); statements are not covered by contracts, so reason-
ing about such calls can only be done in a non-modular fashion. This downside
can be considered acceptable, because hiding the internals of a superclass from a
subclass is less important in object-orientation than hiding these internals from
unrelated classes: subclasses have rather extensive access to the internals of their
superclasses anyway.

On the side of data groups, the problems identified in Section 3.1 are all solved
in JML*. The concept of location sets is decoupled from the notion of model
fields. This, for example, makes it possible to use ghost dynamic frames just as
well as model ones, similar to how model and ghost could be used interchangeably
in the examples of Chapter 2. Specifications can determine the dependencies of a
model field in a way analogous to the way for pure methods that already exists in
JML. The absence of abstract aliasing can be specified explicitly in contracts and
invariants, using operators such as \disjoint and \new_elems_fresh. Such
contracts enable modular reasoning about the specified methods, without hav-
ing to be concerned about possible dynamic data group inclusions in unknown
subclasses. It must only be ensured that all subclasses adhere to the method
contracts and model field depends clauses declared in their supertypes.

3.6. Related Work

JML* is intimately related to the dynamic frames based version of the Spec#
specification language [Barnett et al., 2005] which has been proposed by Smans
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et al. [2008], and which inspired the design of JML*. The main difference be-
tween the language of Smans et al. [2008] and ours is that their language does not
support model fields. Instead, its specifications are wholly based on pure meth-
ods, including pure methods of a type “set of locations”. The advantage of this
approach is its uniformity: we have seen that model fields are inherently similar
to pure methods, so collapsing the two notions into one is worth consideration.
However, doing so decreases the expressivity of the language, because unlike rep-
resents clauses, the bodies of pure methods are (usually) not allowed to contain
specification-only features such as quantifiers. Furthermore, Smans et al. [2008]
restrict the body of every pure method to be only a single return statement.
This rather drastic restriction on pure methods seems to be motivated not by
considerations on the level of the specification language, but by limitations of the
verification of these specifications in the Spec# system. As an extension of their
language, Smans et al. [2008] propose the inclusion of extensive defaults, where
a dynamic frame footprint is present in all classes implicitly, and is used as the
default for all modifies and depends clauses. Such defaults could be adopted in
JML* as well.

Another relative of JML* is the Dafny language of Leino [2008]. Dafny is a
simple theoretical language which supports writing both specifications and imple-
mentations. For data abstraction, Dafny specifications rely on ghost fields, and
on so-called functions, which can be seen as a crossover between model fields and
pure methods: like the value of a model field, the value of a function is defined
by a single expression, instead of by a whole method body; like a pure method, a
function can have an arbitrary number of parameters. Dafny insists that all func-
tions are strongly pure. In typical Dafny specifications, dynamic frames occur in
the form of ghost fields of a type “set of objects”, where each object stands for
all locations belonging to the object. This is coarser, but simpler than reasoning
with arbitrary sets of locations. Much like the handling of object invariants in the
work of Smans et al. [2008] and in JML*, Dafny specifications encode invariants
by introducing a Boolean function Valid that is defined as needed, and that is
used in pre- and postconditions symbolically.

This approach to object invariants traces back to the specification language of
the ESC/Modula-3 tool [Detlefs et al., 1998], a predecessor of ESC/Java [Flana-
gan et al., 2002] and of Spec#. Leino and Nelson [2002] discuss framing and data
abstraction in the context of ESC/Modula-3. The key feature of their approach
is that of abstraction dependencies, which serve to declare the dependencies of
a model field (an “abstract variable”), in a way which is similar to the depends
clauses in JML*. A distinction is made between static dependencies, where a
model field depends on a field of the same this object, and dynamic dependen-
cies, where a model field depends on a field of some other object that itself is
referenced by a field of this. This distinction corresponds to the one between
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static and dynamic inclusions for data groups. A field that is used as an inter-
mediary to define a dynamic dependency is called a pivot field . For example, the
array field in Figure 2.3 would be considered a pivot field, because the model
field contents depends on the components of the array via a dynamic dependency
mediated by array.

Leino and Nelson [2002] enable modularity of reasoning by globally enforcing
an extensive and non-trivial set of programming restrictions. One such restriction
is that a pivot field may only ever be changed in a program by setting it either to
null or to a freshly allocated object. This drastic limitation is called the swinging
pivots restriction. This is the story behind the nomenclature of the swinging
pivots operator Λ in the dynamic frames approach, which serves to enforce a
similar (but semantic, rather than syntactic) property locally for a method. By
not imposing such restrictions globally, dynamic frames can handle cases that
the approach of Leino and Nelson [2002] cannot, such as method concatenate

of Figure 3.5.

Data groups evolved out of the abstraction dependencies of ESC/Modula-3,
and remain closely related to them. While the first version of data groups [Leino,
1998] features only static inclusions, Leino et al. [2002] describe a variation which
also allows dynamic inclusions. Modularity is maintained despite the introduction
of dynamic dependencies by enforcing a set of programming restrictions which
is similar to that of Leino and Nelson [2002]. In particular, this set includes the
swinging pivots restriction.

Müller et al. [2003] describe a version of JML which features abstraction depen-
dencies in place of data groups. Instead of the restrictions of Leino and Nelson
[2002] or those of Leino et al. [2002], they use ownership types [Clarke et al.,
1998]—more precisely, the universe types of Müller [2002]—to solve the mod-
ularity issues that go along with dynamic dependencies. Roughly, the idea of
ownership is to structure the domain of objects which occur at run-time into a
tree of disjoint contexts, where the objects of each context have a common owner
object belonging to the parent context. The only exception is the root context,
whose objects do not have an owner. An ownership type system can guarantee
statically that at run-time every object is encapsulated in its context, i.e., that
it is only ever referenced from within its context or from its owner object (with
the possible exception of read-only references, which cannot be used for writing
to locations of the object).

Ownership can prevent unwanted aliasing, including abstract aliasing. For ex-
ample, we can consider an object of class ArrayList in Figure 2.3 to “own” the
array object referenced by its array field. An ownership type system can guaran-
tee that no other object outside of the array’s context is able to obtain a reference
to the array. If in addition we know that the dependencies of contents include
only fields of the List object and fields of objects owned by the List object, and
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that the Client object in Figure 2.5 is not owned by the List object, then we can
draw the desired conclusion that updating x does not interfere with contents. In
the dynamic frames specification in Figure 3.2, this absence of abstract aliasing is
instead expressed as the precondition in line 5. The dynamic frames counterpart
of an ownership tree is a nesting of “footprints” as in Figures 3.3 and 3.4, where
the locations of the array are part of the ArrayList object’s footprint, which
in turn is a subset of the Set object’s footprint. Unlike ownership types, the
dynamic frames approach does not insist on having only such strictly hierarchi-
cal structures. For example, the implementation of concatenate of Figure 3.5 is
not admissible in usual ownership type systems, because it lets the this object
obtain a (non-read-only) reference to an array which is owned by the l object.

Compared to a reduction of object invariants to model fields, the advantage of
a global protocol for invariants—such as JML’s visible state semantics—is that
it leads to shorter specifications, because the interaction between methods and
invariants is present in specifications implicitly, instead of having to be coded into
method contracts manually. Müller et al. [2006] use ownership types to define
an invariant semantics, called the relevant invariant semantics, which avoids the
modularity problems of the visible state semantics. Here, the only locations that
an invariant may mention are those of this and those of objects in the ownership
tree which is rooted in this. Assignments to fields of objects other than this

are prohibited. An invariant is required to hold for an object o in a state if this
state is a pre- or post-state of a method call, and if o is relevant for this call.
An object is called relevant for a method call if it belongs to the context of the
receiver object, or to one of its sub-contexts. A modular verifier can now safely
assume the invariants of all relevant objects to hold in a method’s pre-state, but
must ensure in the post-state only the invariants of this, because the global
restrictions on invariant dependencies and on assignments guarantee that the
invariants of other relevant objects cannot be broken anyway. Again, the main
limitation of the approach is that the ownership concept only fits for hierarchical
object structures.

Müller et al. [2006] also define a more flexible variation of the relevant invariant
semantics, called the visibility technique. Here, an invariant may additionally de-
pend on fields of objects in the same context as this, provided that the invariant
is visible in the class where the field is declared. Assignments are allowed not only
for fields of this, but for all objects in the context of this. The definition of
when invariants have to hold is the same as in the basic version of the approach,
but verification now has to ensure that a method’s post-state satisfies not only
the invariants of the receiver object, but also the visible invariants of all objects
in the same context as the receiver object. Even though this is more flexible than
the basic version of the relevant invariant semantics, it is still based on global
restrictions and thus cannot handle all cases.
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Another ownership based approach to object invariants is the Spec# method-
ology of Barnett et al. [2004], also known as the Boogie methodology. Here,
invariants are encoded with a ghost field st, instead of the model field used else-
where. The st field is manipulated via two special statements: “pack o” sets st
to “valid” for the object o, whereas “unpack o” sets it to “invalid”. Before every
“pack o”, all objects owned by o must already be packed, and the invariants of o
itself must hold. Before every “unpack o”, the owner of o (if any) must already
be unpacked. As in the basic version of the relevant invariant semantics, invari-
ants may depend only on locations of this and locations of objects below this

in the ownership hierarchy. Modifying a field of an object is allowed only if the
object is unpacked. Altogether, the methodology guarantees that the invariants
of an object and of all its owned objects hold whenever the object is packed. The
methodology also addresses the frame problem: roughly speaking, it gives each
method the license to modify the state of objects below the receiver in the own-
ership hierarchy, without having to declare this in a modifies clause. Leino and
Müller [2004] extend the Spec# methodology with a concept of visibility based
invariants similar to the visibility technique of Müller et al. [2006]. In later work,
Leino and Müller [2006] furthermore extend the methodology to support model
fields; the general idea is to reduce model fields to ghost fields that are updated
automatically by pack statements.

The authors of Spec# report that the Spec# methodology proved too restric-
tive for some programs they encountered [Barnett et al., 2010], a problem which
presumably could be remedied by dynamic frames. On the other hand, the VCC
project—a spin-off of the Spec# project which aims at functional verification
of system-level C code—turned back to an ownership based approach, after re-
portedly encountering limiting performance problems with an approach based on
dynamic frames [Cohen et al., 2009].

Separation logic [Reynolds, 2002] is similar to dynamic frames in that it makes
disjointness properties of location sets expressible in specifications. Such prop-
erties are however not formulated directly as set theory here. Rather, they are
blended with other specifications, using special “separating” versions of logical
connectives. For example, where in dynamic frames we write something like
a.x > 0 && b.x > 0 && \disjoint(a.x, b.x), in separation logic we write
a.x > 0 ∗ b.x > 0, where the use of the separating conjunction ∗ means that in
addition to a.x and b.x both being positive, it must also hold that the location
sets on which the two expressions depend are disjoint. Instead of explicit modi-
fies clauses and depends clauses (or corresponding operators ∆ and frames), in
separation logic framing information is inferred from a method’s precondition:
only locations mentioned by the precondition may be read or written by the
method. Overall, this leads to specifications that tend to be shorter, but per-
haps less clear, than dynamic frames specifications. Separation logic provides a
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specialised framework for reasoning about such specifications, as an extension of
Hoare logic.

Parkinson and Bierman [2005] extend separation logic with a mechanism for
data abstraction. Their abstract predicates are similar to JML’s model fields and
pure methods, and to the functions in Dafny. There are examples which cannot be
handled by this approach, but which can be handled by dynamic frames [Kassios,
2006a]. Distefano and Parkinson [2008] describe a Java verifier jStar based on
separation logic with abstract predicates.

Implicit dynamic frames [Smans et al., 2009a] is an approach inspired both
by dynamic frames and by separation logic. Instead of using location sets ex-
plicitly in the specification language, the technique centres around a concept of
permissions: a method may read or write a location only if it has acquired the
permission to do so, and these permissions are passed around between method
calls by mentioning them in pre- and postconditions. Disjointness of location sets
is expressed using the operators of separation logic. In contrast to special-purpose
verifiers for separation logic, Smans et al. [2009a] describe a verifier based on an
encoding into Boogie [Barnett et al., 2006] and thereby on more traditional first-
order theorem proving (modulo theories). As a more efficient alternative, Smans
et al. [2009b] propose a verifier for implicit dynamic frames that does not use
Boogie, and that instead generates its own encoding into first-order logic using a
form of symbolic execution.

Specifications in regional logic [Banerjee et al., 2008b] are closely related to
dynamic frames specifications, more so than specifications in the implicit dynamic
frames approach. Here, modifies and depends clauses are expressed with the
help of regions, which are expressions that evaluate to sets of object references.
Ghost fields are used to abstract from concrete sets of objects, much like dynamic
frames ghost fields as they are used, for example, in Dafny. Regional logic is an
extension of Hoare logic for reasoning about such specifications. As an alternative,
Banerjee et al. [2008a] report on experiments where regional logic specifications
were instead translated into Boogie and verified using the Boogie tool.

Parkinson [2007] makes the case that class invariants may be obsolete as a
fundamental concept in specifying object-oriented programs, pointing out the
restrictions of the existing modular global invariant protocols such as those of
Barnett et al. [2004] and of Müller et al. [2006], and arguing that a concept
like the abstract predicates of Parkinson and Bierman [2005] can provide a more
flexible foundation for expressing consistency properties of object structures. By
and large, dynamic frames based approaches such as JML* follow this argument,
as they reduce invariants to concepts similar to abstract predicates, such as model
fields or Dafny’s functions.

In response to Parkinson [2007], a defence of invariants as independent entities
controlled by a global invariant protocol has been put forward by Summers et al.
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[2009]. Roughly, their arguments are the following: (i) invariants are useful as a
way of thinking, and lead to good software design; (ii) verification based on an
invariant protocol can be easier for the verification tool than verification without
one, because the protocol ensures certain properties already on the meta-level;
(iii) an invariant protocol leads to shorter specifications; and (iv) an invariant
protocol can guarantee that a method preserves the invariants of objects other
than the receiver, without these objects being mentioned directly in the method’s
specification.

It can be argued that points (i) and (iv) are addressed in JML*, even though
it does not use an invariant protocol. Like JML, but unlike the other dynamic
frames based specification languages mentioned in this section, JML* still fea-
tures invariants as a built-in language concept, and still has invariants constrain
the behaviour of all methods by default. Even though this is merely syntactic
sugar, it nevertheless still encourages thinking in terms of invariants, and thus
addresses issue (i). Like the other dynamic frames based languages, JML* allows
us to give depends clauses for invariants. Such depends clauses guarantee the
preservation of an object’s invariants by all methods which do not modify the
dependencies of this invariant, without having to specify this explicitly for the
preserving methods. This addresses issue (iv). It seems that points (ii) and (iii)
are indeed inherent advantages of having a global invariant protocol, and giving
up these advantages is the price to pay for the increased flexibility and reduced
methodological complexity that come with avoiding such a protocol. Point (iii)
can be solved at least partially by fixing a more extensive set of defaults than the
one used in this chapter, such as the one proposed by Smans et al. [2008].

In the context of the KeY project, previous work on object invariants and
on modularity has been done by Roth [2006]. Here, the semantics of invariants
is based on the notion observed state correctness. Roth [2006] defines several
variations of observed state correctness. In the most basic version, all methods are
required to preserve all invariants in the program. One of the possible refinements
is to allow for a decision during verification on which invariants are to be assumed
when entering a particular method, and which ones are to be ensured at the
end. This is similar to JML*, where when writing specifications we have to
decide which invariants are part of which pre- and postconditions. In JML* these
decisions are documented within the specification itself, whereas in the approach
of Roth [2006] the bookkeeping of invariants is instead done during verification,
either manually or with the help of the verification system.

All variations of observed state correctness treat invariants as being implicitly
universally quantified over this. Such a universal quantification effectively turns
an invariant into a static invariant, which does not belong to a particular object
any more. While this interpretation simplifies the definition of a semantics for
invariants, it is too coarse. For every invariant and every method entry or exit
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point, it only leaves us two choices: either we require the invariant to hold for all
objects of its class, or we do not require that it holds for any object at all. For
example, we have seen that method get of class ArrayList in Figure 2.1 satisfies
its contract only if the invariants of this hold upon method entry. Thus, in
the observed state semantics, we are forced to assume that the invariants of all
ArrayList objects hold when entering m. This assumption then prevents us from
modularly verifying the correctness of a program where method get is called
on an object that does satisfy its invariant, while the invariant of some other,
irrelevant ArrayList object is broken temporarily.

To achieve modularity, Roth [2005, 2006] uses a flexible notion of encapsulation
based on a reachability predicate, and a notion of depends clauses for invariants
similar to the one in JML*. Instead of strictly enforcing behavioural subtyping,
Roth [2006] introduces a concept of extension contracts which allow constraining
the admissible extensions of a given program in a flexible way. This approach
could be combined with JML*. Roth [2006, Section 10.4] touches on the issue of
data abstraction, but does not cover the interplay between data abstraction and
framing, which is mentioned as future work.

3.7. Conclusion

In the first section of this chapter, we have examined several known problems
with the current version of the Java Modeling Language, which render its mod-
ular static verification impossible. As a solution to these issues, we have altered
JML into JML*, which incorporates central ideas from the theory of dynamic
frames of Kassios [2006a]. JML* is similar to languages of Smans et al. [2008]
and of Leino [2008], which also use dynamic frames. At its core is the intro-
duction of a type \locset, replacing the concept of data groups and elevating
sets of memory locations to first-class citizens of the language. Compared with
existing techniques for modular specification of object-oriented programs based
on global restrictions and/or ownership, the dynamic frames approach allows for
a remarkably simple and uniform treatment of model fields, pure methods, and
invariants. This conceptual simplicity is not only an advantage for the authors of
a specification language or a verification system, but also for practitioners, who
need to be able to grasp the exact meaning of the specifications they write.

The cost for this simplicity is that specifications based on dynamic frames can
be more verbose, and—more crucially—that the verification of such specifications
can be more difficult and computationally expensive. This is because properties
that in other approaches are ensured by an (efficient) ownership type system, or
by a once-and-forall proof on the meta level, are in the dynamic frames approach
typically verified on a case by case basis, using (more heavyweight, less efficient)
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theorem proving. An interesting line of future work may be to investigate com-
binations of dynamic frames and ownership based approaches, where dynamic
frames serve as the thinking model and fundamental framework, and where the
verification of common special cases is made more efficient through the use of
ownership techniques.

A minor drawback of JML* is that it does not facilitate modular verification
within a class hierarchy: we expect to handle nested constructor calls by inlining,
and to have to reverify an inherited method in the context of the subclass. Thus,
changing a superclass leads to new proof obligations in its subclasses. This is
a consequence of the decision to model invariants via a single model field for
all classes. An alternative is to use “type-indexed” invariants, where for every
object, one considers the validity of the invariants declared in every supertype of
the object’s type separately. Such an approach is used in the Spec# methodology
[Barnett et al., 2004], allowing for additional modularity within class hierarchies
at the cost of additional complexity.

This concludes Part I on specification. We meet JML* again in Chapter 6,
where we see a concrete approach for the verification of JML* specifications.
The logic underlying this approach to verification is defined in Chapter 5, after
a discussion of the issue of heap modelling in Chapter 4.
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4. Modelling Heap Memory

Chapter 5 defines a variation of the dynamic logic JavaDL [Beckert, 2001; Beckert
et al., 2007] that underlies the KeY system. This variation is suitable for verifying
dynamic frames specifications, such as those written in JML* (Chapter 3). In
keeping with the distinction between JML and JML*, we call this logic JavaDL*
to distinguish it from traditional JavaDL. The primary difference between the
two logics is in the logical modelling of Java’s heap memory : JavaDL is based
on an encoding using non-rigid functions [Beckert and Platzer, 2006], whereas
JavaDL* models the heap using the theory of arrays [McCarthy, 1963]. The
present chapter is a prelude to Chapter 5, and serves to motivate and explain
this difference in heap modelling.

Outline Section 4.1 is a review of the functioning of heap memory in Java.
Section 4.2 sketches three different logical models of the heap, where the first is
the model of classical JavaDL, the third is the one used in JavaDL* (Chapter 5),
and the second is an in-between. We compare the three models and conclude in
Section 4.3.

4.1. The Java Heap

A main difference between simple “while languages” and realistic imperative pro-
gramming languages is that the latter allow the dynamic allocation of pieces of
memory at run-time. These areas of memory are then read and written via dy-
namically determined memory addresses, also called references or pointers. This
step of indirection leads to the phenomenon of aliasing , where two syntactically
different expressions can evaluate to the same reference at run-time, such that
two memory accesses using the two syntactically different expressions neverthe-
less affect the same piece of memory. In contrast, (local) program variables are
accessed directly via static names known already at compile time, and are thus
not subject to aliasing. The area of physical memory used for the dynamically
allocated data is usually called the heap.

A low-level view of the heap is to understand the addresses as natural numbers,
and the states of the heap as functions that map natural numbers to values. This
view more or less directly corresponds to the reality of typical hardware: the
computer’s memory is a linear sequence of memory locations, where the sequence
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number of each location is its address, and where in a state each of these locations
contains some value.

Programming languages such as C or Java structure the heap into pieces of
memory which semantically belong together, called structs or objects. The indi-
vidual locations inside of a struct or object can be talked about using fields (also
known as attributes or member variables). In the above hardware-oriented view,
an object is an interval of successive memory locations, and a field is an offset
that must be added to the start address of such an interval to get the address of
a particular location inside the interval. For example, given an expression o of an
object type, a field f, and a state s, the expression o.f accesses a location whose
address is determined by evaluating o in s and adding the statically known offset
number denoted by f.

In a language like C, this low-level view where addresses are numbers is exposed
to the programmer. Addresses can be manipulated using arithmetical operations
(pointer arithmetic) and subsequently be used for accessing the heap, circum-
venting the language’s type system. In contrast, a stricter language like Java
guarantees that the structuring of the heap into objects is always maintained.
For example, in Java an expression of some object type always actually holds
a reference to a suitable object (or null), and two non-identical objects never
overlap in memory.

Because of these guarantees, we can understand the Java heap more abstractly
as a set of locations, where a location is a pair of an object (in the sense of an
object reference) and a field. A state of the heap is a mapping from locations
to values. This is visualised in Figure 4.1. Boxes represent locations; their order
is immaterial. A state assigns values to the locations, which in the figure are
written inside the boxes. In the shown state, the location (o, f) contains the
value 27. The expressions o1 and o2 both evaluate to o. This implies that both
o1.f and o2.f speak about the location (o, f), which is an example of aliasing.
The location (o, h) contains a reference to the object o′. Thus, the expression
o1.h.i accesses the location (o′, i).

Java arrays are a special case of objects. Their components are accessed via
dynamically determined natural numbers instead of via statically known fields.
Nevertheless, they behave much like ordinary objects. We omit them in this
chapter in order to simplify the presentation. For the same reason we do not
consider static fields in this chapter.

4.2. Logical Models of the Heap

Many formalisms for reasoning about programs, such as Hoare logic [Hoare, 1969],
weakest preconditions [Dijkstra, 1975], or dynamic logic [Pratt, 1976; Harel et al.,
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Figure 4.1.: Visualisation of the Java heap

2000], were originally formulated for languages with program variables but with-
out a heap. Program variables can be modelled in a first-order logic based setting
either as logical variables or as constant symbols, whose interpretation is changed
by program assignments. Modelling the heap is not as straightforward, and
there are several approaches for doing so. In this section, we consider three such
approaches: modelling fields as non-rigid function symbols (Subsection 4.2.1),
modelling the heap as a binary non-rigid function symbol (Subsection 4.2.2), and
modelling the heap as a program variable (Subsection 4.2.3).

4.2.1. Fields as Non-Rigid Functions

One approach to heap modelling based on typed first-order logic is to represent
a field f of a type A declared in a class C as a function symbol f :C → A, which
maps objects of type C to values of type A. A heap access expression o.f is
viewed as a term f(o), where the function symbol f is applied to the subterm
o. A state of the heap is a first-order structure which interprets all the function
symbols f as mathematical functions. Executing an assignment o.f = x; in
a state s leads to a modified state s′ which is identical to s, except that the
interpretation of the function symbol f is modified such that it maps the value
of o in s to the value of x in s. As the interpretation of such function symbols f

can change from one state to another, we call them non-rigid function symbols
to distinguish them from rigid function symbols whose interpretation is the same
in all states, such as arithmetic operators. This technique of modelling heap
memory is used in JavaDL [Beckert, 2001; Beckert et al., 2007], as well as in its
bare-essentials version ODL [Beckert and Platzer, 2006]. It is also used in the
theory of Abstract State Machines (ASMs) [Börger and Stärk, 2003] and in the
JACK verifier [Burdy et al., 2003].

Besides non-rigid symbols that represent fields, it is useful to allow for another
kind of non-rigid symbols that do not stand for locations and that cannot be
assigned to, but whose interpretation can instead change as a consequence of
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the change of memory locations [Bubel, 2007; Bubel et al., 2008]. For example,
it may be convenient to have a unary predicate symbol nonNullFields, where
nonNullFields(o) is defined to hold in a state if and only if all locations belonging
to the object which is the value of o contain non-null values. As the value of o is in
fact just an object reference, the value of nonNullFields(o) can change between
states even if o refers to the same object in both states: the value implicitly
depends on the locations belonging to the object referred to by o. Another
example is a reachability predicate reach, where reach(o1, o2) is defined to hold
in a state if there is a chain of references from o1 to o2, and whose evaluation
thus depends on the fields of the objects in the chain.

The semantics of non-rigid symbols like nonNullFields and reach is fundamen-
tally different from the semantics of non-rigid symbols that represent fields. We
use the name location dependent symbols for the former, and the name location
symbols for the latter. To illustrate the difference, let f be a location symbol. If
g is also a location symbol (but different from f), then the assignment o.f = x;

cannot affect the value of the expression o.g, because the expressions o.f and o.g

access different memory locations. If however g is a location dependent symbol,
then it is possible that the value of o.g is affected by the assignment, because it
might depend on the modified location. In essence, this difference is the same as
that between ghost fields and model fields in JML (Chapter 2).

Bubel [2007]; Bubel et al. [2008] propose an approach to syntactically express
restrictions on the dependencies of location dependent symbols. In this approach,
a description of the locations that a location dependent symbol may depend on
is included in its declaration and in all of its occurrences, enclosed in square
brackets. For example, one might write something like reach[for C c; c.f](o1, o2)
to indicate reachability of o2 from o1 via all locations that are formed by objects
of class C and the field f. When reasoning about this proposition in a theorem
prover such as KeY, we can exploit that its validity depends at most on the
mentioned locations, and that it is thus guaranteed that an assignment to any
other location cannot affect it.

The dependency mechanism of Bubel [2007]; Bubel et al. [2008] is reminiscent
of the depends clauses in JML*. Nevertheless, it is designed for reasoning about
recursively defined predicates such as reach, and cannot without adaptations be
used for reasoning about specifications that use data groups or dynamic frames.
Two main limitations are that it requires deciding on the precise dependencies of
a symbol up front when introducing the symbol, and that it features no way of
introducing symbolic names for sets of locations.

Extending and adapting the technique of Bubel [2007]; Bubel et al. [2008] to
make it usable for verifying abstract specifications has been investigated [Beckert
et al., 2009b; Krenický, 2009]. In the investigated approach, a location dependent
symbol carries two semantical interpretations, namely its regular value and the
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set of locations it depends on. This is much like a model field with an associated
data group in JML. The set of locations on which a symbol can depend no longer
needs to be declared already when introducing the symbol, but can be specified
freely using formulas and set theoretical operators, like in the dynamic frames
approach. But some limitations remain. For example, it is still not possible
to give dependencies for a set of locations itself. Overall, we found that the
investigated approach leads to a specialised, non-trivial logic that includes many
non-standard concepts in its core definitions. The underlying difficulty is that
the ability to syntactically talk about locations and about sets of locations is
crucial for data abstraction, and that this is cumbersome to make possible in
a logic where the heap is modelled using non-rigid functions: here, fields are
syntactical function symbols, which only allows terms and formulas to talk about
their values, not about the fields as such.

4.2.2. The Heap as a Binary Non-Rigid Function

Another approach to modelling the heap is representing the fields not as syntac-
tical function symbols, but as semantical values of a type Field introduced for
this purpose. Of course, there must nevertheless be a way to syntactically refer
to these values. To this end, we can introduce a constant symbol f : Field for
every field f of the program. We do not need to fix the exact interpretation of f,
or the domain of the type Field , but we do need to define that the values of two
such constant symbols f and g are always different. We can, for example, achieve
this by introducing an axiom f 6 .= g for every such pair. Some existing tools and
languages feature a mechanism for declaring constant symbols as unique [Barnett
et al., 2006] or (equivalently) as distinct [Ranise and Tinelli, 2006], which con-
veniently allows defining this kind of property without resorting to a quadratic
number of axioms.

The heap can then be represented as a non-rigid function symbol heap : Object ,
Field → Any that maps locations to values. Typing becomes an issue here,
because the desired type of a term heap(o, f) is the type of the field declaration
that gave rise to the function symbol f, but this type got lost in translation.
A simple solution is to resort to an essentially untyped heap where the result
type of heap is Any , which is a supertype of all types of the program. An
alternative solution, which allows keeping all type information at the cost of
higher complexity, is to use a polymorphic type system. The latter solution is for
example used by Leino and Rümmer [2010].

A heap access expression o.f is now seen as a term heap(o, f), and an as-
signment o.f = x; is understood as changing the interpretation of the function
symbol heap at the position given by o and f to the value of x. In contrast to a
modelling of fields as non-rigid function symbols, here fields are first-class citizens
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of the logic on par with object references, meaning that terms and formulas can
refer to them explicitly. This makes it straightforward to syntactically talk about
locations and sets of locations. Function symbols of a type “set of locations”
can be defined, and these can serve to encode specification concepts such as data
groups or dynamic frames.

Using the terminology of Subsection 4.2.1, the non-rigid function symbol heap
is a location symbol. When modelling the heap as a single location symbol as in
the present subsection, there is no need for any other location symbols besides
heap. Yet, the need for location dependent symbols as a separate category of
non-rigid symbols remains: symbols such as nonNullFields or reach—or symbols
intended to represent JML model fields—need to depend on the interpretation of
heap. But heap, being a binary function symbol, cannot be used as an argument
to these symbols in first-order logic.

4.2.3. The Heap as a Program Variable

As we have seen in Section 4.1, states of the heap are functions that map loca-
tions to values. In the approach of Subsection 4.2.2, these heap states occur as
interpretations of the function symbol heap. Alternatively, we can model them
as instances of an algebraic data type Heap, which allows them to be stored in a
mere program variable heap : Heap instead of in a binary location function sym-
bol heap : Object ,Field → Any . This kind of approach is for example used in the
Jive verifier [Poetzsch-Heffter, 1997; Poetzsch-Heffter and Müller, 1999], in the
KIV verifier [Stenzel, 2004], in the Spec# methodology [Barnett et al., 2004], in
the dynamic frames based verifier of Smans et al. [2008], and in the Dafny verifier
of Leino [2008]. It was also employed in earlier versions of the Krakatoa verifier
[Marché et al., 2004].

A common choice as the data type for representing heap states are the arrays of
the theory of arrays [McCarthy, 1963; Ranise and Tinelli, 2006], where locations
are used as array indices. A function symbol select : Heap,Object ,Field → Any
serves to retrieve an element out of a heap array at a specified position, and a
function symbol store : Heap,Object ,Field ,Any → Heap serves to write into a
heap array at a specified position. The two function symbols are connected by
the axiom

∀Heap h; ∀Object o, o′; ∀Field f, f ′; ∀Any x;

select
(
store(h, o, f, x), o′, f ′

)
.
= if (o

.
= o′ ∧ f .

= f ′)then(x)else
(
select (h, o′, f ′)

)
,

which resolves possible aliasing with the help of an if-then-else term.
In this approach, an expression o.f is viewed as a term select (heap, o, f), and

an assignment o.f = x; as changing the interpretation of the program variable
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heap such that the value of x is written into the position in the array that is
designated by the terms o and f.

The approach does not make use of non-rigid function symbols, relying only
on program variables and on rigid symbols. The effect of a location dependent
symbol can be achieved by including heap as an explicit argument to a rigid func-
tion or predicate symbol, as in nonNullFields(heap, o) or in reach(heap, o1, o2).
Quantification over heap arrays can be used to express as a formula that the
interpretation of such a symbol depends only on certain locations. For example,
the formula below states that reach depends only on the locations (c, f), where c
is of class C and f a field (as in the example of Subsection 4.2.1):

∀Heap h1, h2;
(
∀C c; select (h1, c, f)

.
= select (h2, c, f)

→ ∀Object o1, o2; (reach(h1, o1, o2)↔ reach(h2, o1, o2))
)

The formula demands that if all such locations (c, f) contain the same value in
h1 as they do in h2, then the interpretation of reach must also be the same for
h1 and h2.

4.3. Conclusion

We have looked at three possibilities for modelling heap memory in a setting based
on first-order logic. All three are abstract in the sense that they use objects and
fields (locations) as indices into the heap, not integer addresses. This abstraction
is an advantage of Java-like programming languages, as opposed to more low-level
languages such as C. They differ in how fields and the heap are manifested in the
logic’s signature. In the first approach (which we refer to as A1 in the remainder
of this section), every field becomes a non-rigid function that maps objects to
values. In the second approach (A2 ), fields are constants of a type Field , and
the heap is a non-rigid function that maps objects and fields to values. In the
third approach (A3 ), fields are again constants of type Field , but the heap is a
program variable that holds a data structure which maps objects and fields to
values.

When going from A1 to A3, the size of the terms representing field access
expressions o.f increases continuously: f(o) only has one subterm, heap(o, f)
has two, and select (heap, o, f) has three subterms. Because these terms occur
in large numbers when verifying object-oriented programs, choosing an approach
that makes them small means an advantage in efficiency.

On the other hand, expressivity increases from A1 to A3. The step from A1 to
A2 turns locations into first-class values, which for example enables quantification
over locations, and function symbols that stand for locations or for sets of loca-
tions. Going from A2 to A3 furthermore turns heap arrays into first-class values.
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In both cases, increasing the expressivity by changing the heap model leads to
a simpler and more standard formalism than retrofitting the same expressivity
onto an originally less expressive heap model. In particular, the step from A2
to A3 removes the need for a special concept of location dependent symbols built
into the logic.

In a typed verification logic, the issue of typing heap access terms is an exception
to the rule that the logic becomes simpler by going from A1 to A2 and A3: this
typing is straightforward in A1, where the type A of a field f and the type C
containing the declaration of f can be used as directly as the signature of the
corresponding function symbol f :C → A, but it is more complicated in A2 and
in A3. One solution is to use a type system with support for polymorphism
[Leino and Rümmer, 2010]. Here we can, for example, use a polymorphic type
Field α parametrised by the declared type of the field, and let the constant symbol
representing the field f be of the instantiated type Field A. A simpler alternative
(used above) is to enforce only a weaker typing discipline, which allows any value
to be stored in any location, and which allows a location to be constructed by
combining any object with any field, even if the particular field is not defined for
the object in the program. This means less protection against the verification
system itself being faulty, but does not matter if the verification system works
correctly and thus produces only terms that would be legal also in a system with
stronger type checks.

The three approaches are not the only possibilities. For example, the Kraka-
toa tool originally used a variant of A3 [Marché et al., 2004], but then switched
to an approach based on a per-field array [Marché and Paulin-Mohring, 2005].
Here, there is a type Field , but unlike in A2 and A3, its values are not the fields
themselves, but rather one-dimensional arrays (in the sense of the theory of ar-
rays) mapping objects to values. Java fields are represented as program variables
(as opposed to rigid constants) of type Field . A heap access expression o.f is
understood as the term select (f, o), where we read from the array stored in the
program variable f at the index denoted by o. Marché and Paulin-Mohring [2005]
report that inefficiency in the handling of aliasing was the reason for the switch
in heap modelling: it took up too much time during verification to repeatedly de-
termine that two locations o.f and o.g (where f and g are not the same symbol)
are different, and that thus assigning to one of them does not affect the value
stored in the other. Like A1, their new approach allows neither quantification
over locations nor function symbols that stand for location sets.

The definition of JavaDL* in Chapter 5 uses A3 instead of A1. This difference
compared to traditional JavaDL allows JavaDL* to be used for the verification
of JML* specifications, which is the topic of Chapter 6.

72



5. Java Dynamic Logic with an Explicit
Heap

Dynamic logic [Pratt, 1976; Harel et al., 2000] is a verification logic where pro-
grams of some programming language are embedded into logical formulas. An
instance of dynamic logic where the programming language is Java has been de-
fined by Beckert [2001]; Beckert et al. [2007]. We refer to this logic as JavaDL
in this thesis. A central feature of JavaDL—and a unique extension to classi-
cal dynamic logic as defined by Harel et al. [2000]—is its representation of state
changes as so-called updates [Beckert, 2001; Rümmer, 2006]. The handling of
Java programs in the JavaDL calculus is closely linked to the concept of updates.
JavaDL and its updates are the theoretical foundation of the KeY system.

In exact terms, the programming language supported by JavaDL is not Java
but Java Card , a Java dialect for smart cards [Java Card 2003]. Java Card ex-
tends a subset of sequential Java with smart card specific features, such as a
transaction mechanism. These additional features of Java Card are supported
by KeY [Mostowski, 2005], but we are not concerned with them in this thesis.
Instead, we consider the programming language of JavaDL to be only the inter-
section between Java Card and Java (version 1.4, as defined by Gosling et al.
[2000]). Compared with full Java, the Java Card subset lacks features like con-
currency, floating point arithmetic, and dynamic class loading, but retains the
essentials of object-orientation. A core version of JavaDL for a simpler, artificial
object-oriented language is the object-oriented dynamic logic (ODL) of Beckert
and Platzer [2006]. A different dynamic logic for Java is used in the KIV verifier
[Stenzel, 2004].

As motivated in Chapter 4, the present chapter introduces a variation of
JavaDL where heap memory is modelled as a single program variable, whose
values are arrays in the sense of the theory of arrays [McCarthy, 1963]. We refer
to this variation of JavaDL as JavaDL* . The changes affect the logic’s syntax,
semantics and calculus. They enable the formulation and verification of JavaDL*
proof obligations that capture the correctness of JML* specifications (Chapter 6).

Outline Section 5.1 provides an introduction to dynamic logic as a framework
for program verification, and to the notion of updates as an extension of this
framework. The syntax and the semantics of JavaDL* are formally defined in

73



5. Java Dynamic Logic with an Explicit Heap

Sections 5.2 and 5.3, respectively. Section 5.4 is concerned with the JavaDL*
calculus. Example proofs in Section 5.5 illustrate the functioning of the calculus,
and Section 5.6 contains conclusions.

5.1. Dynamic Logic with Updates

Dynamic logic extends classical first-order predicate logic by modal operators [p]
(called box modality) and 〈p〉 (called diamond modality) for every program p of
the considered programming language. A dynamic logic formula [p]post holds
in a program state if the program p either does not terminate when started in
this state, or if it terminates in a state where the formula post holds (partial
correctness). Provided that p is deterministic, the formula 〈p〉post holds in a
state if [p]post holds, and if additionally p does indeed terminate when started in
this state (total correctness).

Dynamic logic can be seen as a generalisation of Hoare logic [Hoare, 1969]. A
formula pre → [p]post , where pre and post are first-order formulas (i.e., where
they do not contain modal operators), has the same meaning as the Hoare triple
{pre}p{post}: if p is executed in a state satisfying pre, and if the execution
terminates, then the final state must satisfy the postcondition post . A Hoare-style
logic is for example used in the Jive verifier [Poetzsch-Heffter and Müller, 1999].
In contrast to Hoare logic, dynamic logic is closed under all logical operators,
including the modal operators [p] and 〈p〉.

In instances of dynamic logic such as JavaDL, the semantics of the program-
ming language is formalised as a set of calculus rules. These rules are used
during verification to incrementally shorten and finally eliminate the occurring
modal operators, thereby reducing a formula of dynamic logic to a formula of
first-order logic. This process is related to the verification condition generation
in other verifiers (for example, in ESC/Java2 [Cok and Kiniry, 2005], in Boogie
[Barnett et al., 2006], in JACK [Barthe et al., 2007] and in Why [Filliâtre and
Marché, 2007]), where a first-order formula called the verification condition is
first generated from a program and its specification, and then passed on to an
SMT solver. In dynamic logic, both generating verification conditions and first-
order reasoning happen within one dynamic logic theorem prover, and can be
intertwined during the overall verification process.

A popular approach to automatically transforming programs and specifications
to first-order verification conditions is the weakest preconditions predicate trans-
former of Dijkstra [1975]. Given a program p and a postcondition formula post ,
it constructs a formula wp(p, post) which is the weakest precondition of p with
respect to post : if wp(p, post) holds before p, then post holds afterwards; and
all other formulas with this property are “stronger” than wp(p, post), i.e., they
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logically imply wp(p, post). In particular, wp(p, post) is trivially implied by the
strongest such formula, namely false. All of the above-mentioned verifiers (ES-
C/Java2, Boogie, JACK and Why) use weakest preconditions for generating their
verification conditions.

For an assignment a = t, the weakest precondition with respect to a postcon-
dition post can be constructed as wp(a = t, post) = post [t/a], where the notation
post [t/a] stands for the result of substituting in post all occurrences of a by t.
For example, wp(a = a+ 1, a

.
= 3) = (a+ 1

.
= 3): if the variable a is to have the

value 3 after the assignment, then before the assignment the term a+1 must have
been equal to 3. The weakest precondition of the sequential composition p1;p2 of
programs p1 and p2 can be computed as wp(p1;p2, post) = wp(p1, wp(p2, post)).
That is, the wp transformer is first applied to p2 and post , and then the result of
this application is used as the postcondition to be established by p1.

The weakest precondition approach can be used in dynamic logic in a natural
way. In fact, the dynamic logic formula 〈p〉post is the weakest precondition of
p with respect to post , albeit not in a first-order form. It can be rewritten to a
first-order form by starting from the back and applying assignments to the post-
condition as substitutions, as above. For example, a formula 〈a = t; b = t′〉post
can first be transformed into 〈a = t〉post [t′/b] and then into (post [t′/b])[t/a].

A less popular alternative to weakest preconditions is the strongest postcondi-
tions predicate transformer [Floyd, 1967]. Given a precondition formula pre and
a program p, it constructs a formula sp(pre, p) that is guaranteed to hold after
running p in a state satisfying pre, and that implies all other formulas with this
property. In particular, sp(pre, p) trivially implies the weakest formula with this
property, namely true. The dynamic logic calculus for Java programs in the KIV
tool is based on a variation of strongest postconditions.

The strongest postcondition of an assignment a = t can be derived as sp(pre,
a = t) = ∃a′; (pre[a′/a]∧ a .

= t[a′/a]): there must be some “previous value” a′ of
a, such that pre holds when using a′ for a, and such that the new value of a is the
previous value of t. Alternatively, we can define sp(pre, a = t) = (pre[a′/a]∧a .

=
t[a′/a]), where a′ is fresh function symbol; this corresponds to a Skolemisation of
the existential quantifier. As an example, we have sp(a

.
= 2, a = a + 1) = (a′

.
=

2 ∧ a
.
= a′ + 1). Sequential composition p1;p2 can be handled by first applying

sp to p1 and then to p2: sp(pre, p1;p2) = sp(sp(pre, p1), p2).

The weakest precondition transformation produces smaller verification condi-
tions than the strongest postcondition transformation. For wp, an assignment
amounts to a mere substitution in the postcondition, whereas sp needs to intro-
duce an existentially quantified symbol a′ to denote the pre-assignment value of
the changed variable. On the other hand, an advantage of the strongest post-
conditions approach is that it processes programs in a forward manner, which
is closer to human understanding of programs than the backwards procedure of
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weakest preconditions. As a forward procedure follows the natural control flow of
the program, it can be viewed as symbolic execution [King, 1976] of the program,
where terms serve as symbolic values for the program variables.

JavaDL extends traditional dynamic logic with another syntactical category
besides terms, formulas and programs, namely updates [Beckert, 2001; Rümmer,
2006]. Like programs, updates denote state changes. For example, an update
a := t assigns the value of the term t to the variable a. If u is an update and
post is a JavaDL formula, then {u}post is also a JavaDL formula, which holds
in a state if executing u in this state produces a state that satisfies post . The
difference between updates and programs is that updates are a simpler and more
restricted concept. For example, updates always terminate, and the expressions
occurring in updates never have side effects. This difference is more pronounced
for a realistic language like Java than for a simple theoretical language.

Updates allow the calculus of JavaDL to handle Java programs by doing a
forward symbolic execution of the program even though ultimately computing
weakest preconditions, avoiding the existential quantifier of strongest postcon-
ditions. This works by stepwise turning all program assignments into updates,
starting from the first statement in the program, and in the end applying the
resulting updates to the postcondition as a substitution. For example, sym-
bolic execution in JavaDL transforms the formula 〈a = t; b = t′〉post to the
formula {a := t}〈b = t′〉post , where the first program-level assignment has been
replaced by an equivalent update. We can read this update as a symbolic de-
scription of the state that the remaining program b = t′ is started in. Symbolic
execution then continues with this second assignment, leading to the formula
{a := t}{b := t′}post . Now that the program has disappeared, the updates are
applied to the postcondition as substitutions, yielding first {a := t}post [t′/b] and
finally (post [t′/b])[t/a]. This is the weakest precondition of the program with
respect to post , as in the example above.

In a setting such as JavaDL, where the heap is modelled using a non-rigid
function symbol for every field (Chapter 4), there is a second, independent argu-
ment for the usefulness of updates: here, computing either wp or sp for a heap
assignment o.f = t immediately leads to case distinctions because of possible
aliasing. When dealing with an assignment a = t to a program variable a, we
can just substitute t (when using wp) or a′ (when using sp) for a, as above. But
when dealing with an assignment to a heap location f(o), we need to replace all
occurrences of terms f(o′), where o′ is a term that can be syntactically different
from o, if it is the case that o and o′ stand for the same semantical value. Be-
cause in general this cannot be determined syntactically, case distinctions must
be introduced, for example in the form of if-then-else terms. The use of updates
delays this introduction of case distinctions until the program has been dealt
with completely and the update is applied to the postcondition. In some cases,
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eagerly simplifying the occurring updates during symbolic execution even allows
avoiding some of the case distinctions entirely. For example, simplifying the for-
mula {f(o) := 1}{f(o) := 2}〈p〉post to the equivalent formula {f(o) := 2}〈p〉post
eliminates one of the two updates without a case split.

If—as in JavaDL*—the heap is modelled as a single program variable heap

holding an array, then computing a weakest precondition or strongest postcon-
dition for a heap assignment o.f = t is unproblematic, because we can sub-
stitute something for heap without a case distinction. The handling of alias-
ing is delegated to the theory of arrays, which introduces an if-then-else term
when evaluating an application of select to an application of store. Simpli-
fying nested store terms has the same effect as simplifying updates in a heap
modelling based on non-rigid functions. For example, we can simplify the term
store

(
store(heap, o, f, 1), o, f, 2

)
to the equivalent term store(heap, o, f, 2) with-

out a case distinction, in analogy to the example with updates above.

Thus, in JavaDL*, updates lose the responsibility for handling aliasing to the
theory of arrays, and the second argument for their usefulness no longer applies.
Nevertheless, the first argument remains valid: updates enable computing weak-
est preconditions by forward symbolic execution of programs. In this role, they
are as central in JavaDL* as they are in JavaDL.

5.2. Syntax

The syntax of JavaDL* is based on the notion of signatures. A JavaDL* signature
is basically a signature of typed first-order logic with subtyping, together with a
Java program Prg . We distinguish in signatures between logical variables, which
can be quantified, and program variables, which can occur in programs. As a
new feature compared to JavaDL, JavaDL* allows marking function symbols as
unique. For constant symbols, this means that the interpretations of all constant
symbols marked in this way must be pairwise different. The exact definition of
the semantics of uniqueness is given in Section 5.3.

Definition 5.1 (Signatures). A signature Σ is a tuple (T ,�,V,PV,F ,FUnique,
P, α,Prg) consisting of

• a set T of types,
• a partial order � on T , called the subtype relation,
• a set V of (logical) variables,
• a set PV of program variables,
• a set F of function symbols,
• a set FUnique ⊆ F of unique function symbols,
• a set P of predicate symbols,
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• a static typing function α such that α(v) ∈ T for all v ∈ V ∪PV, such that
α(f) ∈ T ∗×T for all f ∈ F , and such that α(p) ∈ T ∗ for all p ∈ P (where
T ∗ denotes the set of arbitrarily long tuples of elements of T ), and
• a program Prg in the intersection between Java and Java Card, i.e., a set

of Java classes and interfaces.

We use the notation v :A for α(v) = A, the notation f :A1, . . . , An → A for
α(f) = ((A1, . . . , An), A), the notation f :A for α(f) = ((), A), and the notation
p :A1, . . . , An for α(p) = (A1, . . . , An). Function symbols f with f :A for some
A ∈ T are also called constant symbols.

Let FNU = F\FUnique. We require that the following types, program variables,
function symbols, and predicate symbols are present in every signature:

• Any ,Boolean, Int ,Null ,LocSet ,Field ,Heap ∈ T
• all reference types of Prg also appear as types in T ; in particular, Object ∈
T
• all local variables a of Prg with Java type T also appear as program variables
a :A ∈ PV, where A = T if T is a reference type, A = Boolean if T =
boolean, and A = Int if T ∈ {byte, short, int}
• heap : Heap ∈ PV
• castA : Any → A ∈ FNU (for every type A ∈ T )
• TRUE ,FALSE : Boolean ∈ FNU
• selectA : Heap,Object ,Field → A ∈ FNU (for every type A ∈ T )
• store : Heap,Object ,Field ,Any → Heap ∈ FNU
• create : Heap,Object → Heap ∈ FNU
• anon : Heap,LocSet ,Heap → Heap ∈ FNU
• all Java fields f of Prg also appear as constant symbols f : Field ∈ FUnique
• arr : Int → Field ∈ FUnique
• created : Field ∈ FUnique
• length : Object → Int ∈ FNU
• ∅̇, allLocs : LocSet ∈ FNU
• singleton : Object ,Field → LocSet ∈ FNU
• ∪̇, ∩̇, \̇ : LocSet ,LocSet → LocSet ∈ FNU
• allFields : Object → LocSet ∈ FNU
• arrayRange : Object , Int , Int → LocSet ∈ FNU
• unusedLocs : Heap → LocSet ∈ FNU
• null : Null ∈ FNU
• exactInstanceA : Any ∈ P (for every type A ∈ T )
• .

= : Any ,Any ∈ P
• wellFormed : Heap ∈ P
• ∈̇ : Object ,Field ,LocSet ∈ P,
• ⊆̇, disjoint : LocSet ,LocSet ∈ P

We also require that Boolean, Int ,Object ,LocSet � Any; that for all C ∈ T
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Any Field Heap . . .

Boolean Int Object LocSet

. . . . . .

Null

Figure 5.1.: Structure of JavaDL* type hierarchies

with C � Object we have Null � C; that for all types A,A′ of Prg we have A′ � A
if and only if A′ is a subtype of A in Prg; and that the types explicitly mentioned
in this definition are otherwise unrelated wrt. � both to each other and to other
types. Finally, we demand that T is finite, and that V, PV, FNU and P each
contain an infinite number of symbols of every typing.

For illustration, the structure of the type hierarchies allowed by Definition 5.1
is visualised in Figure 5.1. Individual type hierarchies differ in the subtypes of
Object , and in possible additional types that are unrelated to the fixed types.

Program variables can be seen as non-rigid constant symbols, i.e., as nullary
function symbols whose interpretation can be changed by programs. In contrast
to JavaDL, non-rigid function symbols with an arity greater than zero are not
used for modelling the heap in JavaDL*, and are left out in Definition 5.1 for this
reason: we will see in Section 5.3 that the function symbols in F are all rigid.

As evidenced in the requirement that the local variables of Prg are also program
variables in PV, we identify the Java type boolean with the JavaDL* type
Boolean ∈ T , and map the Java integer types byte, short and int to the
type Int ∈ T . Note that Java Card does not support the other primitive types
of Java, namely char, long, float and double. The type Int represents the
mathematical integers Z.

Mapping the finite-width integer types of Java to an unbounded type such as
Int does not necessarily mean that integer overflows are ignored [Schlager, 2007;
Beckert et al., 2007]. However, we do ignore them in this thesis for the sake of
simplicity. The implementation in the KeY system allows choosing between (i)
ignoring integer overflows, (ii) checking that no integer overflows can occur, and
(iii) using the actual modulo semantics of Java integers. The latter option is
realised by mapping the arithmetical operators of Java to function symbols that
accept arguments of type Int and return a value of type Int , but that nevertheless
perform modular arithmetic.

Besides the built-in types and the pivotal built-in program variable heap : Heap,
Definition 5.1 also stipulates that a number of function and predicate symbols are
present in every JavaDL* signature. These symbols are assigned a pre-defined
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semantics in Section 5.3, and we discuss their meaning there. Some other pre-
defined symbols are implicitly assumed to be present without being mentioned
in Definition 5.1, in particular operators for integer arithmetic, and the predicate
symbols ≤ and <. These have their canonical meaning, which is unchanged
compared to JavaDL [Beckert et al., 2007]. In the following, we assume a fixed
signature Σ = (T ,�,V,PV,F ,FUnique,P, α,Prg).

Like in JavaDL, the programs p occurring in modal operators 〈p〉 and [p] in
JavaDL* formulas are written in Java, or, more precisely, in the intersection
between Java and Java Card. Thus, for full formal rigour, the definitions of
JavaDL* would have to include definitions of the syntax and semantics of this
subset of Java. However, this is as far beyond the scope of this thesis as it
is beyond the scope of the definition of JavaDL given by Beckert et al. [2007].
Instead, Definition 5.2 below defines the admissible programs p rather informally,
by referring to the Java language specification [Gosling et al., 2000].

Definition 5.2 (Legal program fragments). A legal program fragment p in the
context of Prg is a sequence of Java statements, where there are local variables
a1, . . . , an ∈ PV of Java types T1, . . . , Tn such that extending Prg with an addi-
tional class

class C {

static void m(T1 a1, . . ., Tn an) { p }

}

yields again a legal program according to the rules of Gosling et al. [2000], except
that

• p may refer to fields, methods and classes that are not visible in C, and
• p may contain method frames in addition to normal Java statements. A

method frame is a statement of the form

method-frame(result=r, this=t) : { body },

where r is a local variable, t is an expression free from side effects and from
method calls, and where body is a legal program fragment in the context of
Prg. Inside body (but outside of any nested method frames that might be
contained in body), the keyword this evaluates to the value of t, and the
meaning of a return statement is to assign the returned value to r and to
then exit the method frame.

The parameter declarations T1 a1, . . . , Tn an of m bind free occurrences of
the program variables a1, . . . an in p, i.e., occurrences not bound by a declaration
within p itself. For example, in the legal program fragment “int a = b;” there
is a free occurrence of the program variable b ∈ PV. Program fragments that
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contain method frames typically do not occur in proof obligations, but only as
intermediate states of symbolic execution (Section 5.4).

Having defined JavaDL* signatures and legal program fragments, we are ready
to define the syntax of JavaDL* terms, formulas, and updates.

Definition 5.3 (Syntax). The sets TermA
Σ of terms of type A, FmaΣ of formulas

and UpdΣ of updates are defined by the following grammar:

TermA
Σ ::= x | a | f(Term

B′1
Σ , . . . ,Term

B′n
Σ ) |

if (FmaΣ)then(TermA
Σ)else(TermA

Σ) | {UpdΣ}TermA
Σ

FmaΣ ::= true | false | p(Term
B′1
Σ , . . . ,Term

B′n
Σ ) | ¬FmaΣ | FmaΣ ∧ FmaΣ |

FmaΣ ∨ FmaΣ | FmaΣ → FmaΣ | FmaΣ ↔ FmaΣ |
∀Ax; FmaΣ | ∃Ax; FmaΣ | [p]FmaΣ | 〈p〉FmaΣ | {UpdΣ}FmaΣ

UpdΣ ::= a := TermA′
Σ | UpdΣ ‖UpdΣ | {UpdΣ}UpdΣ

for any variable x :A ∈ V, any program variable a :A ∈ PV, any function symbol
f :B1, . . . , Bn → A ∈ F and predicate symbol p :B1, . . . , Bn where B′1 � B1, . . . ,
B′n � Bn, any legal program fragment p in the context of Prg, and any type
A′ ∈ T with A′ � A. The set TermΣ of (arbitrarily typed) terms is defined as
TermΣ =

⋃
A∈T TermA

Σ.

As syntactic sugar, we use infix notation for the binary symbols ∪̇, ∩̇, \̇, .
=,

and ⊆̇. Furthermore, we use the notation (A)t for the term castA(t), the no-
tation o.f for selectA(heap, o, f) where f : Field ∈ FUnique, the notation a[i]
for selectA(heap, a, arr(i)), the notation a.length for length(a), the notation
{(o, f)} for singleton(o, f), the notation t1 6

.
= t2 for ¬(t1

.
= t2), the notation

(o, f) ∈̇ s for ∈̇(o, f, s), the notation (o, f) /̇∈ s for ¬(o, f) ∈̇ s, and the notation
QAx1, . . . , xn;ϕ for QAx1; . . . ;QAxn;ϕ, where Q ∈ {∀, ∃}.

Apart from the syntactic sugar for built-in symbols, Definition 5.3 is largely
as in JavaDL. Updates u can be prefixed to terms, to formulas and to updates,
enclosed in curly braces. Intuitively, an elementary update a := t assigns the
value of the term t to the program variable a. A parallel update u1 ‖u2 executes
the sub-updates u1 and u2 in parallel. The precise definition of the semantics of
updates is given in Section 5.3 below.

In JavaDL, elementary updates are more generally of the form f(t1, . . . , tn) :=
t, where f is a non-rigid symbol with arity n (more precisely, f must be a location
symbol, not a location dependent symbol ; see Chapter 4 for an explanation of the
difference). As JavaDL* does not have general non-rigid function symbols, its
elementary updates are always of the simpler form a := t, where the left hand
side is a program variable. JavaDL also features quantified updates. For example,
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the quantified update for Ax;
(
f(x) := g(x)

)
changes the interpretation of f(x)

for all x of type A in parallel. Quantified updates are not useful without general
non-rigid function symbols: an update like for Ax;

(
a := g(x)

)
attempts to assign

to the variable a many different values at once (a “clash”), and it is equivalent
to a non-quantified update a := g(x0), where x0 is chosen according to the clash
resolution rules for quantified updates [Rümmer, 2006]. JavaDL* therefore does
not include quantified updates.

5.3. Semantics

The semantics of JavaDL* terms, formulas and updates is based on the notion
of Kripke structures as defined below.

Definition 5.4 (Kripke structures). A Kripke structure K is a tuple (D, δ, I,S, ρ)
consisting of

• a set D of semantical values, called the domain,
• a dynamic typing function δ :D → T , which gives rise to the subdomains
DA = {x ∈ D | δ(x) � A} for all types A ∈ T ,
• an interpretation function I mapping every function symbol f :A1, . . . , An
→ A ∈ F to a function I(f) :DA1 , . . . ,DAn → DA and every predicate
symbol p :A1, . . . , An ∈ P to a relation I(p) ⊆ DA1 × · · · × DAn,
• a set S of states, which are functions s ∈ S mapping every program variable
a :A ∈ PV to a value s(a) ∈ DA, and
• a function ρ that associates with every legal program fragment p a transition

relation ρ(p) ⊆ S2 such that (s1, s2) ∈ ρ(p) if and only if p, when started in
s1, terminates normally (i.e., not by throwing an exception) in s2 [Gosling
et al., 2000]. We consider Java programs to be deterministic, so for all
legal program fragments p and all s1 ∈ S, there is at most one s2 such that
(s1, s2) ∈ ρ(p).

We require that every Kripke structure satisfies the following:

• S is the set of all functions mapping program variables to properly typed
values (it is therefore completely determined by D and δ)
• DBoolean = {tt ,ff }
• DInt = Z
• DNull = {null}
• DLocSet = 2D

Object×DField

• DHeap = DObject ×DField → DAny

• for every interface or abstract class C ∈ T , the set {x ∈ D | δ(x) = C} is
empty
• for every C ∈ T with C � Object, C 6= Null which is not an interface or an

abstract class, and every n ∈ N, the set {x ∈ D | δ(x) = C, I(length)(x) =

82



5.3. Semantics

n} is infinite
• for all f, g ∈ FUnique with f 6= g, the function I(f) is injective, and the

ranges of the functions I(f) and I(g) are disjoint

• I(castA)(x) =


x if x ∈ DA

null if x 6∈ DA and A � Object

∅ if x 6∈ DA and A = LocSet

ff if x 6∈ DA and A = Boolean

• I(TRUE ) = tt, I(FALSE ) = ff
• I(selectA)(h, o, f) = I(castA)

(
h(o, f)

)
for all h ∈ DHeap, o ∈ DObject , f ∈

DField

• I(store)(h, o, f, x)(o′, f ′) =

{
x if o = o′, f = f ′ and f 6= I(created)

h(o′, f ′) otherwise

for all h ∈ DHeap, o, o′ ∈ DObject , f, f ′ ∈ DField , x ∈ DAny

• I(create)(h, o)(o′, f) =

{
tt if o = o′, o 6= null and f = I(created)

h(o′, f) otherwise

for all h ∈ DHeap, o, o′ ∈ DObject , f ∈ DField

• I(anon)(h, s, h′)(o, f) =


h′(o, f) if

(
(o, f) ∈ s and f 6= I(created)

)
or (o, f) ∈ I(unusedLocs)(h)

h(o, f) otherwise

for all h, h′ ∈ DHeap, s ∈ DLocSet , o ∈ DObject , f ∈ DField

• I(length)(o) ∈ N for all o ∈ DObject

• I(∅̇) = ∅, I(allLocs) = DObject ×DField

• I(singleton)(o, f) = {(o, f)}
• I(∪̇) = ∪, I(∩̇) = ∩, I(\̇) = \
• I(allFields)(o) =

{
(o, f) | f ∈ DField

}
• I(arrayRange)(o, i, j) =

{
(o, I(arr)(x)) | x ∈ Z, i ≤ x, x ≤ j

}
• I(unusedLocs)(h) =

{
(o, f) ∈ I(allLocs) | o 6= null , h(o, I(created)) 6= tt

}
• I(null) = null
• I(exactInstanceA) = {x ∈ D | δ(x) = A}
• I(

.
=) = {(x, x) ∈ D2}

• I(wellFormed) =
{
h ∈ DHeap | for all o ∈ DObject , f ∈ DField :

if h(o, f) ∈ DObject ,
then h(o, f) = null
or h(h(o, f), I(created)) = tt;

if h(o, f) ∈ DLocSet ,
then h(o, f) ∩ I(unusedLocs)(h) = ∅;

and there are only finitely many o ∈ DObject

for which h(o, I(created)) = tt
}

• I(∈̇) =
{

(o, f, s) ∈ DObject ×DField ×DLocSet | (o, f) ∈ s
}
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• I(⊆̇) =
{

(s1, s2) ∈ (DLocSet)2 | s1 ⊆ s2

}
• I(disjoint) =

{
(s1, s2) ∈ (DLocSet)2 | s1 ∩ s2 = ∅

}
We do not give a formalisation of the semantics of Java here. Instead, the

function ρ serves as a black box that captures the behaviour of the legal program
fragments p. As in JavaDL, we explicitly formalise this behaviour only on the
level of the calculus, in the form of symbolic execution rules (Section 5.4).

The domains of the built-in types Boolean, Int , Null , LocSet and Heap are
hard-coded into Definition 5.4. In particular, DLocSet consists of all sets of loca-
tions (i.e., subsets of DObject×DField ), and DHeap consists of all functions mapping
locations to values in DAny .

The domains of the subtypes of Object are sets of unspecified values. We often
refer to these values as objects, but note that they are objects in the sense of
object references, not in the sense of data structures containing field values. This
is as in Java itself, where the value of an expression of a subtype of Object is
always an object reference.

All states of a Kripke structure K share a common domain D. This is some-
times referred to as the constant domain assumption. It simplifies, for exam-
ple, reasoning about quantifiers in the presence of modal operators and updates.
On the other hand, the Java programs appearing in formulas may allocate new
objects (i.e., elements of DObject) that did not exist previously. This apparent
contradiction is resolved with the help of the special field created introduced in
Definition 5.1: given a heap array h ∈ DHeap and an object o ∈ DObject , the object
o is considered “created” in h in the sense of Java if and only if created is set to
true for this object in h, i.e., if h

(
o, I(created)

)
= tt . An allocation statement in

a program is understood as choosing a previously non-created object in DObject ,
and setting its created field to true in the heap. Similar solutions are, for exam-
ple, also used in JavaDL and in Spec# [Barnett et al., 2004]. The alternative of
abandoning the constant domain assumption has been investigated by Ahrendt
et al. [2009].

The components of Java arrays are modelled in JavaDL* with the help of
the function symbol arr : Int → Field ∈ FUnique. Given an integer i ∈ Z, the
function I(arr) returns a field I(arr)(i) ∈ DField representing the array com-
ponent at index i. This allows treating array components in the same way as
object fields. As the length of a Java array is determined at the time of its
creation and never changes afterwards, we choose to model the length field of
Java not as a constant symbol length : Field ∈ FUnique, but rather as a function
symbol length : Object → Int ∈ FNU . The function I(length) associates an
unchangeable length I(length)(o) ∈ N with every object o ∈ DObject (where the
set N of natural numbers includes 0). Array creation is understood as choosing
a non-created array object of the desired length, and setting its created field to
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true. The advantage of this choice is that accessing the length of an array as
length(a) is simpler than accessing it as select (heap, a, length). In particular,
the term length(a) is independent of the heap.

Note that I(length) gives a length for all objects, even though we are interested
in this length only for array objects. Relatedly, in JavaDL* any object can be
combined with any field to get a legal location, although most of these locations
do not exist on the level of Java, and are thus never used by Java programs or
by JML/JML* specifications.

As interfaces and abstract classes cannot have direct instances in Java, Def-
inition 5.4 demands that there are no values x ∈ D where δ(x) is an interface
or an abstract class. Note that for all such types A, the domain DA neverthe-
less includes at least the value null . For all other reference types, the definition
requires that there is an infinite reservoir of objects of every length. Together
with the wellFormed predicate (see below), this guarantees that there is always
a suitable object left that can be created by a program p.

The domain DField is an unspecified set of values. The interpretation of the
function symbols representing Java fields is restricted only by their status as
unique function symbols. Definition 5.4 demands that the function I(f) which is
the interpretation of a unique function symbol f is injective; in particular, this
implies that for i1, i2 ∈ Z, we have I(arr)(i1) = I(arr)(i2) if and only if i1 = i2.
The definition also demands that for two unique function symbols f and g, the
ranges of the functions I(f) and I(g) are disjoint. In the border case where f
and g are constant symbols, this comes down to I(f) 6= I(g).

The function symbols castA : Any → A resemble type casts in Java: for ar-
guments in DA, the interpretation I(castA) of castA behaves like the identity
function. For other arguments, a cast operation in Java would throw an ex-
ception. In JavaDL*, such a “failed” cast instead behaves as follows: if A is a
subtype of Object , then Definition 5.4 demands that the cast returns null ; if A is
LocSet , then it demands that the cast returns ∅; if A is Boolean, then it demands
that the cast returns ff ; otherwise, Definition 5.4 does not demand anything, so
the cast returns a fixed but unknown value of type A. The cast symbols are also
present in JavaDL, but there, the behaviour of a failed cast is unspecified for all
result types. Fixing null , ∅ and ff as the values of failed casts to reference types,
to LocSet and to Boolean may seem arbitrary. The rationale behind this decision
is explained in Subsection 5.4.4.

The heap arrays of JavaDL*—i.e., the functions in DHeap—allow storing an
arbitrary value in any location. Nevertheless, when reading a particular location,
the result is usually expected to be of a particular type A. The JavaDL* solution
is to “cast” the value found in the heap to the desired type A, in the sense of the
function symbol castA. For convenience, this cast operation is built right into
the JavaDL* version of the select function symbol: there is a separate instance
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selectA : Heap,Object ,Field → A for every type A, and applying its interpretation
I(selectA) to a heap array h ∈ DHeap , to an object o ∈ DObject and to a field
f ∈ DField is the same as reading h(o, f) and casting the result to A. Note that if
h(o, f) is not an element of DA, then the value returned by this cast is different
from h(o, f), i.e., it is not the value actually stored in h at location (o, f). If
no cast is desired, then selectAny can be used. As I(castAny)(x) = x for all
x ∈ DAny , we have I(selectAny)(h, o, f) = h(o, f) for all h ∈ DHeap , o ∈ DObject

and f ∈ DField .

The function symbol store : Heap,Object ,Field ,Any → Heap is almost as in
the standard theory of arrays. However, it does not allow changing the created
field; we have I(store)

(
h, o, I(created), x

)
= h, i.e., attempting to change created

with the help of store has no effect at all. For changing created , there is the
separate function symbol create : Heap,Object → Heap. Applying I(create) to
a heap array h ∈ DHeap and an object o ∈ DObject \ {null} yields a heap array
I(create)(h, o) with I(create)(h, o)

(
o, I(created)

)
= tt , no matter whether the

object o is already “created” in the original heap array h or not. There is no
need for supporting to change created in the other direction, because programs
only allocate objects but never delete them (we do not consider garbage collec-
tion), and there are advantages to not supporting it (see Subsection 5.4.4 and
Lemma 6.2).

Besides create, JavaDL* features another custom extension to the theory of ar-
rays, namely the function symbol anon : Heap,LocSet ,Heap → Heap. This func-
tion symbol is tailor-made for expressing a partially unknown state change, where
the locations of a particular location set (a modifies clause) may be changed,
and where new objects may be created and their locations changed, but where
other locations are guaranteed to remain unchanged. A need for expressing such
state changes occurs when reasoning about loops with the help of loop invariants
(Section 5.4), and when reasoning about method calls with the help of method
contracts (Chapter 6). In the context of JavaDL, this kind of state change is
usually called an anonymisation [Beckert et al., 2007; Engel et al., 2009]; hence
the name anon. Anonymisation is related to the havoc statement in the Boogie
language [Barnett et al., 2006].

As fixed in Definition 5.4, applying the function I(anon) to an “original” heap
array h ∈ DHeap , to a location set s ∈ DLocSet and to an “anonymous” heap
array h′ ∈ DHeap yields a heap array I(anon)(h, s, h′) ∈ DHeap that is identi-
cal to h in some locations and to h′ in others. The values of the locations in
s are taken from h′; the only exception is the created field, similar to the def-
inition of I(store). The values of “unused” locations, i.e., locations belonging
to objects that are not “created” in h, are also taken from h′. The values of
all other locations are taken from h. Intuitively, they are not affected by the
“anonymisation”.
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Definition 5.4 gives the standard set theoretical operators on LocSet (that is,
the function symbols ∅̇, allLocs, singleton, ∪̇, ∩̇, \̇, ∈̇, ⊆̇ and disjoint) their ex-
pected meaning. For the function symbol allFields : Object → LocSet , applying
its interpretation I(allFields) to an object o ∈ DObject yields the set of all locations
belonging to the object o. For the function symbol arrayRange : Object , Int , Int →
LocSet , the set I(arrayRange)(o, i, j) is the set of all array components belong-
ing to o and to an index between i and j, inclusive. For the function symbol
unusedLocs : Heap → LocSet , its interpretation I(unusedLocs) returns the set of
all locations belonging to objects that are not “created” in the passed heap array.
Locations of the null object are never considered “unused”.

The predicate symbol exactInstanceA : Any characterises values x whose dy-
namic type δ(x) is A. The heap arrays h characterised by the predicate symbol
wellFormed : Heap have three properties: firstly, all objects stored in h must be
either the null object or be “created” in h; secondly, all location sets stored in h
must contain only locations belonging to objects that are “created” or belonging
to null (storing location sets in heap arrays happens through JML* ghost fields
of type \locset; see Chapters 2, 3 and 6); and finally, only finitely many ob-
jects may be “created” in h. These well-formedness properties are maintained
by every terminating Java program, because such a program can never obtain
a reference to a non-created object (much less store it in the heap), cannot
deallocate a created object, and can never allocate an infinite number of ob-
jects.

Having defined Kripke structures, we move on to defining the semantics of
JavaDL* terms, formulas and updates.

Definition 5.5 (Semantics). Given a Kripke structure K = (D, δ, I,S, ρ), a state
s ∈ S and a variable assignment β :V → D (where for x :A ∈ V we have β(x) ∈
DA), we evaluate every term t ∈ TermA

Σ to a value valK,s,β(t) ∈ DA, every
formula ϕ ∈ FmaΣ to a truth value valK,s,β(ϕ) ∈ {tt ,ff }, and every update
u ∈ UpdΣ to a state transformer valK,s,β(u) : S → S as defined in Figure 5.2
(where, as usual, “iff” stands for “if and only if”).

We sometimes write (K, s, β) |= ϕ instead of valK,s,β(ϕ) = tt. A formula
ϕ ∈ FmaΣ is called logically valid, in symbols |= ϕ, if and only if (K, s, β) |= ϕ
for all Kripke structures K, all states s ∈ S, and all variable assignments β.

Definition 5.5 is as in JavaDL (without general location symbols, location de-
pendent symbols, and quantified updates). Updates transform one state into
another. The meaning of {u}t, where u is an update and t is a term, formula
or update, is that t is evaluated in the state produced by u. Note the last-win
semantics of parallel updates u1 ‖u2: if there is a “clash”, where u1 and u2 at-
tempt to assign conflicting values to a program variable, then the value written
by u2 prevails.
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valK,s,β(x) = β(x)

valK,s,β(a) = s(a)

valK,s,β(f(t1, . . . , tn)) = I(f)(valK,s,β(t1), . . . , valK,s,β(tn))

valK,s,β(if (ϕ)then(t1)else(t2)) =

{
valK,s,β(t1) if valK,s,β(ϕ) = tt

valK,s,β(t2) otherwise

valK,s,β({u}t) = valK,s′,β(t), where s′ = valK,s,β(u)(s)

valK,s,β(true) = tt

valK,s,β(false) = ff

valK,s,β(p(t1, . . . , tn)) = tt iff (valK,s,β(t1), . . . , valK,s,β(tn)) ∈ I(p)

valK,s,β(¬ϕ) = tt iff valK,s,β(ϕ) = ff

valK,s,β(ϕ1 ∧ ϕ2) = tt iff ff 6∈ {valK,s,β(ϕ1), valK,s,β(ϕ2)}
valK,s,β(ϕ1 ∨ ϕ2) = tt iff tt ∈ {valK,s,β(ϕ1), valK,s,β(ϕ2)}

valK,s,β(ϕ1 → ϕ2) = valK,s,β(¬ϕ1 ∨ ϕ2)

valK,s,β(ϕ1 ↔ ϕ2) = valK,s,β(ϕ1 → ϕ2 ∧ ϕ2 → ϕ1)

valK,s,β(∀Ax;ϕ) = tt iff ff 6∈ {valK,s,βd
x
(ϕ) | d ∈ DA}

valK,s,β(∃Ax;ϕ) = tt iff tt ∈ {valK,s,βd
x
(ϕ) | d ∈ DA}

valK,s,β([p]ϕ) = tt iff ff 6∈ {valK,s′,β(ϕ) | (s, s′) ∈ ρ(p)}
valK,s,β(〈p〉ϕ) = tt iff tt ∈ {valK,s′,β(ϕ) | (s, s′) ∈ ρ(p)}

valK,s,β({u}ϕ) = valK,s′,β(ϕ), where s′ = valK,s,β(u)(s)

valK,s,β(a := t)(s′)(b) =

{
valK,s,β(t) if b = a

s′(b) otherwise

for all s′ ∈ S, b ∈ PV
valK,s,β(u1 ‖u2)(s′) = valK,s,β(u2)(valK,s,β(u1)(s′)) for all s′ ∈ S

valK,s,β({u1}u2) = valK,s′,β(u2), where s′ = valK,s,β(u1)(s)

Figure 5.2.: Semantics of JavaDL* terms, formulas and updates
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5.4. Calculus

We reason about logical validity of JavaDL* formulas using a sequent calculus
[Gentzen, 1935]. The calculus is a set of rules, which allow deriving sequents from
other sequents.

Definition 5.6 (Sequents). A sequent is a pair (Γ,∆) ∈ 2FmaΣ×2FmaΣ, where Γ
(called the antecedent of the sequent) and ∆ (called the succedent of the sequent)
are finite sets of formulas. We denote a sequent (Γ,∆) as Γ ⇒ ∆, and use the
notation

Γ, ϕ1, . . . , ϕn ⇒ ψ1, . . . , ψm, ∆

to stand for the sequent Γ ∪ {ϕ1, . . . , ϕn} ⇒ {ψ1, . . . , ψm} ∪ ∆. The set of all
sequents is denoted as SeqΣ.

The semantics of a sequent Γ ⇒ ∆ is the same as that of the formula
∧

Γ →∨
∆: we define valK,s,β(Γ⇒ ∆) = valK,s,β(

∧
Γ→

∨
∆).

The notations
∧

and
∨

have their usual meaning; i.e.,
∧
{ϕ1, . . . , ϕn} = ϕ1 ∧

· · · ∧ϕn, and
∨
{ϕ1, . . . , ϕn} = ϕ1 ∨ · · · ∨ϕn, where an empty conjunction is true

and an empty disjunction is false.

Definition 5.7 (Rules). A rule is a binary relation r ⊆ Seq∗Σ × SeqΣ. If(
(p1, . . . , pn), c

)
∈ r, then we say that the conclusion c ∈ SeqΣ is derivable from

the premisses p1, . . . , pn using r.

A rule r is called sound if the following holds for all
(
(p1, . . . , pn), c

)
∈ r: if

all premisses p1, . . . , pn are logically valid, then the conclusion c is also logically
valid.

A proof tree is constructed by starting with a sequent as its root, and incre-
mentally applying rules to its leaves. Applying a rule to a leaf means adding
children below the leaf, such that the former leaf is derivable from the children
using the rule.

Definition 5.8 (Proof trees). A proof tree is a finite, directed, rooted tree, whose
edges are directed away from the root, and which satisfies that

• all inner nodes n are labelled with a sequent seq(n) ∈ SeqΣ, and
• all leaves n are labelled either with a sequent seq(n) ∈ SeqΣ or with the

symbol ∗ (in which case they are called closed), and
• all edges (parent → child1), . . . , (parent → childn) originating in the same

parent node are labelled with the same rule r, such that either
– none of the children child1, . . . , childn is closed, and seq(parent) is

derivable from seq(child1), . . . , seq(childn) using r, or
– n = 1, child1 is closed, and

(
(), seq(parent)

)
∈ r.
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A proof tree is called closed if all of its leaves are closed. A closed proof tree
whose root is labelled with s is also called a proof for s.

Provided that all rules of the calculus are sound, the existence of a proof for a
sequent s implies that s is logically valid. Conversely, completeness of the calculus
would mean that there is a proof for every logically valid sequent s. Completeness
is impossible to achieve for a logic like JavaDL*, for example because it includes
first-order arithmetic, which is itself inherently incomplete. Still, it is possible in
principle to establish a notion of relative completeness, meaning that the calculus
is complete except for the “unavoidable” degree of incompleteness. A relative
completeness proof for ODL is given by Platzer [2004].

To represent the typically infinite number of pairs in a rule in a finite way, rules
are denoted schematically. We define rules with the notation

p1 · · · pn
c

ruleName,

where p1, . . . , pn and c are schematic sequents, i.e., sequents containing placehold-
ers (so-called schema variables) for types, variables, terms, formulas and updates.
The induced rule ruleName consists of all pairs

(
(p′1, . . . , p

′
n), c′

)
∈ Seq∗Σ × SeqΣ

that result from instantiating the placeholders in p1, . . . , pn and in c. For example,
two classical sequent calculus rules are notLeft and notRight:

Γ ⇒ ϕ, ∆

Γ, ¬ϕ ⇒ ∆
notLeft

Γ, ϕ ⇒ ∆

Γ⇒ ¬ϕ, ∆
notRight

Here, Γ and ∆ are placeholders for sets of formulas, and ϕ is a placeholder for a
single formula. The two rules below are examples for rules without premisses:

Γ, false ⇒ ∆
closeFalse

Γ ⇒ true, ∆
closeTrue

Besides this classical notation for sequent rules, we also define rules with the
notation

lhs  rhs ruleName,

where either (i) lhs and rhs are schematic terms (i.e., terms possibly containing
schema variables) such that the type of rhs is a subtype of the type of lhs, or (ii)
lhs and rhs are schematic formulas, or (iii) lhs and rhs are schematic updates.
The induced rule consists of all pairs ((p), c) ∈ Seq∗Σ×SeqΣ, where p results from
c by replacing an occurrence of an instance of lhs with the corresponding instance
of rhs. We refer to rules defined in this fashion as rewrite rules. Rewrite rules
are sound if and only if (all instantiations of) lhs and rhs are equivalent. An
example for a rewrite rule is

t
.
= t true equal,
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where t stands for a term of an arbitrary type. In the KeY system, both rewrite
rules and (most) other rules are expressed in the taclet language [Beckert et al.,
2004].

The remainder of this section provides an overview of the calculus for JavaDL*.
Most parts of the JavaDL calculus [Beckert et al., 2007] are not affected by the
changes in JavaDL*, and these parts are not covered in detail. In particular,
the classical first-order part of the sequent calculus is not covered at all (except
for the examples notLeft, notRight, closeFalse and closeTrue above), and neither
is the calculus part for handling integer arithmetic [Rümmer, 2007]. Interesting
groups of rules, which are either new in JavaDL* or otherwise affected by the
changes, are the following: rules capturing properties of the logic’s type system
(Subsection 5.4.1), rules for unique function symbols (Subsection 5.4.2), rules for
heap arrays and the well-formedness of heap arrays (Subsections 5.4.3 and 5.4.4),
rules for location sets (Subsection 5.4.5), rules for updates (Subsection 5.4.6), and
the symbolic execution rules for Java programs (Subsection 5.4.7). Finally, an
important individual rule that is significantly affected by the changes in JavaDL*
is the loop invariant rule (Subsection 5.4.8).

5.4.1. Rules for Types

A selection of four rewrite rules that implement properties guaranteed by the
type system of JavaDL* is shown in Figure 5.3. These are almost unchanged
over JavaDL. They are covered here mostly to give an intuition of how the type
system factors into calculus-level reasoning in both JavaDL and JavaDL*.

The castDel rule allows removing an “upcast”, i.e., a cast to a supertype of
the casted term’s own type, which is sound because—by Definition 5.4—such a
cast operation does not have any effect. This rule is for example used to remove
the casts implicitly present in the selectA function symbols for reading from heap
arrays (Subsection 5.4.3). A detailed example involving this role of castDel is
contained in Section 5.5.

The inAbstractType rule captures the fact that interfaces and abstract classes
have no direct instances, i.e., no objects not belonging to a proper subtype of
the interface or abstract class. The rules disjointTypes and disjointObjTypes allow
simplifying away an equality where the domains of the involved subterms are
disjoint: if A and B have no common subtype, then DA ∩ DB is the empty set,
and thus the equality is equivalent to false. For subtypes of Object , there is always
at least the common subtype Null . If there are no other common subtypes, then
the equality holds if and only if both terms are equal to null.

As defined in Figure 5.3, the rule disjointObjTypes is applicable only if a complex
side condition holds for the instantiation of A and B. This side condition is not
necessary for soundness of the rule, and it is not present in JavaDL. In fact,
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(A)t t where t ∈ TermA′

Σ , A′ � A castDel

exactInstanceA(t) false inAbstractType

where A is an interface or an abstract class

t1
.
= t2  false disjointTypes

where t1 ∈ TermA
Σ, t2 ∈ TermB

Σ ,

with {C ∈ T | C � A,C � B} = ∅

t1
.
= t2  t1

.
= null ∧ t2

.
= null disjointObjTypes

where t1 ∈ TermA
Σ, t2 ∈ TermB

Σ

with {C ∈ T | C � A,C � B} = {Null}, and where

- none of A and B is an array type or an interface, or

- at least one of A and B is a final class, or

- exactly one of A and B is an array type, or

- A and B are array types of different dimensions, or

- A and B are array types of the same dimension, such that

- none of their element types is an interface, or

- at least one of their element types is a final class, or

- one of their element types is not a subtype of Object .

Figure 5.3.: Rules for types

this side condition leads to a (deliberate) incompleteness of the calculus. The
motivation behind consciously introducing this incompleteness is the desire for
modularity of reasoning: proofs created in a signature for a particular program
Prg should not be invalidated by “expected” changes to Prg , such as adding new
classes and interfaces. If the side condition is violated, then such an extension of
Prg with new types may introduce a common subtype of A and B. For example,
if A is a class and B an interface, the extension may introduce a subclass of A that
implements B. A “modular” proof thus must not rely on there being no common
subtype, even if in the current signature there happens to be none. If, on the
other hand, the side condition is satisfied, then Java’s subtyping rules prevent
the addition of a common subtype in all extensions of Prg , so the calculus is free
to exploit its non-existence.

The need for this (in a sense inelegant) “deliberate incompleteness” is a conse-
quence of modelling the reference types of Java directly as types of the verification
logic. An alternative is using a single type Object or Ref for references to ob-

92



5.4. Calculus

f(t1, . . . , tn)
.
= f(t′1, . . . , t

′
n) t1

.
= t′1 ∧ · · · ∧ tn

.
= t′n uniqueSame

where f ∈ FUnique

f(t1, . . . , tm)
.
= g(t1, . . . , tn) false uniqueNotSame

where f, g ∈ FUnique, f 6= g

Figure 5.4.: Rules for unique function symbols

jects of all Java types, and modelling the reference types as values of a type
RefType similar to Field . The known reference types of Prg are then referred to
via unique constant symbols of type RefType. This kind of approach is used in
Spec# [Barnett et al., 2006]. Here, a sound but non-modular rule that depends
on knowledge about all reference types is not only undesirable, but impossible,
because the domain of RefType is not fixed.

On the other hand, the advantage of modelling Java types as logical types is
that it leads to shorter proof obligations and shorter proofs, because it captures
many properties already in the type system that otherwise have to be expressed
explicitly via formulas. For example, the absence of a common subtype for certain
pairs of types has to be axiomatised as a quantified formula in the RefType
approach, whereas in disjointObjTypes it occurs as a side-condition that, when
applying the rule, is checked on the meta-level in a presumably efficient manner.
Modularity can be maintained despite the modelling of Java types as logical
types by carefully restricting rules that “enumerate” the reference types of the
program, such as disjointObjTypes. These restrictions could be formally captured
by defining notions of “modular soundness” and “modular completeness” that
deviate from ordinary soundness and completeness [Leino, 1995; Müller, 2002;
Roth, 2006].

5.4.2. Rules for Unique Function Symbols

The properties of unique function symbols are captured by the rules in Figure 5.4:
two terms that both have unique function symbols as their top level operators are
equal if and only if the symbol is the same in both terms, and if all subterms below
the symbol are equal. A common application of uniqueNotSame is simplifying
f
.
= g to false, where f and g are unique constant symbols of type Field . An

example for an application of uniqueSame is simplifying arr(i)
.
= arr(j) to i

.
= j,

where i and j are terms of type Int .
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selectA(store(h, o, f, x), o′, f ′) if (o
.
= o′ ∧ f .

= f ′ ∧ f 6 .= created) selectOfStore

then((A)x)else(selectA(h, o′, f ′))

selectA(create(h, o), o′, f) if (o
.
= o′ ∧ o 6 .= null ∧ f .

= created) selectOfCreate

then((A)TRUE )else(selectA(h, o′, f))

selectA(anon(h, s, h′), o, f) if
(
(o, f) ∈̇ s ∧ f 6 .= created

∨ (o, f) ∈̇ unusedLocs(h)
)

selectOfAnon

then
(
selectA(h′, o, f)

)
else

(
selectA(h, o, f)

)
store(. . . (store(h, o, f, x), . . . ), o, f, y) dropStore

 store(. . . (h, . . . ), o, f, y)

Figure 5.5.: Rules for heap arrays

5.4.3. Rules for Heap Arrays

Rules for the JavaDL* version of the theory of arrays are shown in Figure 5.5.
The three rules selectOfStore, selectOfCreate and selectOfAnon correspond directly
to the semantics of store, create and anon as fixed in Definition 5.4. Applying
these rules means to simplify an application of selectA by propagating selectA
inwards to the subterms of store, create or anon. Concrete values are cast to the
desired type A with the help of the function symbol castA. If the static type of
the term representing the value is a subtype of A, then the cast can subsequently
be removed with the help of the castDel rule (Figure 5.3).

The dropStore rule is an auxiliary rule which is not strictly necessary. Given
a cascade of nested applications of store, create and anon, it removes an inner
application of store which is guaranteed to be overwritten by a more outward
application of store, because both applications operate on syntactically identical
object terms o and field terms f . We have seen an example in Section 5.1,
namely simplifying the term store

(
store(heap, o, f, 1), o, f, 2

)
to the equivalent

term store(heap, o, f, 2).

5.4.4. Rules for Well-formedness of Heap Arrays

Typical proof obligations such as those defined in Chapter 6 contain an as-
sumption stating the initial “well-formedness” of the heap, i.e., the assumption
wellFormed(heap). Well-formedness of a heap array h implies the property that
all objects referenced in it (except null) are created in h. This implication of
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well-formedness can be exploited in proofs with the help of the refIsNullOrCreated
rule shown in Figure 5.6.

The refIsNullOrCreated rule is applicable if wellFormed(h) is present in the
antecedent. The placeholders o and f (standing for an object term and a field
term, respectively) do not occur in the conclusion and can be instantiated freely.
In practice, application of the rule is triggered by an occurrence of the term
selectA(h, o, f) somewhere in the conclusion.

The soundness of refIsNullOrCreated depends on a subtle detail of Definition 5.4.
We thus formally state the core observation behind it as a lemma.

Lemma 5.1 (A consequence of well-formedness). For all types A ∈ T with
A � Object, the following formula is logically valid:

∀Heap h; ∀Object o;∀Field f ;
(
wellFormed(h)

→ selectA(h, o, f)
.
= null

∨ selectBoolean(h, selectA(h, o, f), created)
.
= TRUE

)
Lemma 5.1 is proven in Appendix A.2. The subtlety is that well-formedness of

a heap array h guarantees for all objects o and fields f only that h(o, f) is null
or created, but not immediately that the same holds for I(selectA)(h, o, f): if
h(o, f) 6∈ DA, then I(selectA)(h, o, f) is different from h(o, f), i.e., it is different
from the value actually stored in h at the location (o, f). The definition of
I(castA) in Definition 5.4 solves this problem by demanding that I(castA)(x) =
null for all x 6∈ DA, which implies that I(selectA)(h, o, f) = null if h(o, f) 6∈ DA.

An alternative approach would be strengthening the definition of I(wellFormed)
such that in a well-formed heap, every location must hold a value in the domain
of a particular type, which is determined by the Java type of the corresponding
field. However, this would make proving the preservation of well-formedness more
complex (see below). In contrast, the chosen solution does not incur a cost during
verification, and it is harmless semantically because there is no conflicting expec-
tation towards the value of a “failed” cast; the value would just be unspecified
otherwise.

A second property implied by well-formedness of a heap array is that all loca-
tion sets stored in it contain only locations belonging to created objects or to null .
This can be made use of in proofs with the help of the elementIsNullOrCreated
rule of Figure 5.6. The argument for the soundness of this rule is analogous to
the argument for the soundness of refIsNullOrCreated. It relies on the fact that
by Definition 5.4, we have I(castLocSet)(x) = ∅ for all x 6∈ DLocSet .

Sometimes the well-formedness of a heap array must be proven. Such situations
are for example created by the loop invariant rule defined in Subsection 5.4.8.
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Γ, wellFormed(h),
selectA(h, o, f)

.
= null

∨ selectBoolean(h, selectA(h, o, f), created)
.
= TRUE ⇒ ∆

Γ, wellFormed(h) ⇒ ∆
refIsNullOrCreated

where A � Object

Γ, wellFormed(h), (o′, f ′) ∈̇ selectLocSet(h, o, f),
o′
.
= null ∨ selectBoolean(h, o′, created)

.
= TRUE ⇒ ∆

Γ, wellFormed(h), (o′, f ′) ∈̇ selectLocSet(h, o, f) ⇒ ∆
elementIsNullOrCreated

Γ ⇒ wellFormed(h), ∆
Γ ⇒ x

.
= null, selectBoolean(h, x, created) = TRUE , ∆
Γ ⇒ wellFormed(store(h, o, f, x)), ∆

wellFormedStoreObject

where x ∈ TermA
Σ, A � Object

Γ ⇒ wellFormed(h), ∆
Γ ⇒ disjoint(x, unusedLocs(h)), ∆

Γ ⇒ wellFormed(store(h, o, f, x)), ∆
wellFormedStoreLocSet

where x ∈ TermLocSet
Σ

Γ ⇒ wellFormed(h), ∆
Γ ⇒ wellFormed(store(h, o, f, x)), ∆

wellFormedStorePrimitive

where x ∈ TermA
Σ, A 6� Object , A 6= LocSet

Γ ⇒ wellFormed(h), ∆
Γ ⇒ wellFormed(create(h, o)), ∆

wellFormedCreate

Γ ⇒ wellFormed(h) ∧ wellFormed(h′), ∆
Γ ⇒ wellFormed(anon(h, s, h′)), ∆

wellFormedAnon

Figure 5.6.: Rules for well-formedness of heap arrays
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They are handled with the rules wellFormedStoreObject, wellFormedStoreLocSet,
wellFormedStorePrimitive, wellFormedCreate and wellFormedAnon which are shown
in Figure 5.6. These rules are applicable if the succedent contains an application
of wellFormed to store, create or anon.

Proving well-formedness with these rules works incrementally: a heap array
constructed with store, create or anon is proven to be well-formed by showing
that the “original” heap array is well-formed, and that the change preserves well-
formedness. Note that each of these rules is incomplete, in the sense that the
conclusion may be valid without the premiss being valid. This happens if the
original heap array is ill-formed, but if the application of store, create or anon
turns it into a well-formed heap array, for example by overwriting a forbidden
reference to a non-created object with a reference to a created object. This
incompleteness is irrelevant in practice, because Java programs always preserve
well-formedness, never establish well-formedness after starting from an ill-formed
heap.

Because the JavaDL* definition of I(store) in Definition 5.4 prevents store
from ever deallocating a created object, applications of store can negate well-
formedness only by writing a reference to a non-created object, or by writing a
location set that contains a location which belongs to a non-created object. The
wellFormedStoreObject rule handles the case where store is used to write an object
reference: we can prove that the resulting heap array is well-formed by proving
that the original heap array is well-formed, and that the written object is either
null or a created object. As this is not entirely obvious, we cast it as a lemma.

Lemma 5.2 (Well-formedness after storing an object). The following formula is
logically valid:

∀Heap h; ∀Object o, x;∀Field f ;
(
wellFormed(h)

∧ (x
.
= null

∨ selectBoolean(h, x, created)
.
= TRUE )

→ wellFormed(store(h, o, f, x))
)

Lemma 5.2 is proven in Appendix A.3. The proof makes use of the fact that
by Definition 5.4, the function I(castBoolean) returns ff for arguments not in
DBoolean . Without this additional restriction on the behaviour of “failed” casts,
the function symbol selectAny would have to be used in place of selectBoolean

for reading the created field, which would be possible but out of line with the
treatment of other fields.

The wellFormedStoreObject rule is complemented by wellFormedStoreLocSet and
wellFormedStorePrimitive, which cover the cases of writing a location set and writ-
ing a value which is neither an object nor a location set, respectively. For loca-
tion sets, one must prove that the original heap array is well-formed, and that
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the written location set does not contain locations that belong to non-created ob-
jects. For other (“primitive”) values, the definition of I(wellFormed) does not im-
pose any restriction, so such a write operation always preserves well-formedness.
Also, creating an object with create always preserves well-formedness, making
the wellFormedCreate rule similar to wellFormedStorePrimitive.

The last rule in Figure 5.6 is wellFormedAnon, which reduces the task of prov-
ing well-formedness for an “anonymised” heap array to the task of proving well-
formedness for the two argument heap arrays. The insight underlying the sound-
ness of wellFormedAnon is formalised in Lemma 5.3 below.

Lemma 5.3 (Well-formedness after anonymisation). The following formula is
logically valid:

∀Heap h, h′; ∀LocSet l;
(
wellFormed(h) ∧ wellFormed(h′)

→ wellFormed(anon(h, l, h′))
)

A proof for Lemma 5.3 is contained in Appendix A.4. The soundness of
wellFormedAnon is an obvious consequence of Lemma 5.3.

5.4.5. Rules for Location Sets

Location sets are handled by the (unsurprising) rules in Figure 5.7. Propositions
about membership in a set constructed with one of the built-in set constructors ∅̇,
allLocs, singleton, ∪̇, ∩̇, \̇, allFields, arrayRange and unusedLocs are simplified
using the definition of the respective built-in function symbol. Formulas that
compare sets using the predicate symbols

.
=, ⊆̇ and disjoint are transformed into

equivalent formulas using ∈̇.

The rules inArrayRange, setEquality, subset and disjoint introduce quantifiers.
The placeholders for the quantified variables (such as x in the rule inArrayRange)
may be instantiated with any logical variable not occurring free in terms of the
rule’s left hand side. The function fv : TermΣ∪FmaΣ∪UpdΣ → 2V returns the set
of free variables of a term, formula or update, and is defined as usual. In particu-
lar, we have fv(x) = {x} for x ∈ V, and fv(QAx;ϕ) = fv(ϕ)\{x} for Q ∈ {∀, ∃}.

5.4.6. Rules for Updates

The part of the calculus that deals with updates is shown in Figure 5.8. It is
essentially a subset of the update calculus of Rümmer [2006], missing the parts
that handle updates to general location symbols, as well as quantified updates.

The dropUpdate1 rule simplifies away an ineffective elementary sub-update of
a larger parallel update: if there is an update to the same program variable
a further to the right of the parallel composition, then this second elementary
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(o, f) ∈̇ ∅̇ false inEmpty

(o, f) ∈̇ allLocs  true inAllLocs

(o, f) ∈̇ {(o′, f ′)} o
.
= o′ ∧ f .

= f ′ inSingleton

(o, f) ∈̇ (s1 ∪̇ s2) (o, f) ∈̇ s1 ∨ (o, f) ∈̇ s2 inUnion

(o, f) ∈̇ (s1 ∩̇ s2) (o, f) ∈̇ s1 ∧ (o, f) ∈̇ s2 inIntersect

(o, f) ∈̇ (s1 \̇ s2) (o, f) ∈̇ s1 ∧ (o, f) /̇∈ s2 inSetMinus

(o, f) ∈̇ allFields(o′) o
.
= o′ inAllFields

(o, f) ∈̇ arrayRange(o′, i, j) o
.
= o′ inArrayRange

∧ ∃Int x;
(
f
.
= arr(x) ∧ i ≤ x ∧ x ≤ j

)
where x 6∈ fv(f) ∪ fv(i) ∪ fv(j)

(o, f) ∈̇ unusedLocs(h) o 6 .= null inUnusedLocs

∧ selectBoolean(h, o, created)
.
= FALSE

s1
.
= s2  ∀Object o;∀Field f ;

(
(o, f) ∈̇ s1 setEquality

↔ (o, f) ∈̇ s2

)
where o, f 6∈ fv(s1) ∪ fv(s2)

s1 ⊆̇ s2  ∀Object o;∀Field f ;
(
(o, f) ∈̇ s1 → (o, f) ∈̇ s2

)
subset

where o, f 6∈ fv(s1) ∪ fv(s2)

disjoint(s1, s2) ∀Object o;∀Field f ;
(
(o, f) /̇∈ s1 ∨ (o, f) /̇∈ s2

)
disjoint

where o, f 6∈ fv(s1) ∪ fv(s2)

Figure 5.7.: Rules for location sets

update overrides the first due to the last-win semantics of parallel updates (Def-
inition 5.5). This is similar to the dropStore rule in Figure 5.5, which performs
an analogous simplification on nested store terms.

The dropUpdate2 rule allows dropping an elementary update a := t′ where
the term, formula or update in scope of the update cannot depend on the value
of the program variable a, because it does not contain any free occurrences of
a. A free occurrence of a program variable is any occurrence, except for an
occurrence inside a program fragment p that is bound by a declaration within p.
In addition to explicit occurrences, we consider program fragments p to always
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{. . . ‖ a := t1 ‖ . . . ‖ a := t2 ‖ . . . }t dropUpdate1

 {. . . ‖ . . . ‖ a := t2 ‖ . . . }t
where t ∈ TermΣ ∪ FmaΣ ∪UpdΣ

{. . . ‖ a := t′ ‖ . . . }t {. . . ‖ . . . }t dropUpdate2

where t ∈ TermΣ ∪ FmaΣ ∪UpdΣ, a 6∈ fpv(t)

{u}{u′}t {u ‖ {u}u′}t seqToPar

where t ∈ TermΣ ∪ FmaΣ ∪UpdΣ

{u}x x where x ∈ V ∪ {true, false} applyOnRigid1

{u}f(t1, . . . , tn) f({u}t1, . . . , {u}tn) where f ∈ F ∪ P applyOnRigid2

{u}if (ϕ)then(t1)else(t2) if ({u}ϕ)then({u}t1)else({u}t2) applyOnRigid3

{u}¬ϕ ¬{u}ϕ applyOnRigid4

{u}(ϕ1 • ϕ2) {u}ϕ1 • {u}ϕ2 where • ∈ {∧,∨,→,↔} applyOnRigid5

{u}QAx;ϕ QAx; {u}ϕ where Q ∈ {∀,∃}, x 6∈ fv(u) applyOnRigid6

{u}(a := t) a := {u}t applyOnRigid7

{u}(u1 ‖u2) {u}u1 ‖ {u}u2 applyOnRigid8

{a := t}a t applyOnTarget

Figure 5.8.: Rules for updates

contain an implicit free occurrence of the program variable heap. The function
fpv : TermΣ ∪FmaΣ ∪UpdΣ → 2PV is defined accordingly. For example, we have
fpv([int a = b;](b

.
= c)) = {b, c, heap}. Java’s rules for definite assignment

[Gosling et al., 2000, Chapter 16] ensure that within a program fragment p, a
declared program variable (such as a in the example) is always written before
being read, and that the behaviour of p thus cannot depend on its initial value.
In the border case where the parallel update produced by dropUpdate2 is empty,
the update application {} disappears entirely.

The seqToPar rule converts a cascade of two update applications—which cor-
responds to sequential execution of the two updates—into application of a single
parallel update. Due to the last-win semantics for parallel updates, this is pos-
sible by applying the first update to the second, and replacing the sequential
composition by parallel composition.
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The remaining rules are responsible for applying updates to terms, formulas
and (other) updates as substitutions. The various applyOnRigid rules propagate
an update to the subterms below a (rigid) operator. Ultimately, the update can
either be simplified away with dropUpdate2, or it remains as an elementary update
a := t applied to the target program variable a itself. In the latter case, the term
t is substituted for a by the applyOnTarget rule.

The only case not covered by the rules in Figure 5.8 is that of applying an
update to a modal operator, as in {u}[p]ϕ or {u}〈p〉ϕ. For these formulas, the
program p must first be eliminated using the symbolic execution rules discussed
in Subsection 5.4.7. Only afterwards can the resulting update be applied to ϕ.

5.4.7. Rules for Symbolic Execution of Java Programs

Formulas containing programs are handled by rules that perform a symbolic exe-
cution of the embedded programs [King, 1976]. They turn program level assign-
ments into updates and conditional statements into splits of the proof tree, and
they unwind loops and inline method calls. In the resulting proof trees, a path
through the tree corresponds to an execution path through the program.

The symbolic execution rules of the JavaDL calculus are a formalisation of
the semantics of the Java language. There are many hundreds of these rules
in the implementation in KeY. The changes in JavaDL* affect these rules in (i)
how side-effect free Java expressions are transformed into logical terms (which
happens implicitly as a part of many rules), in (ii) the rules for symbolically
executing assignments to heap locations, and in (iii) the rules for symbolically
executing object allocation. In the following, we sketch the overall symbolic
execution calculus, and highlight these differences.

The rules operate on the first active statement in a modality, which is the first
statement after a non-active prefix π of beginnings “{” of code blocks, beginnings
“try{” of try-catch-finally blocks, beginnings “method-frame(...):{” of
method frames (Definition 5.2), and labels. We refer to the rest of the program
that follows after the first active statement as the postfix ω. The postfix ω in
particular contains closing braces matching the opening braces in the prefix π.
For example, in the following program fragment, the first active statement is i=1,
and π and ω are as indicated:

method-frame( . . . ) : { try {︸ ︷︷ ︸
π

i=1; i=2; } catch(E e) { i=3; } } i=4;︸ ︷︷ ︸
ω

If the first active statement is a return, throw, break or continue statement,
its meaning is given by the prefix π. The prefix also gives meaning to (explicit or
implicit) occurrences of the keyword this in the first active statement: such an
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occurrence is understood as an occurrence of the term t of the innermost opening
method frame “method-frame(result=r, this=t):{” in π.

Besides this, we also consider the other simple expressions of Java to be logical
terms, where a simple expression is one that does not have side effects and does
not contain method calls. We assume that the necessary operators are present
in the signature. In contrast to JavaDL, a field access expression o.f is seen as
the term selectA(heap, o, f), where A is the declared type of the field f in Prg . A
static field access expression f is modelled as the term selectA(heap, null, f).
That is, we model static fields as fields of the null object. This is possible
because the fields of null are not used otherwise. It conveniently allows handling
static fields in the same way as instance fields. An array access expression
a[i] is represented as the term selectA(heap, a, arr(i)), where A is the static
component type of a. An array length expression a.length is modelled as the
term length(a).

Non-simple expressions cannot directly be understood as terms. If the first
active statement contains such an expression, it is first reduced to (several) sim-
pler expressions. Temporary variables are introduced to buffer the results of
sub-expressions. For example, an assignment j=i++; involving a non-simple ex-
pression i++ is first transformed into “int tmp=i; i=i+1; j=tmp;”, before the
three resulting assignments can be turned into updates. The updates that assign
to the created temporary variables are themselves temporary: as soon as the
variable does not occur in the program any more, the update can be eliminated
with the dropUpdate2 rule from Figure 5.8.

A selection of symbolic execution rules is shown Figure 5.9. This selection does
not include the rules for reducing non-simple expressions; all occurring expres-
sions must already be simple expressions. In addition, the rules are shown in a
simplified form which does not check for exceptions that might be thrown by the
occurring expressions, in particular exceptions of type NullPointerException

and ArrayIndexOutOfBoundsException. This simplification is for presentation
purposes only: the implementation in the KeY system handles such exceptions
correctly.

Figure 5.9 shows only rules for the box modality, but all these rules have an
otherwise identical twin for the diamond modality. The symbolic execution rules
are applicable only if the modal operator appears in a formula of the succe-
dent. Programs in the antecedent can be shifted to the succedent by making
use of the dual nature of box and diamond: we have |= [p]ϕ ↔ ¬〈p〉¬ϕ and
|= 〈p〉ϕ ↔ ¬[p]¬ϕ, which allows turning an occurrence of a formula [p]ϕ or a
formula 〈p〉ϕ in the antecedent into an occurrence of ¬〈p〉¬ϕ or ¬[p]¬ϕ, respec-
tively, and then moving the program to the succedent with the notLeft rule. In
all symbolic execution rules, the update u that precedes the modal operator may
also be missing.
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Γ ⇒ {u}{a := t}[π ω]ϕ, ∆
Γ ⇒ {u}[π a = t; ω]ϕ, ∆

assignLocal

Γ ⇒ {u}{heap := store(heap, o, f, t)}[π ω]ϕ, ∆
Γ ⇒ {u}[π o.f = t; ω]ϕ, ∆

assignField

Γ ⇒ {u}{heap := store(heap, a, arr(i), t)}[π ω]ϕ, ∆
Γ ⇒ {u}[π a[i] = t; ω]ϕ, ∆

assignArray

Γ, o′ 6 .= null, exactInstanceA(o′),
{u}
(
wellFormed(heap)→ selectBoolean(heap, o′, created)

.
= FALSE

)
⇒ {u}{heap := create(heap, o′)}{o := o′}[π ω]ϕ, ∆

Γ ⇒ {u}[π o = A.alloc(); ω]ϕ, ∆
createObject

where o′ :A ∈ F is fresh

Γ ⇒ {u}if (g
.
= TRUE )then([π p1 ω]ϕ)else([π p2 ω]ϕ), ∆

Γ ⇒ {u}[π if(g) p1 else p2; ω]ϕ, ∆
conditional

Γ ⇒ {u}[π if(g){p′; while(g)p} ω]ϕ, ∆
Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆

unwindLoop

Γ ⇒ {u}[π method-frame(result=r, this=o) :

{ body(m, A) } ω]ϕ, ∆
Γ ⇒ {u}exactInstanceA(o), ∆

Γ ⇒ {u}[π r = o.m(); ω]ϕ, ∆
expandMethod

Γ ⇒ {u}ϕ, ∆
Γ ⇒ {u}[ ]ϕ, ∆

emptyModality

Figure 5.9.: Rules for symbolic execution of Java programs

The three assignment rules assignLocal, assignField and assignArray convert as-
signment statements into equivalent updates. An assignment to a local variable a
turns into an update assigning to a, whereas assignments to a field o.f or to an ar-
ray component a[i] are understood as changing the global program variable heap
at the corresponding location. A complication not shown in Figure 5.9 is that
both assignField and assignArray need to introduce a case distinction on whether
o or a (respectively) is null: if so, the symbolically executed program continues
by throwing a NullPointerException. Also not shown is that the assignArray
rule additionally has to cover the possibilities that i might be negative or larger
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than a.length−1 (leading to an ArrayIndexOutOfBoundsException), and that
the dynamic type of t might not be a subtype of the dynamic component type of
a (leading to an ArrayStoreException).

Executing an instance creation expression new A( . . . ); in Java means to per-
form a sequence of steps that includes allocating memory for the new object,
initialising the object, and invoking the constructor. The details of how this pro-
cess is modelled during symbolic execution are documented elsewhere [Beckert
et al., 2007]. The createObject rule depicted in Figure 5.9 is responsible only for
the core step of the process: the actual allocation of a new object. This step is
represented as a call to a special static method A.alloc() that returns a new
object of type A.

The createObject rule introduces a fresh constant symbol o′ to represent the
new object, i.e., a constant symbol not occurring anywhere in the conclusion. The
rule adds three assumptions about the otherwise unknown object represented by
o′: (i) it is different from null ; (ii) its dynamic type is A; and (iii) if the heap
is well-formed, then the object is not yet created. These assumptions are always
satisfiable, because by Definition 5.4 there is an infinite reservoir of objects of
every type, and because in a well-formed heap only a finite number of them is
created. If the object to be created is an array of length l, then length(o′)

.
= l

is an additional assumption that holds if the heap is well-formed (this is not
shown in the figure). The new object is then marked as “created” by setting its
created field to true with an update that uses the function symbol create, and
the reference to the newly created object is assigned to the program variable o.

The createObject rule of JavaDL* is significantly different from its counterpart
in JavaDL. There, in addition to the created field, signatures also contain so-
called repository access functions getA : Int → A for all types A � Object . These
are interpreted as bijective functions, thereby identifying objects with integers.
Additionally, there is a static field nextToCreateA of type Int for every A �
Object . Java reachable states (which are similar to well-formed heap arrays in
JavaDL*) satisfy that exactly those objects getA(i) have their created field set to
true for which 0 ≤ i ∧ i < nextToCreateA holds. In this approach, allocating a
new object of type A means to take the object getA(nextToCreateA), to set its
created field to true, and to increment nextToCreateA by one.

An advantage of the JavaDL approach is that the JavaDL counterpart of
createObject does not need to introduce a new constant symbol o′, because the ob-
ject to be created is uniquely determined and accessible as getA(nextToCreateA).
On the other hand, an advantage of the JavaDL* approach is that it avoids the
redundancy between created and nextToCreateA, thereby avoiding to further
complicate the notion of well-formed heap arrays (or the analogous notion of
Java reachable states). More importantly, it simplifies implicitly allowing object
creation in modifies clauses (as in JML and JML*). In JavaDL, it is difficult
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to express an “anonymisation” for a modifies clause that includes the possible
allocation of arbitrarily many objects of arbitrary types, because the anonymi-
sation has to affect not only the created fields of the fresh objects, but also
the nextToCreateA field of all reference types A. Enumerating the instances of
nextToCreateA for all reference types is possible, but neither practical nor mod-
ular. Furthermore, a difficulty is to encode that nextToCreateA is not affected
arbitrarily by the anonymisation, but can only be increased. The JavaDL* solu-
tion does not have any of these problems, and we make use of this in the loop
invariant rule (Subsection 5.4.8) and in the rule for reasoning about method calls
using method contracts (Chapter 6), which in contrast to their counterparts in
JavaDL do allow arbitrary object creation.

The conditional rule in Figure 5.9 transforms a conditional statement into a con-
ditional term. If the information in the sequent implies that one of the branches
is infeasible, then it may be possible to simplify away the conditional term di-
rectly. Otherwise, the proof rules for conditional terms create a split of the proof
tree, where one proof branch corresponds to the then-branch and the other to
the else-branch of the conditional statement.

The unwindLoop rule allows unwinding a single iteration of a while loop (for
loops are first reduced to while loops). The program fragment p′ is identical to
the loop body p, except that program variables declared in p have been replaced
by fresh program variables (which is necessary in order to make the program
occurring in the premiss syntactically correct). The rule is shown here for the
simple case where the loop body p does not contain break or continue state-
ments. The unwindLoop rule is sufficient only in the (rare) case where there is
a literally known bound on the loop’s number of iterations. Otherwise, iterated
unwinding does not terminate. General loops can be discharged using some form
of induction, such as the loop invariant rule presented in Subsection 5.4.8.

The expandMethod rule is intended to be used on method calls where the dy-
namic type A of the receiver object is known, making the second premiss trivial
to prove. The rule replaces the method call by a method frame, whose body
body(m, A) is the implementation of m that must be used for receivers of dynamic
type A, according to Java’s rules for method binding. All program variables de-
clared in the method body are replaced by fresh program variables in body(m, A).
This hides any changes to these variables performed by the body from its context
in the sequent (i.e., from Γ, ∆, πω and ϕ). The rule is shown only for method
calls without parameters; its more general version also takes care to assign the
actual parameter values to the method’s formal parameter variables. Also not
shown is the check for the case where the receiver object is null . The treatment
of void and static methods is analogous.

Dynamically bound method calls where the dynamic type of the receiver object
is not known can be symbolically executed by introducing a case split on the
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possible dynamic types of the receiver, i.e., a case split on the subtypes of its static
type. However, this of course amounts to a non-modular and thus undesirable
enumeration of types. A more modular alternative is to handle method calls
with the help of a contract for the called method. This is covered in detail in
Chapter 6.

Empty method frames can be removed from a modal operator. Ultimately,
symbolic execution leads to empty modal operators from which the programs
have disappeared entirely. These can be removed with the emptyModality rule
shown in Figure 5.9. The update u at this point represents the termination state
of the path to the program that corresponds to the current path through the proof
tree. Once the modal operator is gone, u can be applied to the postcondition ϕ
using the rules in Figure 5.8.

5.4.8. Loop Invariant Rule

Loops without a literally known bound on their number of iterations can be
handled with a loop invariant rule. Such a rule makes use of a loop invariant ,
i.e., a formula that holds at the beginning of each loop iteration at the time of
checking whether the loop guard is satisfied. Loop invariants can be given as
a part of the specification, or they can be provided interactively at the time of
applying the rule. The classical loop invariant rule in dynamic logic with updates
looks as follows (for the sake of simplicity, we ignore exceptions as well as return,
break and continue statements):

Γ ⇒ {u}inv , ∆ (initially valid)
inv , g

.
= TRUE ⇒ [p]inv (preserved by body)

inv , g
.
= FALSE ⇒ [π ω]ϕ (use case)

Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆

Like the unwindLoop rule from Figure 5.9, the rule is applicable to a program
where the first active statement is a while loop. Its first premiss expresses that
the loop invariant inv holds when first entering the loop, i.e., in the initial state
described by the update u and by the formulas in Γ and in ∆. The second premiss
expresses that inv is preserved by the loop body p, and the third demands that if
inv holds after leaving the loop, then the remaining program πω establishes the
postcondition ϕ.

A problem with this basic version of the loop invariant rule is that the context
information encoded in u, Γ and ∆ is completely lost in the second and third pre-
miss. It cannot be kept, because these premisses describe symbolic states where
an arbitrary number of loop iterations have already been executed, potentially
invalidating all information in the context. This puts a significant burden on the
person writing the invariant inv , because all information from the context that
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is needed for the validity of the second and the third premiss must be encoded
into inv . In particular, inv often must contain information about which memory
locations the loop does not change.

An improved version of the loop invariant rule that alleviates this problem
has been introduced by Beckert et al. [2005]; Schlager [2007]. Here, in addition
to the loop invariant itself, a modifies clause for the loop must be provided,
which describes the memory locations (including local variables) that may at
most be changed by the loop. In the improved loop invariant rule, an anonymising
update v is generated out of the modifies clause, which sets all locations in the
modifies clause to unknown (“anonymous”) values. This simulates the effect of
an arbitrary number of loop iterations. It allows keeping u, Γ and ∆ in the second
and third premiss, separated by the update v from the rest of the sequent:

Γ ⇒ {u}inv , ∆ (initially valid)
Γ ⇒ {u}{v}(inv ∧ g .

= TRUE → [p]inv), ∆ (preserved by body)
Γ ⇒ {u}{v}(inv ∧ g .

= FALSE → [π ω]ϕ),∆ (use case)

Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆

Now, the loop invariant inv must constrain only the values of locations actually
modified by the loop, because all other locations are left unchanged by v anyway.

In the loop invariant rule of Beckert et al. [2005]; Schlager [2007], the correct-
ness of the modifies clause is simply assumed. Verifying that the modifies clause
is correct, i.e., that an arbitrary number of loop iterations never changes a lo-
cation not covered by the modifies clause, is left as a separate task. Due to the
aliasing problem, this task is non-trivial in Java-like languages.

An approach for verifying modifies clauses in JavaDL has been developed by
Roth [2006]; Engel et al. [2009]. The approach uses location dependent symbols
[Bubel, 2007; Bubel et al., 2008] to construct a formula that depends only on the
locations not in the modifies clause. Correctness of a program with respect to the
modifies clause is encoded as a proof obligation demanding that the validity of
this formula is not affected by running the program. The approach can be built
into the improved loop invariant rule, yielding a rule that is sound also if the
modifies clause for the loop is not correct [Engel et al., 2009]. This is the version
of the loop invariant rule that is currently used in JavaDL, as it is implemented
in KeY 1.5.

The JavaDL* version of the loop invariant rule is defined in Definition 5.9
below. It improves over the JavaDL version in several ways. Firstly, the explicit
modelling of the heap allows quantification over locations, which in turn enables
a more intuitive formulation of modifies clause correctness than the formulation
using location dependent symbols: a modifies clause is correct if for all locations
not in the modifies clause the post-state value is the same as the pre-state value.
This more straightforward formulation may help in interactive proofs, where the
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human user of the theorem prover must be able to grasp the meaning of the
occurring sequents.

Also, the mechanism for expressing modifies clauses in JavaDL (called loca-
tion descriptors) supports no form of data abstraction. In contrast, the modifies
clauses of JavaDL* are proper terms (of type LocSet). Function symbols can
be used to denote sets of locations symbolically (Chapter 6). Furthermore, as
discussed in Subsection 5.4.7, the modifies clauses of JavaDL* always implicitly
allow creating and initialising objects, whereas such an interpretation of modifies
clauses is not easily possible in JavaDL, due to the modelling of object creation
via a field nextToCreateA for every reference type A. Finally, the loop invari-
ant rule in JavaDL* takes care to preserve well-formedness properties such as
wellFormed(heap) across the loop, whereas this responsibility is placed on the
author of the loop invariant in JavaDL.

For the sake of simplicity, we define the loop invariant rule under the assump-
tion that the loop body does not throw exceptions and does not use return,
break and continue statements. The rule can be extended to handle these
technicalities in the same way as in JavaDL [Schlager, 2007; Beckert et al., 2007].
We also only define the invariant rule for the box modality. Like in JavaDL, it can
be extended to also establish termination of the loop, via a variant term whose
value strictly decreases in every loop iteration towards a fixed lower bound. All
of these extensions are present in the version of the rule that is implemented in
the KeY system.

Definition 5.9 (Rule loopInvariant).

Γ ⇒ {u}
(
inv ∧ wellFormed(heap) ∧ reachableIn

)
, ∆ (initially valid)

Γ ⇒ {u}{pre}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut
∧ g .

= TRUE → [p](inv ∧ frame)
)
, ∆

(preserved by body)

Γ ⇒ {u}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut
∧ g .

= FALSE → [π ω]ϕ
)
, ∆

(use case)

Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆

where:

• inv ∈ FmaΣ is the loop invariant
• mod ∈ TermLocSet

Σ is the modifies clause for the loop
• a1, . . . , am ∈ PV are the program variables occurring free in the loop body
p, except for heap

• b1, . . . , bn ∈ PV are the program variables potentially modified by the loop
body p, except for heap

• heappre : Heap, bpre1 :α(b1), . . . , bpren :α(bn) ∈ PV are fresh
• h : Heap, b′1 :α(b1), . . . , b′n :α(bn) ∈ F are fresh
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• pre =
(
heappre := heap ‖ bpre1 := b1 ‖ . . . ‖ bpren := bn

)
• pre ′ =

(
heap := heappre ‖ b1 := b

pre
1 ‖ . . . ‖ bn := b

pre
n

)
• v =

(
heap := anon(heap,mod , h) ‖ b1 := b′1 ‖ . . . ‖ bn := b′n

)
• frame ∈ FmaΣ is the formula

∀Object o;∀Field f ;
(
(o, f) ∈̇ {pre ′}mod ∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)

)
• reachableIn ∈ FmaΣ is the formula∧

i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))

• reachableOut ∈ FmaΣ is the formula∧
i∈{1,...,n}, α(bi)�Object

(bi
.
= null ∨ bi.created

.
= TRUE )

∧
∧

i∈{1,...,n}, α(bi)=LocSet

disjoint(bi, unusedLocs(heap))

As in Subsection 5.4.6, the local variables a1, . . . , am “occurring free in the loop
body p” are those that occur in p without being bound by a declaration within
p itself. The heap variable is not a member of the set {a1, . . . , am}; it is handled
separately. The local variables b1, . . . , bn “potentially modified by the loop body
p” are essentially those occurring on the left hand side of an assignment in p. The
set {b1, . . . , bn} can be computed by a simple syntactical analysis of p. Changes
to local variables declared within p itself are never observable from outside p,
and thus we do not consider such variables to be elements of {b1, . . . , bn}. This
implies that {b1, . . . , bn} ⊆ {a1, . . . , am}.

The first premiss of loopInvariant demands that the initial state when entering
the loop satisfies not only the loop invariant inv , but also wellFormed(heap) and
reachableIn: the heap must be well-formed, and all “input” variables a1, . . . , an
must have “reachable” values, i.e., they must not refer to non-created objects,
and they must not hold location sets that contain locations belonging to non-
created objects. If this property holds in the initial state of the loop, then the
semantics of Java guarantees that it is preserved by arbitrary loop iterations. It
may thus be used as an assumption in the second and third premiss.

As an optimisation, the assumption used in the second and third premiss
is not the formula wellFormed(heap) ∧ reachableIn itself. Rather, we assume
wellFormed(h) ∧ reachableOut . The formula reachableOut constrains only the
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“output” variables b1, . . . , bn. Because {b1, . . . , bn} ⊆ {a1, . . . , am}, we have
|= reachableIn → reachableOut . The shorter formula reachableOut suffices in
the second and third premiss, because the variables in the complementary set
{a1, . . . , am}\{b1, . . . , bn} are not changed by the loop anyway. For the heap, as-
suming wellFormed(heap) in the scope of the update v would amount to assuming
wellFormed(anon(heap,mod , h)). Assuming wellFormed(h) is shorter and sim-
pler, in particular because this term does not depend on heap. By Lemma 5.3,
well-formedness of h and heap implies well-formedness of anon(heap,mod , h).

A simpler treatment of well-formedness would be to include the well-formedness
properties in the invariant inv , perhaps automatically. However, the chosen solu-
tion is more efficient during verification: there is no need to prove in the second
premiss that any well-formedness properties hold at the end of the loop body p,
because this is guaranteed by Java itself.

From a practical point of view, the usefulness of proving well-formedness in the
first premiss of loopInvariant is dubious, too. In reality, Java programs can never
reach a state that violates well-formedness, so proving well-formedness seems
superfluous. Nevertheless, omitting wellFormed(heap) ∧ reachableIn in the first
premiss makes the rule unsound. This is because in a proof, it is not guaranteed
that well-formedness holds for all occurring symbolic states; it is possible to
construct a sequent where it is violated. This does not happen during “typical”
proofs for “typical” proof obligations (such as those defined in Chapter 6). One
can imagine a “pragmatic” version of the rule that leaves out wellFormed(heap)∧
reachableIn in the first premiss, saving a minor amount of time during verification
at the cost of accepting an unsoundness that typically does not matter.

The update pre in the second premiss buffers the pre-loop values of the pro-
gram variables heap, b1, . . . , bn in the program variables heappre , bpre1 , . . . , bpren .
These buffer variables must be fresh, i.e., they must not occur anywhere in the
conclusion. This in particular guarantees that their values are not changed by
the loop body p. Thus, they can be used in scope of the modal operator [p] to
refer to the pre-loop values of heap, b1, . . . , bn. The inverse update pre ′ resets all
of heap, b1, . . . , bn to their original values.

The anonymising update v simulates the effect of an arbitrary number of loop
iterations by setting all potentially modified variables b1, . . . , bn to unknown val-
ues, represented by fresh (“anonymous”) constant symbols b′1, . . . , b

′
n. In contrast

to b1, . . . , bn, the heap is not anonymised completely by assigning to heap the
value of the fresh constant symbol h. Rather, the function symbol anon is used
to anonymise only the locations in the modifies clause mod . By the definition of
I(anon), the anonymisation implicitly affects all unused locations, independently
of the choice of mod itself.

The formula frame in the second premiss ensures that the modifies clause mod
is respected by the loop: after an arbitrary number of iterations (represented by
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v) and one more execution of the loop body p, all locations either (i) belong to
the pre-loop interpretation of the modifies clause mod , or (ii) belong to an object
not yet created when initially entering the loop, or (iii) have the same value in
the current heap as in the pre-loop heap.

Instead of defining and using an extension to the theory of arrays like anon as
we do, another solution is to first anonymise the entire heap, and then use a fram-
ing formula like frame as an assumption constraining the effect of the anonymi-
sation. A solution along these lines is for example used in the Boogie verifier
[Barnett et al., 2006]. The main advantage of our approach is that it directly
expresses that only some locations change. It avoids the additional occurrences
of frame as an assumption in the second and third premiss of loopInvariant, and
in particular the universal quantifiers in these occurrences. Note that the single
occurrence of frame in loopInvariant is on the right hand side of the implication
arrow. Here, the universal quantifiers can be eliminated simply by Skolemisation.
In contrast, when using frame as an assumption, the quantifiers occur in positions
where they have to be handled by instantiation.

Lemma 5.4 below establishes a formal connection between frame and anon.
This connection is the reason why it is admissible to use anon for anonymising
the locations in the modifies clause, while using frame as the proof obligation for
verifying the correctness of the modifies clause in the second premiss.

Lemma 5.4 (Connection between frame and anon). Let mod ∈ TermLocSet
Σ ,

b1, . . . , bn ∈ PV, heappre : Heap ∈ PV, b
pre
1 :α(b1), . . . , bpren :α(bn) ∈ PV, and

let pre ′ ∈ UpdΣ and frame ∈ FmaΣ be as in Definition 5.9. Let furthermore
noDeallocs ∈ FmaΣ be the formula

unusedLocs(heap) ⊆̇ unusedLocs(heappre)

∧ selectAny(heap, null, created)
.
= selectAny(heappre , null, created),

and let frame ′ ∈ FmaΣ be the formula

heap
.
= anon(heappre , {pre ′}mod , heap).

Then the following holds:

|= (frame ∧ noDeallocs)↔ frame ′.

A proof of Lemma 5.4 is contained in Appendix A.5. Intuitively, the lemma
states that a heap state can be reached from heappre by anonymisation via anon
if and only if it satisfies the formulas frame and noDeallocs. The latter formula
expresses that all objects created in the pre-state heap array are still created
in the current heap array (and that createdness of null does not change). The
impossibility of deallocating created objects is built into the definition of I(anon).
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5. Java Dynamic Logic with an Explicit Heap

In approaches that anonymise the entire heap and use frame as an assumption,
a formula like noDeallocs must be used as an additional explicit assumption,
together with frame itself.

Lemma 5.4 is a main ingredient in the proof of Theorem 5.5, which establishes
that the loopInvariant rule is sound.

Theorem 5.5 (Soundness of loopInvariant). Let the formula sets Γ,∆ ∈ 2FmaΣ,
the update u ∈ UpdΣ, the program “π while(g)p; ω”, the formulas ϕ, inv ∈
FmaΣ, the term mod ∈ TermLocSet

Σ , the program variables a1, . . . , am, b1, . . . , bn,
heappre , bpre1 , . . . , bpren ∈ PV, the constant symbols h, b1, . . . , bn ∈ F , the updates
pre, pre ′, v ∈ UpdΣ and the formulas frame, reachableIn, reachableOut ∈ FmaΣ

all be as in Definition 5.9. If

|= Γ ⇒ {u}
(
inv ∧ wellFormed(heap) ∧ reachableIn

)
, ∆

|= Γ ⇒ {u}{pre}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= TRUE → [p](inv ∧ frame)

)
, ∆

|= Γ ⇒ {u}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= FALSE → [π ω]ϕ

)
, ∆

then the following holds:

|= Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆.

Theorem 5.5 is proven in Appendix A.6. As the semantics of Java are not
formalised in JavaDL*, the parts of the proof that deal with the behaviour of the
loop while(g)p are only semi-formal: we assume that the loop—if it terminates—
gives rise to a finite sequence of states si, which are connected by (si, si+i) ∈ ρ(p).
The first two premisses of the rule correspond to the base case and the step case
of an inductive argument showing that for all states si of the sequence, we can
find an interpretation of the fresh constant symbols h, b′1, . . . , b

′
n such that si is

produced by the anonymising update v for this interpretation, and such that inv ,
wellFormed(h) and reachableOut all hold in si. Together with the third premiss,
this implies validity of the conclusion.

An example for the use of the loopInvariant rule is contained in Section 5.5
below.

5.5. Example Proofs

In this section, the functioning of the JavaDL* calculus is illustrated with the help
of four examples: a proof demonstrating the basics of accessing the heap (Sub-
section 5.5.1), a variation of this proof that involves aliasing (Subsection 5.5.2),
a proof for a program that creates new objects (Subsection 5.5.3), and a proof
for a program that contains loops (Subsection 5.5.4).
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5.5.1. Reading and Writing the Heap

Suppose that the program Prg contains the following class:

class C {

int f, g;

}

Let o be a program variable of type C. Our goal is to prove that after executing the
legal program fragment “o.f = 1; o.g = 2;”, the Java expression o.f evaluates
to 1.

Before getting to the proof in JavaDL*, we first sketch the proof in JavaDL.
There, the fields f and g are non-rigid function symbols f : C → Int and g : C →
Int , and the postcondition is the formula f(o)

.
= 1. The JavaDL proof tree is

depicted in Figure 5.10.

Symbolic execution consecutively turns the two assignments into elementary
updates in steps (1) and (2). We ignore the possibility of NullPointerExceptions
in order to simplify the presentation. The two sequentially connected updates are
combined into a single parallel update via update rewrite rules [Rümmer, 2006].
The intermediate steps of the update calculus are usually not shown, neither in
writing nor in the implementation in KeY, where the entire update calculus is
implemented as a single update simplification rule. Consequently, converting the
two updates into a parallel update appears in Figure 5.10 as a single step (3).
In the example, the resulting parallel update is simply the parallel composition
of the two original updates, because these updates happen to be independent of
each other.

The empty modal operator is removed in step (4). Applying the update to the
postcondition using the update calculus again appears as a single step (5). The
resulting formula is simplified to true in step (6), and the proof tree is closed in
step (7).

We now shift attention to JavaDL*. Here, the fields f and g are represented
as unique constant symbols f : Field ∈ FUnique and g : Field ∈ FUnique, and the
postcondition is the formula select Int(heap, o, f)

.
= 1. The JavaDL* proof tree is

shown in Figure 5.11.

Steps (1) and (2) are again to symbolically execute the assignments, turning
them into updates with the assignField rule. The subsequent simplification of
the two updates is shown as a single step (3) in Figure 5.11, in keeping with
the presentation in Figure 5.10. Note that nesting store terms into each other
corresponds to parallel composition of updates; the resulting heap array is that
of simultaneously executing the changes, where in case of a clash, the outer-
most store (corresponding to the rightermost parallel update) “wins”. One could
pretty-print updates of the form “heap := store

(
store(heap, o1, f1, t1), o2, f2, t2

)
”

as fake parallel updates “o1.f1 := t1 ‖ o2.f2 := t2”. Together with the usual
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⇒ [o.f = 1; o.g = 2;](f(o)
.
= 1)

⇒ {f(o) := 1}[o.g = 2;](f(o)
.
= 1)

assignment (1)

⇒ {f(o) := 1}{g(o) := 2}[ ](f(o)
.
= 1)

assignment (2)

⇒ {f(o) := 1 ‖ g(o) := 2}[ ](f(o)
.
= 1)

update simplification (3)

⇒ {f(o) := 1 ‖ g(o) := 2}(f(o)
.
= 1)

empty modality (4)

⇒ 1
.
= 1

update simplification (5)

⇒ true

equal (6)

∗
close (7)

Figure 5.10.: Example for reading and writing the heap in JavaDL

⇒ [o.f = 1; o.g = 2;](select Int(heap, o, f)
.
= 1)

⇒ {heap := store(heap, o, f, 1)}[o.g = 2;](select Int(heap, o, f)
.
= 1)

assignField (1)

⇒ {heap := store(heap, o, f, 1)}{heap := store(heap, o, g, 2)}[ ](select Int(heap, o, f)
.
= 1)

assignField (2)

⇒ {heap := store(store(heap, o, f, 1), o, g, 2)}[ ](select Int(heap, o, f)
.
= 1)

simplification (3)

⇒ {heap := store(store(heap, o, f, 1), o, g, 2)}(select Int(heap, o, f)
.
= 1)

emptyModality (4)

⇒ true

simplification (5,6)

∗
closeTrue (7)

Figure 5.11.: Example for reading and writing the heap in JavaDL*

pretty-printing of selectA(heap, o, f) (in JavaDL*) and f(o) (in JavaDL) as o.f,
this would make the sequents of Figures 5.10 and 5.11 look identical.

After the simplification, the empty modal operator is removed with the help
of emptyModality in step (4). The resulting formula can be simplified to true in a
combined step (5,6), which allows closing the proof tree with closeTrue in step (7).

The JavaDL* proof in Figure 5.11 closely resembles the JavaDL proof in Fig-
ure 5.10. The occurring terms and updates are longer (i.e., they have more
subterms); this is an unfortunate but unavoidable consequence of the change in
heap modelling. But the structure of both proofs is the same. Pretty-printing
can make the individual sequents appear the same, too.
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Hiding the application of rewrite rules that simplify updates, formulas or terms
inside larger “simplification” steps has two advantages. Firstly, presenting the
proof in this way facilitates interactive proving, because it avoids cluttering up
the presentation with large numbers of uninteresting simplification steps. And
secondly, implementing simplification as a single meta-rule can be advantageous
for performance, for example because it allows immediately discarding the in-
termediate steps from memory, instead of storing them for the duration of the
verification process. For fully understanding what is happening, it is however
instructive to look inside the “simplification” steps. The expanded version of the
JavaDL* proof tree from Figure 5.11 is shown in Figure 5.12.

In the expanded proof, step (3) is split up into six sub-steps (3a) to (3f), where
for lack of space step (3f) itself abbreviates three individual rule applications.
In (3a), the two updates are parallelised using seqToPar. The first update u
is then propagated to the subterms of the second update via the applyOnRigid
rules, and ultimately applied to the occurrence of heap with applyOnTarget and
simplified away elsewhere with dropUpdate2. The original occurrence of u is
discarded in (3c) with the help of dropUpdate1, because it is overwritten by the
second update that also assigns to heap.

Step (5), i.e., the simplification process triggered by the disappearance of the
modal operator after the application of emptyModality, consists of twelve sub-
steps (5a) to (5l) in Figure 5.12, where again for lack of space some of these steps
comprise several individual rule applications. In steps (5a) to (5c), the final up-
date u′ is applied to the postcondition using the update rules, leading to a cascade
of store terms occurring below the function symbol select Int . This term is sim-
plified by twice applying selectOfStore in steps (5d) and (5h), each time followed
by simplifying the resulting if-then-else terms. In particular, the uniqueNotSame
rule is used to quickly rule out the possibility that o.f and o.g could refer to
the same location. The rules andFalse, andTrue, notFalse, ifThenElseFalse and
ifThenElseTrue have not been introduced, but behave as expected. Because the
type of the written value is compatible with the expected type of select Int , the
cast produced by selectOfStore can be removed with castDel.

As can be seen in Figure 5.12, the simplification steps in Figure 5.11 are not
exclusively concerned with updates. This is in contrast to the update simplifica-
tion steps in JavaDL, and this is the reason why the second simplification step
includes both (5) and (6) in Figure 5.11: step (6) is just one further application
of the equal rule that has already been used twice in step (5i).

5.5.2. Aliasing

Let the class C be as in Subsection 5.5.1, and let o and o2 be program variables
of type C. This time, we consider the program fragment “o.f = 1; o2.f = 2;”.
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⇒ [o.f = 1; o.g = 2;](select Int(heap, o, f)
.
= 1)

⇒ {heap := store(heap, o, f, 1)︸ ︷︷ ︸
u

}[o.g = 2;](select Int(heap, o, f)
.
= 1)

assignField (1)

⇒ {u}{heap := store(heap, o, g, 2)}[ ](select Int(heap, o, f)
.
= 1)

assignField (2)

⇒ {u ‖ {u}(heap := store(heap, o, g, 2))}[ ](select Int(heap, o, f)
.
= 1)

seqToPar (3a)

⇒ {u ‖ heap := {u}store(heap, o, g, 2)}[ ](select Int(heap, o, f)
.
= 1)

applyOnRigid7 (3b)

⇒ {heap := {u}store(heap, o, g, 2)}[ ](select Int(heap, o, f)
.
= 1)

dropUpdate1 (3c)

⇒ {heap := store({u}heap, {u}o, {u}g, {u}2)}[ ](select Int(heap, o, f)
.
= 1)

applyOnRigid2 (3d)

⇒ {heap := store(store(heap, o, f, 1), {u}o, {u}g, {u}2)}[ ](select Int(heap, o, f)
.
= 1)

applyOnTarget (3e)

⇒ {heap := store(store(heap, o, f, 1), o, g, 2)︸ ︷︷ ︸
u′

}[ ](select Int(heap, o, f)
.
= 1)

3 ∗ dropUpdate2 (3f)

⇒ {u′}(select Int(heap, o, f)
.
= 1)

emptyModality (4)

⇒ select Int({u′}heap, {u′}o, {u′}f)
.
= {u′}1

2 ∗ applyOnRigid2 (5a)

⇒ select Int(store(store(heap, o, f, 1), o, g, 2), {u′}o, {u′}f)
.
= {u′}1

applyOnTarget (5b)

⇒ select Int(store(store(heap, o, f, 1), o, g, 2), o, f)
.
= 1

3 ∗ dropUpdate2 (5c)

⇒ if (o
.
= o ∧ f

.
= g ∧ f 6 .= created)then((Int)2)else(select Int(store(heap, o, f, 1), o, f))

.
= 1

selectOfStore (5d)

⇒ if (o
.
= o ∧ false ∧ f 6 .= created)then((Int)2)else(select Int(store(heap, o, f, 1), o, f))

.
= 1

uniqueNotSame (5e)

⇒ if (false)then((Int)2)else(select Int(store(heap, o, f, 1), o, f))
.
= 1

andFalse (5f)

⇒ select Int(store(heap, o, f, 1), o, f)
.
= 1

ifThenElseFalse (5g)

⇒ if (o
.
= o ∧ f

.
= f ∧ f 6 .= created)then((Int)1)else(select Int(heap, o, f))

.
= 1

selectOfStore (5h)

⇒ if (true ∧ true ∧ ¬false)then((Int)1)else(select Int(heap, o, f))
.
= 1

2 ∗ equal, uniqueNotSame (5i)

⇒ if (true)then((Int)1)else(select Int(heap, o, f))
.
= 1

notFalse, andTrue (5j)

⇒ (Int)1
.
= 1

ifThenElseTrue (5k)

⇒ 1
.
= 1
castDel (5l)

⇒ true
equal (6)

∗
closeTrue (7)

Figure 5.12.: Example for reading and writing the heap in JavaDL* (full detail)
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⇒ [o.f = 1; o2.f = 2;](o.f ≤ 2)

⇒ {heap := store(heap, o, f, 1)}[o.g = 2;](o.f ≤ 2)

assignField

⇒ {heap := store(heap, o, f, 1)}{heap := store(heap, o2, f, 2)}[ ](o.f ≤ 2)

assignField

⇒ {heap := store(store(heap, o, f, 1), o2, f, 2)}[ ](o.f ≤ 2)

simplification

⇒ {heap := store(store(heap, o, f, 1), o2, f, 2)}(o.f ≤ 2)

emptyModality

⇒ if (o
.
= o2)then(2)else(1) ≤ 2

simplification

o
.
= o2⇒ 2 ≤ 2 ⇒ o

.
= o2, 1 ≤ 2

split

∗
. . .

∗
. . .

Figure 5.13.: Example for aliasing

This is almost the same program as in Subsection 5.5.1, but here, it is possible
that the two assignments write to the same location, namely if o and o2 refer to
the same object. A proof for the postcondition o.f ≤ 2 is shown in Figure 5.13.

The proof proceeds as in Figure 5.11 up to the second simplification step. Here,
the if-then-else term produced by one of the two applications of selectOfStore
cannot be simplified away, because it is unknown whether o

.
= o2 holds or not.

This leads to splitting the proof tree. As the postcondition holds in both cases,
each of the two branches can be closed.

The structure of the proof is again the same as in JavaDL. In particular, in
both calculi the aliasing induced case split happens only in the end, after the
program has been symbolically executed completely, and after all possibilities for
simplifying without splitting (such as dropStore) have been exhausted.

5.5.3. Object Creation

Let the class C and the program variables o and o2 be as before. Suppose we
want to show that the following sequent is logically valid:

o 6 .= null, o.created
.
= TRUE , wellFormed(heap)

⇒ [o2 = C.alloc();](o2.created
.
= TRUE ∧ o 6 .= o2)

The sequent states that after allocating an object of class C in a well-formed heap,
this object is created and different from an—otherwise unspecified—previously
created object. Symbolically executing the call to the alloc method with the
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createObject rule yields the sequent below, where o′ is a fresh constant symbol of
type C.

o 6 .= null, o.created
.
= TRUE , wellFormed(heap),

o′ 6 .= null, exactInstanceC(o
′),
(
wellFormed(heap)→ o′.created

.
= FALSE

)
⇒ {heap := create(heap, o′)}{o2 := o′}[ ](o2.created

.
= TRUE ∧ o 6 .= o2)

Applying emptyModality and simplifying the resulting sequent produces:

o 6 .= null, o.created
.
= TRUE , wellFormed(heap),

o′ 6 .= null, exactInstanceC(o
′),
(
wellFormed(heap)→ o′.created

.
= FALSE

)
⇒ o 6 .= o′

The postcondition o2.created
.
= TRUE has vanished, because the update rules

turn it into selectBoolean

(
create(heap, o′), o′, created

) .
= TRUE , which is then

simplified to true using selectOfCreate, equal and castDel. Because o′ cannot be
both created and non-created in heap, the sequent above can easily be shown to
be valid, using rules for first-order logic and equalities.

5.5.4. Loops

A Java class that implements the selection sort algorithm is given in Figure 5.14.
Let a be a program variable of type int[], and suppose we want to prove validity
of the following sequent, which states that after running the sorting method on
an array, the array is sorted:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

⇒ [Sorter.sort(a);]∀Int x;
(
0 < x ∧ x < a.length→ a[x− 1] ≤ a[x]

)
The overall structure of a proof for this property is shown in Figure 5.15. Sym-

bolic execution (indicated as “SE” in the figure) uses a variation of expandMethod
for static methods to inline the method body of sort, enclosed in a method
frame. The initial assignment is turned into the update i := 0. Then, the first
active statement is the outer loop, and loopInvariant is applied. An adequate
choice for the loop invariant inv is:

0 ≤ i ∧ i ≤ a.length

∧ ∀Int x;
(
0 < x ∧ x < i→ a[x− 1] ≤ a[x]

)
∧ ∀Int x, y;

(
0 ≤ x ∧ x < i ∧ i ≤ y ∧ y < a.length→ a[x] ≤ a[y]

)
This loop invariant states that i remains within the bounds of the array, that
the sub-array up to the index i is sorted, and that all elements of this sub-array
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Java

class Sorter {

static void sort(int[] a) {

int i = 0;

while(i < a.length) {

int minIndex = i;

int j = i + 1;

while(j < a.length) {

if(a[j] < a[minIndex]) minIndex = j;

j++;

}

int tmp = a[i];

a[i] = a[minIndex];

a[minIndex] = tmp;

i++;

}

}

}

Java

Figure 5.14.: Java implementation of selection sort

root

outer loop entry
SE

initially valid preserved by body use case

loopInvariant

* inner loop entry *

FOL SE SE

initially valid preserved by body use case

loopInvariant

* conditional *

FOL SE SE

then branch else branch

conditional, split

* *

SE SE

Figure 5.15.: Structure of proof for selection sort

119



5. Java Dynamic Logic with an Explicit Heap

are smaller than the elements of the rest of the array. A correct modifies clause
for the loop is allFields(a): the only locations changed by the loop are the array
components of a. This choice of mod gives rise to the following instantiation of
the anonymising update v:

heap := anon
(
heap, allFields(a), h

)
‖ i := i′

It also gives rise to the following instantiation of the formula frame:

∀Object o; ∀Field f ;
(
(o, f) ∈̇ {heap := heappre ‖ i := ipre}allFields(a)

∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)

)
Of the local variables occurring in the loop body, only i can potentially be mod-
ified, because all others either do not occur on the left hand side of an assign-
ment (a) or are declared within the loop body itself (minIndex, j, tmp). Thus,
only i is anonymised by v, and only i must be reset to its pre-loop value by the
update pre ′ occurring in frame.

The “initially valid” branch created by loopInvariant is:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

⇒ {i := 0}
(
inv ∧ wellFormed(heap) ∧ (a

.
= null ∨ a.created

.
= TRUE )

)
This branch can be closed using update rules and first-order reasoning with in-
teger arithmetic (indicated as “FOL” in Figure 5.15).

The “use case” branch is:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

⇒ {i := 0}{v}
(
inv ∧ wellFormed(h) ∧ i ≥ a.length

→ [ ]∀Int x; (0 < x ∧ x < a.length→ a[x− 1] ≤ a[x])
)

Note that the formula reachableOut collapses to true in this example (and is thus
omitted entirely in the sequent above), because the only local variable potentially
modified by the loop (namely i) is not of a reference type. Because the chosen
loop invariant is strong enough to imply the postcondition, the “use case” branch
can be closed by finishing symbolic execution with the emptyModality rule, and
by using update rules and first-order reasoning.

The most complex of the three branches is the “preserved by body” branch:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

⇒ {i := 0}{heappre := heap ‖ ipre := i}{v}(
inv ∧ wellFormed(h) ∧ i < a.length→ [p](inv ∧ frame)

)
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The body of the outer loop is denoted by p. After simplification and the appli-
cation of a few first-order rules, the branch becomes:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

inv ′, wellFormed(h), i′ < a.length

⇒ {heappre := heap ‖ ipre := 0 ‖ heap := anon(heap, allFields(a), h) ‖ i := i′}
[p](inv ∧ frame)

The formula inv ′ is the result of replacing in the loop invariant inv the program
variable heap by anon(heap, allFields(a), h) and the program variable i by i′.

Symbolic execution continues from the above sequent, until the first active
statement is the inner loop. Then, the loopInvariant rule is applied again. A
suitable invariant for the inner loop is:

i < j ∧ j ≤ a.length ∧ i ≤ minIndex ∧ minIndex < j

∧ ∀Int x;
(
i ≤ x ∧ x < j→ a[minIndex] ≤ a[x]

)
This loop invariant states that j remains between i and the length of the array,
that minIndex is always between i and j, and that minIndex is the index of the
smallest array component within these bounds. Because the inner loop does not
modify the heap at all, ∅̇ is a correct modifies clause for the inner loop. The
corresponding anonymising update is:

heap := anon(heap, ∅̇, h′) ‖ j := j′ ‖ minIndex := minIndex ′

All three branches created by this second application of loopInvariant can
eventually be closed. On the “initially valid” branch, this requires proving
that the heap is well-formed when initially reaching the inner loop, i.e., that
wellFormed

(
anon(heap, allFields(a), h)

)
holds in the context of the sequent. This

is possible with the help of wellFormedAnon. On the second branch, symbolic ex-
ecution of the conditional statement splits the proof further. On the “use case”
branch, symbolic execution of the outer loop body p continues behind the inner
loop.

In practice, other splits of the proof tree occur in addition to those shown
in Figure 5.15. During symbolic execution, a side branch is created whenever
a statement might throw an exception. As the program in Figure 5.14 does
not throw any exceptions if the given precondition holds in the initial state, the
corresponding execution paths are infeasible, allowing these proof branches to
be closed quickly. Additional proof splitting occurs in the first-order reasoning
phase after the end of symbolic execution.
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5.6. Conclusion

In this chapter, we have introduced a dynamic logic for verifying Java programs.
This logic, called JavaDL*, is closely based on JavaDL [Beckert et al., 2007],
but differs in one fundamental aspect, namely in the modelling of heap mem-
ory. Representing the heap as a single program variable allows dispensing with
general location functions, with location dependent functions [Bubel et al., 2008]
and with quantified updates [Rümmer, 2006], although in principle it is of course
possible to additionally include any of these concepts anyway. It also allows for
quantification over locations, and for terms of a type “set of locations”. This sim-
plifies the treatment of modifies clauses. An important part of the calculus that
is significantly affected by the changes is the loop invariant rule. In contrast to its
JavaDL counterpart, the loop invariant rule of JavaDL* implicitly allows object
creation in its modifies clauses, and it takes care of preserving well-formedness
properties across the loop.

Compared with other verification approaches that use an “explicit” heap mod-
elling, a unique feature of JavaDL* (inherited from JavaDL) is the concept of
updates [Beckert, 2001; Rümmer, 2006]. Updates allow computing weakest pre-
conditions of Java programs by symbolic execution of the code. Symbolic execu-
tion is closer to human understanding of the code than the backwards procedure
usually used for computing weakest preconditions. As a side effect, the use of
symbolic execution allows utilising the logical framework of KeY for other appli-
cations besides just verification, such as symbolic debugging [Hähnle et al., 2010].
In JavaDL*, reasoning about updates is intertwined with reasoning about the
arrays used to represent states of the heap. JavaDL* features custom function
symbols for constructing such heap arrays, which are specialised towards veri-
fying Java programs, and which thus differ from the classical theory of arrays
[McCarthy, 1963]. In particular, the function symbol anon is tailor-made for
reasoning about loops and method calls with the help of modifies clauses.

The JavaDL* calculus is fully implemented in variation of the KeY system,
based on KeY version 1.5. An important feature of the implementation is its
one-step simplifier : a meta rule that eagerly applies as many simplifying rewrite
rules as possible, as a single step of the overall proof (like in Figure 5.11, as op-
posed to Figure 5.12). One-step simplification plays a similar role as the update
simplification that handles updates in regular KeY. Unlike update simplification,
it is independent of the underlying calculus (in particular of the update rules),
and it is not limited to simplifying just updates: where the update simplifi-
cation mechanism is itself an implementation of the update calculus, one-step
simplification is a meta-level mechanism that applies given simplification rules.
One-step simplification can be switched off, but activating it usually notably im-
proves performance in automatic proofs. This is because it internally uses a more
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specialised and lightweight machinery for applying rules—and in particular for
deciding which rule to apply next—than the general rule application and proof
automation machinery of KeY, and because it discards the intermediate sequents
immediately, instead of keeping them in memory for the duration of the entire
verification process.

In a series of ad-hoc experiments, the KeY version based on JavaDL* veri-
fied the selection sort example of Section 5.5 automatically in about 7 seconds
(where the loop invariant and the modifies clause for the loop were given as
JML* specifications). The proof consisted of roughly 2400 nodes, including 46
leaves. Switching off one-step simplification increased the proving time to about
12 seconds and the number of nodes to about 4900. Normal KeY 1.5 verified the
same example in about 9 seconds, the proof consisting of about 3600 nodes with
44 leaves. Verifying 37 valid proof obligations that involve programs from the
KeY regression test suite took about 610 seconds with KeY 1.5, and about 700
seconds with the KeY version based on JavaDL* (with one-step simplification
activated). This corresponds to a slowdown of about 15%. All these numbers
must be taken with a grain of salt, for example because the verification process is
not entirely deterministic, and because thus all numbers may vary between runs
of the system. Nevertheless, they may be indicative of the order of magnitude of
the run-time overhead that comes with the explicit heap model.

The design of JavaDL* has been driven by the goal of enabling the modular
verification of dynamic frames style specifications—such as those written in JML*
(Chapter 3)—in the framework of dynamic logic with updates. Realising this goal
is the topic of the subsequent Chapter 6.
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Dynamic Frames

The dynamic logic defined in Chapter 5 can serve as a foundation for verifying
the correctness of Java programs with respect to specifications that use dynamic
frames. In particular, it can be used to verify specifications written in JML*
(Chapter 3). This chapter describes an approach for doing so. JML* specifica-
tions and the corresponding programs are translated into proof obligations, i.e.,
into JavaDL* formulas whose logical validity implies that the program is correct
with respect to the specification. This translation into dynamic logic fixes a more
formal semantics of the specification language than the JML reference manual
[Leavens et al., 2008] and Chapter 3.

Outline Section 6.1 describes the translation of JML* expressions into JavaDL*
terms and formulas. The translation is based on the notion of observer symbols,
which are function and predicate symbols representing model fields and pure
methods. The admissible interpretations of observer symbols are restricted by
several classes of axioms, presented in Section 6.2. Besides observer symbols
and axioms, a specification is represented on the level of JavaDL* as a set of
JavaDL* contracts, which are defined in Section 6.3. Contracts give rise to the
proof obligations defined in Section 6.4. Conversely, they are used in the proofs
of other contracts via two rules defined in Section 6.5 as an extension of the
JavaDL* calculus. The verification framework is illustrated with an extended
example in Section 6.6. Related work is discussed in Section 6.7, and Section 6.8
contains conclusions.

6.1. Expressions

Because the types of JML* are mostly the types of Java itself, they are mapped
to the types of JavaDL* as usual. In particular, reference types are directly rep-
resented as elements of T , and integer types are mapped to Int ∈ T . JML*
expressions of type boolean are sometimes represented directly as formulas, in-
stead of as terms of type Boolean. When necessary for translating an expression, a
Boolean term b is implicitly converted to the formula b

.
= TRUE , and conversely,

a formula ϕ is implicitly converted to the term if (ϕ)then(TRUE )else(FALSE )
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when needed. The meta-type \TYPE is equivalent to the type java.lang.Class

[Leavens et al., 2008], and could be represented as such. However, the type
java.lang.Class and the other features of Java’s reflection facilities are not
part of Java Card, and are thus not considered in this thesis. As a consequence,
\TYPE and the corresponding operators are not supported by the translation de-
fined in this chapter, with one exception mentioned below. The central JML*
type \locset is mapped to LocSet ∈ T .

Ghost fields are represented in JavaDL* exactly like ordinary Java fields, i.e.,
as unique constant symbols of type Field . Local ghost variables are represented
as program variables. Assignments to ghost fields and ghost variables with the
set keyword are considered to be regular assignments.

Model fields and calls to pure methods in specifications are both represented in
JavaDL* with the help of so-called observer symbols.

Definition 6.1 (Observer symbols). An observer symbol is either a function
symbol obs : Heap, C,A1, . . . , Am → A ∈ FNU or a predicate symbol obs : Heap, C,
A1, . . . , Am ∈ P, where C � Object and 0 ≤ m.

Observer symbols are the JavaDL* counterpart of the location dependent sym-
bols of JavaDL [Bubel, 2007; Bubel et al., 2008]. The evaluation of a term
obs(heap, o, a1, . . . , am) depends on the values of some or all locations in heap;
intuitively, the observer symbol obs “observes” these locations. In JavaDL, lo-
cation dependent symbols depend on heap locations implicitly, via special treat-
ment in the definition of the logic’s semantics. In contrast, here “observer sym-
bols” is merely a name given to function and predicate symbols with certain
argument types. Observer symbols depend on the heap explicitly via their first
argument.

As syntactic sugar, we sometimes write o.obs(a1, . . . , am) to denote the term
or formula obs(heap, o, a1, . . . , am). This deliberately resembles the notation o.f
for field access terms selectA(heap, o, f), where f : Field ∈ FUnique. Nevertheless,
observer symbols have different characteristics than field symbols f. This dif-
ference mirrors the difference between location dependent symbols and location
symbols in JavaDL (Chapter 4), as well as the difference between model fields
and ghost fields in JML (Chapter 2), and equally the difference between pure
methods and fields in Java. Unlike field symbols, observer symbols do not give
rise to memory locations. The value of a term o.obs(a1, . . . , am) cannot be set
directly by an assignment. Rather, it is affected in an unspecified way as a side
effect of changing heap for one or several locations.

The interpretation of individual observer symbols may be restricted by assump-
tions that quantify over heap arrays, such as the axioms described in Section 6.2
below. For example, one might want to assume in a proof that for a partic-
ular observer function symbol obs : Heap,Object → Object ∈ F , the formula
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∀Heap h; ∀Object o;
(
obs(h, o) 6 .= null

)
holds. This assumption is satisfied by

all Kripke structures where the function I(obs) never returns null . In contrast,
it is inadmissible to assume that a location only ever contains certain values
in all heap arrays. Doing so is tantamount to assuming false: a formula like
∀Heap h;∀Object o;

(
selectA(h, o, f) 6 .= null

)
is unsatisfiable, because in every

Kripke structure, there is an object o ∈ DObject (in fact infinitely many) and
a heap array h ∈ DHeap such that h

(
o, I(f)

)
= null . This is because by Def-

inition 5.4, DHeap contains all functions DObject × DField → D. This property
of Kripke structures ensures that changing a location via store always produces
a heap array in DHeap , and that thus an assignment o.f = t or an equivalent
update heap := store(heap, o, f, t) always produces a state in S.

In the translation from JML* to JavaDL*, a model field m of a JavaDL* type
A ∈ T which is declared in a class or interface C ∈ T is represented as an
observer function symbol m : Heap, C → A ∈ F . As an exception, for con-
venience the built-in model field \inv becomes an observer predicate symbol
inv : Heap,Object ∈ P. A pure method m declared in C ∈ T with argument types
A1, . . . , Am ∈ T and return type A ∈ T becomes an observer function symbol
m : Heap, C,A1, . . . , Am → A ∈ F . For an observer symbol m representing a pure
method without parameters (i.e., m = 0), we sometimes write o.m() instead of
o.m.

The paragraph above applies to non-static model fields and pure methods
only. In the static case, the observer symbol’s second parameter representing
the receiver object is omitted. In order to simplify the presentation, the static

case is not covered explicitly in this chapter. Extending the definitions accord-
ingly is straightforward.

The translation of JML* expressions is outlined in Table 6.1. For JML* ex-
pressions e, the table defines a translation [e] ∈ TermΣ ∪FmaΣ. The translation
depends on a context that provides a program variable self ∈ PV to be used as
the translation of the keyword this. For the translation of expressions occurring
in postconditions (shown in the lowermost section of the table), the context also
provides program variables res and heappre to be used for translating the key-
word \result and for referring to the pre-state of the heap, respectively. For the
translation of method specifications, the context furthermore provides program
variables to be used for representing the method parameters.

JML* expressions o.f, a[i] and a.length, where f : Field ∈ FUnique is a Java
field or a ghost field, are mapped to JavaDL* terms as in Chapter 5. For occur-
rences of model fields or pure methods m, the translation to an occurrence of the
corresponding observer symbol is also straightforward. Recall that in JavaDL*
(right column of Table 6.1), the notation [o].f stands for selectA(heap, [o], f),
where A ∈ T corresponds to the type of f in Prg ; that the notation [o].m stands
for m(heap, [o]); and that the notation [a].length stands for length([a]).
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JML* JavaDL*

this self

o.f [o].f

a[i] [a][[i]]

a.length [a].length

o.m [o].m

o.m(a1,. . . ,an) [o].m([a1], . . . , [an])

(\forall nullable T x; b1; b2) ∀̇ [T] x;
(
[b1]→ [b2]

)
(\exists nullable T x; b1; b2) ∃̇ [T] x;

(
[b1] ∧ [b2]

)
\typeof(x) == \type(T) exactInstance [T]([x])

e1 == e2 [e1]
.
= [e2]

\subset(s1, s2) [s1] ⊆̇ [s2]

\disjoint(s1, s2) disjoint([s1], [s2])

o.f
{

([o], f)
}

a[i]
{

([a], arr([i]))
}

\singleton(o.f)
{

([o], f)
}

\singleton(a[i])
{

([a], arr([i]))
}

a[i..j] arrayRange([a], [i], [j])

a[*] allFields([a])

o.* allFields([o])

\nothing ∅̇
\everything allLocs \̇ unusedLocs(heap)

\intersect(s1, s2) [s1] ∩̇ [s2]

\set_minus(s1, s2) [s1] \̇ [s2]

\set_union(s1, s2) [s1] ∪̇ [s2]

\result res

\old(x) {heap := heappre}[x]

\fresh(o) [o] 6 .= null

∧ selectBoolean(heappre , [o], created)
.
= FALSE

\fresh(s) [s] ⊆̇ unusedLocs(heappre)

\new_elems_fresh(s) [s] ⊆̇ {heap := heappre}[s]

∪̇ unusedLocs(heappre)

Table 6.1.: Translation of selected JML* expressions to JavaDL* terms and for-
mulas: heap related expressions, boolean expressions, \locset ex-
pressions, and expressions restricted to postconditions
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The translation of the JML* quantifiers \forall and \exists is specified in
Table 6.1 with the help of “dotted quantifiers” ∀̇ and ∃̇, which are defined in
Definition 6.2 below.

Definition 6.2 (Dotted quantifier notation). For Q ∈ {∀,∃}, for A ∈ T , for
x :A ∈ V and for ϕ ∈ FmaΣ, the notation Q̇Ax;ϕ is an abbreviation for a
formula which is defined as follows:

Q̇Ax;ϕ =


QAx;

(
(x

.
= null ∨ x.created

.
= TRUE ) • ϕ

)
if A � Object

QAx;
(
disjoint(x, unusedLocs(heap)) • ϕ

)
if A = LocSet

QAx;ϕ otherwise

The symbol • stands for → if Q = ∀, and for ∧ if Q = ∃.

The “dotted quantifiers” behave like the ordinary quantifiers, except that the
range of quantification is restricted to exclude non-created objects. Note that
dotted quantifications over reference types or over LocSet thus implicitly depend
on heap.

JML’s default of using non_null whenever nullable is not given explicitly
extends to quantification, too. Thus, the translation of quantifications over ref-
erence types that lack the nullable keyword has to add an additional guard
x 6 .= null that also excludes null from the range of quantification, in addition to
excluding non-created objects. This is not shown in Table 6.1. The notation [T]
used in the table stands for the JavaDL* counterpart of the JML* type T.

Expressions of the form \typeof(x) == \type(T) are the only exception to
the rule that the JML type \TYPE is not supported by the translation: this is the
JML way of expressing that the dynamic type of x is T, which can be stated in
JavaDL* as the formula exactInstance [T]([x]). Other occurrences of the equality
operator == are translated using

.
=.

The set predicates \subset and \disjoint are mapped to the correspond-
ing predicate symbols ⊆̇ and disjoint . Similarly, the location set constructors
\singleton, \nothing, \intersect, \set_minus and \set_union are mapped
to their JavaDL* counterparts singleton, ∅̇, ∩̇, \̇ and ∪̇. Expressions a[i..j] are
translated using arrayRange, and both a[*] and o.* are translated with the
help of allFields. The keyword \everything is translated not to allLocs, but to
allLocs \̇ unusedLocs(heap), i.e., it includes only those locations that belong to
created objects (or to null). The shorthands o.f and a[i] for \singleton(o.f)
and \singleton(a[i]) are translated as such. The syntactical ambiguity be-
tween this translation and the translation as a heap access expression [o].f or
[a][[i]] (respectively) is resolved by choosing the translation as a heap access
expression whenever this is syntactically admissible.
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An expression \old(x) is translated by substituting the program variable
heappre for all occurrences of heap in [x]. The substitution can equivalently
be expressed with the help of an update heap := heappre , as in Table 6.1. For
an expression o of a reference type, \fresh(o) means that the object which is
the value of o is different from null , and that it is not created in the heap ar-
ray denoted by heappre . For an expression s of type \locset, the meaning of
\fresh(s) is that all locations in the set which is the value of s also belong to
unusedLocs(heappre). Finally, \new_elems_fresh(s) means that all locations in
the value of s are elements of the pre-state value of s or of unusedLocs(heappre).

The issue of weakly pure specification expressions, i.e., specification expres-
sions that create and initialise new objects, is resolved here by simply ignoring
such side effects. For example, the JavaDL* translation of a JML* expression
“newObject() == newObject()”, where newObject is a weakly pure method
that creates and returns a fresh object, is the formula newObject(heap, self)

.
=

newObject(heap, self). This formula is logically valid, even though in Java, the
expression “newObject() == newObject()” always evaluates to “false”.

Other solutions are possible [Darvas and Leino, 2007; Darvas, 2009] and could
be combined with JavaDL*. For example, a weakly pure method like newObject

could be encoded as an observer function symbol newObject : Heap,Object →
(Heap,Object), where (Heap,Object) is a type whose values are pairs of heap ar-
rays and objects. The “newObject() == newObject()” could then be translated
to the formula

snd
(
newObject(heap, self)

)
.
= snd

(
newObject(fst(newObject(heap, self)), self )

)
,

where fst and snd are pre-defined function symbols that project the first and
the second element out of a (Heap,Object) pair, respectively. This translation
faithfully models what happens when evaluating the expression in Java, where
the second call to newObject starts with the heap array that is produced by
the first call. Another, simpler solution is to syntactically forbid specification
expressions like “newObject() == newObject()”, where the difference between
the possible interpretations of weak purity is observable.

The translation described in this section does not respect JML’s strong va-
lidity semantics of expressions [Chalin, 2007b], which demands that a top-level
expression that would throw an exception in Java evaluates to “false” in JML
(Chapter 2). Instead, for example, a JML* expression x/0 == x/0 is translated
to the formula x/0

.
= x/0. This formula is logically valid: the semantics of the

function symbol “/” is underspecified for the case that the second argument is
0, and thus the value of the term x/0 is unknown; but it is the same value on
both sides of the equation. “Good” specifications avoid such issues with well-
definedness. It is possible to define first-order proof obligations whose validity
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for a given specification implies that there are no such problems [Darvas et al.,
2008]. These could be integrated into JavaDL* and added to the proof obligations
defined in Section 6.4.

6.2. Axioms

When verifying JML* specifications, several kinds of axioms are used as assump-
tions that constrain the possible interpretations of observer symbols. Firstly,
there are axioms expressing that observer symbols never refer to non-created
objects, or to location sets containing locations of non-created objects (Subsec-
tion 6.2.1). Secondly, there are axioms that connect the observer symbols repre-
senting pure methods with the corresponding method implementations (Subsec-
tion 6.2.2). Another kind of axioms result from translating the represents clauses
of the specification (Subsection 6.2.3). Finally, there are special axioms for the
observer symbol inv that represents object invariants (Subsection 6.2.4).

6.2.1. Createdness of Observed Objects

Let obs : Heap, C,A1, . . . , Am → A ∈ F be an observer function symbol repre-
senting a model field or a pure method. If A � Object , then we introduce an
axiom

∀Heap h;∀C c; ∀A1 a1; . . . ; ∀Am am;(
obs(h, c, a1, . . . , am)

.
= null

∨ selectBoolean(h, obs(h, c, a1, . . . , am), created)
.
= TRUE

)
,

which expresses that only the null object and created objects can be “observed”.
If A = LocSet , then we instead introduce the axiom

∀Heap h; ∀C c;∀A1 a1; . . . ;∀Am am;∀Object o;∀Field f ;(
(o, f) ∈̇ obs(h, c, a1, . . . , am)

→ o
.
= null ∨ selectBoolean(h, o, created)

.
= TRUE

)
,

stating that the “observed” location sets never contain locations of unallocated
objects.

Instead of representing such axioms as formulas that are part of the antecedent
of the root sequent of a proof, they may also be stated as axiomatic rules. In par-
ticular, the axioms above can also be represented as the rules obsIsNullOrCreated
and elementOfObsIsNullOrCreated:
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Γ, obs(h, c, a1, . . . , am)
.
= null

∨ selectBoolean(h, obs(h, c, a1, . . . , am), created)
.
= TRUE

⇒ ∆
Γ ⇒ ∆

obsIsNullOrCreated

Γ, (o, f) ∈̇ obs(h, c, a1, . . . , am),
o
.
= null ∨ selectBoolean(h, o, created)

.
= TRUE

⇒ ∆
Γ, (o, f) ∈̇ obs(h, c, a1, . . . , am) ⇒ ∆

elementOfObsIsNullOrCreated

In practice, the application of the obsIsNullOrCreated rule is triggered by an oc-
currence of the term obs(h, c, a1, . . . , am) anywhere in the conclusion of the rule,
and the application of the elementOfObsIsNullOrCreated rule is triggered by the
occurrence of the formula (o, f) ∈̇ obs(h, c, a1, . . . , am) in the antecedent of the
conclusion. In both cases, representing the axiom as a rule has the advantage that
it avoids cluttering up the sequent, and that it allows for a custom “triggering”
for instantiating the universal quantifiers, instead of relying on general quanti-
fier instantiation mechanisms (usually also based on some “triggering” heuristic
[Detlefs et al., 2005]).

The obsIsNullOrCreated and elementOfObsIsNullOrCreated rules closely resemble
the refIsNullOrCreated and elementIsNullOrCreated rules in Figure 5.6. However,
where for observer symbols we are free to assume that the referenced objects are
created in all heap arrays, the same is guaranteed for locations only in well-formed
heap arrays. Assuming that all locations have this property in all heap arrays
would contradict the definition of I(store), which allows writing an arbitrary
value into a location, including a reference to a non-created object.

6.2.2. Pure Methods

Let m : Heap, C,A1, . . . , Am → A ∈ F be an observer function symbol that rep-
resents a pure method m. For every type D ∈ T with D � C we introduce an
axiom

∀Heap h;∀Dd; ∀A1 a1; . . . ;∀Am am;(
exactInstanceD(d)

→ {heap := h ‖ self := d ‖ a1 := a1 ‖ . . . ‖ am := am}
[res = self.m(a1, . . . ,am);]∀̇Ar; (res

.
= r → r

.
= m(h, d, a1, . . . , am))

)
where self :D ∈ PV, a1 :A1, . . . , am :Am ∈ PV and res :A ∈ PV. The axiom
uses the box modality to connect the observer symbol m with a call to the method
m in type D. The method call can subsequently be replaced with the method
implementation, using the expandMethod rule of Figure 5.9. This axiom, too,
can be expressed as a rule:
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Γ, exactInstanceD(d),
{heap := h ‖ self := d ‖ a1 := a1 ‖ . . . ‖ am := am}
[res = self.m(a1, . . . ,am);]∀̇Ar; (res

.
= r → r

.
= m(h, d, a1, . . . , am))

⇒ ∆
Γ, exactInstanceD(d) ⇒ ∆

pureImpl

The correctness of the axiom does not rely on m being pure. Potential side
effects of the call to m are irrelevant, because they are effective only within the
scope of the box modality, and because the formula in scope of the box modality
does not depend on heap (except for createdness of objects). If the method m

does not terminate or if it throws an exception for some or all input values, then
the axiom does not state anything on the value of the observer symbol m for these
input values.

Furthermore, the pureImpl axiom cannot contradict the obsIsNullOrCreated and
elementOfObsIsNullOrCreated axioms of Subsection 6.2.1. This is because of the
use of the dotted quantifier ∀̇ (Definition 6.2) below the modal operator: the value
returned by the method call must be equal to the value of the observer symbol
m only if this value is not a non-created object or a location set containing a
location of a non-created object; otherwise, the axiom does not demand anything
about the value of m.

6.2.3. Represents Clauses

Every represents clause of the specification is translated to a formula rep ∈ FmaΣ.
For relational represents clauses “represents m \such_that b”, this formula
is the result of translating the expression b, i.e., rep = [b]. Functional repre-
sents clauses “represents m = e” are considered to be shorthands for relational
represents clauses “represents m \such_that m == e”, and are translated as
such.

Let m be an observer function symbol m : Heap, C → A ∈ F or an observer
predicate symbol m : Heap, C ∈ P, for which a represents clause is declared in a
type D � C, and let rep ∈ FmaΣ be the translation of this represents clause.
The represents clause gives rise to an axiom

∀Heap h;∀Dd;
(
exactInstanceD(d) ∧ {self := d ‖ heap := h}sat

→ {heap := h ‖ self := d}rep
)
,

where self :D ∈ PV is the program variable used for translating this in rep.
The formula sat ∈ FmaΣ is defined as

sat =

{
∃̇Aa; repa if m ∈ F
reptrue ∨ repfalse if m ∈ P
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where repa ∈ FmaΣ is the result of replacing in rep all occurrences of self.m
with a :A ∈ V, and where reptrue and repfalse are the results of replacing in rep
all occurrences of self.m with true and with false, respectively.

The guard formula sat provides some protection against unsatisfiability. With-
out it, a represents clause like “represents m \such_that false” would lead
to an unsatisfiable axiom, making all proof obligations hold trivially. Using sat as
a guard instead means that for a heap array h ∈ DHeap and an object d ∈ DD, the
represents clause constrains the value I(m)(h, d) only if we can find a value a ∈ DA
such that h, d and a satisfy the represents clause; otherwise, nothing is said about
the value of I(m)(h, d). The dotted quantifier ∃̇ additionally demands that the
value a must not be an unallocated object or a location set containing a location
of an unallocated object. This avoids contradictions with the obsIsNullOrCreated
and elementOfObsIsNullOrCreated axioms from Subsection 6.2.1.

For example, for a represents clause “represents i = i + 1” the formula sat
is ∃Int a; (a

.
= a+ 1). As this formula is unsatisfiable, the overall axiom is equiv-

alent to true. Similarly, a represents clause “represents \inv = !\inv” leads
to sat being the formula (true ↔ ¬true)∨ (false ↔ ¬false), which is again unsat-
isfiable and thus again makes the overall axiom logically valid. An example for a
more meaningful represents clause is “represents m \such_that x <= m &&

m <= y”, which demands that the value of m is between the values of x and y

when possible (i.e., when x <= y holds), and which does not prescribe anything
on the value of m otherwise.

Note that in spite of these precautions, it is possible that several axioms gener-
ated from represents clauses contradict each other. In particular, a contradiction
can be the result of mutually recursive represents clauses. Consider for example
the two represents clauses “represents x = y” and “represents y = x + 1”:
each of them is satisfiable on its own, but their conjunction is not. Systematically
preventing such inconsistencies between several represents clauses is beyond the
scope of this work. The responsibility for avoiding them is placed on the specifier.

Like the other kinds of axiom, the axioms generated from represents clauses
can also be expressed as rules instead of as formulas:

Γ, exactInstanceD(d) ⇒ {heap := h ‖ self := d}sat , ∆ (satisfiability)
Γ, exactInstanceD(d), {heap := h ‖ self := d}rep ⇒ ∆ (use case)

Γ, exactInstanceD(d) ⇒ ∆
rep

The application of the rep rule is triggered by an occurrence of the term or formula
m(h, d) in the conclusion. For functional represents clauses, i.e., represents clauses
where rep = (self.m ≡ rhs), where ≡ stands for

.
= and rhs ∈ TermΣ if m ∈ F ,

and where ≡ stands for ↔ and rhs ∈ FmaΣ if m ∈ P, we can also use the rule
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Γ, exactInstanceD(d) ⇒ {heap := h ‖ self := d}sat , ∆ (satisf.)
Γ′, exactInstanceD(d) ⇒ ∆′ (use case)

Γ, exactInstanceD(d) ⇒ ∆
repSimple

where Γ′ and ∆′ are the results of replacing in Γ and in ∆ all occurrences of
m(h, d) not below an update or a modality with {heap := h ‖ self := d}rhs. The
repSimple rule allows directly replacing model fields by their definition, as given
by a functional represents clause. This is more efficient in practice than adding an
equation to the antecedent. For represents clauses that are relational or recursive
(where the repSimple rule may lead to non-termination of proof search), one can
resort to the more general rep rule.

Example 6.1. Consider the represents clause for the dynamic frame footprint

from the ArrayList class in Figure 3.3:

//@ represents footprint = array, array[*], size;

The formula rep that results from translating this represents clause is

self.footprint
.
= {(self, array)} ∪̇ allFields(self.array) ∪̇ {(self, size)},

where footprint : Heap, List → LocSet ∈ F , where self : ArrayList ∈ PV,
and where array, size : Field ∈ FUnique. The guard formula sat is

∃LocSet a;
(
disjoint(a, unusedLocs(heap))

∧ a .
= {(self, array)} ∪̇ allFields(self.array) ∪̇ {(self, size)}

)
.

Because the represents clause is functional and non-recursive, it can be used
in proofs as an instance of the repSimple rule, which replaces occurrences of
footprint(h, list) (where h ∈ TermHeap

Σ and list ∈ Term
ArrayList
Σ are arbitrary)

with the term

{heap := h ‖ self := list}
(
{(self, array)}
∪̇ allFields(self.array) ∪̇ {(self, size)}

)
,

which can be simplified to{
(list , array)

}
∪̇ allFields

(
selectObject[](h, list , array)

)
∪̇
{

(list , size)
}

.

On the “satisfiability” branch of repSimple, it is obvious how to instantiate the
existential quantifier in the formula sat . The task of closing the branch boils down
to proving that the set denoted by the term above does not contain locations of
unallocated objects. This can be established if it is known that the object denoted
by list is created, and that the heap array denoted by h is well-formed. ∗
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6.2.4. Object Invariants

Declarations of object invariants are in JML* essentially syntactic sugar for defin-
ing the represents clause of the model field \inv. As described in Chapter 3, the
entirety of all invariant declarations “invariant e1; . . . ; invariant en;” of
a given type (including the invariant declarations inherited from its supertypes)
stands for a single represents clause “private represents \inv = e1 && ...

&& en”. This represents clause defines the exact meaning of \inv (and of its
translation inv ∈ P) for objects of this particular dynamic type. It is used in
proofs like any other represents clause (Subsection 6.2.3).

Nevertheless, invariant declarations have two particularities that regular repre-
sents clauses do not have: firstly, each invariant declaration has its own visibility
level; and secondly, invariant declarations are inherited to subtypes. For doing
justice to these particularities, we introduce the following additional axiom for
every invariant declaration “invariant i” in type C, not including declarations
inherited from supertypes of C:

∀Heap h;∀C c;
(
inv(h, c)→ {heap := h ‖ self := c}i

)
The formula i ∈ FmaΣ is the translation of the JML* expression i, i.e., i = [i].
The axiom states that for all objects of type C or any of its subtypes, i is a
consequence of inv . It does not need a “satisfiability” guard, because for every
h ∈ DHeap and every c ∈ DC , it is possible to choose I(inv)(h, c) such that the
axiom is satisfied (namely, by choosing I(inv)(h, c) = ff ). Note that the axiom
is not a corollary of the axioms generated for the represents clauses for \inv,
because it constrains the value of inv even if the formula sat in the represents
clause axiom does not hold, and if thus the represents clause axiom does not
prescribe anything on the interpretation of inv at all. The object invariant axiom
can also be stated as a rule

Γ, inv(h, c), {heap := h ‖ self := c}i ⇒ ∆

Γ, inv(h, c) ⇒ ∆
inv

where h ∈ TermHeap
Σ and c ∈ TermC

Σ .

Example 6.2. Consider the invariants of the ArrayList class from Figure 3.3:

//@ public invariant 0 <= size();

/*@ private invariant array != null;

@ private invariant 0 <= size && size <= array.length;

@ private invariant (\forall int i; 0 <= i && i < size;

@ array[i] != null);

@ private invariant \typeof(array) == \type(Object[]);

@*/
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The first invariant is inherited from the List interface of Figure 3.1, and the oth-
ers are declared in ArrayList itself. Together, the invariants lead to a represents
clause axiom where the formula rep is:

self.inv ↔ 0 ≤ self.size()

∧ self.array 6 .= null

∧ 0 ≤ self.size ∧ self.size ≤ self.array.length

∧ ∀Int i; (0 ≤ i ∧ i < self.size→ self.array[i] 6 .= null)

∧ exactInstanceObject[](self.array)

The represents clause axiom can be represented as an instance of the repSimple
rule, which defines inv for objects of dynamic type ArrayList. Additionally, each
of the invariant declarations leads to an instance of the inv rule. In particular,
the first invariant gives rise to the rule

Γ, inv(h, list), {heap := h ‖ self := list}
(
0 ≤ self.size()

)
⇒ ∆

Γ, inv(h, list) ⇒ ∆

where h ∈ TermHeap
Σ , list ∈ TermList

Σ . Because the invariant is declared in List,
the rule applies to all List objects, not just ArrayList objects. Because of the
public visibility of the invariant, the rule may be available in proofs where the
represents clause axiom for ArrayList is not (Section 6.4). ∗

6.3. Contracts

Besides observer symbols and axioms that constrain the interpretation of the
observer symbols, the JavaDL* representation of a JML* specification consists
of set of method contracts that specify the intended behaviour of methods (Sub-
section 6.3.1), and of a set of dependency contracts that specify the intended
dependencies of observer symbols (Subsection 6.3.2).

6.3.1. Method Contracts

JavaDL* method contracts are defined in Definition 6.3 below. The definition
applies to methods (not including constructors) that are neither static nor
void. Extending it to cover constructors, static methods and void methods is
straightforward.

Definition 6.3 (Method contracts). A method contract mct is a tuple

mct =
(
m, self, (a1, . . . , am), res, heappre , exc, pre, post ,mod , τ

)
,
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where m is a Java method which is declared in type C ∈ T with argument types
A1, . . . , Am ∈ T (0 ≤ m) and return type A ∈ T ; where self :D ∈ PV for
some D � C; where a1 :A1, . . . , am :Am ∈ PV; where res :A ∈ PV; where
heappre : Heap ∈ PV; where exc : Exception ∈ PV; where pre, post ∈ FmaΣ;
where mod ∈ TermLocSet

Σ ; and where τ ∈ {partial , total}.

A JavaDL* method contract
(
m, self, (a1, . . . , am), res, heappre , exc, pre, post ,

mod , τ
)

with self :D constrains the allowed behaviour of the method m in type
D and in all subtypes of D (behavioural subtyping). The program variables
self and a1, . . . , am represent the receiver object of m and the parameters of m
(respectively) in the precondition pre, in the postcondition post and in the modifies
clause mod . The program variables res and heappre represent the return value of
m and the pre-state heap (respectively) in the postcondition post . The program
variable exc represents in post the exception thrown by the execution of m, or
null if no exception is thrown. The “termination marker” τ indicates whether
the contract demands partial or total correctness.

Every JML* method contract is translated into either one or two JavaDL*
method contracts in the sense of Definition 6.3. The diverges clause of the JML*
contract decides on whether one or two JavaDL* contracts are generated. For
contracts with a diverges clause of “diverges true” or “diverges false”,
we introduce a single contract with τ = partial or τ = total , respectively.
Contracts with an overall diverges clause of the general form “diverges b”,
where b is neither true nor false, lead to one JavaDL* contract with τ =
partial , and to a second contract with τ = total and an additional precondition
“requires !b”.

The precondition pre of a generated JavaDL* contract is the conjunction of
the formulas that result from translating the individual requires clauses. The
postcondition post is the conjunction of the formulas that result from translating
the ensures and signals clauses, where “ensures b” is translated as “exc

.
=

null → [b]”, and where “signals(E e) b” is translated as “instanceE(exc) →
[b]”. For every type A ∈ T , the predicate symbol instanceA : Any ∈ P cor-
responds to Java’s instanceof operator for this type. In particular, we have
I(instanceA)(null) = ff for all A ∈ T \ {Null}. As described in Chapter 2,
both signals_only clauses and the two JML keywords normal_behaviour and
exceptional_behaviour are merely syntactic sugar for ensures and signals

clauses, and they are translated as such. Similarly, the pure modifier is an ab-
breviation for “assignable \nothing” and “diverges false”. The modifies
clause mod is the result of translating the assignable clauses of the JML* con-
tract, where multiple clauses are connected by ∪̇.

Example 6.3. Consider the specification of method get in the List interface of
Figure 3.1:
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/*@ public normal_behaviour

@ requires 0 <= index && index < size();

@ accessible footprint;

@ ensures \result == get(index);

@ also public exceptional_behaviour

@ requires index < 0 || size() <= index;

@ signals_only IndexOutOfBoundsException;

@*/

public /*@pure@*/ Object get(int index);

The first of the two JML* contracts is translated to a JavaDL* contract(
get, self, (index), res, heappre , exc, pre, post , ∅̇, total

)
,

where self : List ∈ PV, where index : Int ∈ PV, where res : Object ∈ PV, where
heappre : Heap ∈ PV, where exc : Exception ∈ PV, and where pre and post are
as follows:

pre = 0 ≤ index ∧ index < self.size() ∧ self.inv

post =
(
exc

.
= null→ res

.
= self.get(index) ∧ res 6 .= null ∧ self.inv

)
∧
(
instanceException(exc)→ false ∧ self.inv

)
Intuitively, the contract demands that if get is called in a state in which the
argument index is between 0 and self.size() and in which the invariants of
the receiver object hold, then (i) the call terminates, (ii) the termination is by
returning normally, not by throwing an exception, (iii) the returned value is the
value of the term self.get(index), (iv) the returned value is not null , (v) the
invariants of the receiver object hold in the post-state, and (vi) the post-state
heap is unchanged over the pre-state heap, except that new objects may have
been created and initialised.

The second JML* contract leads to a JavaDL* contract that is identical to the
first one, except for the precondition pre and the postcondition post :

pre =
(
index < 0 ∨ self.size() ≤ index

)
∧ self.inv

post =
(
exc

.
= null→ false ∧ self.inv

)
∧
(
instanceException(exc)

→ instanceIndexOutOfBoundsException(exc) ∧ self.inv
)

The contract demands that if get is called in a state in which the argument index
is out of bounds and in which the invariants of the receiver object hold, then (i)
the call terminates, (ii) the termination is by throwing an exception, (iii) the
thrown exception is of type IndexOutOfBoundsException, (iv) the invariants of
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the receiver object hold in the post-state, and (v) the post-state heap is unchanged
over the pre-state heap, except that new objects may have been created and
initialised. ∗

In JML*, method contracts for pure methods can contain depends clauses. For
example, the first contract of Example 6.3 contains a depends clause “accessible
footprint”. On the level of JavaDL*, depends clauses are not part of method
contracts. Rather, a JML* contract with a depends clause additionally gives
rise to a separate dependency contract. Dependency contracts are introduced in
Subsection 6.3.2 below.

6.3.2. Dependency Contracts

Where a method contract describes the behaviour of a method in a program, a
dependency contract provides an upper bound on the locations that an observer
symbol may depend on.

Definition 6.4 (Dependency contracts). A dependency contract depct is a tuple

depct =
(
obs, self, (a1, . . . , am), pre, dep

)
,

where obs is an observer function symbol obs : Heap, C,A1, . . . , Am → A ∈ F or
an observer predicate symbol obs : Heap, C,A1, . . . , Am ∈ P; where self :D ∈ PV
for some D � C; where a1 :A1, . . . , am :Am ∈ PV; where pre ∈ FmaΣ; and where
dep ∈ TermLocSet

Σ .

A dependency contract
(
obs, self, (a1, . . . , am), pre, dep

)
with self :D con-

strains the allowed dependencies of the observer symbol obs for objects of type
D, including subtypes of D (behavioural subtyping). The program variables self
and a1, . . . , am represent the receiver object and the parameters of obs (respec-
tively) in the precondition pre and in the dependency term dep.

Every JML* method contract containing at least one depends clause leads to
a JavaDL* dependency contract. The dependency term dep of the dependency
contract is the result of translating the depends clauses, where multiple clauses
are connected by ∪̇. The precondition pre of the dependency contract is the
precondition of the JML* method contract. Dependency contracts are further-
more created from depends clauses for model fields. The precondition pre of
dependency contracts for model fields is the formula self.inv .

Example 6.4. Consider again the JML* method contracts of method get in
the List interface of Figure 3.1, discussed in Example 6.3. The first of the two
contracts contains a depends clause “accessible footprint”, which gives rise
to a dependency contract(

m, self, (index), pre, self.footprint
)
,
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where self : List ∈ PV, where index : Int ∈ PV, and where pre is the formula

0 ≤ index ∧ index < self.size() ∧ self.inv .

The contract demands that the value of the term self.get(index) depends at
most on the values of the locations in self.footprint, provided that index is
within bounds and that the invariants of self hold. ∗

Example 6.5. The depends clause “accessible footprint: footprint” in
the List interface of Figure 3.1 is translated to a dependency contract(

footprint, self, (), self.inv , self.footprint
)
,

which demands that the value of self.footprint should depend only on the
values of the locations in self.footprint itself, provided that the invariants of
self hold at the time. ∗

6.4. Proof Obligations

The contracts of Section 6.3 give rise to proof obligations, i.e., to JavaDL* for-
mulas whose logical validity must be established in order for the program to be
considered correct. For every method contract mct of the specification and every
subtype E of the type to which the contract belongs (i.e., every subtype of the
type of the contract’s program variable self), the validity of a proof obligation
CorrectMethodContract(mct , E) must be proven (Subsection 6.4.1). Analogously,
there is a proof obligation CorrectDependencyContract(depct , E) for every depen-
dency contract depct and every subtype E of the type to which the dependency
contract belongs (Subsection 6.4.2).

We consider the overall program to be correct with respect to the specification
if and only if all the individual proof obligation formulas are logically valid. The
axioms of the specification, as described in Section 6.2, are implicitly assumed.
Thus, more precisely, the program is considered correct if and only if all proof
obligations are valid for all Kripke structures that satisfy the axioms.

Even though semantically all axioms are assumptions for all proof obligations,
in practice it may be undesirable to actually use all of them in all proofs. Some
of the axioms are implementational secrets of a particular class, and should not
be exposed to proofs that belong to other classes if the verification is to be
modular. If such secrets are made use of only in “local” proofs, then also the
effect that changing them has on previously conducted proofs remains localised.
The visibility levels of JML* may be used to determine whether a particular axiom
should be available for a particular proof: each axiom has an associated visibility
level, and in a proof for a proof obligation CorrectMethodContract(mct , E) or
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CorrectMethodContract(depct , E), one may want to use only the axioms that are
visible in the class or interface E, according to Java’s visibility rules.

The createdness axioms of Subsection 6.2.1 have the same visibility as the
corresponding observer symbols. The pure method axioms of Subsection 6.2.2
have private visibility, because they lead to exposing the implementation of
the pure method in the particular class. For the represents clause axioms of
Subsection 6.2.3 and the object invariant axioms of Subsection 6.2.4, the visibility
level is given explicitly as a part of the specification.

6.4.1. Proof Obligations for Method Contracts

The proof obligation formulas for method contracts are defined in Definition 6.5
below. As we are interested in their logical validity, the initial values of the
occurring program variables can be seen as being implicitly universally quantified.

Definition 6.5 (Proof obligations for method contracts). Given a method con-
tract

mct =
(
m, self, (a1, . . . , am), res, heappre , exc, pre, post ,mod , τ

)
with self :D, and given a type E ∈ T with E � D, the proof obligation formula
CorrectMethodContract(mct , E) ∈ FmaΣ is defined as

pre ∧ wellFormed(heap) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceE(self)

→ {heappre := heap}Jexc = null;

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }K(post ∧ frame)

where:
• J·K stands for [·] if τ = partial and for 〈·〉 if τ = total
• frame ∈ FmaΣ is the formula (as in Definition 5.9 with n = 0)

∀Object o;∀Field f ;
(
(o, f) ∈̇ {heap := heappre}mod ∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)

)
• reachableIn ∈ FmaΣ is the formula (as in Definition 5.9)∧

i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))
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The proof obligation CorrectMethodContract(mct , E) formalises the meaning
of the method contract mct for receiver objects of dynamic type E, which has been
described on an intuitive level in Section 6.3. Besides the precondition pre, we
assume that the heap is well-formed, that the argument variables a1, . . . , an hold
neither references to non-created objects nor location sets containing locations of
non-created objects, and that the receiver object is non-null and created. The
try-catch-block serves to catch any exception thrown by the method, and to
make it available in the variable exc of the contract.

The formula frame states that the modifies clause mod is respected. This is
as in the loopInvariant rule of Definition 5.9, except that here, there are no local
variables b1, . . . , bn that must be reset to their pre-state values before evaluating
mod . The method m may assign to its formal parameter variables, but it cannot
modify the variables a1, . . . , an which serve as actual parameters to m. Thus, the
only local variables changed within the modality are res and exc, which are not
supposed to occur in mod .

Example 6.6. Let mctget be the first of the two method contracts given for
the get method in Example 6.3. For E = List, the proof obligation formula
CorrectMethodContract(mctget, List) is trivially valid, because List is an inter-
face type and thus exactInstanceList(self) is unsatisfiable. Interesting instances
of the proof obligation occur if E � List is neither an interface nor an abstract
class. For E = ArrayList, CorrectMethodContract(mctget, ArrayList) is:

pre ∧ wellFormed(heap)

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceArrayList(self)

→ {heappre := heap}〈exc = null;

try { res = self.get(index); }

catch(Exception e) { exc = e; }〉(post ∧ frame)

where pre and post are as in Example 6.3, and where frame is the formula

∀Object o; ∀Field f ;
(
(o, f) ∈̇ {heap := heappre} ∅̇ ∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)

)
.

The proof obligation is valid under the assumption of the pureImpl and repSimple
axioms that define size, get and inv for objects of dynamic type ArrayList.
When proving this, one of the first steps is to use the expandMethod rule of
Figure 5.9 to inline the body of get provided in ArrayList. ∗

Method contracts attached to constructors are not covered by the formal
definitions of this chapter, but are nevertheless supported by the implementa-
tion in KeY. The proof obligation for such contracts is essentially as in Defini-
tion 6.5, except that (i) the statement “res = self.m(a1, . . . , am);” is replaced
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by “self = new C(a1, . . . , am);”, (ii) all assumptions about self are omitted,
and (iii) there is only one such proof obligation, not one for every E. This reflects
the design choice that in JML* constructor contracts apply to whole allocation
statements new C(...), not only to the constructor body (Section 3.3).

6.4.2. Proof Obligations for Dependency Contracts

The proof obligations for dependency contracts are defined in Definition 6.6 be-
low.

Definition 6.6 (Proof obligations for dependency contracts). Given a depen-
dency contract

depct =
(
obs, self, (a1, . . . , am), pre, dep

)
with self :D, and given a type E ∈ T with E � D, the proof obligation formula
CorrectDependencyContract(depct , E) ∈ FmaΣ is defined as follows:

pre ∧ wellFormed(heap) ∧ wellFormed(h) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceE(self)

→ self.obs(a1, . . . , am)

≡ {heap := anon(heap, allLocs \̇ dep, h)}
(
self.obs(a1, . . . , am)

)
where:

• ≡ stands for
.
= if obs ∈ F and for ↔ if obs ∈ P

• h : Heap ∈ F is fresh
• reachableIn ∈ FmaΣ is the formula (as in Definitions 5.9 and 6.5)∧

i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))

The proof obligation formalises the notion of obs “depending” only on the
locations in dep: if we change the heap array passed to obs by modifying all
locations except for those in dep in an unknown way, then this must not affect
the “observed” value.

Example 6.7. Let depctget be the dependency contract for the get method of the
List interface given in Example 6.4. CorrectDependencyContract(depctget, List)
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is trivially valid, because exactInstanceList(self) is unsatisfiable. More interest-
ing is CorrectDependencyContract(depctget, ArrayList):

0 ≤ index ∧ index < self.size() ∧ self.inv ∧ wellFormed(heap)

∧ wellFormed(h) ∧ self 6 .= null ∧ self.created
.
= TRUE

∧ exactInstanceArrayList(self)

→ self.get(index)
.
= {heap := anon(heap, allLocs \̇ self.footprint, h)}

(
self.get(index)

)
The proof obligation is valid under the assumption of the pureImpl axiom for

get and the repSimple axiom for footprint (Example 6.1). By the axiom for get,
the value of the term self.get(index) is the result of executing the implemen-
tation of get in ArrayList. The only two locations read by this implementation
(Figure 2.1) are the array field of self and the component at position index of
the array pointed to by self.array. By the axiom for footprint, we know that
these locations are elements of self.footprint. Thus, they are not affected by
the anonymisation. ∗

Example 6.8. Let depctfootprint be the dependency contract for footprint dis-
cussed in Example 6.5. The formula CorrectDependencyContract(depctfootprint,
ArrayList) is:

self.inv ∧ wellFormed(heap) ∧ wellFormed(h)

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceArrayList(self)

→ self.footprint
.
= {heap := anon(heap, allLocs \̇ self.footprint, h)}(self.footprint)

The formula is valid under the assumption of the repSimple axiom for footprint
considered in Example 6.1. The axiom reads only the array field of self. Because
the axiom defines this location to itself be an element of self.footprint, the
location is not affected by the anonymisation. ∗

Example 6.9. Suppose that the program Prg contains the following class:

class C {

int f;

//@ public model boolean b;

//@ private represents b = (\forall C c; 0 < c.f);

//@ public accessible b: \everything;

}

The depends clause gives rise to a dependency contract depctb. The proof obli-
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gation CorrectDependencyContract(depctb, C) is:

self.inv ∧ wellFormed(heap) ∧ wellFormed(h)

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceC(self)

→ self.b

↔
{
heap := anon(heap, allLocs \̇(allLocs \̇ unusedLocs(heap)), h)

}
(self.b)

The term allLocs \̇(allLocs \̇ unusedLocs(heap)) can be simplified to the term
unusedLocs(heap). Furthermore, the definition of I(anon) implies that the term
anon(heap, unusedLocs(heap), h) is equivalent to anon(heap, ∅̇, h). Because of
this and because of the definition of b given in the represents clause, the formula
above can be reformulated as:

self.inv ∧ wellFormed(heap) ∧ wellFormed(h)

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceC(self)

→ ∀ C c; (c.created
.
= TRUE → 0 < c.f)

↔
{
heap := anon(heap, ∅̇, h)

}
∀ C c; (c.created

.
= TRUE → 0 < c.f)

After this reformulation it should be evident that the proof obligation is not logi-
cally valid. The anonymisation may create new objects, and this may change the
truth value of the formula ∀ C c; (c.created

.
= TRUE → 0 < c.f), which demands

that some property holds for all created objects of type C. This demonstrates
that even a depends clause of \everything is meaningful: it is respected only
if the constrained model field or pure method is not influenced by creating and
initialising new objects. ∗

6.5. Contract Rules

Besides giving rise to proof obligations, the contracts of Section 6.3 can also
be used as assumptions in the proofs for other contracts. Method calls can be
symbolically executed with the useMethodContract rule (Subsection 6.5.1) instead
of the expandMethod rule of Figure 5.9, and dependency contracts can be made
use of with the useDependencyContract rule (Subsection 6.5.2).

Using method and dependency contracts leads to dependencies between proofs,
where the correctness of one proof relies on the existence of one or more other
proofs. Circular dependencies must be avoided: a contract must not be applied if
this would lead to cyclic dependencies between proofs. In particular, a contract
must not be used in its own proof. This is as in JavaDL [Roth, 2006], and a proof
management mechanism that prevents such circularities is implemented in the
KeY system. A side effect of entirely forbidding circular contract applications is
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that (mutually) recursive methods cannot be handled. Extending the contract
mechanism to support recursion is possible, but beyond the scope of this work.
For JavaDL, such an extension is described by Bubel [2007].

Besides avoiding a contract application if it would lead to circular dependen-
cies between proofs, modularity calls for respecting the visibility of the con-
tract to be applied: when proving either CorrectMethodContract(mct , E) or
CorrectDependencyContract(depct , E), a contract c should be applied only if c is
visible in E.

6.5.1. Rule for Method Contracts

The rule for making use of method contracts is defined in Definition 6.7 below.

Definition 6.7 (Rule useMethodContract).

Γ⇒ {u}{w}
(
pre ∧ wellFormed(heap) ∧ reachableIn
∧ self 6 .= null ∧ self.created

.
= TRUE

)
, ∆

(pre)

Γ⇒ {u}{w}{heappre := heap}{v}(
post ∧ wellFormed(h) ∧ reachableOut
→ Jπ if(exc != null) throw exc;

r = res; ωKϕ
)
, ∆

(post)

Γ⇒ {u}Jπ r = o.m(a′1, . . . , a
′
m); ωKϕ, ∆

where:
• o ∈ TermE

Σ for some E ∈ T such that there is a method contract

mct =
(
m, self, (a1, . . . , am), res, heappre , exc, pre, post ,mod , τ

)
• self :D for some D ∈ T with E � D
• τ = total if the modality J·K is 〈·〉, and where τ does not matter otherwise
• self, a1, . . . , am, res, heappre and exc do not occur in the conclusion
• reachableIn ∈ FmaΣ is the formula (as in Definitions 5.9, 6.5 and 6.6)∧

i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))

• reachableOut ∈ FmaΣ is the formula

(res
.
= null ∨ res.created

.
= TRUE )

∧ (exc
.
= null ∨ exc.created

.
= TRUE )

if α(res) � Object, and the formula exc
.
= null ∨ exc.created

.
= TRUE

otherwise
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• v =
(
heap := anon(heap,mod , h) ‖ res := r ‖ exc := e

)
• w = (self := o ‖ a1 := a′1 ‖ . . . ‖ am := a′m)
• h : Heap ∈ F , r :α(res) ∈ F and e : Exception ∈ F are fresh

The formulas reachableIn and reachableOut have the same roles as in the
loopInvariant rule of Definition 5.9. Like in Definition 5.9, the update v anonymises
the locations that may be changed by the call to m—namely the members of the
modifies clause mod—by setting them to unknown values with the help of the
fresh constant symbol h. It also sets the variables res and exc to unknown val-
ues denoted by the fresh constant symbols r and e, respectively. The update w
instantiates the variables used in the contract with the corresponding terms in
the method call statement.

In the second premiss of the rule, the method call is replaced by a conditional
statement and an assignment. If the call throws an exception (exc != null),
then the control flow of the program continues with raising this exception. Other-
wise, the returned value is assigned to r, and the control flow continues normally
with the next active statement in π ω.

Theorem 6.1 below states that the useMethodContract rule is sound, provided
that for all subtypes F � E of the static receiver type E, the proof obligation
formula CorrectMethodContract(mct , F ) is logically valid.

Theorem 6.1 (Soundness of useMethodContract). Let the formula sets Γ,∆ ∈
2FmaΣ, the update u ∈ UpdΣ, the modal operator J·K ∈ {[·], 〈·〉}, the prefix π,
the postfix ω, the program variable r ∈ PV, the term o ∈ TermE

Σ , the method
m, the terms a′1, . . . , a

′
m ∈ TermΣ, the formula ϕ ∈ FmaΣ, the method con-

tract mct =
(
m, self, (a1, . . . , am), res, heappre , exc, pre, post ,mod , τ

)
, the for-

mulas reachableIn, reachableOut ∈ FmaΣ, the updates v, w ∈ UpdΣ, and the
constant symbols h, r, e ∈ F all be as in Definition 6.7. If

|= Γ ⇒ {u}{w}
(
pre ∧ wellFormed(heap) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE

)
, ∆

|= Γ ⇒ {u}{w}{heappre := heap}{v}(
post ∧ wellFormed(h) ∧ reachableOut

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ
)
, ∆

and if for all types F ∈ T with F � E we have

|= CorrectMethodContract(mct , F ),

then the following holds:

|= Γ ⇒ {u}Jπ r = o.m(a′1, . . . , a
′
m); ωKϕ, ∆.
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A proof of Theorem 6.1 is contained in Appendix A.7. The proof is similar to
the proof of Theorem 5.5 (Appendix A.6) in many respects. In particular, it also
makes use of Lemma 5.4.

Using contracts for constructors works essentially as in Definition 6.7, except
that (i) the first active statement in the conclusion is of the form “r = new C(a′1,
. . . , a′m);”, (ii) the propositions about self in the first premiss are omitted, (iii)
in the update w the sub-update self := o is replaced with self := r, and (iv) the
second premiss contains an additional assumption besides “post∧wellFormed(h)∧
reachableOut”, namely the formula

exactInstanceC(r) ∧ selectBoolean(heappre , r, created)
.
= FALSE

∧ r.created
.
= TRUE ,

which states that the dynamic type of the created object is C, that the object
was not created previously, and that it is created now.

6.5.2. Rule for Dependency Contracts

Dependency contracts can be used in proofs with the useDependencyContract rule
defined in Definition 6.8 below.

Definition 6.8 (Rule useDependencyContract).

Γ, guard → equal ⇒ ∆

Γ ⇒ ∆

where:
• the term or formula obs(hpost , o, a′1, . . . , a

′
m) occurs in Γ or in ∆

• hpost = fk(fk−1(. . . (f1(hpre , . . . )))) for some f1, . . . , fk ∈ {store, create,
anon} with 1 ≤ k and for some hpre ∈ TermHeap

Σ

• o ∈ TermE
Σ for some E ∈ T such that there is a dependency contract

depct =
(
obs, self, (a1, . . . , am), pre, dep

)
• self :D for some D ∈ T with E � D
• self and a1, . . . , am do not occur in the conclusion
• heappre : Heap ∈ PV is fresh
• w = (self := o ‖ a1 := a′1 ‖ . . . ‖ am := a′m) (as in Definition 6.7)

• mod = allLocs \̇ dep
• frame ∈ FmaΣ is the formula (as in Definitions 5.9 and 6.5)

∀Object o;∀Field f ;
(
(o, f) ∈̇ {heap := heappre}mod ∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)

)
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• reachableIn ∈ FmaΣ is the formula (as in Definitions 5.9, 6.5 and 6.6)∧
i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))

• guard ∈ FmaΣ is the formula

wellFormed(hpre) ∧ wellFormed(hpost)

∧ {w}
(
{heap := hpre}(pre ∧ reachableIn ∧ self 6 .= null

∧ self.created
.
= TRUE ) ∧ {heappre := hpre ‖ heap := hpost}frame

)
• equal ∈ FmaΣ is the formula

obs(hpre , o, a′1, . . . , a
′
m) ≡ obs(hpost , o, a′1, . . . , a

′
m)

where ≡ stands for
.
= if obs ∈ F and for ↔ if obs ∈ P

The useDependencyContract rule adds an assumption guard → equal to the
sequent, which relates the value of obs for the heap arrays denoted by the terms
hpre and hpost , where hpost results from hpre by an arbitrary cascade of applica-
tions of the function symbols store, create and anon. Such cascades are created
by symbolically executing programs, using the rules of Figure 5.9 as well as the
useMethodContractRule of Definition 6.7, and by simplifying the resulting up-
dates.

The formula guard corresponds to the left hand side of the implication in the
proof obligation of Definition 6.6. Like in Definition 6.7, the update w serves
to instantiate the program variables of the contract with the terms occurring
as arguments to obs. The formula reachableIn has its usual role. The formula
frame must hold if we use hpre for heappre and hpost for heap; i.e., when going
from hpre to hpost , the locations in dep must not change. If guard holds, then
the dependency contract guarantees that obs has the same value for both heap
arrays, as expressed by the formula equal .

Besides the property that only certain locations change, the other typically
necessary property of a change in the heap is that the change does not deallo-
cate previously created objects; see for example Lemma 5.4. For method calls,
this property is guaranteed by Java itself. Similarly, for the state change from
hpre to hpost , the absence of deallocations is guaranteed by the definitions of the
interpretation of the function symbols store, create and anon. This is formalised
in Lemma 6.2 below.
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Lemma 6.2 (No deallocations). Let hpost ∈ TermHeap
Σ with

hpost = fk(fk−1(. . . (f1(hpre , . . . ))))

for some f1, . . . , fk ∈ {store, create, anon} with 1 ≤ k and for some hpre ∈
TermHeap

Σ . Let furthermore heappre : Heap ∈ PV, and let noDeallocs ∈ FmaΣ

be the formula (as in Lemma 5.4)

unusedLocs(heap) ⊆̇ unusedLocs(heappre)

∧ selectAny(heap, null, created)
.
= selectAny(heappre , null, created).

Then the following holds:

|= {heappre := hpre ‖ heap := hpost}noDeallocs.

The proof for Lemma 6.2 in Appendix A.8 is straightforward. The lemma
is needed for the proof of Theorem 6.3 below. The theorem states that the
useDependencyContract rule is sound, provided that for all subtypes F � E of
the static “receiver” type E, the formula CorrectDependencyContract(depct , F )
is logically valid.

Theorem 6.3 (Soundness of useDependencyContract). Let the sets Γ,∆ ∈ 2Fma
Σ ,

the observer symbol obs ∈ F ∪ P, the term hpost = fk(fk−1(. . . (f1(hpre , . . . )))) ∈
TermHeap

Σ , the term o ∈ TermE
Σ , the terms a′1, . . . , a

′
m ∈ TermΣ, the depen-

dency contract depct =
(
obs, self, (a1, . . . , am), pre, dep

)
, the program variable

heappre ∈ PV, the update w ∈ UpdΣ, the term mod = allLocs \̇ dep ∈
TermLocSet

Σ , and the formulas frame, reachableIn, guard , equal ∈ FmaΣ all be as
in Definition 6.8. If

|= Γ, guard → equal ⇒ ∆

and if for all types F ∈ T with F � E we have

|= CorrectDependencyContract(depct , F ),

then the following holds:

|= Γ ⇒ ∆.

The proof of Theorem 6.3 in Appendix A.9 makes use of Lemma 6.2 and of
Lemma 5.4.

Automatic application of the useDependencyContract rule is not as straight-
forward as automatic application of the useMethodContract rule. The problems
are that the rule is nondeterministic in the choice of hpre , and that it can be
applied repeatedly for the same combination of hpre and hpost , which could lead
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to non-termination of automatic proof search. However, we can prevent non-
termination by avoiding duplicate applications of the rule for the same pair of
heap terms on any single branch of the proof tree. To avoid a finite, but large
number of “unsuccessful” applications where guard cannot be proven and where
the application thus does not contribute to the proof, a strategy that appears
to work well in practice is to apply the rule only lazily (once all other means
of advancing the proof have been exhausted), and only for choices of hpre for
which the term or formula obs(hpre , o, a′1, . . . , a

′
m) already occurs in the sequent.

This problem area corresponds to the question of how best to instantiate the two
universal quantifiers over heap arrays that are explicitly present in the formula
on the dependencies of reach seen in Subsection 4.2.3, and that are implicitly
present in the semantics of JavaDL* dependency contracts.

6.6. Example

This section is a continuation of Section 3.4. We assume that the program Prg
contains the interface List from Figure 3.1, the class Client from Figure 3.2,
and the class ArrayList from Figure 3.3. As an example for the verification of
JML specifications with dynamic frames, we consider a proof for the method m

of the Client class:

/*@ normal_behaviour

@ requires list.\inv && \disjoint(list.footprint, this.*);

@ requires 0 < list.size();

@*/

void m(List list) {

x++;

Object o = list.get(0);

}

The JML* method contract is translated to a JavaDL* method contract

mctm =
(
m, self, (list), res, heappre , exc, pre, post ,mod , total

)
,

where the precondition pre, the postcondition post and the modifies clause mod
are:

pre = list.inv ∧ disjoint
(
list.footprint, allFields(self)

)
∧ 0 < list.size() ∧ self.inv ∧ list 6 .= null

post = self.inv ∧ exc .
= null

mod = allLocs \̇ unusedLocs(heap)
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The resulting proof obligation CorrectMethodContract(mctm, Client) is:

list.inv ∧ disjoint
(
list.footprint, allFields(self)

)
∧ 0 < list.size() ∧ self.inv ∧ list 6 .= null

∧ wellFormed(heap) ∧ (list
.
= null ∨ list.created

.
= TRUE )

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceClient(self)

→ {heappre := heap}〈exc = null;

try { self.m(list); }

catch(Exception e) { exc = e; }〉(
self.inv ∧ exc .

= null

∧ ∀Object o; ∀Field f ;

((o, f) ∈̇ {heap := heappre}(allLocs \̇ unusedLocs(heap))

∪̇ unusedLocs(heappre)

∨ selectAny(heap, o, f)
.
= selectAny(heappre , o, f)))

)
Note that the method does not return a value, and that thus the assignment of
the returned value to the program variable res is omitted.

The following axioms of Section 6.2 are visible when proving the validity of the
formula CorrectMethodContract(mctm, Client):

• The model field footprint of List has the JavaDL* type LocSet . Thus,
there is an axiom elementOfObsIsNullOrCreated for footprint, as defined
in Subsection 6.2.1:

Γ, (o, f) ∈̇ footprint(h, list),
o
.
= null ∨ selectBoolean(h, o, created)

.
= TRUE ⇒ ∆

Γ, (o, f) ∈̇ footprint(h, list) ⇒ ∆

where list is a placeholder for a term of type List (or of a subtype). The
axiom is visible in the context of Client, because it adopts the public

visibility of footprint itself.

• The lack of an object invariant declaration in Client is equivalent to a
single invariant declaration “private invariant true”. Because Client
does not inherit any invariant from its supertypes, this means that there
is an implicit represents clause “private represents \inv = true” in
Client. This represents clause gives rise to a repSimple axiom for inv as
defined in Subsection 6.2.3:
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Γ, exactInstanceClient(client)
⇒ {heap := h ‖ self := client}

(true ↔ true ∨ false ↔ true), ∆

(satisfiability)

Γ′, exactInstanceClient(client) ⇒ ∆′ (use case)

Γ, exactInstanceClient(client) ⇒ ∆

where client is a placeholder for a term of type Client, and where Γ′ and
∆′ are the results of replacing in Γ and in ∆ all occurrences of inv(h, client)
not below an update or a modality with {heap := h ‖ self := client}true.

• The object invariant declaration “public invariant 0 <= size()” in
List gives rise to an inv axiom for inv on objects of type List, as dis-
cussed in Subsection 6.2.4 and in particular in Example 6.2:

Γ, inv(h, list), {heap := h ‖ self := list}
(
0 ≤ self.size()

)
⇒ ∆

Γ, inv(h, list) ⇒ ∆

where list is a placeholder for a term of type List (or of a subtype). The
axiom is visible in the context of Client because of the public visibility
of the underlying invariant declaration.

Not visible are for example the pureImpl axioms of Subsection 6.2.2 for the size

and get methods in ArrayList, and the repSimple axioms of Subsection 6.2.3 for
the model fields \inv and footprint in ArrayList.

The structure of a proof for the proof obligation is shown in Figure 6.1. Starting
from the root sequent “⇒ CorrectMethodContract(mctm, Client)”, the first steps
are simplifying the sequent and applying non-splitting first-order rules (indicated
as “FOL” in the figure), which leads to the following sequent:

list.inv ,

∀Field f ;
(
(self, f) /̇∈ list.footprint

)
,

0 < list.size(),

self.inv ,

wellFormed(heap),

list.created
.
= TRUE ,

self.created
.
= TRUE ,

exactInstanceClient(self)



Γ

⇒
list

.
= null,

self
.
= null,
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root

FOL

satisfiability use case

repSimple (self.inv)

* method call

FOL SE

pre post

useMethodContract (list.get(0))

0 < list.size list.inv well-formed

FOL
SE

* satisfiability use case
uDC (list.size) uDC (list.inv) FOL

repSimple (self.inv)

* * * *

FOL FOL FOL FOL

Figure 6.1.: Structure of proof for the method contract of method m in class
Client

〈exc = null;

try { self.m(list); }

catch(Exception e) { exc = e; }〉(self.inv ∧ exc .
= null)

The formula disjoint
(
list.footprint, allFields(self)

)
has been reduced to

the formula ∀Field f ;
(
(self, f) /̇∈ list.footprint

)
, using in particular the rules

disjoint and inAllFields of Figure 5.7. The negated occurrences of the formulas
list

.
= null and self

.
= null in the antecedent have been replaced by non-

negated occurrences in the succedent via the notLeft rule. The formula frame
below the modality has vanished entirely, because it holds trivially due to the
modifies clause being \everything. Subsequently, the update heappre := heap

has been eliminated using the dropUpdate2 rule of Figure 5.8, because heappre no
longer occurred in its scope.

As a next step, we can replace the occurrence of self.inv in the antecedent
with its definition, using the repSimple rule for inv in Client. The “satisfiability”
branch is trivial to close, because the formula “true ↔ true ∨ false ↔ true” is
logically valid. On the “use case” branch, the formula self.inv in the antecedent
is replaced by true (so—because an occurrence of true in the antecedent does not
contribute to the validity of the sequent—the application of repSimple turns out
to be useless in this case).
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Next, we start symbolic execution of the program inside the diamond modality,
indicated as “SE” in Figure 6.1. As one of the first steps of symbolic execution,
the body of the method m being verified is inlined with the expandMethod rule
of Figure 5.9. The branch corresponding to the second premiss of expandMethod
is trivial to close, and is omitted in the figure. Eventually, symbolic execution
reaches the method call “o = list.get(0)” inside m. This call is dispatched
using the useMethodContract rule of Subsection 6.5.1. The two method contracts
of get are discussed in Example 6.3; here, we use the first of the two contracts,
which corresponds to the normal_behaviour JML* contract. The application
of useMethodContract splits the proof into two branches, called “pre” and “post”:

• After applying the update w to the formula below it, the “pre” branch is:

Γ ⇒
list

.
= null,

self
.
= null,

{exc := null ‖ heap := store(heap, self, x, self.x + 1)}(
0 ≤ 0 ∧ 0 < list.size() ∧ list.inv ∧ wellFormed(heap)

∧ list 6 .= null ∧ list.created
.
= TRUE

)
where Γ is the same antecedent as before. Closing the “pre” branch requires
showing that the six conjuncts below update hold. The first conjunct 0 ≤
0 holds trivially. For the other conjuncts, we consider a further split of
the proof tree into three sub-branches, where the first one corresponds to
“0 < list.size()”, the second one to “list.inv”, and the third one to
“wellFormed(heap) ∧ list 6 .= null ∧ list.created

.
= TRUE )”:

– “0 < list.size()”. This branch is:

Γ ⇒
list

.
= null,

self
.
= null,

0 < size
(
store(heap, self, x, self.x + 1), list

)
The sequent now contains both the term size(heap, list) (inside Γ)
and the term size

(
store(heap, self, x, self.x + 1), list

)
. This trig-

gers application of the useDependencyContract rule of Subsection 6.5.2
(indicated as uDC in Figure 6.1), where we choose hpre = heap and
hpost = store(heap, self, x, self.x + 1). The rule uses the depen-
dency contract for size generated out of the JML* depends clause
“accessible footprint” in line 9 of Figure 3.1. It adds the formula
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guard → equal to antecedent, where the subformula guard (after some
simplification) is:

wellFormed(heap) ∧ wellFormed
(
store(heap, self, x, self.x + 1)

)
∧ list.inv ∧ list 6 .= null ∧ list.created

.
= TRUE

∧ ∀Object o;∀Field f ;(
(o, f) ∈̇ (allLocs \̇ list.footprint) ∪̇ unusedLocs(heap)

∨ selectAny(store(heap, self, x, self.x + 1), o, f)
.
= selectAny(heap, o, f)

)
All conjuncts of guard follow from the rest of the sequent. In particu-
lar, the last conjunct of guard is implied by the rest of the sequent, be-
cause the only location (o, f) whose value differs between hpre and hpost

is (self, x), which must be an element of allLocs \̇ self.footprint
because of the quantified formula in Γ. The formula equal is:

size(heap, list)
.
= size

(
store(heap, self, x, self.x + 1), o, f), list

)
Because Γ demands that 0 < size(heap, list), and because the succe-
dent contains the formula 0 < size

(
store(heap, self, x, self.x +

1), o, f), list
)
, the information given by equal is enough to close this

branch of the proof.

– “list.inv”. The branch is:

Γ ⇒
list

.
= null,

self
.
= null,

inv
(
store(heap, self, x, self.x + 1), list

)
The sequent now contains both the formula inv(heap, list) (inside Γ)
and the formula inv

(
store(heap, self, x, self.x+1), list

)
. The proof

continues as on the “0 < list.size()” branch above, except that we
apply the useDependencyContract rule for inv instead of for size.

– “wellFormed(heap) ∧ list 6 .= null ∧ list.created
.
= TRUE”. This

branch is easy to close, using propositional reasoning only.

• After some simplification, the “post” branch is:

Γ ⇒
list

.
= null,

157



6. Verifying JML Specifications with Dynamic Frames

self
.
= null,

{exc := null ‖ heap := store(heap, self, x, self.x + 1)}

{heap := anon(heap, ∅̇, h) ‖ res′ := r ‖ exc′ := e}(
(exc′

.
= null→ res′

.
= list.get(0) ∧ res′ 6 .= null ∧ list.inv)

∧ (instanceException(exc
′)→ false ∧ list.inv)

∧ wellFormed(h) ∧ (res′
.
= null ∨ res′.created

.
= TRUE )

→ 〈try { method-frame(this=self):{ if(exc′ != null)

throw exc′;

o = res;} }

catch(Exception e) { exc = e; }〉
(self.inv ∧ exc .

= null)
)

where res′ : Object ∈ PV and exc′ : Exception ∈ PV are the variables used
in the applied contract for get, and where the constant symbols r : Object ∈
F and e : Exception ∈ F are fresh.

Because of the type of exc′, the formula instanceException(exc
′) is equivalent

to exc′ 6 .= null. The postcondition of the contract, occurring to the left
of the implication arrow in the sequent above, thus guarantees that exc′

.
=

null holds. During further symbolic execution, the “then” branch of the
conditional statement can thus immediately be ruled out. After completely
symbolically executing the program, the resulting sequent is:

Γ,

exc′
.
= null,

res′
.
= get

(
anon(store(heap, self, x, self.x + 1), ∅̇, h), list, 0

)
,

inv
(
anon(store(heap, self, x, self.x + 1), ∅̇, h), list

)
,

wellFormed(h),

selectBoolean

(
anon(store(heap, self, x, self.x + 1), ∅̇, h

)
, res′, created)

.
= TRUE

⇒
res′

.
= null,

list
.
= null,

self
.
= null,

{exc := null ‖ heap := anon(store(heap, self, x, self.x + 1), ∅̇, h)}
〈〉
(
self.inv ∧ exc .

= null)
)
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After applying emptyModality and after further simplification, proving the
branch comes down to showing that the formulas inv

(
anon(store(heap,

self, x, self.x+1)), self
)

and null
.
= null are implied by the rest of the

sequent. For the latter, this is trivial. For the former, it requires once more
applying repSimple for inv in Client, which replaces inv

(
anon(store(heap,

self, x, self.x + 1)), self
)

with true.

This concludes the example proof for the method contract mctm. The proof
shows that the implementation of method m in Client satisfies the contract
mctm, provided that all implementations of get in subclasses of List satisfy the
normal_behaviour method contract for get, and provided that all implemen-
tations of size and inv in subclasses of List satisfy the respective dependency
contracts. Note that in this example, the visible axioms obsIsNullOrCreated and
inv are not actually needed for the proof. This could be different if the body of
m and the postcondition of mctm were more complex.

6.7. Related Work

Work related to JML* has been discussed in Section 3.6. The discussion is con-
tinued here, focusing on aspects related to verification instead of specification.

The verifier of Smans et al. [2008] and the Dafny verifier of Leino [2008] also
verify (different flavours of) dynamic frames specifications. Both work by encod-
ing the verification problem into the Boogie language, which is then processed by
the Boogie verifier [Barnett et al., 2006], before the resulting verification condition
is fed to an SMT solver such as Simplify [Detlefs et al., 2005] or Z3 [de Moura and
Bjørner, 2008]. To the author’s knowledge, the approach for verifying dynamic
frames specifications presented here is the first that is fully deductive, except for
the translation from JML* into JavaDL*, which is a comparatively small step.
It is also the first approach based on symbolic execution, if we do not count the
verifier of Smans et al. [2009b] for implicit dynamic frames [Smans et al., 2009a],
which is a significantly different concept than dynamic frames.

The state change caused by a method call is typically encoded in Boogie-based
verifiers by first anonymising the entire heap (via Boogie’s havoc statement), and
by then constraining the change of the heap with the help of quantified assump-
tions that correspond to the formula frame of Definition 6.5 and to the formula
noDeallocs of Lemma 6.2. The number of quantifiers introduced in this way is
reported to have been responsible for performance problems in the Spec# system
when verifying methods that make many method calls [Barnett et al., 2010]. Us-
ing the function symbol anon for anonymisation in the useMethodContract rule
of Definition 6.7 avoids these quantifiers, just like it avoids such quantifiers in the
loopInvariant rule of Definition 5.9.
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Both the pure methods of Smans et al. [2008] and the functions of Dafny
consist only of a single return statement. A likely reason is that axiomatising
the connection between a function symbol and a general method body is not
possible in the Boogie language. The solution in Subsection 6.2.2 uses the ability
of dynamic logic to have several modal operators in a single proof obligation.

As far as the use of dynamic logic and of symbolic execution is concerned, the
most closely related approach outside of the KeY project itself is the calculus for
verifying Java in the KIV tool [Stenzel, 2004, 2005]. To the author’s knowledge,
KIV supports neither dynamic frames nor any other approach for solving the
frame problem in abstract specifications.

In JavaDL, the verification of modifies clauses is based on the notion of location
dependent symbols [Roth, 2006; Engel et al., 2009]. As in the loopInvariant rule,
the approach used in this chapter instead uses quantification over locations (in
the formula frame). Besides supporting dynamic frames and allowing the cre-
ation and initialisation of new objects without this being declared in the modifies
clause, a secondary advantage of the JavaDL* approach is that it is most proba-
bly easier to understand for the user of the verification system than the approach
of JavaDL. Boogie-based verifiers typically use yet another approach, where for
every assignment statement it is checked separately that the assigned location is
covered by the modifies clause. This approach facilitates user feedback in case the
modifies clause is violated, because it makes it easy for the verification system to
pinpoint the responsible assignment. An advantage of our approach is that it is
more liberal, in that it tolerates temporary modifications (see also the discussion
in Subsection 2.2.2). An additional, more pragmatic reason for using frame in-
stead of performing a separate check for every assignment is that this technique
fits more naturally into dynamic logic: classically, dynamic logic supports only
a postcondition at the end of the verified program, but not in-program asser-
tions that could be attached to individual assignments. An augmented version
of dynamic logic that features in-program assertions has been defined by Ul-
brich [2010]. In such a dynamic logic, per-assignment checks for modifies clauses
become a viable option.

The proof obligation for verifying dependency contracts in this chapter is sim-
ilar to the proof obligation of Bubel [2007] for verifying that the axiomatisation
of a location dependent symbol respects its declared dependencies. Roughly the
same approach is also proposed by Leino and Müller [2008] for verifying that a
pure method respects its depends clause: two executions of the pure method’s
body, starting in states that differ only in the locations not covered by the depends
clause, must lead to the same (or equivalent) result values. This kind of approach
is sometimes referred to as self-composition. A disadvantage of self-composition
is that the method body (or represents clause) must be handled twice during
verification, which may be cumbersome e.g. if it contains non-trivial loops. Con-
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versely, an advantage is that it is liberal, in the sense that read accesses that do
not actually influence the result value are tolerated. Dafny instead checks that
every individual read access is covered by the depends clause [Leino, 2008]. These
alternatives correspond to the above-mentioned alternatives of checking modifies
clauses for every individual assignment, or of checking them at the end of the
method via frame.

6.8. Conclusion

This chapter has presented a framework for verifying design-by-contract speci-
fications in a dynamic logic for Java with updates, where the heap is modelled
as a program variable. The approach supports abstract specifications that use
pure methods, model fields and ghost fields, as well as dynamic frames to specify
properties of sets of memory locations.

Pure methods and model fields are modelled in the logic as observer symbols,
which are rigid function symbols that expect a heap array as their first argument
and an object as their second argument. The interpretation of observer symbols
is constrained by axioms that correspond to method bodies and represents clauses
given by the specification.

Besides observer symbols and axioms, a specification consists of a set of method
contracts and dependency contracts, which constrain the allowed behaviour of
methods and the allowed dependencies of observer symbols, respectively. Both
kinds of contracts give rise to proof obligations that must be verified for every
subtype of the class or interface in which the contract is defined. Conversely, both
kinds of contracts may be used as assumptions in the proofs of other contracts.
Special rules are provided for this purpose, and their soundness has been proven.

The verification framework is modular in the sense that every proof obligation
belongs to a particular class, and that implementational details not visible in
this class are not used in the proof. In particular, private object invariants of
objects of other classes are treated as a black box, and reasoned about using only
what is explicitly stated about them in visible contracts. The same holds for
(other) model fields and for pure methods.

The approach has been implemented in the version of the KeY system that is
based on JavaDL* (Chapter 5), and it has been used to verify a number of smaller
examples. For the example program of Section 3.4, most proof obligations could
be verified without user interaction, with proving times on the time scale of
seconds to tens of seconds (measured on a 2.4 GHz Core 2 Duo processor). In
the remaining proofs (namely, the proofs for the contains method of ArrayList
and for several methods of Set), a few interactive rule applications were necessary
to guide the prover along, mostly quantifier instantiations. The verification of
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method m of class Client discussed in Section 6.6 was fully automatic, with the
closed proof consisting of roughly 600 nodes including 37 leaves.

This concludes Part II on verification. Part III aims at increasing the degree of
automation in dynamic logic based verification, by using abstract interpretation
techniques to automatically generate loop invariants.
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Part III.

Loop Invariant Generation





7. Background on Abstract
Interpretation

Deductive verification of imperative programs typically requires hand-crafted loop
invariants, i.e., assertions about the program states that can possibly occur at
the beginning of each iteration of a loop. Finding sufficiently strong loop invari-
ants can be difficult, and today this is often one of only a few human interactions
necessary in an otherwise heavily automated verification environment. In partic-
ular, the symbolic execution calculus for Java programs described in Chapter 5
can be used automatically, except that the loopInvariant rule for handling general
loops requires a manually provided loop invariant.

On the other hand, there are methods that can automatically determine loop
invariants. Leaving aside testing-based approaches like the Daikon tool of Ernst
et al. [2001], such methods are predominantly based on abstract interpretation
[Cousot and Cousot, 1977], a theoretical framework for automatic static program
analysis which can roughly be described as symbolic execution of the program,
using an abstract (i.e., approximative) domain for the variable values, together
with fixed-point iteration.

The subsequent Chapter 8 presents an approach for integrating a form of ab-
stract interpretation called predicate abstraction into the JavaDL* verification
framework. The present chapter prepares for Chapter 8 by providing an overview
of abstract interpretation theory. It loosely follows the original presentation of
Cousot and Cousot [1977], but renders the presented concepts from a JavaDL*
perspective (where the differences between JavaDL and JavaDL* are irrelevant
in this chapter). The definitions given here are not formally necessary for Chap-
ter 8; instead, the purpose of this chapter is to illuminate on an intuitive level
the relationship between verification in dynamic logic on one hand, and abstract
interpretation on the other hand.

Outline Section 7.1 sets the stage by defining control flow graphs, which are
useful for talking about abstract interpretation concepts. At the core of ab-
stract interpretation is the notion of abstract domains, which is introduced in
Section 7.2. Section 7.3 describes how one abstract domain can be used to ap-
proximate another, more concrete abstract domain. An alternative to using one
abstract domain to approximate another is to further approximate within a single
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abstract domain via a so-called widening, as described in Section 7.4. Section 7.5
discusses strategies for fixed-point computation. Some abstract domains are de-
scribed in Section 7.6, and some tools implementing abstract interpretation are
mentioned in Section 7.7. The final Section 7.8 provides conclusions.

7.1. Control Flow Graphs

For describing static analysis techniques such as abstract interpretation, it is
customary to represent programs as control flow graphs. The advantage of such
a representation is that it makes control flow through the program—especially
through loops—more explicit than a representation as source code. Definition 7.1
below defines a form of control flow graphs based on sets Cond (thought of as side-
effect free boolean expressions) and Asgn (thought of as assignment statements).

Definition 7.1 (Control flow graphs). Given sets Cond and Asgn, a control
flow graph is a finite, directed, rooted, labelled graph, where the set of nodes is
partitioned as follows:
• There is exactly one node labelled entry. It has no predecessors and one

successor.
• There is exactly one node labelled exit. It has one predecessor and no

successor.
• There can be nodes labelled with an element of Cond. They have one pre-

decessor and one successor.
• There can be nodes labelled with an element of Asgn. They have one pre-

decessor and one successor.
• There can be nodes labelled branch. They have one predecessor and two

successors.
• There can be nodes labelled junction. They have two predecessors and one

successor.

The edges of control flow graphs in the sense of Definition 7.1 represent control
states. They are also called program points. If we choose Cond as the set of
all side-effect free boolean Java expressions and Asgn as the set of all elemen-
tary Java assignments, then we can represent a Java program fragment (without
method calls) as a control flow graph in a straightforward fashion (made slightly
complicated only by the exception facilities of the Java language).

Example 7.1. Figure 7.1 shows a control flow graph representation for the Java
implementation of the selection sort algorithm shown in Figure 5.14. Branch and
junction nodes are depicted as circles. Note that other control flow graph repre-
sentations of the same program are possible, and that for simplicity, all excep-
tional behaviour—such as testing for null before dereferencing a and throwing
NullPointerExceptions when applicable—is omitted in the graph. ∗
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entry

i=0;

(outer loop entry)

i<a.length

minIndex=i;

j=i+1;

(inner loop entry)

j<a.length

a[j]<a[minIndex]

minIndex=j;

!a[j]<a[minIndex]

j++;

!j<a.length

tmp=a[i];

a[i]=a[minIndex];

a[minIndex]=tmp;

i++;

!i<a.length

exit

Figure 7.1.: Control flow graph for selection sort

7.2. Abstract Domains

A particular abstract interpretation is defined by fixing a so-called abstract do-
main, whose foundation is a set L of abstract states which the program is eval-
uated in. An abstract state can be thought of as representing a set of concrete
states. The set of abstract states is partially ordered by a relation v, where a
smaller abstract state is more “precise” than a larger abstract state, in the sense
that it stands for a smaller set of concrete states. Formally, (L,v) is a partially
ordered set, and often it is even a lattice or a complete lattice.

Definition 7.2 (Partially ordered sets, lattices, complete lattices).
• A partially ordered set is a pair (L,v) where L is a set and v a partial

order or L, i.e., a binary relation on L which is reflexive, transitive and
antisymmetric.
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true

a ≤ 0 0 ≤ a

a < 0 a
.
= 0 0 < a

false

true

. . . a
.
= −2 a

.
= −1 a

.
= 0 a

.
= 1 a

.
= 2 . . .

false

Figure 7.2.: Abstract state lattices for signs analysis (left) and for constant
propagation analysis (right), with a single integer program vari-
able a

• A lattice is a partially ordered set (L,v) where for every pair (l1, l2) ∈ L2

there is a greatest lower bound l1 u l2 and least upper bound l1 t l2.
• A complete lattice is a lattice where for all subsets S ⊆ L (not just those

with cardinality 2) there is a greatest lower bound
d
S and a least upper

bound
⊔
S.

Example 7.2.

• For every Kripke structure K, the power set of its states together with set
inclusion (2S ,⊆) is a complete lattice, where for all T ⊆ 2S the greatest
lower bound is

d
T =

⋂
T , and the least upper bound is

⊔
T =

⋃
T . (More

generally, (2S ,⊆) is a complete lattice for every set S.)
• Let ⇒ be the binary relation on FmaΣ where for all ϕ1, ϕ2 ∈ FmaΣ, we

have ϕ1 ⇒ ϕ2 if and only if |= ϕ1 → ϕ2. The pair (FmaΣ,⇒) is not
a partially ordered set, because ⇒ is not antisymmetric: for example, we
have true ⇒ (true∧true) and (true∧true)⇒ true, but true 6= (true∧true).
• Let⇔ be the equivalence relation on FmaΣ where for all ϕ1, ϕ2 ∈ FmaΣ, we

have ϕ1 ⇔ ϕ2 if and only if |= ϕ1 ↔ ϕ2. The quotient set of formulas with
respect to ⇔ (FmaΣ/⇔,⇒) is a lattice, where for all ϕ1, ϕ2 ∈ FmaΣ/⇔,
the greatest lower bound is ϕ1 uϕ2 = ϕ1 ∧ϕ2 and the least upper bound is
ϕ1 t ϕ2 = ϕ1 ∨ ϕ2. It is not complete, because infinite sets of formulas do
not in general have a greatest lower and least upper bound.
• Let a : Int ∈ PV. Then

(
{(a .

= 0), (a < 0), (0 < a), (a ≤ 0), (0 ≤ a), false,
true}, ⇒

)
is a complete lattice. It is visualised in the left half of Figure 7.2.

• Let a : Int ∈ PV. Then
(
{a .

= z | z ∈ Z} ∪ {false, true}, ⇒
)

is a complete
lattice. It is visualised in the right half of Figure 7.2. ∗

Note that the symbol ⇒ is also used for the sequent arrow (Definition 5.6).
It should always be clear from the context which of the two meanings of ⇒ is
intended.
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Abstract interpretation involves computing fixed points of functions over par-
tially ordered sets. It is often required that the involved functions are monotonic
or even continuous, where continuity implies monotonicity.

Definition 7.3 (Fixed points, monotonicity, continuity).

• For a set L and a function f :L → L, an element l ∈ L is called a fixed
point of f if f(l) = l.
• For a partially ordered set (L,v), a function f :L→ L is called monotonic

if for all l1, l2 ∈ L with l1 v l2 we have f(l1) v f(l2).
• For a complete lattice (L,v), a function f :L → L is called continuous if

for all S ⊆ L we have f(
⊔
S) =

⊔
f(S).

We are now ready to define the core notion of abstract interpretation theory,
namely that of an abstract domain.

Definition 7.4 (Abstract domains). Given sets Cond and Asgn, an abstract
domain A is a tuple

A = (L,v,⊥,>, constrain, update,merge),

where

• (L,v) is a partially ordered set with least element ⊥ and largest element >,
• constrain :L× Cond → L is monotonic in its first argument,
• update :L×Asgn → L is monotonic in its first argument,
• merge :L× L→ L is commutative, and monotonic in both arguments.

Intuitively, constrain(l, b) is the abstract state obtained by starting in the ab-
stract state l and adding the assumption that the condition b holds. Similarly,
update(l, a = t) is the abstract state where we start in l and then execute the
assignment a = t. At junction points in the control flow graph, two abstract
states l1 and l2 are combined into a single abstract state merge(l1, l2). If (L,v)
is a lattice, then merge is typically defined to be the lattice join operator, i.e.,
merge(l1, l2) = l1 t l2.

For an abstract domain A = (L,v,⊥,>, constrain, update,merge) and a con-
trol flow graph with program points PP , we are interested in functions PP → L,
which map every program point to an element of L. The abstract domain and
the control flow graph together give rise to a transfer function that transforms
one function PP → L into another.

Definition 7.5 (Transfer function). For an abstract domain A and a control flow
graph with program points PP, the transfer function stepA : (PP → L)→ (PP →
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L) is defined by

stepA(m)(pp) =



> if label(x) = entry

constrain
(
m(in(1, x)), cond

)
if label(x) = cond ∈ Cond

update
(
m(in(1, x)), asgn

)
if label(x) = asgn ∈ Asgn

m(in(1, x)) if label(x) = branch

merge
(
m(in(1, x)),m(in(2, x))

)
if label(x) = junction

for all m : PP → L and all pp = (x→ y) ∈ PP, where label(n) denotes the label
of node n, and where in(i, n) denotes the ith incoming edge of node n.

This definition corresponds to a forward analysis of the program: the abstract
state associated with a program point is defined via the abstract states of its
predecessors in the control flow graph. A dual definition where the value of
a program point is computed from it successors is equally possible (backward
analysis).

In the following, we are interested in fixed points of stepA. Most interesting
are small fixed points, according to the partial order that results from lifting
the relation v on L to a relation on PP → L in a pointwise manner: for all
m1,m2 : PP → L, we define m1 v m2 to hold exactly if for all pp ∈ PP we
have m1(pp) v m2(pp). If (L,v) is a (complete) lattice, then (PP → L,v)
also is, and the monotonicity of constrain, update and merge implies that the
transfer function stepA is monotonic, too. The function >̄ : PP → L that maps
all program points to > ∈ L is usually a fixed point of stepA, albeit not a very
interesting one.

Example 7.3 (Static semantics). Let Cond be the set of side-effect free boolean
Java expressions, let Asgn be the set of elementary Java assignments, let K be
a Kripke structure K with states S, and let β be a variable assignment. We
consider the abstract domain

(2S ,⊆, ∅,S, constrain, update,∪),

where for all l ∈ 2S , all b ∈ Cond , and all (a = t) ∈ Asgn:

constrain(l, b) = {s ∈ l | (K, s, β) |= b
.
= TRUE}

update(l, a = t) = {s2 ∈ S | there is s1 ∈ l such that (s1, s2) ∈ ρ(a = t)}

This abstract domain precisely models the semantics of the considered program-
ming language constructs. Its transfer function stepA has a least fixed point,
which associates with every program point the set of states that can possibly
occur at the program point. This kind of abstract domain is called the static
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semantics by Cousot and Cousot [1977], and—perhaps more descriptively—the
accumulating semantics by Jones and Nielson [1995]. In contrast, an operational
semantics defines the individual sequences of states that a program gives rise
to. Considering only the sets of states attached to program points is sufficient
for many purposes [Floyd, 1967]. In particular, verifying a program with respect
to safety assertions such as postconditions amounts to checking whether these
assertions are satisfied in all states possible at the program points to which they
are attached.

The static semantics cannot be implemented as a program analysis, for example
because the abstract states (themselves being arbitrary sets of concrete states)
cannot efficiently be represented in computer memory. The abstract domains
used in practice are usually approximations of the static semantics, as described
in Section 7.3. Example 7.4 below is an example for such a more approximative
abstract domain. ∗

Example 7.4 (Constant propagation analysis). Constant propagation is a pro-
gram optimisation routinely performed by compilers. It consists in replacing
occurrences of program variables that have a statically constant value by the cor-
responding constant. Which occurrences are guaranteed to have which constant
values is detected by a simple data flow analysis, which we can understand as an
abstract interpretation.

Let Cond and Assgn be as in Example 7.3, and let a : Int ∈ PV be the only
program variable we are interested in (the generalisation is straightforward). The
abstract domain of constant propagation analysis is

A = (L,⇒, false, true, constrain, update,merge),

where:

L = {a .
= z | z ∈ Z} ∪ {false, true}

constrain(ϕ, b) = ϕ

update(ϕ, a = t) =


false if ϕ = false

a
.
= z if ϕ 6= false, t = z ∈ Z

true otherwise

merge(ϕ1, ϕ2) =


ϕ1 if ϕ1 = ϕ2 or ϕ2 = false

ϕ2 if ϕ1 = false

true otherwise

The complete lattice (L,⇒) of abstract states is visualised in Figure 7.2. Note
that constrain(ϕ, b) overapproximates ϕ ∧ (b

.
= TRUE ), and that merge(ϕ1, ϕ2)
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overapproximates ϕ1 ∨ ϕ2: we have ϕ ∧ (b
.
= TRUE ) ⇒ constrain(ϕ, b) and

ϕ1 ∨ ϕ2 ⇒ merge(ϕ1, ϕ2). Similarly, update overapproximates the result of the
assignment on ϕ: the resulting formula is implied by the strongest postcondition
of ϕ and the assignment. As defined here, the results of constrain, update and
merge are not the most precise approximations expressible in L. We could for
example sharpen the definition of constrain by taking into account the condition b
if it is of a representable form (e.g., a == 3), instead of ignoring it altogether. ∗

In general, the transfer function stepA does not necessarily have a fixed point,
much less a unique least fixed point. This is only guaranteed if some further condi-
tions apply. If, for example, the partially ordered set (L,v) is a complete lattice,
then a well-known fixed point theorem (repeated in Proposition 7.1 below) tells
us that stepA has a least fixed point. If additionally stepA is continuous, then
another fixed point theorem (also in Proposition 7.1) states that additionally,
the least fixed point of stepA is the least upper bound of the “Kleene sequence”
⊥̄, stepA(⊥̄), step2

A(⊥̄), . . . , where ⊥̄ : PP → L is the function that maps all pro-
gram points to ⊥ ∈ L.

Proposition 7.1 (Two fixed-point theorems [Tarski, 1955; Cousot and Cousot,
1977]).
• If (L,v) is a complete lattice and if f :L → L is monotonic, then the set

of fixed points of f is also a complete lattice, where the least fixed point isd
{l | f(l) v l} and the largest fixed point is

⊔
{l | l v f(l)}.

• If (L,v) is a complete lattice with least element ⊥ and if f :L → L is
continuous, then the least fixed point of f is

⊔
{fn(⊥) | n ∈ N}.

These theorems guarantee the existence of the least fixed point for the static
semantics discussed in Example 7.3. However, even if the least fixed point of the
transfer function stepA exists, this does not imply that it can be computed. This
is only possible if the abstract domain satisfies further constraints. In particular,
it is helpful if the set of abstract states satisfies the ascending chain condition.

Definition 7.6 (Ascending chain condition). A partially ordered set (L,v) sat-
isfies the ascending chain condition if for all ascending chains l1 v l2 v . . . there
is n ∈ N such that for all m ∈ N with n < m we have lm = ln.

If stepA is continuous, if (L,v) satisfies the ascending chain condition, and if
stepA can be computed, then the least fixed point of stepA can also be computed:
by Proposition 7.1, the fixed point is the least upper bound of the Kleene sequence
⊥̄, stepA(⊥̄), step2

A(⊥̄), . . . . Because of the monotonicity of stepA, the sequence
is an ascending chain: ⊥̄ v stepA(⊥̄) v step2

A(⊥̄) v . . . . By the ascending chain
condition, the sequence stabilises at the least fixed point after finitely many steps.
This is the case for constant propagation analysis, which has been introduced in
Example 7.4 and which we return to in Example 7.5 below.
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entry

1

a < 0

2

!(a < 0)

3

a = 0;

4
a = 2;

5

a = a + b;

6

8

7

exit

9

Figure 7.3.: Example program for constant propagation analysis (Example 7.5)

⊥̄ stepA(⊥̄) step2
A(⊥̄) step3

A(⊥̄) step4
A(⊥̄) step5

A(⊥̄) step6
A(⊥̄)

1 false true true true true true true
2 false false true true true true true
3 false false true true true true true
4 false false false true true true true
5 false false false true true true true
6 false false false false a

.
= 0 a

.
= 0 a

.
= 0

7 false false false false a
.
= 2 a

.
= 2 a

.
= 2

8 false false false false false true true
9 false false false false false a

.
= 2 true

Table 7.1.: Results of constant propagation analysis (Example 7.5)

Example 7.5 (Constant propagation analysis, continued). In the constant prop-
agation domain, (L,⇒) is a complete lattice that satisfies the ascending chain
condition, and the fixed point of stepA can effectively be computed. As an ex-
ample, consider the simple program in Figure 7.3, whose program points are
identified with integers between 1 and 9. Table 7.1 shows the Kleene sequence
leading to the least fixed point for this program, which is step6

A(⊥̄) = step7
A(⊥̄).

A compiler could derive from this result that it is safe to replace the occurrence
of a on the right hand side of the assignment a = a + b by 0. A program verifier
could derive that, e.g., an assertion a

.
= 0 attached to program point 6 is always

satisfied. ∗

Like we have done for the domain of constant propagation analysis and for
the domain of signs analysis (which tracks the signs of the occurring variables,
Figure 7.2), the base sets of many other domains can also be viewed as subsets
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of FmaΣ. The formulas attached to each program point in the fixed point of
the transfer function then describe upper limits on the sets of states that can
occur there in real executions. For example, false means that the program point
is unreachable; 0 ≤ a means that only states where a is evaluated to a non-
negative value are possible at the program point; and true means that there
are no known restrictions on the states possible at the program point. Such
formulas are called invariants [Floyd, 1967]. The loop invariants needed by the
loopInvariant rule of JavaDL* are special cases of invariants in this sense, where
the program point is a loop entry point (such as the loop entry points marked in
Figure 7.1). Loop invariants are the most interesting invariants, because (barring
recursion) all others can easily be derived by computing weakest preconditions
or strongest postconditions. Thus, we can view abstract interpretation as being
all about generating loop invariants.

7.3. Consistency of Abstract Domains

When using an approximative abstract domain, such as the constant propagation
domain of Examples 7.4 and 7.5, we may want it to be a “correct” approximation
of another abstract domain, such as the static semantics of Example 7.3. The
notion of correctness is formalised in Definition 7.7 below.

Definition 7.7 (Consistent abstract domains). Given two abstract domains

C = (LC ,vC ,⊥C ,>C , constrainC , updateC ,mergeC)

A = (LA,vA,⊥A,>A, constrainA, updateA,mergeA),

we say that A is consistent with C if there are monotonic functions α :LC → LA
and γ :LA → LC such that the following holds for every control flow graph with
program points PP:

1. for all a ∈ LA: a = α(γ(a)),
2. for all c ∈ LC : c vC γ(α(c)), and
3. for all m : PP → PP: γ̄

(
stepA(ᾱ(m))

)
v stepC(m),

where ᾱ : (PP → LC ) → (PP → LA) and γ̄ : (PP → LA) → (PP → LC) are
the pointwise extensions of α and γ, i.e., for all pp ∈ PP we have ᾱ(m)(pp) =
α(m(pp)) and γ̄(m)(pp) = γ(m(pp)).

The function α is called an abstraction function, and γ is called a concretisa-
tion function. The first requirement of Definition 7.7 expresses that the composite
function α ◦ γ is the identity function, i.e., that concretising an abstract element
and subsequently abstracting again does not have any effect. The second require-
ment demands that abstracting and subsequently concretising again can make the
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mA m′
A

mC m′
C

v

ᾱ

stepA

γ̄

stepC

Figure 7.4.: Consistent abstract domains: graphic representation of Defini-
tion 7.7 (3)

concrete element larger (i.e., less precise) but never smaller (which would be in-
correct). The third requirement is visualised in Figure 7.4. Intuitively, it states
that the transfer function of A correctly approximates the transfer function of C.

Example 7.6. The domain of constant propagation analysis (Examples 7.4
and 7.5) is consistent with the static semantics (Example 7.3), where α and
γ are as follows:

α(l) =


false if l = ∅
a
.
= z if l 6= ∅ and if for all s ∈ l : s(a) = z

true otherwise

γ(ϕ) =


∅ if ϕ = false

{s ∈ S | s(a) = z} if ϕ = a
.
= z

S if ϕ = true

for all l ∈ 2S and for all ϕ ∈ {a .
= z | z ∈ Z} ∪ {false, true}.

Let for example l = {s1, s2} ∈ 2S , where s1(a) = 1 and s2(a) = 2. Then
α(l) = true, and γ(α(l)) = S ⊃ l. ∗

Consistency of two abstract domains A and C implies that the results of A are
correct approximations of the results of C, in the sense that the concretisation of
the least fixed point of stepA is larger or equal than least fixed point of stepC .

7.4. Widening

If an abstract domain does not satisfy the ascending chain condition, or if its fixed
points cannot practically be computed for some other reason, then one solution
is to approximate it with a more abstract domain, as discussed in Section 7.3.
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An alternative is to further approximate within the abstract domain itself, using
a so-called widening operator.

Definition 7.8 (Widening operators). A widening operator for a partially or-
dered set (L,v) is a function widen :L× L→ L such that

• for all l1, l2 ∈ L: l1 v widen(l1, l2) and l2 v widen(l1, l2)
• for all infinite sequences l0, l1, l2 . . . of elements of L, the sequence defined

by

sn =

{
l0 if n = 0

widen(sn−1, ln) otherwise

is not strictly ascending.

Example 7.7 (Intervals analysis). Let Cond and Assgn be as in Examples 7.3
and 7.4, and let a : Int ∈ PV be the only program variable we are interested in
(the generalisation is straightforward). Let the notation t1 ≤ t2 ≤ t3 (where
t1, t2, t3 ∈ TermInt

Σ ) be an abbreviation for the formula t1 ≤ t2 ∧ t2 ≤ t3, and let
−∞ ≤ t and t ≤ ∞ (where t ∈ TermInt

Σ ) be abbreviations for the formula true.
We use the set L ⊆ FmaΣ defined by

L =
{
z ≤ a ≤ z′ | z ∈ Z ∪ {−∞}, z′ ∈ Z ∪ {∞}, z ≤ z′

}
∪ {false}

as the set of abstract states of an abstract domain that tracks the intervals in
which the value of a must be. This abstract domain is strictly more expressive
than the constant propagation domain of Examples 7.4 and 7.5. (L,⇒) is a com-
plete lattice, but it does not satisfy the ascending chain condition. For example,
a strictly ascending chain of infinite length is (0 ≤ a ≤ 0)⇒ (0 ≤ a ≤ 1)⇒ (0 ≤
a ≤ 2)⇒ . . . .

We define a widening operator widen :L× L→ L as follows:

widen(l1, l2) =



l2 if l1 = false

l1 if l2 = false

z1 ≤ a ≤ z′1 if l1 = (z1 ≤ a ≤ z′1), l2 = (z2 ≤ a ≤ z′2),

z1 ≤ z2, z′2 ≤ z′1
−∞ ≤ a ≤ z′1 if l1 = (z1 ≤ a ≤ z′1), l2 = (z2 ≤ a ≤ z′2),

z2 < z1, z′2 ≤ z′1
z1 ≤ a ≤ ∞ if l1 = (z1 ≤ a ≤ z′1),l2 = (z2 ≤ a ≤ z′2),

z1 ≤ z2, z′1 < z′2
−∞ ≤ a ≤ ∞ otherwise
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For the above sequence (0 ≤ a ≤ 0), (0 ≤ a ≤ 1), (0 ≤ a ≤ 2), . . . , the corre-
sponding “widened” sequence

s0 = 0 ≤ a ≤ 0

s1 = widen(0 ≤ a ≤ 0, 0 ≤ a ≤ 1) = 0 ≤ a ≤ ∞
s2 = widen(0 ≤ a ≤ ∞, 0 ≤ a ≤ 2) = 0 ≤ a ≤ ∞
. . .

stabilises at 0 ≤ a ≤ ∞. ∗

Definition 7.9 below defines an adapted version of the transfer function of
Definition 7.5 that applies a widening operator at pre-selected widening points in
the control flow graph.

Definition 7.9 (Transfer function with widening). For an abstract domain A
with a widening operator widen, for a control flow graph with program points
PP, and for a set WP ⊆ PP of widening points, the transfer function with
widening wstepA : (PP → L)→ (PP → L) is defined by

wstepA(m)(pp) =

{
widen

(
m(pp), stepA(m)(pp)

)
if pp ∈WP

stepA(m)(pp) otherwise

for all m : PP → L and all pp ∈ PP.

Note that widening operators are not required to be monotonic. For example,
the widening operator of Example 7.7 is not monotonic in its first argument: we
have 0 ≤ a ≤ 1⇒ 0 ≤ a ≤ 2, but widen(0 ≤ a ≤ 1, 0 ≤ a ≤ 2) = 0 ≤ a ≤ ∞ 6⇒
0 ≤ a ≤ 2 = widen(0 ≤ a ≤ 2, 0 ≤ a ≤ 2). As a consequence, wstepA is also
not necessarily monotonic. Nevertheless, Proposition 7.2 below establishes that
if the widening points are chosen properly, then the properties of widen ensure
that iteratively applying it to ⊥ leads to an ascending chain that even stabilises
at a fixed point.

Proposition 7.2 (Stabilisation of wstepA [Cousot and Cousot, 1977]). For any
abstract domain with widening, any control flow graph, and any choice of WP
satisfying that all cycles in the control flow graph contain at least one widening
point, there is m ∈ N such that the sequence defined by

sn = wstepnA(⊥̄)

(for all n ∈ N) satisfies

s0 @ · · · @ sm = sm+1 = . . .
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In structured programs, we can choose the loop entry points as the widening
points WP . This ensures that every cycle passes through at least one such point.

Example 7.8. (Intervals analysis, continued) We continue with the intervals
domain and its widening operator introduced in Example 7.7. Figure 7.5 contains
an example program with a simple loop, where the program points are identified
with integers 1 to 8. We choose the set of widening points as WP = {3}. Other
valid choices would be {4}, {6}, {8}, or supersets thereof.

The interesting steps of analysing the example program are listed in Table 7.2.
We assume canonical interval-arithmetic definitions of the functions merge, update
and constrain; for example, we have merge(z1 ≤ a ≤ z′1, z2 ≤ a ≤ z′2) =(
min(z1, z2) ≤ a ≤ max (z′1, z

′
2)
)
.

In the first two iterations, the abstract state of the widening point 3 is computed
as

widen
(
false, merge(false, false)

)
= widen(false, false) = false.

In the third iteration, this changes to

widen
(
false, merge(0 ≤ a ≤ 0, false)

)
= widen(false, 0 ≤ a ≤ 0) = 0 ≤ a ≤ 0.

In iterations four to six, the same abstract state for program point 3 is computed
as

widen
(
0 ≤ a ≤ 0, merge(0 ≤ a ≤ 0, false)

)
= widen(0 ≤ a ≤ 0, 0 ≤ a ≤ 0) = 0 ≤ a ≤ 0.

In the seventh iteration, we get a new abstract state, namely

widen
(
0 ≤ a ≤ 0, merge(0 ≤ a ≤ 0, 1 ≤ a ≤ 1)

)
= widen(0 ≤ a ≤ 0, 0 ≤ a ≤ 1) = 0 ≤ a ≤ ∞.

Iterations eight to ten propagate this “widened” abstract state to the successors
of program point 3 in the graph. The abstract state of program point 3 itself
does not change:

widen
(
0 ≤ a ≤ ∞, merge(0 ≤ a ≤ 0, 1 ≤ a ≤ 1)

)
= widen(0 ≤ a ≤ ∞, 0 ≤ a ≤ 1) = 0 ≤ a ≤ ∞.

In iteration eleven, the abstract state of program point 3 still does not change:

widen
(
0 ≤ a ≤ ∞, merge(0 ≤ a ≤ 0, 1 ≤ a ≤ ∞)

)
= widen(0 ≤ a ≤ ∞, 0 ≤ a ≤ ∞) = 0 ≤ a ≤ ∞.

Because the abstract states of the other program points also do not change,
wstep10

A (⊥̄) = wstep11
A (⊥̄) is a fixed point of wstepA. It is larger than the least

fixed point of stepA, where the abstract state of program points 3 to 7 is 0 ≤ a ≤
10, and where the abstract state of program point 8 is 1 ≤ a ≤ 10. ∗

178



7.5. Iteration Strategies

entry

a = 0;

1

2

3 (widening point)

a < 10

4

!(a < 10)

5

a = a + 1;

6

8

exit

7

Figure 7.5.: Example program for intervals analysis (Example 7.8)

⊥̄ wstep2
A(⊥̄) wstep3

A(⊥̄) wstep6
A(⊥̄) wstep7

A(⊥̄) wstep10
A (⊥̄)

1 false true true true true true
2 false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ 0
3 false false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ ∞ 0 ≤ a ≤ ∞
4 false false false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ ∞
5 false false false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ ∞
6 false false false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ ∞
7 false false false 0 ≤ a ≤ 0 0 ≤ a ≤ 0 0 ≤ a ≤ ∞
8 false false false 1 ≤ a ≤ 1 1 ≤ a ≤ 1 1 ≤ a ≤ ∞

Table 7.2.: Results of intervals analysis (Example 7.8)

Cousot and Cousot [1992] show that using widening is in general more powerful
than approximating by introducing a consistent abstract domain that satisfies
the ascending chain condition. The intuitive reason is that widening allows to
approximate dynamically, without limiting the abstract domain in advance. As
a complement to widening, Cousot and Cousot [1977] also define the concept
of narrowing , which serves to retrospectively undo some of the approximation
caused by widening. Narrowing is less commonly used than widening and not
covered here.

7.5. Iteration Strategies

As we have seen, analysing a program consists in computing the “Kleene se-
quence” ⊥̄, stepA(⊥̄), step2

A(⊥̄), . . . (or with wstepA instead of stepA) until a
fixed point is reached. Each application of the transfer function amounts to
updating the abstract states of all program points, in parallel. However, imple-
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menting the analysis like this is not very efficient, because it does not take into
account the control flow of the program. Therefore, as Cousot and Cousot [1977]
state: “In practice efficient versions of Kleene’s sequence are used. These consist
in a symbolic execution of the program which propagates information along paths
of the program until stabilization.”

Cousot and Cousot [1977] call such versions of the Kleene sequence chaotic
iterations. They can formally be defined as follows.

Definition 7.10 (Chaotic iterations). For a control flow graph with program
points PP, a partially ordered set (L,v), and a function f : (PP → L)→ (PP →
L), a chaotic iteration for f is a sequence of mappings mn : PP → L (n ∈ N)
defined by

mn(pp) =


⊥ if n = 0

f(mn−1)(pp) if 0 < n, pp ∈ Jn
mn−1(pp) otherwise

where for every n ∈ N the set Jn ⊆ PP is arbitrary, except that there must be
some n0 ∈ N which satisfies that for all n and all pp, there is a k ∈ {n, . . . , n+n0}
such that pp ∈ Jk.

The function f can be stepA or wstepA for some abstract domain A. In the
nth step of computing a chaotic iteration, only the abstract states of the program
points in the set Jn are updated, while the others are left unchanged over iteration
n− 1. The restriction on the choice of the sets Jn ensures that no program point
is omitted indefinitely. For a loop-free program, the most natural and efficient
chaotic iteration is to choose the sets Jn such that the updating process follows
the topological order of the control flow graph. The best strategy to handle
loops is probably to stabilise each loop by recursively stabilising its subloops
[Bourdoncle, 1993]. This corresponds to the intuition of symbolic execution.

7.6. Example Abstract Domains

The abstract interpretation concepts covered so far are independent of the in-
ternals of the employed abstract domain. They can be used as a framework for
implementing generic abstract interpreters, into which abstract domains can be
plugged modularly (see for example the work of Spoto [2005]; Laviron and Lo-
gozzo [2009]). The abstract domains then do the core work of the actual program
analysis. This section sketches some instances of abstract domains: domains deal-
ing with numerical properties (Subsection 7.6.1), domains dealing with pointer
structures (Subsection 7.6.2), and domains dealing with modified or read memory
locations (Subsection 7.6.3).
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7.6.1. Numerical Domains

We have already looked at the numerical domains of signs (Figure 7.2), constants
(Figure 7.2 and Examples 7.4, 7.5 and 7.6) and intervals (Examples 7.7 and 7.8).
All these domains are so-called non-relational domains: they treat program vari-
ables separately, and are not able to consider relationships between them (such
as a < b, without knowing anything about the absolute values of a and b).

A well-known relational numerical domain is the octagons domain of Miné
[2006]. It derives invariants that are conjunctions of formulas ±a± b ≤ z, where
a and b are program variables, and where z ∈ Z (or R). The name comes from
the fact that geometrically, formulas of this form correspond to polyhedra with
at most eight sides in Z2.

Another relational domain is the polyhedra domain of Cousot and Halbwachs
[1978], where the abstract states are conjunctions of formulas

∑n
i=1 zi ∗ ai ≤ z,

where zi, z ∈ Z (or R) and where the ai are program variables. These linear-
arithmetic constraints correspond to geometrical polyhedra in Zn. Constants,
intervals, octagons, and polyhedra are strictly ordered by precision, where con-
stants are least and polyhedra most precise. Accordingly, complexity and com-
putational cost increase from the constants to the polyhedra domain. Devising
numerical abstract domains that are close to polyhedra in expressiveness but less
computationally expensive is an area of active research [Laviron and Logozzo,
2009].

7.6.2. Pointer Structure Domains

In heap-manipulating programs, a common error symptom is dereferencing the
null reference. Thus, guaranteeing the absence of such problems is an obvious
goal for (lightweight) verification. A popular approach for this are type systems,
such as the type system of Fähndrich and Leino [2003]: for each reference type,
one introduces a possibly-null and a non-null version of the type. Attempts to
assign a possibly-null value to a non-null location then show up as type errors.
However, statically checking the validity of downcasts from the possibly-null to
the non-null type is beyond the power of (usual) type systems. It is not beyond
the power of abstract interpretation, where an abstract domain can be used that
tracks properties of the form a

.
= null and a 6 .= null. An analysis of this kind is

for example used in the FindBugs tool [Hovemeyer et al., 2006].

While such a null pointer analysis only cares about references being null or
not, a points-to analysis [Milanova et al., 2002; Sălcianu and Rinard, 2005] more
generally attempts to track which reference-type locations may point to which
objects. A common abstraction technique in points-to analysis is to identify an
object with the allocation statement (in Java, the new statement) that creates
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it. This means that multiple objects created by the same statement, e.g., by an
allocation statement in a loop, are not distinguished in the abstraction.

Another name for analyses dealing with pointer structures is shape analysis
[Wilhelm et al., 2000]. Analyses going under this name tend to be more ambitious
(and thus more computationally expensive) than what is commonly called points-
to analysis. For example, a shape analysis might attempt to track whether a
pointer structure is a cycle-free singly linked list, or similarly complex properties
of the heap.

7.6.3. Write and Read Effects, Information Flow

Write effects analysis (or side effects analysis) aims at determining which loca-
tions can at most be modified by a program. In the design by contract termi-
nology, this means inferring or checking modifies clauses. Similarly, read effects
analysis tracks which locations are at most read, which corresponds to inferring or
checking depends clauses. Such analyses are often built on an underlying points-
to analysis [Milanova et al., 2002; Sălcianu and Rinard, 2005; Rakamarić and Hu,
2008]. Spoto and Poll [2003] construct a write effects analysis for checking JML
assignable clauses as a stand-alone abstract domain.

The task of read effects analysis can be rephrased as analysing from which
input location there is a flow of information to any output location. A natural
generalisation is to ask “from which inputs may there be a flow of information to
which outputs?”. Analysis of such questions is known as information flow anal-
ysis [Sabelfeld and Myers, 2003]. Often, type systems are used for information
flow analysis, but abstract interpretation based approaches also exist [Barbuti
et al., 2002; Francesco and Martini, 2006].

7.7. Tools

To illustrate current uses of abstract interpretation, this section briefly describes
a few exemplary tools, without aiming at completeness.

ASTRÉE [Cousot et al., 2005; Blanchet et al., 2003] is an abstract interpreta-
tion based tool that aims at the automatic and sound verification of the absence
of program run-time errors, such as array index out of bounds or division by zero
errors. In addition, ASTRÉE can verify user-specified assertions. Its target lan-
guage is a limited form of C; the list of unsupported features includes backwards
goto commands, unbounded recursion, and dynamic memory allocation. The
intended area of application is embedded safety-critical control software, where
the analysed C code is generated automatically from programs in a high-level
synchronous language such as Lustre [Caspi et al., 1987].

182



7.8. Conclusion

Internally, ASTRÉE uses a combination of several abstract domains, such as
octagons and specialised domains to handle floating-point numbers or digital fil-
ters. Most of the domains are infinite and do not satisfy the ascending chain
condition, and termination is ensured by non-monotonic widening. The abstrac-
tion is not the same at every program point; for example, the octagons domain
is parametrised by sets of program variables attached to the individual program
points, and only these variables are used for abstracting at the corresponding
program point.

As is characteristic for abstract interpretation, the analysis process itself is en-
tirely automatic. However, eliminating false alarms is a manual, iterative process,
where one needs to fine-tune the analyser to the particular application program
[Delmas and Souyris, 2007]. As an indication of the performance of ASTRÉE,
Cousot et al. [2005] report that a run on 70 000 lines of code lasted 46 minutes,
and one on 400 000 lines took about 12 hours.

PolySpace [PolySpace] is a commercial product of The MathWorks, Inc. Like
ASTRÉE, its goal is to soundly prove the absence of run-time errors by abstract
interpretation. PolySpace targets embedded software written in C/C++ or Ada,
and it internally makes use of the polyhedra domain (and probably others).

The Boogie verifier [Barnett et al., 2006] contains an abstract interpretation
module for inferring certain loop invariants automatically. It uses several base
domains, such as the polyhedra domain, and a coordinating “congruence-closure
domain” that deals with heap locations while pretending to the underlying base
domains that these locations are ordinary local variables [Chang and Leino, 2005].
Thus, the base domains need not be aware of the heap.

Clousot [Laviron and Logozzo, 2009] is a stand-alone verifier based on abstract
interpretation. It is used as the static checker in the Code Contracts project at
Microsoft Research [Fähndrich et al., 2010].

Besides complete tools that implement abstract interpretation, there are also
libraries that provide implementations of abstract domains for use in other tools.
Two such libraries, which implement well-known numerical abstract domains,
are the Parma Polyhedra Library [Bagnara et al., 2006] and the APRON library
[Jeannet and Miné, 2009].

7.8. Conclusion

This chapter has reviewed abstract interpretation, a generic theoretical frame-
work for static program analysis. A particular analysis is defined in the framework
by giving an abstract domain, which provides a set of “abstract states” together
with mathematical functions that describe the effect that the elementary con-
structs of the analysed programming language have on the abstract states. An
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abstract domain and a particular program induce a transfer function, such that
analysing the program means computing a fixed point of the transfer function.
The theory furthermore provides notions for soundly approximating a (perhaps
uncomputable or inefficient) abstract domain with another (more abstract, less
precise) abstract domain, and the concept of widening operators for approximat-
ing fixed points in abstract domains whose mathematical characteristics are less
than ideal.

Classical abstract domains deal with numerical properties of one or many pro-
gram variables. One limitation of these domains is that they do not support
quantifiers; extending numerical domains to support quantified properties is an
area of current research [Gulwani et al., 2008]. Non-numerical domains deal for
example with pointer structures on the heap, or with memory locations being
modified or read. A general observation is that these different classes of prop-
erties can influence each other in a program: for example, whether a reference
is null or not may depend on numerical properties, and vice versa. Thus, a
challenge in practice is to combine several abstract domains in a useful way.

We have seen that the abstract states of abstract domains can be understood as
logical formulas, although in implementations they are not typically represented
as such. The result of an analysis is a mapping of program points to invariants,
where the invariants attached to loop entry points are loop invariants in the sense
of Chapter 5. We have also seen that the fixed point computation in an analysis is
a form of symbolic execution. The relationship between abstract interpretation
and deductive verification in dynamic logic is further explored in Chapter 8,
where we see an approach for integrating a form of abstract interpretation into
JavaDL*.
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Dynamic Logic

In Chapter 7, we have reviewed the basics of abstract interpretation theory, and
observed similarities between abstract interpretation and deductive verification
in dynamic logic. Unlike usual abstract interpretations, the deductive approach
can, at least in principle, handle arbitrarily precise properties. This comes at the
cost of sometimes needing human interaction for proving the resulting first-order
problems, and at the cost of requiring manually specified loop invariants. This
chapter aims at alleviating the latter issue by integrating abstract interpretation
concepts into the deductive setting. We aim at a deep integration, where the log-
ical framework of JavaDL*—in particular its extensive set of symbolic execution
rules—is used for performing the invariant generation. In a shallow integration, a
separate abstract interpretation tool generates loop invariants that are then used
in a deductive proof. The advantage of a deep integration is that it avoids the
duplication of knowledge that goes along with a shallow integration, where the
semantics of the programming language and properties of the involved logical the-
ories are modelled both in the abstract interpreter and in the deductive verifier.

A form of abstract interpretation that is particularly suitable for a deep in-
tegration into dynamic logic is predicate abstraction [Graf and Säıdi, 1997]. In
predicate abstraction, the set of abstract states consists of Boolean combinations
of formulas from a predetermined, finite set, called the set of loop predicates.
Instead of using a transfer function that directly models the approximative effect
of program statements on abstract states, in predicate abstraction the program
is symbolically executed in a precise fashion, and the necessary approximation is
introduced by explicit abstraction steps, where an automated theorem prover is
used to determine an abstract state α(ϕ) that correctly approximates the current
concrete state represented by the formula ϕ. Compared with other forms of ab-
stract interpretation, a limitation of predicate abstraction is that it only supports
finite abstract domains. On the other hand, an advantage is that it allows flexibly
adapting the abstract domain by simply changing the set of loop predicates. In
the same vein, predicate abstraction can quite easily support complex, quantified
invariants [Flanagan and Qadeer, 2002]. It can be extended with an iterative re-
finement process that automatically adapts the domain to the particular problem
[Clarke et al., 2000].
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Outline A high level introduction to the approach is contained in Section 8.1. In
Section 8.2, new calculus rules are defined, and how these rules are to be used is
described in more detail in Section 8.3. Section 8.4 gives details on the predicate
abstraction scheme used in a prototypical implementation. The method is further
illustrated with the help of an example in Section 8.5, and practical experience
with the implementation is reported in Section 8.6. An extension for proofs of
dependency contracts is presented in Section 8.7. Section 8.8 gives an overview
of related work, and Section 8.9 contains conclusions.

8.1. Approach

We focus on proofs for Hoare-logic like proof obligations pre → [p]post in this
chapter, such as the proof obligation for method contracts of Chapter 5. We
consider only proof obligations where the employed modality is the box modality.
Automatically generating the variant terms necessary for additionally proving
termination is beyond the scope of this work.

Symbolically executing the program p of such a proof obligation in the JavaDL*
calculus produces proof nodes labelled with sequents of the form Γ⇒ {u}[p′]ϕ,∆.
Intuitively, these sequents can be read as “we associate with the program point
given as the first active statement of p′ the pair

(∧
(Γ ∪ ¬∆), u

)
”. The formula∧

(Γ ∪ ¬∆) and the update u together describe a set of states which may occur
at the program point. In this way, the symbolic execution process is related to
an abstract interpretation, where the set of abstract states is L =

(
(FmaΣ ×

UpdΣ)/⇔,⇒
)
, and where the partial order ⇒ is defined such that (ϕ1, u1) ⇒

(ϕ2, u2) holds if and only if for all Kripke structures K and all variable assignments
β we have {

valK,s,β(u1)(s) | s ∈ S, (K, s, β) |= ϕ1

}
⊆
{

valK,s,β(u2)(s) | s ∈ S, (K, s, β) |= ϕ2

}
.

A difference between the symbolic execution in the calculus and such an ab-
stract interpretation is in the treatment of control flow splits. The calculus han-
dles them by branching the proof tree, where the created branches remain sep-
arated permanently. On the other hand, abstract interpretation uses the merge
function of the abstract domain to combine properties at junction points in the
control flow graph (Definition 7.5). This corresponds to accumulating properties
for every program point, instead of treating the execution paths separately. For
loops, the unbounded number of execution paths makes such an accumulation
necessary; deductive verification “cheats” here by assuming to be given a loop
invariant, which already is an accumulated description of all paths through the
loop.
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We can overcome this difference by introducing a rule into the calculus that
merges several proof branches into one. For two branches Γ1 ⇒ [p]ϕ,∆1 and
Γ2 ⇒ [p]ϕ,∆2 (without updates in front of the modal operator), we can simply
use logical disjunction to “merge” the sequents into the single sequent

∧
(Γ1 ∪

¬∆1)∨
∧

(Γ2∪¬∆2)⇒ [p]ϕ. The merged sequent is equivalent to the conjunction
of the two original sequents. A rule that performs such a merging has a single
premiss and several conclusions. Allowing such rules means to generalise the
structure of proofs from trees to directed acyclic graphs which are connected and
rooted.

Merging two sequents Γ1 ⇒ {u1}[p]ϕ,∆1 and Γ2 ⇒ {u2}[p]ϕ,∆2 (containing
updates u1 and u2 in front of the modal operator) is slightly more complicated,
because there is no disjunction operator on updates. A solution is to convert
the updates into formulas in the antecedent, using the strongest postconditions
predicate transformer. For example, the sequents ⇒ {i := 0}[p]ϕ and ⇒ {i :=
1}[p]ϕ can be converted into the equivalent sequents i

.
= 0⇒ [p]ϕ and i

.
= 1⇒

[p]ϕ, which may then be merged into the sequent i
.
= 0 ∨ i .

= 1⇒ [p]ϕ.

Loops can now be treated in the calculus by applying the unwindLoop and
conditional rules of Figure 5.9, symbolically executing the body, and then merging
the resulting sequent (where the loop entry is again the first active statement)
with the previous such sequent. For example, we might begin with a sequent
⇒ {i := 0}[while(i<j) ...]ϕ, which says that we have to consider the loop
in all states where i has the value 0. After one iteration, we might arrive at
the sequent ⇒ {i := 1}[while(i<j) ...]ϕ, reflecting the fact that after this
iteration, i has been incremented by one. “Merging” these sequents yields the
sequent i

.
= 0 ∨ i

.
= 1 ⇒ [while(i<j) ...]ϕ. Thus, we know that after up to

one iteration through the loop, the value of i is either 0 or 1.

With every such iteration of unwinding, symbolically executing and merging,
the set of states that are deemed possible for the loop entry point becomes larger.
In principle, we only have to repeat this iterative process until this set of states
stabilises, i.e., until it is a fixed point of the process: once this happens, it covers
all states which are possible for the loop entry on any execution path, or in other
words, its representation as a formula then is a loop invariant. Having removed
the difference in the treatment of control flow splits and added the notion of
iterative fixed-point computation, the verification process can now really be seen
as an abstract interpretation on the above-mentioned abstract domain, where
the abstract states are pairs of formulas and updates. It uses a particular chaotic
iteration strategy of “symbolic execution” (Section 7.5).

To make the fixed point iteration in the calculus terminate, we need to intro-
duce approximation. A form of approximation particularly suitable in our context
is that of predicate abstraction [Graf and Säıdi, 1997; Flanagan and Qadeer, 2002]:
we assume that for every loop we are given a finite set P of formulas called loop
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predicates. Then, the abstraction of a formula ϕ for the entry point of a loop
is a Boolean combination αP (ϕ) of elements of P which is implied by the orig-
inal formula. That is, the abstraction retains the information from the formula
which is expressible by the predicates in P , and approximates away everything
else. Similar to how a widening operator can be applied at loop entry points
to ensure termination (Section 7.4), we can ensure termination by applying the
αP function to the current formula

∧
(Γ ∪ ¬∆) at every loop entry point, before

unwinding the loop with unwindLoop. As
∧

(Γ ∪ ¬∆) implies αP
(∧

(Γ ∪ ¬∆)
)
,

replacing the former with the latter is a sound deductive step. Since there are
only finitely many Boolean combinations of the predicates, there cannot be an
infinite ascending chain of formulas in the range of αP , so a fixed point must
be reached eventually. The found loop invariant can then be used to apply the
loopInvariant rule.

With predicate abstraction, the loop predicates P associated with a loop form
the building blocks for the invariants which can be found for that loop. Loop
predicates can either be specified manually—which is easier than having to spec-
ify whole, correct loop invariants—or be generated heuristically based on the
particular program and specification being verified.

8.2. Rules

In this section, the calculus of Chapters 5 and 6 is extended with four rules
that enable it to perform predicate abstraction based loop invariant inference
as described in Section 8.1: a rule for converting updates into formulas (Sub-
section 8.2.1), a rule for merging proof branches (Subsection 8.2.2), a rule for
“resetting” a proof branch to the sequent of an inner node of the proof (Sub-
section 8.2.3), and a rule performing the predicate abstraction itself (Subsec-
tion 8.2.4).

8.2.1. Converting Updates into Formulas

As indicated in Section 8.1, both the rule for merging proof branches (Subsec-
tion 8.2.2) and the rule for the abstraction step (Subsection 8.2.4) require that
the “current symbolic state” in the sequent is expressed exclusively through for-
mulas. Thus, we need a way to transform sequents of the form Γ ⇒ {u}[p]ϕ,∆
such that the leading update u is removed from the modality [p]. This can be
achieved with the shiftUpdate rule defined below.

Definition 8.1 (Rule shiftUpdate).

{u′}Γ, upd ⇒ ϕ, {u′}∆
Γ ⇒ {u}ϕ, ∆
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where:
• the function targets : UpdΣ → 2PV is defined by

targets(u) =


{a} if u = a := t

targets(u1) ∪ targets(u2) if u = u1 ‖u2

targets(u2) if u = {u1}u2

• targets(u) = {a1, . . . , an} (where 1 ≤ n)
• a′i :α(ai) ∈ F is a fresh constant symbol for all i ∈ {1, . . . , n}
• u′ = (a1 := a′1 ‖ . . . ‖ an := a′n)
• upd =

∧
i∈{1,...,n} ai

.
= {u′}{u}ai

Intuitively, the update u′ substitutes for each updated program variable ai a
fresh constant symbol a′i that represents the old, pre-update, value of a. The
formula upd links the old instances with the current ones. The new antecedent
({u′}Γ, upd) is the strongest postcondition of Γ under u (see also Section 5.1).

Example 8.1. Applying the shiftUpdate rule to the sequent

o.f
.
= 5 ⇒ {heap := store(heap, o2, f, 42)}[p]ϕ

yields the sequent

{heap := h′}(o.f .
= 5),

heap
.
= {heap := h′}{heap := store(heap, o2, f, 42)}heap

⇒ [p]ϕ,

where h′ : Heap ∈ F is a fresh constant symbol, and where the update u has been
“shifted” to the antecedent. Using the update rules of Figure 5.8, the sequent
can be simplified to

select Int(h
′, o, f)

.
= 5, heap

.
= store(h′, o2, f, 42) ⇒ [p]ϕ,

which does not contain updates any more. ∗

The disadvantages of applying shiftUpdate are that it introduces a new constant
h′, and that handling an update u is generally more efficient in the JavaDL*
calculus than handling a formula upd . This is the motivation for using updates as
long as possible, instead of using strongest postconditions for symbolic execution
right away.

The shiftUpdate rule benefits from the explicit heap model of JavaDL*. Its
JavaDL version [Weiß, 2009, 2011] needs to introduce quantifiers and case dis-
tinctions for the possible aliasing situations. These complications are absent in
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the JavaDL* version of the rule, because—as discussed in Section 5.1—updates
in JavaDL* have handed over the responsibility for efficiently dealing with alias-
ing to the theory of arrays, and thus removing an update with shiftUpdate does
not compromise the ability to delay aliasing-related case distinctions as long as
possible.

Theorem 8.1 (Soundness of shiftUpdate). Let the formula sets Γ,∆ ∈ 2Fma
Σ , the

update u ∈ UpdΣ, the formula ϕ ∈ FmaΣ, the program variables a1, . . . , an ∈ PV,
the constant symbols a1, . . . , an ∈ F , the update u′ ∈ UpdΣ and the formula
upd ∈ FmaΣ all be as in Definition 8.1. If

|= {u′}Γ, upd ⇒ ϕ, {u′}∆,

then the following holds:

|= Γ ⇒ {u}ϕ, ∆.

Theorem 8.1 is proven in Appendix A.10.

8.2.2. Merging Proof Branches

Before we can define a rule for merging execution paths at junction points in the
control flow graph, we must first generalise the notion of rules so that a rule can
have more than one conclusion.

Definition 8.2 (Rules, generalisation of Definition 5.7). A rule is a binary re-
lation r ⊆ Seq∗Σ × Seq∗Σ. If

(
(p1, . . . , pn), (c1, . . . , cm)

)
∈ r, then we say that the

conclusions c1, . . . , cm ∈ SeqΣ are derivable from the premisses p1, . . . , pn using r.

A rule r is called sound if for all pairs
(
(p1, . . . , pn), (c1, . . . , cm)

)
∈ r the

following holds: if all premisses p1, . . . , pn are logically valid, then all conclusions
c1, . . . , cm are also logically valid.

All rules in the sense of Definition 5.7 are rules also in the sense of Definition 8.2.
The notion of proof trees (Definition 5.8) is generalised to cover rules with multiple
conclusions in Subsection 8.2.3.

Definition 8.3 (Rule merge).∧
(Γ1 ∪ ¬∆1) ∨ · · · ∨

∧
(Γn ∪ ¬∆n) ⇒ ϕ

Γ1 ⇒ ϕ, ∆1 . . . Γn ⇒ ϕ, ∆n

Aside from having multiple conclusions, merge is a simple propositional logic
rule, whose soundness is obvious.
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Theorem 8.2 (Soundness of merge). Let the formula sets Γ1,∆1, . . . ,Γn,∆n ∈
2Fma

Σ and the formula ϕ ∈ FmaΣ be as in Definition 8.3. If

|=
∧

(Γ1 ∪ ¬∆1) ∨ · · · ∨
∧

(Γn ∪ ¬∆n) ⇒ ϕ,

then the following holds:

|= Γ1 ⇒ ϕ, ∆1 . . . Γn ⇒ ϕ, ∆n.

Theorem 8.2 is proven in Appendix A.11. A typical example application of
the merge rule is to combine two leaves of the form Γ1 ⇒ [while(g)p]ϕ and
Γ2 ⇒ [while(g)p]ϕ into the single new leaf

∧
Γ1 ∨

∧
Γ2 ⇒ [while(g)p]ϕ.

As an aside, the merge rule may be useful beyond the purpose of automatic loop
invariant generation. Without it, the splitting of the proof induced by branching
in the control flow graph can lead to a duplication of effort, where the same
program is handled several times in the verification. For example, symbolically
executing the program “if(g) p1 else p2; q” leads to a split in the proof. All
execution paths through the program (except for those throwing exceptions or
executing return statements) eventually converge on the program fragment q,
and thus all proof branches corresponding to these paths eventually deal with q.
This duplication can significantly increase the size of the proof if there is a large
number of case distinctions in the program. Merging the involved proof branches
once they reach q avoids the issue.

8.2.3. Setting Back Proof Branches

Symbolic execution sometimes creates proof branches that do not contribute to
the loop invariant, and that we thus do not want to follow up on during the
loop invariant generation process. For example, such irrelevant branches occur
when the body of the loop throws an uncaught exception: the execution paths
where this happens never return to the loop entry, and thus do not affect the
loop invariant. Another example is the loop termination branch which is created
when applying the unwindLoop and conditional rules and then splitting the proof
on the loop guard. Instead of considering these side branches in every iteration,
we revert them to the loop entry with a rule setBack.

Even though we refer to setBack as a “rule”, strictly speaking it is not a rule
in the sense of Definition 8.2. Rather, we build it into the generalised notion of
proof graphs, as a second way of extending such a graph besides applying rules
in the narrower sense.

Definition 8.4 (Proof graphs, generalisation of Definition 5.8). A proof graph is
a finite, directed, rooted, connected, acyclic graph, whose edges are directed away
from the root, and which satisfies that
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• all inner nodes n are labelled with a sequent seq(n) ∈ SeqΣ, and
• all leaves n are labelled either with a sequent seq(n) ∈ SeqΣ or with the

symbol ∗ (in which case they are called closed), and
• all inner nodes “parent” satisfy that either

– all edges (parent → child1), . . . , (parent → childn) originating in this
parent node are labelled with the same rule r, such that either
∗ none of the children child1, . . . , childn is closed, and seq(parent)

is derivable from seq(child1), . . . , seq(childn) using r, or
∗ n = 1, child1 is closed, and

(
(), seq(parent)

)
∈ r, or

– there is exactly one edge (parent → child) originating in parent, child
has no other parents, the edge is labelled with setBack, and there
is a dominator dom of parent in the graph such that seq(child) =
seq(dom).

A proof tree is called closed if all of its leaves are closed. A closed proof tree
whose root is labelled with s is also called a proof for s.

As usual, a dominator of a node n is a node n′ with the property that every
path from the root to n passes through n′. The setBack operation replaces a leaf
in the graph by one of its dominators. This can be seen as a non-destructive form
of backtracking. It is not expressible as a sequent calculus rule, but it preserves
the overall meaning of the proof: if all leaves are logically valid, then the root
must be logically valid.

Theorem 8.3 (Soundness of setBack). Every proof graph satisfies: if all used
rules are sound and if the sequents of all open leaves are logically valid, then the
sequent of the root node is also logically valid.

A proof sketch for Theorem 8.3 is contained in Appendix A.12. An example for
a proof graph that uses setBack is shown in Figure 8.1. Instead of continuing on
the second of the two branches, it is reverted to the loop entry point with setBack.
After the loop body p has been symbolically executed on the other branch, the
merge rule of Subsection 8.2.2 is used to reunite the two branches.

8.2.4. Predicate Abstraction

The predicateAbstraction rule defined in Definition 8.5 below is responsible for
introducing approximation into the symbolic execution process.

Definition 8.5 (Rule predicateAbstraction).

αP
(∧

(Γ ∪ ¬∆)
)
⇒ [π while(g)p; ω]ϕ

Γ ⇒ [π while(g)p; ω]ϕ, ∆

where:
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Γ1 ⇒ [while(g)p]ϕ

Γ1 ⇒ [if(g){p′; while(g)p}]ϕ

unwindLoop

Γ1, g
.
= TRUE ⇒ [p′; while(g)p]ϕ Γ1, g 6

.
= TRUE ⇒ [ ]ϕ

conditional, split

Γ2 ⇒ [while(g)p]ϕ Γ1 ⇒ [while(g)p]ϕ

. . . setBack (root as dominator)

∧
Γ2 ∨

∧
Γ1 ⇒ [while(g)p]ϕ

merge

Figure 8.1.: Example proof graph with setBack

• P ⊆ FmaΣ is the finite set of “loop predicates” associated with the loop
• αP : FmaΣ → FmaΣ is a function that computes for any formula ϕ a pred-

icate abstraction using P ; i.e., αP (ϕ) is some Boolean combination of the
predicates in P such that |= ϕ→ αP (ϕ) holds

Note that the rule uses the loop only as the provider of the set P of loop
predicates and is otherwise independent from the form of the program in the
sequent. The details of computing αP (ϕ) depend on the particular predicate
abstraction scheme being used (Section 8.4). Usually, this computation itself
requires non-trivial first-order reasoning.

The requirement that ϕ → αP (ϕ) is logically valid corresponds to the second
requirement of Definition 7.7 on the consistency of abstract domains, namely the
requirement that the abstraction function α and the concretisation function γ
satisfy c vC γ(α(c)) for all c in the set LC of states of the more concrete domain.
Here, LC is equal to FmaΣ, the set LA of states of the more abstract domain is
a finite subset of FmaΣ, the concretisation function γ :LA → LC is the identity
function, and vC is the implication relation ⇒ on formulas.

Additionally, αP is almost a widening operator (Definition 7.8) for an abstract
domain whose abstract states are formulas, except that it only takes a single
argument. We can see it as a restricted variant of widening, where only the
current abstract state is taken into account, instead of both the current abstract
state and the previous abstract state.

Theorem 8.4 (Soundness of predicateAbstraction). Let the formula sets Γ,∆ ∈
2FmaΣ, the program “π while(g)p; ω” and the formula ϕ ∈ FmaΣ be as in
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Definition 8.5. If

|=
∧

(Γ ∪ ¬∆)→ αP
(∧

(Γ ∪ ¬∆)
)

|= αP
(∧

(Γ ∪ ¬∆)
)
⇒ [π while(g)p; ω]ϕ

then the following holds:

|= Γ ⇒ [π while(g)p; ω]ϕ, ∆

The proof for Theorem 8.4 in Appendix A.13 is simple.

8.3. Proof Search Strategy

Section 8.1 has sketched the overall idea for how to apply the rules defined in
Section 8.2. In this section, we concretise this aspect by defining a suitable proof
search strategy , i.e., an algorithm that automatically chooses the next rule to
apply to a given unclosed proof graph. The strategy extends a strategy that is able
to do ordinary symbolic execution and first-order reasoning with the capability
to infer a loop invariant whenever an invariant-less loop is encountered during
proof construction.

The strategy is defined semi-formally in Figures 8.2, 8.3 and 8.4. The functions
in Figure 8.2 are assumed to be present by the functions in the other figures; their
semantics should be self-explanatory. The functions in Figure 8.3 are helpers for
the main function chooseRuleApplication in Figure 8.4. This function returns
a pair of a set of leaves and a rule, with the meaning that the returned rule
should be applied to the returned leaves. The presentation is a bit imprecise in
this respect, because in general there may of course be multiple ways to apply
a particular rule to a set of leaves. However, for the rules that matter here, the
exact application focus is either unique or it is explained in the paragraphs below.
We assume that all occurring sequents are of the form Γ ⇒ {u}[p]ϕ,∆, where p
is the program being symbolically executed.

We consider a symbolic execution state, as captured by a node of the proof
graph, to be “in” a loop when that loop has previously been “entered” by ap-
plying the unwindLoop rule but not yet “left” by applying the loopInvariant rule.
Accordingly, the entryNode function in Figure 8.3 determines the node where a
specific loop, passed as a parameter to the function, has last been entered. The
innermostLoop function returns the loop that has last been entered but not yet
left.

The waiting function of Figure 8.3 tells whether rules should not currently be
applied to the passed node, because operations on other branches have to be
performed first. This is the case if the first active statement is a loop, if there
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Pseudocode

//returns the root of the proof graph
Node root();

//returns one of a node’s parents (their order is not meaningful)
Node firstParent(Node node);

//returns the set of all open leaves transitively reachable from a node
SetOfNode openLeaves(Node);

//returns the rule which has produced a node
Rule appliedRule(Node node);

//returns the first active statement of a node
Statement statement(Node node);

//returns the side formula of a node, i.e.,
∧

(Γ ∪ ¬∆)
Formula formula(Node);

//returns the update of a node
Update update(node);

//tells whether a loop syntactically occurs in a node
boolean occursIn(Loop, Node);

//tells whether a loop is a nested subloop of another loop
boolean subLoop(Loop loop, Loop otherLoop);

//tells whether the passed formula is logically valid;
//is only called for formulas where this is decidable
boolean isValid(Formula formula);

//saves an invariant for a loop
setKnownInvariant(Loop loop, Formula invariant);

//returns the saved invariant for a loop
Formula getKnownInvariant(Loop loop);

//lets a regular proof search strategy choose a rule for symbolic execution
(SetOfNode, Rule) chooseRegularRule(Node node);

Pseudocode

Figure 8.2.: Proof search strategy for predicate abstraction: assumed functions
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Pseudocode

//returns the node where symbolic execution entered a loop
Node entryNode(Node node, Loop loop)

if(statement(node) = loop)
if(appliedRule(node) = unwindLoop) return node;
else if(appliedRule(node) = loopInvariant) return none;

if(node = root()) return none;
else return entryNode(firstParent(node), loop);

//returns the innermost loop that symbolic execution is in
Loop innermostLoop(Node node, SetOfLoop leftLoops)

if(statement(node) is of type Loop)
Loop loop := statement(node);
if(appliedRule(node) = unwindLoop and loop 6∈ leftLoops) return loop;
else if(appliedRule(node) = loopInvariant) leftLoops := leftLoops ∪ {loop};

if(node = root()) return none;
else return innermostLoop(firstParent(node), leftLoops);

//tells whether for a leaf another leaf is a merge candidate
boolean isMergeCandidate(Node leaf, Node otherLeaf)

precondition(statement(leaf) is of type Loop);
Loop loop := statement(leaf);
Node entry := entryNode(leaf, loop);
if(entry 6= none) return otherLeaf ∈ openLeaves(entry);
else if(occursIn(loop, otherLeaf))

if(statement(otherLeaf) is of type Loop and subLoop(loop, statement(otherLeaf)))
return false;

else return true;
return false;

//returns the merge candidates for a leaf (these always include the leaf itself)
SetOfNode mergeCandidates(Node leaf)

precondition(statement(leaf) is of type Loop);
SetOfNode result := ∅;
foreach(otherLeaf ∈ openLeaves(root()))

if(isMergeCandidate(leaf, otherLeaf)) result := result ∪ {otherLeaf};
return result;

//tells for a leaf whether there are merge candidates to wait for
boolean waiting(Node leaf)

if(statement(leaf) is of type Loop and update(leaf) = none)
Loop loop = statement(leaf);
foreach(otherLeaf ∈ mergeCandidates(leaf))

if(statement(otherLeaf) 6= loop or update(otherLeaf) 6= none)
return true;

return false;

Pseudocode

Figure 8.3.: Proof search strategy for predicate abstraction: helper functions
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Pseudocode

//main: chooses a set of leaves and a rule which should be applied to the leaves
(SetOfNode, Rule) chooseRuleApplication()

Node leaf := any leaf ∈ openLeaves(root()) such that not waiting(leaf);
Loop innermostLoop := innermostLoop(leaf, ∅);
if(innermostLoop 6= none and not occursIn(innermostLoop, leaf))

Node entry := entryNode(innermostLoop, leaf);
return ({leaf}, setBack[dominator=entry]);

else if(statement(leaf) is of type Loop)
Loop loop := statement(leaf);
Node entry := entryNode(leaf, loop);
Rule lastRule := appliedRule(firstParent(leaf));
if(knownInvariant(loop) 6= none and innermostLoop = none)

return ({leaf}, loopInvariant[inv=knownInvariant(loop)]);
else if(update(leaf) 6= none)

return ({leaf}, shiftUpdate);
else if(lastRule = shiftUpdate)

return (mergeCandidates(leaf), merge);
else if(lastRule = merge)

return ({leaf}, predicateAbstraction);
else if(lastRule = predicateAbstraction)

if(entry 6= none and isValid(formula(leaf) → formula(entry))
setKnownInvariant(loop, formula(leaf));
return ({leaf}, loopInvariant[inv=formula(leaf)])

else return ({leaf}, loopUnwind);
else return ({leaf}, chooseRegularRule(leaf));

Pseudocode

Figure 8.4.: Proof search strategy for predicate abstraction: main function

is no update in front of the modal operator, and if there is at least one “merge
candidate” where the first active statement is not that loop or where there is an
update in front of the modal operator: in this case, we first want to continue
with the merge candidates, before eventually combining all of them with the
merge rule.

The set of “merge candidates” needed by the waiting function is computed by
the mergeCandidates function, also shown in Figure 8.3. The mergeCandidates
in turn uses the isMergeCandidate function to filter the merge candidates out
of the set of all leaves of the graph. If symbolic execution is currently inside
the loop that is the active statement of the leaf being evaluated, then the merge
candidates are all leaves below the entry node of this loop. Otherwise, the merge
candidates are all leaves in which the loop syntactically occurs, except for those
where the active statement is another loop into which the first loop is nested
(such that waiting for them would lead to a deadlock).
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The main function chooseRuleApplication in Figure 8.4 now works as follows.
First, it picks an arbitrary open leaf that is not waiting for other branches. Then,
it checks whether the innermost loop that symbolic execution is “in” does not
occur in the program contained in the modal operator any more. If so, this
indicates that the current branch will not return to the loop entry, for example
because an exception has been thrown which is not caught within the loop body.
The next step is then to revert it to the entry point of the innermost loop with
setBack. Otherwise, the choice of the rule depends on whether the first active
statement is a loop or not. If not, the strategy chooses a regular applicable
symbolic execution rule or a first-order rule. The chosen rule must not destroy
the sequent structure Γ⇒ {u}[p]ϕ,∆.

If the first active statement is a loop, and if a loop invariant is already known
for this loop, the invariant is used to apply loopInvariant. Not shown in the
pseudocode is the instantiation of the modifies clause mod that is required by
loopInvariant. We simply use allLocs, unless a more specific modifies clause
has been specified. The invariant generation process does not generate modi-
fies clauses. A generated invariant may however contain a formula like frame
in Definitions 5.9 and 6.5, which semantically has the same effect as a modifies
clause.

If no invariant is known, then special rules are applied in a fixed order. First
after reaching the loop entry via regular symbolic execution, the shiftUpdate rule
is used to get rid of the update preceding the modal operator. Then, merge
can be applied to merge the current proof branch with all its merge candi-
dates. The fact that the current leaf is not waiting implies that all merge can-
didates are ready for merging, i.e., in all these leaves the active statement is the
same loop as in the current leaf, and there is no update in front of the modal-
ity.

The next step is to abstract with the predicateAbstraction rule. Finally, we
check whether the iterative unwinding process has reached a fixed point, i.e.,
whether the current abstraction implies the previous abstraction for this loop.
If so, then the current abstraction is used for applying the loopInvariant rule.
Otherwise, one more iteration is initiated with unwindLoop.

Note that the other direction of implication always holds, i.e., the current ab-
straction is always implied by the previous one. This is because in each iteration,
the new abstraction results from disjunctively combining several proof branches,
including at least one that corresponds to the previous abstraction. Also note
that checking whether the current abstraction implies the previous one is a com-
paratively simple task: since both formulas are built from the same set P of loop
predicates, this check requires propositional reasoning only, not full first-order
theorem proving (as in the computation of αP itself).
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8.4. Implementational Details

This section deals with two questions that have been left unanswered so far,
namely the question of how to compute the abstraction function αP (Subsec-
tion 8.4.1), and the question of where to get the loop predicates P from (Sub-
section 8.4.2). There are different possible answers to these questions. The focus
of this chapter is on the framework for integrating predicate abstraction into
JavaDL*, which is independent of these questions. The present section describes
the particular answers that are used in a prototypical implementation of the
approach in KeY, which is the basis for the experiments in Section 8.6.

8.4.1. Predicate Abstraction Algorithm

For the predicate abstraction function αP : FmaΣ → FmaΣ, we have so far only
demanded that for all formulas ϕ ∈ FmaΣ the formula ϕ → αP (ϕ) is logically
valid, and that αP (ϕ) is a Boolean combination of the formulas in P ⊆ FmaΣ.
In practice, computing αP is non-trivial. Typically it is the most computation-
ally expensive operation of the whole inference/verification process, because it
requires many theorem prover queries of the form “does a imply b?”, where a
and b are first-order formulas.

Several algorithms for computing a predicate abstraction function are available
in the literature; see for example the work of Das et al. [1999]; Flanagan and
Qadeer [2002]. The implementation in KeY uses a rather simple scheme, where
the abstraction of a formula ϕ is the conjunction of all predicates from P for which
we can determine that they are implied by ϕ, i.e., αP (ϕ) =

∧{
p ∈ P | (ϕ →

p) is found to be logically valid
}

. This only allows conjunctions of the predicates,
which is less flexible than supporting arbitrary Boolean combinations. On the
other hand, it is much cheaper to compute, which allows handling a significantly
higher number of predicates.

For efficiency, the implementation uses an external SMT solver instead of KeY
itself for checking the validity of the formulas ϕ → p. This is against the gen-
eral spirit of the approach, which is to integrate everything into a single prover,
avoiding duplication of knowledge. The implementational compromise is nec-
essary because KeY is by design not as fast in automatic proving of first-order
formulas as specialised SMT solvers are.

In order to keep the number of calls to the SMT solver down, the implemen-
tation exploits some known implication relationships between loop predicates: if
for two predicates p1, p2 ∈ P it is known a priori that |= p1 → p2, and if we have
been unsuccessful in proving |= ϕ → p2, then there is no need to check whether
|= ϕ → p1 holds. Also, predicates that were already found to be not valid in a
previous iteration for a loop do not need to be checked again.
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8.4.2. Generating Loop Predicates

Besides the computation of αP , another aspect of practical importance is where to
get the loop predicates themselves from. One option is to let them be provided
by the user of the verification system. This gives up on full automation, but
guessing potentially useful loop predicates is typically easier than specifying an
entire, correct loop invariant. Another option, which can complement the first
one, is to use heuristics to guess loop predicates automatically.

The implementation in KeY supports both of these possibilities. Loop pred-
icates can be specified manually as JML-style source code annotations, and a
large number of other predicates are then added automatically. Manually spec-
ified predicates may contain free logical variables. Predicates that contain free
variables do not serve directly as elements of P ; rather, they are used by the
predicate generation heuristics as a basis for generating quantified predicates.

The predicate generation heuristics are run immediately before the first appli-
cation of the predicateAbstraction rule to a particular loop. Based on the current
sequent Γ ⇒ [π while(g)p; ω]ϕ,∆ and on the loop predicates manually speci-
fied by the user (if any), they create in an exhaustive way many typical invariant
components. The following paragraphs describe these heuristics in more detail.

As a first step, we identify the program variables that occur both in Γ∪∆ and
in [π while(g)p; ω]ϕ. These are the only program variables that are interesting
at the current program point, because (i) no information is available about those
not in Γ∪∆, and (ii) those not in [π while(g)p; ω]ϕ are irrelevant both for the
further execution of the program and for the postcondition ϕ. These program
variables, together with the constant symbols 0 and null, are used to form an
initial set of terms.

Next, we extend this set by terms o.f for every term o in the set and every
constant symbol f : Field ∈ F that represents a field defined for o, as well as
terms a[i] and a.length for every term a of an array type and every term i of
type Int in the set. The current implementation does exactly one such step of
“heap indirection”, but in general of course an arbitrary number is possible.

We then generate the following loop predicates for all terms b of type Boolean
in the set, for all terms i1, i2, i3, i4 of type Int in the set, for all terms o1, o2 of a
reference type in the set, for all arithmetic relations /1, /2, /3, /4 ∈ {<,≤}, and
for all user-specified predicates p1(x) and p2(x, y) containing one free variable
x :A ∈ V or two free variables x :A ∈ V and y :B ∈ V, respectively:

• b .= TRUE , b
.
= FALSE

• i1 /1 i2
• o1

.
= o2, o1 6

.
= o2

• ∀Ax;
(
i1 /1 x ∧ x /2 i2 → p1(x)

)
• ∀Ax; ∀B y;

(
i1 /1 x ∧ x /2 y ∧ y /3 i2 → p2(x, y)

)
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• ∀Ax;∀B y;
(
i1 /1 x ∧ x /2 i2 ∧ i3 /3 y ∧ y /4 i4 → p2(x, y)

)
The last three cases can lead to large numbers of predicates. For example,

the number of predicates created by the very last case for each user predicate
p2(x, y) is 24 ∗ n4, where n is the number of integer terms in the set. Some of
these predicates imply others, which is exploited by the predicate abstraction
implementation to avoid some validity checks.

In addition to the above predicates, we use each elementary conjunct of the
postcondition ϕ as a loop predicate. For the method contract proof obligations
of Chapter 6, one such conjunct is the frame formula expressing that the method
respects its modifies clause, which typically also is a loop invariant.

Finally, we derive a special predicate from the postcondition in the following
common case: frequently, the loop guard is a binary formula such as i < n, while
the postcondition contains a guarded quantification such as ∀Int x;

(
ϕ1(x) ∧ x <

n→ ϕ2(x)
)
, where the quantified variable x ∈ V ranges up to the same boundary

n ∈ TermΣ as the variable i ∈ PV does in the loop. In this case, we add a loop
predicate ∀Int x;

(
ϕ1(x)∧ x < i→ ϕ2(x)

)
, which expresses the likely guess that,

in every loop iteration, property ϕ2(x) has already been established for all x up
to i.

Extending and tuning these heuristics to cover more invariant elements is pos-
sible quite easily. This flexibility, which enables us to quickly adapt the class of
inferable invariants to a new problem domain, is one of the main advantages of
predicate abstraction over other forms of abstract interpretation. However, in-
creasing the number of predicates of course has an adverse effect on performance,
so one has to trade power against efficiency.

A more ambitious alternative to heuristically generating predicates is attempt-
ing to infer the needed predicates systematically from failed proof attempts
[Clarke et al., 2000; Beyer et al., 2005]. Combining such a counterexample-guided
abstraction refinement (CEGAR) technique with the approach of this chapter is
a possible line of future work.

8.5. Example

As an extended example, we return to the implementation of selection sort dis-
cussed in Subsection 5.5.4. The code of Figure 5.14 is repeated in Figure 8.5,
enriched with loop predicate annotations. The syntax used for this purpose has
been proposed as an extension of JML by Flanagan and Qadeer [2002]: loop
annotations starting with loop_predicate contain an arbitrary number of user-
specified predicates for the loop, and logical variables to be used in loop predicates
can be declared with the keyword skolem_constant. Figure 8.5 gives exactly
those predicates that are minimally necessary to make the implementation arrive
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Java + JML*

class Sorter {

static void sort(int[] a) {

int i = 0;

/*@ skolem_constant int x, y;

@ loop_predicate a[x] <= a[y];

@*/

while(i < a.length) {

int minIndex = i;

int j = i + 1;

/*@ skolem_constant int x;

@ loop_predicate a[minIndex] <= a[x];

@*/

while(j < a.length) {

if(a[j] < a[minIndex]) minIndex = j;

j++;

}

int tmp = a[i];

a[i] = a[minIndex];

a[minIndex] = tmp;

i++;

}

}

}

Java + JML*

Figure 8.5.: Java implementation of the selection sort algorithm annotated with
loop predicates

at a loop invariant strong enough for verifying the proof obligation of Subsec-
tion 5.5.4, namely:

wellFormed(heap), a 6 .= null, a.created
.
= TRUE

⇒ [Sorter.sort(a);]∀Int x;
(
0 < x ∧ x < a.length→ a[x− 1] ≤ a[x]

)
The user-specified predicates are supplemented by the predicates generated

by the heuristics of Subsection 8.4.2. For example, based on the predicate
a[minIndex] ≤ a[x] containing the free variable x : Int ∈ V, the essential pred-
icate ∀Int x; (i ≤ x ∧ x < j→ a[minIndex] ≤ a[x]) is generated automatically,
together with many similar quantified formulas using different guards. For arriv-
ing at the predicate a[minIndex] ≤ a[x], the user needs the intuition that the ar-
ray is supposed to contain a value at position minIndex that is smaller than its val-
ues at other indices, and that this may be relevant for the verification of the loop.
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Applying the predicate abstraction proof search strategy yields a proof graph
whose structure is shown in Figure 8.6. The first step in the construction of
the proof is to perform symbolic execution of the program (indicated as “SE”
in the figure) until the outer loop becomes the first active statement. We apply
shiftUpdate, merge (in this first iteration, to only one predecessor), and finally
predicateAbstraction. Since no fixed point has yet been reached, the outer loop
is unwound with unwindLoop, creating one branch where the loop body is en-
tered and one where the loop terminates. The latter is immediately cut off
with setBack, because it will not return to the loop entry and is therefore irrel-
evant for the loop invariant. On the former, the body is symbolically executed,
which entails dealing with the inner loop (shown in the right half of Figure 8.6)
and finally leads to two branches where the outer loop is again the first active
statement. After applying shiftUpdate to each of them, these branches can be
merged, and predicateAbstraction is applied again. Assuming that the resulting
abstraction is not equivalent to the previous one, another identical iteration is
performed.

We assume that after this second iteration, a fixed point has been reached:
the current antecedent, resulting from applying predicateAbstraction, is logically
equivalent to its counterpart in the first iteration, and is thus a loop invariant.
In the implementation this inferred invariant is

∀Int x;∀Int y; (0 ≤ x ∧ x < y ∧ y < i→ a[x] ≤ a[y])

∧ ∀Int x;∀Int y; (0 ≤ x < i ∧ i ≤ y < a.length→ a[x] ≤ a[y])

∧ 0 ≤ a.length ∧ i ≤ a.length ∧ 0 ≤ i ∧ a 6 .= null

Using this for inv , we apply the loopInvariant rule, creating three proof branches.
The “initially valid” branch is trivial to close, because the update u is empty and
the loop invariant inv is identical to the antecedent Γ. Proving the “preserved by
body” branch entails applying loopInvariant to the inner loop, using the invariant
inferred for that loop in the last iteration. As the inferred invariant is strong
enough to imply the postcondition, the “use case” is closable by further symbolic
execution of the remaining program and first-order reasoning.

The structure of the subgraph for the inner loop is analogous to the structure
of the overall graph. Each time the inner loop is encountered, an invariant is
inferred for it by repeated unwindings and abstraction steps. The invariants
inferred in the first and the second occurrence of the inner loop are different:
they are dependent on the initial states occurring for the inner loop in each
iteration for the outer loop. Of the three branches created by loopInvariant, the
first one is again trivially closable; the “preserved by body” branch is set back to
the outer loop entry, because it does not return to that loop; and the use case is
where symbolic execution actually continues back to the outer loop.
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Figure 8.6.: Proof graph for selection sort
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Lines Predicates Rule apps. SMT calls Time

LogFile::getMaximumRecord 22 1 + 30 1362 41 10 s

Sorter::sort 22 1 + 1092 4594 431 90 s

Dispatcher::dispatch 70 0 + 297 2434 338 85 s

Dispatcher::removeService 67 1 + 159 3607 229 55 s

KeyImpl::clearKey 74 1 + 105 1777 252 115 s

KeyImpl::initialize 69 1 + 104 1746 242 95 s

IntervalSeq::incSize 33 2 + 178 3666 231 120 s

Subject::registerObserver 36 2 + 185 4431 242 125 s

Table 8.1.: Experimental results for loop invariant generation

In practice, additional proof branches occur, dealing e.g. with the situation
where the accessed array a is null. These are left out in Figure 8.6 for sim-
plicity. In this example, they can always be closed immediately (because the
corresponding execution path is obviously infeasible), or cut off with setBack
(because the execution path never returns to the respective loop entry).

8.6. Experiments

To give an indication of the feasibility of the approach, the results of applying the
implementation to eight Java methods are listed in Table 8.1. For each method,
the table shows the number of lines of combined code and specifications; the
number of predicates that were given manually; the number of predicates that
were generated automatically by the heuristics; the number of rule applications;
the total number of SMT solver calls for computing αP ; and an approximate
overall running time (measured on a 1.5 GHz Pentium M processor). The Simplify
prover of Detlefs et al. [2005] was used as the SMT solver.

The getMaximumRecord method contains a simple loop that serves to retrieve
the “largest” element out of an array of objects. The second example is selection
sort, as discussed in Section 8.5. The next four methods are from the Java Card
API reference implementation of Mostowski [2007]. These methods are simpler
than selection sort algorithmically, but technically more involved. The last two
examples are the two methods requiring loop invariants in the KeY tutorial of
Ahrendt et al. [2007].

In all cases listed in Table 8.1, the found loop invariant was strong enough to
complete the verification task at hand (except for proving termination), without
interactive rule applications. Manually specifying the necessary zero to two loop
predicates appeared notably easier than having to provide the invariant as a
whole, in a similar way as in the selection sort example. On the negative side,
there are three additional loops in the code of Mostowski [2007] for which a strong
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enough invariant could not be inferred. Two of them require invariants of a form
(involving, e.g., existentially quantified subformulas) which are not covered by
the implemented predicate abstraction scheme. The third contains deeply nested
case distinctions in the loop body, which lead to large disjunctive formulas that
overwhelmed the Simplify prover.

The implementation underlying the experiments is based on JavaDL, not on
JavaDL*. It is to be expected that the impact of the changes from JavaDL to
JavaDL* on the invariant generation process is limited. An exception are the
heuristics for guessing loop predicates, which should be extended to cover typical
propositions about dynamic frames. Another exception are proofs for dependency
contracts: the invariant generation process is not made for directly using it with
the dependency contract proof obligations of Chapter 6. This incompatibility is
the topic of Section 8.7 below.

8.7. Dependency Proofs

The dependency contract proof obligations of Chapter 6 lead to sequents that are
not of the conventional form Γ ⇒ {u}[p]ϕ,∆ used in the present chapter. Nev-
ertheless, proving a dependency contract for a pure method may involve dealing
with loops, and may thus require loop invariants. The easiest way to still make
use of the loop invariant generation mechanism for this purpose is to generate
invariants using a more conventional proof obligation about the same method
(such as a method contract proof obligation of Subsection 6.4.1), and to then
use the generated loop invariant for verifying the dependency contract in a sep-
arate proof. This approach is promising, because often, the same loop invariant
is needed for proving a method contract and a dependency contract.

As an example, Figure 8.7 shows an implementation of the contains method
of the ArrayList class of Figure 3.3. The code includes a loop invariant in JML
syntax: the variable i remains between 0 and the size of the list, and the object
of interest is not an element of the array for an index between 0 and i. Together
with a modifies clause of ∅̇—or together with an equivalent invariant formula
frame stating that no locations have changed—this loop invariant is suitable for
verifying both the method contract and the dependency contract for contains

given in Figure 3.1:

/*@ normal_behaviour

@ accessible footprint;

@ ensures \result == (\exists int i; 0 <= i && i < size();

@ get(i) == o);

@*/

public /*@pure@*/ boolean contains(Object o);
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Java + JML*

public boolean contains(Object o) {

int i = 0;

/*@ loop_invariant 0 <= i && i <= size

@ && (\forall int x; 0 <= x && x < i; array[i] != o);

@ assignable \nothing;

@*/

while(i < size) {

if(array[i] == o) {

return true;

}

i++;

}

return false;

}

Java + JML*

Figure 8.7.: Implementation of the contains method of the ArrayList class
shown in Figure 3.3

This illustrates that generating loop invariants for dependency proofs is not
really a problem that must be addressed separately; the present section is thus
more of a digression than a necessity.

Still, one may expect that proving dependency contracts should be easier than
proving method contracts: after all, here one is interested only in which locations
influence the method’s return value, not in its full functional behaviour. Thus,
the required loop invariants should be simpler, and an abstract domain for this
purpose should only have to keep track of dependencies, not of actual values.

The present section sketches an alternative encoding of the correctness of de-
pendency contracts for pure methods, which simplifies the necessary loop invari-
ants. In the normal encoding of Subsection 6.4.2, it is not possible to express
invariants that only specify dependencies instead of concrete values. Invariants
describe a set of states that can occur at a particular program point; in contrast,
the set of locations that another location “depends on” at a program point is not
a local property of the states occurring at this program point. Rather, it is a
joint property of all execution paths passing through the program point.

A solution is to make the program keep track of (an over-approximation of)
the dependencies of the occurring locations and variables explicitly [Bubel et al.,
2009]. This approach can be seen as adding ghost code to the program, which
maintains a set of “dependee” locations for every field and local variable of the
original program. Then, the current value of the ghost fields and ghost vari-
ables containing the dependees is describable via loop invariants, and it becomes
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possible to approximate by keeping only information about the ghost fields and
ghost variables and dismissing information about the original fields and variables
themselves.

In more detail, this means that for every constant symbol f : Field ∈ FUnique
representing a Java field or a user-specified ghost field, we introduce another con-
stant symbol fdep : Field ∈ FUnique, to be used for storing the “current depen-
dencies” of f. Similarly, we introduce a function symbol arrdep : Int → Field ∈
FUnique for storing the current dependencies of array components. We also define
a constant symbol resdep : Field ∈ FUnique in order to store the dependencies of a
method’s return value. The correctness of a method with respect to a dependency
contract is then expressed by a new proof obligation, which for the example of
the contains method introduced above looks as follows:

∀Object o;
(
o.arraydep

.
= {(o, array)}

∧ o.sizedep .
= {(o, size)}

∧ ∀Int i; o.array[i]dep
.
= {(o.array, arr(i))}

)
∧ wellFormed(heap) ∧ o 6 .= null ∧ o.created

.
= TRUE

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceArrayList(self)

→ {heappre := heap}[res = self.contains(o);](
resdep ⊆̇ footprint(heappre , self)

)
Besides the usual assumptions about well-formedness of the heap, about cre-
atedness of parameters and about the dynamic type of self (Chapter 6), the
proof obligation contains the assumption that the locations for the fields array,
size and arr(i) currently “depend exactly on themselves”. The postcondition
demands that the dependencies of the return value are a subset of the depen-
dencies specified by the contract. Note that without syntactic sugar, the term
o.array[i]dep reads as

selectLocSet
(
heap, selectint[](heap, o, array), arrdep(i)

)
,

and that resdep stands for selectObject(heap,null , resdep), i.e., for accessing the
heap at the “static field” resdep .

The proof obligation mentions the fields array, size and arr(i) because these
are the fields that are mentioned in the method body of contains. The method
call in the proof obligation refers to a version of the method that is enriched with
dependency tracking ghost code, shown in Figure 8.8. The syntax used in the
figure is for illustration only, as the ghost code should not be written manually,
but rather added automatically in a pre-processing step that is part of generating
the proof obligation.
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1 public boolean contains(Object o) {

2 //initialisation

3 //@ ghost \locset pc^dep = \nothing;

4 //@ ghost \locset o^dep = \nothing;

5
6 //declaration, assignment

7 //@ ghost \locset i^dep = pc^dep;

8 int i = 0;

9
10 //entering loop

11 //@ set pc^dep = pc^dep, i^dep, size^dep;

12
13 /*@ loop_invariant 0 <= i && i <= size

14 @ && \subset(pc^dep, \old(footprint))

15 @ && \subset(i^dep, \old(footprint));

16 @ assignable \nothing;

17 @*/

18 while(i < size) {

19 //entering conditional

20 //@ set pc^dep = pc^dep, array^dep, i^dep, array[i]^dep,

21 //@ o^dep;

22
23 if(array[i] == o) {

24 //return

25 //@ set \result^dep = pc^dep;

26 return true;

27 }

28
29 //assignment

30 //@ set i^dep = pc^dep, i^dep;

31 i++;

32
33 //entering loop

34 //@ set pc^dep = pc^dep, i^dep, size^dep;

35 }

36
37 //return

38 //@ set \result^dep = pc^dep;

39 return false;

40 }

Java + JML*

Figure 8.8.: The contains method of Figure 8.7 enriched with ghost code for
tracking dependencies
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The code first introduces a local ghost variable pc^dep in line 3, which repre-
sents the dependencies of the “program counter”, i.e., of the state of control flow.
Initially, the program counter does not depend on any location. This changes
when reaching a conditional statement or a loop, where the dependencies of the
guard are added to the dependencies of the program counter. For example, in
line 11 the dependencies of the expression i < size, namely the union of i^dep
and size^dep (standing for self.sizedep), are added to pc^dep.

At every declaration of a local variable x, the ghost code declares a correspond-
ing ghost variable x^dep. At every assignment to a local variable or to a field, the
corresponding ghost variable or field is set to the dependencies of the right hand
side of the assignment, together with the dependencies of the program counter
(which is necessary because control flow determines whether the assignment is ex-
ecuted at all, and thus influences the assigned variable indirectly). For example,
line 7 belongs to the declaration and initialisation of the variable i in line 8. As
i is initialised to 0, which is a rigid expression that does not depend on anything,
i^dep is initialised to the dependencies of the program counter only.

Return statements are treated like assignments to a dedicated result variable.
Thus, they are complemented with a set statement that assigns to \result^dep

(standing for resdep) the dependencies of the returned expression, together with
the dependencies of the program counter. Here, a rigid expression is returned
both in line 26 and in line 39, and so the set of locations assigned to \result^dep

consists only of the dependencies of the program counter in both cases.

Overall, the ghost code ensures that the final contents of the field resdep over-
approximate the actual dependencies of the returned value. Precision is lost, for
example, when determining the set statement corresponding to an assignment
“x = y-y;”: the introduced statement is “set x^dep = y^dep, y^dep”, even
though in fact the value of x after the assignment does not depend on anything at
all. This loss of precision already in the proof obligation itself is a disadvantage
of this encoding, as opposed to the encoding of Chapter 6. Still, the encoding
is more precise than simply forbidding all read accesses that are not covered by
the depends clause. Also, it is suitable for performing general information flow
analysis in dynamic logic [Bubel et al., 2009], where not only the dependencies of
the return value are of interest, but the dependencies of any number of locations.

The loop invariant shown in Figure 8.8 is sufficient for verifying the proof
obligation for the contains method given above. Besides the restriction on the
value of i, which is necessary to conclude that no IndexOutOfBoundsException

is thrown, the invariant is concerned with dependencies only. It can be found with
the invariant generation technique of this chapter, provided that the two formulas
pc^dep ⊆̇ footprint(heappre , self) and i^dep ⊆̇ footprint(heappre , self) are
present as loop predicates; and heuristically guessing these predicates from the
postcondition resdep ⊆̇ footprint(heappre , self) is easy.
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8.8. Related Work

This chapter draws much inspiration from the approach of Flanagan and Qadeer
[2002] for using predicate abstraction in program verification. Both in their ap-
proach and in ours, a set of loop predicates is associated with each loop in a
program, and used to abstract specifically at loop entry points. Quantified loop
invariants are supported by allowing the loop predicates to contain free variables
which are later quantified over. The main difference is that in the approach of
this chapter, the inference is done within a logical calculus, the same that is
used for the verification itself. This also distinguishes our technique from the
one used in the Boogie verifier [Barnett et al., 2006], where a separate abstract
interpretation component is used to infer some loop invariants needed for the
verification, leading to a duplication of knowledge between the verifier and the
abstract interpreter.

There are several related approaches that also aim at a closer integration be-
tween deductive verification and loop invariant generation based on abstract in-
terpretation. In the “loop invariants on demand” technique of Leino and Logozzo
[2005], first-order verification conditions are generated from programs, which in-
clude placeholder predicates for the loop invariants. These are then passed to a
first-order theorem prover. When an invariant is necessary for a sub-proof, the
prover tries to infer it by repeatedly invoking an abstract interpreter with succes-
sively more precise abstract domains. Still, the verification condition generator,
theorem prover and abstract interpreter are all separate components. In later
work, Leino and Logozzo [2007] move parts of the invariant generation inside the
theorem prover, with the verification condition generation remaining separated.
In the approach of this chapter, all three tasks—especially generation of verifi-
cation conditions and generation of invariants, which are closely related as they
both deal with programs—can be performed within one dynamic logic theorem
prover. Tiwari and Gulwani [2007] go the other way round by embedding theorem
proving techniques in an abstract interpretation framework.

A combination of JavaDL with static analysis based on fixed-point computa-
tion is also pursued by Gedell [2005, 2006]. There, the KeY system is used for
extracting recursive data-flow equations from the program, which are then solved
in a separate step by an external constraint solver. The calculus employed for
extracting the equations is not the normal JavaDL calculus, but a custom cal-
culus that is specific to the particular analysis being implemented. The logical
meaning of sequents, rules and proofs is dismissed entirely; KeY is used only as
an implementational platform, without a semantic integration between its logical
foundations and the implemented data-flow analysis.

Gedell [2006]; Gedell and Hähnle [2006] present a technique for automatically
handling loops in JavaDL by directly transforming them into quantified updates.
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This is possible for loops of a specific form. In particular, the loop iterations must
be independent of each other, which is checked by a separate dependency analysis.
Other restrictions are that the loop body must not contain nested sub-loops, and
that it must not terminate abruptly for any initial state.

The results presented in this chapter evolved out of an earlier technique for in-
variant generation by combining predicate abstraction and dynamic logic [Weiß,
2007; Schmitt and Weiß, 2007]. Improvements include that the soundness of all
rules can now be proven, and has been; that the notion of proofs has been gener-
alised from trees to directed acyclic graphs, which allows for a more natural and
robust invariant generation procedure; that the transformation of updates into
formulas is now done only at loop entry points, which improves performance; and
that exceptions as well as break and continue statements are now supported.

Another piece of own related work is an approach for integrating abstract
interpretation into JavaDL by abstracting on updates instead of on formulas
[Bubel et al., 2009]. The approach is parametrised by a lattice of abstract values
with an associated concretisation function γ mapping abstract values to sets of
concrete values. For example, the abstract value lattice might be a signs lattice
{⊥, <,≤, .=,≥, >,>} analogous to the lattice in the left half of Figure 7.2, where,
e.g., γ(≤) = {z ∈ Z | z ≤ 0} and γ(≥) = {z ∈ Z | z ≥ 0}.

The core idea of the approach is to introduce a constant symbol γa,z for every
abstract value a and every integer z, where the interpretation of these constants
is partially fixed: it is required that I(γa,z) ∈ γ(a), i.e., the constant symbol γa,z
represents an arbitrary concrete value within the concretisation of the abstract
value a. This allows constructing updates like a := γ≥,0 ‖ b := γ≥,1, which assigns
to the program variables a and b unknown, non-negative, not necessarily identical
integer values. The approach furthermore comprises a loop invariant rule where
updates instead of formulas are used as loop invariants, and an iterative process
for computing such “invariant updates” by repeated symbolic execution of the
loop body, similar to the approach of this chapter. Termination is ensured by
proof steps that are a combination of merging and abstracting, where e.g. two
updates a := 0 and a := 1 can be simultaneously merged and abstracted to the
update a := γ≥,0.

The advantage of abstracting on updates instead of on formulas is that it avoids
the need for something like the shiftUpdate rule (Definition 8.1). On the other
hand, there are at least two substantial advantages to using formulas. Firstly,
for reasoning with the symbols γa,z, the update-based approach is dependent
on rules capturing the pre-defined semantics of these symbols, which must be
provided manually for every choice of the set of abstract values; in contrast,
when using a formula like a ≥ 0 ∧ b ≥ 0 instead of an update a := γ≥,0 ‖ b :=
γ≥,1, there is no need for any abstraction-specific rules. Secondly, the notion
of “abstract values” underlying the update-based approach is inherently limited
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to non-relational abstraction (where the value of every variable and location is
handled separately, see also Chapter 7), whereas in the formula-based approach,
non-relational properties such as a ≥ 0 and relational properties such as a ≥ b are
expressed with equal ease. The update-based approach has so far been elaborated
only for a toy language without a heap, and has not yet been implemented.

A main intended application domain for the update-based approach [Bubel
et al., 2009] is information flow analysis. Information flow properties are made
amenable for state-based abstraction by making the program track dependencies
explicitly. This idea is transferred to the formula-based approach in Section 8.7.
Section 8.7 uses ghost code where in the update-based approach, the semantics
of the programming language itself is extended; the effect is the same.

8.9. Conclusion

This chapter has presented an approach for integrating abstract interpretation
techniques, in particular predicate abstraction, into the JavaDL* calculus for
deductive program verification. This allows us to take advantage of the power
of a deductive framework, while selectively introducing the approximation that
is characteristic for abstract interpretation to find loop invariants automatically
when necessary.

The approach consists of adding a small number of additional rules while gener-
alising the notion of proofs to accommodate these new rules, as well as a dedicated
proof search strategy to drive the invariant generation process. As is common
for abstract interpretation, this process always finds an invariant for a loop, but
the invariant is not in all cases strong enough to prove the intended postcondi-
tion. In this case, user intervention is required; the generated invariant, even
though too weak, may be helpful in figuring out what to do. The strength of
the found invariants heavily depends on the underlying set of loop predicates,
whose elements are either generated heuristically or provided manually in place
of the loop invariants themselves. Experience with an implementation in the KeY
system demonstrates the general feasibility of the approach.

This concludes Part III on generating loop invariants. Conclusions for the
thesis as a whole follow.
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9.1. Summary

This thesis has been concerned with deductively verifying object-oriented pro-
grams. We have addressed two major challenges in this area: modularity of the
verification on one hand, and automation in the handling of loops on the other
hand. Starting from dynamic logic with updates as a verification framework, we
have extended this framework with dynamic frames to address the first challenge,
and with predicate abstraction to address the second.

Modularity starts already on the level of specification. In the first part of the
thesis, we have examined the popular Java specification language JML, and iden-
tified several problems that make the language in its current state unsuitable for
modular verification. We have solved these issues by replacing some JML con-
cepts (namely data groups and the visible state semantics for object invariants)
with core elements of the theory of dynamic frames. The result is a specification
language that is more expressive than current JML in several respects, allowing
it to be used for modular verification, while at the same time being conceptually
simple and avoiding the programming restrictions that come with competing,
ownership-based approaches.

In the second part of the thesis, we have adapted dynamic logic with updates so
it becomes usable for verifying dynamic frames specifications. The foundation for
this adaptation has been to embrace a way of modelling heap memory that makes
use of the theory of arrays instead of non-rigid function symbols, thereby turning
memory locations into first-class entities that can be talked about in first-order
formulas. We have extended the classical theory of arrays with special operators
that are useful for modularly verifying Java programs, and we have adapted the
verification calculus to the changes in heap modelling. A set of proof obligations
captures the correctness of individual program parts as logical validity of dynamic
logic formulas, and contract-based rules allow assuming the validity of such proof
obligations in other proofs. To the author’s knowledge, the defined logic is the
first dynamic logic to support dynamic frames, or even to support any approach
for handling the interplay between framing and data abstraction, including the
older techniques of data groups and ownership.

The final part of the thesis has been about adding abstract interpretation tech-
niques, in particular predicate abstraction, to dynamic logic with updates. This
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allows generating certain loop invariants automatically when needed during ver-
ification. Which invariants can be generated depends on the set of available loop
predicates. Because this set can be adapted and extended with relative ease,
predicate abstraction is a very flexible, “user-programmable” abstract domain.
The integration is a deep integration, where the symbolic execution performed
for the verification is at the same time deduction and abstract interpretation. To
the author’s knowledge, it is the first integration of its kind.

The presented techniques have been implemented in the KeY verification sys-
tem.

9.2. Future Work

Besides evaluating the presented solutions on larger case studies, several lines of
future work for further expanding and improving these solutions suggest them-
selves.

On the side of specification, one such line of work would be to extend JML
with additional abstract data types. These would be primitive types of the lan-
guage, in the same style as the type “set of memory locations” that we have
introduced for supporting dynamic frames. Such types, for example mathemat-
ical sets and sequences, are frequently very useful as the types of ghost fields
and model fields in abstract specifications. It may be debatable whether adding
these types directly to the language is desirable, or whether JML’s model classes
already adequately fulfil the same role. Points in favour of adding them are that
this leads to more concise specifications, and that it elegantly avoids unnecessary
complications having to do with (i) the semantical mismatch between mathemat-
ical data structures on one hand and Java’s reference semantics for objects on
the other hand, and (ii) specification expressions that are only weakly pure.

An important area of future work is the verification of recursive data struc-
tures, such as linked lists. In principle, the solutions of this thesis are suitable and
helpful for verifying such data structures; in particular, dynamic frames solve the
modularity problems that arise for multi-object data structures, including recur-
sive data structures. However, it is well known that there are specific difficulties
to the verification of recursive data structures, involving a reachability predi-
cate and/or other recursively defined function and predicate symbols, and these
have not been explicitly tackled in this thesis (although the implementation can
already cope with them to a limited extent).

The calculus defined in this thesis handles propositions about sets of locations
(in particular, about dynamic frames) by reducing them to formulas that use only
the set-theoretic element-of operator. This approach is simple and, in principle, it
works always. But, as the reduction introduces quantifiers and generally enlarges
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the occurring formulas, it may not be the most efficient approach. It may be pos-
sible to improve verification performance by lifting the reasoning about dynamic
frames to a higher abstraction level as much as possible, and using the reduction
to element-of only as a last resort. The “programming laws” for dynamic frames
identified by Kassios [2010] may be useful for this purpose.

In this thesis, object creation is handled by defining the domain of objects to be
the same in all states (the “constant domain assumption”), and by distinguishing
between created and non-created objects via a ghost field. This approach is
relatively common, it is conceptually simple, and in a sense it fits naturally with
the reference semantics of Java: the domain of “objects” actually consists of
object references, and these (really being addresses) are in fact not newly created
when allocating new objects, but taken from the everlasting set of mathematical
integers. On the other hand, however, it can be observed in practice that case
distinctions on the createdness of objects (“to be or not to be created?”) permeate
the proofs. Ahrendt et al. [2009] propose an approach where the constant domain
assumption is abandoned, promising to avoid such case distinctions and thus to
significantly increase the efficiency of the verification. A price for this is that
giving up the constant domain assumption leads to complications elsewhere in
the logic. At this point in time it is not clear how these complications would
affect the solutions proposed in this thesis, and if the advantages would ultimately
outweigh the disadvantages or the other way round. Further investigation on this
issue is needed.

On the side of loop invariant generation, a promising line of future work would
be extending the framework defined in this thesis to support other abstract do-
mains besides predicate abstraction. As we have observed earlier, the predicate
abstraction rule essentially plays the role of a widening operator. Extending it to
support the widening operators of ordinary abstract domains appears straight-
forward: one could translate the current context formulas of the sequent to an
abstract state of the chosen abstract domain, such that the abstract state over-
approximates the set of concrete states described by the formulas, then apply the
widening operator of the abstract domain, and finally translate the result back
to a formula. An implementation of this approach could make use of the existing
library implementations of several classical abstract domains.
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A.1. Preparatory Observations

The propositions below are used as assumptions in the proofs of this appendix.
Their validity should be obvious.

Proposition A.1 (Non-occurring program variables). For all Kripke structures
K, all states s, s′ ∈ S, all variable assignments β, and all t ∈ TermΣ ∪ FmaΣ ∪
UpdΣ: if for all program variables a ∈ fpv(t) we have s(a) = s′(a), then we also
have valK,s,β(t) = valK,s′,β(t).

As described in Subsection 5.4.6, the function fpv : TermΣ ∪ FmaΣ ∪ UpdΣ →
2PV collects all program variables that have free occurrences in a term, formula
or update. A free occurrence of a program variable is any occurrence, except
for an occurrence inside a program fragment p that is bound by a declaration
within p. A program fragment p always contains an implicit free occurrence of
the program variable heap.

Proposition A.2 (Overwritten program variables). For all Kripke structures K,
all states s, s′ ∈ S, all variable assignments β, all updates (a1 := t1 ‖ . . . ‖ an :=
tn) ∈ UpdΣ where a1, . . . , an 6∈ fpv(t1)∪· · ·∪ fpv(tn), and all t ∈ TermΣ∪FmaΣ∪
UpdΣ,: if for all program variables a ∈ fpv(t) \ {a1, . . . , an} we have s(a) =
s′(a), then we also have valK,s,β({a1 := t1 ‖ . . . ‖ an := tn}t) = valK,s′,β({a1 :=
t1 ‖ . . . ‖ an := tn}t).

Proposition A.2 holds because the initial values of the program variables a1, . . . ,
an are overwritten by the update, and thus cannot influence the evaluation of t.

Proposition A.3 (Non-occurring function and predicate symbols). For all
Kripke structures K = (D, δ, I,S, ρ) and K′ = (D, δ, I ′,S, ρ) differing only in
the interpretation functions I vs. I ′, all states s ∈ S, all variable assignments
β, and all t ∈ TermΣ ∪ FmaΣ ∪ UpdΣ: if for all function and predicate symbols
f ∈ F ∪ P that syntactically occur in t we have I(f) = I ′(f), then we also have
valK,s,β(t) = valK′,s,β(t).

Proposition A.4 (Programs). Let p be a legal program fragment, a1, . . . , am ∈
PV be the program variables occurring free in p (excluding heap), b1, . . . , bm ∈
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PV be the program variables potentially modified by p (excluding heap), heappre ,
b
pre
1 , . . . , bpren ∈ PV, pre ∈ UpdΣ and reachableIn, reachableOut ∈ FmaΣ all as

in Definition 5.9, and let the formula noDeallocs ∈ FmaΣ be as in Lemma 5.4.
That is:

pre = heappre := heap ‖ bpre1 := b1 ‖ . . . ‖ bpren := bn

reachableIn =
∧

i∈{1,...,m}, α(ai)�Object

(ai
.
= null ∨ ai.created

.
= TRUE )

∧
∧

i∈{1,...,m}, α(ai)=LocSet

disjoint(ai, unusedLocs(heap))

reachableOut =
∧

i∈{1,...,n}, α(bi)�Object

(bi
.
= null ∨ bi.created

.
= TRUE )

∧
∧

i∈{1,...,n}, α(bi)=LocSet

disjoint(bi, unusedLocs(heap))

noDeallocs = unusedLocs(heap) ⊆̇ unusedLocs(heappre)

∧ selectAny(heap, null, created)
.
= selectAny(heappre , null, created)

Then the following holds:

|= wellFormed(heap) ∧ reachableIn

→ {pre}[p]
(
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
Proposition A.4 is guaranteed by the semantics of Java (extended with type

\locset): if a program p is executed in a state s where the heap is well-formed
and all local input variables have “reachable” values (i.e., values that are neither
references to non-created objects nor location sets containing locations that be-
long to non-created objects), and if it terminates in a state s′, then (i) the heap
is well-formed in s′, (ii) all local output variables hold reachable values in s′, and
(iii) all objects created in s are still created in s′. Proposition A.5 below is a
version of Proposition A.4 specialised towards method calls.

Proposition A.5 (Method calls). Let p be a legal program fragment of the form

exc = null;

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }

where exc, res, a1, . . . , am ∈ PV. Let furthermore the program variable heappre ∈
PV and the formulas reachableIn, reachableOut ∈ FmaΣ be as in Definition 6.7,
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and let noDeallocs ∈ FmaΣ be as in Lemma 5.4. That is, reachableIn and
noDeallocs are as in Proposition A.4 above, and reachableOut is the formula

(res
.
= null ∨ res.created

.
= TRUE ) ∧ (exc

.
= null ∨ exc.created

.
= TRUE )

if α(res) � Object, and the formula exc
.
= null ∨ exc.created

.
= TRUE other-

wise. Then the following holds:

|= wellFormed(heap) ∧ reachableIn ∧ self 6 .= null ∧ self.created
.
= TRUE

→ {heappre := heap}[p]
(
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
A.2. Proof of Lemma 5.1: A Consequence of

Well-formedness

Let K be a Kripke structure, s ∈ S be a state, β be a variable assignment,
h ∈ DHeap , o ∈ DObject , f ∈ DField . We assume

h ∈ I(wellFormed) (A.1)

and aim to show that at least one of the following holds:

I(selectA)(h, o, f) = null

I(selectBoolean)
(
h, I(selectA)(h, o, f), I(created)

)
= tt

Using the definition of I(selectA), the proof goals can be simplified to:

I(castA)
(
h(o, f)

)
= null (lma5.1-goal1)

I(castBoolean)
(
h(I(castA)(h(o, f)), I(created))

)
= tt (lma5.1-goal2)

One of the following two cases must apply:

• h(o, f) ∈ DA. Then (A.1) implies that one of the following two cases applies:

– h(o, f) = null . This and the definition of I(castA) together imply
(lma5.1-goal1).

– h
(
h(o, f), I(created)

)
= tt . Because we know that h(o, f) ∈ DA, we

also have I(castA)
(
h(o, f)

)
= h(o, f). Together, we get

h
(
I(castA)(h(o, f)), I(created)

)
= tt .

This and the definition of I(castBoolean) imply (lma5.1-goal2).

• h(o, f) 6∈ DA. Then the definition of I(castA) implies (lma5.1-goal1).
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A.3. Proof of Lemma 5.2: Well-formedness after Storing
an Object

Let K be a Kripke structure, s ∈ S be a state, β be a variable assignment,
h ∈ DHeap , o, x ∈ DObject , and f ∈ DField . We assume

h ∈ I(wellFormed) (A.2)

x = null or I(selectBoolean)
(
h, x, I(created)

)
= tt (A.3)

and aim to show that

I(store)(h, o, f, x) ∈ I(wellFormed).

By definition of I(wellFormed), we have to show that I(store)(h, o, f, x) has the
following three properties:

1. Let o1 ∈ DObject , f1 ∈ DField , and o2 = I(store)(h, o, f, x)(o1, f1) be such
that o2 ∈ DObject \ {null}. We have to show that

I(store)(h, o, f, x)
(
o2, I(created)

)
= tt ,

which by definition of I(store) is the same as showing that

h(o2, I(created)) = tt . (lma5.2-goal1)

One of the following two cases must apply:

• o1 = o and f1 = f . Then by definition of o2 and the definition of
I(store) we have o2 = x. Together with o2 6= null and (A.3), we get

I(selectBoolean)
(
h, o2, I(created)

)
= tt ,

which using the definition of I(selectBoolean) is the same as

I(castBoolean)
(
h(o2, I(created))

)
= tt .

By definition of I(castBoolean), this implies (lma5.2-goal1).

• o1 6= o or f1 6= f . Then by definition of o2 and the definition of I(store)
we have o2 = h(o1, f1). This and (A.2) imply (lma5.2-goal1).

2. Let o1 ∈ DObject , f1 ∈ DField , and l = I(store)(h, o, f, x)(o1, f1) be such
that l ∈ DLocSet . We have to show that

l ∩ I(unusedLocs)
(
store(h, o, f, x)

)
= ∅,

which by the definitions of I(store) and I(unusedLocs) is the same as show-
ing that

l ∩ I(unusedLocs)(h) = ∅. (lma5.2-goal2)

One of the following two cases must apply:
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• o1 = o and f1 = f . Then by definition of l and the definition of I(store)
we have l = x. Because x ∈ DObject , l ∈ DLocSet and DObject∩DLocSet =
∅, this case cannot occur.

• o1 6= o or f1 6= f . Then by definition of l and the definition of I(store)
we have l = h(o1, f1). This and (A.2) imply (lma5.2-goal2).

3. We have to show that{
o′ ∈ DObject | I(store)(h, o, f, x)(o′, I(created)) = tt

}
is finite.
(lma5.2-goal3)

The definition of I(store) guarantees that for all objects o′ ∈ DObject , we
have I(store)(h, o, f, x)(o′, I(created)) = h(o′, I(created)). Therefore{

o′ ∈ DObject | I(store)(h, o, f, x)(o′, I(created)) = tt
}

=
{
o′ ∈ DObject | h(o′, I(created)) = tt

}
,

and because we know from (A.2) that
{
o′ ∈ DObject | h(o′, I(created)) = tt

}
is finite, this implies (lma5.2-goal3).

A.4. Proof of Lemma 5.3: Well-formedness after
Anonymisation

Let K be a Kripke structure, s ∈ S be a state, β be a variable assignment,
h, h′ ∈ DHeap , and l ∈ DLocSet . We assume

h ∈ I(wellFormed) (A.4)

h′ ∈ I(wellFormed) (A.5)

and aim to show that

I(anon)(h, l, h′) ∈ I(wellFormed).

By definition of I(wellFormed), we have to show that I(anon)(h, l, h′) has the
following three properties:

1. Let o1 ∈ DObject , f1 ∈ DField , and o2 = I(anon)(h, l, h′)(o1, f1) be such that
o2 ∈ DObject \ {null}. We have to show that

I(anon)(h, l, h′)
(
o2, I(created)

)
= tt . (lma5.3-goal1)

One of the following two cases must apply:
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• h
(
o2, I(created)

)
= tt . Then

(
o2, I(created)

)
6∈ I(unusedLocs)(h). By

definition of I(anon), we get

I(anon)(h, l, h′)
(
o2, I(created)

)
= h

(
o2, I(created)

)
,

which together with h(o2, I(created)) = tt implies (lma5.3-goal1).

• h
(
o2, I(created)

)
6= tt . Then

(
o2, I(created)

)
∈ I(unusedLocs)(h). By

definition of I(anon), we get

I(anon)(h, l, h′)
(
o2, I(created)

)
= h′

(
o2, I(created)

)
. (A.6)

The definition of o2 and the definition of I(anon) imply that one of
the following two cases must apply:

– o2 = h(o1, f1). Then (A.4) implies that h
(
o2, I(created)

)
= tt ,

which contradicts the established fact that h
(
o2, I(created)

)
6= tt .

– o2 = h′(o1, f1). Then (A.5) implies that h′
(
o2, I(created)

)
= tt ,

which together with (A.6) implies (lma5.3-goal1).

2. Let o1 ∈ DObject , f1 ∈ DField , and l′ = I(anon)(h, l, h′)(o1, f1) be such that
l′ ∈ DLocSet . We have to show that

l′ ∩ I(unusedLocs)
(
anon(h, l, h′)

)
= ∅.

Let o2 ∈ DObject \ {null} and f2 ∈ DField such that (o2, f2) ∈ l′. Our goal
is to show

I(anon)(h, l, h′)
(
o2, I(created)

)
= tt . (lma5.3-goal2)

The proof now proceeds analogously to the proof of property (1) above.
One of the following two cases must apply:

• h
(
o2, I(created)

)
= tt . Then

(
o2, I(created)

)
6∈ I(unusedLocs)(h). By

definition of I(anon), we get

I(anon)(h, l, h′)
(
o2, I(created)

)
= h

(
o2, I(created)

)
,

which together with h(o2, I(created)) = tt implies (lma5.3-goal2).

• h
(
o2, I(created)

)
6= tt . Then

(
o2, I(created)

)
∈ I(unusedLocs)(h). By

definition of I(anon), we get

I(anon)(h, l, h′)
(
o2, I(created)

)
= h′

(
o2, I(created)

)
. (A.7)

The definition of l′ and the definition of I(anon) imply that one of the
following two cases must apply:
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– l′ = h(o1, f1). Then (A.4) and the definition of o2 imply that
h
(
o2, I(created)

)
= tt , which contradicts the established fact that

h
(
o2, I(created)

)
6= tt .

– l′ = h′(o1, f1). Then (A.5) and the definition of o2 together imply
that h′

(
o2, I(created)

)
= tt , which together with (A.7) implies

(lma5.3-goal2).

3. We have to show that{
o ∈ DObject | I(anon)(h, l, h′)(o, I(created)) = tt

}
is finite.

(lma5.3-goal3)

The definition of I(anon) implies that for all objects o ∈ DObject , the value of
I(anon)(h, l, h′)

(
o, I(created)

)
is either h

(
o, I(created)

)
or h′

(
o, I(created)

)
.

Thus, we have{
o ∈ DObject | I(anon)(h, l, h′)(o, I(created)) = tt

}
⊆
{
o ∈ DObject | h(o, I(created)) = tt

}
∪
{
o ∈ DObject | h′(o, I(created)) = tt

}
.

As (A.4) and (A.5) tell us that the sets
{
o ∈ DObject | h(o, I(created)) =

tt
}

and
{
o ∈ DObject | h′(o, I(created)) = tt

}
are finite, this implies

(lma5.3-goal3).

A.5. Proof of Lemma 5.4: Connection between frame and
anon

Let K be a Kripke structure, s ∈ S be a state, β be a variable assignment, h =
s(heap), h′ = valK,s,β

(
anon(heappre , {pre ′}mod , heap)

)
, spre = valK,s,β(pre ′)(s),

hpre = spre(heap), mpre = valK,spre ,β(mod), ul = I(unusedLocs)(h), and ulpre =
I(unusedLocs)(hpre). Note that hpre = s(heappre). By definition of I(anon), we
know that the following holds for all o ∈ DObject , f ∈ DField :

h′(o, f) =


h(o, f) if

(
(o, f) ∈ mpre and f 6= I(created)

)
or (o, f) ∈ ulpre

hpre(o, f) otherwise

(A.8)

We first show that (K, s, β) |= frame∧noDeallocs implies that (K, s, β) |= frame ′,
and then the other way round.
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1. Let o ∈ DObject , f ∈ DField . Using the definitions of frame, noDeallocs and
frame ′, we assume

(o, f) ∈ mpre ∪ ulpre or h(o, f) = hpre(o, f) (A.9)

if (o, f) ∈ ul , then (o, f) ∈ ulpre (A.10)

h
(
null , I(created)

)
= hpre

(
null , I(created)

)
(A.11)

and aim to show

h′(o, f) = h(o, f). (A.12)

From (A.9) we get that one of the following three cases must apply:

• (o, f) ∈ mpre . If f 6= I(created) or (o, f) ∈ ulpre , then (A.12) immedi-
ately follows from (A.8). We thus assume

f = I(created) (A.13)

(o, f) 6∈ ulpre . (A.14)

Now, (A.8) yields

h′(o, f) = hpre(o, f). (A.15)

If o = null , then we get from (A.11) that h(o, f) = hpre(o, f), which
together with (A.15) immediately yields (A.12). Thus we assume

o 6= null . (A.16)

From (A.10) and (A.14) we get that

(o, f) 6∈ ul .

This, (A.16), and the definition of I(unusedLocs) together im-
ply that h(o, I(created)) = tt . Analogously, combining (A.14)
and (A.16) yields hpre

(
o, I(created)

)
= tt . Altogether, we have

h
(
o, I(created)

)
= hpre

(
o, I(created)

)
, which because of (A.13) can

be written as h(o, f) = hpre(o, f). We combine this with (A.15) to get
(A.12).

• (o, f) ∈ ulpre . Then (A.8) immediately yields (A.12).

• h(o, f) = hpre(o, f). If (o, f) ∈ mpre or (o, f) ∈ ulpre , then the proof
proceeds as for the respective case above. Otherwise, (A.8) guarantees
that h′(o, f) = hpre(o, f), and thus we have (A.12).

2. Let o ∈ DObject , f ∈ DField . We assume (A.12), and show first (A.9), then
(A.10), and finally (A.11).
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a) If (o, f) ∈ mpre or (o, f) ∈ ulpre , then (A.9) holds trivially. Otherwise,
(A.12) and (A.8) imply h(o, f) = hpre(o, f), which also implies (A.9).

b) We prove (A.10) by contradiction: we assume that (o, f) ∈ ul \
ulpre . By definition of I(unusedLocs), this means that o 6= null , that
h
(
o, I(created)

)
= ff , and that hpre

(
o, I(created)

)
= tt . From (A.12)

and (A.8) we get that h
(
o, I(created)

)
= hpre

(
o, I(created)

)
. Together,

we have ff = tt .

c) The definition of I(unusedLocs) tells us that
(
null , I(created)

)
6∈ ulpre .

Thus, (A.12) and (A.8) immediately guarantee (A.11).

A.6. Proof of Theorem 5.5: Soundness of loopInvariant

We assume

|= Γ ⇒ {u}
(
inv ∧ wellFormed(heap) ∧ reachableIn

)
, ∆ (A.17)

|= Γ ⇒ {u}{pre}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut (A.18)

∧ g .
= TRUE → [p](inv ∧ frame)

)
, ∆

|= Γ ⇒ {u}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut (A.19)

∧ g .
= FALSE → [π ω]ϕ

)
, ∆

Let K = (D, δ, I,S, ρ) be a Kripke structure, s ∈ S be a state, and β be a variable
assignment. Our goal is to show that

(K, s, β) |= Γ ⇒ {u}[π while(g)p; ω]ϕ, ∆.

If there is γ ∈ Γ with valK,s,β(γ) = ff or if there is δ ∈ ∆ with valK,s,β(δ) = tt ,
then this is trivially true. We therefore assume that

(K, s, β) |=
∧

(Γ ∪ ¬∆), (A.20)

and aim to show that (K, s, β) |= {u}[π while(g)p; ω]ϕ.
Let s1 = valK,s,β(u)(s). We need to show

(K, s1, β) |= [π while(g)p; ω]ϕ.

Let s2 = valK,s1,β(pre)(s1). Because of the definition of pre, we have for all a ∈
PV \ {heappre , bpre1 , . . . , bpren } that s1(a) = s2(a). And because heappre , bpre1 , . . . ,
b
pre
n do not occur in the above formula, Proposition A.1 tells us that the evaluation

of this formula is the same in s1 and s2. Thus, it is sufficient if we show

(K, s2, β) |= [π while(g)p; ω]ϕ.
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If the loop does not terminate when started in s2, then the above holds trivially.
We therefore assume that it does terminate. Then—because we ignore exceptions
as well as return, break and continue statements—the semantics of Java tells
us that there is a finite sequence of states s2, . . . , sm (where 2 ≤ m) such that

s2(a) = si(a) a ∈ PV \ {heap, b1, . . . , bn}, i ∈ {2, . . . ,m} (A.21)

(si, si+1) ∈ ρ(p) i ∈ {2, . . . ,m− 1} (A.22)

(K, si, β) |= g
.
= TRUE i ∈ {2, . . . ,m− 1} (A.23)

(K, sm, β) |= g
.
= FALSE (A.24)

Our goal is to prove
(K, sm, β) |= [π ω]ϕ. (thm5.5-goal)

We use induction to show that for all i ∈ {2, . . . ,m}, there is a Kripke structure
Ki = (D, δ, Ii,S, ρ) identical to K except in the interpretation of the constant
symbols h and b′1, . . . , b

′
n, such that:

valKi,s2,β(v)(s2) = si (thm5.5-ind-goal1)

(Ki, si, β) |= inv (thm5.5-ind-goal2)

(Ki, si, β) |= wellFormed(h) ∧ reachableOut (thm5.5-ind-goal3)

Intuitively, this means that for every si we can choose an interpretation of
h, b′1, . . . , b

′
n such that applying the “anonymising update” v to s2 with this in-

terpretation directly produces si, and such that with this interpretation, the
state si satisfies both the loop invariant inv and the formula wellFormed(h) ∧
reachableOut . Afterwards, we use this result and (A.19) to show (thm5.5-goal).

• Base case (i = 2). We choose K2 such that I2(h) = s2(heap) and such
that I2(b′1) = s2(b1), . . . , I2(b′n) = s2(bn). Using the definitions of v and of
I(anon), we know that valK2,s2,β(v) is the identity function on states, and
thus we have (thm5.5-ind-goal1).

From (A.20) and (A.17) we get

(K, s1, β) |= inv ∧ wellFormed(heap) ∧ reachableIn. (A.25)

As heappre , bpre1 , . . . , bpren do not occur in this formula, and as s1 and s2

are otherwise identical, Proposition A.1 tells us that (K, s2, β) |= inv ∧
wellFormed(heap) ∧ reachableIn. As h, b′1, . . . , b

′
n also do not occur in the

formula, by Proposition A.3 we have (K2, s2, β) |= inv∧wellFormed(heap)∧
reachableIn. Because we chose K2 such that I2(h) = s2(heap), this means

(K2, s2, β) |= inv ∧ wellFormed(h) ∧ reachableIn.

This implies (thm5.5-ind-goal2). As we have {b1, . . . , bn} ⊆ {a1, . . . , am}
and thus |= reachableIn → reachableOut , it also implies (thm5.5-ind-goal3).
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• Step case (i ∈ {3, . . . ,m}). We assume that properties (thm5.5-ind-goal1),
(thm5.5-ind-goal2) and (thm5.5-ind-goal3) hold for i− 1:

valKi−1,s2,β(v)(s2) = si−1 (A.26)

(Ki−1, si−1, β) |= inv (A.27)

(Ki−1, si−1, β) |= wellFormed(h) ∧ reachableOut (A.28)

We choose Ki such that Ii(h) = si(heap), Ii(b
′
1) = si(b1), . . . , Ii(b

′
n) =

si(bn).

Since Ki−1 and K differ only in the interpretation of h, b′1, . . . , b
′
n, and since

these constant symbols do not occur in Γ nor in ∆, (A.20) and Proposi-
tion A.3 yield (Ki−1, s, β) |=

∧
(Γ∪¬∆). Together with (A.18), this implies

(Ki−1, s, β) |= {u}{pre}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= TRUE → [p](inv ∧ frame)

)
.

As the constant symbols h, b′1, . . . , b
′
n do not occur in the updates u and

pre, Proposition A.3 tells us that valKi−1,s,β(u)(s) = valK,s,β(u)(s) = s1,
and furthermore that valKi−1,s1,β(pre)(s1) = valK,s1,β(pre)(s1) = s2. Thus,
the above can be restated as

(Ki−1, s2, β) |= {v}
(
inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= TRUE → [p](inv ∧ frame)

)
,

which we can combine with (A.26) to get

(Ki−1, si−1, β) |= inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= TRUE → [p](inv ∧ frame).

Because h, b′1, . . . , b
′
n do not occur in (A.23), we have (Ki−1, si−1, β) |= g

.
=

TRUE . Combining this, (A.27), (A.28) and the above yields

(Ki−1, si−1, β) |= [p](inv ∧ frame).

Because of (A.22), this means (Ki−1, si, β) |= inv ∧ frame. As h, b′1, . . . , b
′
n

do not occur in this formula, we get (thm5.5-ind-goal2) and

(Ki, si, β) |= frame. (A.29)

It remains to show (thm5.5-ind-goal1) and (thm5.5-ind-goal3). Let pi−2 =
p; . . . ;p be the legal program fragment resulting from concatenating i− 2
copies of the loop body p (and performing bound renaming of variables
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declared in p, such that pi−2 is syntactically correct). From Proposition A.4
we know that

(K, s1, β) |= wellFormed(heap) ∧ reachableIn

→ {pre}[pi−2](
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
.

Combining this with (A.25) yields

(K, s1, β) |= {pre}[pi−2]
(
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
,

which is the same as

(K, s2, β) |= [pi−2]
(
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
.

Because of (A.22), this means that

(K, si, β) |= wellFormed(heap) ∧ reachableOut ∧ noDeallocs.

As the constant symbols h, b′1, . . . , b
′
n do not occur in the above formula, we

also have

(Ki, si, β) |= wellFormed(heap) ∧ reachableOut ∧ noDeallocs.

Because we chose Ki such that Ii(h) = si(heap), this can be restated as

(Ki, si, β) |= wellFormed(h) ∧ reachableOut ∧ noDeallocs.

Thus, we have (thm5.5-ind-goal3), and

(Ki, si, β) |= noDeallocs. (A.30)

It remains to show (thm5.5-ind-goal1). Together, (A.29), (A.30) and
Lemma 5.4 tell us that

(Ki, si, β) |= heap
.
= anon(heappre , {pre ′}mod , heap),

which we can also express as

si(heap) = valKi,si,β

(
anon(heappre , {pre ′}mod , heap)

)
.

As we defined Ki such that Ii(h) = si(heap), this implies

si(heap) = valKi,si,β

(
anon(heappre , {pre ′}mod , h)

)
.

230



A.6. Proof of Theorem 5.5: Soundness of loopInvariant

By (A.21), we know that s2 and si differ only in the evaluation of the pro-
gram variables heap, b1, . . . , bn. This, the definition of pre ′, and Proposi-
tion A.2 together tell us that valKi,si,β({pre ′}mod) = valKi,s2,β({pre ′}mod).
As heap, b1, . . . , bn do not occur in the other arguments of anon above,
Proposition A.1 allows us to transform the statement above into

si(heap) = valKi,s2,β

(
anon(heappre , {pre ′}mod , h)

)
.

The definition of s2 implies that valKi,s2,β(pre ′) is the identity function.
Thus, we can simplify the above into

si(heap) = valKi,s2,β

(
anon(heappre ,mod , h)

)
.

Also, as s2(heappre) = s2(heap), we can replace heappre with heap to get

si(heap) = valKi,s2,β(anon(heap,mod , h)).

This and the fact that by our choice of Ki we have Ii(b
′
1) = si(b1),

. . . , Ii(b
′
n) = si(bn) imply (thm5.5-ind-goal1).

This finishes the induction. We know now that in particular for i = m, there is a
Kripke structure Km = (D, δ, Im,S, ρ) identical to K except in the interpretation
of h, b′1, . . . , b

′
n, such that:

valKm,s2,β(v)(s2) = sm (A.31)

(Km, sm, β) |= inv (A.32)

(Km, sm, β) |= wellFormed(h) ∧ reachableOut (A.33)

As the constant symbols h, b′1, . . . , b
′
n do not occur in (A.20), we have (Km, s, β) |=∧

(Γ ∪ ¬∆). This and (A.19) imply

(Km, s, β) |= {u}{v}
(
inv ∧ wellFormed(h) ∧ reachableOut

∧ g .
= FALSE → [π ω]ϕ

)
.

As the constant symbols h, b′1, . . . , b
′
n do not occur in u, this is the same as

(Km, s1, β) |= {v}
(
inv ∧ wellFormed(h) ∧ reachableOut ∧ g .

= FALSE → [π ω]ϕ
)
,

and since the program variables heappre , bpre1 , . . . , bpren do not occur in the above
formula, it is also the same as

(Km, s2, β) |= {v}
(
inv ∧ wellFormed(h) ∧ reachableOut ∧ g .

= FALSE → [π ω]ϕ
)
.

Combining the above with (A.31) yields

(Km, sm, β) |= inv ∧ wellFormed(h) ∧ reachableOut ∧ g .
= FALSE → [π ω]ϕ.

Because h, b′1, . . . , b
′
n do not occur in (A.24), we have (Km, sm, β) |= g

.
= FALSE .

This, (A.32), (A.33), and the above yield (thm5.5-goal).
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A.7. Proof of Theorem 6.1: Soundness of
useMethodContract

We assume

|= Γ ⇒ {u}{w}
(
pre ∧ wellFormed(heap) ∧ reachableIn (A.34)

∧ self 6 .= null ∧ self.created
.
= TRUE

)
, ∆

|= Γ ⇒ {u}{w}{heappre := heap}{v} (A.35)(
post ∧ wellFormed(h) ∧ reachableOut

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ
)
, ∆

Furthermore we assume that for all types F ∈ T with F � E, we have

|= CorrectMethodContract(mct , F ). (A.36)

Let K = (D, δ, I,S, ρ) be a Kripke structure, s ∈ S be a state, and β be a variable
assignment. Our goal is to show that

(K, s, β) |= Γ ⇒ {u}Jπ r = o.m(a′1, . . . , a
′
m); ωKϕ, ∆.

If there is γ ∈ Γ with valK,s,β(γ) = ff or if there is δ ∈ ∆ with valK,s,β(δ) = tt ,
then this is trivially true. We therefore assume that

(K, s, β) |=
∧

(Γ ∪ ¬∆), (A.37)

and aim to show that (K, s, β) |= {u}Jπ r = o.m(a′1, . . . , a
′
m); ωKϕ.

Let s1 = valK,s,β(u)(s). Then our goal is to show

(K, s1, β) |= Jπ r = o.m(a′1, . . . , a
′
m);ωKϕ.

Let s2 = valK,s1,β(w)(s1). Because of the definition of w, it holds for all a ∈
PV \ {self, a1, . . . , am} that s1(a) = s2(a). Since by Definition 6.7 neither self
nor a1, . . . , am occur in the above formula, Proposition A.1 tells us that the
interpretation of this formula is the same in s1 and s2. It is therefore sufficient if
we show

(K, s2, β) |= Jπ r = o.m(a′1, . . . , a
′
m);ωKϕ.

The definition of w and Proposition A.1 ensure that s2(self) = valK,s2,β(o), and
that s2(a1) = valK,s2,β(a′1), . . . , s2(am) = valK,s2,β(a′m). Thus, we can instead
aim to prove:

(K, s2, β) |= Jπ r = self.m(a1, . . . , am);ωKϕ.

232



A.7. Proof of Theorem 6.1: Soundness of useMethodContract

Let s3 = valK,s2,β(heappre := heap)(s2). Since by Definition 6.7 the program
variable heappre does not occur in the above formula, by Proposition A.1 it is
sufficient if we prove

(K, s3, β) |= Jπ r = self.m(a1, . . . , am);ωKϕ.

Since by Definition 6.7 the program variable res does not occur in the above
formula, the semantics of Java allows us to instead show

(K, s3, β) |= Jπ res = self.m(a1, . . . , am); r = res;ωKϕ.

Since by Definition 6.7 the program variable exc also does not occur in the
formula, the semantics of Java furthermore allows us to rewrite the proof goal
into:

(K, s3, β) |= Jπ exc = null; (thm6.1-goal)

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }

if(exc != null) throw exc;

r = res;ωKϕ

We combine (A.37) with (A.34) to get

(K, s, β) |= {u}{w}
(
pre ∧ wellFormed(heap) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE

)
,

which by definition of s2 is the same as

(K, s2, β) |= pre ∧ wellFormed(heap) ∧ reachableIn (A.38)

∧ self 6 .= null ∧ self.created
.
= TRUE .

Let F = δ(valK,s2,β(o)). Because of the definition of s2, this means that

(K, s2, β) |= exactInstanceF (self). (A.39)

Since o ∈ TermE
Σ , we have F � E. Instantiating (A.36) with F , K, s2 and β

yields

(K, s2, β) |= pre ∧ wellFormed(heap) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceF (self)

→ {heappre := heap}
Jexc = null;

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }K′(post ∧ frame)
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where J·K′ is 〈·〉 if J·K is 〈·〉, and where J·K′ is either 〈·〉 or [·] otherwise. Together
with (A.38) and (A.39), this implies:

(K, s2, β) |= {heappre := heap}
Jexc = null;

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }K′(post ∧ frame)

With the definition of s3, this becomes

(K, s3, β) |= Jexc = null; (A.40)

try { res = self.m(a1, . . . , am); }

catch(Exception e) { exc = e; }K′(post ∧ frame)

Let p be the program fragment inside the modal operator J·K′ above. If there is no
state s4 ∈ S such that (s3, s4) ∈ ρ(p) (i.e., if the method call does not terminate
when p is started in s3), then (A.40) implies that J·K′ must be [·], and thus J·K also
must be [·]. Then, (thm6.1-goal) holds trivially, because there is no final state
which would have to satisfy ϕ.
We thus assume that there is s4 ∈ S such that (s3, s4) ∈ ρ(p). As our programs
are deterministic, s4 is the only such state. Our proof goal (thm6.1-goal) now
becomes

(K, s4, β) |= Jπ if(exc != null) throw exc; (thm6.1-goal’)

r = res;ωKϕ

From (A.40) and the definition of s4 we get

(K, s4, β) |= post ∧ frame. (A.41)

Let noDeallocs ∈ FmaΣ be as in Lemma 5.4. Proposition A.5 tells us that

(K, s2, β) |= wellFormed(heap) ∧ reachableIn ∧ self 6 .= null

∧ self.created
.
= TRUE

→ {heappre := heap}[p](
wellFormed(heap) ∧ reachableOut ∧ noDeallocs

)
Together with (A.38) and the definition of s4, this turns into

(K, s4, β) |= wellFormed(heap) ∧ reachableOut ∧ noDeallocs. (A.42)

Let K′ = (D, δ, I ′,S, ρ) be a Kripke structure identical to K, except that I ′(h) =
s4(heap), that I ′(r) = s4(res), and that I ′(e) = s4(exc). Since by Definition 6.7
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the constant symbols h, r and e occur neither in Γ nor in ∆, we get from (A.37)
and Proposition A.3 that (K′, s, β) |=

∧
(Γ ∪ ¬∆). This and (A.35) imply

(K′, s, β) |= {u}{w}{heappre := heap}{v}
(
post ∧ wellFormed(h) ∧ reachableOut

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ
)
.

As h, r and e do not occur in u, in w or in heappre := heap, the above and
Proposition A.3 imply that

(K′, s3, β) |= {v}
(
post ∧ wellFormed(h) ∧ reachableOut

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ
)
.

Let s′4 = valK′,s3,β(v)(s3). Then the above implies

(K′, s′4, β) |= post ∧ wellFormed(h) ∧ reachableOut (A.43)

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ.

The definition of s4 and the semantics of Java tell us that for all a ∈ PV \
{heap, res, exc} we have s3(a) = s4(a). Similarly, the definition of s′4 implies
that for all a ∈ PV \ {heap, res, exc} we have s3(a) = s′4(a). Together, we have

for all a ∈ PV \ {heap, res, exc} : s′4(a) = s4(a). (A.44)

The definition of s′4 also guarantees that

s′4(heap) = valK′,s3,β
(
anon(heap,mod , h)

)
(A.45)

s′4(res) = I ′(r) = s4(res) (A.46)

s′4(exc) = I ′(e) = s4(exc) (A.47)

Using (A.41) and (A.42), Lemma 5.4 (with n = 0) tells us that

(K, s4, β) |= heap
.
= anon

(
heappre , {heap := heappre}mod , heap

)
,

which we can also express as

s4(heap) = valK,s4,β
(
anon(heappre , {heap := heappre}mod , heap)

)
.

Since by Definition 6.7 the constant symbols h, r and e do not occur in the above
formula, and since K′ is otherwise identical to K, Proposition A.3 yields

s4(heap) = valK′,s4,β
(
anon(heappre , {heap := heappre}mod , heap)

)
.
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As we defined K′ such that I ′(h) = s4(heap), this implies

s4(heap) = valK′,s4,β
(
anon(heappre , {heap := heappre}mod , h)

)
.

Since s3 and s4 are identical except for the program variable heap, Proposi-
tion A.2 tells us that valK,s4,β({heap := heappre}mod) = valK,s3,β({heap :=
heappre}mod). As heap does not occur in the other arguments of anon, we can
transform the statement above into

s4(heap) = valK′,s3,β
(
anon(heappre , {heap := heappre}mod , h)

)
.

The definition of s3 implies s3(heap) = s3(heappre). Thus, the update heap :=
heappre has no effect in s3. This allows simplifying the above into

s4(heap) = valK′,s3,β
(
anon(heappre ,mod , h)

)
,

and replacing heappre with heap to get

s4(heap) = valK′,s3,β
(
anon(heap,mod , h)

)
.

This, together with (A.45), implies that s4(heap) = s′4(heap). Combining this
result with (A.44), (A.46) and (A.47) yields that s4 = s′4. Together with (A.43),
this means

(K′, s4, β) |= post ∧ wellFormed(h) ∧ reachableOut (A.48)

→ Jπ if(exc != null) throw exc;

r = res; ωKϕ.

Since the constant symbols h, r and e do not occur in post , in wellFormed(heap)
or in reachableOut , (A.41), (A.42) and Proposition A.3 imply

(K′, s4, β) |= post ∧ wellFormed(heap) ∧ reachableOut .

Because we defined K′ such that I ′(h) = s4(heap), this is the same as

(K′, s4, β) |= post ∧ wellFormed(h) ∧ reachableOut ,

which can be combined with (A.48) to get

(K′, s4, β) |= Jπ if(exc != null) throw exc;

r = res;ωKϕ.

Because the constant symbols h, r and e do not occur in the above formula,
and because K and K′ are otherwise identical, this implies (thm6.1-goal’) by
Proposition A.3.
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A.8. Proof of Lemma 6.2: No Deallocations

Let K be a Kripke structure, s ∈ S be a state, hpre ∈ DHeap , and

hpost = I(fk)(I(fk−1)(. . . (I(f1)(hpre , . . . )))) ∈ DHeap .

Our goal is to show

I(unusedLocs)(hpost) ⊆ I(unusedLocs)(hpre)

hpost
(
null , I(created)

)
= hpre

(
null , I(created)

)
Let o ∈ DObject \ {null} such that hpre

(
o, I(created)

)
= tt . By definition of

I(unusedLocs), what we have to show is

hpost
(
o, I(created)

)
= tt

hpost
(
null , I(created)

)
= hpre

(
null , I(created)

)
Let hi = I(fi)(I(fi−1)(. . . (I(f1)(hpre , . . . )))) for all i ∈ {0, . . . , k}. We use induc-
tion to show that for all i ∈ {0, . . . , k} we have

hi
(
o, I(created)

)
= tt (lma6.2-ind-goal1)

hi
(
null , I(created)

)
= hpre

(
null , I(created)

)
. (lma6.2-ind-goal2)

Because hk = hpost , this is sufficient to show our proof goal.

• Base case (i = 0). Then hi = hpre , and both (lma6.2-ind-goal1) and
(lma6.2-ind-goal2) hold trivially.

• Step case (i ∈ {1, . . . , k}). We assume that both (lma6.2-ind-goal1) and
(lma6.2-ind-goal2) hold for i− 1:

hi−1

(
o, I(created)

)
= tt (A.49)

hi−1

(
null , I(created)

)
= hpre

(
null , I(created)

)
(A.50)

One of the following three cases must apply:

– fi = store. Then there is o′ ∈ DObject , f ∈ DField , x ∈ DAny such that
hi = I(store)(hi−1, o

′, f, x). By definition of I(store), this implies that

hi
(
o, I(created)

)
= hi−1

(
o, I(created)

)
hi
(
null , I(created)

)
= hi−1

(
null , I(created)

)
Together with (A.49) and (A.50), this implies both (lma6.2-ind-goal1)
and (lma6.2-ind-goal2).
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– fi = create. Then there is an object o′ ∈ DObject such that hi =
I(create)(hi−1, o

′). By definition of I(create), this implies

hi
(
null , I(created)

)
= hi−1

(
null , I(created)

)
,

which together with (A.50) implies (lma6.2-ind-goal2). One of the
following two cases must apply:

∗ o′ = o. Then by definition of I(create) we have (lma6.2-ind-goal1).

∗ o′ 6= o. Then by definition of I(create) we have

hi
(
o, I(created)

)
= hi−1

(
o, I(created)

)
,

which together with (A.49) implies (lma6.2-ind-goal1).

– fi = anon. Then there is s ∈ DLocSet and h′ ∈ DHeap such that
hi = I(anon)(hi−1, s, h

′). By definition of I(anon), this implies

hi
(
null , I(created)

)
= hi−1

(
null , I(created)

)
,

which together with (A.50) implies (lma6.2-ind-goal2). Because of
(A.49), we have

(
o, I(created)

)
6∈ unusedLocs(hi−1). Thus, the defini-

tion of I(anon) also implies

hi
(
o, I(created)

)
= hi−1

(
o, I(created)

)
,

which together with (A.49) implies (lma6.2-ind-goal1).

A.9. Proof of Theorem 6.3: Soundness of
useDependencyContract

We assume

|= Γ, guard → equal ⇒ ∆, (A.51)

and we assume that for all types F ∈ T with F � E, we have

|= CorrectDependencyContract(depct , F ). (A.52)

Let K = (D, δ, I,S, ρ) be a Kripke structure, s ∈ S be a state, and β be a
variable assignment. Our goal is to show (K, s, β) |= Γ ⇒ ∆. We do a proof
by contradiction and assume that this does not hold, or in other words, that
(K, s, β) |=

∧
(Γ ∪ ¬∆) holds. This and (A.51) imply (K, s, β) |= ¬(guard →

equal), or equivalently (K, s, β) |= guard ∧ ¬equal . If we insert the definitions of
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guard and equal and distribute the update w over the conjuncts below it, then
this reads as

(K, s, β) |= wellFormed(hpre) ∧ wellFormed(hpost) (A.53)

(K, s, β) |= {w}{heap := hpre}(pre ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE )

(K, s, β) |= {w}{heappre := hpre ‖ heap := hpost}frame

(K, s, β) |= ¬
(
obs(hpre , o, a′1, . . . , a

′
m) ≡ obs(hpost , o, a′1, . . . , a

′
n)
)

(A.54)

Let s1 = valK,s,β(w)(s). Then the second and the third of the four statements
above become

(K, s1, β) |= {heap := hpre}(pre ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE )

(K, s1, β) |= {heappre := hpre ‖ heap := hpost}frame

Let spre1 = valK,s1,β(heap := hpre)(s1), and let spost1 = valK,s1,β(heappre :=
hpre ‖ heap := hpost)(s1). Then the statements above turn into

(K, spre1 , β) |= pre ∧ reachableIn ∧ self 6 .= null ∧ self.created
.
= TRUE

(A.55)

(K, spost1 , β) |= frame (A.56)

As self, a1, . . . , am do not occur in (A.53) or in (A.54), and as s and s1 are
otherwise identical, we get by Proposition A.1 that

(K, s1, β) |= wellFormed(hpre) ∧ wellFormed(hpost) (A.57)

(K, s1, β) |= ¬
(
obs(hpre , o, a′1, . . . , a

′
m) ≡ obs(hpost , o, a′1, . . . , a

′
m)
)
.

Because of the definition of s1, the second of the two statements above implies
that

(K, s1, β) |= ¬
(
obs(hpre , self, a1, . . . , am) ≡ obs(hpost , self, a1, . . . , am)

)
.

(A.58)

Lemma 6.2 tells us that

(K, s1, β) |= {heappre := hpre ‖ heap := hpost}noDeallocs,

which because of the definition of spost1 implies that

(K, spost1 , β) |= noDeallocs.
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This, (A.56) and Lemma 5.4 (with n = 0) tell us that

(K, spost1 , β) |= heap
.
= anon(heappre , {heap := heappre}mod , heap),

which because of the definition of spost1 is the same as

(K, s1, β) |= hpost
.
= anon(hpre , {heap := hpre}mod , hpost). (A.59)

Let F = δ(valK,s1,β(o)). Because of the definition of s1, this means that

(K, s1, β) |= exactInstanceF (self),

and because heap does not occur in the formula above, this implies by Proposi-
tion A.1 that

(K, spre1 , β) |= exactInstanceF (self). (A.60)

Let K′ = (D, δ, I ′,S, ρ) be a Kripke structure that is identical to K, except that
I ′(h) = valK,s1,β(hpost). Because h does not occur in (A.57), Proposition A.3 tells
us that

(K′, s1, β) |= wellFormed(hpre) ∧ wellFormed(hpost).

Because h does not occur in hpost , we have valK′,s1,β(hpost) = valK,s1,β(hpost) by
Proposition A.3. Because we defined K′ such that I ′(h) = valK,s1,β(hpost), this
implies I ′(h) = valK′,s1,β(hpost). Thus, the statement above implies

(K′, s1, β) |= wellFormed(hpre) ∧ wellFormed(h).

Using the definition of spre1 and the fact that heap does not occur in the formula
wellFormed(h), the above can be rewritten as

(K′, spre1 , β) |= wellFormed(heap) ∧ wellFormed(h). (A.61)

Since o ∈ TermE
Σ , we have F � E. Instantiating (A.52) with F , K′, spre1 and β

yields

(K′, spre1 , β) |= pre ∧ wellFormed(heap) ∧ wellFormed(h) ∧ reachableIn

∧ self 6 .= null ∧ self.created
.
= TRUE ∧ exactInstanceF (self)

→ self.obs(a1, . . . , am)

≡ {heap := anon(heap,mod , h)}
(
self.obs(a1, . . . , am)

)
.

As h does not occur in (A.55) or in (A.60), by Proposition A.3 they hold also for
K′. Thus, we can combine them, (A.61), and the statement above to get

(K′, spre1 , β) |= self.obs(a1, . . . , am)

≡ {heap := anon(heap,mod , h)}
(
self.obs(a1, . . . , am)

)
.
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Applying the update yields

(K′, spre1 , β) |= self.obs(a1, . . . , am)

≡ obs(anon(heap,mod , h), self, a1, . . . , am).

Because of the definition of spre1 , this is the same as

(K′, s1, β) |= obs(hpre , self, a1, . . . , am)

≡ obs(anon(hpre , {heap := hpre}mod , h), self, a1, . . . , am).

As we have I ′(h) = valK′,s1,β(hpost), we can write the statement above as

(K′, s1, β) |= obs(hpre , self, a1, . . . , am)

≡ obs(anon(hpre , {heap := hpre}mod , hpost), self, a1, . . . , am).

Because the constant symbol h does not occur in the above formula, and because
K and K′ are otherwise identical, Proposition A.3 tells us that

(K, s1, β) |= obs(hpre , self, a1, . . . , am)

≡ obs(anon(hpre , {heap := hpre}mod , hpost), self, a1, . . . , am).

We can combine this with (A.59) to get

(K, s1, β) |= obs(hpre , self, a1, . . . , am) ≡ obs(hpost , self, a1, . . . , am),

which contradicts (A.58).

A.10. Proof of Theorem 8.1: Soundness of shiftUpdate

We assume
|= {u′}Γ, upd ⇒ ϕ, {u′}∆. (A.62)

Let K = (D, δ, I,S, ρ) be a Kripke structure, s ∈ S be a state, and β be a variable
assignment. Our goal is to show that

(K, s, β) |= Γ ⇒ {u}ϕ, ∆.

If there is γ ∈ Γ with valK,s,β(γ) = ff or if there is δ ∈ ∆ with valK,s,β(δ) = tt ,
then this is trivially true. We therefore assume that

(K, s, β) |=
∧

(Γ ∪ ¬∆), (A.63)

and aim to show that (K, s, β) |= {u}ϕ.
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Let K′ = (D, δ, I ′,S, ρ) be a Kripke structure identical to K, except that I ′(a′i) =
s(ai) for all i ∈ {1, . . . , n}. Because the constant symbols a′1, . . . , a

′
n do not occur

in u or in ϕ, by Proposition A.3 it is sufficient if we show (K′, s, β) |= {u}ϕ. Let
s1 = valK′,s,β(u)(s). Our goal is to show

(K′, s1, β) |= ϕ. (thm8.1-goal)

Let s2 = valK′,s1,β(u′)(s1). Because both u and u′ assign at most to the pro-
gram variables a1, . . . , an, the states s and s2 differ at most in these variables.
Furthermore, the definition of u′ ensures that for all i ∈ {1, . . . , n} we have
s2(ai) = I ′(a′i), and because we defined K′ such that I ′(a′i) = s(ai), this implies

s2 = s. (A.64)

As the constant symbols a′1, . . . , a
′
n do not occur in Γ or in ∆, Proposition A.3

and (A.63) imply that

(K′, s, β) |=
∧

(Γ ∪ ¬∆),

which because of (A.64) is the same as

(K′, s, β) |= {u}{u′}
∧

(Γ ∪ ¬∆),

or in other words

(K′, s1, β) |= {u′}
∧

(Γ ∪ ¬∆). (A.65)

Instantiating (A.62) with K′, s1 and β yields

(K′, s1, β) |= {u′}Γ, upd ⇒ ϕ, {u′}∆.

Together with (A.65), this means that

(K′, s1, β) |= upd ⇒ ϕ. (A.66)

Because of (A.64), we have valK′,s1,β
(
{u′}{u}ai

)
= valK′,s,β

(
{u}ai

)
for all i ∈

{1, . . . , n}. By definition of s1, we also have valK′,s,β
(
{u}ai

)
= valK′,s1,β(ai).

Together we get

valK′,s1,β
(
{u′}{u}ai

)
= valK′,s1,β(ai),

which implies

(K′, s1, β) |= upd .

This and (A.66) imply (thm8.1-goal).
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A.11. Proof of Theorem 8.2: Soundness of merge

We assume

|=
∧

(Γ1 ∪ ¬∆1) ∨ · · · ∨
∧

(Γn ∪ ¬∆n) ⇒ ϕ. (A.67)

Let K be a Kripke structure, s ∈ S be a state, β be a variable assignment, and
i ∈ {1, . . . , n}. Our goal is to show (K, s, β) |= (Γi ⇒ ϕ,∆i). If there is γ ∈ Γi
with valK,s,β(γ) = ff or if there is δ ∈ ∆i with valK,s,β(δ) = tt , then this is
trivially true. We therefore assume that (K, s, β) |=

∧
(Γi ∪ ¬∆i), and aim to

show that (K, s, β) |= ϕ. This follows immediately from (A.67).

A.12. Proof of Theorem 8.3: Soundness of setBack

For proof graphs consisting just of a root node, the proposition is trivially sat-
isfied. As an induction hypothesis, assume that we are given a proof graph p
with root r and leaves L, where all applied rules are sound and where all sub
proof graphs (including p itself) satisfy the proposition. We need to show that a
graph p′ with leaves L′ that results from p by applying setBack again satisfies the
proposition, i.e., that logical validity of seq(l′) for all open l′ ∈ L′ implies logical
validity of seq(r). (For graphs p′ resulting from applying a rule, this is obvious.)
By Definition 8.4, there is a node parent ∈ L and a node child ∈ L′ such that
L′ = (L \ {parent}) ∪ {child}, where seq(child) = seq(dom) for some node dom
that dominates parent .
Consider the subgraph pdom of p that results from cutting off in p all nodes strictly
dominated by dom. For the leaves Ldom of pdom we know: Ldom ⊆ (L\{parent})∪
{dom} (because parent has been cut off, while dom has become a leaf). This
implies that {seq(ldom) | ldom ∈ Ldom , ldom open} ⊆ {seq(l′) | l ∈ L′, l′ open}.
By the induction hypothesis, we know that logical validity of seq(ldom) for all open
ldom ∈ Ldom implies logical validity of seq(r). Because we know that {seq(ldom) |
ldom ∈ Ldom , ldom open} ⊆ {seq(l′) | l ∈ L′, l′ open}, this means that also logical
validity of seq(l′) for all open l′ ∈ L′ implies logical validity of seq(r).

A.13. Proof of Theorem 8.4: Soundness of
predicateAbstraction

We assume

|=
∧

(Γ ∪ ¬∆)→ αP
(∧

(Γ ∪ ¬∆)
)

(A.68)

|= αP
(∧

(Γ ∪ ¬∆)
)
⇒ [π while(g)p; ω]ϕ (A.69)
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Let K = (D, δ, I,S, ρ) be a Kripke structure, s ∈ S be a state, and β be a variable
assignment. Our goal is to show that

(K, s, β) |= Γ ⇒ [π while(g)p; ω]ϕ, ∆.

If there is γ ∈ Γ with valK,s,β(γ) = ff or if there is δ ∈ ∆ with valK,s,β(δ) = tt ,
then this is trivially true. We therefore assume that

(K, s, β) |=
∧

(Γ ∪ ¬∆), (A.70)

and aim to show that (K, s, β) |= [π while(g)p; ω]ϕ.
Combining (A.70) and (A.68) yields

(K, s, β) |= αP
(∧

(Γ ∪ ¬∆)
)
, (A.71)

and together with (A.69), implies what we have to show.
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in Jive. Technical Report 559, ETH Zürich, 2007b. Annual Report of the Chair
of Software Engineering. (Cited on page 5.)
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Christian Engel and Reiner Hähnle. Generating unit tests from formal proofs.
In Bertrand Meyer and Yuri Gurevich, editors, Revised Papers, First Inter-
national Conference on Tests and Proofs (TAP 2007), volume 4454 of LNCS,
pages 169–188. Springer, 2007. (Cited on page 6.)

Christian Engel, Andreas Roth, Peter H. Schmitt, and Benjamin Weiß. Verifica-
tion of modifies clauses in dynamic logic with non-rigid functions. Technical
Report 2009-9, Universität Karlsruhe, Department of Computer Science, 2009.
(Cited on pages 86, 107, and 160.)

Michael D. Ernst, Jake Cockrell, William G. Griswold, and David Notkin. Dy-
namically discovering likely program invariants to support program evolution.
IEEE Transactions on Software Engineering, 27(2):99–123, 2001. (Cited on
page 165.)

Manuel Fähndrich and K. Rustan M. Leino. Declaring and checking non-null
types in an object-oriented language. ACM SIGPLAN Notices, 38(11):302–
312, 2003. (Cited on page 181.)

Manuel Fähndrich, Michael Barnett, and Francesco Logozzo. Embedded contract
languages. In Sung Y. Shin, Sascha Ossowski, Michael Schumacher, Mathew J.
Palakal, and Chih-Cheng Hung, editors, Proceedings, 2010 ACM Symposium
on Applied Computing (SAC 2010), pages 2103–2110. ACM Press, 2010. (Cited
on page 183.)

252



Bibliography
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