
 Eindhoven University of Technology

MASTER

Artifact-centric process analysis
process discovery in ERP systems

Nooijen, E.H.J.

Award date:
2012

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/00ad418e-434e-47cb-a9a9-3f1f27cf2bac

Eindhoven University of Technology

Department of Mathematics and Computing Science

Master’s Thesis on

Artifact-Centric Process

Analysis

Process discovery in ERP systems

E.H.J. (Erik) Nooijen

In partial fullfilment of the requirements for the degree of

Master of Science

in Business Information Systems

Supervisors:

dr.ir. B.F. (Boudewijn) van Dongen (TU/e – W&I – AIS)

dr. D. (Dirk) Fahland (TU/e – W&I – AIS)

The research leading to these results has received funding from the European Community's

Seventh Framework Programme [FP7/2007-2013] under grant agreement no. 257593

Project Acronym ACSI

Project Title Artifact-Centric Service Interoperation

Project Number 257593

Workpackage WP3 Observation-based techniques and tools

Lead Beneficiary TU/e and UTARTU

Editor(s) Erik Nooijen TU/e – AIS

Reviewer(s) Boudewijn van Dongen

Dirk Fahland

George Fletcher

Rick Hull

TU/e – AIS

TU/e – AIS

TU/e – DH

IBM

Actual Delivery Date 27-4-2012

Version 1.0

“If I have seen a little further it is by

standing on the shoulders of Giants.”

Isaac Newton, 1676

 Artifact-Centric Process Analysis

E.H.J. Nooijen i/v Master’s Thesis

Preface

Suppose you are building a house in the 1920’s. You are using the same traditional tools

as your mentor did: a hammer, a screwdriver and a chisel. They’re simple tools, but due

too your skill with them you can do a great job.

Now somebody approaches you for a demonstration: They have a new tool called an

electric drill that will allow you to do your work a lot faster. The demonstration is

impressive and you decide to try the electric drill yourself. Back at the house you are

building you realise there is a problem though: the house does not have electricity. Of

course you could set up electricity, but that would take a few weeks. That isn’t necessary

to finish the house, though: if you would just use the traditional tools you can finish it in

a few weeks anyway...

The current Business Process Analysis (BPA) field is in some ways similar to the

construction field in the 1920’s. Automated support for BPA is usually poor [1], [2] and

as a result the human (skill) factor is highly important for succesfull process analysis [3].

Process mining aims to aid the business analyst, but it suffers from a major practical

drawback: the assumption that data is available in a pre-defined format that doesn’t

match real process data. This especially true for data in the ERP systems that support

many primary processes in large companies: ERP systems were not build with concepts

like “trace” and “event” in mind. This is a pity since the combination of process mining

and ERP systems should be a golden combination1. Thus process mining is to the

business analyst now what an electric drill was to a carpenter in the 1920’s: Incredible

potential, but in many cases not usefull since too much work has to be done up front.

Acknowledgements

This thesis is the final part of my master at the TU/e. It’s been quite a few years and it

would have been a lot less pleasant without the support of many others. First and

foremost of these is my wife Jori, who stood by me the entire time and kept everything

going at home when I was busy with some project again. I look forward to the next

period when we’ll have more spare time together. Next I would like to thank the staff at

the TU/e for their great attitude towards students, especially Boudewijn who in all these

years always spent more time than available to him when I had another question. Finally

I would like to thank some of the stable factors in the ever-changing group of students

that accompanied me during these last years. Danny, Joos, it’s always been a pleasure

working with you guys.

1 Appendix A gives a reasoning why this is the case

Artifact-Centric Process Analysis

Master’s Thesis ii/v E.H.J. Nooijen

Abstract

An approach is presented that decomposes the task of creating an artifact-centric

description of an ERP system into pieces for which support can be provided. For each of

these pieces techniques are provided that can aid in finding the relevant information,

including a set of techniques that is the first to aid in the creation of a mapping between

a database and an event log that can be used for process mining. The approach is

evaluated empirically showing that the method can be used, but that there are also

bounds to several of the presented techniques.

ERP system
database

Database
schema

Artifact

Lifecycle
model

Schema-log
mapping

Artifact
schema(s)

Event log

Artifact-centric process analysis approach

 Artifact-Centric Process Analysis

E.H.J. Nooijen iii/v Master’s Thesis

Executive summary

Business Process Analysis can be done more efficiently by using information stored in

Enterprise Resource Planning (ERP) systems. ERP systems likely contain all data that is

relevant for a business process, since they are data driven and meant to support

complete business processes, even if they span organizational boundaries.

Previous approaches to use this data assumed that business processes can be seen in

isolation. Given the collaborative nature of ERP systems this assumption usually does not

hold in environments where these systems are used. At points of interaction between

processes defining what was part of the process was hard and time consuming in

previous approaches as a result.

A new process analysis approach provides a way to model the collaborative environment

in which ERP systems operate. This requires looking at business processes as a set of

interacting business entitites called artifacts. Each of these artifacts can be described by

an information schema and a non-trivial lifecycle. These descriptions of each artifact can

be created efficiently using the approach shown in the figure to the left.

Since the schema describing an ERP systems database is often incomplete first schema

extraction techniques are used to reconstruct this database schema. The database

schema is then partitioned into self-contained artifact schemas, thereby identifying each

artifact.

For each artifact the lifecycle can subsequently be discovered efficiently using process

discovery techniques. Process discovery is a set of techniques that generates process

models using only an event log as input; an event log is a collection of recorded events

for one specific business process. Thus a mapping needs to be created between the

artifact schema and the event log that is required. This allows the generation of the

event log and subsequently the lifecycle model of the artifact.

A variety of techniques can be used to automate the steps described above. Empirical

evaluation of these techniques on artificial and large real-life datasets shows that the

approach can be used, but scalability to large datasets is limited for a number of

techniques. The lifecycles discovered by the approach are reasonably accurate however.

Artifact-Centric Process Analysis

Master’s Thesis iv/v E.H.J. Nooijen

Table of contents

Preface .. i
Acknowledgements ... i
Abstract ..ii
Executive summary ... iii
Table of contents ... iv
Chapter 1 – Introduction ... 1

1.1 Business process analysis ... 1
1.1.1 Business processes .. 1
1.1.2 Process models .. 1
1.1.3 Process Mining... 1

1.2 Enterprise resource planning (ERP) systems .. 2
1.2.1 ERP systems and process mining success factors 2

1.3 Traditional process analysis in the context of ERP systems 3
1.3.1 ERP system modelling .. 3
1.3.2 Process mining case studies .. 3
1.3.3 Processes in isolation? .. 4

1.4 Artifact-centric process analysis in the context of ERP systems 4
1.4.1 Artifacts .. 4
1.4.2 Research question .. 5
1.4.3 Project goal and scope .. 6

1.5 Running example: The CD shop ... 7
1.5.1 Introduction .. 7
1.5.2 Core process: selling CD’s ... 7
1.5.3 Database schema .. 8
1.5.4 Relevant artifacts ..10

1.6 Outline ..12
Chapter 2 – Overall method ..13

2.1 Schema extraction ..14
2.2 Identify artifact schemas ...14
2.3 Create schema-to-log mapping ...15
2.4 Generating traces ...17
2.5 Apply process discovery techniques ..17

Chapter 3 – Artifact schema identification ...19
3.1 Relational databases ...19
3.2 Schema extraction ..20

3.2.1 Domain extraction ..20
3.2.2 Primary key extraction ..22
3.2.3 Foreign key extraction ...24

3.3 Identify artifact schemas ...27
3.4 Conclusion ...30

Chapter 4 – Artifact lifecycle identification ..31
4.1 Related work: Event log extraction ...31
4.2 Create schema-to-log mapping ...32

4.2.1 Overal approach ...33
4.2.2 Identifying event types ..35
4.2.3 Assign attributes ...35
4.2.4 Creating the mapping ..37
4.2.5 Mapping the CD shop quote artifact...39

4.3 Generating traces ...40
4.3.1 Evaluation of previous approaches ..41
4.3.2 Approach ...41

4.4 Event log based artifact lifecycle discovery ...42
4.4.1 Related work: Control flow discovery ...42
4.4.2 Approach ...43

4.5 Conclusion ...44

 Artifact-Centric Process Analysis

E.H.J. Nooijen v/v Master’s Thesis

Chapter 5 – Empirical evaluation ...45
5.1 Dataset descriptions ..45
5.2 Artifact schema identification ...46

5.2.1 Schema extraction ..46
5.2.2 Identify artifact schemas ...49

5.3 Artifact lifecycle identification ...50
5.3.1 Create schema to log mapping ...50
5.3.2 Generating traces ...50
5.3.3 Verifying generated event logs ...51

Chapter 6 – Conclusions and future work ..53
6.1 Conclusions ..53
6.2 Future work ...53

6.2.1 Further evaluation of the techniques in each step53
6.2.2 Global optimizations ..53
6.2.3 Schema extraction when data contains errors54
6.2.4 Human interaction ..54
6.2.5 Analyzing interactions between artifacts ..54
6.2.6 Dropping assumptions on the data ..54

Bibliography ..55
Table of tables ...62
Table of formulas ...62
Table of figures ..63
Appendix A : Why process mining of ERP systems? ...65

A.I Business Process Management ...65
A.II Organizational context...65

A.II.I Contingency theory ...65
A.II.II Types of organizations ...65
A.II.III Suitability of BPM and ERP for organizational types66

A.III Success factors ..66
A.IV Process mining of ERP systems creates synergy..66

Appendix B : Notations used ..67
Appendix C : Translating to XESame ...69
Appendix D : More advanced algorithms ..73

D.I Efficiently selecting instance and event tables ..73
D.II Alternative main table selection ..74

Appendix E : Quote schema-to-log mapping ..77
Appendix F : Prototype implementation ...83

F.I Overview ...83
F.II Data transfer ...85
F.III Artifact schema identification ...89

F.III.I Schema extraction ..89
F.III.II Identify artifact schemas ...95

F.IV Artifact lifecycle identification ...96
F.IV.I Create schema to log mapping ...96
F.IV.II Event log generation ...98

F.V License(s) ..99
Appendix G : Lifecycle verification settings .. 101

G.I Order .. 101
G.II Quote .. 101

 Artifact-Centric Process Analysis

E.H.J. Nooijen 1/102 Master’s Thesis

Chapter 1 – Introduction

Business Process Analysis (BPA) is often very time-consuming, but that should not be the

case. Analysts use traditional methods such as interviews to obtain information about key

business processes, while a large amount of information is stored in systems used in

organizations. An important class of systems in this context are Enterprise Resource

Planning (ERP) systems, since these are used to execute many important business

processes in larger companies. More often than not this information is not readily

available however, so techniques are needed to easily extract process information from

these systems. This requires a new way of looking at business processes that more

closely corresponds to reality.

First an overview of key concepts used throughout this report is given. Then the main

research problem is introduced and a direction for the solution is presented. Finally an

overview is given of the material presented in the remainder of this report.

1.1 Business process analysis

Business process analysts use a variety of techniques to analyze business processes.

These processes are often described using process models. Although most analysts use

traditional methods such as interviews, process mining is starting to become an

alternative.

1.1.1 Business processes

Business processes were first brought to the attention of many by Hammer in 1993

[4]. A recent paper described a business process as “… a complete, dynamically

coordinated set of activities or logically related tasks that must be performed to deliver

value to customers or to fulfill other strategic goals” [5], which is an extension of the

definition given at that time.

Sometimes we want to refer to a single occurance of a business proces (e.g. the handling

of a single customer order for the customer order fulfillment process): this will be called

a process instance.

1.1.2 Process models

Central in BPA are process models that show the business process at an abstract level. A

variety of model types is used, such as control flow models (that show which tasks occur

in which order), decision schema’s (that show what the criteria for a decision are) and

organizational models (that show the organizational hierarchy or interactions between

people). The notations used to draw these models varies widely; Example notations that

are used to draw control flow models include BPMN [6], petri nets [7] and Event Driven

Process Chains (EPC’s, [8]).

1.1.3 Process Mining

Process mining is a set of techniques to “…discover, monitor and improve real

processes (i.e., not assumed processes) by extracting knowledge from event logs…” [9].

It is a relatively young research discipline, which is starting to draw significant attention

from the industry. The basis of process mining is using information that is recorded in

software systems in the form of event logs for process analysis. The most important

advantages of this approach over traditional methods are a large reduction of the time

required for such analysis and a certainty that facts are presented in the results (instead

of opinions).

An event log is a collection of recorded events for one specific business process. It

consists of a set of traces for that process. Each trace is a list of events that occurred for

a single process instance. A trace is ordered: an event that occured before another event

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 2/102 E.H.J. Nooijen

should be earlier in the trace as well. An event is something that happened at some

point in time. Events are instanteneous: they end at the same time that they started.

Therefore a prolonged activity consists of several events, for example the start and end

of the activity.

Process discovery is the set of techniques that generates process models using only an

event log as input. Since event logs are a record of real behaviour that occurred, the

resulting process models always reflect reality.

1.2 Enterprise resource planning (ERP) systems

ERP systems are software systems that support the optimal usage of all resources in an

organization. The underlying idea of ERP is described in the 11th edition of the APICS

dictionary as a ‘‘framework for organizing, defining, and standardizing the business

processes necessary to effectively plan and control an organization so the organization

can use its internal knowledge to seek external advantage’’ [10]. Adoption of ERP

systems is high: 74% of large manufacturing companies used an ERP system in 2002

[11], 80% of Fortune 500 companies used an ERP system in 2004 [12] and a rising 56%

of small and medium enterprises in Europe used an ERP system in 2009 [13].

The traditional ERP system is data-centric and function oriented [14]. The support

provided by the system is done through a shared data model that is used by a variety of

functions, thus ensuring that each function uses the same version of the truth. This data

is usually stored in a single relational database containing thousands of tables [15–17].

Figure 1: Process support systems (adapted from [18])

ERP systems were build with structured processes in mind; Prefered models are reflected

in so-called reference models that describe both the underlying data and process models

[14]. Hence business processes are supported, but only implicitly: the processes are

hidden in the code of the system. Figure 1 shows the positioning of ERP systems when

compared to other process support systems.

1.2.1 ERP systems and process mining success factors

For process mining to be succesful event data of sufficient quality is required. The

Process Mining Manifesto states that the minimum requirement is that events are

automatically recorded and that there should be some sort of guarantee that recorded

events match reality [9]. As stated in the manifesto this is the case for ERP systems. An

additional quality measure for event logs is completeness: no events should be missing

for the process that is being analyzed [9]. ERP systems were not build with event logs in

mind, so there is no guarantee that this is the case for these systems, but ERP systems

do increase the likelyhood of completeness. Two factors contribute to this:

Artifact-Centric Process Analysis Chapter 1 – Introduction

E.H.J. Nooijen 3/102 Master’s Thesis

- ERP systems are meant to aid in cross-departemental activities. The idea is that

business processes can be handled in a single system (so there is only one

version of the truth).

- ERP systems are data driven by nature, thus information that is used during the

process will usually be stored in the ERP system.

1.3 Traditional process analysis in the context of ERP systems

Since many important business processes are supported by ERP systems it is rather

surprising that very little work has been done on process analysis in the context of these

systems. Related work on the modelling of ERP systems describes what should be taken

into account for analysis in the context of these systems. In addition to this a variety

process mining case studies have been executed focussing on ERP systems. It can be

argued that these approaches neglect a fundamental property however.

1.3.1 ERP system modelling

The authors of [19] describe that a notation used to model an ERP system should be able

to describe both data and control flow aspects. In addition to this they describe a manual

approach to modelling an ERP system and note that this is very laborious task [19].

Similarly, the reverse engineering work given in [20] describes that both data and

processes should be transferred, but does not describe how this could be done.

1.3.2 Process mining case studies

Current process discovery techniques assume that event log information is available in a

predefined format. In this format a log consists of a set of traces (with each trace

corresponding to a specific case or process instance). Each trace consists of an ordered

multiset of events that have taken place; For each event the event type should be

known.

In practice event log information is not readily available in this form in most information

systems. Previous research has shown that extracting log information from ERP systems

is a time consuming process as explained below. As a result one of the major advantages

of process mining (reduced analysis time) is completely offset by the time required for

preprocessing of information.

The only ERP systems that were studied were SAP [15], [16], [21–23] and PeopleSoft

[17]. A variety of approaches are tested to extract event logs from these systems, but

the majority of these fail because no instance identifier is available for the events that

can be extracted. For the specific use cases of the SAP case studies event log extraction

from the SAP database is succesful, although selection of the correct tables is laborious.

Usually an event is identified by a column with a timestamp, but the exact event type

may depend on the value of another column (in the same table) [21], [22].

The case study on PeopleSoft reports that no general approach to extract event logs from

PeopleSoft is possible, although it appears to be possible to manually select the correct

tables that contain the customer billing information; the main issue is the absence of

foreign keys in the database [17]. An additional issue reported for Peoplesoft is that

information about applications started for the execution of an action is only stored until

the execution of the application is finished [17]. The absence of foreign keys is also

repeatedly reported for the database of SAP, although Piessens shows that the foreign

key information can be retrieved from the SAP system in a rather laborious way [15].

A challenge encountered in all case studies is divergence and convergence. Both are best

explained through an example: Suppose we are dealing with an online CD shop, where

customers order CD’s from the web. The shop collects these orders on a daily basis and

then orders the required CD’s at its suppliers. When looking at the customer order

fulfillment process this provides two interesting points:

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 4/102 E.H.J. Nooijen

- The shop will place one orders at a supplier for multiple customer orders. Thus an

event can be associated to multiple process instances. This situation is called

convergence.

- The shop will place orders at multiple suppliers for a single customer order if not

all CD’s can be bought from the same supplier. Thus there will be multiple similar

events for a single process instance. This situation is called divergence.

To handle divergence Piessens uses foreign key information to suggest instance

identifiers by selecting primary key fields that are (indirectly) referenced by all event

tables. Piessens also suggests that it would be a significant improvement if a method

would be developed that automatically discovers event types by focussing on

timestamps.

1.3.3 Processes in isolation?

Many existing process analysis methods (including the process mining case studies

discussed above) assume that processes can be seen in isolation [24] as visualized in

Figure 2. Given the collaborative nature of ERP systems this assumption usually does not

hold in environments where these systems are used. This causes problems when

convergence occurs, because convergence by definition means that interaction between

multiple process instances should be taken into account. The main issue is that it

becomes unclear what defines a process (instance), i.e. one cannot define precisely what

is part of the process and what is not. Because of this a different process instance

defintion tends to be chosen for each situation that is analyzed.

Figure 2: Traditional view on processes

The unclarity of the definition of a process instance explains the problems encountered in

the case studies on process mining in ERP systems with convergence, divergence and the

identification of instance identifiers. In addition to this the unclarity also makes it hard to

identify the relation between the data and the control flow, since this will vary based on

the process instance definition chosen to explain a specific situation. Thus a new process

analysis approach is required that takes the interaction between processes into account.

1.4 Artifact-centric process analysis in the context of ERP systems

1.4.1 Artifacts

Artifacts are business entities described by both an information model and a non-trivial

lifecycle [25], [26]. An example would be customer orders or purchase orders. One such

entity (e.g. a specific customer order) is called an artifact instance.

Artifacts can be related to other artifacts. For example, in a build-to-order environment a

new customer order could trigger the creation of a new purchase order. This purchase

order might be related to multiple customer orders though, since a single purchase order

Artifact-Centric Process Analysis Chapter 1 – Introduction

E.H.J. Nooijen 5/102 Master’s Thesis

might be used to purchase the required materials for multiple customer orders. This also

implies that the lifecycles are mutually dependent on eachother: the creation of a

customer order causes the creation of a purchase order, but the arrival of the goods of

the purchase order trigger the further processing of the customer order.

Figure 3: Artifact view on business processes

The authors of [27], [28] describe a business process analysis approach that describes

an environment as a set of artifacts. Figure 3 visualizes the general idea of this approach,

showing the interaction between artifacts as dark-blue arrows and the mapping between

the information model and the lifecycle as light-blue arrows. In this approach the

business artifacts are identified by first looking at what data is important and only then it

is investigated how things should be done. The required information is gathered through

the use of interviews [29], which can be time-consuming.

1.4.2 Research question

Although previous work on business process analysis in the context of ERP systems

clearly shows that data, processes and interaction between processes should be taken

into account, support for this is rather limited. The artifact-centric approach provides a

way to describe how things work, but the interviewing approach is time-consuming.

Although process mining could in theory be usefull its practical value is limited, since the

required time for preprocessing offsets one of its major advantages. Thus an artifact-

centric method is required that combines existing techniques to provide an efficient way

of doing process analysis in the context of ERP systems, resulting in the following

research question:

How can an artifact-centric description of an ERP system efficiently

be derived from the systems database?

Two important aspects of artifacts are the information schema describing the data it

contains and the lifecycle that describes how it functions. Therefore the research question

can be decomposed into two subquestions:

1) How can the information schema of each artifact in an ERP system

be identified using the systems database?

2) How can the lifecycle of each artifact in an ERP system be

identified using the systems database?

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 6/102 E.H.J. Nooijen

1.4.3 Project goal and scope

Given the research question the goal of the project is to create a generic, semi-

automated method that generates a description of all artifacts represented in a given

structured dataset, supported by a coherent set of techniques. Note that an ERP systems

database is an example of a structured dataset. This will be approached by first

reconstructing the information schema of the dataset. Then the artifacts and their

information schemas will be identified by partitioning the information schema of the

complete dataset. Since artifact instances can then be defined clearly traditional process

discovery techniques can subsequently be used to identify the lifecycle of each artifact

via an event log. Figure 4 shows the general idea of this approach.

Artifact

Figure 4: General idea of the approach

Artifact-Centric Process Analysis Chapter 1 – Introduction

E.H.J. Nooijen 7/102 Master’s Thesis

For practical purposes some assumptions were made to limit the scope of the project:

- The most important business processes are all lifecycles of some artifact. Thus

focussing only on artifact lifecycles is sufficient. Extracting information of business

processes that are not artifact lifecycles is outside of the scope of this project.

- Although the interaction between artifacts is important to fully describe their

behaviour there is no previous work on (semi-)automated interaction discovery

and it is beyond the scope of this project to develop such a method. Therefore the

artifact lifecycle discovery will be limited to its inner lifecycle.

- The information inside ERP systems is stored in relational databases. Process

analysis for ERP systems with a different way to store data may not benefit from

the developed method.

- The ERP systems database(s) can be accessed directly so information can be

extracted from them. Extracting information from ERP systems for which the

database is not accessible is outside the scope of this project.

1.5 Running example: The CD shop

1.5.1 Introduction

In this section the CD shop is presented: a fictional company that is used as a running

example throughout the report. The CD shop is a small webshop where customers can

order CD’s. The shop subsequently orders CD’s from their suppliers to be able to deliver

CD’s to their customers. In the next subsections the CD shop is described in detail. First

the core process of the CD shop is described. Then an overview of the database schema

of the shops system is described. Finally an overview is given of the three artifacts

relevant for the CD shops core business process and how these artifacts relate to this

process.

In this report entity-relation (ER) diagrams will be used to describe the information

model of an artifact while the lifecycle will be described using proclets [24]. ER diagrams

are explained in any general textbook on databases (e.g. [30], [31]). Each proclet

describes the lifecycle of an artifact, including its possible interfaces with other artifacts.

A proclet system consists of several proclets and as such describes the interaction

between the artifacts. For this the notion of channels is used: each channel describes a

uni-directional message flow from one artifact to another. Each interface of an artifact is

described by its cardinality (C) and multiplicity (M): the cardinality is the number of other

artifacts to which a message is sent or received from over the interface, while the

multiplicity is the number of times a message can be sent or received over a specific

interface during the lifecycle of one artifact instance. Both are typically represented as

“1” (exactly once), “?” (zero or once), “*” (zero or more) and “+” (once or more).

1.5.2 Core process: selling CD’s

The process starts when a customer requests if a number of CD’s are available in the

shop. The shop then replies with a quote that states which CD’s can be delivered and for

which price. The customer then either accepts the quote or rejects it. If it is accepted a

purchase order is placed at the supplier for the required CD’s. Note that one purchase

order may be used to get the CD’s required for multiple customer’s quotes and that

orders at multiple suppliers may be required for a single customer’s quote. The CD’s are

then shipped by the supplier to the CD shop after which the shop pays the supplier. The

CD shop subsequently delivers the CD’s to the customer. In some cases a supplier may

signal that an order cannot be delivered (as a whole); In that case a reorder may be

placed at the same or a different supplier. If the CD’s cannot be delivered by any supplier

the customer is notified of this and the process ends. If the CD’s are delivered normally

the customer receives an invoice. After the customers payment is received the process

ends.

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 8/102 E.H.J. Nooijen

1.5.3 Database schema

The CD shops database contains all data required for its core process. Figure 5 shows the

relational schema of the database, while details of each table are given in Table 1.

Supplier CD

Inclusion

CD_Quote_Order

Quote

Order

Delivery_Order

Supplier_Payment

Quote_Order

Aux

Reorder

DeliveryRequestCustomer

CD_Request

Customer_payment
Missing

in DB

Figure 5: CD shop database schema

Although fictional, the CD shops database has some deliberate flaws that real databases

also have. First of all the foreign key between the delivery and delivery_order table is

missing in the database. In addition to this several columns have a datatype that is not

completely correct: one price has a “real” datatype which should be an “integer” and two

name columns have a “char” datatype which should be a “varchar”. All of these are

marked with an asterisk (*) in the table below.

Table name Column name PK Datatype Data

length
Aux Aux Yes Integer

Cd Name Yes Varchar 50

 Artist Varchar 30

 Price Real*

 Supplier_Name Varchar 10

Cd_Request Request_Reqid Yes Integer

 Cd_Name Yes Char* 50

 Quantity Integer

Cdquote_Order Quote_Reqid Yes Integer

 Order_Orderid Yes Integer

 Cd_Name Yes Varchar variable

 Quantity Integer

 Deliverable_Quantity Integer

Customer Name Yes Varchar 30

Customer_Payment Quote_Reqid Yes Integer

Artifact-Centric Process Analysis Chapter 1 – Introduction

E.H.J. Nooijen 9/102 Master’s Thesis

Table name Column name PK Datatype Data

length
 Date_Invoice_Issue Timestamp

 Date_Payment_Sent Timestamp

 Date_Payment_Received Timestamp

 Price Integer

Delivery Customer_Accept_Shipment_Date Timestamp

 Delid Yes Varchar 6

 Quote_Reqid Integer

Delivery_Order Delivery_Delid Yes Varchar 6

 Order_Orderid Yes Integer

Inclusion Cd_Name Yes Varchar 50

 Quote_Reqid Yes Integer

 Quantity Integer

Order Orderid Yes Integer

 Order_To_Supplier_Date Timestamp

 Supplier_Notification_Date Timestamp

 Supplier_Shipment_Date Timestamp

 Opening_Date Timestamp

Quote Reqid Yes Integer

 Price Integer

 Opening_Date Timestamp

 Acceptance_Quote_Date Timestamp

 Rejection_Quote_Date Timestamp

 Customer_No_Deliverable_Notification_Date Timestamp

Quote_Order Quote_Reqid Yes Integer

 Order_Orderid Yes Integer

 Adding_Date Timestamp

Reorder Quote_Reqid Yes Integer

 Order_Orderid Yes Integer

 Reorder_Date Timestamp

Request Request_Date Timestamp

 Reqid Yes Integer

 Customer_Name Varchar 30

Supplier Name Yes Char* 10

Supplier_Payment Order_Orderid Yes Integer

 Date_Invoice_Issue Timestamp

 Date_Payment_Sent Timestamp

 Date_Payment_Received Timestamp

 Price Integer

Table 1: CD shop metadata

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 10/102 E.H.J. Nooijen

1.5.4 Relevant artifacts

For the CD shop’s core process three artifacts are of primary importance: quotes,

(purchase) orders and (physical) CD’s. Below these artifacts are introduced.

In this example entity-relation (ER) diagrams are used to describe the information model

of an artifact while the lifecycle is described using proclets [24]. ER diagrams are

explained in any general textbook on databases (e.g. [30], [31]). Each proclet describes

the lifecycle of an artifact, including its possible interfaces with other artifacts. A proclet

system consists of several proclets and as such describes the interaction between the

artifacts. For this the notion of channels is used: each channel describes a uni-directional

message flow from one artifact to another. Each interface of an artifact is described by its

cardinality (C) and multiplicity (M): the cardinality is the number of other artifacts to

which a message is sent or received from over the interface, while the multiplicity is the

number of times a message can be sent or received over a specific interface during the

lifecycle of one artifact instance. Both are typically represented as “1” (exactly once), “?”

(zero or once), “*” (zero or more) and “+” (once or more). Note that this approach

provides a solution for the divergence/convergence challenge described in section A.I

[24].

Quote

A quote is basically a customer order. It starts its lifecycle as a request from a customer

and usually ends when it is paid for. Figure 6 shows the database schema of the quote

artifact. The quote table contains a list of quote instances. Since all quotes start as a

request technically the same could be said for the request table, but this table obviously

has a slightly different meaning attached to it. The lifecycle of a quote instance is shown

in Figure 8 as part of a proclet system that contains both the quote and order lifecycle.

Inclusion

CD_Quote_Order

Quote Quote_Order

Reorder

DeliveryRequestCustomer

CD_Request

Customer_payment

Figure 6: Quote schema

Artifact-Centric Process Analysis Chapter 1 – Introduction

E.H.J. Nooijen 11/102 Master’s Thesis

Order

An order is used to purchase CD’s from a supplier. It starts its lifecycle when the CD shop

requests the delivery of CD’s and usually ends when the purchase order is paid for.

Figure 7 shows the database schema of a the order artifact. The order table contains a

list of order instances. The lifecycle of an order instance is shown in Figure 8 as part of a

proclet system that contains both the quote and order lifecycle.

CD_Quote_Order Order

Delivery_Order

Supplier_Payment

Quote_Order

Reorder

Figure 7: Order schema

Receive
request

send quote

accept quote
C:+
M:*

close quote

reject
quote

receive
goods

ship
goods

notify
undeliverable

C:+
M:*

reorder

generate
invoice

send
invoice

receive
payment

C:1
M:+

create order

add quote
to order

add quote
to order

order at
supplier

generate
invoice for

shop

ship order
to shop

C:+
M:?

send
invoice
to shop

receive
payment
from shop

notify
undeliverable

close order

C:+
M:?

Quote Order

C:*
M:1

Figure 8: Quote and order lifecycles

Chapter 1 – Introduction Artifact-Centric Process Analysis

Master’s Thesis 12/102 E.H.J. Nooijen

CD

A physical CD is the object that is handled during the entire core process of the CD shop.

It starts its lifecycle when it is requested by a customer and ends when it is delivered to

a customer. Its lifecycle is never individual however, since the lifecycle is always shared

by other CD’s that were requested by the same customer and/or delivered by the same

supplier. Thus one could say that a CD does not have a lifecycle of its own; It has a

lifecycle, but that lifecycle is completely represented by the related quote and order

artifacts.

Figure 9 shows the database schema of a physical CD. There is no table that contains a

list of physical CD’s in this schema, though. The CD table only contains the type of CD’s

available in the CD shop. The inclusion and cd_quote_order tables get closer to

describing physical CD’s: the inclusion table contains a list of physical CD’s that are

included in quote instances, while the cd_quote_order table contains a list of physical

CD’s that are included in both a quote and an order instance.

Supplier CD

Inclusion

CD_Quote_Order

Figure 9: CD schema

1.6 Outline

The remainder of this report is structured as follows. Chapter 2 gives an overview of the

proposed method followed by a detailed explaination of the artifact schema discovery

part in chapter 3 and the artifact lifecycle discovery part in chapter 4. In chapter 5 the

method is then evaluated experimentally. The report is concluded with ideas for future

work in chapter 6. Finally Appendix B contains an overview of all notations used in this

report.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 13/102 Master’s Thesis

Chapter 2 – Overall method

The goal of the method is to generate a description of all artifacts represented in any

given structured dataset that contains artifact data and event information (possibly

among other things). Figure 10 shows the steps required to achieve this.

Figure 10: Overall method

Schema extraction may be required to create a structured dataset with a known schema

(which is the prerequisite to find artifact model(s)).

The dataset is then used to identify artifacts and the corresponding database schema for

each artifact – this is called the artifact schema. Each artifact schema is assumed to be

a subset of the complete schema.

For a specific artifact schema (and the related part of the dataset) it can then be

determined what event types exist and how these are stored in the dataset. This

information can be used to create a mapping from the artifact schema to events.

Chapter 2 – Overall method Artifact-Centric Process Analysis

Master’s Thesis 14/102 E.H.J. Nooijen

The mapping and the structured dataset can subsequently be used to generate traces

suitable for process mining. Finally, these traces can be used as input for any existing

process discovery technique to generate the lifecycle for each artifact.

2.1 Schema extraction

Schema extraction is defined here as extracting structural information (e.g. candidate

keys and relationships between entities) from structured data (e.g. tables). It takes as

input a set of structured (tabular) data and produces (1) a primary keys for each table,

(2) the domain for each element (column) in each table and (3) the relationships (foreign

keys) between tables.

Schema extraction is often seen as a technique within the information extraction domain

(i.e. extracting structure from unstructured data [32]) [33], [34], but considering the

context of this method it seems to make more sense to define it as a separate step. This

has to do with the nature of ERP systems: most ERP systems already contain structured

data (in the form of a relational database), but schema information such as keys and

relations is often not available [16], [17]. ERP systems are the focus of the this method,

thus it makes sense to define schema extraction as a separate step.

Several techniques exist to extract schema information from a structured dataset [35–

38]. Of specific interest is the domain for each column: since events are ordered by

occurance2 we are looking for ways to identify this order in the data. If a domain is

ordered by occurance (i.e. sequential or timed) then the column can be used to discover

the order of the events. Therefore this information should also be recorded in this step.

An approach to execute schema extraction is described in section 3.2.

Formally the input of this step is a set of tables T = {T1,...,Tn}, with each Ti = (C, Cp) a

table that contains a set of columns C = {C1,...,Cn} and an unknown primary key Cp =

{}. Both C and Cp are a subset of the set of all columns C = {C1,...,Cn}. For each column

Ci the domain D is unknown.

The output is a schema S = (T, F, D, column_domain) with T a set of tables (as above)

and F = {F1,...,Fn} a set of foreign keys. For each table the primary key Cp =

{Cp1,...,Cpn} is known. Each Fi = (Tp,Cp,Tc,Cc) is a foreign key from parent table Tp with

primary key Cp to child table Tc with referencing columns Cc. Finally the complete set of

domains D = {D1,…,D2} is identified and there is an assignment function

column_domain : C  D that assigns a domain to each column.

2.2 Identify artifact schemas

In this step the subset of the dataset that is of interest for each specific artifact is

identified. The idea is to partition the full schema in a number of clusters (one for each

artifact) and assign each table to one or more clusters. In addition a representative main

table will be chosen for each cluster. This main table contains the instance information

for the specific artifact: each artifact instance can be identified by the primary key of the

main table. Of course the underlying assumption is that such a table exists for each

artifact, but my own experience and previous research [15], [17], [21], [22] suggests

that this is usually the case.

Previous work on database schema and graph summarization showed a few key points

should be taken into account while identifying artifact schemas:

- Important tables should not be contained in the same cluster. As explained in [39]

important is a subjective term, but there are some objective measures that

indicate importance of a table. Specifically for artifact clustering the tables that

can be used to identify artifact instances should be regarded as highly important

2 Events that occured first are ordered before events that occured later.

Artifact-Centric Process Analysis Chapter 2 – Overall method

E.H.J. Nooijen 15/102 Master’s Thesis

and must be contained in separate clusters. Aside from this, high connnectedness

(a large number of incoming and outgoing foreign keys) and high data cardinality

(large numbers of different data values) are indicators of higher importance of a

table [39].

- Clusters should be evenly distributed over the schema. This corresponds to the

fact that all information about an artifact should be contained in its schema.

Intuïtively a schema containing 40 tables is unlikely to be represented correctly by

3 clusters with 2 of them each containing a single table and 1 cluster containing

the other 38 tables, especially if the two single table clusters are directly

connected via a foreign key. If one focusses only on importance this can be the

result, however. One measure for this is the density of the clusters: the number

of links (foreign keys) between tables as a ratio versus the number of possible

links between tables. It is to be expected that the intra-cluster density is higher

then the average or inter-cluster density [40]. Another related measure is the

coverage as defined in [39]: this measure is calculated using the cardinality of the

foreign keys and the foreign key path length between each table and the main

table.

- The number of clusters created should be as small as possible [39], while

maintaining sufficient information about the schema as a whole. For artifact

schema clustering this means that the granularity of the clustering should match

the expected granularity of the artifacts: e.g. if order invoices and orders are

expected to be different artifacts they should be shown as different clusters.

These three points are related to each other and tradeoffs will need to be made for each

set of clusters that is calculated. The exact importance of each depends on the required

granularity of the summary and the specific dataset. An approach to execute artifact

schema identification is described in section 3.3.

Formally the input of this step is a schema S as defined above. The output is a set of

artifact schema’s {SA1,..., SAn} where each artifact schema SA= (TA, FA, DA,
column_domain, Tm) is defined as a schema with a main table Tm ∈ TA and the other

attributes defined as done for any schema above.

2.3 Create schema-to-log mapping

Creation of the mapping between the artifact schema and a resulting event log is done in

this step. It takes as input (1) an artifact schema and (2) a structured dataset described

by the artifact schema and produces (1) a set of event types identified in the dataset and

(2) a mapping from the dataset to these event types. The mapping found in this way

describes how to extract the different events from the dataset. Note that in this case the

purpose of the event log is to use it to discover the lifecycle of an artifact using process

mining techniques. Since it depends on the goal of a process mining project what to

include in an event log [9], [41] this should be taken into account.

All known previous work on support for this step assumes that the mapping is created

manually by domain experts [15], [21], [41], [42]. In addition to this a variety of papers

are available that describe how event logs were extracted from a specific system [15–

17], [23], [43–45]. The artifact-centric approach already solves some challenges given in

these papers. Therefore these no longer have to be taken into account:

- Convergence and divergence [15], [16], [41]. As explained in the introduction the

artifact-centric approach was developed to handle problems with convergence and

divergence. Thus these problems should not play a role when working with a

single artifact.

- Traces should contain only events that belong to a single process [41]. For the

artifact centric approach this implies that all events should be related to a single

artifact. Since the previous step ensures that all input data (including events) is

related to a single artifact, this should not play a role here.

Chapter 2 – Overall method Artifact-Centric Process Analysis

Master’s Thesis 16/102 E.H.J. Nooijen

An overview of more general problems for event log extraction is given in section 4.2,

followed by an approach to identify artifact-to-log mappings.

Formally the input of this step is an artifact schema SA as defined above. The output of

the step is an artifact specific log mapping LM as defined in Table 2 below. Figure 11

shows the same information as a class diagram. This mapping describes the conversion

of a dataset to an event log in the eXtensible Event Stream (XES) format. Note that a

trace mapping TM defines the conversion to any general event log, while the XES specific

concepts (e.g. classifiers) are part of the log mapping LM.

Figure 11: Class diagram of mapping domain model

The model is similar to that of XESame [41], except for a ListAttribute that is used to

describe a variable length list of attributes. This was added because XESame cannot

handle these. Aside from this the mapping described here can easily be translated to the

XESame model to allow for manual adjustments to the identified mapping. See Appendix

C for a description on how to do this.

Symbol Description

LM = (name, TM, EX, CL,

AGT, AGE)

Log mapping with artifact name name, a trace mapping

TM, extensions EX, classifiers CL, global trace attributes

AGT and global event attributes AGE

TM = (CTID, TFrom, FLink,

EM, AMT, LAT)

Trace mapping with traceID columns CTID, main table

TFrom, other table links FLink, event mappings EM,

attribute mappings AMT and list attributes LAT

EM = {EM1,...,EMn} Set of event mappings

Artifact-Centric Process Analysis Chapter 2 – Overall method

E.H.J. Nooijen 17/102 Master’s Thesis

Symbol Description

EM = (name, CEID, Ce,

TFrom, FLink, AME,

LAE)

Event mapping for event name with eventID columns CEID

and event column Ce, main table TFrom, other table links

FLink, attribute mappings AME and list attributes LAE. The

event column describes the ordering of the events, most

likely containing timestamp values

LA = {LA1,...,LAn} Set of n list attributes

LA = (key, CAID, TFrom,

FLink, AML, LAL)

List attribute (an attribute with multiple values) mapping

with given key, attributeID columns CAID, main table

TFrom, other table links FLink, attribute mappings AML and

list attributes LAL

AM = {AM1,...,AMn} Set of n attribute mappings

AM = (key, type, Ca) Attribute mapping with given key, type and attribute

column Ca

AG = {ATG1,...,ATGn} Set of n global attributes

AT = (key, type, value) Attribute with given key, type and value

EX = {EX1,...,EXn} Set of n extensions

EX = (name, prefix, URI) Extension with given name, prefix and URI

CL = {CL1,...,CLn} Set of n classifiers

CL = (name, keys) Classifier with given name and keys

Table 2: Log mapping symbols

2.4 Generating traces

Using the mapping found in the previous step events can be generated from the dataset.

The approach described in [41] was designed for a similar purpose: it takes as input a

dataset and a mapping and produces an event log. Similarly for each artifact this step

should take as input the dataset and the mapping for the artifact as decribed in the

previous section. The output should be an event log in the eXtensible Event Stream

(XES) format; The XES format was chosen since this is the only available standardized

event log format. It was designed for the interchange of event log data in a simple,

expressive and flexible format, while allowing for extensions of the format in a

transparant manner [46]. An approach to generating traces given a mapping and a

dataset is described in section 4.3.

Formally this step takes as input the dataset and the mapping LM as decribed in the

previous section. The output should be a XES log file as defined by [46]. The XES format

defines an event log as a set of traces each containing a list of events. All of these can

have attributes that provide more information; there are 5 different types of attributes.

Extensions can be defined that give more meaning to an attribute: each extension

defines a list of attribute keys with a specific meaning. Global attributes can be defined

for both traces and events: these are attributes that guaranteed to be available for all

traces and events respectively. Finally event classifiers provide a way to compare events.

Each classifier specifies a number of event attributes which can be used together to

uniquely identify all events.

2.5 Apply process discovery techniques

The goal of artifact lifecycle discovery is to discover both the internal lifecycle of an

artifact and its interaction with other artifacts, thereby fully describing how an artifact

operates. With the event log produced in the previous step a variety of process discovery

techniques can be used to generate the lifecycle for each artifact. Section 4.4 describes a

number of these existing techniques and how to apply them to discover the internal

lifecycle of an artifact.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 19/102 Master’s Thesis

Chapter 3 – Artifact schema identification

The database of an ERP system contains the data of the entire system, but it may not be

intuïtively clear how this data is structured. A way to describe the structure of the data is

by identifying all artifact schema’s that are part of the database. An artifact schema is a

relational schema describing the data of an artifact; it is a way to describe the

information model of the artifact. Note that if all artifact schema’s are to be identified this

implicitly includes identifying all artifacts present in the system.

Schema
extraction

Identify artifact
schema(s)

Artifact schema
identification

Artifact
schema(s)

Database
schema

Structured
dataset

Figure 12: Artifact schema identification approach

In this chapter a two-step approach is presented to identify all artifact schema’s that are

part of an ERP systems database. First a variety of techniques are presented to

rediscover several types of metadata (column domains, primary keys and foreign keys),

since this metadata is commonly missing in ERP system databases. The result of this is a

complete schema for the entire database. Then a fuzzy clustering approach is presented

that selects subsets of the entire database schema: the artifact schemas. Both steps

take into account that the lifecycle of each artifact will need to be identified afterwards.

Since the focus of this report is on ERP systems that rely on relational databases the

terminology that is relevant in that context is first introduced. Then the steps to discover

the complete schema and identify the artifact schemas are presented. Each of the steps

consists of an overview of related previous work followed by an approach to execute the

step.

3.1 Relational databases

A relational database is a shared collection of logically related data described by a

relational model [30], [31]. The relation model describing the database is called a

schema. This schema contains both the tables and the relations between those tables.

Each table consists of one or more columns, each having a name and a domain (the

set of possible values that can occur for that column). A row of data (one field for each

column) is called a record.

A functional dependency occurs when the values in one set of columns can be used to

determine the value of another column. Formally a functional dependency is noted as C
 C’ with both C and C’ a set of columns. The values of C’ are functionally determined

by C. In this case it is said that the columns in C functionally determine C’.

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 20/102 E.H.J. Nooijen

A table may also have one or more candidate keys: a set of columns that can be used

to uniquely identify all records in the table. A candidate key is a specific type of

functional dependency: the candidate key can be used to determine the value of all other

columns in the same table. A candidate key must be minimal: it should not be possible to

uniquely identify all records using a subset of columns of the candidate key. One of these

candidate keys is often chosen to be the primary key for the table.

An inclusion dependency (IND) occurs when all values in one set of columns are

included in all values of another set of columns. Formally an inclusion dependency is

noted as (C1,...,Cn) ⊆ (C’1,...,C’n), with both (C1,...,Cn) and (C’1,...,C’n) a sequence of

columns. The values of (C1,...,Cn) are pairwise included in (C’1,...,C’n): the values of the

child column combination (C1,...,Cn) are a subset of the values of the referenced column

combination (C’1,...,C’n). In this case it is said that the child columns are included in the

referenced columns.

Relations between tables are described by foreign keys between parent and child

tables. For a foreign key a set of columns is chosen in the child table. These columns

reference the primary key of the parent table: The values of the child column

combination are a subset of the values of the referenced primary key. Thus a foreign key

is a specific example of an inclusion dependency. A foreign key can be a 1-on-1

reference or a 1-on-n reference: a 1-on-1 reference means that each primary key value

of the parent occurs at most once in the child table, while for a 1-on-n reference each

primary key value may occur multiple times in the child table.

3.2 Schema extraction

 As noted before schema extraction is extracting structural

information (e.g. candidate keys and relationships between

entities) from structured data (e.g. tables). It takes as input a

set of structured (tabular) data and produces a relation schema

for the data. This schema contains (1) the domain for each

column in each table, (2) a primary keys for each table and (3)

the foreign keys between tables. Extracting each of these types

of information is a distinct subproblem that has been analyzed

in the past. Therefore each subproblem (domain extraction,

primary key extraction and foreign key extraction) will be

treated separately in this section.

3.2.1 Domain extraction

Overview

In the context of artifact discovery domain extraction is the grouping of columns into a

number of domains based on the data values and known meta data (e.g. name, data

type) of the columns such that these domains can be used for schema-to-log mapping.

This means that it must be possible to map each domain to exactly one XES datatype

and to specify for each domain if the data elements are ordered by occurance. Since we

assume that primary and foreign key information is not available yet at this step, this

information cannot be used.

The simplest approach for domain extraction is to let a domain expert look at all the

column combinations to classify them as “the same” and “not the same”. This would

create groups of columns that are “the same”, meaning that they share the same

domain. After this is done the domain expert should classify every domain as ordered by

occurance or not. In practice manually comparing all column combinations is infeasible

due to the large number of possible column combinations. Therefore previous research

has suggested to use a variety of distance measures as an alternative to manual

classification; such a distance measure represents the likelyhood that columns are

Artifact-Centric Process Analysis Chapter 3 – Artifact schema identification

E.H.J. Nooijen 21/102 Master’s Thesis

similar. The interpretation of these distance measures is done by so-called clustering

algorithms that result in groups of columns that are similar according to the distance

measure.

Related work: Domain extraction

In general domain extraction is the grouping of columns into a number of attribute

types based on the data values and known meta data of the columns. The idea is that all

columns with the same domain should be assigned to the same attribute type; the

attribute type identifies the domain. E.g. the cd_name column of various tables should be

grouped together to form the cd name attribute type, while the customer_name columns

should not be in the same group (even though they have the same data type).

Only a limited amount of work has been done on domain extraction. The authors of [37]

experimentally compare a variety of methods to cluster columns together based on the

so-called q-gram signatures of the data in the columns while in the work presented in

[47] clusters of columns are computed using the distribution of the data in the columns.

In addition to this the slightly more general problem of grouping columns is shown to be

NP-Complete in [48].

All methods compared in [37] use a distance metric based on the q-gram signature of

each column as a basis. It is noted that accuracy is always highest when cosine distances

are used. Q-gram signatures given by principal component analysis (PCA) on the column

x column covariance matrix are shown to have the highest accuracy and to scale

reasonably well. Another option with a high accuracy over all experiments is information

bottleneck (IB) based clustering, although this is slightly slower than the PCA based

method. In addition it is shown that min-hash signatures are the fastest option, giving a

reasonable accuracy as a result.

The two-step approach described in [47] starts with a rough clustering using the distance

between the combined value distribution of each column pair as a basis. The clusters

identified in this way are then further refined using the distance between the intersection

value distribution of each column pair as a basis. For the seconds step the authors also

introduce witness columns: the assumption is that if column CA is related to a witness

column and column CB is related to the same witness column that then it is highly likely

that CA and CB are also related. In addition to the basic approach the authors also

introduce a variety of performance optimizations.

Earlier work on column similarities are that on Bellman [49] and the application of

information bottleneck for general column clustering [48]. The work on Bellman suggests

the use of q-gram sketches and q-gram signature to verify column similarities, but does

not mention how columns should be grouped together. The approach described in [48]

shows how columns can be clustered, but not with the purpose of domain based

categorization in mind.

Finally, as mentioned before the information bottleneck method introduced in [50], [51]

can be used to cluster columns together. Since the introduction of the method two more

efficient versions of the algorithm were introduced, as described in [52] and [53].

Approach

A two-step approach is suggested for domain extraction in this context:

1. Heuristically determine the XES datatype of each column by looking at its

technical datatype or data values.

2. Apply general domain extraction techniques such as those described in [37] and

[47] to each set of columns sharing the same XES datatype.

Aside from determining the XES datatype the first step also makes sure that each column

containing time values is identified, thereby likely specifying most or all columns that can

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 22/102 E.H.J. Nooijen

be used to identify events. In addition to this the heuristics provide a way to reduce the

size of each set of columns to be clustered by looking at each column individually. Since

the second step is NP-complete this may reduce the total computation time significantly.

Heuristically determining the XES datatype is fairly straightforward. If the technical

datatypes of all columns are trustworthy, then determining the XES datatype is trivial. If

the technical datatypes cannot be relied upon then the values of each column can be

checked using generally accepted heuristics. A column can for example only be of the

boolean type if it contains only “true”, “false”, “0” or “1” values. The other XES datatypes

can be determined using similar heuristics.

For the second step a general domain extraction technique can be used. Based on the

evaluation in [37] a q-gram signature method using principle component analysis should

provide good results. For large datasets min-hash functions appear to be the best

alternative. The authors do not provide a suggested clustering method in their paper to

use with calculated distances. Since the number of domains is not known beforehand this

should be a method that calculates the number of clusters as part of the algorithm, such

as DBScan [54]3.

Sampling can be used to improve the efficiency each technique by reducing the number

of values that need to be checked for each column. For both the heuristics given above

and functional dependency extraction the results using sampling are correct if there are

no “invalid” records in the sample while these exist in the complete dataset. Thus

formula (1) can be used to approximate the required sample size, given an allowed

fraction of invalid records in the complete dataset ε and a maximum probability that an

invalid record is missed δ [55]. For a more exact (but computationally harder) estimation

the method of [56] can be used.

Sample size ≈ log

3.2.2 Primary key extraction

Overview

Primary key extraction is the identification of the primary key for a table (for which no

such key is defined) based on the data values and known meta data of the table. Typical

metadata that can be used includes the column names, positions or datatype. It involves

both the extraction of candidate keys and the selection of the primary key from these

candidate keys. The extraction of candidate keys can be defined exactly and thus this can

in theory be fully automated. This is not the case for the selection of the primary key,

since this is subject to assumptions known to the persons responsible.

The simple approach to primary key extraction is to first check each column combination

to see if it is a candidate key and then let a domain expert pick one of these keys as the

primary key. Checking if a column combination CX is a candidate key can be done by

grouping all records in the table based on the values of CX. For each value combination

only one record should exist. Thus if a group exists that contains more than record then

the column combination is not a candidate key. The disadvantage of this approach is that

all records in the table need to be grouped together for each possible column

combination. Although the grouping of records can be done efficiently by sorting, the

number of column combinations increases exponentially with the number of columns. As

a result this approach is not feasible for even a relatively small table. Because of this a

number of more efficient approaches have been suggested in previous research.

3 Although the value distribution approach described in [47] and an information

bottleneck based approach with one of the more recent faster algorithms [52], [53]

would seem promising these were not evaluated due to time constraints.

(1)

Artifact-Centric Process Analysis Chapter 3 – Artifact schema identification

E.H.J. Nooijen 23/102 Master’s Thesis

Related work: Candidate key extraction

Candidate key extraction is the identification of candidate keys for a table (for which

no such key is defined) based on the data values and known meta data of the table. A

significant amount of work has been done on this subject and the related subject of

functional dependency extraction. In addition to data-driven approaches a variety of

approaches have been described that infere functional dependencies or candidate keys

from the queries that were executed against the database. These approaches are not

discussed here since it is assumed that information about queries executed is not

available in this case.

Two main types of algorithms exist to extract candidate keys or functional dependencies

from the data of a table: level-wise or a-priori algorithms (all based on [57]) and record-

based algorithms. Level-wise algorithms check each column-combination once, while

record-based algorithms check each record once. Since discovering a unique column

combination (i.e. candidate key) of a table is an NP-Complete problem [58], all of the

algorithms can take an excessive amount of time to complete in the worst case scenario.

The only record-based approach that I am aware of is Gordian [59]. The idea of Gordian

is to eliminate non-keys instead of discovering candidate keys directly. Experiments on

various datasets show that Gordian scales approximately linearly with the number of

columns and records in practice. In [60] Gordian is shown to perform poorly when large

numbers of non-uniques are found however, since then unique generation takes long. To

improve on this the author proposes a hybrid approach called HCA-Gordian [60], [61] to

identify candidate keys. HCA is a level-wise approach that includes various optimizations

of previous level-wise approaches such as TANE [62], Bellman [49], FUN [63] and the

pruning mechanism based on Armstrong’s axioms described in [64]. The authors argue

that level-wise algorithms tend to take long when large numbers of uniques are found,

which is the exact opposite situation of the worst-case scenario for Gordian. Their hybrid

approach uses Gordian to quickly prune large numbers of non-keys using a sample of the

data and then HCA to determine keys. They experimentally show that HCA-Gordian

outperforms various level-wise approaches and Gordian in most cases, while not

performing much worse in cases where the level-wise or Gordian approach was optimal.

Aside from the exact approaches given above, some work has been done on approximate

identification of functional dependencies. The basic idea is that approximate results using

only a sample of the data can be obtained faster than exact results for which all of the

data is required. The CORDS approach [65] uses chi-squared analysis on a sample of the

data for this purpose. A limitation of the approach is that only single column functional

dependencies are identified. The authors show that due to statistical properties a sample

of a few thousands rows should provide acceptable results regardless of the database

size. Kivinen et al. gives a more exact result in [55]. They define exactly what fraction of

records needs to be sampled to guarantee that a functional dependency is valid with a

given confidence.

Approach

Although existing methods are available for the extraction of candidate keys, this is not

the case for the selection of the primary key. Therefore an existing method will be used

for candidate key extraction, while some heuristics are defined for the selection of the

primary key.

The most promising approach for candidate key extraction appears to be HCA-Gordian

[60], which discovers all candidate keys of a table. Since only the primary key is required

a slight modification to this approach is made though. Both the Gordian and HCA step are

run with a small sample of the data. This results in a number of possible candidate keys,

including a number of false positives. These possible candidate keys are then ordered

using the heuristics described below and verified against the complete dataset. The first

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 24/102 E.H.J. Nooijen

n candidate keys that are verified to be correct are the most likely primary keys. Thus

after n candidate keys are verified to be correct the algorithm can terminate.

Although no work appears to exist on the selection of a primary key from a set of

candidate keys, practical experience suggests that some guidelines are usually followed

when a database is designed:

1. A small key is preferred to a larger key. Thus the number of columns in a primary

key should be as small as possible.

2. Key columns tend to be positioned at the start of a table. Thus the total position

numbers of a key column combination should be as small as possible.

These guidelines can be used to order a set of candidate keys by descending probability

that they are the primary key of the table. First columns should be ordered on the

number of columns they contain. If this is equal they should be ordered by the total

position number of the columns in the combination. If that is equal as well they should be

ordered lexicographically by comparing the position of column pairs 1 through ℓ of each

combination, with ℓ being the number of columns in each combination.

3.2.3 Foreign key extraction

Overview

Foreign key extraction is the identification of candidate foreign keys between a pair of

tables based on the data values and known meta data of the table. Typical metadata that

can be used includes the primary keys, column names, positions or domains. Similar to

the two steps of primary key extraction it involves both the extraction of inclusion

dependencies (IND’s) and the selection of actual foreign keys from these IND’s. Also in

this case the first step can in theory be fully automated, while domain knowledge is

required to select the actual foreign keys.

The simplest approach to identify a foreign key between a pair of tables is to first check if

inclusion dependencies exist between the tables and then let a domain expert pick the

actual foreign keys from these inclusion dependencies. Checking if an inclusion

dependency exists can be done by comparing all pairs of column combinations with the

same number of columns. For each pair one would check if all the values in the column

combination of one table also exist in the column combination in the other table. If this is

the case then the column combination pair is an inclusion dependency. The disadvantage

of this approach is that all pairs of column combinations need to be compared. Again the

number of combinations increases exponentially with the number of columns, making

this approach infeasible for even a relatively small table. Because of this a number of

more efficient approaches have been suggested in previous research. In addition to this

the resulting number of IND’s can still be large, making it hard for a domain expert to

pick the actual foreign keys. Therefore a number of measures have been suggested that

represent the likelyhood that an IND is actually a foreign key.

Related work: Foreign key extraction

A significant amount of work has been done on the subject of foreign key extraction and

the related subject of inclusion dependency (IND) extraction. According to [66] deciding

if there exists a multi-column inclusion dependency (between two tables) is an NP-

Complete problem. They expect results to be better in practice though, since the NP-

Hardness was shown on a highly artificial dataset.

Two similar approaches for IND extraction are MIND [67], [68] and SPIDER [69], [70].

Both algorithms first verify all single column IND’s in parallel, thus requiring only a

constant number of passes over all data (regardless of the number of IND’s to verify).

For this both algorithms preprocess the column data prior to verification. A level-wise

approach is then used for higher order IND’s in which IND candidates for each level are

Artifact-Centric Process Analysis Chapter 3 – Artifact schema identification

E.H.J. Nooijen 25/102 Master’s Thesis

generated from previously verified IND’s using a set of inference rules specified in [67].

There are two notable differences between the algorithms:

- MIND creates an inverted index of the column data to verify single column IND’s,

while SPIDER prepares the data by creating a sorted list of values for each

column.

- IND’s of level 2 or higher are verified sequentially against the database with

MIND, while SPIDER verifies these similarly to single column IND’s (i.e. in

parallel).

For both algorithms it is also shown how approximate IND’s can be extracted if

inconsistencies exist in the data [68], [70]. An attempt was done to use SPIDER on a

SAP dataset with ¼ million columns, but this could not be tested due to limitations on the

number of open files (the algorithm creates 1 tempory file per column) and main

memory constraints of the JVM. For both MIND and SPIDER it is shown that the runtime

increases linearly with the data size for IND’s consisting of a limited number of columns.

When the number of columns on both sides of an IND exceeds 8 to 10, level-wise

approaches such as MIND and SPIDER start to exhibit exponential running time increases

[67], [71–73]. Two approaches to find larger IND’s are FIND2 [72] and Zigzag [71]. Both

algorithms are based on a property of IND’s that allows smaller IND’s to be deduced from

larger IND’s. The algorithms use jumps in the search space: given a set of verified 1 and

2 column IND’s large IND candidates are constructed and verified before deducing

smaller IND’s from these verified large IND’s. Even though scalability of these algorithms

is shown to be better than those of level-wise algorithms if the number of columns

exceeds 10 [72], [73], the practical relevance of them may be limited since real

databases usually do not contain IND’s with more than 6 columns [70], [72].

A number of approaches exist that focus on identifying true foreign keys from IND’s that

were shown to hold in the data. Both [73] and [35] focus only on the data for this

purpose, while [74] also includes simple meta data properties (such as column names).

In [73] it is shown that theoretically the probability that an IND is valid by chance is

greater than 5% if the included column combination contains less than 7 distinct values.

Another good predictor if an IND is a foreign key is the value distribution of both included

and referenced column combinations; These should be similar for true foreign keys [35],

[73]. While in [73] the χ2 test for independence is used to prune invalid IND’s, the Earth’s

Movers Distance (EMD) is shown to be a good predictor of the validity of a foreign key

that can be calculated very efficiently in [35]. The authors note that their experiments

always show one or more cut-off points for the calculated EMD’s; one of these cut-off

points always is the boundary between true and false foreign keys. The authors of [73]

note that the value distribution can result in false negatives if the included column

combination is a subset within a specific range of the values of the referenced column

combination. Therefore they propose that a value distribution test should only be used if

the number of distinct values in the included column is less than 7.

The authors of [74] use a slightly different approach: they specify a number of properties

that could indicate valid foreign keys and then use existing classification algorithms to

separate true foreign keys from IND’s that are coincidentally correct in the data. Thus

their approach requires a training dataset of valid and invalid foreign keys. Experimental

evaluation shows that the approach has difficulties handling empty tables, transitive

foreign keys, small tables and one-to-one foreign keys [74]. In addition [35] shows that

the data based properties are all captured well by the value distribution property as

discussed above.

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 26/102 E.H.J. Nooijen

Approach

To extract foreign keys an integrated approach can be constructed from both existing

methods for the extraction of IND’s and the selection of foreign keys from IND’s. From a

mathematical point of view the IND extraction problem is slightly harder than primary

key extraction: candidate key extraction is NP-hard when considering a single table,

while IND extraction is NP-hard when considering a pair of tables. Since there are |T|

tables and |T|2 combinations of tables in the schema this implies that |T| NP-complete

problems must be solved for primary key extraction, while |T|2 NP-complete problems

must be solved for foreign key extraction. Thus this problem can only be tackled by an

efficient approach.

The base approach chosen for IND extraction is that of SPIDER [69], [70], although the

preprocessing of the data is done using an inverted index (as suggested by [67], [68]).

The creation of the inverted index is done using single-pass-in-memory indexing as

described in [75]. This reduces the number of sorts required when compared to SPIDER,

since values only need to be sorted when memory is exhausted and the dictionary is

written to a file. Similarly this reduces the number of required files. In two cases the

original SPIDER algorithm is likely to perform better:

- If a table contains such a large number of distinct values that the values of a

single column combination do not fit into memory then the number of sorts and

the number of files created actually increases. Note that the sorting will still need

to be done by the database management system (DBMS), which may in practice

suffer from the same limitations.

- The existence of indices for some column combinations: in that case the values

for these column combinations are already sorted in the DBMS and thus returning

the column combination in sorted order saves one sort.

To reduce the number of IND candidates to be tested two heuristics are used:

- The domains of each column pair must match. So a column with the “string”

domain is not tested to be included in any column with an “integer” domain.

- The referenced side of a candidate IND must be a primary key. Thus no column

combinations were tested to be included in a column combination that was not a

primary key.

An intented effect of the second heuristic is that a large number of 1-column IND’s are

not tested. Since these are required for the pruning mechnism described in [67], [68]

this mechanism cannot be used4.

The approaches described in [71], [72] are not chosen since they were only shown to be

beneficial if the number of columns on each side of the IND exceeds 8, while this number

rarely exceeds 6 in practice [70], [72].

A variety of properties are calculated that allow for the selection of the actual foreign

keys from the identified IND’s. The accuracy of each of these properties is evaluated

empirically in subsection 0.

1. The number of distinct values of the included column combination.

2. The earth movers distance (EMD) between the value distribution of the referenced

and included column combinations. The EMD is used instead of the χ2 test since it

appears to be possible to test it more efficiently. The exact measure used is the

thresholded EMD as decribed in [76], since it was shown to be a better metric for

the difference between two value distributions than the general EMD.

3. The number of possible referenced column combinations of an included column

combination.

4. Typical name suffixes of the included column combination. This is calculated as

the number of columns for which the name ends with “ID”, “NR” or “NO” divided

by the total number of columns in the combination.

4 Due to time constraints it was not tested if the overal impact on efficiency was positive

or negative as a result.

Artifact-Centric Process Analysis Chapter 3 – Artifact schema identification

E.H.J. Nooijen 27/102 Master’s Thesis

5. The longest common subsequence (LCS) [77] that is shared between the names

of the referenced and the included column. For this the name is taken to be the

combination of the table name and the column name (e.g. for column “reqid” in

table “quote” the used name was “quote_reqid”). The ratio is calculated as the

length of the LCS divided by the length of the shortest name. The score for the

IND is the average ratio between each column pair.

6. The Dice coefficient [78] between the names of the referenced and the included

column. For this the name is also taken to be the combination of the table name

and the column name. The Dice coefficient is defined as the number of shared

character bigrams as a ratio of the total number of bigrams in both words. The

score for the IND is the average coefficient between each column pair.

The first 4 properties were all defined in previous research. The last 2 are defined since

[74] suggests that more sophisticated ways to compare names should be investigated.

The LCS ratio is expected to be a good predictor of valid foreign keys, since included

columns often have a name of the form “[referenced table name]_[referenced column

name]”. The Dice coefficient is included for comparison with the LCS ratio, since it is

generally considered to be a good similarity measure for words [78].

3.3 Identify artifact schemas

Overview

 Artifact schema identification is the selection of the

tables, foreign key relations and main table from a

database schema for each artifact based on the fully

specified structural information and data values of the

database. Notable here is that it is highly likely that some

tables are assigned to multiple artifact schema’s. An

example would be the cd_quote_order table in the CD

shops database, that is part of the schema of all three

artifacts.

Similar to domain extraction the simpest approach is to let a domain expert first pick all

tables that represent the artifact instances and then let this expert assign the remaining

tables to one or more of these “artifact instance tables”. Since there can be thousands of

tables in a database, often with cryptic names, this is not feasible in practice. Therefore

some way to measure the likelyhood that a table contains artifact instances needs to be

developed. In addition to this a distance measure between tables can be used to

represent the likelyhood that a table needs to be assigned to a table containing artifact

instances. As with domain extraction the interpretation of these distance measures can

be done by so-called clustering algorithms that result in groups of tables that are close

according to the distance measure.

Related work: Schema summarization

Schema summarization is the (automatic) creation of a summary of a database using

the structure of and/or data contained in the database . A schema summary consists of a

set of abstract elements and links that is representative for the underlying database. The

identification of artifacts and their schema’s can be seen as a specific form of schema

summarization. Although manual schema summarization has been studied for over two

decades [79], only recently a few papers where published on the topic of automatic

schema summarization. All of these papers build on the more widely studied field of

graph-based clustering techniques; for an extensive overview of these techniques the

reader is refered to [40].

The first work on automatic schema summarization using both data and structure

information is [39]. The authors define three properties of summaries that can be used to

measure how good a summary is: complexity (the number of elements in the summary),

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 28/102 E.H.J. Nooijen

importance (of elements contained in the summary) and coverage (how representative

the elements in the summary are for all elements in the schema). In addition to this the

BalancedSummary algorithm is described that balances the importance and coverage

properties of a summary given a required summary size. The authors show

experimentally that summaries created by the algorithm are as good as summaries

created by human experts.

Since entropy is considered to be the standard metric for information content of data

[80] a number of papers recommends its use for schema summarization [32], [36], [48],

[81], [82]. Entropy is a measure of uncertainty of a random variable X. It is defined by

 l ∈ . When applied to data values it takes on its maximum value

when each value is unique. The authors of [48] define how this might be used for

information bottleneck based clustering of tables, but do not show any method or result

with their metric. Yang et al provides an approach that first calculates the importance of

a table using entropy combined with structural (foreign key) information, then calculates

distances using data information and finally calculates clusters with the previously

calculated numbers [32], [36], [81].

The distance between two tables connected via a foreign key is defined using two

properties:

1. The distance between two tables is inverse proportional to the fraction of records

in the parent for which a child record exists (the matched fraction).

2. The distance between two tables is proportional to the average number of records

in the child for each parent record for which a child record exists (the matched

average fanout).

The summary is then calculated using a weighted k-center algorithm: this algorithm

takes the importance of tables into account when determining the distance, making it

more likely that highly important tables end up in different clusters. The authors

experimentally evaluate their approach against the BalancedSummary approach of [39]

(on the TPC-E database) and show it has a higher accuracy. The work is continued in

[82] where an approach is given to construct a summary given a set of required tables

and a summary size. The authors show that this conditional clustering problem is NP-

complete as well. A new entropy based distance function is defined, based on both intra-

and inter-table column level relations; the distance between two tables is the total

distance between the primary keys of the tables. The new distance function is

experimentally shown to be better for conditional summaries than the distance described

in [81].

An alternative, multi-clustering approach is described in [83]. The authors define three

types of clustering approaches that could be used for summarization. The idea is that

tables are first clustered using these types of clusterers and then a meta-clustering is

applied to get the final results. The authors show that meta-clustering is also NP-

complete. Finally some statistical techniques are presented to automatically increase the

weighting of base clusterers that are more likely to be correct.

Both [81] and [83] also describe how a table could be chosen that is representative for

all tables in a cluster. While in [83] the most central table is chosen using graph-based

techniques, the weighted k-center approach described in [81] includes both centrality

and (value based) importance of a table.

Approach

An approach that takes both entropy based importance and structural information into

account while clustering tables into artifact schemas appears to be the best choice. The

assumption here is that the most important tables likely contain the instance information

of the artifacts. For this purpose entropy seems to be a good measure of importance,

since it is higher when each record in a table contains more unique values. Since the

authors of [81] describe such an approach this was used to calculate the base clusters.

The approach described by the authors of [83] might provide better table clusters, but is

Artifact-Centric Process Analysis Chapter 3 – Artifact schema identification

E.H.J. Nooijen 29/102 Master’s Thesis

computationally more complex. In addition the calculation of the main table in [83] does

not take entropy based importance into account. Due to time constraints the alternative

distance measures provided by [82] were not evaluated.

An naive approach for artifact schema identification would have been to first determine

the most important tables and then assign all other tables to one or more of the most

important tables. This schema identification approach ignores the fact that important

tables that are close together are likely part of the same artifact though: the request

table in the CD shops database might be considered at least as important as any table of

the CD artifact schema, but it is still part of the quote artifact schema. The naive

approach would generate a schema for the CD artifact if and only if a separate quote and

request schema are generated, which is undesirable. Thus structural information needs

to be taken into account as well.

None of the known schema summarization approaches assign tables to multiple clusters.

Thus either an alternative clustering approach is required or the clusters generated by an

existing summarization approach (the base clusters) need to be expanded afterwards.

For expansion a property needs to be available that can be used to determine if a table

should be added to a base cluster. Artifact schema’s have an interesting property that

can be exploited for this purpose: artifact instance information is contained in the main

table and other tables need to be included only if they contain information about an

artifact instance. Thus to determine if a table needs to be included in an artifact schema

only the relation between the table and the main table of an artifact schema needs to be

investigated. This property will be used to expand base clusters using (indirect) foreign

key references between the table and a main table.

For expansion of base clusters a level-wise algorithm was created that adds tables to

each base cluster. It starts with an artifact schema that contains only the tables in the

base cluster. At each level it evaluates foreign keys between tables in the artifact schema

and dependent tables not in the schema: if these foreign keys are (indirectly) based on

the primary key of the main table then the dependent tables are added to the schema. It

stops if the maximum level to add is reached or if no tables were added at a given level.

Figure 13 shows an example of how this works based on the CD shop’s example database

described in subsection 1.5.3. In this example the base cluster consists of the request,

customer and cd_request tables, with request being the main table. In the first iteration

the foreign key between request and quote is evaluated: reqid is the referenced column

and quote_reqid is the dependent column. Since reqid is the primary key of the main

table the quote table is included. During the second iteration the inclusion,

cd_quote_order, reorder, quote_order, delivery and customer_payment tables are added.

The referenced column in all these cases is the quote_reqid column, which was shown to

depend on the primary key of the request table during the previous iteration. During the

third iteration the foreign key between delivery and delivery_order is evaluated.

Delivery_order is not added, since the dependent column depends only the delid column

which in turn does not depend on the primary key of the main table. Since no tables

were added the algorithm stops.

Chapter 3 – Artifact schema identification Artifact-Centric Process Analysis

Master’s Thesis 30/102 E.H.J. Nooijen

Supplier CD

Inclusion

CD_Quote_Order

Quote

Order

Delivery_Order

Supplier_Payment

Quote_Order

Reorder

DeliveryRequestCustomer

CD_Request

Customer_payment

0 0

0

12

2

2

2 2

2

Added during expansion

Base cluster

Figure 13: Schema expansion example

3.4 Conclusion

It is often not intuitively clear how the database of an ERP system is structured. Using

the techniques in this chapter the database schema describing a structured dataset can

be recovered. This includes the (re-)discovery of domain, primary key and foreign key

meta data.

After a complete database schema is available the artifacts that are represented in the

schema can be identified by applying a fuzzy clustering technique aimed at identifying

artifact schemas. Thus we now have a number of artifact schemas clearly showing what

artifacts are represented by the dataset. Since the lifecycle of each artifact is not yet

known this is only a partial description of each artifact though.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 31/102 Master’s Thesis

Chapter 4 – Artifact lifecycle identification

The artifact schema does not explain an artifacts lifecycle, but the data described by it

may be used to identify this lifecycle. Figure 14 recalls the steps that are required to

discover an artifacts lifecycle given its schema and the corresponding data. This involves

various control-flow discovery techniques, but these techniques require that lifecycle

information is available in the form of an event log. Therefore the lifecycle information

must first be extracted from all of the artifacts data.

Create schema-
log mapping

Generate traces

Apply general
process discovery

techniques

Artifact lifecycle
discovery

Schema-log
mapping

Event log

Lifecycle model

Artifact
schema

Figure 14: Artifact lifecycle identification approach

Section 4.1 shows an overview of previous approaches to extract an event log from a

source system. Section 4.2 then explains how a mapping from the artifact schema to an

event log can be created automatically. The next section (4.3) shows how an event log

can be extracted from the data using the created mapping. Finally in section 4.4 an

overview of existing approaches to control flow discovery from event logs is presented,

followed by a suggestion on how to use these to discover the lifecyle of an artifact.

4.1 Related work: Event log extraction

Event log extraction is the process of extracting data from a (number of) source

systems and converting this data into a format that is suitable for process mining. The

extraction of event logs can be separated into three steps: The creation of the mapping

between the source systems data and an event log, the extraction of the raw data from

the source system and finally the conversion of the raw data to an event log. Note that

the first two steps may occur in reverse order (i.e. an analyst may receive a copy of the

data as a first step) and that the final two steps may in practice be combined into a

single step.

All known previous work on support for this step assumes that the mapping is created

manually by domain experts [15–17], [21–23], [41–45], [84–87]. The majority of these

papers describes how event logs can be extracted from a specific system but a few more

general approaches have also been published [41], [42], [87], [88]. The most recent

general approach is XESame, which is also the only general approach that supports the

generation of event logs in the standard XES format (as described in section 2.3).

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 32/102 E.H.J. Nooijen

In general a number of challenges were given by previous work on event log extraction:

1. Due to convergence and divergence it is not always clear what the instance

identifier should be or what events should be included in the log [15], [16], [41].

Traces should contain only events that belong to a single process [41], but

convergence and divergence makes it harder to decide what that single process

is.

2. What to include in the log depends on the goal of the process mining project [9],

[41], [89]. This implies that there may not be a “one size fits all” approach for

mapping the raw data to an event log.

3. Events should be at a consistent level of detail since they are treated equally

during process mining [41], [89]. Similarly [16] mentions that in SAP multiple

related records are stored with the same timestamp, implying that they might

actually be related to the same event. A mapping method should take this into

account.

4. The meaning of the (meta)data may not be clear when looking at it directly [15],

[89], [90]. Examples of this are cryptic 4-letter names of SAP database tables or

numeric values that encode a meaningfull label in the database. The general

solution for this is to add ontological information to the log or simply replace

cryptic values with a meaningfull label, but all of this requires domain knowledge.

5. Access to the (raw) data may be restricted, due to technical (e.g. proprietary data

format, limited connectivity options), political or legal constraints [89].

6. Anonymization of for example names in the data may be required before the

event log can be used [89].

7. Since event logs can be large, an extraction method should be able to scale

sufficiently [41], [89].

4.2 Create schema-to-log mapping

The general problem of creating a mapping from a schema

to an event log can be solved manually as done in previous

work. One could simply first choose some columns to identify

the instances, then some columns that specify event types

and finally inspect every other column to see if it needs to be

assigned as an attribute to an instance or event type. This

information and the relations between all of them could then

be entered into a tool such as XESame to complete the

mapping creation. This is a time-consuming task which

requires sufficient domain knowledge and an understanding

of process mining. Therefore a level of automation is

desirable.

During creation of the mapping challenge 1 through 4 as

described in the previous section need to be taken into

account. Aside from these some additional challenges can be

identified:

8. Some events may be logged with limited time information (e.g. only date and no

time information). In this case the order of events may not be sufficiently specific

for process mining when only time information is used.

9. Some tables may contain many columns and/or be related to multiple event

types. A mapping method should make sure that the right columns are mapped to

the right event types (or attributes).

The artifact-centric approach already adresses the first two challenges of the previous

section (as described in section 2.3). Challenge 3 can be addressed after the event log

creation is completed by merging events in the log (using e.g. the approach described in

[91]). Similarly challenge 4 can be addressed by inserting ontological information in the

event log after its creation. Therefore the focus will be on the last two challenges.

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 33/102 Master’s Thesis

4.2.1 Overal approach

Schema-to-log mappings can largely be identified automatically by a three-step approach

based on timestamps and foreign key relations. Due to the earlier steps described in the

previous chapter we can assume this information to be available. The first step of the

approach is to identify event (type) columns based on their domain: Exactly one event

should be created for each value in one of these columns. The remainining columns are

then assigned as attributes to either the artifact instances or one or more event types.

Finally the event type and attribute information is used to create an event mapping. This

mapping can then be converted to a XESame mapping to allow for manual modification5

or it can be used directly to generate event logs as described in section 4.3.

Figure 15: CreateTraceMapping algorithm

Figure 15 shows an overview of the CreateTraceMapping algorithm that is used to create

a mapping from a schema to an event log. The details of the algorithm are explained in

the subsections below. The identification of events (line 1) is further explained in

subsection 4.2.2, the assignment of columns as attributes to traces (lines 2 to 4) and

events (lines 7 and 8) is explained in subsection 4.2.3 and the actual creation of

mappings for event types (lines 9 and 10) and the trace (lines 12 and 13) is explained in

subsection 4.2.4.

The XES specific LogMapping (TM, EX, CL, AGT, AGE) is then constructed by combining

various collected meta data and some default values:

- The TraceMapping TM is created as defined above.

- Extensions should be added as follows:

 The default XES concept extension is required since it used for log, trace

and event names.

 The default XES time extension should be added if at least one event

column has a timestamp domain.

5 As described in Appendix C.

CreateTraceMapping (SA)

Input: An artifact schema SA = (TA, FA, DA, column_domain, Tm)
Terms: Set of event types ET, event type ET, event table TET, event column Ce, set of event attribute
tables TEvent, set of event attribute columns Ca, set of instance attribute tables Tinstance and a set of
instance attribute columns CA,

1. ET = IdentifyEventTypes (SA)

2. Tinstance = {Tm} ∪ AllParents ({Tm}, SA)

3. Tinstance = Tinstance ∪ SelectInstanceChildTables (Tm, Tinstance, SA)
4. CA = All non event columns ∈ Tinstance

5. EM = ∅
6. For each ET = (TET, Ce, Ca) ∈ ET

7. TEvent = {TET} ∪ SelectEventChildTables(TET, {TET} ∪ Tinstance , SA)
8. Ca = All non event columns ∈ TEvent \ Tinstance

9. GeneralMappingItem (CEID, TFrom, FLink, AME, LAE) = CreateMapping (Tm, TET, TEvent, Ca, SA)
10. EM = (event column name, CEID, Ce, TFrom, FLink, AME, LAE)
11. EM = EM ∪ {EM}

12. GeneralMappingItem (CTID, TFrom, FLink, AMT, LAT) = CreateMapping (Tm, Tm, Tinstance, CA, SA)
13. TM = (CTID, TFrom, FLink, EM, AMT, LAT)

Output: A TraceMapping TM for the artifact

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 34/102 E.H.J. Nooijen

 If some extensions were manually assigned to attributes then these would

need to be added as well. This can be done by checking the created

attribute mapping keys.

This creates the set of log extensions EX.

- Two classifiers are always available and should therefore be added:

 The activity classifier (name: “Activity classifier”, keys: “concept:name”),

since all events have a unique type within the scope of a trace.

 A unique classifier (name: “Unique classifier”, keys: “concept:name

eventID”), since the combination of the event type and eventID is unique

in the entire log. Note that an eventID alone may not be unique since two

event columns in the same table are assigned the same eventID.

This creates the set of activity classifiers CL.

- Globals should be added based on the created trace and event mappings:

 Each top-level attribute mapping or list attribute of a trace should be

added as a global trace attribute. This creates the set of global trace

attributes AGT.

 The intersection of top-level attribute mappings and list attributes for all

event should be added as global event attributes. This creates the set of

global event attributes AGE.

At various places throughout the sections below the concepts of direct/all parent or child

tables is used. The direct parent tables of table T are tables that are the parent table in a

foreign key relation where T is the child table. All parent tables of T also include indirect

parents, where there is an intermediate table that is the child of the parent, but also the

parent of T. Child tables are similarly defined. Formally if T is a set of tables, Ti is a

specific table, F is a foreign key as specified in section 2.1 and FA the set of foreign keys

in the artifact schema as specified in section 2.2 then formulas (2) to (5) define the

direct and all parent and child tables. Figure 17 and 18 describe how the sets of all

parent and child tables can be calculated.

 ∈
 ∈

 ∪

 ∈
 ∈

 ∪

Figure 16: AllParents algorithm

Figure 17: AllChildren algorithm

AllChildren (T, SA)

Input: A set of base tables T and artifact schema SA

1. TAllChildren = DirectChildren (T, SA)

2. TAllChildren = TAllChildren ∪ AllChildren (TAllChildren, SA)

Output: Set of all child tables TAllChildren

AllParents (T, SA)

Input: A set of base tables T and artifact schema SA

1. TAllParents = DirectParents (T, SA)

2. TAllParents = TAllParents ∪ AllParents (TAllParents, SA)

Output: Set of all parent tables TAllParents

(2)

(3)

(4)
(5)

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 35/102 Master’s Thesis

4.2.2 Identifying event types

All columns that are ordered by occurance and that are in tables for which each record is

associated with exactly one artifact instance identifier are considered to represent a

separate event type.

Aside from timestamps this includes colums of which the domain is marked as ordered by

occurance. Domains can either be marked as such manually or a correlation analysis

could be performed, comparing columns with a timestamp domain with columns with

other domains in the same table. This makes it possible to include events for which

limited time information is available.

If all correctly ordered columns were considered to be events (regardless of their relation

with the artifact instance) then this would have included columns that might be identical

for each instance (e.g. in parent tables of the main table). Although it is possible that

these column values represent shared events this seems less likely, therefore these

should be excluded. A simple approach for this is to exclude all columns in parent tables

of the main artifact table Tm as specified by the AllParents function. A more elaborate

approach is described in appendix D.II.

Figure 18: IdentifyEventTypes algorithm

The correctly ordered columns that are not explicitly excluded are called event columns.

For each of them an event type ET is constructed with event table TET and event column

Ce. Event table TET is the table that contains Ce. The columns that contain attribute values

will be associated with each event type as described in the next section. Figure 18 shows

the complete algorithm to identify and construct all event types.

4.2.3 Assign attributes

All columns that are not considered to be events are assigned as attributes. These

columns are assigned to the most specific event possible or as instance attributes if it is

not possible to assign them to a specific event. For example: If an attribute column is

part of a table without event columns, then it will be assigned to event columns in the

parent table (assuming they exist). If there are event columns in the same table they will

be assigned to those columns however. The assignment is done based on the table that

contains the column:

- Columns in the set of artifact instance tables Tinstance are assigned as instance

attributes. The set of artifact instance tables consists of the main artifact table, all

of its parents and all children that do not have another parent table with event

columns.

- For each event type the columns in the corresponding set of event tables TEvent

are assigned as event attributes. For event columns in the main artifact table

there are no separate event attributes, thus then the set is empty. Otherwise the

set consists of (1) the event table TET, (2) all child tables for which there is a

IdentifyEventTypes (SA)

Input: A set of base tables T and artifact schema SA = (TA, FA, DA, column_domain, Tm)

1. TPossibleEventTables = TA \ AllParents ({Tm}, SA)
2. ET ∅
3. For each table T ∈ TPossibleEventTables
4. For each column C ∈ T
5. If column_domain (C) is ordered by occurance Then
6. Construct event type ET = (T, C, Ca = ∅) with event table T, event column C

and a later to be identified set of attribute columns Ca
7. ET = ET ∪ {ET}

Output: Set of all event types ET

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 36/102 E.H.J. Nooijen

foreign key path from the event table to the child table that does not contain

another event table and (3) all parent tables of the child tables that are not part

of the set of instance tables Tinstance and do not have another event table as one

of their parents. Note that the 2nd subset may contain tables that are also

assigned to other event types.

Figure 19: SelectParentsWithoutEvents algorithm

A key point are tables that are not child tables of the main artifact table or an event

table. Since it is assumed that these tables also contain relevant information the columns

in these tables should also be added as attributes to either events or the artifact

instance. Figure 19 shows the SelectParentsWithoutEvents algorithm that can be used to

find these types of tables given e.g. the main artifact table as input. Line 7 verifies that

no parent tables that contain event columns were encountered in line 6. The algorithm is

used when selecting tables that contain attributes for instances and event types as

shown below.

Figure 20: SelectInstanceChildTables algorithm

Figure 20 shows the SelectInstanceChildTables algorithm and how it can be used to

determine the set of artifact instance tables Tinstance. It starts by selecting all parent

tables of the main artifact table Tm. It then selects all child tables of the main artifact

table Tm until a table is encountered that contains event columns or have a parent table

that contains event columns (unless that parent table is part of the artifact instance

tables). This includes the selection of the parent tables of these child tables, since they

cannot be assigned to any event type.

SelectInstanceChildTables (T0, TIgnore, SA)

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA

1. Tvalid ∅

2. F r each T ∈ DirectChildren (T0, SA)
3. If ¬(Event columns in T) Then

4. TParents = SelectParentsWithoutEvents (T, TIgnore, SA)
5. If ¬(Parents with event columns found for T) Then
6. Tvalid = Tvalid ∪ {T} ∪ TParents

7. Tvalid = Tvalid ∪ SelectInstanceChildTables (T, TIgnore, SA)

Output: Set of instance child tables Tvalid

SelectParentsWithoutEvents (T0, TIgnore, SA)

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA

1. Tvalid ∅

2. F r each T ∈ DirectParents (T0, SA)
3. If T ∈ TIgnore) Then
4. Next T

5. If ¬(Event columns in T) Then

6. TParents = SelectParentsWithoutEvents (T, TIgnore, SA)

7. If ¬(Parents with events found for T) Then
8. Tvalid = Tvalid ∪ {T} ∪ TParents

Output: Set of valid parent tables Tvalid

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 37/102 Master’s Thesis

Figure 21: SelectEventChildTables algorithm

Figure 21 shows the SelectEventChildTables algorithm and how it can be used determine

the set of attribute tables TEvent for each event type. It is similar to the algorithm for

instance attributes, except that it selects all child tables until a table that contains event

columns is encountered. Thus child tables that have other event types as parents are still

selected. In addition to this the parent tables of the selected child tables are selected,

unless the selected child table has a parent table that contains events. Note that parent

tables can contain events if they are part of the instance attribute tables, since that

implies that these parent tables are not assigned to another event type. Parent tables

that are already part of the instance attribute tables are never selected.

The running time of both the SelectInstanceChildTables and SelectEventChildTables

algorithm are polynomial with respect to the number of tables and columns in each table.

If |C|max is used to denote the maximum number of columns in a table then the worst

case running time is O (|TA|⋅(|C|max+|TA|⋅|C|max)), since for each table it needs to be

verified if the columns are event columns and in the worst case scenario the same needs

to be done for all other tables. This scenario assumes that all other tables are parent

tables of the table. The worst running time of the algorithm can be improved to

O(|TA|⋅(|C|max+|TA|)) however by keeping track of the validity of tables as described in

appendix D.I.

4.2.4 Creating the mapping

Given that the event types are known and the attribute columns are selected all

information is available to create a schema-to-log mapping as described in section 2.3.

This mapping consists of a LogMapping (including its associated globals, extensions and

classifiers), a TraceMapping and a number of EventMappings. The creation of the

TraceMapping and the EventMappings is similar; for the attribute instance a

TraceMapping is created while for each event type an EventMapping is created. The

LogMapping can then be created using information gathered during the creation of these

other mappings and techniques taken from XESame [41].

SelectEventChildTables (T0, TIgnore, SA)

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA

1. Tvalid ∅

2. F r each T ∈ DirectChildren(T0, SA)
3. If ¬(Event columns in T) Then

4. TParents = SelectParentsWithoutEvents (T, TIgnore, SA)
5. If ¬(Parents with event columns found for T) Then
6. Tvalid = Tvalid ∪ TParents
7. Tvalid = Tvalid ∪ {T}
8. Tvalid = Tvalid ∪ SelectEventChildTables (T, TIgnore, SA)

Output: Set of event child tables Tvalid

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 38/102 E.H.J. Nooijen

Figure 22: CreateMapping algorithm

Figure 22 shows the CreateMapping algorithm that can be used to create a

GeneralMappingItem (CID, TFrom, FLink, AM, LA) that serves as the basis for a

TraceMapping, EventMapping or ListAttribute. The basic idea is that each created

mapping consists of a set of tables for which only one record exists for each record in the

chosen base table T0, thus ensuring that multiple values do not occur. The algorithm

starts by splitting the given attribute tables TAttr into a set for which this condition holds

Tone2one and a set of attribute tables for which this condition does not hold Tone2many. This

is done by the SplitOneAndMany algorithm described in Figure 23. One mapping is then

created for the base table and all tables in Tone2one. This mapping contains a number of

submappings (or ListAttributes) LA as required for the tables in Tone2many. Note that to

create an EventMapping the event column Ce and event name6 needs to be added to the

resulting GeneralMappingItem (as shown on line 10 of Figure 15), while to create a

TraceMapping the set of event mappings EM needs to be added (as shown on line 13 of

Figure 15).

The algorithm is initalized with the main artifact table Tm, a base table T0 with primary

key Cp0, a set of attribute tables TAttr, a set of attribute columns CAttr and the artifact

schema information SA. The set of attribute columns CAttr consists of all columns in the

attribute tables, except for the event columns and duplicates that may have been pruned

based on foreign keys. For a TraceMapping the base table is the main artifact table Tm

and the attribute tables are the artifact instance tables Tinstance. For an EventMapping the

base table is the event table TET and the attribute tables are the event attribute tables

TEvent. The Path between two tables consists of the sequence of foreign keys connecting

those tables; it can be calculated using e.g. Dijkstra’s algorithm [92].

6 The event type names can be trivially generated using a combination of the event table

and event column names. Heuristics can be used to remove time or duplicate terms.

CreateMapping (Tm, T0, TAttr, CAttr, SA)
Input: Main artifact table Tm, base table T0 (with primary key Cp0), a set of

attribute tables TAttr, a set of attribute columns CAttr and artifact schema SA

1. CID = Cp0
2. TFrom = Tm
3. FLink = Path(Tm, T0)
4. AM ∅
5. LA = ∅

5. Tone2one, Tone2many = SplitOneAndMany (T0, SA)
6. For each T ∈ (Tone2one ∩ TAttr) ∪ {T0}
7. FLink = FLink ∪ Path (T0, T)
8. For each C ∈ C ∩ CAttr
9. AM = Create attribute mapping for C
10. AM = AM ∪ {AM}

11. TAttr = TAttr \ Tone2one
12. For each T ∈ Tone2many

13. If T ∈ TAttr ∨ TAttr ∩ AllChildren (T, SA ≠∅) Then

14. LA = CreateMapping (Tm, T, TAttr, CAttr, SA)
15. LA = LA ∪ LA

Output: GeneralMappingItem (CID, TFrom, FLink, AM, LA)

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 39/102 Master’s Thesis

Figure 23: SplitOneAndMany algorithm

The SplitOneAndMany algorithm classifies all tables connected to the given base table T0

as having one record per record in the base table (the Tone2one set) or as having multiple

records per record in the base table (the Tone2many set). As shown in Figure 23 this is

done by recursively verififying foreign keys in the child direction (where T0 is the parent

table) and the parent direction (where T0 is the child table). In the parent direction there

will always be only one record for each record in the base table. In the child direction it

has to be checked if more records exist in the child table for each record in the base

table. This can be done by calculating the matched average fanout between the two

tables as defined in the related work subsection of section 3.3.

Although not shown in the CreateMapping algorithm some care needs to be taken when

automatically constructing attribute mappings since each attribute needs to have a

unique key in XES7. Without loss of generality it is assumed that a default key is assigned

to each domain and that this key should be used if possible. This may result in multiple

attribute mappings with the same key. To resolve this one top-level attribute mapping

should be constructed with the default domain key with some default value (e.g.

“multiple”). Each attribute mapping with that key should then be placed below the top-

level attribute with a new unique key (generated using e.g. the table and column

names).

4.2.5 Mapping the CD shop quote artifact

To further explain the algorithm this subsection will show how the mapping is created for

the quote artifact of the CD shop example introduced in subsection 0. The resulting log

mapping is available in Appendix E in XML format. For simplicity we will use F=(parent

table, child table) to denote a foreign key between two tables in this subsection.

To identify event types first the parent tables of the main quote table have to be

identified: These are the request and customer table according to the definition given by

(3). Note that this does not include the cd_request table8. The remaining possible event

7 The same point of attention (and solution) also holds for list attributes. For list

attributes the default key value can be the name of the base table.
8 This table could also be excluded as an event table by removing all children of parent

tables that are not children of the main table. The basic idea is the same however.

SplitOneAndMany (T0, SA)

Input: Base table T0 and artifact schema SA
1. Tone2one ∅
2. Tone2many ∅

3. For each F = (Tp, Cp, Tc, Cc) ∈ ChildForeignKeys (T0, SA)
4. If F is one-to-one Then

5. Tone2oneChild, Tone2manyChild = SplitOneAndMany (Tc, SA)
6. Tone2one = Tone2one ∪ {Tc} ∪ Tone2oneChild

7. Tone2many = Tone2many ∪ Tone2manyChild
8. Else
9. Tone2many = Tone2many ∪ {Tc}

10. For each F = (Tp, Cp, Tc, Cc) ∈ ParentForeignKeys (T0, SA)
11. If Tp was not evaluated before Then

12. Tone2oneParent, Tone2manyParent = SplitOneAndMany (Tp, SA)
13. Tone2one = Tone2one ∪ {Tp} ∪ Tone2oneParent

14. Tone2many = Tone2many ∪ Tone2manyParent

Output: A set of tables with one record per record in the base table Tone2one and
a set of tables with multiple records per record in the base table Tone2many

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 40/102 E.H.J. Nooijen

tables TPossibleEventTables are then quote, cd_request, cd_quote_order, inclusion, reorder,

quote_order, customer_payment and delivery. For this example only columns with a

timestamp datatype are considered to be event types; therefore an event type is

constructed for the date_invoice_issue, date_payment_sent, date_payment_received (all

from customer_payment), customer_accept_shipment_date (from delivery) ,

adding_date (from quote_order), opening_date, acceptance_quote_date,

rejection_quote_date, customer_no_deliverable_notification_date (all from quote) and

reorder_date (from reorder) columns.

The set of tables that includes attributes for artifact instances Tinstance is then determined

in two steps. First the quote main table and its parents request and customer are added.

Then the children of these tables are inspected for event columns; since cd_request,

cd_quote_order and inclusion do not contain event columns these are added as well.

Thus in total there are 6 tables in Tinstance. All non-event columns in Tinstance are assigned

as attribute columns to the artifact instance.

Except for the event columns in the quote table all event columns are in a table without

child tables. The children of the quote table either contain event columns or they were

already assigned to the artifact instance, thus no attributes are assigned to event types

from this table (e.g. opening_date). For the other event types all non-event columns in

the event table are assigned; for all 3 event types from the customer_payment table the

price column is added for example.

Since all event types only have attribute columns from the event table (in which the

event column is defined) the creation of an EventMapping is similar for all of them. For

the date_invoice_issue event column from the customer_payment event table this means

that CEID = {quote_reqid} (the primary key of customer_payment) , TFrom =

customer_payment, FLink = {(quote, customer_payment)}, AME = {(“price”, integer,

price)} and LAE = ∅. Here (quote, customer_payment) is added as a link between the

main artifact table and the event table.

The creation of the trace mapping is slightly more complex, since there are child attribute

tables that have multiple values for each instance. Looking at the schema we note that

Tone2one = {request, customer, customer_payment} and Tone2many = {cd_quote_order,

reorder, cd_request, inclusion, quote_order, delivery}. Since customer_payment is not in

the set of artifact instance tables, this means that only request and customer need to be

added to the basic trace mapping. Thus CTID = {reqid} (the primary key of quote) , TFrom

= quote, FLink = {(request, quote), (customer, request)}, AMT = all non-event columns

from quote, customer and request.
There are 3 artifact instance tables with multiple values (in Tinstance ∩ Tone2many):

cd_request, cd_quote_order and inclusion. For these 3 a list attribute needs to be

created to store the list of multiple values. Since neither of the 3 has further child tables

this is done similar to the event mappings above. For the inclusion table this results in

CID = {quote_reqid, cd_name} (the primary key of inclusion) , TFrom = inclusion, FLink =

{(quote, inclusion)}, AM = {(“quantity”, integer, quantity)}.

4.3 Generating traces

Since we now have a mapping an event

log can be generated from the dataset.

This involves the extraction of the data

from the source system and the

conversion to the XES format according

to the defined mapping. A generic

solution for this process is XESame, but due to some limitations this cannot be used to

extract the log according to the defined mapping. Therefore the approach used in

XESame is adapted to handle the mapping defined in section 2.3.

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 41/102 Master’s Thesis

4.3.1 Evaluation of previous approaches

The behaviour of artifacts is described as much by their inner lifecycle as by the

interaction with other artifacts [93]. To be able to analyze this using process mining

techniques this interaction must be available in event logs. This can be done by adding

eventId’s and instanceId’s of other artifacts as attributes to instances and events. Due to

divergence these attributes often have multiple values, e.g. multiple quote id’s should be

listed for the creation event of a single order. Unfortunately XESame does not support

the creation of traces or events with multi-valued attributes [41] and conversations with

the author showed that significant architectural changes would be required to add this

functionality. Therefore XESame could not be used directly for log extraction. Since no

other generic extraction tools exist to create an event log in the XES format an

alternative approach was required.

4.3.2 Approach

The three-step approach described in [41] was used as a basis for the approach. These

three steps were (1) construction of queries to extract data, (2) executing the queries to

populate a cache database and (3) create a XES event log from the cache database [41].

In addition to this large parts of the extraction process of XESame were reused. The

most important changes were in step 1 and 2. In step 1 query generation was modified

to support the modified mapping definition, including the addition of query generation for

any level of depth of ListAttributes. In step 2 processing of queries was also modified to

support any level of depth of ListAttributes. This included making modifications to the

cache database as shown below. In step 3 some minor modifications were made to adapt

for the modified cache database.

In the original XESame approach queries were only generated and executed at the trace

and event level. First traces are exported to the cache database and then events are

extracted and added to these traces. The matching of traces with events is done using

the user-specified trace_id, which can be a combination of columns. To extract lists of

attribute values the query construction and execution for ListAttributes needs to be done

in a similar way as that for events. An event_id and attribute_id were thus added to the

cache to allow for unique identification of events and attributes respectively. The values

for these were constructed by combining the name or key with the identifying columns,

resulting in values that are unique in the log. Suppose for example that the “quote order

adding” event is identified by the quote__req_id and order_order_id columns then the

generated event_id would be “quote_order_adding_[quote_req_id]_[order_order_id]”.

Figure 24 shows the modified cache database. The following changes were made:

- A log_id column was added to all tables to make log specific identifiers (such as

event_id) unique. This makes it possible extract multiple logs to the cache

database before starting the extraction process, thus making it easier to handle

multiple artifact logs at the same time.

- A text-based event_id column was added to be able to identify parent events

when extracting ListAttributes. The original event_id column was renamed to id.

- A text-based attribute_id column was added to be able to identify parent

attributes when extracting ListAttributes.

- A generated integer id column was added to the XTrace and XEvent tables to

make it easier to reference these tables from XAttribute table (considering that

e.g. the event_id column by itself was not sufficient to uniquely identify events

anymore).

- Extensions, globals and classifiers were added to the cache database. By design

these log properties were calculated using the provided XESame mapping when

an event log was extracted. Since this made it harder to reuse the part of XESame

starting from the cache database this was changed to allow for a clearer

separation of step 2 (source database to cache) and step 3 (cache to XES file).

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 42/102 E.H.J. Nooijen

Figure 24: Cache database

4.4 Event log based artifact lifecycle discovery

The goal of artifact lifecycle discovery is to discover both the

internal lifecycle of an artifact and its interaction with other

artifacts, thereby fully describing how an artifact operates.

There is no previous work on (semi-)automated interaction

discovery and it is beyond the scope of this project to develop

such a method. Therefore this section is limited to a brief

overview of existing approaches to discover the control flow

of a process and how to apply these to discover the inner

lifecycle of an artifact.

4.4.1 Related work: Control flow discovery

Control flow discovery is the construction of a control flow model using an event log as

input. Since the pioneering work in the context of software engineering described in [94]

over 45 algorithms have been created for this purpose [95]. The majority of these focus

on accurately describing the behaviour captured in the log, but this may result in

unreadable spaghetti models if the execution of the business process is not explicitly

controlled [89]. Due to this recently some algorithms have been proposed that balance

between readability and accurately reflecting the behaviour in the log [91], [96]. These

fuzzy algorithms simplify the discovered control flow model by merging fine-grained

activities together to form coarse-grained activities.

The genetic mining algorithm was created to accurately describe any kind of behaviour

found in an event log [97], [98]. It was shown to tackle most control flow discovery

challenges in [95]. Its main disadvantage is its computation time, but a recent

Artifact-Centric Process Analysis Chapter 4 – Artifact lifecycle identification

E.H.J. Nooijen 43/102 Master’s Thesis

distributed version of the algorithm makes it possible to finish in 10% to 25% of the

original time by using more CPU resources [99].

A number of preprocessing steps have been proposed to handle complex event logs.

Trace clustering [100] splits an event log into homogenous groups of traces, thus

resulting in groups of traces that can each be represented by a relatively simple model.

Trace alignment [101] preprocesses the traces, such that exceptional behaviour is

highlighted.

All of the algorithms described in this section are implemented in ProM. ProM is an

actively maintained plugable open-source framework to execute process mining analysis

[88]. It as available at www.promtools.org/prom6/. ProM is also used extensively in the

process diagnostics method described in [102]. This method describes 5 steps one should

follow when analyzing a process with process mining techniques: (1) log preparation, (2)

log inspection, (3) control flow analysis, (4) performance analysis and (5) role analysis.

4.4.2 Approach

Assuming it is unknown if the lifecycle of the artifact is explicitly controlled a structured

trial and error approach is recommended. First one should inspect the log and remove

incomplete traces as described in [102]. Then the detailed lifecycle of the process should

be discovered using the genetic algorithm. If the artifact turns out to have a nicely

structured internal lifecycle then this step is finished. Since this may not be the case the

fuzzy miner could be used to get a more readable version of the internal lifecycle of the

artifact. In this case the trace clustering and alignment approaches could also be used to

simplify the event log, thereby increasing the chances of getting a readable version of

the artifacts internal lifecycle using the genetic or fuzzy miner.

Figure 25 and Figure 26 show the results of applying the genetic miner9 to the event logs

generated for the quote and order artifacts. They were created with the default settings

of the plug-in, without any preprocessing of the event logs. Note that the discovered

lifecycles are quite close to the lifecycles shown in Figure 8, implying that the method as

a whole worked quite well.

Quote
opening

Request

Quote
rejection

quote

Quote
acceptance

quote

Quote
order
adding

Reorder

Delivery
customer

accept
shipment

Customer
payment
invoice
issue

Customer
payment

sent

Quote
customer no
deliverable
notification

Customer
payment
received

Figure 25: Discovered Quote lifecycle

Order
opening

Quote
order
adding

Reorder

Order to
supplier

Order
supplier

notification

Order
supplier
shipment

Supplier
payment

issue

Supplier
payment

sent

Supplier
payment
received

Figure 26: Discovered Order lifecycle

9 “Mine Heuristic Net using Genetic Miner” plug-in created by A.K. Alves de Medeiros

http://www.promtools.org/prom6/

Chapter 4 – Artifact lifecycle identification Artifact-Centric Process Analysis

Master’s Thesis 44/102 E.H.J. Nooijen

4.5 Conclusion

The artifact schema and the data described by it can be used to (re-)discover the

lifecycle of an artifact. As described in this chapter first a mapping from the schema to an

event log needs to be identified. The creation of this mapping can be done automatically

by first identifying the available event types, then assigning columns as attributes to

each event type and the artifact instance and finally combining this information to create

a schema-to-log mapping.

The schema-to-log mapping can then be used to extract an event log from the dataset,

followed by the discovery of the inner lifecycle of the artifact using existing control flow

discovery techniques. When the discovered lifecycle is combined with the artifact schema

identified in Chapter 3 the description of the artifact is complete.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 45/102 Master’s Thesis

Chapter 5 – Empirical evaluation

The approach described in the previous chapters was evaluated using a prototype

implementation. The techniques were evaluated using an artificial dataset based on the

CD shop example and two large real-life datasets provided by a large food wholesale and

retail company. Section 5.1 describes the datasets in more detail. The remaining sections

describe the experiments for each of the techniques, following the order in which they

were presented before.

All experiments were executed on a laptop with an Intel core i3 2,13 Ghz processor with

PostgreSQL 9.0 as the underlying database. The prototype was implemented in Java

since a large number of relevant libraries and frameworks (e.g. OpenXES10) were already

available in Java. An overview of the prototype is available in Appendix F.

5.1 Dataset descriptions

Three different datasets were used for the experiments. The main statistics of these

datasets are shown in Table 3. Below the table a description of the datasets is given.

Note that for both real-life datasets a number of tables were not in use; whenever these

statistics are used in the remainder of this chapter only the tables that are in use are

taken into account.

Name Number

of tables

Average

column

count

Max.

column

count

Average

row

count

Maximum

row count

Size

CD shop 16 3.31 6 257 681 8.7 MB

Article maintenance 365 13.54 195 523 726 85 969 702 40.5 GB

Article maint. (in use) 317 14.16 195 603 029 85 969 702 40.5 GB

ERP system (complete) 3 390 18.09 2 415 293 368 116 489 821 217 GB

ERP system (in use) 1 451 14.98 420 685 401 116 489 821 217 GB

Table 3: Dataset statistics

The CD shop dataset is an artificial dataset originally created to validate the research

described in [103]. It was generated by modeling the CD shop as an artifact-centric

system in CPN tools11 and running the model as a simulation. The database schema is

identical to the schema described in subsection 1.5.3.

The article maintenance dataset is a real-life dataset taken from the product

management system of a large food wholesale and retail company. The product

management system was developed in-house and uses the DB2 relational database

system to store its data. Aside from basic product information such as names and

product prices it also contains associated data such as the selection of products available

for specific stores. The dataset consists of a copy of the complete database, including a

number of tables that were not in use.

The ERP system dataset is a real-life dataset provided by the same food wholesale and

retail company. It is a copy of the main database that supports the ERP system that was

developed in-house over the last 30 years. Due to the architecture of the system a large

number of tables are present in the database that are not in use. In addition to this no

primary key is defined for about half of the tables and no foreign keys are enforced in the

database.

10 A reference implementation of the XES standard.
11 http://cpntools.org/

Chapter 5 – Empirical evaluation Artifact-Centric Process Analysis

Master’s Thesis 46/102 E.H.J. Nooijen

5.2 Artifact schema identification

5.2.1 Schema extraction

Domain extraction

Experimental evaluation of the domain extraction technique showed that the two-step

approach was a good choice. The experiments were executed on both the CD shop and

article maintenance dataset. Table 4 shows the run times of the experiments. Lines in

the table denoted with (XES) are results for the heuristic first step, while the (DBscan…)

results are for the second step. For the article maintenance dataset the results for the

second step are shown for each of the XES datatypes seperately.

Description Tables Columns Run time

CD shop (XES) 16 53 < 1 s

CD shop (DBscan with min-hash on all columns) 16 53 3.3 s

Article maintenance (XES) 317 4 488 26.5 s

Article maintenance (DBscan w. min-hash on Integers) 297 1201 25 m 41 s

Article maintenance (DBscan w. min-hash on Booleans) 241 713 8 m 38 s

Article maintenance (DBscan w. min-hash on Dates) 311 719 > 15 h

Table 4: Domain extraction experiment statistics

The experimental results show that clustering with DBscan indeed scales more than

linear with the number of columns, while heuristics that can drastically reduce this

number can be executed in a relatively short amount of time. Even with the use of these

heuristics the set of columns with timestamp (Date) values still proved to be too big to

cluster in a reasonable amount of time however.

The precision of the approach could be improved significantly however. The first step

correctly classifies most data according to the XES datatype (some exceptions are

explained below), but it proved to be impossible to select a set of parameters for the

second step that resulted in a set of meaningfull clusters. In the approach it was

assumed that the second step could be executed with a single set of parameters for the

clustering algorithm. For the CD shop experiments were executed with both the min-hash

and PCA methods. These experiments showed that a single set of parameters was not

feasible, since parameters that resulted in a relatively meaningfull set of clusters for

string values were incorrect for for example integer values (and vice versa). Therefore a

likely improvement would be to use a different clustering approach for each of the data

types in the second step.

An attempt was made to also apply the approach on the ERP system dataset, but this

had to be abandoned. The most significant problem was that all timestamp and floating

point values were stored as integer values. Thus heuristics to separate the different data

types only resulted in a set of string and integer columns. Since these sets were too big

to handle with traditional clustering approaches no further progress could be made.

Primary key extraction

To evaluate the primary key extraction approach a number of experiments were

executed on tables for which a primary key was defined. The experiments were run with

a sample of 1 000 records for the Gordian algorithm and a sample of 5 000 records for

the HCA algorithm. For the CD shop and article maintenance datasets two runs were

executed: a run in which only the most likely primary key was requested and a run in

which the most likely two primary keys were requested. For the ERP system dataset only

a run in which the most likely primary key was requested was execiuted. The results are

shown in Table 5. Here precision is defined as the number of correct results divided by

the number of results (found), while recall is defined as the number of correct results

divided by the existing (defined) number of primary keys.

Artifact-Centric Process Analysis Chapter 5 – Empirical evaluation

E.H.J. Nooijen 47/102 Master’s Thesis

Description Run time PK’s

defined

PK’s

found

PK’s

correct

Precision Recall

CD shop (1st key) 25s 16 16 13 0.81 0.81

CD shop (2 keys) 26s 16 25 15 0.60 0.94

Article maintenance (1st key) 4h 34m 317 309 240 0.78 0.76

Article maintenance (2 keys) 9h 52m 317 555 255 0.46 0.80

ERP system (1st key) 42h 52m 716 645 403 0.62 0.56

Table 5: Primary key experiment statistics

The exponentional nature of the problem is apparent when comparing the runtimes of

the single key article maintenance and ERP system experiments. Although the ERP

system dataset is less than 3 times the size of the article maintenance dataset with

respect to this experiment the runtime of the ERP system dataset is over 9 times as high.

The most likely explanation is that this is caused by the higher number of columns in the

tables of the ERP systems dataset.

During the experiments is also became clear that the total runtime depends highly on a

limited number of tables. For both the article maintenance and ERP system dataset over

half of the run time was used for approximately 10 tables. Initially these tables used a

significantly larger portion of the run time, but this was resolved by cancelling steps in

the algorithm after a predetermined amount of time. Both the Gordian and HCA part

were cancelled after 30 minutes, while the verification step was cancelled after 1 hour.

Note that the algorithm could still continue if the Gordian part was cancelled, but not if

the HCA or verification step were cancelled.

Although both precision and recall score quite well when only the most likely primary key

is retrieved improvements are possible. Analysis of the incorrect results showed that this

was usually a column containing timestamp values. Since timestamp values have a high

chance of being unique these columns could be used as a single column key, whereas a

composite primary key was defined in these cases. Therefore improvements could be

made by taking the datatype of the column into account or by placing less importance on

the number of columns in the key.

Finally it is noteworthy to mention that the algorithm was also used to detect candidate

keys in the 735 tables of the ERP system dataset for which no key was defined. This

allowed the detection of keys with up to 117 columns. For this purpose a number of

records where allowed to violate the primary key in the verification step. For 495 tables a

candidate key was detected if 10 records were allowed to violate the key, which was 20

more than when no violations were allowed. Unfortunately the HCA-Gordian algorithm

did not allow for the discovery of so-called soft candidate keys (i.e. keys for which some

fraction of the data is invalid), thus it is unknown if likely candidate keys were removed

prior to the verification step.

Foreign key extraction

The experimental evaluation of foreign key extraction showed that this was indeed not

trivial. Experiments were run with 1 and 2 column combinations for both the CD shop

and article maintenance datasets. An attempt to run a 1 column experiment with the ERP

system dataset failed due to a lack of memory of the Java virtual machine. The run times

of the experiments are shown in Table 6. The IND candidates column shows the number

of IND candidates after pruning took place. Aside from the experiments shown in the

table an attempt was also made to extract 2 column foreign keys from the article

maintenance dataset using the original SPIDER algorithm, but since progress was still

very low after some days this was abandoned.

Chapter 5 – Empirical evaluation Artifact-Centric Process Analysis

Master’s Thesis 48/102 E.H.J. Nooijen

Description Total run

time

Indexing

time

IND

candidates

IND’s

CD shop (1 column) 6 s 3 s 162 39

CD shop (2 columns) 2 s 1 s 52 3

Article maintenance (1 column) 4h 55m 2h 52m 139 225 16 335

Article maintenance (2 columns) 6d 8h 28m 22h 32m 189 340 N/A12

Table 6: Foreign key experiment statistics

The large increase in running time between the 1 column and 2 column article

maintenance experiments can be explained by the increase in value combinations that

need to be verified; this also increases exponentially with the number of columns. Thus

although previous research shows that it should be possible to use the SPIDER algorithm

with data sets of this size the scalability appears to be bounded.

A comparison between the Dice coefficient and the longest common subsequence (LCS)

of the name showed that the LCS performed favorably. The main use of both turned out

to be as a discriminator when a column combination is included in multiple parent column

combinations. For the CD shop dataset the IND with the highest LCS name score was

always the foreign key (if one existed), while the Dice coefficient falsely classified 2

foreign keys as incorrect. Both correctly classified 12 IND’s as incorrect foreign keys,

thereby eliminating a large number of false positives. For the article maintenance dataset

the same strategy could be followed: The LCS falsely classified 10 foreign keys as

incorrect, while the Dice coefficient falsely classified 25 foreign keys as incorrect. In this

case the LCS correctly classified 15 017 IND’s as incorrect foreign keys, while the Dice

coefficient correctly classified 15 137 IND’s as incorrect foreign keys.

The typical name suffix did not turn out to be a good classifier of correct or incorrect

foreign keys. For both the CD shop and the article maintenance experiments the column

combinations that were included via an IND’s usually all had some sort of typical name

suffix thus this property could not be used as a discriminator.

The Earth Movers Distance (EMD) between the value distribution of the parent and child

colums quite accurately predicted if an IND was indeed a foreign key. For the calculation

of the EMD a threshold of 2 was used as recommended in [76]: The result was that all

calculated values were between 0 and 2. For the CD shop example this allowed for a very

accurate classification of foreign keys when combined with the LCS. By removing all

IND’s with an EMD of more than 1 the only IND’s that remained were the foreign keys

and 3 unclear cases, with no false negatives. Two of the unclear cases could have been

modeled as foreign keys, while the other case was a one-on-one link between two tables

(for which the foreign key was definied in the reverse direction). For the article

maintenance dataset 946 IND’s were correctly classified as incorrect foreign keys,

although 42 true foreign keys were also falsely classified as incorrect. The combination

thereby resulted in 320 remaining IND’s of whom 71 were incorrect, 153 were actual

foreign keys and 96 were unclear. The last group consisted of IND’s for which there was

no concensus in the business wether or not a foreign key should be enforced.

Schema extraction evaluation

Though a variety of previous approaches is available for schema extraction the

experimental results show that fully automated schema reconstruction is not yet

possible.

The most significant problem was scalability. Since most related work was tested on

datasets that were at least a factor 10 smaller this could not be predicted beforehand. A

notable exception here was HCA-Gordian which was tested on datasets that were only a

factor 4 smaller – Note that this was the only algorithm that could properly handle the

12 Due to an unfortunately timed error this statistic is not available

Artifact-Centric Process Analysis Chapter 5 – Empirical evaluation

E.H.J. Nooijen 49/102 Master’s Thesis

ERP system dataset. It must be noted however that performance for most techniques

relied largely on the underlying database, which was PostgreSQL. PostgreSQL was

chosen because it was freely available and well documented, but since I have no prior

experience with PostgreSQL the performance issues could also (partly) be caused by an

ineffective configuration of the system. A few preliminary tests on the CD shop dataset

with HSQLDB as an alternative showed that performance was much better in this case,

but since HSQLDB does not support database sizes over 16 GB this could not be verified

for the larger datasets.

In addition to this overall precision is an issue as well. This is caused by each steps

dependence on the result of the previous step. Thus if a step fails to complete than any

further steps cannot be executed either. More importantly this also implies that errors

multiply: if for example 20% of the primary keys are incorrect than all extracted foreign

keys based on these primary keys are also incorrect.

5.2.2 Identify artifact schemas

Experiments with the artifact schema identification approach show that the runtime

appears to depend on the size (and possibly distribution) of the data only.

The column entropies and table importance columns in Table 7 each show part of the

step to calculate the importance of a table. The column entropies column shows the

required time to calculate the entropy for each column, while the table importance step

shows the required time to calculate the final importance of a table using schema

information and the calculated entropies.

The table distance, base clusters and cluster expansion columns each show part of the

step to calculate the actual artifact schemas. The table distance column shows the

required time to calculate the distance between two tables for which a foreign key

relation is defined, while the other two columns show the required times for the actual

clustering and expansion steps. Note that only these last two steps depend on the

number of clusters calculated.

Description Column

entropies

Table

importance

Table

distance

Base

clusters

Cluster

expansion

CD shop (4 clusters) 1.7 s 0.8 s 1.8 s < 0.1 s < 0.1 s

Article maintenance (1 cl.) 16h 42 m 51.6 s 4 h 56 m13 < 0.1 s < 0.1 s

Article maintenance (20 cl.) identical identical identical < 0.1 s < 0.1 s

Article maintenance (50 cl.) identical identical identical < 0.1 s < 0.1 s

Article maintenance (100 cl.) identical identical identical < 0.2 s < 0.1 s

Table 7: Artifact schema identification experiment results

The run times in Table 7 show clearly that the majority of the time is required for the

steps in which data is processed. Aside from the amount of data these steps only depend

linearly on the number of columns or foreign keys in the schema. Therefore the runtime

appears to depend on the size of the data only.

For the CD shop dataset the identified artifact schemas correspond exactly with the 3

artifact schemas given in subsection 0 when 4 clusters are identified; the 4th cluster is

the aux table that is used for the simulation only. When 3 clusters are identified all tables

of the CD artifact are added to the quote artifact, which seems to make little sense.

When more than 4 clusters are generated the cdquote_order table becomes a separate

cluster, which does not make sense either. Because of this and since the actual clustering

was quite fast a trial and error approach was feasible to find the correct number of

clusters.

13 This excludes the distance calculation between the largest table and its parent. This

calculation was aborted since the run time was over 31 hours.

Chapter 5 – Empirical evaluation Artifact-Centric Process Analysis

Master’s Thesis 50/102 E.H.J. Nooijen

For the article maintenance dataset no sensible set of artifact schemas could be

identified. This was caused by a significant number of missing (composite) foreign keys,

meaning that the structure of the database could not be correctly taken into account by

the algorithm.

5.3 Artifact lifecycle identification

5.3.1 Create schema to log mapping

This section describes the experimental results with respect to the efficiency of the

schema to log mapping techniques; the correctness of the generated mappings is

evaluated in section 0 below. Table 8 shows the properties of the event log mappings

that were created. Here the CD, Order and Quote log files were generated from the

corresponding artifact schema in the CD shop dataset, while the Superunie mutaties, Vib

gevaarlijke stof and Artikel event log mappings were generated from the article

maintenance dataset.

Description Tables Columns Event

types

List

attributes

Attribute

columns

Run time

CD 3 10 0 0 5 < 0.5 s

Order 6 23 9 2 8 < 0.5 s

Quote 10 35 11 3 13 < 0.5 s

Superunie mutaties 1 195 23 0 171 < 0.1 s

Vib gevaarlijke stof 266 3729 2019 0 3343 2.8 s

Artikel 47 869 127 0 841 1.4 s

Table 8: Mapped event logs properties

For all experiments the execution time was neglible as compared to the execution times

of other steps. The total execution time of all steps to contain a schema-to-log mapping

was less than 3 seconds for even the large Vib gevaarlijke stof artifact. This was as

expected, since the running times of the algorithms is at worst polynomial and only meta

data is required to construct the mapping. Note that the runtime of the mapping

algorithm mostly depends on the number of tables in the artifact schema, although the

exact relation is not clear from the experimental results.

5.3.2 Generating traces

The event log mappings created during the previous step were used to generate event

logs. Although this was succesfull for the three CD shop artifacts, the generation of the

full event log for the Superunie mutaties artifact and the Artikel artifact did not complete

in a reasonable time. As shown in Table 9 the majority of the time was required to

generate the event log from the cache database, similar to what was noted for XESame

[41].

Description Traces Events Attributes Traces

to cache

Events

to cache

Cache to

event log

CD 640 0 ±7 700 16.5 s - 23.5 s

Order 119 1 433 ±16 300 9.4 s 16.3 s 48.4 s

Quote 219 2 295 ± 26 900 18.6 s 15.4 s 61.9 s

Superunie mutaties 324 731 ±2.5 M ±75 M 28 h 7 m 6 h 15 m > 50 h

Artikel 175 209 ± 55 M N/A 20 m >50 h N/A

Artikel (1000 traces) 1 000 246 406 1 464 258 8.7 s 1 h 08 m 32 h 10 m

Table 9: Event log generation experiment result

Artifact-Centric Process Analysis Chapter 5 – Empirical evaluation

E.H.J. Nooijen 51/102 Master’s Thesis

5.3.3 Verifying generated event logs

To measure the precision of the mapping function two experiments were executed with

the CD shop dataset using ProM. This involved the verification of the lifecycle of the

quote and order artifacts as captured in their event logs against the existing models

available. The event logs were validated using the behavioural conformance plugin14. The

original lifecycle models that were used were the models available in the “ACSI CD shop

(2 artifacts)” plug-in15. The exact details of the mapping between the original model and

the event logs can be found in Appendix G.

For both the order and quote the fitness was high (0.99 and 0.95 respectively) for the

traces that could be replayed reliably, but the number of traces that could be replayed

reliably was quite low (31 out of 119 and 53 out of 219 respectively). For the order

artifact this was caused by the reorder event, that often occurred first in an order event

log, while this was not modeled as such. For the quote artifact this was caused by the

order in which the request and quote opening events occurred. The original model

assumed this to be the quote opening event, but since these events always had identical

timestamps this was often the request event.

To get an idea of the precision of the mapping function on real-life data the lifecycle of

the Artikel artifact was generated using an event log with 1 000 traces. The resulting

model shown in Figure 27 is highly complex, but this was as expected by domain

experts. More detailed analysis showed that several series of activities (such as price

updates) shown in the model corresponded well with reality, confirming the accuracy of

the approach.

Figure 27: Generated artikel lifecycle

14 “Replay a log on Petri net for conformance analysis” plug-in created by A. Adriansyah.
15 Created by B.F. van Dongen. The models were converted to petri nets using the

“Construct models for behavioural conformance” plug-in by the same author.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 53/102 Master’s Thesis

Chapter 6 – Conclusions and future work

6.1 Conclusions

Business process analysis (BPA) in the context of organizations where ERP systems are

used can benefit from techniques that make the information in such systems available for

BPA. By viewing these organizations as a collection of artifacts many traditional BPA

challenges can be solved, but an efficient approach to create an artifact-centric

description of an ERP system was missing.

To solve this an approach is presented that decomposes the task of creating an artifact-

centric description of an ERP system into pieces for which support can be provided. For

each of these pieces techniques are provided that can aid in finding the relevant

information, including a new technique that is to my knowledge the first to aid in the

creation of a mapping between a database and an event log. The approach was

evaluated empirically showing that the method can be used, but that there are also

bounds to several techniques that were presented. Finally it should be noted that manual

intervention will likely always remain required, since small errors introduced in early

steps tend to be magnified in later steps.

The main contribution of this work is to provide a framework that gives insight into

techniques that can be used at any step in the analysis of a business process. This allows

a practioner to more easily select techniques that are usefull at any point in time, while

for the research community the context of a variety of techniques becomes clearer.

6.2 Future work

6.2.1 Further evaluation of the techniques in each step

Although the aproach in each step was based on careful literature research it was not

possible to evaluate each promising technique. In addition to this the experimental

evaluation showed that the results of the techniques on domain extraction and artifact

schema identification were not as usefull as desired. Therefore a further evaluation of the

techniques used at each step would be usefull. A starting point could be the information

bottleneck method that was shown to be effective in related work on domain extraction

and artifact schema identification.

Futher evaluation of techniques could also pay attention to the efficiency of techniques

on larger datasets. Especially in the area of domain extraction many techniques failed on

the real life datasets for which they should have been most usefull (i.e. the ERP systems

database). Aside from algorithmic aspects of the techniques a further evaluation could

also focus on more technical aspects such as the database management system used;

results on this could be used to present a set of properties that are required to properly

compare published research results.

6.2.2 Global optimizations

Overall efficiency could possibly be improved significantly by re-using metrics calculated

in previous steps. It was for example noted that there related work describes both

domain extraction and foreign key extraction techniques that use value distribution

metrics [35], [47], [73] and that the information bottleneck approach was recommended

for both domain extraction and artifact schema identification (i.e. schema

summarization) [36], [37], [48], [81], [82]. It could be evaluated what the effect on

overall precision en efficiency would be to calculate these metrics once and re-use them

in later steps.

Chapter 6 – Conclusions and future work Artifact-Centric Process Analysis

Master’s Thesis 54/102 E.H.J. Nooijen

6.2.3 Schema extraction when data contains errors

Although a variety of techniques exists for schema extraction an assumption for most of

them appears to be that all data is valid. In practice this is not the case though so

techniques would need to be developed to handle this. An interesting question here is

how many errors are actually acceptable, but a starting point for this could be statistical

methods to calculate a confidence interval given an observed number of invalid records

and a sample size as described in [56], [104], [105].

6.2.4 Human interaction

This report focussed on automated techniques to efficiëntly create an artifact-centric

description of an organization using an ERP system. Due to the large number of

techniques required overal precision may be low even if the precision of each separate

technique is quite high (e.g. if the precision of each of the 4 artifact schema identification

techniques is 0.8 then the overall precision will in general still be only 0.84=0.41). One

way to improve this is to introduce a number of evaluation steps where a domain expert

evaluates the intermediate results. For this purpose evaluation techniques could be

developed and evaluated on the trade-off between the required evaluation time and the

change in (overall) precision.

6.2.5 Analyzing interactions between artifacts

The full behaviour of artifacts is described by the combination of their inner lifecycle and

their interaction with other artifacts, but no process discovery approach exists that

generates the interaction behaviour from event logs. A few starting points were identified

that could be used to discover such behaviour:

- An event can be uniquely identified by its event column and eventID between

different event logs. Thus one can identify if the exact same event occurred in

multiple event logs, indicating that their must have been interaction at that point.

This holds true even if additional conditions are added to an event mapping

manually: These conditions may prevent an event from being generated, but it

will still be identified by the same eventID if it is generated.

- The columns identifying another artifact instance are often included as instance or

event attributes. Since the mappings defined in this report specify which columns

are included it should be relatively straightforward to point out when this occurs.

This information could then be included more explicitly in the event log using

some yet-to-be-defined notation.

6.2.6 Dropping assumptions on the data

The method could be extended to be used with unstructured data by prepending an

information extraction step. Information extraction is defined here as “extracting

structure (e.g. tables) from unstructured data (e.g. text)” [32]. It takes as input an

unstructured or semistructured dataset and produces a set of structured (i.e. tabular)

data. A variety of information extraction techniques has been developed over the last two

decades; a starting point for this would be [33], [34].

 Artifact-Centric Process Analysis

E.H.J. Nooijen 55/102 Master’s Thesis

Bibliography

[1] R. K. L. Ko, S. S. G. Lee, and E. W. Lee, “Business Process Management (BPM)

Standards: a Survey,” Business Process Management Journal, vol. 15, no. 5, pp.

744–791, Sep. 2009.

[2] W. M. P. van der Aalst, A. ter Hofstede, and M. Weske, “Business Process

Management: A Survey,” in Business Process Management, vol. 2678, Springer

Berlin / Heidelberg, 2003, p. 1019–1019.

[3] C. Pedrinaci, J. Domingue, and A. Alves de Medeiros, “A Core Ontology for

Business Process Analysis,” in The Semantic Web: Research and Applications, vol.

5021, S. Bechhofer, M. Hauswirth, J. Hoffmann, and M. Koubarakis, Eds. Springer

Berlin / Heidelberg, 2008, pp. 49–64.

[4] M. Hammer and J. Champy, Reengineering the Corporation: A Manifesto for

Business Revolution. Harper Business, 1993.

[5] P. Trkman, “The Critical Success Factors of Business Process Management,”

International Journal of Information Management, vol. 30, no. 2, pp. 125–134,

Apr. 2010.

[6] M. Chinosi and A. Trombetta, “BPMN: An Introduction to the Standard,”

Computer Standards & Interfaces, vol. 34, no. 1, pp. 124–134, Jan. 2012.

[7] W. M. P. van der Aalst, “The Application of Petri Nets to Workflow Management,”

The Journal of Circuits Systems and Computers, vol. 8, no. 1, pp. 21–66, 1998.

[8] A. Scheer, O. Thomas, and O. Adam, “Process Modeling using Event‐Driven

Process Chains,” in Process-Aware Information Systems: Bridging People and

Software through Process Technology, M. Dumas, W. M. P. van der Aalst, and A.

H. M. ter Hofstede, Eds. Hoboken, NJ, USA: John Wiley & Sons, 2005, pp. 119–

145.

[9] W. Aalst, A. Adriansyah, A. K. A. Medeiros, F. Arcieri, T. Baier, T. Blickle, J. C.

Bose, P. Brand, R. Brandtjen, J. Buijs, A. Burattin, J. Carmona, M. Castellanos, J.

Claes, J. Cook, N. Costantini, F. Curbera, E. Damiani, M. Leoni, P. Delias, B. F.

Dongen, M. Dumas, S. Dustdar, D. Fahland, D. R. Ferreira, W. Gaaloul, F. Geffen,

S. Goel, C. Günther, A. Guzzo, P. Harmon, A. Hofstede, J. Hoogland, J. E.

Ingvaldsen, K. Kato, R. Kuhn, A. Kumar, M. Rosa, F. Maggi, D. Malerba, R. S.

Mans, A. Manuel, M. McCreesh, P. Mello, J. Mendling, M. Montali, H. R. Motahari-

Nezhad, M. Muehlen, J. Munoz-Gama, L. Pontieri, J. Ribeiro, A. Rozinat, H. Seguel

Pérez, R. Seguel Pérez, M. Sepúlveda, J. Sinur, P. Soffer, M. Song, A. Sperduti, G.

Stilo, C. Stoel, K. Swenson, M. Talamo, W. Tan, C. Turner, J. Vanthienen, G.

Varvaressos, E. Verbeek, M. Verdonk, R. Vigo, J. Wang, B. Weber, M. Weidlich, T.

Weijters, L. Wen, M. Westergaard, and M. Wynn, “Process Mining Manifesto,” in

Business Process Management Workshops, vol. 99, F. Daniel, K. Barkaoui, and S.

Dustdar, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 169–194.

[10] J. F. Cox and J. H. Blackstone, Eds., APICS Dictionary, 11th ed. Amer Production

& Inventory, 2004.

[11] Fenella Scott and Jim Shepherd, “The Steady Stream of ERP Investments,” AMR

Research, Market research G00187189, Aug. 2002.

[12] METAGroup, “The state of ERP services,” META Group, Stamford, CT, Market

research, 2004.

[13] C. Cartman and A. Salazar, “The Influence of Organisational Size, Internal IT

Capabilities, and Competitive and Vendor Pressures on ERP Adoption in SMEs,”

International Journal of Enterprise Information Systems, vol. 7, no. 3, pp. 68–92,

33 2011.

Bibliography Artifact-Centric Process Analysis

Master’s Thesis 56/102 E.H.J. Nooijen

[14] J. Cardoso, R. P. Bostrom, and A. Sheth, “Workflow Management Systems and

ERP Systems: Differences, Commonalities, and Applications,” Information

Technology and Management, vol. 5, pp. 319–338, 2004.

[15] D. A. M. Piessens, “Event Log Extraction from SAP ECC 6.0,” Eindhoven

University of Technology, Eindhoven, The Netherlands, Master’s thesis, Apr. 2011.

[16] M. van Giessel, “Process Mining in SAP R/3: A Method for Applying Process Mining

to SAP R/3,” Eindhoven University of Technology, Eindhoven, The Netherlands,

2004.

[17] A. Ramesh, “Process mining in PeopleSoft,” Eindhoven University of Technology,

Eindhoven, The Netherlands, Master’s thesis, 2006.

[18] W. M. P. van der Aalst, M. Weske, and D. Grünbauer, “Case Handling: A New

Paradigm for Business Process Support,” Data & Knowledge Engineering, vol. 53,

no. 2, pp. 129–162, May 2005.

[19] P. Soffer, B. Golany, and D. Dori, “ERP Modeling: a Comprehensive Approach,”

Information Systems, vol. 28, no. 6, pp. 673–690, Sep. 2003.

[20] Chia-Chia Lin and Dong-Her Shih, “Information System Reengineering for

Enterprise Resource Planning as Businesses Adapting to the E-business Era,” in

WRI World Congress on Software Engineering, 2009. WCSE ’09, 2009, vol. 3, pp.

222–226.

[21] J. E. Ingvaldsen and J. A. Gulla, “Preprocessing support for large scale process

mining of SAP transactions,” in Proceedings of the 2007 international conference

on Business process management, Berlin, Heidelberg, 2008, pp. 30–41.

[22] I. E. A. Segers, “Deloitte Enterprise Risk Services: Investigating the Application

of Process Mining for Auditing Purposes,” Eindhoven University of Technology,

Eindhoven, The Netherlands, Master’s thesis, 2007.

[23] A. Khan, A. Lodhi, V. Köppen, G. Kassem, and G. Saake, “Applying process

mining in SOA environments,” in Proceedings of the 2009 international conference

on Service-oriented computing, Berlin, Heidelberg, 2009, pp. 293–302.

[24] W. M. P. van der Aalst, P. Barthelmess, C. A. Ellis, and J. Wainer, “Proclets: A

Framework for Lightweight Interacting Workflow Processes,” International Journal

of Cooperative Information Systems, vol. 10, no. 4, pp. 443–481, 2001.

[25] T. Heath, “Siena: a Tool for Modeling and Executing Artifact-Centric Business

Processes,” Università di Roma “La Sapienza,” 15-Dec-2009.

[26] M. Dumas, “On the Convergence of Data and Process Engineering,” in Advances

in Databases and Information Systems, vol. 6909, J. Eder, M. Bielikova, and A. M.

Tjoa, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 19–26.

[27] R. Liu, K. Bhattacharya, and F. Wu, “Modeling Business Contexture and Behavior

Using Business Artifacts,” in Advanced Information Systems Engineering, vol.

4495, Springer Berlin / Heidelberg, 2007, pp. 324–339.

[28] A. Nigam and N. S. Caswell, “Business Artifacts: An Approach to Operational

Specification,” IBM Systems Journal, vol. 42, no. 3, pp. 428 – 445, 2003.

[29] K. Bhattacharya, R. Guttman, K. Lyman, I. I. I. Heath, S. Kumaran, P. Nandi, F.

Wu, P. Athma, C. Freiberg, L. Johannsen, and A. Staudt, “A Model-Driven

Approach to Industrializing Discovery Processes in Pharmaceutical Research,” IBM

Systems Journal, vol. 44, no. 1, pp. 145–162, 2005.

[30] T. M. Connolly and C. E. Begg, Database Systems: A Practical Approach to

Design, Implementation and Management, 5th ed. Addison Wesley, 2009.

[31] A. Silberschatz, H. Korth, and S. Sudarshan, Database System Concepts, 5th ed.

McGraw-Hill Science/Engineering/Math, 2005.

Artifact-Centric Process Analysis Bibliography

E.H.J. Nooijen 57/102 Master’s Thesis

[32] D. Srivastava, “Schema extraction (presentation),” New York, NY, USA, 2010.

[33] S. Sarawagi, “Information Extraction,” Found. Trends databases, vol. 1, pp. 261–

377, Mar. 2008.

[34] J. Turmo, A. Ageno, and N. Català, “Adaptive information extraction,” ACM

Comput. Surv., vol. 38, Jul. 2006.

[35] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava, “On

Multi-Column Foreign Key Discovery,” Proc. VLDB Endow., vol. 3, pp. 805–814,

Sep. 2010.

[36] D. Srivastava, “Schema Extraction,” in Proceedings of the 19th ACM international

conference on Information and knowledge management, New York, NY, USA,

2010, pp. 3–4.

[37] B. Ahmadi, M. Hadjieleftheriou, T. Seidl, D. Srivastava, and S.

Venkatasubramanian, “Type-Based Categorization of Relational Attributes,” in

Proceedings of the 12th International Conference on Extending Database

Technology: Advances in Database Technology, New York, NY, USA, 2009, pp.

84–95.

[38] R. J. Miller and P. Andritsos, “On Schema Discovery,” IEEE Data Engineering

Bulletin, vol. 26, no. 3, pp. 39–44, 2003.

[39] C. Yu and H. V. Jagadish, “Schema Summarization,” in Proceedings of the 32nd

international conference on Very large data bases, 2006, pp. 319–330.

[40] S. Fortunato, “Community Detection in Graphs,” Physics Reports, vol. 486, no. 3–

5, pp. 75–174, Feb. 2010.

[41] J. C. A. M. Buijs, “Mapping Data Sources to XES in a Generic Way,” Eindhoven

University of Technology, Eindhoven, The Netherlands, Master’s thesis, 2010.

[42] S. Dustdar, T. Hoffmann, and W. M. P. van der Aalst, “Mining of ad-hoc business

processes with TeamLog,” Data Knowl. Eng., vol. 55, pp. 129–158, Nov. 2005.

[43] A. Rozinat, S. Zickler, M. Veloso, W. M. P. van der Aalst, and C. McMillen,

“Analyzing Multi-agent Activity Logs Using Process Mining Techniques,” Distributed

Autonomous Robotic System, no. 8, p. 251, 2009.

[44] W. M. P. van der Aalst, “Process mining in CSCW systems,” in International

Conference on Computer Supported Cooperative Work in Design, Los Alamitos,

CA, USA, 2005, vol. 1, pp. 1–8 Vol. 1.

[45] W. Poncin, “Process Mining Software Repositories,” Eindhoven University of

Technology, Eindhoven, The Netherlands, Master’s thesis, 2010.

[46] C. W. Günther, “XES - Standard Definition,” presented at the Event London,

2009.

[47] M. Zhang, M. Hadjieleftheriou, B. C. Ooi, C. M. Procopiuc, and D. Srivastava,

“Automatic discovery of attributes in relational databases,” in Proceedings of the

2011 international conference on Management of data, New York, NY, USA, 2011,

pp. 109–120.

[48] P. Andritsos, R. J. Miller, and P. Tsaparas, “Information-Theoretic Tools for Mining

Database Structure from Large Data Sets,” in Proceedings of the 2004 ACM

SIGMOD international conference on Management of data, New York, NY, USA,

2004, pp. 731–742.

[49] T. Dasu, T. Johnson, S. Muthukrishnan, and V. Shkapenyuk, “Mining Database

Structure; or, How to Build a Data Quality Browser,” in Proceedings of the 2002

ACM SIGMOD international conference on Management of data, 2002, p. 240.

Bibliography Artifact-Centric Process Analysis

Master’s Thesis 58/102 E.H.J. Nooijen

[50] N. Slonim and N. Tishby, “Document Clustering using Word Clusters via the

Information Bottleneck Method,” in Proceedings of the 23rd annual international

ACM SIGIR conference on Research and development in information retrieval,

New York, NY, USA, 2000, pp. 208–215.

[51] N. Slonim and N. Tishby, “Agglomerative Information Bottleneck,” in NIPS,

Denver, Colorado, USA, 1999, vol. 12, pp. 617–623.

[52] Y. Ren, Y. Ye, and G. Li, “The Density-Based Agglomerative Information

Bottleneck,” in PRICAI 2008: Trends in Artificial Intelligence, vol. 5351, T.-B. Ho

and Z.-H. Zhou, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, pp.

333–344.

[53] P. Andritsos, P. Tsaparas, R. J. Miller, and K. C. Sevcik, “LIMBO: Scalable

Clustering of Categorical Data,” in Advances in Database Technology - EDBT

2004, vol. 2992, E. Bertino, S. Christodoulakis, D. Plexousakis, V. Christophides,

M. Koubarakis, K. Böhm, and E. Ferrari, Eds. Berlin, Heidelberg: Springer Berlin

Heidelberg, 2004, pp. 123–146.

[54] M. Ester, H. Kriegel, J. S, and X. Xu, “A Density-Based Algorithm for Discovering

Clusters in Large Spatial Databases with Noise,” p. 226–231, 1996.

[55] J. Kivinen and H. Mannila, “Approximate Inference of Functional Dependencies

from Relations,” in Selected papers of the fourth international conference on

Database theory, Amsterdam, The Netherlands, The Netherlands, 1995, pp. 129–

149.

[56] K. Krishnamoorthy and J. Peng, “Some Properties of the Exact and Score

Methods for Binomial Proportion and Sample Size Calculation,” Communications in

Statistics: Simulation and Computation, vol. 36, no. 6, pp. 1171–1186, 2007.

[57] H. Mannila and H. Toivonen, “Levelwise Search and Borders of Theories in

Knowledge Discovery,” Data Mining and Knowledge Discovery, vol. 1, no. 3, pp.

241–258, 1997.

[58] D. Gunopulos, R. Khardon, H. Mannila, S. Saluja, H. Toivonen, and R. S. Sharma,

“Discovering all Most Specific Sentences,” ACM Trans. Database Syst., vol. 28, no.

2, pp. 140–174, Jun. 2003.

[59] Y. Sismanis, P. Brown, P. J. Haas, and B. Reinwald, “GORDIAN: Efficient and

Scalable Discovery of Composite Keys,” in Proceedings of the 32nd international

conference on Very large data bases, 2006, pp. 691–702.

[60] Z. Abedjan and F. Naumann, “Advancing the Discovery of Unique Column

Combinations,” in Proceedings of the 20th ACM international conference on

Information and knowledge management, New York, NY, USA, 2011, pp. 1565–

1570.

[61] Z. Abedjan and F. Naumann, “Heft 51: Advancing the Discovery of Unique

Column Combinations,” Hasso-Plattner-Institute, Potsdam, Technical report Heft

51, 2011.

[62] Y. Huhtala, J. Kärkkäinen, P. Porkka, and H. Toivonen, “TANE: An Efficient

Algorithm for Discovering Functional and Approximate Dependencies,” 1999.

[63] M. Kryszkiewicz and P. Lasek, “FUN: Fast Discovery of Minimal Sets of Attributes

Functionally Determining a Decision Attribute,” in Transactions on Rough Sets IX,

vol. 5390, J. F. Peters, A. Skowron, and H. Rybiński, Eds. Berlin, Heidelberg:

Springer Berlin Heidelberg, pp. 76–95.

[64] H. Yao and H. J. Hamilton, “Mining Functional Dependencies from Data,” Data

Mining and Knowledge Discovery, vol. 16, pp. 197–219, Sep. 2007.

[65] I. F. Ilyas, V. Markl, P. Haas, P. Brown, and A. Aboulnaga, “CORDS : Automatic

Discovery of Correlations and Soft Functional Dependencies,” Proceedings of the

Artifact-Centric Process Analysis Bibliography

E.H.J. Nooijen 59/102 Master’s Thesis

2004 ACM SIGMOD international conference on Management of data, pp. 647–

658, 2004.

[66] M. Kantola, H. Mannila, K. Räihä, and H. Siirtola, “Discovering Functional and

Inclusion Dependencies in Relational Databases,” International Journal of

Intelligent Systems, vol. 7, no. 7, pp. 591–607, Sep. 1992.

[67] F. De Marchi, S. Lopes, and J.-M. Petit, “Efficient Algorithms for Mining Inclusion

Dependencies,” in Advances in Database Technology — EDBT 2002, vol. 2287,

Springer Berlin / Heidelberg, 2002, pp. 199–214.

[68] F. D. Marchi, S. Lopes, and J.-M. Petit, “Unary and n-Ary Inclusion Dependency

Discovery in Relational Databases,” J. Intell. Inf. Syst., vol. 32, no. 1, pp. 53–73,

Feb. 2009.

[69] J. Bauckmann, U. Leser, F. Naumann, and V. Tietz, “Efficiently Detecting

Inclusion Dependencies,” in IEEE 23rd International Conference on Data

Engineering, 2007. ICDE 2007, 2007, pp. 1448–1450.

[70] J. Bauckmann, U. Leser, and F. Naumann, “Efficient and Exact Computation of

Inclusion Dependencies for Data Integration,” Hasso-Plattner-Institute, Potsdam,

Technical report Heft 34, 2010.

[71] F. D. Marchi and J.-M. Petit, “Zigzag: a New Algorithm for Mining Large Inclusion

Dependencies in Databases,” in Proceedings of the Third IEEE International

Conference on Data Mining, Washington, DC, USA, 2003, p. 27–.

[72] A. Koeller and E. A. Rundensteiner, “Discovery of High-Dimensional Inclusion

Dependencies,” in 19th International Conference on Data Engineering, 2003.

Proceedings, 2003, pp. 683– 685.

[73] A. Koeller and E. Rundensteiner, “Heuristic Strategies for the Discovery of

Inclusion Dependencies and Other Patterns,” in Journal on Data Semantics V, vol.

3870, S. Spaccapietra, P. Atzeni, W. Chu, T. Catarci, and K. Sycara, Eds. Springer

Berlin / Heidelberg, 2006, pp. 185–210.

[74] A. Rostin, O. Albrecht, J. Bauckmann, F. Naumann, and U. Leser, “A Machine

Learning Approach to Foreign Key Discovery,” presented at the 12th International

Workshop on the Web and Databases (WebDB 2009), 2009.

[75] C. D. Manning, P. Raghavan, and H. Schütze, Introduction to Information

Retrieval, 1st ed. Cambridge University Press, 2008.

[76] O. Pele and M. Werman, “Fast and Robust Earth Mover’s Distances,” in 2009 IEEE

12th International Conference on Computer Vision, 2009, pp. 460–467.

[77] L. Bergroth, H. Hakonen, and T. Raita, “A Survey of Longest Common

Subsequence Algorithms,” in Seventh International Symposium on String

Processing and Information Retrieval, 2000. SPIRE 2000. Proceedings, 2000, pp.

39–48.

[78] G. Kondrak, D. Marcu, and K. Knight, “Cognates Can Improve Statistical

Translation Models,” In Proceedings of HLT-NAACL 2003 (Companion Volume), p.

46–48, 2003.

[79] T. J. Teorey, G. Wei, D. L. Bolton, and J. A. Koenig, “ER Model Clustering as an

Aid for User Communication and Documentation in Database Design,” Commun.

ACM, vol. 32, no. 8, pp. 975–987, Aug. 1989.

[80] T. M. Cover and J. A. Thomas, “Entropy, Relative Entropy and Mutual

Information,” in Elements of Information Theory, 2nd ed., Wiley-Interscience,

2006, pp. 12–41.

[81] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summarizing relational databases,”

Proc. VLDB Endow., vol. 2, pp. 634–645, Aug. 2009.

Bibliography Artifact-Centric Process Analysis

Master’s Thesis 60/102 E.H.J. Nooijen

[82] X. Yang, C. M. Procopiuc, and D. Srivastava, “Summary Graphs for Relational

Database Schemas,” in Proceedings of the VLDB Endowment, Seatle, Washington,

2011, vol. 4.

[83] W. Wu, B. Reinwald, Y. Sismanis, and R. Manjrekar, “Discovering Topical

Structures of Databases,” in Proceedings of the 2008 ACM SIGMOD international

conference on Management of data, New York, NY, USA, 2008, pp. 1019–1030.

[84] N. Gehrke, “Basic Principles of Financial Process Mining A Journey through

Financial Data in Accounting Information Systems,” AMCIS 2010 Proceedings,

Aug. 2010.

[85] V. Rubin, C. W. Günther, W. M. P. van der Aalst, E. Kindler, B. F. Van Dongen,

and W. Schäfer, “Process mining framework for software processes,” in

Proceedings of the 2007 international conference on Software process, Berlin,

Heidelberg, 2007, pp. 169–181.

[86] K. van Uden, “Extracting user profiles with Process Mining at Philips Medical

Systems,” Eindhoven University of Technology, Eindhoven, The Netherlands,

Master’s thesis, 2008.

[87] C. Günther and W. van der Aalst, “A Generic Import Framework for Process Event

Logs,” in Business Process Management Workshops, vol. 4103, Springer Berlin /

Heidelberg, 2006, pp. 81–92.

[88] H. M. W. Verbeek, J. C. A. M. Buijs, B. F. Dongen, and W. M. P. van der Aalst,

“XES, XESame, and ProM 6,” in Information Systems Evolution, vol. 72, W. Aalst,

J. Mylopoulos, N. M. Sadeh, M. J. Shaw, C. Szyperski, P. Soffer, and E. Proper,

Eds. Springer Berlin Heidelberg, 2011, pp. 60–75.

[89] Günther, “Process mining in flexible environments,” PhD thesis, Technische

Universiteit Eindhoven, 2009.

[90] A. de Medeiros, C. Pedrinaci, W. van der Aalst, J. Domingue, M. Song, A. Rozinat,

B. Norton, and L. Cabral, “An Outlook on Semantic Business Process Mining and

Monitoring,” in On the Move to Meaningful Internet Systems 2007: OTM 2007

Workshops, vol. 4806, R. Meersman, Z. Tari, and P. Herrero, Eds. Springer Berlin

/ Heidelberg, 2007, pp. 1244–1255.

[91] B. F. Van Dongen, “Process Mining: Fuzzy Clustering and Performance

Visualization,” in BPM Workshops, 2009, pp. 158–169.

[92] E. W. Dijkstra, “A Note on Two Problems in Connexion with Graphs,” Numerische

Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.

[93] D. Fahland, M. Leoni, B. F. Dongen, and W. M. P. Aalst, “Behavioral Conformance

of Artifact-Centric Process Models,” in Business Information Systems, vol. 87, W.

Abramowicz, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011, pp. 37–49.

[94] J. E. Cook and A. L. Wolf, “Automating Process Discovery through Event-Data

Analysis,” in Proceedings of the 17th international conference on Software

engineering, New York, NY, USA, 1995, pp. 73–82.

[95] A. Tiwari, C. J. Turner, and B. Majeed, “A Review of Business Process Mining:

State-of-the-Art and Future Trends,” Business Process Management Journal, vol.

14, no. 1, pp. 5–22, Feb. 2008.

[96] C. Günther and W. van der Aalst, “Fuzzy Mining – Adaptive Process Simplification

Based on Multi-perspective Metrics,” in Business Process Management, vol. 4714,

Springer Berlin / Heidelberg, 2007, pp. 328–343.

[97] A. de Medeiros, A. Weijters, and W. van der Aalst, “Genetic Process Mining: an

Experimental Evaluation,” Data Mining and Knowledge Discovery, vol. 14, no. 2,

pp. 245–304, Apr. 2007.

Artifact-Centric Process Analysis Bibliography

E.H.J. Nooijen 61/102 Master’s Thesis

[98] W. van der Aalst, A. de Medeiros, and A. Weijters, “Genetic Process Mining,” in

Applications and Theory of Petri Nets 2005, vol. 3536, Springer Berlin /

Heidelberg, 2005, p. 985.

[99] C. Bratosin, N. Sidorova, and W. van der Aalst, “Distributed Genetic Process

Mining,” in 2010 IEEE Congress on Evolutionary Computation (CEC), 2010, pp. 1–

8.

[100] M. Song, C. W. Günther, and W. M. P. Aalst, “Trace Clustering in Process Mining,”

in Business Process Management Workshops, vol. 17, Springer Berlin Heidelberg,

2009, pp. 109–120.

[101] R. Jagadeesh Chandra Bose and W. van der Aalst, “Trace Alignment in Process

Mining: Opportunities for Process Diagnostics,” in Business Process Management,

vol. 6336, Springer Berlin / Heidelberg, 2010, pp. 227–242.

[102] M. Bozkaya, J. Gabriels, and J. Werf, “Process Diagnostics: A Method Based on

Process Mining,” in International Conference on Information, Process, and

Knowledge Management, 2009. eKNOW ’09, 2009, pp. 22–27.

[103] D. Fahland, M. Leoni, B. F. Dongen, and W. M. P. Aalst, “Conformance Checking

of Interacting Processes with Overlapping Instances,” in Business Process

Management, vol. 6896, S. Rinderle-Ma, F. Toumani, and K. Wolf, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 2011, pp. 345–361.

[104] T. D. Ross, “Accurate Confidence Intervals for Binomial Proportion and Poisson

Rate Estimation,” Computers in Biology and Medicine, vol. 33, no. 6, pp. 509 –

531, 2003.

[105] A. Agresti and B. A. Coull, “Approximate Is Better than ‘Exact’ for Interval

Estimation of Binomial Proportions,” The American Statistician, vol. 52, no. 2, pp.

119–126, May 1998.

[106] P. A. Smart, H. Maddern, and R. S. Maull, “Understanding Business Process

Management: Implications for Theory and Practice,” British Journal of

Management, vol. 20, no. 4, pp. 491–507, Dec. 2009.

[107] R. G. Lee and B. G. Dale, “Business Process Management: a Review and

Evaluation,” Business Process Management Journal, vol. 4, no. 3, pp. 214–225,

1998.

[108] D. J. Elzinga, T. Horak, Chung-Yee Lee, and C. Bruner, “Business Process

Management: Survey and Methodology,” Engineering Management, IEEE

Transactions on, vol. 42, no. 2, pp. 119–128, 1995.

[109] J. A. Ward, “Continuous Process Improvement,” Information Systems

Management, vol. 11, no. 2, pp. 74–76, 1994.

[110] H. J. Harrington, Business Process Improvement: the Breakthrough Strategy for

Total Quality, Productivity, and Competitiveness. McGraw-Hill Professional, 1991.

[111] R. Andersson, H. Eriksson, and H. Torstensson, “Similarities and Differences

between TQM, Six Sigma and Lean,” The TQM Magazine, vol. 18, no. 3, pp. 282–

296, May 2006.

[112] L. Donaldson, The Contingency Theory of Organizations. SAGE, 2001.

[113] L. Donaldson, “Strategy and Structural Adjustment to Regain Fit and

Performance: In Defence of Contingency Theory,” Journal of Management Studies,

vol. 24, no. 1, pp. 1–24, Jan. 1987.

[114] H. Mintzberg, Mintzberg on management: Inside our strange world of

organizations. New York, NY, USA: Free Press, 1989.

[115] H. Mintzberg, “Structure in 5’s: A Synthesis of the Research on Organization

Design,” Management Science, vol. 26, no. 3, pp. 322–341, Mar. 1980.

Table of tables Artifact-Centric Process Analysis

Master’s Thesis 62/102 E.H.J. Nooijen

[116] N. A. Morton and Q. Hu, “Implications of the Fit Between Organizational Structure

and ERP: A Structural Contingency Theory Perspective,” International Journal of

Information Management, vol. 28, no. 5, pp. 391–402, Oct. 2008.

[117] J. J. Korhonen., “On the Lookout for Organizational Effectiveness – Requisite

Control Structure in BPM Governance,” presented at the 1st International

Workshop on BPM Governance 2007 - WoGo 2007, Brisbane, Australia, 2007.

[118] M. Al-Mashari and M. Zairi, “BPR Implementation Process: an Analysis of Key

Success and Failure Factors,” Business Process Management Journal, vol. 5, no. 1,

pp. 87–112, 1999.

[119] J. B. Hill, J. Sinur, D. Flint, and M. J. Melenovsky, “Gartner’s Position on Business

Process Management, 2006,” Gartner, Inc., Stamford, CT, USA, G00136533, Feb.

2006.

[120] C. C. H. Law and E. W. T. Ngai, “ERP Systems Adoption: An Exploratory Study of

the Organizational Factors and Impacts of ERP Success,” Information &

Management, vol. 44, no. 4, pp. 418–432, Jun. 2007.

Table of tables

Table 1: CD shop metadata .. 9
Table 2: Log mapping symbols ...17
Table 3: Dataset statistics ...45
Table 4: Domain extraction experiment statistics ..46
Table 5: Primary key experiment statistics ..47
Table 6: Foreign key experiment statistics ...48
Table 7: Artifact schema identification experiment results ...49
Table 8: Mapped event logs properties ..50
Table 9: Event log generation experiment result ...50
Table 10: Organizational types ...66
Table 11: Notations used ...68
Table 12: ACSI to XESame translation ..71

Table of formulas

Formula 1: Sample size ...22
Formula 2: DirectParents ...34
Formula 3: AllParents ..34
Formula 4: DirectChildren ..34
Formula 5: AllChildren...34
Formula 6: TInstanceEvents ..75

file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300342
file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300343
file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300344
file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300345
file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300346
file:///D:/Dropbox/Afstuderen/Thesis.docx%23_Toc322300347

Artifact-Centric Process Analysis Table of figures

E.H.J. Nooijen 63/102 Master’s Thesis

Table of figures

Figure 1: Process support systems (adapted from [18]) ... 2
Figure 2: Traditional view on processes .. 4
Figure 3: Artifact view on business processes .. 5
Figure 4: General idea of the approach ... 6
Figure 5: CD shop database schema .. 8
Figure 6: Quote schema ..10
Figure 7: Order schema ...11
Figure 8: Quote and order lifecycles ..11
Figure 9: CD schema ..12
Figure 10: Overall method ...13
Figure 11: Class diagram of mapping domain model ...16
Figure 12: Artifact schema identification approach ..19
Figure 13: Schema expansion example ...30
Figure 14: Artifact lifecycle identification approach ...31
Figure 15: CreateTraceMapping algorithm ...33
Figure 16: AllParents algorithm ..34
Figure 17: AllChildren algorithm ...34
Figure 18: IdentifyEventTypes algorithm ...35
Figure 19: SelectParentsWithoutEvents algorithm ...36
Figure 20: SelectInstanceChildTables algorithm ..36
Figure 21: SelectEventChildTables algorithm ..37
Figure 22: CreateMapping algorithm ...38
Figure 23: SplitOneAndMany algorithm ...39
Figure 24: Cache database ..42
Figure 25: Discovered Quote lifecycle ..43
Figure 26: Discovered Order lifecycle ..43
Figure 27: Generated artikel lifecycle ..51
Figure 28: Class diagram of XESame domain model (from [41])69
Figure 29: Prototype architecture ...83
Figure 30: HSQLDB connection parameters ..84
Figure 31: Internal storage mechanisms ..84
Figure 32: Prototype trace information ..85
Figure 33: Prototype trace settings ...85
Figure 34: General domain extraction parameters dialog ...89
Figure 35: Example domain clustering method parameters dialog90
Figure 36: Select tables dialog ...91
Figure 37: Domain clustering results screen ...91
Figure 38: Primary key extraction parameters dialog ..92
Figure 39: Primary key extraction results screen ..93
Figure 40: Foreign key extraction parameters dialog ...93
Figure 41: Foreign keys extraction results screen (left) ...94
Figure 42: Foreign keys extraction results screen (right) ...94
Figure 43: Cluster tables parameters dialog ...95
Figure 44: Artifact identification results screen ...95
Figure 45: Create artifact parameters dialog ..96
Figure 46: Attribute & event selection parameters dialog ...96
Figure 47: Event type selection and attribute assignment results screen......................97
Figure 48: Create event log mapping parameters dialog ..98
Figure 49: Create event log from datasource parameters dialog98
Figure 50: Create event log from cache parameters dialog ..99
Figure 51: Order original model - log mapping ... 101
Figure 52: Quote original model - log mapping ... 102

 Artifact-Centric Process Analysis

E.H.J. Nooijen 65/102 Master’s Thesis

Appendix A: Why process mining of ERP systems?

Both BPM and ERP systems seem to be most usefull in stable environments, since both

rely on standardization to achieve a variety of benefits. BPM focusses on the

standardization of processes, while ERP systems focus on the standardization of data and

activities. In addition to this ERP systems store a lot of data elektronically. Since process

mining uses elektronic data to execute the analysis of BPM it seems to be a natural fit for

organizations that have an ERP system in place. This results in the following hypothesis:

Organizations that have an ERP system in place can benefit from process mining.

In the following sections previous research results will be shown that support the

hypothesis stated above. The focus will be on organizational contingency theory and

succes factors for ERP and process mining.

A.I Business Process Management

Business Process Management (BPM) has received a large amount of attention since

the introduction of business process re-engineering [106]. A large variety of definitions

exist for BPM, focussing on concepts such as process-centric, customer-centric,

systematic and/or continuous approaches and activities such as analysis, improvement

and management [2], [5], [106–108]. A general definition would be all business process-

centric approaches to systematically analyze and continuously improve activities within

an organization.

Aside from the term Business Process Management, several other terms exist to describe

management practices aimed at improving business processes. Examples are Continuous

Process Improvement (CPI, [109]), Business Process Improvement (BPI, [110]), Total

Quality Management (TQM), Lean and Six Sigma [111]. Although there are differences

between these approaches all of them are implied by BPM as defined here.

A.II Organizational context

A.II.I Contingency theory

Organizational contingency theory states that organizational characteristics (such as

structure) follow contingencies (internal and environmental factors such as organization

size and the rate of technological change) [112]. The key idea is that organizational

effectiveness depends on the fit of the organization with these contingencies, that

organizations want to be as effective as possible and thus organizations tend to adapt

themselves to fit [5], [113], [114]. For both ERP systems and BPM research has been

done based on contingency theory; i.e. what circumstances lead to successfull application

of these in organizations.

A.II.II Types of organizations

In [115] and later [114] Mintzberg presents seven pure configurations of organizations

with several distinctive characteristics. As per the contingency principle each of the

configurations is most effective depending on a given set of contingencies [114], [116].

Table 10 shows a brief overview of these configurations.

Pure type Characteristics Pure type Characteristics
Entre-
preneurial

- Simple, informal, flexible
- Young or in crisis/turnaround

 Missionary - Clear, focused, inspiring,
distinctive mission

- Small, loosely organized units

Machine - Centralized, highly formalized
and efficiënt

- Larger, more mature
organization

 Innovative - Organic, selectively
decentralized

- Innovative but inefficiënt

Appendix A: Why process mining of ERP systems? Artifact-Centric Process Analysis

Master’s Thesis 66/102 E.H.J. Nooijen

Pure type Characteristics Pure type Characteristics
Diversified - Loosely coupled divisions under

centralized administrative
headquarters

- Divisions tend to be machine
form

 Professional - Decentralized but bureaucratic

- Highly skilled operating
professionals who value
autonomy

Political - Conventional notions of coördination
absent, replaced by informal power
(politics)

- Serves to bring change blocked by
legitimate systems of influence

- Unstable, unless supported by
environment

Table 10: Organizational types

These configurations can be used to describe organizations as aspects of the different

pure types [114]. In this way an organization is described by how parts of and/or forces

within the organization resembles the different pure types.

A.II.III Suitability of BPM and ERP for organizational types

The basis of BPM is that processes are designed instead of evolving naturally, which

makes BPM best applicable in a formal top-down organization (the machine type). This is

confirmed by the survey results in [106] which show that architecture and measurement

are mentioned most often in an interview about BPM (besides conceptual components

such as “process”). In addition a variety of papers mention the importance of control and

measurement for BPM [5], [107], [108], [117–119], which also indicates a formal,

machine-like structure as the best fit for BPM.

Like BPM, ERP systems are best applicable for formal top-down organizations (the

machine type) as well [116]. Thus the same type of organizations can benefit from both

BPM and ERP systems.

A.III Success factors

For process mining to be succesful event data of sufficient quality is required. The

Process Mining Manifesto states that the minimum requirement is that events are

automatically recorded and that there should be some sort of guarantee that recorded

events match reality [9]. As stated in the manifesto this is the case for ERP systems. An

additional quality measure for event logs is completeness: no events should be missing

for the process that is being analyzed [9]. ERP systems were not build with event logs in

mind, so there is no guarantee that this is the case for these systems, but ERP systems

do increase the likelyhood of completeness. Two factors contribute to this:

- ERP systems are meant to aid in cross-departemental activities. The idea is that

business processes can be handled in a single system (so there is only one

version of the truth).

- ERP systems are data driven by nature, thus information that is used during the

process will usually be stored in the ERP system.

As shown in [120] ERP success is higher when business process improvements efforts

are performed. Process mining can be used as a tool for business process improvement,

therefore making it usefull when ERP systems are in place.

A.IV Process mining of ERP systems creates synergy

As shown in the previous subsections ERP systems and process mining can be used in the

same type of organizations. In addition to this both increase eachothers chances of

success: the result of using process mining together with ERP systems will be better than

using both independent of eachother. Thus organizations that have an ERP system in

place will indeed benefit from process mining.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 67/102 Master’s Thesis

Appendix B: Notations used

Symbol Description

S = (T, F, D,
column_domain)

Schema

T = {T1,...,Tn} Set of all tables

F = {F1,...,Fn} Set of all foreign keys

D = {D1,…,Dn} Set of all domains

C = {C1,...Cn} Set of all columns

column_domain : C  D Function that assigns a domain D to each column C

T = (C, Cp) Table with columns C and primary key Cp

C = {C1,...,Cn} Set of columns

Cp = {Cp1,...,Cpn} Primary key consisting of n columns

F = (Tp,Cp,Tc,Cc) Foreign key from parent table Tp with primary key Cp to

child table Tc with referencing columns Cc

|T| Number of distinct values in table T

#T Number of values in table T

|C| Number of distinct values in column C

|Set| Number of (distinct) values in the set

path(T1,T2) = (F1,...,Fn) The shortest path of references from T1 to T2

(C1,...,Cn) ⊆ (C’1,...,C’n) Inclusion dependency: (C1,...,Cn) is pairwise included in

(C’1,...,C’n)

C  C’ Functional dependency: C functionally determines C’

SA= (TA, FA, DA,
column_domain, Tm)

Artifact schema with main table Tm

A = (SA, ET, CA) Artifact with schema SA, event types ET and instance

attribute columns CA

ET = {ET1,...,ETn} Set of n event types

ET = (TET, Ce, Ca) Event type with event table TET, event column Ce and

attribute columns Ca. The event column describes the

ordering of the events, most likely containing timestamp

values

CA = {CA1, ... CAn} Set of n instance attribute columns

Ca = {Ca1, ... Can} Set of n event type attribute columns

LM = (name, TM, EX, CL,

AGT, AGE)

Log mapping with artifact name name, a trace mapping

TM, extensions EX, classifiers CL, global trace attributes

AGT and global event attributes AGE

GM = (CID, TFrom, FLink,

AM, LA)

General mapping item that serves as the basis for a trace

mapping, event mapping or list attribute. It consists of ID

columns CID, main table TFrom, other table links FLink,

attribute mappings AM and list attributes LA. Note that

the ID columns correspond to the traceID, eventID and

attributeID columns of traces, events and attributes

respectively.

TM = (CTID, TFrom, FLink,

EM, AMT, LAT)

Trace mapping with traceID columns CTID, main table

TFrom, other table links FLink, event mappings EM,

attribute mappings AMT and list attributes LAT

EM = {EM1,...,EMn} Set of event mappings

EM = (name, CEID, Ce,

TFrom, FLink, AME,

LAE)

Event mapping for event name with eventID columns CEID

and event column Ce, main table TFrom, other table links

FLink, attribute mappings AME and list attributes LAE. The

event column describes the ordering of the events, most

likely containing timestamp values

Appendix B: Notations used Artifact-Centric Process Analysis

Master’s Thesis 68/102 E.H.J. Nooijen

LA = {LA1,...,LAn} Set of n list attributes

LA = (key, CAID, TFrom,

FLink, AML, LAL)

List attribute (an attribute with multiple values) mapping

with given key, attributeID columns CAID, main table

TFrom, other table links FLink, attribute mappings AML and

list attributes LAL

AM = {AM1,...,AMn} Set of n attribute mappings

AM = (key, type, Ca) Attribute mapping with given key, type and attribute

column Ca

AG = {ATG1,...,ATGn} Set of n global attributes

AT = (key, type, value) Attribute with given key, type and value

EX = {EX1,...,EXn} Set of n extensions

EX = (name, prefix, URI) Extension with given name, prefix and URI

CL = {CL1,...,CLn} Set of n classifiers

CL = (name, keys) Classifier with given name and keys

Table 11: Notations used

 Artifact-Centric Process Analysis

E.H.J. Nooijen 69/102 Master’s Thesis

Appendix C: Translating to XESame

The method decribed in this report provides a way to semi-automatically generate a

mapping and event log from a source database to the XES log format, but no way to

modify this mapping afterwards. XESame on the other hand provides an easy way to

create a custom mapping, but no support to automatically generate (part of) the

mapping. The section below describes how the mapping generated by the ACSI method

can be translated to a XESame mapping, thus allowing the flexibility of XESame to be

combined with the automated support of the ACSI method.

The mapping model of XESame is show in Figure 28 below. The majority of the mapping

created by the ACSI method can be translated to this model, but there are some

exceptions:

- ListAttributes cannot be translated to the XESame mapping model however, since

variable length attribute lists cannot be handled by XESame.

- Trace and event global attributes are generated automatically in XESame based

on the available attributes in the mapping. Because of this these elements are not

present in the class diagram of XESame and cannot be translated to from the

ACSI mapping model.

- The XESame connection element is not present in the ACSI mapping model, so

this would need to be added manually.

Figure 28: Class diagram of XESame domain model (from [41])

Table 12 below shows how elements in the ACSI mapping model can be translated to

elements in the XESame model. Values between square brackets ([]) show the exact

values that should be used in the XESame model. Between these brackets italic text

refers to the value of the named element, while regular text refers to literal values that

should be used. Finally, “Identical” means that the two attributes are one-on-one

mapping. Therefore no translation is necessay in this case.

Appendix C: Translating to XESame Artifact-Centric Process Analysis

Master’s Thesis 70/102 E.H.J. Nooijen

ACSI model XESame model Additional comments

Class Attribute Class Attribute

- - Mapping description No corresponding element

available in ACSI model

Log-

Mapping

artifactName Mapping name Mapping name becomes

[artifactName + ‘ log’]

Extension name Extension name Identical

 prefix prefix Identical

 URI URI Identical

Classifier name Classifier name Identical

 keys keys Identical

Trace- from Trace from [Table name]

Mapping traceID traceID All columns joined together, i.e. if

the ACSI traceID is {A, B} then

the XESame traceID will be [A +

‘_’ + B]16

 Attribute key Always [traceID]

 (trace) value The combined XESame traceID

 type The XES type of the traceID

column or [String] if the number

of columns is greater than 1.

 Attribute key Always [concept:name]

 (trace) value The artifact name followed by the

traceID: [artifactName + ‘ ’ +

traceID]

 type Always [String]

 Event traceID The combined XESame traceID

 link Link specification Join statement created from

foreign key, e.g. [child table name

ON parent table name.parent

table primary key column = child

table name.child table column]

Event- from Event from [Table name]

Mapping name Event displayName Identical

 Attribute key Always [concept:name]

 (event) value The ACSI event name [name]

 type Always [String]

 eventID Attribute key Always [eventID]

 (event) value All columns joined together, i.e. if

the ACSI eventID is {A, B} then

the attribute value will be [A + ‘_’

+ B] 16

 type The XES type of the eventID

column or [String] if the number

of columns is greater than 1

 eventColumn Event eventOrder Identical

 Event where [eventColumn IS NOT NULL]

 Attribute

(event)

key [time:timestamp] if the

eventColumn has a XES Date

type, [time] otherwise

 value [eventColumn]

 type The XES type of the eventColumn

16 If “+” is the SQL concatenation operator

Artifact-Centric Process Analysis Appendix C: Translating to XESame

E.H.J. Nooijen 71/102 Master’s Thesis

ACSI model XESame model Additional comments

Class Attribute Class Attribute

Event-

Mapping

link Link specification Join statement created from

foreign key, e.g. [child table name

ON parent table name.parent

table primary key column = child

table name.child table column]

Attribute- key Attribute key Identical

Mapping type Attribute type Identical

 sourceColumn Attribute value Identical

Table 12: ACSI to XESame translation

 Artifact-Centric Process Analysis

E.H.J. Nooijen 73/102 Master’s Thesis

Appendix D: More advanced algorithms

D.I Efficiently selecting instance and event tables

The algorithms below show how the selection of instance and event tables can be done

more efficiently by keeping track of the validity of tables that are encountered. Here

TIgnore consists of set of tables that should not be added (again) and should be treated as

though they and their parents do not contain event columns. TEvents consists of the set of

tables that should not be added because they or one of their parents contain event

columns. Both TIgnore and TEvents can be implemented as bit vectors of length |TA|, with a

value of 1 at the index of a specific table implying membership of the set. Membership of

the set can then be calculated in O(1).

In this case each table is checked for event columns once. The next time the table is

encountered only the constant time lookup will be executed. When the table is checked it

has to evaluate all of its columns C, all of its parent tables TP ⊆ TA and all of its child

tables TC ⊆ TA. It is assumed that a parent table cannot also be a child table. Denote by

|C|max the maximum number of columns in a table. Then to check a table an O(|C|+|TA|)

operation is thus required. Therefore the total running time of both

SelectInstanceChildTables and SelectEventChildTables reduces to O(|TA|⋅(|C|max+|TA|)).

0. SelectInstanceChildTables(T0, TIgnore, TEvents, SA)
1. Tvalid ∅

2. F r each T ∈ DirectChildren(T0, SA)
3. If T ∈ TIgnore ∨ T ∈ TEvents) Then
4. Next T

5. If (Event columns in T) Then
6. TEvents = TEvents ∪ {T}
7. Else

8. TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA)
9. If Parents with events found for T Then
10. TEvents = TEvents ∪ {T}
12. Else
13. TIgnore = TIgnore ∪ {T} ∪ TParents
14. Tvalid = Tvalid ∪ {T} ∪ TParents

15. Tvalid = Tvalid ∪ SelectInstanceChildTables(T, TIgnore, TEvents, SA)
16. Return Tvalid

17. TInstance = SelectInstanceChildTables(Tm, {Tm} ∅, SA)

18. TInstance = TInstance ∪ AllParents (TInstance, SA)

Appendix D: More advanced algorithms Artifact-Centric Process Analysis

Master’s Thesis 74/102 E.H.J. Nooijen

D.II Alternative main table selection

The most basic selection of event columns assumes that events should also be generated

for parent tables of the main table. This may not be desirable, since this could introduce

duplicate events because a single value may be used for multiple instances. Subsection

Assign attributes of section 4.2.1 describes a basic approach to handle this, but this

results in the incorrect exclusion of event columns in parent tables for which the values

are not shared between artifact instances.

The algorithm below solves this by splitting Tinstance into a set of tables for which each

record is associated with exactly one instance identifier TinstanceEvents and a set of tables

that contain records that are linked to multiple instance identifiers TinstanceAttributes. The

idea is that events should only be generated based for records in TinstanceEvents; the

records in TinstanceAttributes should only be used to generate instance level attributes. The

Fraction(T, T0) function should return the matched average fraction between the two

tables as defined in the related work subsection of section 3.3, while the

MatchedAvgFanout(T, T0) should return the matched average fanout as defined in the

same subsection.

0. SelectEventChildTables(T0, TIgnore, TEvents, SA)
1. Tvalid ∅

2. F r each T ∈ DirectChildren(T0, SA)
3. If T ∈ TIgnore ∨ T ∈ TEvents) Then
4. Next T

5. If (Event columns in T) Then
6. TEvents = TEvents ∪ {T}
7. Else

8. TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA)

9. If Parents with events found for T Then
10. TEvents = TEvents ∪ {T}
11. Else
12. TIgnore = TIgnore ∪ {T} ∪ TParents
13. Tvalid = Tvalid ∪ TParents

14. Tvalid = Tvalid ∪ {T}

15. Tvalid = Tvalid ∪ SelectEventChildTables(T, TIgnore, TEvents, SA)
16. Return Tvalid

17. TEvent = {TET} ∪ SelectEventChildTables(TET, Tmain ∅, SA)

0. SelectParentsWithoutEvents(T0, TIgnore, TEvents, SA)
1. Tvalid ∅

2. F r each T ∈ DirectParents(T0, SA)
3. If T ∈ TIgnore ∨ T ∈ TEvents) Then
4. Next T

5. If (Event columns in T) Then
6. TEvents = TEvents ∪ {T}
7. Else

8. TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA)

9. If Parents with events found for T Then
10. TEvents = TEvents ∪ {T}
12. Else
13. TIgnore = TIgnore ∪ {T} ∪ TParents
14. Tvalid = Tvalid ∪ {T} ∪ TParents
15. Return Tvalid

Artifact-Centric Process Analysis Appendix D: More advanced algorithms

E.H.J. Nooijen 75/102 Master’s Thesis

As a result of the algorithm above TinstanceEvents will contain all tables that could be

merged into a single table with the same primary key as the given main table without

introducing redundant values. The only exception are child tables that contain event

columns for reasons explained below. Technically, if we take Cpm to be the primary key of

the given main artifact table, CX as the set of all columns in TX and Cpx as the primary

key of table TX then:

 ∈

  

The last part of the equation excludes (parent) tables that would introduce duplicate

values when merged with the main artifact table.

If the ¬(Event columns in T) statement on line 10 is removed all columns that are

functionally determined by the primary key of the main table will be mapped to attributes

of the trace, including columns in child tables that contain events. This may be

undesirable since it can be argued that these columns should be mapped as attributes to

the event columns in the child table.

If the Fraction(T, T0) = 1 statement on line 3 is removed then Tinstance will also contain

parent tables that have a unique matching record for each record in the main table, but

also contain records for which no matching record exists in the main table. For these

additional table condition (6) does not hold, unless the non-matching records are

removed. Since the extraction process only includes the matching records it may be

desirable to keep these tables.

0. SelectMainInstanceParents(T0, SA)
1. Tvalid ∅

2. F r each T ∈ DirectParents(T0, SA)
3. If Fraction(T, T0) = 1 MatchedAvgFanout(T, T0) = 1 Then
4. Tvalid = Tvalid ∪ {T}

5. Tvalid = Tvalid ∪ SelectMainInstanceParents (T, SA)
6. Return Tvalid

7. SelectMainInstanceChildren(T0, SA)
8. Tvalid ∅
9. For each T0 ∈ T0

10. F r each T ∈ DirectChildren(T0, SA)
11. If ¬(Event columns in T) MatchedAvgFanout(T, T0) = 1 Then
12. Tvalid = Tvalid ∪ {T}

13. Tvalid = Tvalid ∪ SelectMainInstanceChildren ({T}, SA)
14. Return Tvalid

15. TinstanceEvents = SelectMainInstanceParents(Tm, SA)

16. TinstanceEvents = TinstanceEvents ∪ SelectMainInstanceChildren(TinstanceEvents, SA)

17. TinstanceAttributes = SelectInstanceChildTables(Tm, TinstanceEvents ∅, SA)

18. TinstanceAttributes = TinstanceAttributes ∪ AllParents (TinstanceAttributes, SA)
19. Tinstance = TinstanceEvents ∪ TinstanceAttributes

(6)

 Artifact-Centric Process Analysis

E.H.J. Nooijen 77/102 Master’s Thesis

Appendix E: Quote schema-to-log mapping

<LogMapping logName="Quote log">
 <classifiers>
 <XesClassifier name="Unique classifiers" keys="concept:name event_id"/>
 <XesClassifier name="Activity classifiers" keys="concept:name"/>
 </classifiers>
 <extensions>
 <XesExtension name="Time" prefix="time" URI="http://www.xes-

standard.org/time.xesext"/>
 <XesExtension name="Concept" prefix="concept" URI="http://www.xes-

standard.org/concept.xesext"/>
 </extensions>
 <traceGlobalAttributes>
 <Attribute key=String datatype=String value=""/>
 <Attribute key=cdquote_order datatype=String value="MULTIPLE"/>
 <Attribute key=trace_id datatype=String value=""/>
 <Attribute key=Date datatype=Date value="01-01-1970"/>
 <Attribute key=cd_request datatype=String value="MULTIPLE"/>
 <Attribute key=inclusion datatype=String value="MULTIPLE"/>
 <Attribute key=Integer datatype=Integer value="0"/>
 <Attribute key=concept:name datatype=String value=""/>
 </traceGlobalAttributes>
 <eventGlobalAttributes>
 <Attribute key=time:timestamp datatype=Date value="01-01-1970"/>
 <Attribute key=event_id datatype=String value=""/>
 <Attribute key=Integer datatype=Integer value="0"/>
 <Attribute key=concept:name datatype=String value=""/>
 </eventGlobalAttributes>
 <traceMapping>
 <fromTable name="quote"/>
 <links>
 <Reference parentTable="request" childTable="quote">
 <columns>
 <ColumnPair parent="reqid" child="reqid"/>
 </columns>
 </Reference>
 <Reference parentTable="customer" childTable="request">
 <columns>
 <ColumnPair parent="name" child="customer_name"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <AttributeMapping key=Date datatype=Date sourceColumn="request_date"/>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Price datatype=Integer sourceColumn="price"/>
 <AttributeMapping key=Reqid datatype=Integer sourceColumn="reqid"/>
 </Attribute>
 <AttributeMapping key=String datatype=String sourceColumn="name"/>
 </generalAttributes>
 <listAttributes>
 <ListAttribute key="cd_request">
 <fromTable reference="../../../fromTable"/>
 <links>
 <Reference reference="../../../../links/Reference"/>
 <Reference parentTable="request" childTable="cd_request">
 <columns>

Appendix E: Quote schema-to-log mapping Artifact-Centric Process Analysis

Master’s Thesis 78/102 E.H.J. Nooijen

 <ColumnPair parent="reqid" child="request_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="quantity"/>
 <AttributeMapping key=String datatype=String sourceColumn="cd_name"/>
 </generalAttributes>
 <listAttributes/>
 <attributeId>
 <Column name="cd_name"/>
 <Column name="request_reqid"/>
 </attributeId>
 </ListAttribute>
 <ListAttribute key="cdquote_order">
 <fromTable reference="../../../fromTable"/>
 <links>
 <Reference parentTable="quote" childTable="cdquote_order">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Deliverable_quantity datatype=Integer

sourceColumn="deliverable_quantity"/>
 <AttributeMapping key=Order_orderid datatype=Integer

sourceColumn="order_orderid"/>
 <AttributeMapping key=Quantity datatype=Integer

sourceColumn="quantity"/>
 </Attribute>
 <AttributeMapping key=String datatype=String sourceColumn="cd_name"/>
 </generalAttributes>
 <listAttributes/>
 <attributeId>
 <Column name="cd_name"/>
 <Column name="quote_reqid"/>
 <Column name="order_orderid"/>
 </attributeId>
 </ListAttribute>
 <ListAttribute key="inclusion">
 <fromTable reference="../../../fromTable"/>
 <links>
 <Reference parentTable="quote" childTable="inclusion">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="quantity"/>
 <AttributeMapping key=String datatype=String sourceColumn="cd_name"/>
 </generalAttributes>
 <listAttributes/>
 <attributeId>
 <Column name="cd_name"/>
 <Column name="quote_reqid"/>
 </attributeId>

Artifact-Centric Process Analysis Appendix E: Quote schema-to-log mapping

E.H.J. Nooijen 79/102 Master’s Thesis

 </ListAttribute>
 </listAttributes>
 <traceId>
 <Column name="reqid"/>
 </traceId>
 <eventMappings>
 <EventMapping name="Reorder">
 <fromTable name="reorder"/>
 <links>
 <Reference parentTable="quote" childTable="reorder">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Quote_reqid datatype=Integer

sourceColumn="quote_reqid"/>
 <AttributeMapping key=Order_orderid datatype=Integer

sourceColumn="order_orderid"/>
 </Attribute>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="quote_reqid"/>
 <Column name="order_orderid"/>
 </eventId>
 <eventColumn name="reorder_date"/>
 </EventMapping>
 <EventMapping name="Delivery customer accept shipment">
 <fromTable name="delivery"/>
 <links>
 <Reference parentTable="quote" childTable="delivery">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <AttributeMapping key=String datatype=String sourceColumn="delid"/>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="delid"/>
 </eventId>
 <eventColumn name="customer_accept_shipment_date"/>
 </EventMapping>
 <EventMapping name="Customer payment invoice issue">
 <fromTable name="customer_payment"/>
 <links>
 <Reference parentTable="quote" childTable="customer_payment">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">

Appendix E: Quote schema-to-log mapping Artifact-Centric Process Analysis

Master’s Thesis 80/102 E.H.J. Nooijen

 <AttributeMapping key=Price datatype=Integer sourceColumn="price"/>
 <AttributeMapping key=Quote_reqid datatype=Integer

sourceColumn="quote_reqid"/>
 </Attribute>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="quote_reqid"/>
 </eventId>
 <eventColumn name="date_invoice_issue"/>
 </EventMapping>
 <EventMapping name="Customer payment sent">
 <fromTable reference="../../EventMapping[3]/fromTable"/>
 <links>
 <Reference reference="../../../EventMapping[3]/links/Reference"/>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Price datatype=Integer sourceColumn="price"/>
 <AttributeMapping key=Quote_reqid datatype=Integer

sourceColumn="quote_reqid"/>
 </Attribute>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="quote_reqid"/>
 </eventId>
 <eventColumn name="date_payment_sent"/>
 </EventMapping>
 <EventMapping name="Customer payment received">
 <fromTable reference="../../EventMapping[3]/fromTable"/>
 <links>
 <Reference reference="../../../EventMapping[3]/links/Reference"/>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Price datatype=Integer sourceColumn="price"/>
 <AttributeMapping key=Quote_reqid datatype=Integer

sourceColumn="quote_reqid"/>
 </Attribute>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="quote_reqid"/>
 </eventId>
 <eventColumn name="date_payment_received"/>
 </EventMapping>
 <EventMapping name="Opening">
 <fromTable name="quote"/>
 <links/>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="reqid"/>
 </eventId>
 <eventColumn name="opening_date"/>
 </EventMapping>

Artifact-Centric Process Analysis Appendix E: Quote schema-to-log mapping

E.H.J. Nooijen 81/102 Master’s Thesis

 <EventMapping name="Customer no deliverable notification">
 <fromTable reference="../../EventMapping[6]/fromTable"/>
 <links/>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="reqid"/>
 </eventId>
 <eventColumn name="customer_no_deliverable_notification_date"/>
 </EventMapping>
 <EventMapping name="Rejection">
 <fromTable reference="../../EventMapping[6]/fromTable"/>
 <links/>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="reqid"/>
 </eventId>
 <eventColumn name="rejection_quote_date"/>
 </EventMapping>
 <EventMapping name="Acceptance">
 <fromTable reference="../../EventMapping[6]/fromTable"/>
 <links/>
 <generalAttributes>
 <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="reqid"/>
 </eventId>
 <eventColumn name="acceptance_quote_date"/>
 </EventMapping>
 <EventMapping name="Order adding">
 <fromTable name="quote_order"/>
 <links>
 <Reference parentTable="quote" childTable="quote_order">
 <columns>
 <ColumnPair parent="reqid" child="quote_reqid"/>
 </columns>
 </Reference>
 </links>
 <generalAttributes>
 <Attribute key=Integer datatype=Integer value="0">
 <AttributeMapping key=Quote_reqid datatype=Integer

sourceColumn="quote_reqid"/>
 <AttributeMapping key=Order_orderid datatype=Integer

sourceColumn="order_orderid"/>
 </Attribute>
 </generalAttributes>
 <listAttributes/>
 <eventId>
 <Column name="quote_reqid"/>
 <Column name="order_orderid"/>
 </eventId>
 <eventColumn name="adding_date"/>

Appendix E: Quote schema-to-log mapping Artifact-Centric Process Analysis

Master’s Thesis 82/102 E.H.J. Nooijen

 </EventMapping>
 </eventMappings>
 </traceMapping>
</LogMapping>

 Artifact-Centric Process Analysis

E.H.J. Nooijen 83/102 Master’s Thesis

Appendix F: Prototype implementation

A prototype was implemented in Java to demonstrate the approach. The prototype is

available at http://dl.dropbox.com/u/18902457/Prototype.zip. This zip file contains the

example files of the CD shop in the “CD Shop files” folder, the sources including the

Eclipse project in the “Sources” folder and a compiled version of the prototype (the

“Data2Events.jar” file and the “Data2Events_lib” folder).

F.I Overview

Architecture

The prototype is implemented as a layered application based on the Data Access Object

Pattern17. Figure 29 shows an overview of the relation between the main packages,

except for the util package.

- The util package does not depend on any other code (in the project package).

This package contains general helper methods that could be useful in any

application.

- The model package depends only on the util package. The classes in this package

are (data) transfer objects18 that do not contain any logic.

- The data package depends only on the util and model packages. This package

contains the actual data access objects that wrap the storage implementation.

- The algorithms package depends only on the util, model and data packages. The

classes in this package contain the logic of the prototype.

- The UI package depends on all other sub-packages (but not on any code in the

main package). The classes in this package only expose the logic in the algorithms

package to the user.

Figure 29: Prototype architecture

Some sub-packages also contain a Util class. In this case other classes in the same sub-

package may use the Util class, but the Util class will not depend on any other code in

the same sub-package.

Starting the application and database connections

In windows the application can be started using the “start Data2Events.bat” file; for

other platforms this file also shows the required parameters. Note that the maximum

17 http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
18 http://martinfowler.com/eaaCatalog/dataTransferObject.html

http://dl.dropbox.com/u/18902457/Prototype.zip
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 84/102 E.H.J. Nooijen

memory size was set to 500 MB to improve performance in general, but a significantly

lower value is likely sufficient for the CD shop example.

When starting the application a dialog asks for the connection parameters for an

embedded HSQL database. This will connect to an existing database if one exists at the

given path or create a new database if no database exists at the location (no installation

required). The default path is the “internal db” subfolder (with “hsql.*” as the database

file names).

Figure 30: HSQLDB connection parameters

A different internal database can be selected from the Settings > Storage mechanism

menu as shown below. There are 3 options:

- File based: This is meant for the transfer of data and metadata only. When this

is used a number of xml and csv files will be created at the given location. These

files can then easily be copied to another system and imported again as described

in section F.II below.

- HSQLDB: A fast embedded database with the capability to store up to 16 GB of

data. The prototype will create the database (if it does not exist yet) and the

required structure (e.g. tables).

- PostgreSQL: A database suitable for larger datasets. To use this a PostgreSQL

9.0 database needs to be installed and the database used by the prototype must

exist in PostgreSQL. The prototype will create the required structure in the

database though.

Figure 31: Internal storage mechanisms

Before any storage mechanism can be used it needs to be initialized using the

Settings > Init/clear storage menu option. This will create the structure required for the

storage mechanism to function. Note that this will remove any existing data in the

storage.

Trace information

During the execution of the application various trace information will be written to the

screen and log files. In the application this is shown in the area marked by (3) in Figure

32. The settings in the main screen define (1) what kind of messages are shown and (2)

how detailed the information on the screen should be. Note that the type of messages

shown on the screen cannot be more detailed than the messages written to the log files

(as described below).

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 85/102 Master’s Thesis

Figure 32: Prototype trace information

All trace messages are written to log files in the “\log” subfolder of the application. At

most 10 files of 5 MB each will be created per day. The types of messages written to log

files is defined by the Settings > Tracing > Source trace level menu item. The

parameters of method calls can also be written to the log files. By default this is only

done for error messages, but this can be changed to include other types of messages

with the Settings > Tracing > Parameter trace level menu item.

Figure 33: Prototype trace settings

F.II Data transfer

The starting point for the approach is a dataset with any metadata that is already known.

The prototype was set up to import this information once so the source system would not

have to be available for the remainder of the approach. This is done in a number of

steps:

1. Setting the storage mechanism to file based on the source system and importing

the data and metadata as described below.

2. Copying the created files to the system where the dataset will be analyzed.

3. Settings the storage mechanism to HSQLDB or PostgreSQL and importing the data

and metadata from the files as described below.

Note that it is be possible to import the data and metadata from the source system

directly to a HSQLDB or PostgreSQL storage, but in that case the information would

obviously end up on the same system. More detailed information on data transfer is

available in the javadoc documentation of the ui.transfer, data and data.dataImport

packages.

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 86/102 E.H.J. Nooijen

For the CD shop example the first two steps were already done. The files are available in

the “CD Shop files” folder. They can be imported with the following steps:

1. Start the wizard from the Import > Import data & metadata menu item.

2. Select “Csv data storage”.

3. Click Next.

4. Enter the path to the “CD shop files” folder (possibly via the “…” button) as the

source folder.

5. Click Connect.

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 87/102 Master’s Thesis

6. Select “XML Metadata storage”.

7. Click Next.

8. Enter the path to the “metadata_root.xml” file in the “CD shop files” folder

(possibly via the “…” button) as the file name.

9. Click Connect.

10. Click Next.

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 88/102 E.H.J. Nooijen

11. Click Next.

12. Click Next.

13. Wait until the import is complete and click Close.

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 89/102 Master’s Thesis

F.III Artifact schema identification

F.III.I Schema extraction

All techniques used in the schema extraction step can be found in the Artifact schema

identification > Schema extraction menu. These will only work if the storage mechanism

is initialized and data is imported as described in the previous sections.

Domain extraction

Domain extraction can be activated by the Determine column domains menu item. A

series of dialogs is shown to gather the required parameters.

Figure 34: General domain extraction parameters dialog

The first dialog requests general domain extraction parameters:

- The Clustering method to be used:

 “Datatype only” specificies that the XES datatypes will be determined

heuristically, but no further domain clustering will be done. This setting

was used as the basis for the results in the empirical evaluation in the

steps following domain extraction.

 “DBScan with column hashes” specifies that column distances will be

calculated through q-gram min-hashes while the actual clustering will be

done with the DBScan algorithm.

 “DBScan with PCA-T” specifies that column distances will be calculated

through column signatures obtained by principal component analysis (PCA)

on the column x column covariance matrix while the actual clustering will

be done with the DBScan algorithm.

 “K-Center with column hashes” specifies that column distances will be

calculated through q-gram min-hashes while the actual clustering will be

done with the k-center algorithm.

 “K-Center with PCA-T” specifies that column distances will be calculated

through column signatures obtained by principal component analysis (PCA)

on the column x column covariance matrix while the actual clustering will

be done with the k-center algorithm.

- Ignore datatypes specifies if the JDBC datatypes can be used to heuristically

determine the XES datatypes. For the CD shop example the JDBC datatypes are

not trustworthy and should therefore be ignored.

- Sample size specifies the maximum number of records that should be used for the

domain extraction process. This value is used for both the heuristic XES datatype

determinination and the actual clustering approach.

- Remove trailing white space can be used to properly handle fixed-length character

values stored in databases. If trailing white space would not be removed in these

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 90/102 E.H.J. Nooijen

cases then resemblance between values would likely be much higher than

desirable since each value likely contains a significant amount of whitespace.

Figure 35: Example domain clustering method parameters dialog

If any clustering method other than “Datatypes only” is chosen the second dialog will

request the parameters for the clustering method:

- Q-gram size specifies the number of characters in each q-gram extracted.

- Maximum IDF threshold specifies the maximum inverse document frequency a q-

gram can have to be included in the distance calculation. The default value

includes all q-grams.

- Hash size specifies the number of values that are used to calculate min-hash

distances between columns. This is only relevant (and displayed) if a clustering

method is chosen that uses these.

- Variance fraction specificies the fraction of the total variance to use when

selecting the number of principal components to calculate the column signatures

with the the column x column covariance matrix. This is only relevant (and

displayed) if a clustering method is used that calculates distances through

principal component analysis.

- Epsilon specifies the maximum range when adding new column nodes to a domain

cluster as defined by the DBScan algorithm. This is only relevant (and displayed)

if a clustering method based on DBScan is chosen.

- Minumum points per cluster specifies the minimum number of other column nodes

that need to be within range of a column to form a new domain cluster. Effectively

this means that all domain clusters will contain at least minimum points per

cluster + 1 column nodes or exactly one column (in case of isolated columns that

are classified as noise by the DBScan algorithm). This is only relevant (and

displayed) if a clustering method based on DBScan is chosen.

- Number of clusters per datatype specifies the number of domain clusters

generated for each XES datatype by the k-center algorithm. This is only relevant

(and displayed) if a clustering method based on k-center is chosen.

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 91/102 Master’s Thesis

Figure 36: Select tables dialog

The final dialog will request for which tables the column domains should be extracted.

After this dialog the domain extraction process will start. During the extraction process

temporary files will be created in the default temporary file location of the system or

user.

The results of the domain extraction can be viewed using the View domain clustering

results menu item. This opens the screen shown below (after a commercial dialog).

Figure 37: Domain clustering results screen

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 92/102 E.H.J. Nooijen

Most columns in the domain clustering result screen are self-explanatory. The SQL

datatype column shows the JDBC type number. Common type numbers are: char(1),

varchar (12), numeric (2), decimal (3), float (6), real (7), double (8), integer (4),

boolean (16), date (91), time (92) and timestamp (93).

-

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.domaincategorization, algorithms.clustering,

model.clustering and algorithms.qGramExtraction packages.

Primary key extraction

Primary key extraction can be activated by the Determine primary keys menu item. A

dialog is shown to gather the specific primary key extraction parameters followed by the

table selection dialog shown in Figure 36.

Figure 38: Primary key extraction parameters dialog

The dialog requests the following parameters:

- Maximum column combination size specificies the number of columns a candidate

key can contain. Column combinations that consist of more columns are not

tested (and thus not returned) by the HCA algorithm.

- Sample size specifies the maximum number of records to use when determining

candidate keys. Note that the Gordian part of the candidate key extraction

algorithm was implemented to never use more than 1 000 samples, but will use a

smaller number if specified by the sample size.

- Verify candidates found through sampling specificies if the candidate keys found

by the HCA-Gordian algorithm should be verified using the complete dataset. Note

that this parameter will have no effect for tables for which the sample size is

larger the number of records they contain.

- Maximum correct keys specifies the number of primary key candidates to extract.

Less primary key candidates may be extracted if there are insufficient candidate

keys found by the HCA-Gordian algorithm.

- Invalid values fraction allowed specifies the fraction of records that are allowed to

violate the candidate key when it is verified. Note that this parameter is only used

by the verification step, thus the HCA-Gordian algorithm may still remove possible

candidate keys even if the number of violating records for that key is less than the

given fraction of the total number of records.

The results of the primary key extraction can be viewed using the View primary keys

results menu item. This opens the screen shown below (after a commercial dialog).

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 93/102 Master’s Thesis

Figure 39: Primary key extraction results screen

Most columns in the primary key extraction result screen are self-explanatory. Violated

values shows the number of records that violated the candidate key. Candidate is

Primary Key shows if the candidate key is defined as the primary key on the table. Finally

Column is part of key shows if the candidate key column is part of the primary key of the

table.

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.pkdiscovery package and subpackages.

Foreign key extraction

Foreign key extraction can be activated by the Determine foreign keys menu item. A

dialog is shown to gather the specific foreign key extraction parameters followed by the

table selection dialog shown in Figure 36.

Figure 40: Foreign key extraction parameters dialog

The dialog requests the following parameters:

- Remove trailing white space can be used to properly handle fixed-length character

values stored in databases. If this is checked then values that differ only in the

amount of trailing whitespace will be treated as identical.

- Check column domains specificies is candidate inclusion dependencies (IND)

should be pruned based on the domains of the columns or column combinations.

- Minimum column combination size and maximum column combination size specify

the number of columns that can be on the left-hand and right-hand side of each

IND to verify.

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 94/102 E.H.J. Nooijen

- Number of quantiles specifies the total number of “buckets” to use for the

comparison of the value distribution histogram of the child and parent column

combination of an IND.

- Temporary files location specifies where temporary files will be created while the

algorithm is running. The default location is the standard temporary file location of

the system or user.

The results of the foreign key extraction can be viewed using the View foreign keys

results menu item. This opens the screen shown below (after a commercial dialog). Note

that the pictures below are both parts of the same screen. The Filter results checkbox

can be used to hide all candidate foreign keys for which the Quantile EMD value is

greater than 1 or for which the LCNS score is not the highest LCNS score for that child

column combination.

Figure 41: Foreign keys extraction results screen (left)

Figure 42: Foreign keys extraction results screen (right)

Most columns in the foreign key extraction result screen are self-explanatory, given the

definitions of the evaluation properties in subsection 3.2.3. True foreign key shows if the

candidate foreign key is defined as an actual foreign key in the schema. Note that this

column can be updated so the foreign key is taken into account for further steps. Existing

id shows the identifier of the corresponding actual foreign key. Quantile EMD shows the

(thresholded) Earth Movers Distance (EMD) between the value distribution of the parent

and child colums. Maximum LCNS shows the maximum LCNS score of the child column

combination and all of its identified parent column combinations. Similarly Maximum NDC

shows the maximum name Dice’s coefficient score of the child column combination and

all of its identified parent column combinations.

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 95/102 Master’s Thesis

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.fkdiscovery, algorithms.fkdiscovery.quantiles and

algorithms.emd packages.

F.III.II Identify artifact schemas

All menu items related to this subject can be found in the Artifact schema identification >

Identify artifact schemas menu. To identify artifact schemas 4 menu items must be

activated in sequence:

1. Calculate entropies. No further input is required.

2. Calculate table importances. No further input is required.

3. Calculate distances. No further input is required.

4. Cluster tables. A dialog is shown to gather the specific table clustering parameters

followed by the table selection dialog shown in Figure 36. Note that previously

identified artifacts will be deleted when this menu item is activated.

Figure 43: Cluster tables parameters dialog

The dialog requests the following parameters:

- Number of clusters specifies the number of artifacts to identify.

- Expansion level specifies the maximum level of tables to add to the base clusters.

The currently identified artifacts can be viewed using the View created artifacts menu

item. This opens the screen shown below (after a commercial dialog).

Figure 44: Artifact identification results screen

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 96/102 E.H.J. Nooijen

An alternative way to create an artifact schema is provided by the Create artifact menu

item. Here a main table can be specified manually, which will be expanded to an artifact

schema using the allowed list of tables. First a dialog is shown in which the main table

and maximum expansion level can be defined. The allowed list of tables must then be

selected using the table selection dialog shown in Figure 36.

Figure 45: Create artifact parameters dialog

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.DBSummarization class and the algorithms.clustering

and model.clustering package.

F.IV Artifact lifecycle identification

All techniques used in the artifact lifecycle identification step can be found in the Artifact

lifecycle identification menu. These will only work if the artifact schemas were identified

as specified in the previous section.

F.IV.I Create schema to log mapping

All menu items related to this subject can be found in the Artifact lifecycle identification >

Create schema-to-log mapping menu.

The identification of event types and assignment of attributes is actived by the Determine

attribute & event selection menu item. A dialog is shown to gather the required

parameters.

Figure 46: Attribute & event selection parameters dialog

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 97/102 Master’s Thesis

The dialog requests the following parameters:

- Artifacts allows the selection of artifacts for which event types should be selected

and attributes assigned.

- Include artifact parent events specifies if event types should be generated for

timestamp columns that are part of a parent table of the main table.

- Include trace attributes specifies if non-event columns should be assigned as trace

attributes. Note that the columns that would be trace attributes will never be

assigned as event type attributes; this is just a way to limit the number of

generated attributes.

- Include event attributes specifies if non-event columns should be assigned as

event type attributes. Note that the columns that would be event type attributes

will never be assigned as trace attributes; this is just a way to limit the number of

generated attributes.

The result of the event type selection and attribute assignment can be shown using the

View selected attributes & event types menu item. This opens the screen shown below

(after a commercial dialog).

Figure 47: Event type selection and attribute assignment results screen

Most columns in the result screen are self-explanatory. The Event name shows the name

of the event type or “INSTANCE” for columns assigned to traces. The Mapping column

shows information about columns assigned to event types or instances. The Mapping

column – type shows how the column is related to the event type or instance: part of the

instanceId, part of the eventId or assigned as an attribute.

The creation of the mapping is activated by the Create event log mapping menu item. A

dialog is shown to gather the required parameters.

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 98/102 E.H.J. Nooijen

Figure 48: Create event log mapping parameters dialog

The dialog requests the following parameters:

- Artifacts allows the selection of artifacts for which the schema-to-log mapping

should be created.

- Eventlog mapping file name specifies the name of the resulting mapping file.

“[ARTIFACT NAME]” will be replaced by the name of the artifact.

- Direct attributes only specifies if ListAttributes should be included in the mapping.

This can be used to limit the number of queries executed during the event log

generation step.

- Simplify mapping file can be used to create a more readable version of the

mapping file. When this is selected various identifier fields will not be included,

making the mapping more readable, but likely harder to process further.

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.eventextraction.ArtifactEventLogSelection and

algorithms.eventextraction.ArtifactEventLogMapper classes and the model.mapping

package.

F.IV.II Event log generation

All menu items related to this subject can be found in the Artifact lifecycle identification >

Generating traces menu.

The generation of an event log can be activated using the Create event log from

datasource menu item. A dialog is shown to gather the required parameters.

Figure 49: Create event log from datasource parameters dialog

Artifact-Centric Process Analysis Appendix F: Prototype implementation

E.H.J. Nooijen 99/102 Master’s Thesis

The dialog requests the following parameters:

- Artifacts allows the selection of artifacts for which an event log should be created.

- Eventlog file name specifies the name of the resulting file. “[ARTIFACT NAME]”

will be replaced by the name of the artifact.

- Direct attributes only specifies if ListAttributes should be included in the event log.

This can be used to limit the number of queries executed.

- Maximum number of traces specifies the maximum number of traces that are to

be included in the generated event log.

After the OK button is clicked the generation process will start. Due to OpenXES an active

internet connection is required to create the event log.

If an event log was created before it can be created again from the cache database using

the Create Event Log from Cache menu item. A dialog is shown to gather the required

parameters.

Figure 50: Create event log from cache parameters dialog

The dialog requests the following parameters:

- Log allows the selection of a cached event log.

- Eventlog file name specifies the name of the resulting file.

- Zip log file specifies if the created event log should be g-zipped.

- Maximum number of traces specifies the maximum number of traces that are to

be included in the generated event log.

More detailed information about the implementation is available in the javadoc

documentation of the algorithms.eventextraction.ArtifactEventLogExtraction and

algorithms.eventextraction.CacheToXesConverter classes and the model.xes package.

F.V License(s)

A large number of libraries were used for this prototype that were all available under

some form of open source license (e.g. GPL, LGPL, Apache, BSD). An overview of the

used libraries and their licenses can be found in the “\Sources\packagelib” folder.

Aside from the libraries some parts of the code were also largely based on an external

source with an open source license:

- Everything in the org.apache.lucene package was taken from Apache Lucene

which is available under the Apache license.

- The original Gordian-HCA primary key discovery implementation was kindly

donated by Ziawasch Abedjan under the Apache license. This concerns the classes

with “Gordian” as part of their name in the algorithms.pkdiscovery package and

the subpackages of this package with “gordian” or “histocount” in their name.

- The TANE functional dependency discovery implementation was taken from its

original implementation which is available under the GPL license. This concerns

the TANE and FunctionalDependency classes in the algorithms.pkdiscovery

Appendix F: Prototype implementation Artifact-Centric Process Analysis

Master’s Thesis 100/102 E.H.J. Nooijen

package, the taneutils subpackage and the ComparableSet class in the

utils.collections package.

- The DBScan clustering algorithm was taken from WEKA which is available under

the GPL license. This is the DBScan class in the algorithms.clustering package.

- The fast EMD computation was taken from its original Java implementation under

the BSD license. This concerns everything in the algorithms.emd package.

- The CacheToXesConverter class in the algorithms.eventextraction package is

based on the CacheDBController class of XESame. XESame is available under the

Eclipse public license.

 Artifact-Centric Process Analysis

E.H.J. Nooijen 101/102 Master’s Thesis

Appendix G: Lifecycle verification settings

G.I Order

The general mapping between the log and the original model is shown in Figure 51

below. The finish order event in the model was not present in the database and could

thus not be mapped. Since the goal of the behavioural replay was to compare the

automatically generated mapping with the best possible manual mapping the cost of the

finish order event was set to 0 for the conformance check. Aside from this reorder event

in the log could not be mapped to the original model, because it was not present there.

Figure 51: Order original model - log mapping

G.II Quote

The general mapping between the log and the original model is shown in Figure 52

below. The send quote, receive goods and finish quote events in the original model could

not be mapped to an event in the log, because this information was not represented in

the database. Similar to what was described for the order log the cost for these events

was set to 0 for the conformance check.

Appendix G: Lifecycle verification settings Artifact-Centric Process Analysis

Master’s Thesis 102/102 E.H.J. Nooijen

Figure 52: Quote original model - log mapping

	Preface
	Acknowledgements
	Abstract
	Executive summary
	Table of contents
	Chapter 1 – Introduction
	1.1 Business process analysis
	1.1.1 Business processes
	1.1.2 Process models
	1.1.3 Process Mining

	1.2 Enterprise resource planning (ERP) systems
	1.2.1 ERP systems and process mining success factors

	1.3 Traditional process analysis in the context of ERP systems
	1.3.1 ERP system modelling
	1.3.2 Process mining case studies
	1.3.3 Processes in isolation?

	1.4 Artifact-centric process analysis in the context of ERP systems
	1.4.1 Artifacts
	1.4.2 Research question
	1.4.3 Project goal and scope

	1.5 Running example: The CD shop
	1.5.1 Introduction
	1.5.2 Core process: selling CD’s
	1.5.3 Database schema
	1.5.4 Relevant artifacts
	Quote
	Order
	CD

	1.6 Outline

	Chapter 2 – Overall method
	2.1 Schema extraction
	2.2 Identify artifact schemas
	2.3 Create schema-to-log mapping
	2.4 Generating traces
	2.5 Apply process discovery techniques

	Chapter 3 – Artifact schema identification
	3.1 Relational databases
	3.2 /Schema extraction
	3.2.1 Domain extraction
	Overview
	Related work: Domain extraction
	Approach

	3.2.2 Primary key extraction
	Overview
	Related work: Candidate key extraction
	Approach

	3.2.3 Foreign key extraction
	Overview
	Related work: Foreign key extraction
	Approach

	3.3 /Identify artifact schemas
	Overview
	Related work: Schema summarization
	Approach

	3.4 Conclusion

	Chapter 4 – Artifact lifecycle identification
	4.1 Related work: Event log extraction
	4.2 Create schema-to-log mapping
	4.2.1 Overal approach
	4.2.2 Identifying event types
	4.2.3 Assign attributes
	4.2.4 Creating the mapping
	4.2.5 Mapping the CD shop quote artifact

	4.3 Generating traces
	4.3.1 Evaluation of previous approaches
	4.3.2 Approach

	4.4 /Event log based artifact lifecycle discovery
	4.4.1 Related work: Control flow discovery
	4.4.2 Approach

	4.5 Conclusion

	Chapter 5 – Empirical evaluation
	5.1 Dataset descriptions
	5.2 Artifact schema identification
	5.2.1 Schema extraction
	Domain extraction
	Primary key extraction
	Foreign key extraction
	Schema extraction evaluation

	5.2.2 Identify artifact schemas

	5.3 Artifact lifecycle identification
	5.3.1 Create schema to log mapping
	5.3.2 Generating traces
	5.3.3 Verifying generated event logs

	Chapter 6 – Conclusions and future work
	6.1 Conclusions
	6.2 Future work
	6.2.1 Further evaluation of the techniques in each step
	6.2.2 Global optimizations
	6.2.3 Schema extraction when data contains errors
	6.2.4 Human interaction
	6.2.5 Analyzing interactions between artifacts
	6.2.6 Dropping assumptions on the data

	Bibliography
	Table of tables
	Table of formulas
	Table of figures
	Appendix A : Why process mining of ERP systems?
	A.I Business Process Management
	A.II Organizational context
	A.II.I Contingency theory
	A.II.II Types of organizations
	A.II.III Suitability of BPM and ERP for organizational types

	A.III Success factors
	A.IV Process mining of ERP systems creates synergy

	Appendix B : Notations used
	Appendix C : Translating to XESame
	Appendix D : More advanced algorithms
	D.I Efficiently selecting instance and event tables
	D.II Alternative main table selection

	Appendix E : Quote schema-to-log mapping
	Appendix F : Prototype implementation
	F.I Overview
	Architecture
	Starting the application and database connections
	Trace information

	F.II Data transfer
	F.III Artifact schema identification
	F.III.I Schema extraction
	Domain extraction
	Primary key extraction
	Foreign key extraction

	F.III.II Identify artifact schemas

	F.IV Artifact lifecycle identification
	F.IV.I Create schema to log mapping
	F.IV.II Event log generation

	F.V License(s)

	Appendix G : Lifecycle verification settings
	G.I Order
	G.II Quote

