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Preface 

Suppose you are building a house in the 1920’s. You are using the same traditional tools 

as your mentor did: a hammer, a screwdriver and a chisel. They’re simple tools, but due 

too your skill with them you can do a great job.  

 

Now somebody approaches you for a demonstration: They have a new tool called an 

electric drill that will allow you to do your work a lot faster. The demonstration is 

impressive and you decide to try the electric drill yourself. Back at the house you are 

building you realise there is a problem though: the house does not have electricity. Of 

course you could set up electricity, but that would take a few weeks. That isn’t necessary 

to finish the house, though: if you would just use the traditional tools you can finish it in 

a few weeks anyway... 

 

The current Business Process Analysis (BPA) field is in some ways similar to the 

construction field in the 1920’s. Automated support for BPA is usually poor [1], [2] and 

as a result the human (skill) factor is highly important for succesfull process analysis [3]. 

Process mining aims to aid the business analyst, but it suffers from a major practical 

drawback: the assumption that data is available in a pre-defined format that doesn’t 

match real process data. This especially true for data in the ERP systems that support 

many primary processes in large companies: ERP systems were not build with concepts 

like “trace” and “event” in mind. This is a pity since the combination of process mining 

and ERP systems should be a golden combination1. Thus process mining is to the 

business analyst now what an electric drill was to a carpenter in the 1920’s: Incredible 

potential, but in many cases not usefull since too much work has to be done up front.  
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Abstract 

An approach is presented that decomposes the task of creating an artifact-centric 

description of an ERP system into pieces for which support can be provided. For each of 

these pieces techniques are provided that can aid in finding the relevant information, 

including a set of techniques that is the first to aid in the creation of a mapping between 

a database and an event log that can be used for process mining. The approach is 

evaluated empirically showing that the method can be used, but that there are also 

bounds to several of the presented techniques. 
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Executive summary 

Business Process Analysis can be done more efficiently by using information stored in 

Enterprise Resource Planning (ERP) systems. ERP systems likely contain all data that is 

relevant for a business process, since they are data driven and meant to support 

complete business processes, even if they span organizational boundaries.  

 

Previous approaches to use this data assumed that business processes can be seen in 

isolation. Given the collaborative nature of ERP systems this assumption usually does not 

hold in environments where these systems are used. At points of interaction between 

processes defining what was part of the process was hard and time consuming in 

previous approaches as a result. 

 

A new process analysis approach provides a way to model the collaborative environment 

in which ERP systems operate. This requires looking at business processes as a set of 

interacting business entitites called artifacts. Each of these artifacts can be described by 

an information schema and a non-trivial lifecycle. These descriptions of each artifact can 

be created efficiently using the approach shown in the figure to the left. 

 

Since the schema describing an ERP systems database is often incomplete first schema 

extraction techniques are used to reconstruct this database schema. The database 

schema is then partitioned into self-contained artifact schemas, thereby identifying each 

artifact.  

 

For each artifact the lifecycle can subsequently be discovered efficiently using process 

discovery techniques. Process discovery is a set of techniques that generates process 

models using only an event log as input; an event log is a collection of recorded events 

for one specific business process. Thus a mapping needs to be created between the 

artifact schema and the event log that is required. This allows the generation of the 

event log and subsequently the lifecycle model of the artifact. 

 

A variety of techniques can be used to automate the steps described above. Empirical 

evaluation of these techniques on artificial and large real-life datasets shows that the 

approach can be used, but scalability to large datasets is limited for a number of 

techniques. The lifecycles discovered by the approach are reasonably accurate however. 
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Chapter 1 – Introduction 

Business Process Analysis (BPA) is often very time-consuming, but that should not be the 

case. Analysts use traditional methods such as interviews to obtain information about key 

business processes, while a large amount of information is stored in systems used in 

organizations. An important class of systems in this context are Enterprise Resource 

Planning (ERP) systems, since these are used to execute many important business 

processes in larger companies. More often than not this information is not readily 

available however, so techniques are needed to easily extract process information from 

these systems. This requires a new way of looking at business processes that more 

closely corresponds to reality. 

 

First an overview of key concepts used throughout this report is given. Then the main 

research problem is introduced and a direction for the solution is presented. Finally an 

overview is given of the material presented in the remainder of this report. 

1.1 Business process analysis 

Business process analysts use a variety of techniques to analyze business processes. 

These processes are often described using process models. Although most analysts use 

traditional methods such as interviews, process mining is starting to become an 

alternative. 

1.1.1 Business processes 

Business processes were first brought to the attention of many by Hammer in 1993 

[4]. A recent paper described a business process as “… a complete, dynamically 

coordinated set of activities or logically related tasks that must be performed to deliver 

value to customers or to fulfill other strategic goals” [5], which is an extension of the 

definition given at that time. 

 

Sometimes we want to refer to a single occurance of a business proces (e.g. the handling 

of a single customer order for the customer order fulfillment process): this will be called 

a process instance. 

1.1.2 Process models 

Central in BPA are process models that show the business process at an abstract level. A 

variety of model types is used, such as control flow models (that show which tasks occur 

in which order), decision schema’s (that show what the criteria for a decision are) and 

organizational models (that show the organizational hierarchy or interactions between 

people). The notations used to draw these models varies widely; Example notations that 

are used to draw control flow models include BPMN [6], petri nets [7] and Event Driven 

Process Chains (EPC’s, [8]). 

1.1.3 Process Mining 

Process mining is a set of techniques to “…discover, monitor and improve real 

processes (i.e., not assumed processes) by extracting knowledge from event logs…” [9]. 

It is a relatively young research discipline, which is starting to draw significant attention 

from the industry. The basis of process mining is using information that is recorded in 

software systems in the form of event logs for process analysis. The most important 

advantages of this approach over traditional methods are a large reduction of the time 

required for such analysis and a certainty that facts are presented in the results (instead 

of opinions). 

 

An event log is a collection of recorded events for one specific business process. It 

consists of a set of traces for that process. Each trace is a list of events that occurred for 

a single process instance. A trace is ordered: an event that occured before another event 



Chapter 1 – Introduction  Artifact-Centric Process Analysis 

 

Master’s Thesis 2/102  E.H.J. Nooijen  

should be earlier in the trace as well. An event is something that happened at some 

point in time. Events are instanteneous: they end at the same time that they started. 

Therefore a prolonged activity consists of several events, for example the start and end 

of the activity. 

 

Process discovery is the set of techniques that generates process models using only an 

event log as input. Since event logs are a record of real behaviour that occurred, the 

resulting process models always reflect reality.  

1.2 Enterprise resource planning (ERP) systems 

ERP systems are software systems that support the optimal usage of all resources in an 

organization. The underlying idea of ERP is described in the 11th edition of the APICS 

dictionary as a ‘‘framework for organizing, defining, and standardizing the business 

processes necessary to effectively plan and control an organization so the organization 

can use its internal knowledge to seek external advantage’’ [10]. Adoption of ERP 

systems is high: 74% of large manufacturing companies used an ERP system in 2002 

[11], 80% of Fortune 500 companies used an ERP system in 2004 [12] and a rising 56% 

of small and medium enterprises in Europe used an ERP system in 2009 [13]. 

 

The traditional ERP system is data-centric and function oriented [14]. The support 

provided by the system is done through a shared data model that is used by a variety of 

functions, thus ensuring that each function uses the same version of the truth. This data 

is usually stored in a single relational database containing thousands of tables [15–17]. 

 

 
Figure 1: Process support systems (adapted from [18]) 

 

ERP systems were build with structured processes in mind; Prefered models are reflected 

in so-called reference models that describe both the underlying data and process models 

[14]. Hence business processes are supported, but only implicitly: the processes are 

hidden in the code of the system. Figure 1 shows the positioning of ERP systems when 

compared to other process support systems. 

1.2.1 ERP systems and process mining success factors 

For process mining to be succesful event data of sufficient quality is required. The 

Process Mining Manifesto states that the minimum requirement is that events are 

automatically recorded and that there should be some sort of guarantee that recorded 

events match reality [9]. As stated in the manifesto this is the case for ERP systems. An 

additional quality measure for event logs is completeness: no events should be missing 

for the process that is being analyzed [9]. ERP systems were not build with event logs in 

mind, so there is no guarantee that this is the case for these systems, but ERP systems 

do increase the likelyhood of completeness. Two factors contribute to this: 
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- ERP systems are meant to aid in cross-departemental activities. The idea is that 

business processes can be handled in a single system (so there is only one 

version of the truth). 

- ERP systems are data driven by nature, thus information that is used during the 

process will usually be stored in the ERP system. 

1.3 Traditional process analysis in the context of ERP systems 

Since many important business processes are supported by ERP systems it is rather 

surprising that very little work has been done on process analysis in the context of these 

systems. Related work on the modelling of ERP systems describes what should be taken 

into account for analysis in the context of these systems. In addition to this a variety 

process mining case studies have been executed focussing on ERP systems. It can be 

argued that these approaches neglect a fundamental property however. 

1.3.1 ERP system modelling 

The authors of [19] describe that a notation used to model an ERP system should be able 

to describe both data and control flow aspects. In addition to this they describe a manual 

approach to modelling an ERP system and note that this is very laborious task [19]. 

Similarly, the reverse engineering work given in [20] describes that both data and 

processes should be transferred, but does not describe how this could be done. 

1.3.2 Process mining case studies 

Current process discovery techniques assume that event log information is available in a 

predefined format. In this format a log consists of a set of traces (with each trace 

corresponding to a specific case or process instance). Each trace consists of an ordered 

multiset of events that have taken place; For each event the event type should be 

known.   

 

In practice event log information is not readily available in this form in most information 

systems. Previous research has shown that extracting log information from ERP systems 

is a time consuming process as explained below. As a result one of the major advantages 

of process mining (reduced analysis time) is completely offset by the time required for 

preprocessing of information. 

 

The only ERP systems that were studied were SAP [15], [16], [21–23] and PeopleSoft 

[17]. A variety of approaches are tested to extract event logs from these systems, but 

the majority of these fail because no instance identifier is available for the events that 

can be extracted. For the specific use cases of the SAP case studies event log extraction 

from the SAP database is succesful, although selection of the correct tables is laborious. 

Usually an event is identified by a column with a timestamp, but the exact event type 

may depend on the value of another column (in the same table) [21], [22].  

 

The case study on PeopleSoft reports that no general approach to extract event logs from 

PeopleSoft is possible, although it appears to be possible to manually select the correct 

tables that contain the customer billing information; the main issue is the absence of 

foreign keys in the database [17]. An additional issue reported for Peoplesoft is that 

information about applications started for the execution of an action is only stored until 

the execution of the application is finished [17]. The absence of foreign keys is also 

repeatedly reported for the database of SAP, although Piessens shows that the foreign 

key information can be retrieved from the SAP system in a rather laborious way [15].  

 

A challenge encountered in all case studies is divergence and convergence. Both are best 

explained through an example: Suppose we are dealing with an online CD shop, where 

customers order CD’s from the web. The shop collects these orders on a daily basis and 

then orders the required CD’s at its suppliers. When looking at the customer order 

fulfillment process this provides two interesting points: 
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- The shop will place one orders at a supplier for multiple customer orders. Thus an 

event can be associated to multiple process instances. This situation is called 

convergence. 

- The shop will place orders at multiple suppliers for a single customer order if not 

all CD’s can be bought from the same supplier. Thus there will be multiple similar 

events for a single process instance. This situation is called divergence. 

To handle divergence Piessens uses foreign key information to suggest instance 

identifiers by selecting primary key fields that are (indirectly) referenced by all event 

tables. Piessens also suggests that it would be a significant improvement if a method 

would be developed that automatically discovers event types by focussing on 

timestamps.  

1.3.3 Processes in isolation? 

Many existing process analysis methods (including the process mining case studies 

discussed above) assume that processes can be seen in isolation [24] as visualized in 

Figure 2. Given the collaborative nature of ERP systems this assumption usually does not 

hold in environments where these systems are used. This causes problems when 

convergence occurs, because convergence by definition means that interaction between 

multiple process instances should be taken into account. The main issue is that it 

becomes unclear what defines a process (instance), i.e. one cannot define precisely what 

is part of the process and what is not. Because of this a different process instance 

defintion tends to be chosen for each situation that is analyzed. 

 

 
Figure 2: Traditional view on processes 

 

The unclarity of the definition of a process instance explains the problems encountered in 

the case studies on process mining in ERP systems with convergence, divergence and the 

identification of instance identifiers. In addition to this the unclarity also makes it hard to 

identify the relation between the data and the control flow, since this will vary based on 

the process instance definition chosen to explain a specific situation. Thus a new process 

analysis approach is required that takes the interaction between processes into account. 

1.4 Artifact-centric process analysis in the context of ERP systems 

1.4.1 Artifacts 

Artifacts are business entities described by both an information model and a non-trivial 

lifecycle [25], [26]. An example would be customer orders or purchase orders. One such 

entity (e.g. a specific customer order) is called an artifact instance. 

 

Artifacts can be related to other artifacts. For example, in a build-to-order environment a 

new customer order could trigger the creation of a new purchase order. This purchase 

order might be related to multiple customer orders though, since a single purchase order 
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might be used to purchase the required materials for multiple customer orders. This also 

implies that the lifecycles are mutually dependent on eachother: the creation of a 

customer order causes the creation of a purchase order, but the arrival of the goods of 

the purchase order trigger the further processing of the customer order.  

 

 
Figure 3: Artifact view on business processes 

 

The authors of [27], [28] describe a business process analysis approach that describes 

an environment as a set of artifacts. Figure 3 visualizes the general idea of this approach, 

showing the interaction between artifacts as dark-blue arrows and the mapping between 

the information model and the lifecycle as light-blue arrows. In this approach the 

business artifacts are identified by first looking at what data is important and only then it 

is investigated how things should be done. The required information is gathered through 

the use of interviews [29], which can be time-consuming. 

1.4.2 Research question 

Although previous work on business process analysis in the context of ERP systems 

clearly shows that data, processes and interaction between processes should be taken 

into account, support for this is rather limited. The artifact-centric approach provides a 

way to describe how things work, but the interviewing approach is time-consuming. 

Although process mining could in theory be usefull its practical value is limited, since the 

required time for preprocessing offsets one of its major advantages. Thus an artifact-

centric method is required that combines existing techniques to provide an efficient way 

of doing process analysis in the context of ERP systems, resulting in the following 

research question: 

 

How can an artifact-centric description of an ERP system efficiently 

be derived from the systems database? 

 

Two important aspects of artifacts are the information schema describing the data it 

contains and the lifecycle that describes how it functions. Therefore the research question 

can be decomposed into two subquestions: 

 

1) How can the information schema of each artifact in an ERP system 

be identified using the systems database? 

 

2) How can the lifecycle of each artifact in an ERP system be 

identified using the systems database? 
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1.4.3 Project goal and scope 

Given the research question the goal of the project is to create a generic, semi-

automated method that generates a description of all artifacts represented in a given 

structured dataset, supported by a coherent set of techniques. Note that an ERP systems 

database is an example of a structured dataset. This will be approached by first 

reconstructing the information schema of the dataset. Then the artifacts and their 

information schemas will be identified by partitioning the information schema of the 

complete dataset. Since artifact instances can then be defined clearly traditional process 

discovery techniques can subsequently be used to identify the lifecycle of each artifact 

via an event log. Figure 4 shows the general idea of this approach. 

 

Artifact

 
Figure 4: General idea of the approach 
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For practical purposes some assumptions were made to limit the scope of the project: 

- The most important business processes are all lifecycles of some artifact. Thus 

focussing only on artifact lifecycles is sufficient. Extracting information of business 

processes that are not artifact lifecycles is outside of the scope of this project. 

- Although the interaction between artifacts is important to fully describe their 

behaviour there is no previous work on (semi-)automated interaction discovery 

and it is beyond the scope of this project to develop such a method. Therefore the 

artifact lifecycle discovery will be limited to its inner lifecycle. 

- The information inside ERP systems is stored in relational databases. Process 

analysis for ERP systems with a different way to store data may not benefit from 

the developed method. 

- The ERP systems database(s) can be accessed directly so information can be 

extracted from them. Extracting information from ERP systems for which the 

database is not accessible is outside the scope of this project. 

1.5 Running example: The CD shop 

1.5.1 Introduction 

In this section the CD shop is presented: a fictional company that is used as a running 

example throughout the report. The CD shop is a small webshop where customers can 

order CD’s. The shop subsequently orders CD’s from their suppliers to be able to deliver 

CD’s to their customers. In the next subsections the CD shop is described in detail. First 

the core process of the CD shop is described. Then an overview of the database schema 

of the shops system is described. Finally an overview is given of the three artifacts 

relevant for the CD shops core business process and how these artifacts relate to this 

process. 

 

In this report entity-relation (ER) diagrams will be used to describe the information 

model of an artifact while the lifecycle will be described using proclets [24]. ER diagrams 

are explained in any general textbook on databases (e.g. [30], [31]). Each proclet 

describes the lifecycle of an artifact, including its possible interfaces with other artifacts. 

A proclet system consists of several proclets and as such describes the interaction 

between the artifacts. For this the notion of channels is used: each channel  describes a 

uni-directional message flow from one artifact to another. Each interface of an artifact is 

described by its cardinality (C) and multiplicity (M): the cardinality is the number of other 

artifacts to which a message is sent or received from over the interface, while the 

multiplicity is the number of times a message can be sent or received over a specific 

interface during the lifecycle of one artifact instance. Both are typically represented as 

“1” (exactly once), “?” (zero or once), “*” (zero or more) and “+” (once or more). 

1.5.2 Core process: selling CD’s 

The process starts when a customer requests if a number of CD’s are available in the 

shop. The shop then replies with a quote that states which CD’s can be delivered and for 

which price. The customer then either accepts the quote or rejects it. If it is accepted a 

purchase order is placed at the supplier for the required CD’s. Note that one purchase 

order may be used to get the CD’s required for multiple customer’s quotes and that 

orders at multiple suppliers may be required for a single customer’s quote. The CD’s are 

then shipped by the supplier to the CD shop after which the shop pays the supplier. The 

CD shop subsequently delivers the CD’s to the customer. In some cases a supplier may 

signal that an order cannot be delivered (as a whole); In that case a reorder may be 

placed at the same or a different supplier. If the CD’s cannot be delivered by any supplier 

the customer is notified of this and the process ends. If the CD’s are delivered normally 

the customer receives an invoice. After the customers payment is received the process 

ends. 
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1.5.3 Database schema 

The CD shops database contains all data required for its core process. Figure 5 shows the 

relational schema of the database, while details of each table are given in Table 1.   

 

Supplier CD

Inclusion

CD_Quote_Order

Quote

Order

Delivery_Order

Supplier_Payment

Quote_Order

Aux

Reorder

DeliveryRequestCustomer

CD_Request

Customer_payment
Missing 

in DB

 
Figure 5: CD shop database schema 

 

Although fictional, the CD shops database has some deliberate flaws that real databases 

also have. First of all the foreign key between the delivery and delivery_order table is 

missing in the database. In addition to this several columns have a datatype that is not 

completely correct: one price has a “real” datatype which should be an “integer” and two 

name columns have a “char” datatype which should be a “varchar”. All of these are 

marked with an asterisk (*) in the table below. 

 

Table name Column name PK Datatype Data 

length 
Aux Aux Yes Integer  

Cd Name Yes Varchar 50 

 Artist  Varchar 30 

 Price  Real*  

 Supplier_Name  Varchar 10 

Cd_Request Request_Reqid Yes Integer  

 Cd_Name Yes Char* 50 

 Quantity  Integer  

Cdquote_Order Quote_Reqid Yes Integer  

 Order_Orderid Yes Integer  

 Cd_Name Yes Varchar variable 

 Quantity  Integer  

 Deliverable_Quantity  Integer  

Customer Name Yes Varchar 30 

Customer_Payment Quote_Reqid Yes Integer  
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Table name Column name PK Datatype Data 

length 
 Date_Invoice_Issue  Timestamp  

 Date_Payment_Sent  Timestamp  

 Date_Payment_Received  Timestamp  

 Price  Integer  

Delivery Customer_Accept_Shipment_Date  Timestamp  

 Delid Yes Varchar 6 

 Quote_Reqid  Integer  

Delivery_Order Delivery_Delid Yes Varchar 6 

 Order_Orderid Yes Integer  

Inclusion Cd_Name Yes Varchar 50 

 Quote_Reqid Yes Integer  

 Quantity  Integer  

Order Orderid Yes Integer  

 Order_To_Supplier_Date  Timestamp  

 Supplier_Notification_Date  Timestamp  

 Supplier_Shipment_Date  Timestamp  

 Opening_Date  Timestamp  

Quote Reqid Yes Integer  

 Price  Integer  

 Opening_Date  Timestamp  

 Acceptance_Quote_Date  Timestamp  

 Rejection_Quote_Date  Timestamp  

 Customer_No_Deliverable_Notification_Date  Timestamp  

Quote_Order Quote_Reqid Yes Integer  

 Order_Orderid Yes Integer  

 Adding_Date  Timestamp  

Reorder Quote_Reqid Yes Integer  

 Order_Orderid Yes Integer  

 Reorder_Date  Timestamp  

Request Request_Date  Timestamp  

 Reqid Yes Integer  

 Customer_Name  Varchar 30 

Supplier Name Yes Char* 10 

Supplier_Payment Order_Orderid Yes Integer  

 Date_Invoice_Issue  Timestamp  

 Date_Payment_Sent  Timestamp  

 Date_Payment_Received  Timestamp  

 Price  Integer  

Table 1: CD shop metadata 
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1.5.4 Relevant artifacts 

For the CD shop’s core process three artifacts are of primary importance: quotes, 

(purchase) orders and (physical) CD’s. Below these artifacts are introduced. 

 

In this example entity-relation (ER) diagrams are used to describe the information model 

of an artifact while the lifecycle is described using proclets [24]. ER diagrams are 

explained in any general textbook on databases (e.g. [30], [31]). Each proclet describes 

the lifecycle of an artifact, including its possible interfaces with other artifacts. A proclet 

system consists of several proclets and as such describes the interaction between the 

artifacts. For this the notion of channels is used: each channel  describes a uni-directional 

message flow from one artifact to another. Each interface of an artifact is described by its 

cardinality (C) and multiplicity (M): the cardinality is the number of other artifacts to 

which a message is sent or received from over the interface, while the multiplicity is the 

number of times a message can be sent or received over a specific interface during the 

lifecycle of one artifact instance. Both are typically represented as “1” (exactly once), “?” 

(zero or once), “*” (zero or more) and “+” (once or more). Note that this approach 

provides a solution for the divergence/convergence challenge described in section A.I 

[24]. 

Quote 

A quote is basically a customer order. It starts its lifecycle as a request from a customer 

and usually ends when it is paid for. Figure 6 shows the database schema of the quote 

artifact. The quote table contains a list of quote instances. Since all quotes start as a 

request technically the same could be said for the request table, but this table obviously 

has a slightly different meaning attached to it. The lifecycle of a quote instance is shown 

in Figure 8 as part of a proclet system that contains both the quote and order lifecycle. 

 

Inclusion

CD_Quote_Order

Quote Quote_Order

Reorder

DeliveryRequestCustomer

CD_Request

Customer_payment

 
Figure 6: Quote schema 
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Order 

An order is used to purchase CD’s from a supplier. It starts its lifecycle when the CD shop 

requests the delivery of CD’s and usually ends when the purchase order is paid for. 

Figure 7 shows the database schema of a the order artifact. The order table contains a 

list of order instances. The lifecycle of an order instance is shown in Figure 8 as part of a 

proclet system that contains both the quote and order lifecycle. 

 

CD_Quote_Order Order

Delivery_Order

Supplier_Payment

Quote_Order

Reorder

 
Figure 7: Order schema 
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Figure 8: Quote and order lifecycles 
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CD 

A physical CD is the object that is handled during the entire core process of the CD shop. 

It starts its lifecycle when it is requested by a customer and ends when it is delivered to 

a customer. Its lifecycle is never individual however, since the lifecycle is always shared 

by other CD’s that were requested by the same customer and/or delivered by the same 

supplier. Thus one could say that a CD does not have a lifecycle of its own; It has a 

lifecycle, but that lifecycle is completely represented by the related quote and order 

artifacts. 

 

Figure 9 shows the database schema of a physical CD. There is no table that contains a 

list of physical CD’s in this schema, though. The CD table only contains the type of CD’s 

available in the CD shop. The inclusion and cd_quote_order tables get closer to 

describing physical CD’s: the inclusion table contains a list of physical CD’s that are 

included in quote instances, while the cd_quote_order table contains a list of physical 

CD’s that are included in both a quote and an order instance. 

 

Supplier CD

Inclusion

CD_Quote_Order

 
Figure 9: CD schema 

1.6 Outline 

The remainder of this report is structured as follows. Chapter 2 gives an overview of the 

proposed method followed by a detailed explaination of the artifact schema discovery 

part in chapter 3 and the artifact lifecycle discovery part in chapter 4. In chapter 5 the 

method is then evaluated experimentally. The report is concluded with ideas for future 

work in chapter 6.  Finally Appendix B contains an overview of all notations used in this 

report. 
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Chapter 2 – Overall method 

The goal of the method is to generate a description of all artifacts represented in any 

given structured dataset that contains artifact data and event information (possibly 

among other things). Figure 10 shows the steps required to achieve this.  

 

 
Figure 10: Overall method 

 

Schema extraction may be required to create a structured dataset with a known schema 

(which is the prerequisite to find artifact model(s)).  

 

The dataset is then used to identify artifacts and the corresponding database schema for 

each artifact – this is called the artifact schema.  Each artifact schema is assumed to be 

a subset of the complete schema. 

 

For a specific artifact schema (and the related part of the dataset) it can then be 

determined what event types exist and how these are stored in the dataset. This 

information can be used to create a mapping from the artifact schema to events.  
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The mapping and the structured dataset can subsequently be used to generate traces 

suitable for process mining. Finally, these traces can be used as input for any existing 

process discovery technique to generate the lifecycle for each artifact.  

2.1 Schema extraction 

Schema extraction is defined here as extracting structural information (e.g. candidate 

keys and relationships between entities) from structured data (e.g. tables). It takes as 

input a set of structured (tabular) data and produces (1) a primary keys for each table, 

(2) the domain for each element (column) in each table and (3) the relationships (foreign 

keys) between tables.  

 

Schema extraction is often seen as a technique within the information extraction domain 

(i.e. extracting structure from unstructured data [32]) [33], [34], but considering the 

context of this method it seems to make more sense to define it as a separate step. This 

has to do with the nature of ERP systems: most ERP systems already contain structured 

data (in the form of a relational database), but schema information such as keys and 

relations is often not available [16], [17]. ERP systems are the focus of the this method, 

thus it makes sense to define schema extraction as a separate step. 

 

Several techniques exist to extract schema information from a structured dataset [35–

38]. Of specific interest is the domain for each column: since events are ordered by 

occurance2 we are looking for ways to identify this order in the data. If a domain is 

ordered by occurance (i.e. sequential or timed) then the column can be used to discover 

the order of the events. Therefore this information should also be recorded in this step. 

An approach to execute schema extraction is described in section 3.2. 

 

Formally the input of this step is a set of tables T = {T1,...,Tn}, with each Ti = (C, Cp) a 

table that contains a set of columns C = {C1,...,Cn} and an unknown primary key Cp = 

{}. Both C and Cp are a subset of the set of all columns C = {C1,...,Cn}. For each column 

Ci the domain D is unknown. 

 

The output is a schema S = (T, F, D, column_domain) with T a set of tables (as above) 

and F = {F1,...,Fn} a set of foreign keys. For each table the primary key Cp = 

{Cp1,...,Cpn} is known. Each Fi = (Tp,Cp,Tc,Cc) is a foreign key from parent table Tp with 

primary key Cp to child table Tc with referencing columns Cc. Finally the complete set of 

domains D = {D1,…,D2} is identified and there is an assignment function 

column_domain : C  D that assigns a domain to each column.  

2.2 Identify artifact schemas 

In this step the subset of the dataset that is of interest for each specific artifact is 

identified. The idea is to partition the full schema in a number of clusters (one for each 

artifact) and assign each table to one or more clusters. In addition a representative main 

table will be chosen for each cluster. This main table contains the instance information 

for the specific artifact: each artifact instance can be identified by the primary key of the 

main table. Of course the underlying assumption is that such a table exists for each 

artifact, but my own experience and previous research [15], [17], [21], [22] suggests 

that this is usually the case. 

 

Previous work on database schema and graph summarization showed a few key points 

should be taken into account while identifying artifact schemas: 

- Important tables should not be contained in the same cluster. As explained in [39] 

important is a subjective term, but there are some objective measures that 

indicate importance of a table. Specifically for artifact clustering the tables that 

can be used to identify artifact instances should be regarded as highly important 

                                           
2 Events that occured first are ordered before events that occured later. 
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and must be contained in separate clusters. Aside from this, high connnectedness 

(a large number of incoming and outgoing foreign keys) and high data cardinality 

(large numbers of different data values) are indicators of higher importance of a 

table [39]. 

- Clusters should be evenly distributed over the schema. This corresponds to the 

fact that all information about an artifact should be contained in its schema. 

Intuïtively a schema containing 40 tables is unlikely to be represented correctly by 

3 clusters with 2 of them each containing a single table and 1 cluster containing 

the other 38 tables, especially if the two single table clusters are directly 

connected via a foreign key. If one focusses only on importance this can be the 

result, however. One measure for this is the density of the clusters: the number 

of links (foreign keys) between tables as a ratio versus the number of possible 

links between tables. It is to be expected that the intra-cluster density is higher 

then the average or inter-cluster density [40]. Another related measure is the 

coverage as defined in [39]: this measure is calculated using the cardinality of the 

foreign keys and the foreign key path length between each table and the main 

table. 

- The number of clusters created should be as small as possible [39], while 

maintaining sufficient information about the schema as a whole. For artifact 

schema clustering this means that the granularity of the clustering should match 

the expected granularity of the artifacts: e.g. if order invoices and orders are 

expected to be different artifacts they should be shown as different clusters. 

These three points are related to each other and tradeoffs will need to be made for each 

set of clusters that is calculated. The exact importance of each depends on the required 

granularity of the summary and the specific dataset. An approach to execute artifact 

schema identification is described in section 3.3. 

 

Formally the input of this step is a schema S as defined above. The output is a set of 

artifact schema’s {SA1,..., SAn} where each artifact schema SA= (TA, FA, DA, 
column_domain, Tm) is defined as a schema with a main table Tm ∈ TA and the other 

attributes defined as done for any schema above. 

2.3 Create schema-to-log mapping 

Creation of the mapping between the artifact schema and a resulting event log is done in 

this step. It takes as input (1) an artifact schema and (2) a structured dataset described 

by the artifact schema and produces (1) a set of event types identified in the dataset and 

(2) a mapping from the dataset to these event types. The mapping found in this way 

describes how to extract the different events from the dataset. Note that in this case the 

purpose of the event log is to use it to discover the lifecycle of an artifact using process 

mining techniques. Since it depends on the goal of a process mining project what to 

include in an event log [9], [41] this should be taken into account. 

 

All known previous work on support for this step assumes that the mapping is created  

manually by domain experts [15], [21], [41], [42]. In addition to this a variety of papers 

are available that describe how event logs were extracted from a specific system [15–

17], [23], [43–45]. The artifact-centric approach already solves some challenges given in 

these papers. Therefore these no longer have to be taken into account: 

- Convergence and divergence [15], [16], [41]. As explained in the introduction the 

artifact-centric approach was developed to handle problems with convergence and 

divergence. Thus these problems should not play a role when working with a 

single artifact. 

- Traces should contain only events that belong to a single process [41]. For the 

artifact centric approach this implies that all events should be related to a single 

artifact. Since the previous step ensures that all input data (including events) is 

related to a single artifact, this should not play a role here. 
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An overview of more general problems for event log extraction is given in section 4.2, 

followed by an approach to identify artifact-to-log mappings. 

 

Formally the input of this step is an artifact schema SA as defined above. The output of 

the step is an artifact specific log mapping LM as defined in Table 2 below. Figure 11 

shows the same information as a class diagram. This mapping describes the conversion 

of a dataset to an event log in the eXtensible Event Stream (XES) format. Note that a 

trace mapping TM defines the conversion to any general event log, while the XES specific 

concepts (e.g. classifiers) are part of the log mapping LM. 

 

 
Figure 11: Class diagram of mapping domain model 

 

The model is similar to that of XESame [41], except for a ListAttribute that is used to 

describe a variable length list of attributes. This was added because XESame cannot 

handle these. Aside from this the mapping described here can easily be translated to the 

XESame model to allow for manual adjustments to the identified mapping. See Appendix 

C for a description on how to do this. 

 

Symbol Description 

LM = (name, TM, EX, CL, 

AGT, AGE) 

Log mapping with artifact name name, a trace mapping 

TM, extensions EX, classifiers CL, global trace attributes 

AGT and global event attributes AGE 

TM = (CTID, TFrom, FLink, 

EM, AMT, LAT) 

Trace mapping with traceID columns CTID, main table 

TFrom, other table links FLink, event mappings EM, 

attribute mappings AMT and list attributes LAT 

EM = {EM1,...,EMn} Set of event mappings 
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Symbol Description 

EM = (name, CEID, Ce, 

TFrom, FLink, AME, 

LAE) 

Event mapping for event name with eventID columns CEID 

and event column Ce, main table TFrom, other table links 

FLink, attribute mappings AME and list attributes LAE. The 

event column describes the ordering of the events, most 

likely containing timestamp values 

LA = {LA1,...,LAn} Set of n list attributes 

LA = (key, CAID, TFrom, 

FLink, AML, LAL) 

List attribute (an attribute with multiple values) mapping 

with given key, attributeID columns CAID, main table 

TFrom, other table links FLink, attribute mappings AML and 

list attributes LAL 

AM = {AM1,...,AMn} Set of n attribute mappings 

AM = (key, type, Ca) Attribute mapping with given key, type and attribute 

column Ca 

AG = {ATG1,...,ATGn} Set of n global attributes 

AT = (key, type, value) Attribute with given key, type and value 

EX = {EX1,...,EXn} Set of n extensions 

EX = (name, prefix, URI) Extension with given name, prefix and URI 

CL = {CL1,...,CLn} Set of n classifiers 

CL = (name, keys) Classifier with given name and keys 

Table 2: Log mapping symbols 

2.4 Generating traces 

Using the mapping found in the previous step events can be generated from the dataset. 

The approach described in [41] was designed for a similar purpose: it takes as input a 

dataset and a mapping and produces an event log. Similarly for each artifact this step 

should take as input the dataset and the mapping for the artifact as decribed in the 

previous section. The output should be an event log in the eXtensible Event Stream 

(XES) format; The XES format was chosen since this is the only available standardized 

event log format. It was designed for the interchange of event log data in a simple, 

expressive and flexible format, while allowing for extensions of the format in a 

transparant manner [46]. An approach to generating traces given a mapping and a 

dataset is described in section 4.3. 

 

Formally this step takes as input the dataset and the mapping LM as decribed in the 

previous section. The output should be a XES log file as defined by [46]. The XES format 

defines an event log as a set of traces each containing a list of events. All of these can 

have attributes that provide more information; there are 5 different types of attributes. 

Extensions can be defined that give more meaning to an attribute: each extension 

defines a list of attribute keys with a specific meaning. Global attributes can be defined 

for both traces and events: these are attributes that guaranteed to be available for all 

traces and events respectively. Finally event classifiers provide a way to compare events. 

Each classifier specifies a number of event attributes which can be used together to  

uniquely identify all events. 

2.5 Apply process discovery techniques 

The goal of artifact lifecycle discovery is to discover both the internal lifecycle of an 

artifact and its interaction with other artifacts, thereby fully describing how an artifact 

operates. With the event log produced in the previous step a variety of process discovery 

techniques can be used to generate the lifecycle for each artifact. Section 4.4 describes a 

number of these existing techniques and how to apply them to discover the internal 

lifecycle of an artifact. 
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Chapter 3 – Artifact schema identification 

The database of an ERP system contains the data of the entire system, but it may not be 

intuïtively clear how this data is structured. A way to describe the structure of the data is 

by identifying all artifact schema’s that are part of the database. An artifact schema is a 

relational schema describing the data of an artifact; it is a way to describe the 

information model of the artifact. Note that if all artifact schema’s are to be identified this 

implicitly includes identifying all artifacts present in the system. 
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Artifact 
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Structured 
dataset

 
Figure 12: Artifact schema identification approach 

 

In this chapter a two-step approach is presented to identify all artifact schema’s that are 

part of an ERP systems database. First a variety of techniques are presented to 

rediscover several types of metadata (column domains, primary keys and foreign keys), 

since this metadata is commonly missing in ERP system databases. The result of this is a 

complete schema for the entire database. Then a fuzzy clustering approach is presented 

that selects subsets of  the entire database schema: the artifact schemas. Both steps 

take into account that the lifecycle of each artifact will need to be identified afterwards. 

 

Since the focus of this report is on ERP systems that rely on relational databases the 

terminology that is relevant in that context is first introduced. Then the steps to discover 

the complete schema and identify the artifact schemas are presented. Each of the steps 

consists of an overview of related previous work followed by an approach to execute the 

step. 

3.1 Relational databases 

A relational database is a shared collection of logically related data described by a 

relational model [30], [31]. The relation model describing the database is called a 

schema. This schema contains both the tables and the relations between those tables.  

 

Each table consists of one or more columns, each having a name and a domain (the 

set of possible values that can occur for that column). A row of data (one field for each 

column) is called a record.  

 

A functional dependency occurs when the values in one set of columns can be used to 

determine the value of another column. Formally a functional dependency is noted as C 
 C’ with both C and C’ a set of columns. The values of C’ are functionally determined 

by C. In this case it is said that the columns in C functionally determine C’. 
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A table may also have one or more candidate keys: a set of columns that can be used 

to uniquely identify all records in the table. A candidate key is a specific type of 

functional dependency: the candidate key can be used to determine the value of all other 

columns in the same table. A candidate key must be minimal: it should not be possible to 

uniquely identify all records using a subset of columns of the candidate key. One of these 

candidate keys is often chosen to be the primary key for the table.  

 

An inclusion dependency (IND) occurs when all values in one set of columns are 

included in all values of another set of columns. Formally an inclusion dependency is 

noted as (C1,...,Cn) ⊆ (C’1,...,C’n), with both (C1,...,Cn) and (C’1,...,C’n) a sequence of 

columns. The values of (C1,...,Cn) are pairwise included in (C’1,...,C’n): the values of the 

child column combination (C1,...,Cn) are a subset of the values of the referenced column 

combination (C’1,...,C’n). In this case it is said that the child columns are included in the 

referenced columns. 

 

Relations between tables are described by foreign keys between parent and child 

tables. For a foreign key a set of columns is chosen in the child table. These columns 

reference the primary key of the parent table: The values of the child column 

combination are a subset of the values of the referenced primary key. Thus a foreign key 

is a specific example of an inclusion dependency.  A foreign key can be a 1-on-1 

reference or a 1-on-n reference: a 1-on-1 reference means that each primary key value 

of the parent occurs at most once in the child table, while for a 1-on-n reference each 

primary key value may occur multiple times in the child table. 

3.2 Schema extraction 

 As noted before schema extraction is extracting structural 

information (e.g. candidate keys and relationships between 

entities) from structured data (e.g. tables). It takes as input a 

set of structured (tabular) data and produces a relation schema 

for the data. This schema contains (1) the domain for each 

column in each table, (2) a primary keys for each table and (3) 

the foreign keys between tables. Extracting each of these types 

of information is a distinct subproblem that has been analyzed 

in the past. Therefore each subproblem (domain extraction, 

primary key extraction and foreign key extraction) will be 

treated separately in this section. 

3.2.1 Domain extraction 

Overview 

In the context of artifact discovery domain extraction is the grouping of columns into a 

number of domains based on the data values and known meta data (e.g. name, data 

type) of the columns such that these domains can be used for schema-to-log mapping. 

This means that it must be possible to map each domain to exactly one XES datatype 

and to specify for each domain if the data elements are ordered by occurance. Since we 

assume that primary and foreign key information is not available yet at this step, this 

information cannot be used.  

 

The simplest approach for domain extraction is to let a domain expert look at all the 

column combinations to classify them as “the same” and “not the same”. This would 

create groups of columns that are “the same”, meaning that they share the same 

domain. After this is done the domain expert should classify every domain as ordered by 

occurance or not. In practice manually comparing all column combinations is infeasible 

due to the large number of possible column combinations. Therefore previous research 

has suggested to use a variety of distance measures as an alternative to manual 

classification; such a distance measure represents the likelyhood that columns are 
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similar. The interpretation of these distance measures is done by so-called clustering 

algorithms that result in groups of columns that are similar according to the distance 

measure. 

Related work: Domain extraction 

In general domain extraction is the grouping of columns into a number of attribute 

types based on the data values and known meta data of the columns. The idea is that all 

columns with the same domain should be assigned to the same attribute type; the 

attribute type identifies the domain. E.g. the cd_name column of various tables should be 

grouped together to form the cd name attribute type, while the customer_name columns 

should not be in the same group (even though they have the same data type). 

 

Only a limited amount of work has been done on domain extraction. The authors of [37] 

experimentally compare a variety of methods to cluster columns together based on the 

so-called q-gram signatures of the data in the columns while in the work presented in 

[47] clusters of columns are computed using the distribution of the data in the columns. 

In addition to this the slightly more general problem of grouping columns is shown to be 

NP-Complete in [48].  

 

All methods compared in [37] use a distance metric based on the q-gram signature of 

each column as a basis. It is noted that accuracy is always highest when cosine distances 

are used. Q-gram signatures given by principal component analysis (PCA) on the column 

x column covariance matrix are shown to have the highest accuracy and to scale 

reasonably well. Another option with a high accuracy over all experiments is information 

bottleneck (IB) based clustering, although this is slightly slower than the PCA based 

method. In addition it is shown that min-hash signatures are the fastest option, giving a 

reasonable accuracy as a result.  

 

The two-step approach described in [47] starts with a rough clustering using the distance 

between the combined value distribution of each column pair as a basis. The clusters 

identified in this way are then further refined using the distance between the intersection 

value distribution of each column pair as a basis. For the seconds step the authors also 

introduce witness columns: the assumption is that if column CA is related to a witness 

column and column CB is related to the same witness column that then it is highly likely 

that CA and CB are also related. In addition to the basic approach the authors also 

introduce a variety of performance optimizations.  

 

Earlier work on column similarities are that on Bellman [49] and the application of 

information bottleneck for general column clustering [48]. The work on Bellman suggests 

the use of q-gram sketches and q-gram signature to verify column similarities, but does 

not mention how columns should be grouped together. The approach described in [48] 

shows how columns can be clustered, but not with the purpose of domain based 

categorization in mind.  

 

Finally, as mentioned before the information bottleneck method introduced in [50], [51] 

can be used to cluster columns together. Since the introduction of the method two more 

efficient versions of the algorithm were introduced, as described in [52] and [53]. 

Approach 

A two-step approach is suggested for domain extraction in this context: 

1. Heuristically determine the XES datatype of each column by looking at its 

technical datatype or data values. 

2. Apply general domain extraction techniques such as those described in [37] and 

[47] to each set of columns sharing the same XES datatype. 

Aside from determining the XES datatype the first step also makes sure that each column 

containing time values is identified, thereby likely specifying most or all columns that can 
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be used to identify events. In addition to this the heuristics provide a way to reduce the 

size of each set of columns to be clustered by looking at each column individually. Since 

the second step is NP-complete this may reduce the total computation time significantly. 

 

Heuristically determining the XES datatype is fairly straightforward. If the technical 

datatypes of all columns are trustworthy, then determining the XES datatype is trivial. If 

the technical datatypes cannot be relied upon then the values of each column can be 

checked using generally accepted heuristics. A column can for example only be of the 

boolean type if it contains only “true”, “false”, “0” or “1” values. The other XES datatypes 

can be determined using similar heuristics. 

 

For the second step a general domain extraction technique can be used. Based on the 

evaluation in [37] a q-gram signature method using principle component analysis should 

provide good results. For large datasets min-hash functions appear to be the best 

alternative. The authors do not provide a suggested clustering method in their paper to 

use with calculated distances. Since the number of domains is not known beforehand this 

should be a method that calculates the number of clusters as part of the algorithm, such 

as DBScan [54]3.  

 

Sampling can be used to improve the efficiency each technique by reducing the number 

of values that need to be checked for each column. For both the heuristics given above 

and functional dependency extraction the results using sampling are correct if there are 

no “invalid” records in the sample while these exist in the complete dataset. Thus 

formula (1) can be used to approximate the required sample size, given an allowed 

fraction of invalid records in the complete dataset ε and a maximum probability that an 

invalid record is missed δ [55]. For a more exact (but computationally harder) estimation 

the method of [56] can be used.  

  
Sample size ≈                 log 

 

3.2.2 Primary key extraction 

Overview 

Primary key extraction is the identification of the primary key for a table (for which no 

such key is defined) based on the data values and known meta data of the table. Typical 

metadata that can be used includes the column names, positions or datatype. It involves 

both the extraction of candidate keys and the selection of the primary key from these 

candidate keys. The extraction of candidate keys can be defined exactly and thus this can 

in theory be fully automated. This is not the case for the selection of the primary key, 

since this is subject to assumptions known to the persons responsible. 

 

The simple approach to primary key extraction is to first check each column combination 

to see if it is a candidate key and then let a domain expert pick one of these keys as the 

primary key. Checking if a column combination CX is a candidate key can be done by 

grouping all records in the table based on the values of CX. For each value combination 

only one record should exist. Thus if a group exists that contains more than record then 

the column combination is not a candidate key. The disadvantage of this approach is that 

all records in the table need to be grouped together for each possible column 

combination. Although the grouping of records can be done efficiently by sorting, the 

number of column combinations increases exponentially with the number of columns. As 

a result this approach is not feasible for even a relatively small table. Because of this a 

number of more efficient approaches have been suggested in previous research. 

                                           
3 Although the value distribution approach described in [47] and an information 

bottleneck based approach with one of the more recent faster algorithms [52], [53] 

would seem promising these were not evaluated due to time constraints. 

(1) 
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Related work: Candidate key extraction 

Candidate key extraction is the identification of candidate keys for a table (for which 

no such key is defined) based on the data values and known meta data of the table. A 

significant amount of work has been done on this subject and the related subject of 

functional dependency extraction. In addition to data-driven approaches a variety of 

approaches have been described that infere functional dependencies or candidate keys 

from the queries that were executed against the database. These approaches are not 

discussed here since it is assumed that information about queries executed is not 

available in this case. 

 

Two main types of algorithms exist to extract candidate keys or functional dependencies 

from the data of a table: level-wise or a-priori algorithms (all based on [57]) and record-

based algorithms. Level-wise algorithms check each column-combination once, while 

record-based algorithms check each record once. Since discovering a unique column 

combination (i.e. candidate key) of a table is an NP-Complete problem [58],  all of the 

algorithms can take an excessive amount of time to complete in the worst case scenario.  

 

The only record-based approach that I am aware of is Gordian [59]. The idea of Gordian 

is to eliminate non-keys instead of discovering candidate keys directly. Experiments on 

various datasets show that Gordian scales approximately linearly with the number of 

columns and records in practice. In [60] Gordian is shown to perform poorly when large 

numbers of non-uniques are found however, since then unique generation takes long. To 

improve on this the author proposes a hybrid approach called HCA-Gordian [60], [61] to 

identify candidate keys. HCA is a level-wise approach that includes various optimizations 

of previous level-wise approaches such as TANE [62], Bellman [49],  FUN [63] and the 

pruning mechanism based on Armstrong’s axioms described in [64]. The authors argue 

that level-wise algorithms tend to take long when large numbers of uniques are found, 

which is the exact opposite situation of the worst-case scenario for Gordian. Their hybrid 

approach uses Gordian to quickly prune large numbers of non-keys using a sample of the 

data and then HCA to determine keys. They experimentally show that HCA-Gordian 

outperforms various level-wise approaches and Gordian in most cases, while not 

performing much worse in cases where the level-wise or Gordian approach was optimal.  

 

Aside from the exact approaches given above, some work has been done on approximate 

identification of functional dependencies. The basic idea is that approximate results using 

only a sample of the data can be obtained faster than exact results for which all of the 

data is required. The CORDS approach [65] uses chi-squared analysis on a sample of the 

data for this purpose. A limitation of the approach is that only single column functional 

dependencies are identified. The authors show that due to statistical properties a sample 

of a few thousands rows should provide acceptable results regardless of the database 

size. Kivinen et al. gives a more exact result in [55]. They define exactly what fraction of 

records needs to be sampled to guarantee that a functional dependency is valid with a 

given confidence. 

Approach 

Although existing methods are available for the extraction of candidate keys, this is not 

the case for the selection of the primary key. Therefore an existing method will be used 

for candidate key extraction, while some heuristics are defined for the selection of the 

primary key. 

 

The most promising approach for candidate key extraction appears to be HCA-Gordian 

[60], which discovers all candidate keys of a table. Since only the primary key is required 

a slight modification to this approach is made though. Both the Gordian and HCA step are 

run with a small sample of the data. This results in a number of possible candidate keys, 

including a number of false positives. These possible candidate keys are then ordered 

using the heuristics described below and verified against the complete dataset. The first 
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n candidate keys that are verified to be correct are the most likely primary keys. Thus 

after n candidate keys are verified to be correct the algorithm can terminate. 

 

Although no work appears to exist on the selection of a primary key from a set of 

candidate keys, practical experience suggests that some guidelines are usually followed 

when a database is designed: 

1. A small key is preferred to a larger key. Thus the number of columns in a primary 

key should be as small as possible. 

2. Key columns tend to be positioned at the start of a table. Thus the total position 

numbers of a key column combination should be as small as possible.  

These guidelines can be used to order a set of candidate keys by descending probability 

that they are the primary key of the table. First columns should be ordered on the 

number of columns they contain. If this is equal they should be ordered by the total 

position number of the columns in the combination. If that is equal as well they should be 

ordered lexicographically by comparing the position of column pairs 1 through ℓ of each 

combination, with ℓ being the number of columns in each combination. 

3.2.3 Foreign key extraction 

Overview 

Foreign key extraction is the identification of candidate foreign keys between a pair of 

tables based on the data values and known meta data of the table. Typical metadata that 

can be used includes the primary keys, column names, positions or domains. Similar to 

the two steps of primary key extraction it involves both the extraction of inclusion 

dependencies (IND’s) and the selection of actual foreign keys from these IND’s. Also in 

this case the first step can in theory be fully automated, while domain knowledge is 

required to select the actual foreign keys. 

 

The simplest approach to identify a foreign key between a pair of tables is to first check if 

inclusion dependencies exist between the tables and then let a domain expert pick the 

actual foreign keys from these inclusion dependencies. Checking if an inclusion 

dependency exists can be done by comparing all pairs of column combinations with the 

same number of columns. For each pair one would check if all the values in the column 

combination of one table also exist in the column combination in the other table. If this is 

the case then the column combination pair is an inclusion dependency. The disadvantage 

of this approach is that all pairs of column combinations need to be compared. Again the 

number of combinations increases exponentially with the number of columns, making 

this approach infeasible for even a relatively small table. Because of this a number of 

more efficient approaches have been suggested in previous research. In addition to this 

the resulting number of IND’s can still be large, making it hard for a domain expert to 

pick the actual foreign keys. Therefore a number of measures have been suggested that 

represent the likelyhood that an IND is actually a foreign key. 

Related work: Foreign key extraction 

A significant amount of work has been done on the subject of foreign key extraction and 

the related subject of inclusion dependency (IND) extraction. According to [66] deciding 

if there exists a multi-column inclusion dependency (between two tables) is an NP-

Complete problem. They expect results to be better in practice though, since the NP-

Hardness was shown on a highly artificial dataset.  

 

Two similar approaches for IND extraction are MIND [67], [68] and SPIDER [69], [70]. 

Both algorithms first verify all single column IND’s in parallel, thus requiring only a 

constant number of passes over all data (regardless of the number of IND’s to verify). 

For this both algorithms preprocess the column data prior to verification. A level-wise 

approach is then used for higher order IND’s in which IND candidates for each level are 
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generated from previously verified IND’s using a set of inference rules specified in [67]. 

There are two notable differences between the algorithms: 

- MIND creates an inverted index of the column data to verify single column IND’s, 

while SPIDER prepares the data by creating a sorted list of values for each 

column. 

- IND’s of level 2 or higher are verified sequentially against the database with 

MIND, while SPIDER verifies these similarly to single column IND’s (i.e. in 

parallel). 

For both algorithms it is also shown how approximate IND’s can be extracted if 

inconsistencies exist in the data [68], [70]. An attempt was done to use SPIDER on a 

SAP dataset with ¼ million columns, but this could not be tested due to limitations on the 

number of open files (the algorithm creates 1 tempory file per column) and main 

memory constraints of the JVM. For both MIND and SPIDER it is shown that the runtime 

increases linearly with the data size for IND’s consisting of a limited number of columns. 

 

When the number of columns on both sides of an IND exceeds 8 to 10, level-wise 

approaches such as MIND and SPIDER start to exhibit exponential running time increases 

[67], [71–73]. Two approaches to find larger IND’s are FIND2 [72] and Zigzag [71]. Both 

algorithms are based on a property of IND’s that allows smaller IND’s to be deduced from 

larger IND’s. The algorithms use jumps in the search space: given a set of verified 1 and 

2 column IND’s large IND candidates are constructed and verified before deducing 

smaller IND’s from these verified large IND’s. Even though scalability of these algorithms 

is shown to be better than those of level-wise algorithms if the number of columns 

exceeds 10 [72], [73], the practical relevance of them may be limited since real 

databases usually do not contain IND’s with more than 6 columns [70], [72]. 

 

A number of approaches exist that focus on identifying true foreign keys from IND’s that 

were shown to hold in the data. Both [73] and [35] focus only on the data for this 

purpose, while [74] also includes simple meta data properties (such as column names). 

In [73] it is shown that theoretically the probability that an IND is valid by chance is 

greater than 5% if the included column combination contains less than 7 distinct values. 

Another good predictor if an IND is a foreign key is the value distribution of both included 

and referenced column combinations; These should be similar for true foreign keys [35], 

[73]. While in [73] the χ2 test for independence is used to prune invalid IND’s, the Earth’s 

Movers Distance (EMD) is shown to be a good predictor of the validity of a foreign key 

that can be calculated very efficiently in [35]. The authors note that their experiments 

always show one or more cut-off points for the calculated EMD’s; one of these cut-off 

points always is the boundary between true and false foreign keys. The authors of [73] 

note that the value distribution can result in false negatives if the included column 

combination is a subset within a specific range of the values of the referenced column 

combination. Therefore they propose that a value distribution test should only be used if 

the number of distinct values in the included column is less than 7. 

 

The authors of [74] use a slightly different approach: they specify a number of properties 

that could indicate valid foreign keys and then use existing classification algorithms to 

separate true foreign keys from IND’s that are coincidentally correct in the data. Thus 

their approach requires a training dataset of valid and invalid foreign keys. Experimental 

evaluation shows that the approach has difficulties handling empty tables, transitive 

foreign keys, small tables and one-to-one foreign keys [74]. In addition [35] shows that 

the data based properties are all captured well by the value distribution property as 

discussed above. 
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Approach 

To extract foreign keys an integrated approach can be constructed from both existing 

methods for the extraction of IND’s and the selection of foreign keys from IND’s. From a 

mathematical point of view the IND extraction problem is slightly harder than primary 

key extraction: candidate key extraction is NP-hard when considering a single table, 

while IND extraction is NP-hard when considering a pair of tables. Since there are |T| 

tables and |T|2 combinations of tables in the schema this implies that |T| NP-complete 

problems must be solved for primary key extraction, while |T|2 NP-complete problems 

must be solved for foreign key extraction. Thus this problem can only be tackled by an 

efficient approach. 

 

The base approach chosen for IND extraction is that of SPIDER [69], [70], although the 

preprocessing of the data is done using an inverted index (as suggested by [67], [68]). 

The creation of the inverted index is done using single-pass-in-memory indexing as 

described in [75]. This reduces the number of sorts required when compared to SPIDER, 

since values only need to be sorted when memory is exhausted and the dictionary is 

written to a file. Similarly this reduces the number of required files. In two cases the 

original SPIDER algorithm is likely to perform better: 

- If a table contains such a large number of distinct values that the values of a 

single column combination do not fit into memory then the number of sorts and 

the number of files created actually increases. Note that the sorting will still need 

to be done by the database management system (DBMS), which may in practice 

suffer from the same limitations. 

- The existence of indices for some column combinations: in that case the values 

for these column combinations are already sorted in the DBMS and thus returning 

the column combination in sorted order saves one sort. 

To reduce the number of IND candidates to be tested two heuristics are used:  

- The domains of each column pair must match. So a column with the “string” 

domain is not tested to be included in any column with an “integer” domain. 

- The referenced side of a candidate IND must be a primary key. Thus no column 

combinations were tested to be included in a column combination that was not a 

primary key.  

An intented effect of the second heuristic is that a large number of 1-column IND’s are 

not tested. Since these are required for the pruning mechnism described in [67], [68] 

this mechanism cannot be used4.  

The approaches described in [71], [72] are not chosen since they were only shown to be 

beneficial if the number of columns on each side of the IND exceeds 8, while this number 

rarely exceeds 6 in practice [70], [72]. 

 

A variety of properties are calculated that allow for the selection of the actual foreign 

keys from the identified IND’s. The accuracy of each of these properties is evaluated 

empirically in subsection 0. 

1. The number of distinct values of the included column combination. 

2. The earth movers distance (EMD) between the value distribution of the referenced 

and included column combinations. The EMD is used instead of the χ2 test since it 

appears to be possible to test it more efficiently. The exact measure used is the 

thresholded EMD as decribed in [76], since it was shown to be a better metric for 

the difference between two value distributions than the general EMD. 

3. The number of possible referenced column combinations of an included column 

combination. 

4. Typical name suffixes of the included column combination. This is calculated as 

the number of columns for which the name ends with “ID”, “NR” or “NO” divided 

by the total number of columns in the combination. 

                                           
4 Due to time constraints it was not tested if the overal impact on efficiency was positive 

or negative as a result. 
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5. The longest common subsequence (LCS) [77] that is shared between the names 

of the referenced and the included column. For this the name is taken to be the 

combination of the table name and the column name (e.g. for column “reqid” in 

table “quote” the used name was “quote_reqid”). The ratio is calculated as the 

length of the LCS divided by the length of the shortest name. The score for the 

IND is the average ratio between each column pair. 

6. The Dice coefficient [78] between the names of the referenced and the included 

column. For this the name is also taken to be the combination of the table name 

and the column name. The Dice coefficient is defined as the number of shared 

character bigrams as a ratio of the total number of bigrams in both words. The 

score for the IND is the average coefficient between each column pair. 

The first 4 properties were all defined in previous research. The last 2 are defined since 

[74] suggests that more sophisticated ways to compare names should be investigated. 

The LCS ratio is expected to be a good predictor of valid foreign keys, since included 

columns often have a name of the form “[referenced table name]_[referenced column 

name]”. The Dice coefficient is included for comparison with the LCS ratio, since it is  

generally considered to be a good similarity measure for words [78]. 

3.3 Identify artifact schemas 

Overview 

 Artifact schema identification is the selection of the 

tables, foreign key relations and main table from a 

database schema for each artifact based on the fully 

specified structural information and data values of the 

database. Notable here is that it is highly likely that some 

tables are assigned to multiple artifact schema’s. An 

example would be the cd_quote_order table in the CD 

shops database, that is part of the schema of all three 

artifacts. 

 

Similar to domain extraction the simpest approach is to let a domain expert first pick all 

tables that represent the artifact instances and then let this expert assign the remaining 

tables to one or more of these “artifact instance tables”. Since there can be thousands of 

tables in a database, often with cryptic names, this is not feasible in practice. Therefore  

some way to measure the likelyhood that a table contains artifact instances needs to be 

developed. In addition to this a distance measure between tables can be used to 

represent the likelyhood that a table needs to be assigned to a table containing artifact 

instances. As with domain extraction the interpretation of these distance measures can 

be done by so-called clustering algorithms that result in groups of tables that are close 

according to the distance measure. 

Related work: Schema summarization 

Schema summarization is the (automatic) creation of a summary of a database using 

the structure of and/or data contained in the database . A schema summary consists of a 

set of abstract elements and links that is representative for the underlying database. The 

identification of artifacts and their schema’s can be seen as a specific form of schema 

summarization. Although manual schema summarization has been studied for over two 

decades [79], only recently a few papers where published on the topic of automatic 

schema summarization. All of these papers build on the more widely studied field of 

graph-based clustering techniques; for an extensive overview of these techniques the 

reader is refered to [40].  

  

The first work on automatic schema summarization using both data and structure 

information is [39]. The authors define three properties of summaries that can be used to 

measure how good a summary is: complexity (the number of elements in the summary), 
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importance (of elements contained in the summary) and coverage (how representative 

the elements in the summary are for all elements in the schema). In addition to this the 

BalancedSummary algorithm is described that balances the importance and coverage 

properties of a summary given a required summary size. The authors show 

experimentally that summaries created by the algorithm are as good as summaries 

created by human experts. 

 

Since entropy is considered to be the standard metric for information content of data 

[80] a number of papers recommends its use for schema summarization [32], [36], [48], 

[81], [82]. Entropy is a measure of uncertainty of a random variable X. It is defined by 

              l         ∈ . When applied to data values it takes on its maximum value 

when each value is unique. The authors of [48] define how this might be used for 

information bottleneck based clustering of tables, but do not show any method or result 

with their metric. Yang et al provides an approach that first calculates the importance of 

a table using entropy combined with structural (foreign key) information, then calculates 

distances using data information and finally calculates clusters with the previously 

calculated numbers [32], [36], [81].  

The distance between two tables connected via a foreign key is defined using two 

properties: 

1. The distance between two tables is inverse proportional to the fraction of records 

in the parent for which a child record exists (the matched fraction).  

2. The distance between two tables is proportional to the average number of records 

in the child for each parent record for which a child record exists (the matched 

average fanout). 

The summary is then calculated using a weighted k-center algorithm: this algorithm 

takes the importance of tables into account when determining the distance, making it 

more likely that highly important tables end up in different clusters. The authors 

experimentally evaluate their approach against the BalancedSummary approach of [39] 

(on the TPC-E database) and show it has a higher accuracy. The work is continued in 

[82] where an approach is given to construct a summary given a set of required tables 

and a summary size. The authors show that this conditional clustering problem is NP-

complete as well. A new entropy based distance function is defined, based on both intra- 

and inter-table column level relations; the distance between two tables is the total 

distance between the primary keys of the tables. The new distance function is 

experimentally shown to be better for conditional summaries than the distance described 

in [81]. 

 

An alternative, multi-clustering approach is described in [83]. The authors define three 

types of clustering approaches that could be used for summarization. The idea is that 

tables are first clustered using these types of clusterers and then a meta-clustering is 

applied to get the final results. The authors show that meta-clustering is also NP-

complete. Finally some statistical techniques are presented to automatically increase the 

weighting of base clusterers that are more likely to be correct.  

 

Both [81] and [83] also describe how a table could be chosen that is representative for 

all tables in a cluster. While in [83] the most central table is chosen using graph-based 

techniques, the weighted k-center approach described in [81] includes both centrality 

and (value based) importance of a table. 

Approach 

An approach that takes both entropy based importance and structural information into 

account while clustering tables into artifact schemas appears to be the best choice. The 

assumption here is that the most important tables likely contain the instance information 

of the artifacts. For this purpose entropy seems to be a good measure of importance, 

since it is higher when each record in a table contains more unique values. Since the 

authors of [81] describe such an approach this was used to calculate the base clusters. 

The approach described by the authors of [83] might provide better table clusters, but is 
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computationally more complex. In addition the calculation of the main table in [83] does 

not take entropy based importance into account. Due to time constraints the alternative 

distance measures provided by [82] were not evaluated.  

 

An naive approach for artifact schema identification would have been to first determine 

the most important tables and then assign all other tables to one or more of the most 

important tables. This schema identification approach ignores the fact that important 

tables that are close together are likely part of the same artifact though: the request 

table in the CD shops database might be considered at least as important as any table of 

the CD artifact schema, but it is still part of the quote artifact schema. The naive 

approach would generate a schema for the CD artifact if and only if a separate quote and 

request schema are generated, which is undesirable. Thus structural information needs 

to be taken into account as well. 

 

None of the known schema summarization approaches assign tables to multiple clusters. 

Thus either an alternative clustering approach is required or the clusters generated by an 

existing summarization approach (the base clusters) need to be expanded afterwards. 

For expansion a property needs to be available that can be used to determine if a table 

should be added to a base cluster. Artifact schema’s have an interesting property that 

can be exploited for this purpose: artifact instance information is contained in the main 

table and other tables need to be included only if they contain information about an 

artifact instance. Thus to determine if a table needs to be included in an artifact schema 

only the relation between the table and the main table of an artifact schema needs to be 

investigated. This property will be used to expand base clusters using (indirect) foreign 

key references between the table and a main table. 

 

For expansion of base clusters a level-wise algorithm was created that adds tables to 

each base cluster. It starts with an artifact schema that contains only the tables in the 

base cluster. At each level it evaluates foreign keys between tables in the artifact schema 

and dependent tables not in the schema: if these foreign keys are (indirectly) based on 

the primary key of the main table then the dependent tables are added to the schema. It 

stops if the maximum level to add is reached or if no tables were added at a given level. 

 

Figure 13 shows an example of how this works based on the CD shop’s example database 

described in subsection 1.5.3. In this example the base cluster consists of the request, 

customer and cd_request tables, with request being the main table. In the first iteration 

the foreign key between request and quote is evaluated: reqid is the referenced column 

and quote_reqid is the dependent column. Since reqid is the primary key of the main 

table the quote table is included. During the second iteration the inclusion, 

cd_quote_order, reorder, quote_order, delivery and customer_payment tables are added. 

The referenced column in all these cases is the quote_reqid column, which was shown to 

depend on the primary key of the request table during the previous iteration. During the 

third iteration the foreign key between delivery and delivery_order is evaluated. 

Delivery_order is not added, since the dependent column depends only the delid column 

which in turn does not depend on the primary key of the main table. Since no tables 

were added the algorithm stops. 
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Figure 13: Schema expansion example 

3.4 Conclusion 

It is often not intuitively clear how the database of an ERP system is structured. Using 

the techniques in this chapter the database schema describing a structured dataset can 

be recovered. This includes the (re-)discovery of domain, primary key and foreign key 

meta data.  

 

After a complete database schema is available the artifacts that are represented in the 

schema can be identified by applying a fuzzy clustering technique aimed at identifying 

artifact schemas. Thus we now have a number of artifact schemas clearly showing what 

artifacts are represented by the dataset. Since the lifecycle of each artifact is not yet 

known this is only a partial description of each artifact though. 
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Chapter 4 – Artifact lifecycle identification 

The artifact schema does not explain an artifacts lifecycle, but the data described by it 

may be used to identify this lifecycle. Figure 14 recalls the steps that are required to 

discover an artifacts lifecycle given its schema and the corresponding data. This involves 

various control-flow discovery techniques, but these techniques require that lifecycle 

information is available in the form of an event log. Therefore the lifecycle information 

must first be extracted from all of the artifacts data.  

 

Create schema-
log mapping

Generate traces

Apply general 
process discovery 

techniques

Artifact lifecycle 
discovery

Schema-log 
mapping

Event log

Lifecycle model

Artifact 
schema

 
Figure 14: Artifact lifecycle identification approach 

 

Section 4.1 shows an overview of previous approaches to extract an event log from a 

source system. Section 4.2 then explains how a mapping from the artifact schema to an 

event log can be created automatically. The next section (4.3) shows how an event log 

can be extracted from the data using the created mapping. Finally in section 4.4 an 

overview of existing approaches to control flow discovery from event logs is presented, 

followed by a suggestion on how to use these to discover the lifecyle of an artifact. 

4.1 Related work: Event log extraction 

Event log extraction is the process of extracting data from a (number of) source 

systems and converting this data into a format that is suitable for process mining. The 

extraction of event logs can be separated into three steps: The creation of the mapping 

between the source systems data and an event log, the extraction of the raw data from 

the source system and finally the conversion of the raw data to an event log. Note that 

the first two steps may occur in reverse order (i.e. an analyst may receive a copy of the 

data as a first step) and that the final two steps may in practice be combined into a 

single step. 

 

All known previous work on support for this step assumes that the mapping is created  

manually by domain experts [15–17], [21–23], [41–45], [84–87]. The majority of these 

papers describes how event logs can be extracted from a specific system but a few more 

general approaches have also been published [41], [42], [87], [88]. The most recent 

general approach is XESame, which is also the only general approach that supports the 

generation of event logs in the standard XES format (as described in section 2.3).  
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In general a number of challenges were given by previous work on event log extraction: 

1. Due to convergence and divergence it is not always clear what the instance 

identifier should be or what events should be included in the log [15], [16], [41]. 

Traces should contain only events that belong to a single process [41], but 

convergence and divergence makes it harder to decide what that single process 

is.  

2. What to include in the log depends on the goal of the process mining project [9], 

[41], [89]. This implies that there may not be a “one size fits all” approach for 

mapping the raw data to an event log.  

3. Events should be at a consistent level of detail since they are treated equally 

during process mining [41], [89]. Similarly [16] mentions that in SAP multiple 

related records are stored with the same timestamp, implying that they might 

actually be related to the same event. A mapping method should take this into 

account. 

4. The meaning of the (meta)data may not be clear when looking at it directly [15], 

[89], [90]. Examples of this are cryptic 4-letter names of SAP database tables or 

numeric values that encode a meaningfull label in the database. The general 

solution for this is to add ontological information to the log or simply replace 

cryptic values with a meaningfull label, but all of this requires domain knowledge.  

5. Access to the (raw) data may be restricted, due to technical (e.g. proprietary data 

format, limited connectivity options), political or legal constraints [89].  

6. Anonymization of for example names in the data may be required before the 

event log can be used [89].  

7. Since event logs can be large, an extraction method should be able to scale 

sufficiently [41], [89]. 

4.2 Create schema-to-log mapping 

The general problem of creating a mapping from a schema 

to an event log can be solved manually as done in previous 

work. One could simply first choose some columns to identify 

the instances, then some columns that specify event types 

and finally inspect every other column to see if it needs to be 

assigned as an attribute to an instance or event type. This 

information and the relations between all of them could then 

be entered into a tool such as XESame to complete the 

mapping creation. This is a time-consuming task which 

requires sufficient domain knowledge and an understanding 

of process mining. Therefore a level of automation is 

desirable. 

 

During creation of the mapping challenge 1 through 4 as 

described in the previous section need to be taken into 

account. Aside from these some additional challenges can be 

identified: 

8. Some events may be logged with limited time information (e.g. only date and no 

time information). In this case the order of events may not be sufficiently specific 

for process mining when only time information is used.  

9. Some tables may contain many columns and/or be related to multiple event 

types. A mapping method should make sure that the right columns are mapped to 

the right event types (or attributes). 

The artifact-centric approach already adresses the first two challenges of the previous 

section (as described in section 2.3). Challenge 3 can be addressed after the event log 

creation is completed by merging events in the log (using e.g. the approach described in 

[91]). Similarly challenge 4 can be addressed by inserting ontological information in the 

event log after its creation. Therefore the focus will be on the last two challenges. 
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4.2.1 Overal approach 

Schema-to-log mappings can largely be identified automatically by a three-step approach 

based on timestamps and foreign key relations. Due to the earlier steps described in the 

previous chapter we can assume this information to be available. The first step of the 

approach is to identify event (type) columns based on their domain: Exactly one event 

should be created for each value in one of these columns. The remainining columns are 

then assigned as attributes to either the artifact instances or one or more event types. 

Finally the event type and attribute information is used to create an event mapping. This 

mapping can then be converted to a XESame mapping to allow for manual modification5 

or it can be used directly to generate event logs as described in section 4.3.  

 

 
Figure 15: CreateTraceMapping algorithm 

 

Figure 15 shows an overview of the CreateTraceMapping algorithm that is used to create 

a mapping from a schema to an event log. The details of the algorithm are explained in 

the subsections below. The identification of events (line 1) is further explained in 

subsection 4.2.2, the assignment of columns as attributes to traces (lines 2 to 4) and 

events (lines 7 and 8) is explained in subsection 4.2.3 and the actual creation of 

mappings for event types (lines 9 and 10) and the trace (lines 12 and 13) is explained in 

subsection 4.2.4. 

 

The XES specific LogMapping (TM, EX, CL, AGT, AGE) is then constructed by combining 

various collected meta data and some default values: 

- The TraceMapping TM is created as defined above. 

- Extensions should be added as follows: 

 The default XES concept extension is required since it used for log, trace 

and event names. 

 The default XES time extension should be added if at least one event 

column has a timestamp domain.  

                                           
5 As described in Appendix C. 

CreateTraceMapping (SA) 

Input: An artifact schema SA = (TA, FA, DA, column_domain, Tm) 
Terms: Set of event types ET, event type ET, event table TET, event column Ce, set of event attribute 
tables TEvent, set of event attribute columns Ca, set of instance attribute tables Tinstance and a set of 
instance attribute columns CA,  
 

1. ET = IdentifyEventTypes (SA) 
 

2.  Tinstance = {Tm} ∪ AllParents ({Tm},  SA) 

3. Tinstance = Tinstance ∪ SelectInstanceChildTables (Tm, Tinstance, SA) 
4. CA = All non event columns ∈ Tinstance 
 
5. EM = ∅ 
6.  For each ET = (TET, Ce, Ca) ∈ ET 

7.  TEvent = {TET} ∪ SelectEventChildTables(TET, {TET} ∪ Tinstance , SA) 
8.  Ca = All non event columns ∈ TEvent \ Tinstance 

 

9.  GeneralMappingItem (CEID, TFrom, FLink, AME, LAE) = CreateMapping (Tm, TET, TEvent, Ca, SA) 
10.  EM = (event column name, CEID, Ce, TFrom, FLink, AME, LAE) 
11.  EM = EM ∪ {EM} 
 

12. GeneralMappingItem (CTID, TFrom, FLink, AMT, LAT) = CreateMapping (Tm, Tm, Tinstance, CA, SA) 
13. TM = (CTID, TFrom, FLink, EM, AMT, LAT) 
 
Output: A TraceMapping TM for the artifact 
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 If some extensions were manually assigned to attributes then these would 

need to be added as well. This can be done by checking the created 

attribute mapping keys. 

This creates the set of log extensions EX. 

- Two classifiers are always available and should therefore be added: 

 The activity classifier (name: “Activity classifier”, keys: “concept:name”), 

since all events have a unique type within the scope of a trace. 

 A unique classifier (name: “Unique classifier”, keys: “concept:name 

eventID”), since the combination of the event type and eventID is unique 

in the entire log. Note that an eventID alone may not be unique since two 

event columns in the same table are assigned the same eventID.   

This creates the set of activity classifiers CL. 

- Globals should be added based on the created trace and event mappings: 

 Each top-level attribute mapping or list attribute of a trace should be 

added as a global trace attribute. This creates the set of global trace 

attributes AGT. 

 The intersection of top-level attribute mappings and list attributes for all 

event should be added as global event attributes. This creates the set of 

global event attributes AGE. 

 

At various places throughout the sections below the concepts of direct/all parent or child 

tables is used. The direct parent tables of table T are tables that are the parent table in a 

foreign key relation where T is the child table. All parent tables of T also include indirect 

parents, where there is an intermediate table that is the child of the parent, but also the 

parent of T. Child tables are similarly defined. Formally if T is a set of tables, Ti is a 

specific table, F is a foreign key as specified in section 2.1 and FA the set of foreign keys 

in the artifact schema as specified in section 2.2 then formulas (2) to (5) define the 

direct and all parent and child tables. Figure 17 and 18 describe how the sets of all 

parent and child tables can be calculated.  

 

                                       ∈  
   ∈     

                                 ∪                               
 

                                        ∈  
   ∈     

                                   ∪                                 
 

 
Figure 16: AllParents algorithm 

 

 
Figure 17: AllChildren algorithm 

 

AllChildren (T, SA) 

Input: A set of base tables T and artifact schema SA 

 

1. TAllChildren = DirectChildren (T, SA) 

2. TAllChildren = TAllChildren ∪ AllChildren (TAllChildren, SA) 
 
Output: Set of all child tables TAllChildren 

AllParents (T, SA) 

Input: A set of base tables T and artifact schema SA 

 

1. TAllParents = DirectParents (T, SA) 

2. TAllParents = TAllParents ∪ AllParents (TAllParents, SA) 
 
Output: Set of all parent tables TAllParents 

(2) 

(3) 

(4) 
(5) 



Artifact-Centric Process Analysis    Chapter 4 – Artifact lifecycle identification 

 

E.H.J. Nooijen 35/102  Master’s Thesis 

4.2.2 Identifying event types 

All columns that are ordered by occurance and that are in tables for which each record is 

associated with exactly one artifact instance identifier are considered to represent a 

separate event type.  

 

Aside from timestamps this includes colums of which the domain is marked as ordered by 

occurance. Domains can either be marked as such manually or a correlation analysis 

could be performed, comparing columns with a timestamp domain with columns with 

other domains in the same table. This makes it possible to include events for which 

limited time information is available. 

 

If all correctly ordered columns were considered to be events (regardless of their relation 

with the artifact instance) then this would have included columns that might be identical 

for each instance (e.g. in parent tables of the main table). Although it is possible that 

these column values represent shared events this seems less likely, therefore these 

should be excluded. A simple approach for this is to exclude all columns in parent tables 

of the main artifact table Tm as specified by the AllParents function. A more elaborate 

approach is described in appendix D.II. 

 

 
Figure 18: IdentifyEventTypes algorithm 

 

The correctly ordered columns that are not explicitly excluded are called event columns. 

For each of them an event type ET is constructed with event table TET and event column 

Ce. Event table TET is the table that contains Ce. The columns that contain attribute values 

will be associated with each event type as described in the next section. Figure 18 shows 

the complete algorithm to identify and construct all event types. 

4.2.3 Assign attributes 

All columns that are not considered to be events are assigned as attributes. These 

columns are assigned to the most specific event possible or as instance attributes if it is 

not possible to assign them to a specific event. For example: If an attribute column is 

part of a table without event columns, then it will be assigned to event columns in the 

parent table (assuming they exist). If there are event columns in the same table they will 

be assigned to those columns however. The assignment is done based on the table that 

contains the column: 

- Columns in the set of artifact instance tables Tinstance are assigned as instance 

attributes. The set of artifact instance tables consists of the main artifact table, all 

of its parents and all children that do not have another parent table with event 

columns. 

- For each event type the columns in the corresponding set of event tables TEvent 

are assigned as event attributes. For event columns in the main artifact table 

there are no separate event attributes, thus then the set is empty. Otherwise the 

set consists of (1) the event table TET, (2) all child tables for which there is a 

IdentifyEventTypes (SA) 

Input: A set of base tables T and artifact schema SA = (TA, FA, DA, column_domain, Tm) 
 

1. TPossibleEventTables = TA \ AllParents ({Tm}, SA) 
2. ET   ∅ 
3. For each table T ∈ TPossibleEventTables 
4.  For each column C ∈ T 
5.   If column_domain (C) is ordered by occurance Then 
6.    Construct event type ET = (T, C, Ca = ∅) with event table T, event column C 

and a later to be identified set of attribute columns Ca 
7.    ET = ET ∪ {ET} 
 
Output: Set of all event types ET 
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foreign key path from the event table to the child table that does not contain 

another event table and (3) all parent tables of the child tables that are not part 

of the set of instance tables Tinstance and do not have another event table as one 

of their parents. Note that the 2nd subset may contain tables that are also 

assigned to other event types. 

 

 
Figure 19: SelectParentsWithoutEvents algorithm 

 

A key point are tables that are not child tables of the main artifact table or an event 

table. Since it is assumed that these tables also contain relevant information the columns 

in these tables should also be added as attributes to either events or the artifact 

instance. Figure 19 shows the SelectParentsWithoutEvents algorithm that can be used to 

find these types of tables given e.g. the main artifact table as input. Line 7 verifies that 

no parent tables that contain event columns were encountered in line 6. The algorithm is 

used when selecting tables that contain attributes for instances and event types as 

shown below.  

 

 
Figure 20: SelectInstanceChildTables algorithm 

 

Figure 20 shows the SelectInstanceChildTables algorithm and how it can be used to 

determine the set of artifact instance tables Tinstance. It starts by selecting all parent 

tables of the main artifact table Tm. It then selects all child tables of the main artifact 

table Tm until a table is encountered that contains event columns or have a parent table 

that contains event columns (unless that parent table is part of the artifact instance 

tables). This includes the selection of the parent tables of these child tables, since they 

cannot be assigned to any event type.  

 

SelectInstanceChildTables (T0, TIgnore, SA) 

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA 

 
1.  Tvalid   ∅ 

2.  F r each T ∈ DirectChildren (T0, SA) 
3.   If ¬(Event columns in T) Then 

4.    TParents = SelectParentsWithoutEvents (T, TIgnore, SA) 
5.    If ¬(Parents with event columns found for T) Then 
6.     Tvalid   = Tvalid ∪ {T} ∪ TParents 

7.     Tvalid   = Tvalid ∪ SelectInstanceChildTables (T, TIgnore, SA) 
 
Output: Set of instance child tables Tvalid 

SelectParentsWithoutEvents (T0, TIgnore, SA) 

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA 

 
1. Tvalid   ∅ 

2. F r each T ∈ DirectParents (T0, SA)  
3.  If  T ∈ TIgnore) Then 
4.   Next T 
 
5.  If ¬(Event columns in T) Then 

6.   TParents = SelectParentsWithoutEvents (T, TIgnore, SA) 

7.   If ¬(Parents with events found for T) Then 
8.    Tvalid   = Tvalid ∪ {T} ∪ TParents 

 

Output: Set of valid parent tables Tvalid 
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Figure 21: SelectEventChildTables algorithm 

 

Figure 21 shows the SelectEventChildTables algorithm and how it can be used determine 

the set of attribute tables TEvent for each event type. It is similar to the algorithm for 

instance attributes, except that it selects all child tables until a table that contains event 

columns is encountered. Thus child tables that have other event types as parents are still 

selected. In addition to this the parent tables of the selected child tables are selected, 

unless the selected child table has a parent table that contains events. Note that parent 

tables can contain events if they are part of the instance attribute tables, since that 

implies that these parent tables are not assigned to another event type. Parent tables 

that are already part of the instance attribute tables are never selected. 

 

The running time of both the SelectInstanceChildTables and SelectEventChildTables 

algorithm are polynomial with respect to the number of tables and columns in each table. 

If |C|max is used to denote the maximum number of columns in a table then the worst 

case running time is O (|TA|⋅(|C|max+|TA|⋅|C|max)), since for each table it needs to be 

verified if the columns are event columns and in the worst case scenario the same needs 

to be done for all other tables. This scenario assumes that all other tables are parent 

tables of the table. The worst running time of the algorithm can be improved to 

O(|TA|⋅(|C|max+|TA|)) however by keeping track of the validity of tables as described in 

appendix D.I. 

4.2.4 Creating the mapping 

Given that the event types are known and the attribute columns are selected all 

information is available to create a schema-to-log mapping as described in section 2.3. 

This mapping consists of a LogMapping (including its associated globals, extensions and 

classifiers), a TraceMapping and a number of EventMappings. The creation of the 

TraceMapping and the EventMappings is similar; for the attribute instance a 

TraceMapping is created while for each event type an EventMapping is created. The 

LogMapping can then be created using information gathered during the creation of these 

other mappings and techniques taken from XESame [41]. 

 

SelectEventChildTables (T0, TIgnore, SA) 

Input: Base table T0, a set of tables to ignore TIgnore and artifact schema SA 

 
1. Tvalid   ∅ 

2. F r each T ∈ DirectChildren(T0, SA) 
3.  If ¬(Event columns in T) Then 

4.   TParents = SelectParentsWithoutEvents (T, TIgnore, SA) 
5.   If ¬(Parents with event columns found for T) Then 
6.    Tvalid   = Tvalid ∪ TParents 
7.   Tvalid   = Tvalid ∪ {T}  
8.   Tvalid   = Tvalid ∪ SelectEventChildTables (T, TIgnore, SA) 
 
Output: Set of event child tables Tvalid 
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Figure 22: CreateMapping algorithm 

 

Figure 22 shows the CreateMapping algorithm that can be used to create a 

GeneralMappingItem (CID, TFrom, FLink, AM, LA) that serves as the basis for a 

TraceMapping, EventMapping or ListAttribute. The basic idea is that each created 

mapping consists of a set of tables for which only one record exists for each record in the 

chosen base table T0, thus ensuring that multiple values do not occur. The algorithm 

starts by splitting the given attribute tables TAttr into a set for which this condition holds 

Tone2one and a set of attribute tables for which this condition does not hold Tone2many. This 

is done by the SplitOneAndMany algorithm described in Figure 23. One mapping is then 

created for the base table and all tables in Tone2one. This mapping contains a number of 

submappings (or ListAttributes) LA as required for the tables in Tone2many. Note that to 

create an EventMapping the event column Ce and event name6 needs to be added to the 

resulting GeneralMappingItem (as shown on line 10 of Figure 15), while to create a 

TraceMapping the set of event mappings EM needs to be added (as shown on line 13 of  

Figure 15). 

 

The algorithm is initalized with the main artifact table Tm, a base table T0 with primary 

key Cp0, a set of attribute tables TAttr, a set of attribute columns CAttr and the artifact 

schema information   SA. The set of attribute columns CAttr consists of all columns in the 

attribute tables, except for the event columns and duplicates that may have been pruned 

based on foreign keys. For a TraceMapping the base table is the main artifact table Tm 

and the attribute tables are the artifact instance tables Tinstance. For an EventMapping the 

base table is the event table TET and the attribute tables are the event attribute tables 

TEvent. The Path between two tables consists of the sequence of foreign keys connecting 

those tables; it can be calculated using e.g. Dijkstra’s algorithm [92]. 

 

                                           
6 The event type names can be trivially generated using a combination of the event table 

and event column names. Heuristics can be used to remove time or duplicate terms. 

CreateMapping (Tm, T0, TAttr, CAttr, SA) 
Input: Main artifact table Tm, base table T0 (with primary key Cp0), a set of 

attribute tables TAttr, a set of attribute columns CAttr and artifact schema SA 

 
1. CID = Cp0 
2. TFrom = Tm 
3. FLink = Path(Tm, T0) 
4. AM    ∅ 
5. LA = ∅ 

5. Tone2one, Tone2many = SplitOneAndMany (T0,  SA)  
6. For each T ∈ (Tone2one ∩ TAttr) ∪ {T0} 
7.  FLink = FLink ∪ Path (T0, T) 
8.  For each C  ∈ C ∩ CAttr 
9.   AM = Create attribute mapping for C 
10.   AM = AM ∪ {AM} 
 
11. TAttr = TAttr \ Tone2one 
12. For each T ∈ Tone2many 

13.  If T ∈ TAttr  ∨  TAttr ∩ AllChildren (T, SA  ≠∅) Then 

14.   LA = CreateMapping (Tm, T, TAttr, CAttr, SA) 
15.   LA = LA ∪ LA 
 
Output: GeneralMappingItem (CID, TFrom, FLink, AM, LA) 
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Figure 23: SplitOneAndMany algorithm 

 

The SplitOneAndMany algorithm classifies all tables connected to the given base table T0 

as having one record per record in the base table (the Tone2one set) or as having multiple 

records per record in the base table (the Tone2many set). As shown in Figure 23 this is 

done by recursively verififying foreign keys in the child direction (where T0 is the parent 

table) and the parent direction (where T0 is the child table). In the parent direction there 

will always be only one record for each record in the base table. In the child direction it 

has to be checked if more records exist in the child table for each record in the base 

table. This can be done by calculating the matched average fanout between the two 

tables as defined in the related work subsection of section 3.3. 

 

Although not shown in the CreateMapping algorithm some care needs to be taken when 

automatically constructing attribute mappings since each attribute needs to have a 

unique key in XES7. Without loss of generality it is assumed that a default key is assigned 

to each domain and that this key should be used if possible. This may result in multiple 

attribute mappings with the same key. To resolve this one top-level attribute mapping 

should be constructed with the default domain key with some default value (e.g. 

“multiple”). Each attribute mapping with that key should then be placed below the top-

level attribute with a new unique key (generated using e.g. the table and column 

names). 

4.2.5 Mapping the CD shop quote artifact 

To further explain the algorithm this subsection will show how the mapping is created for 

the quote artifact of the CD shop example introduced in subsection 0. The resulting log 

mapping is available in Appendix E in XML format. For simplicity we will use F=(parent 

table, child table) to denote a foreign key between two tables in this subsection. 

 

To identify event types first the parent tables of the main quote table have to be 

identified: These are the request and customer table according to the definition given by 

(3). Note that this does not include the cd_request table8. The remaining possible event 

                                           
7 The same point of attention (and solution) also holds for list attributes. For list 

attributes the default key value can be the name of the base table. 
8 This table could also be excluded as an event table by removing all children of parent 

tables that are not children of the main table. The basic idea is the same however. 

SplitOneAndMany (T0, SA) 

Input: Base table T0 and artifact schema SA 
1. Tone2one   ∅ 
2. Tone2many    ∅ 

3. For each F = (Tp, Cp, Tc, Cc) ∈ ChildForeignKeys (T0, SA) 
4.  If F is one-to-one Then  

5.   Tone2oneChild, Tone2manyChild = SplitOneAndMany (Tc, SA) 
6.   Tone2one = Tone2one ∪ {Tc} ∪ Tone2oneChild 

7.   Tone2many =  Tone2many ∪ Tone2manyChild 
8.  Else 
9.   Tone2many = Tone2many ∪ {Tc} 

 

10. For each F = (Tp, Cp, Tc, Cc) ∈ ParentForeignKeys (T0, SA)  
11.  If Tp was not evaluated before Then 

12.   Tone2oneParent, Tone2manyParent = SplitOneAndMany (Tp,  SA)  
13.   Tone2one = Tone2one ∪ {Tp} ∪ Tone2oneParent 

14.   Tone2many =  Tone2many ∪ Tone2manyParent 
 
Output: A set of tables with one record per record in the base table Tone2one and 
a set of tables with multiple records per record in the base table Tone2many 
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tables TPossibleEventTables are then quote, cd_request, cd_quote_order, inclusion, reorder, 

quote_order, customer_payment and delivery. For this example only columns with a 

timestamp datatype are considered to be event types; therefore an event type is 

constructed for the date_invoice_issue, date_payment_sent, date_payment_received (all 

from customer_payment), customer_accept_shipment_date (from delivery) , 

adding_date (from quote_order), opening_date, acceptance_quote_date, 

rejection_quote_date, customer_no_deliverable_notification_date (all from quote) and 

reorder_date (from reorder) columns. 

 

The set of tables that includes attributes for artifact instances Tinstance is then determined 

in two steps. First the quote main table and its parents request and customer are added. 

Then the children of these tables are inspected for event columns; since cd_request, 

cd_quote_order and inclusion do not contain event columns these are added as well. 

Thus in total there are 6 tables in Tinstance. All non-event columns in Tinstance are assigned 

as attribute columns to the artifact instance. 

 

Except for the event columns in the quote table all event columns are in a table without 

child tables. The children of the quote table either contain event columns or they were 

already assigned to the artifact instance, thus no attributes are assigned to event types 

from this table (e.g. opening_date). For the other event types all non-event columns in 

the event table are assigned; for all 3 event types from the customer_payment table the 

price column is added for example. 

 

Since all event types only have attribute columns from the event table (in which the 

event column is defined) the creation of an EventMapping is similar for all of them. For 

the date_invoice_issue event column from the customer_payment event table this means 

that CEID = {quote_reqid} (the primary key of customer_payment) , TFrom = 

customer_payment, FLink = {(quote, customer_payment)}, AME = {(“price”, integer, 

price)} and LAE = ∅. Here (quote, customer_payment) is added as a link between the 

main artifact table and the event table. 

 

The creation of the trace mapping is slightly more complex, since there are child attribute 

tables that have multiple values for each instance. Looking at the schema we note that 

Tone2one = {request, customer, customer_payment} and Tone2many = {cd_quote_order, 

reorder, cd_request, inclusion, quote_order, delivery}. Since customer_payment is not in 

the set of artifact instance tables, this means that only request and customer need to be 

added to the basic trace mapping. Thus CTID = {reqid} (the primary key of quote) , TFrom 

= quote, FLink = {(request, quote), (customer, request)}, AMT = all non-event columns 

from quote, customer and request. 
There are 3 artifact instance tables with multiple values (in Tinstance ∩ Tone2many): 

cd_request, cd_quote_order and inclusion. For these 3 a list attribute needs to be 

created to store the list of multiple values. Since neither of the 3 has further child tables 

this is done similar to the event mappings above. For the inclusion table this results in 

CID = {quote_reqid, cd_name} (the primary key of inclusion) , TFrom = inclusion, FLink = 

{(quote, inclusion)}, AM = {(“quantity”, integer, quantity)}. 

4.3 Generating traces 

Since we now have a mapping an event 

log can be generated from the dataset. 

This involves the extraction of the data 

from the source system and the 

conversion to the XES format according 

to the defined mapping. A generic 

solution for this process is XESame, but due to some limitations this cannot be used to 

extract the log according to the defined mapping. Therefore the approach used in 

XESame is adapted to handle the mapping defined in section 2.3.  
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4.3.1 Evaluation of previous approaches 

The behaviour of artifacts is described as much by their inner lifecycle as by the 

interaction with other artifacts [93]. To be able to analyze this using process mining 

techniques this interaction must be available in event logs. This can be done by adding 

eventId’s and instanceId’s of other artifacts as attributes to instances and events. Due to 

divergence these attributes often have multiple values, e.g. multiple quote id’s should be 

listed for the creation event of a single order. Unfortunately XESame does not support 

the creation of traces or events with multi-valued attributes [41] and conversations with 

the author showed that significant architectural changes would be required to add this 

functionality. Therefore XESame could not be used directly for log extraction. Since no 

other generic extraction tools exist to create an event log in the XES format an 

alternative approach was required. 

4.3.2 Approach 

The three-step approach described in [41] was used as a basis for the approach. These 

three steps were (1) construction of queries to extract data, (2) executing the queries to 

populate a cache database and (3) create a XES event log from the cache database [41]. 

In addition to this large parts of the extraction process of XESame were reused. The 

most important changes were in step 1 and 2. In step 1 query generation was modified 

to support the modified mapping definition, including the addition of query generation for 

any level of depth of ListAttributes. In step 2 processing of queries was also modified to 

support any level of depth of ListAttributes. This included making modifications to the 

cache database as shown below. In step 3 some minor modifications were made to adapt 

for the modified cache database. 

 

In the original XESame approach queries were only generated and executed at the trace 

and event level. First traces are exported to the cache database and then events are 

extracted and added to these traces. The matching of traces with events is done using 

the user-specified trace_id, which can be a combination of columns. To extract lists of 

attribute values the query construction and execution for ListAttributes needs to be done 

in a similar way as that for events. An event_id and attribute_id were thus added to the 

cache to allow for unique identification of events and attributes respectively. The values 

for these were constructed by combining the name or key with the identifying columns, 

resulting in values that are unique in the log. Suppose for example that the “quote order 

adding” event is identified by the quote__req_id and order_order_id columns then the 

generated event_id would be “quote_order_adding_[quote_req_id]_[order_order_id]”. 

 

Figure 24 shows the modified cache database. The following changes were made: 

- A log_id column was added to all tables to make log specific identifiers (such as 

event_id) unique. This makes it possible extract multiple logs to the cache 

database before starting the extraction process, thus making it easier to handle 

multiple artifact logs at the same time. 

- A text-based event_id column was added to be able to identify parent events 

when extracting ListAttributes. The original event_id column was renamed to id. 

- A text-based attribute_id column was added to be able to identify parent 

attributes when extracting ListAttributes. 

- A generated integer id column was added to the XTrace and XEvent tables to 

make it easier to reference these tables from XAttribute table (considering that 

e.g. the event_id column by itself was not sufficient to uniquely identify events 

anymore). 

- Extensions, globals and classifiers were added to the cache database. By design 

these log properties were calculated using the provided XESame mapping when 

an event log was extracted. Since this made it harder to reuse the part of XESame 

starting from the cache database this was changed to allow for a clearer 

separation of step 2 (source database to cache) and step 3 (cache to XES file). 
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Figure 24: Cache database 

4.4 Event log based artifact lifecycle discovery 

The goal of artifact lifecycle discovery is to discover both the 

internal lifecycle of an artifact and its interaction with other 

artifacts, thereby fully describing how an artifact operates. 

There is no previous work on (semi-)automated interaction 

discovery and it is beyond the scope of this project to develop 

such a method. Therefore this section is limited to a brief 

overview of existing approaches to discover the control flow 

of a process and how to apply these to discover the inner 

lifecycle of an artifact. 

4.4.1 Related work: Control flow discovery 

Control flow discovery is the construction of a control flow model using an event log as 

input. Since the pioneering work in the context of software engineering described in [94] 

over 45 algorithms have been created for this purpose [95]. The majority of these focus 

on accurately describing the behaviour captured in the log, but this may result in 

unreadable spaghetti models if the execution of the business process is not explicitly 

controlled [89]. Due to this recently some algorithms have been proposed that balance 

between readability and accurately reflecting the behaviour in the log [91], [96]. These 

fuzzy algorithms simplify the discovered control flow model by merging fine-grained 

activities together to form coarse-grained activities. 

 

The genetic mining algorithm was created to accurately describe any kind of behaviour 

found in an event log [97], [98]. It was shown to tackle most control flow discovery 

challenges in [95]. Its main disadvantage is its computation time, but a recent 
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distributed version of the algorithm makes it possible to finish in 10% to 25% of the 

original time by using more CPU resources [99]. 

 

A number of preprocessing steps have been proposed to handle complex event logs. 

Trace clustering [100] splits an event log into homogenous groups of traces, thus 

resulting in groups of traces that can each be represented by a relatively simple model. 

Trace alignment [101] preprocesses the traces, such that exceptional behaviour is 

highlighted.  

 

All of the algorithms described in this section are implemented in ProM. ProM is an 

actively maintained plugable open-source framework to execute process mining analysis 

[88]. It as available at www.promtools.org/prom6/. ProM is also used extensively in the 

process diagnostics method described in [102]. This method describes 5 steps one should 

follow when analyzing a process with process mining techniques: (1) log preparation, (2) 

log inspection, (3) control flow analysis, (4) performance analysis and (5) role analysis. 

4.4.2 Approach 

Assuming it is unknown if the lifecycle of the artifact is explicitly controlled a structured 

trial and error approach is recommended. First one should inspect the log and remove 

incomplete traces as described in [102]. Then the detailed lifecycle of the process should 

be discovered using the genetic algorithm. If the artifact turns out to have a nicely 

structured internal lifecycle then this step is finished. Since this may not be the case the 

fuzzy miner could be used to get a more readable version of the internal lifecycle of the 

artifact. In this case the trace clustering and alignment approaches could also be used to 

simplify the event log, thereby increasing the chances of getting a readable version of 

the artifacts internal lifecycle using the genetic or fuzzy miner. 

 

Figure 25 and Figure 26 show the results of applying the genetic miner9 to the event logs 

generated for the quote and order artifacts. They were created with the default settings 

of the plug-in, without any preprocessing of the event logs. Note that the discovered 

lifecycles are quite close to the lifecycles shown in Figure 8, implying that the method as 

a whole worked quite well. 
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Figure 26: Discovered Order lifecycle 

                                           
9 “Mine Heuristic Net using Genetic Miner” plug-in created by A.K. Alves de Medeiros 

http://www.promtools.org/prom6/
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4.5 Conclusion 

The artifact schema and the data described by it can be used to (re-)discover the 

lifecycle of an artifact. As described in this chapter first a mapping from the schema to an 

event log needs to be identified. The creation of this mapping can be done automatically 

by first identifying the available event types, then assigning columns as attributes to 

each event type and the artifact instance and finally combining this information to create 

a schema-to-log mapping. 

 

The schema-to-log mapping can then be used to extract an event log from the dataset, 

followed by the discovery of the inner lifecycle of the artifact using existing control flow 

discovery techniques. When the discovered lifecycle is combined with the artifact schema 

identified in Chapter 3 the  description of the artifact is complete. 
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Chapter 5 – Empirical evaluation 

The approach described in the previous chapters was evaluated using a prototype 

implementation. The techniques were evaluated using an artificial dataset based on the 

CD shop example and two large real-life datasets provided by a large food wholesale and 

retail company. Section 5.1 describes the datasets in more detail. The remaining sections 

describe the experiments for each of the techniques, following the order in which they 

were presented before. 

 

All experiments were executed on a laptop with an Intel core i3 2,13 Ghz processor with 

PostgreSQL 9.0 as the underlying database. The prototype was implemented in Java 

since a large number of relevant libraries and frameworks (e.g. OpenXES10) were already 

available in Java. An overview of the prototype is available in Appendix F. 

5.1 Dataset descriptions 

Three different datasets were used for the experiments. The main statistics of these 

datasets are shown in Table 3. Below the table a description of the datasets is given. 

Note that for both real-life datasets a number of tables were not in use; whenever these 

statistics are used in the remainder of this chapter only the tables that are in use are 

taken into account. 

 

Name Number 

of tables 

Average 

column 

count 

Max. 

column 

count 

Average 

row 

count 

Maximum 

row count 

Size 

CD shop 16 3.31 6 257 681 8.7 MB 

Article maintenance 365 13.54 195 523 726 85 969 702 40.5 GB 

Article maint. (in use) 317 14.16 195 603 029 85 969 702 40.5 GB 

ERP system (complete) 3 390 18.09 2 415  293 368 116 489 821 217 GB 

ERP system (in use) 1 451 14.98 420 685 401 116 489 821 217 GB 

Table 3: Dataset statistics 

 

The CD shop dataset is an artificial dataset originally created to validate the research 

described in [103]. It was generated by modeling the CD shop as an artifact-centric 

system in CPN tools11 and running the model as a simulation. The database schema is 

identical to the schema described in subsection 1.5.3. 

 

The article maintenance dataset is a real-life dataset taken from the product 

management system of a large food wholesale and retail company. The product 

management system was developed in-house and uses the DB2 relational database 

system to store its data. Aside from basic product information such as names and 

product prices it also contains associated data such as the selection of products available 

for specific stores. The dataset consists of a copy of the complete database, including a 

number of tables that were not in use. 

 

The ERP system dataset is a real-life dataset provided by the same food wholesale and 

retail company. It is a copy of the main database that supports the ERP system that was 

developed in-house over the last 30 years. Due to the architecture of the system a large 

number of tables are present in the database that are not in use. In addition to this no 

primary key is defined for about half of the tables and no foreign keys are enforced in the 

database. 

                                           
10 A reference implementation of the XES standard.  
11 http://cpntools.org/ 
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5.2 Artifact schema identification 

5.2.1 Schema extraction 

Domain extraction 

Experimental evaluation of the domain extraction technique showed that the two-step 

approach was a good choice. The experiments were executed on both the CD shop and 

article maintenance dataset. Table 4 shows the run times of the experiments. Lines in 

the table denoted with (XES) are results for the heuristic first step, while the (DBscan…) 

results are for the second step. For the article maintenance dataset the results for the 

second step are shown for each of the XES datatypes seperately. 

 

Description Tables Columns Run time 

CD shop (XES) 16 53 < 1 s 

CD shop (DBscan with min-hash on all columns) 16 53 3.3 s 

Article maintenance (XES) 317 4 488 26.5 s 

Article maintenance (DBscan w. min-hash on Integers) 297 1201 25 m 41 s 

Article maintenance (DBscan w. min-hash on Booleans) 241 713 8 m 38 s 

Article maintenance (DBscan w. min-hash on Dates) 311 719 > 15 h 

Table 4: Domain extraction experiment statistics 

 

The experimental results show that clustering with DBscan indeed scales more than 

linear with the number of columns, while heuristics that can drastically reduce this 

number can be executed in a relatively short amount of time. Even with the use of these 

heuristics the set of columns with timestamp (Date) values still proved to be too big to 

cluster in a reasonable amount of time however. 

 

The precision of the approach could be improved significantly however. The first step 

correctly classifies most data according to the XES datatype (some exceptions are 

explained below), but it proved to be impossible to select a set of parameters for the 

second step that resulted in a set of meaningfull clusters. In the approach it was 

assumed that the second step could be executed with a single set of parameters for the 

clustering algorithm. For the CD shop experiments were executed with both the min-hash 

and PCA methods. These experiments showed that a single set of parameters was not 

feasible, since parameters that resulted in a relatively meaningfull set of clusters for 

string values were incorrect for for example integer values (and vice versa). Therefore a 

likely improvement would be to use a different clustering approach for each of the data 

types in the second step. 

 

An attempt was made to also apply the approach on the ERP system dataset, but this 

had to be abandoned. The most significant problem was that all timestamp and floating 

point values were stored as integer values. Thus heuristics to separate the different data 

types only resulted in a set of string and integer columns. Since these sets were too big 

to handle with traditional clustering approaches no further progress could be made. 

Primary key extraction 

To evaluate the primary key extraction approach a number of experiments were 

executed on tables for which a primary key was defined. The experiments were run with 

a sample of 1 000 records for the Gordian algorithm and a sample of 5 000 records for 

the HCA algorithm. For the CD shop and article maintenance datasets two runs were 

executed: a run in which only the most likely primary key was requested and a run in 

which the most likely two primary keys were requested. For the ERP system dataset only 

a run in which the most likely primary key was requested was execiuted. The results are 

shown in Table 5. Here precision is defined as the number of correct results divided by 

the number of results (found), while recall is defined as the number of correct results 

divided by the existing (defined) number of primary keys. 
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Description Run time PK’s 

defined 

PK’s 

found 

PK’s 

correct 

Precision Recall 

CD shop (1st key) 25s 16 16 13 0.81 0.81 

CD shop (2 keys) 26s 16 25 15 0.60 0.94 

Article maintenance (1st key) 4h 34m 317 309 240 0.78 0.76 

Article maintenance (2 keys) 9h 52m 317 555 255 0.46 0.80 

ERP system (1st key) 42h 52m 716 645 403 0.62 0.56 

Table 5: Primary key experiment statistics 

 

The exponentional nature of the problem is apparent when comparing the runtimes of 

the single key article maintenance and ERP system experiments. Although the ERP 

system dataset is less than 3 times the size of the article maintenance dataset with 

respect to this experiment the runtime of the ERP system dataset is over 9 times as high. 

The most likely explanation is that this is caused by the higher number of columns in the 

tables of the ERP systems dataset. 

 

During the experiments is also became clear that the total runtime depends highly on a 

limited number of tables. For both the article maintenance and ERP system dataset over 

half of the run time was used for approximately 10 tables. Initially these tables used a 

significantly larger portion of the run time, but this was resolved by cancelling steps in 

the algorithm after a predetermined amount of time. Both the Gordian and HCA part 

were cancelled after 30 minutes, while the verification step was cancelled after 1 hour. 

Note that the algorithm could still continue if the Gordian part was cancelled, but not if 

the HCA or verification step were cancelled. 

 

Although both precision and recall score quite well when only the most likely primary key 

is retrieved improvements are possible. Analysis of the incorrect results showed that this 

was usually a column containing timestamp values. Since timestamp values have a high 

chance of being unique these columns could be used as a single column key, whereas a 

composite primary key was defined in these cases. Therefore improvements could be 

made by taking the datatype of the column into account or by placing less importance on 

the number of columns in the key. 

 

Finally it is noteworthy to mention that the algorithm was also used to detect candidate 

keys in the 735 tables of the ERP system dataset for which no key was defined. This 

allowed the detection of keys with up to 117 columns. For this purpose a number of 

records where allowed to violate the primary key in the verification step. For 495 tables a 

candidate key was detected if 10 records were allowed to violate the key, which was 20 

more than when no violations were allowed. Unfortunately the HCA-Gordian algorithm 

did not allow for the discovery of so-called soft candidate keys (i.e. keys for which some 

fraction of the data is invalid), thus it is unknown if likely candidate keys were removed 

prior to the verification step. 

Foreign key extraction 

The experimental evaluation of foreign key extraction showed that this was indeed not 

trivial. Experiments were run with 1 and 2 column combinations for both the CD shop 

and article maintenance datasets. An attempt to run a 1 column experiment with the ERP 

system dataset failed due to a lack of memory of the Java virtual machine. The run times 

of the experiments are shown in Table 6. The IND candidates column shows the number 

of IND candidates after pruning took place. Aside from the experiments shown in the 

table an attempt was also made to extract 2 column foreign keys from the article 

maintenance dataset using the original SPIDER algorithm, but since progress was still 

very low after some days this was abandoned. 
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Description Total run 

time 

Indexing 

time 

IND 

candidates 

IND’s 

CD shop (1 column) 6 s 3 s 162 39 

CD shop (2 columns) 2 s 1 s 52 3 

Article maintenance (1 column) 4h 55m 2h 52m 139 225 16 335 

Article maintenance (2 columns) 6d 8h 28m 22h 32m 189 340 N/A12 

Table 6: Foreign key experiment statistics 

 

The large increase in running time between the 1 column and 2 column article 

maintenance experiments can be explained by the increase in value combinations that 

need to be verified; this also increases exponentially with the number of columns. Thus 

although previous research shows that it should be possible to use the SPIDER algorithm 

with data sets of this size the scalability appears to be bounded. 

 

A comparison between the Dice coefficient and the longest common subsequence (LCS) 

of the name showed that the LCS performed favorably. The main use of both turned out 

to be as a discriminator when a column combination is included in multiple parent column 

combinations. For the CD shop dataset the IND with the highest LCS name score was 

always the foreign key (if one existed), while the Dice coefficient falsely classified 2 

foreign keys as incorrect. Both correctly classified 12 IND’s as incorrect foreign keys, 

thereby eliminating a large number of false positives. For the article maintenance dataset 

the same strategy could be followed: The LCS falsely classified 10 foreign keys as 

incorrect, while the Dice coefficient falsely classified 25 foreign keys as incorrect. In this 

case the LCS correctly classified 15 017 IND’s as incorrect foreign keys, while the Dice 

coefficient correctly classified 15 137 IND’s as incorrect foreign keys. 

 

The typical name suffix did not turn out to be a good classifier of correct or incorrect 

foreign keys. For both the CD shop and the article maintenance experiments the column 

combinations that were included via an IND’s usually all had some sort of typical name 

suffix thus this property could not be used as a discriminator. 

 

The Earth Movers Distance (EMD) between the value distribution of the parent and child 

colums quite accurately predicted if an IND was indeed a foreign key. For the calculation 

of the EMD a threshold of 2 was used as recommended in [76]: The result was that all 

calculated values were between 0 and 2. For the CD shop example this allowed for a very 

accurate classification of foreign keys when combined with the LCS. By removing all 

IND’s with an EMD of more than 1 the only IND’s that remained were the foreign keys 

and 3 unclear cases, with no false negatives. Two of the unclear cases could have been 

modeled as foreign keys, while the other case was a one-on-one link between two tables 

(for which the foreign key was definied in the reverse direction). For the article 

maintenance dataset 946 IND’s were correctly classified as incorrect foreign keys, 

although 42 true foreign keys were also falsely classified as incorrect. The combination 

thereby resulted in 320 remaining IND’s of whom 71 were incorrect, 153 were actual 

foreign keys and 96 were unclear. The last group consisted of IND’s for which there was 

no concensus in the business wether or not a foreign key should be enforced. 

Schema extraction evaluation 

Though a variety of previous approaches is available for schema extraction the 

experimental results show that fully automated schema reconstruction is not yet 

possible.  

 

The most significant problem was scalability. Since most related work was tested on 

datasets that were at least a factor 10 smaller this could not be predicted beforehand. A 

notable exception here was HCA-Gordian which was tested on datasets that were only a 

factor 4 smaller – Note that this was the only algorithm that could properly handle the 

                                           
12 Due to an unfortunately timed error this statistic is not available 
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ERP system dataset. It must be noted however that performance for most techniques 

relied largely on the underlying database, which was PostgreSQL. PostgreSQL was 

chosen because it was freely available and well documented, but since I have no prior 

experience with PostgreSQL the performance issues could also (partly) be caused by an 

ineffective configuration of the system. A few preliminary tests on the CD shop dataset 

with HSQLDB as an alternative showed that performance was much better in this case, 

but since HSQLDB does not support database sizes over 16 GB this could not be verified 

for the larger datasets. 

 

In addition to this overall precision is an issue as well. This is caused by each steps 

dependence on the result of the previous step. Thus if a step fails to complete than any 

further steps cannot be executed either. More importantly this also implies that errors 

multiply: if for example 20% of the primary keys are incorrect than all extracted foreign 

keys based on these primary keys are also incorrect. 

5.2.2 Identify artifact schemas 

Experiments with the artifact schema identification approach show that the runtime 

appears to depend on the size (and possibly distribution) of the data only.  

 

The column entropies and table importance columns in Table 7 each show part of the 

step to calculate the importance of a table. The column entropies column shows the 

required time to calculate the entropy for each column, while the table importance step 

shows the required time to calculate the final importance of a table using schema 

information and the calculated entropies. 

 

The table distance, base clusters and cluster expansion columns each show part of the 

step to calculate the actual artifact schemas. The table distance column shows the 

required time to calculate the distance between two tables for which a foreign key 

relation is defined, while the other two columns show the required times for the actual 

clustering and expansion steps. Note that only these last two steps depend on the 

number of clusters calculated. 

 

Description Column 

entropies 

Table 

importance 

Table 

distance 

Base 

clusters 

Cluster 

expansion 

CD shop (4 clusters) 1.7 s 0.8 s 1.8 s   < 0.1 s < 0.1 s 

Article maintenance (1 cl.) 16h 42 m 51.6 s 4 h 56 m13 < 0.1 s < 0.1 s 

Article maintenance (20 cl.) identical identical identical < 0.1 s < 0.1 s 

Article maintenance (50 cl.) identical identical identical < 0.1 s < 0.1 s 

Article maintenance (100 cl.) identical identical identical < 0.2 s < 0.1 s 

Table 7: Artifact schema identification experiment results 

 

The run times in Table 7 show clearly that the majority of the time is required for the 

steps in which data is processed. Aside from the amount of data these steps only depend 

linearly on the number of columns or foreign keys in the schema. Therefore the runtime 

appears to depend on the size of the data only. 

 

For the CD shop dataset the identified artifact schemas correspond exactly with the 3 

artifact schemas given in subsection 0 when 4 clusters are identified; the 4th cluster is 

the aux table that is used for the simulation only. When 3 clusters are identified all tables 

of the CD artifact are added to the quote artifact, which seems to make little sense. 

When more than 4 clusters are generated the cdquote_order table becomes a separate 

cluster, which does not make sense either. Because of this and since the actual clustering 

was quite fast a trial and error approach was feasible to find the correct number of 

clusters. 

                                           
13 This excludes the distance calculation between the largest table and its parent. This 

calculation was aborted since the run time was over 31 hours. 
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For the article maintenance dataset no sensible set of artifact schemas could be 

identified. This was caused by a significant number of missing (composite) foreign keys, 

meaning that the structure of the database could not be correctly taken into account by 

the algorithm. 

5.3 Artifact lifecycle identification 

5.3.1 Create schema to log mapping 

This section describes the experimental results with respect to the efficiency of the 

schema to log mapping techniques; the correctness of the generated mappings is 

evaluated in section 0 below. Table 8 shows the properties of the event log mappings 

that were created. Here the CD, Order and Quote log files were generated from the 

corresponding artifact schema in the CD shop dataset, while the Superunie mutaties, Vib 

gevaarlijke stof and Artikel event log mappings were generated from the article 

maintenance dataset. 

 

Description Tables Columns Event 

types 

List 

attributes 

Attribute 

columns 

Run time 

CD 3 10 0 0 5 < 0.5 s 

Order 6 23 9 2 8 < 0.5 s 

Quote 10 35 11 3 13 < 0.5 s 

Superunie mutaties 1 195 23 0 171 < 0.1 s 

Vib gevaarlijke stof 266 3729 2019 0 3343 2.8 s 

Artikel 47 869 127 0 841 1.4 s 

Table 8: Mapped event logs properties 

 

For all experiments the execution time was neglible as compared to the execution times 

of other steps. The total execution time of all steps to contain a schema-to-log mapping 

was less than 3 seconds for even the large Vib gevaarlijke stof artifact. This was as 

expected, since the running times of the algorithms is at worst polynomial and only meta 

data is required to construct the mapping. Note that the runtime of the mapping 

algorithm mostly depends on the number of tables in the artifact schema, although the 

exact relation is not clear from the experimental results. 

5.3.2 Generating traces 

The event log mappings created during the previous step were used to generate event 

logs. Although this was succesfull for the three CD shop artifacts, the generation of the 

full event log for the Superunie mutaties artifact and the Artikel artifact did not complete 

in a reasonable time. As shown in Table 9 the majority of the time was required to 

generate the event log from the cache database, similar to what was noted for XESame 

[41].   

 

Description Traces Events Attributes Traces 

to cache 

Events 

to cache 

Cache to 

event log 

CD 640 0 ±7 700 16.5 s - 23.5 s 

Order 119 1 433 ±16 300 9.4 s 16.3 s 48.4 s 

Quote 219 2 295 ± 26 900 18.6 s 15.4 s 61.9 s 

Superunie mutaties 324 731 ±2.5 M ±75 M 28 h 7 m 6 h 15 m > 50 h 

Artikel 175 209 ± 55 M N/A 20 m >50 h  N/A 

Artikel (1000 traces) 1 000 246 406 1 464 258 8.7 s 1 h 08 m 32 h 10 m 

Table 9: Event log generation experiment result 
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5.3.3 Verifying generated event logs 

To measure the precision of the mapping function two experiments were executed with 

the CD shop dataset using ProM. This involved the verification of the lifecycle of the 

quote and order artifacts as captured in their event logs against the existing models 

available. The event logs were validated using the behavioural conformance plugin14. The 

original lifecycle models that were used were the models available in the “ACSI CD shop 

(2 artifacts)” plug-in15. The exact details of the mapping between the original model and 

the event logs can be found in Appendix G. 

 

For both the order and quote the fitness was high (0.99 and 0.95 respectively) for the 

traces that could be replayed reliably, but the number of traces that could be replayed 

reliably was quite low (31 out of 119 and 53 out of 219 respectively). For the order 

artifact this was caused by the reorder event, that often occurred first in an order event 

log, while this was not modeled as such. For the quote artifact this was caused by the 

order in which the request and quote opening events occurred. The original model 

assumed this to be the quote opening event, but since these events always had identical 

timestamps this was often the request event. 

 

To get an idea of the precision of the mapping function on real-life data the lifecycle of 

the Artikel artifact was generated using an event log with 1 000 traces. The resulting 

model shown in Figure 27 is highly complex, but this was as expected by domain 

experts. More detailed analysis showed that several series of activities (such as price 

updates) shown in the model corresponded well with reality, confirming the accuracy of 

the approach.  

 
Figure 27: Generated artikel lifecycle 

 

                                           
14 “Replay a log on Petri net for conformance analysis” plug-in created by A. Adriansyah. 
15 Created by B.F. van Dongen. The models were converted to petri nets using the 

“Construct models for behavioural conformance” plug-in by the same author. 
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Chapter 6 – Conclusions and future work 

6.1 Conclusions 

Business process analysis (BPA) in the context of organizations where ERP systems are 

used can benefit from techniques that make the information in such systems available for 

BPA. By viewing these organizations as a collection of artifacts many traditional BPA 

challenges can be solved, but an efficient approach to create an artifact-centric 

description of an ERP system was missing.  

 

To solve this an approach is presented that decomposes the task of creating an artifact-

centric description of an ERP system into pieces for which support can be provided. For 

each of these pieces techniques are provided that can aid in finding the relevant 

information, including a new technique that is to my knowledge the first to aid in the 

creation of a mapping between a database and an event log. The approach was 

evaluated empirically showing that the method can be used, but that there are also 

bounds to several techniques that were presented. Finally it should be noted that manual 

intervention will likely always remain required, since small errors introduced in early 

steps tend to be magnified in later steps. 

 

The main contribution of this work is to provide a framework that gives insight into 

techniques that can be used at any step in the analysis of a business process. This allows 

a practioner to more easily select techniques that are usefull at any point in time, while 

for the research community the context of a variety of techniques becomes clearer. 

6.2 Future work 

6.2.1 Further evaluation of the techniques in each step 

Although the aproach in each step was based on careful literature research it was not 

possible to evaluate each promising technique. In addition to this the experimental 

evaluation showed that the results of the techniques on domain extraction and artifact 

schema identification were not as usefull as desired. Therefore a further evaluation of the 

techniques used at each step would be usefull. A starting point could be the information 

bottleneck method that was shown to be effective in related work on domain extraction 

and artifact schema identification. 

 

Futher evaluation of techniques could also pay attention to the efficiency of techniques 

on larger datasets. Especially in the area of domain extraction many techniques failed on 

the real life datasets for which they should have been most usefull (i.e. the ERP systems 

database). Aside from algorithmic aspects of the techniques a further evaluation could 

also focus on more technical aspects such as the database management system used; 

results on this could be used to present a set of properties that are required to properly 

compare published research results. 

6.2.2 Global optimizations 

Overall efficiency could possibly be improved significantly by re-using metrics calculated 

in previous steps. It was for example noted that there related work describes both 

domain extraction and foreign key extraction techniques that use value distribution 

metrics [35], [47], [73] and that the information bottleneck approach was recommended 

for both domain extraction and artifact schema identification (i.e. schema 

summarization) [36], [37], [48], [81], [82]. It could be evaluated what the effect on 

overall precision en efficiency would be to calculate these metrics once and re-use them 

in later steps. 
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6.2.3 Schema extraction when data contains errors 

Although a variety of techniques exists for schema extraction an assumption for most of 

them appears to be that all data is valid. In practice this is not the case though so 

techniques would need to be developed to handle this. An interesting question here is 

how many errors are actually acceptable, but a starting point for this could be statistical 

methods to calculate a confidence interval given an observed number of invalid records 

and a sample size as described in [56], [104], [105]. 

6.2.4 Human interaction 

This report focussed on automated techniques to efficiëntly create an artifact-centric 

description of an organization using an ERP system. Due to the large number of 

techniques required overal precision may be low even if the precision of each separate 

technique is quite high (e.g. if the precision of each of the 4 artifact schema identification 

techniques is 0.8 then the overall precision will in general still be only 0.84=0.41). One 

way to improve this is to introduce a number of evaluation steps where a domain expert 

evaluates the intermediate results. For this purpose evaluation techniques could be 

developed and evaluated on the trade-off between the required evaluation time and the 

change in (overall) precision.  

6.2.5 Analyzing interactions between artifacts 

The full behaviour of artifacts is described by the combination of their inner lifecycle and 

their interaction with other artifacts, but no process discovery approach exists that 

generates the interaction behaviour from event logs. A few starting points were identified 

that could be used to discover such behaviour: 

- An event can be uniquely identified by its event column and eventID between 

different event logs. Thus one can identify if the exact same event occurred in 

multiple event logs, indicating that their must have been interaction at that point. 

This holds true even if additional conditions are added to an event mapping 

manually: These conditions may prevent an event from being generated, but it 

will still be identified by the same eventID if it is generated. 

- The columns identifying another artifact instance are often included as instance or 

event attributes. Since the mappings defined in this report specify which columns 

are included it should be relatively straightforward to point out when this occurs. 

This information could then be included more explicitly in the event log using 

some yet-to-be-defined notation. 

6.2.6 Dropping assumptions on the data 

The method could be extended to be used with unstructured data by prepending an 

information extraction step. Information extraction is defined here as “extracting 

structure (e.g. tables) from unstructured data (e.g. text)” [32]. It takes as input an 

unstructured or semistructured dataset and produces a set of structured (i.e. tabular) 

data. A variety of information extraction techniques has been developed over the last two 

decades; a starting point for this would be [33], [34].  
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Appendix A: Why process mining of ERP systems? 

Both BPM and ERP systems seem to be most usefull in stable environments, since both 

rely on standardization to achieve a variety of benefits. BPM focusses on the 

standardization of processes, while ERP systems focus on the standardization of data and 

activities. In addition to this ERP systems store a lot of data elektronically. Since process 

mining uses elektronic data to execute the analysis of BPM it seems to be a natural fit for 

organizations that have an ERP system in place. This results in the following hypothesis:  

 

Organizations that have an ERP system in place can benefit from process mining. 

 

In the following sections previous research results will be shown that support the 

hypothesis stated above. The focus will be on organizational contingency theory and 

succes factors for ERP and process mining. 

A.I Business Process Management 

Business Process Management (BPM) has received a large amount of attention since 

the introduction of business process re-engineering [106]. A large variety of definitions 

exist for BPM, focussing on concepts such as process-centric, customer-centric, 

systematic and/or continuous approaches and activities such as analysis, improvement 

and management [2], [5], [106–108]. A general definition would be all business process-

centric approaches to systematically analyze and continuously improve activities within 

an organization. 

 

Aside from the term Business Process Management, several other terms exist to describe 

management practices aimed at improving business processes. Examples are Continuous 

Process Improvement (CPI, [109]), Business Process Improvement (BPI, [110]), Total 

Quality Management (TQM), Lean and Six Sigma [111]. Although there are differences 

between these approaches all of them are implied by BPM as defined here. 

A.II Organizational context 

A.II.I Contingency theory 

Organizational contingency theory states that organizational characteristics (such as 

structure) follow contingencies (internal and environmental factors such as organization 

size and the rate of technological change) [112]. The key idea is that organizational 

effectiveness depends on the fit of the organization with these contingencies, that 

organizations want to be as effective as possible and thus organizations tend to adapt 

themselves to fit [5], [113], [114].  For both ERP systems and BPM research has been 

done based on contingency theory; i.e. what circumstances lead to successfull application 

of these in organizations.  

A.II.II Types of organizations 

In [115] and later [114] Mintzberg presents seven pure configurations of organizations 

with several distinctive characteristics. As per the contingency principle each of the 

configurations is most effective depending on a given set of contingencies [114], [116]. 

Table 10 shows a brief overview of these configurations. 

 

Pure type Characteristics  Pure type Characteristics 
Entre-
preneurial 

- Simple, informal, flexible 
- Young or in crisis/turnaround 

 Missionary - Clear, focused, inspiring, 
distinctive mission 

- Small, loosely organized units 

Machine - Centralized, highly formalized 
and efficiënt 

- Larger, more mature 
organization 

 Innovative - Organic, selectively 
decentralized 

- Innovative but inefficiënt 
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Pure type Characteristics  Pure type Characteristics 
Diversified - Loosely coupled divisions under 

centralized administrative 
headquarters 

- Divisions tend to be machine 
form 

 Professional - Decentralized but bureaucratic 

- Highly skilled operating 
professionals who value 
autonomy 

Political - Conventional notions of coördination 
absent, replaced by informal power 
(politics) 
 

- Serves to bring change blocked by 
legitimate systems of influence  

- Unstable, unless supported by 
environment 

Table 10: Organizational types 

 

These configurations can be used to describe organizations as aspects of the different 

pure types [114]. In this way an organization is described by how parts of and/or forces 

within the organization resembles the different pure types. 

A.II.III Suitability of BPM and ERP for organizational types  

The basis of BPM is that processes are designed instead of evolving naturally, which 

makes BPM best applicable in a formal top-down organization (the machine type). This is 

confirmed by the survey results in [106] which show that architecture and measurement 

are mentioned most often in an interview about BPM (besides conceptual components 

such as “process”). In addition a variety of papers mention the importance of control and 

measurement for BPM [5], [107], [108], [117–119], which also indicates a formal, 

machine-like structure as the best fit for BPM. 
 

Like BPM, ERP systems are best applicable for formal top-down organizations (the 

machine type) as well [116]. Thus the same type of organizations can benefit from both 

BPM and ERP systems. 

A.III Success factors 

For process mining to be succesful event data of sufficient quality is required. The 

Process Mining Manifesto states that the minimum requirement is that events are 

automatically recorded and that there should be some sort of guarantee that recorded 

events match reality [9]. As stated in the manifesto this is the case for ERP systems. An 

additional quality measure for event logs is completeness: no events should be missing 

for the process that is being analyzed [9]. ERP systems were not build with event logs in 

mind, so there is no guarantee that this is the case for these systems, but ERP systems 

do increase the likelyhood of completeness. Two factors contribute to this: 

- ERP systems are meant to aid in cross-departemental activities. The idea is that 

business processes can be handled in a single system (so there is only one 

version of the truth). 

- ERP systems are data driven by nature, thus information that is used during  the 

process will usually be stored in the ERP system. 

 

As shown in [120] ERP success is higher when business process improvements efforts 

are performed. Process mining can be used as a tool for business process improvement, 

therefore making it usefull when ERP systems are in place. 

A.IV Process mining of ERP systems creates synergy 

As shown in the previous subsections ERP systems and process mining can be used in the 

same type of organizations. In addition to this both increase eachothers chances of 

success: the result of using process mining together with ERP systems will be better than 

using both independent of eachother. Thus organizations that have an ERP system in 

place will indeed benefit from process mining. 
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Appendix B: Notations used 

Symbol Description 

S = (T, F, D, 
column_domain) 

Schema 

T = {T1,...,Tn} Set of all tables 

F = {F1,...,Fn} Set of all foreign keys 

D = {D1,…,Dn} Set of all domains 

C = {C1,...Cn} Set of all columns 

column_domain : C  D Function that assigns a domain D to each column C 

T = (C, Cp) Table with columns C and primary key Cp 

C = {C1,...,Cn} Set of columns 

Cp = {Cp1,...,Cpn} Primary key consisting of n columns 

F = (Tp,Cp,Tc,Cc) Foreign key from parent table Tp with primary key Cp to 

child table Tc with referencing columns Cc 

|T| Number of distinct values in table T 

#T Number of values in table T 

|C| Number of distinct values in column C 

|Set| Number of (distinct) values in the set 

  

path(T1,T2) = (F1,...,Fn) The shortest path of references from T1 to T2 

(C1,...,Cn) ⊆ (C’1,...,C’n) Inclusion dependency: (C1,...,Cn) is pairwise included in 

(C’1,...,C’n) 

C  C’ Functional dependency: C functionally determines C’ 

  

SA= (TA, FA, DA, 
column_domain, Tm) 

Artifact schema with main table Tm 

A = (SA, ET, CA) Artifact with schema SA, event types ET and instance 

attribute columns CA 

ET = {ET1,...,ETn} Set of n event types 

ET = (TET, Ce, Ca) Event type with event table TET, event column Ce and 

attribute columns Ca. The event column describes the 

ordering of the events, most likely containing timestamp 

values 

CA = {CA1, ... CAn} Set of n instance attribute columns 

Ca = {Ca1, ... Can} Set of n event type attribute columns 

  

LM = (name, TM, EX, CL, 

AGT, AGE) 

Log mapping with artifact name name, a trace mapping 

TM, extensions EX, classifiers CL, global trace attributes 

AGT and global event attributes AGE 

GM = (CID, TFrom, FLink, 

AM, LA) 

General mapping item that serves as the basis for a trace 

mapping, event mapping or list attribute. It consists of ID 

columns CID, main table TFrom, other table links FLink, 

attribute mappings AM and list attributes LA. Note that 

the ID columns correspond to the traceID, eventID and 

attributeID columns of traces, events and attributes 

respectively. 

TM = (CTID, TFrom, FLink, 

EM, AMT, LAT) 

Trace mapping with traceID columns CTID, main table 

TFrom, other table links FLink, event mappings EM, 

attribute mappings AMT and list attributes LAT 

EM = {EM1,...,EMn} Set of event mappings 

EM = (name, CEID, Ce, 

TFrom, FLink, AME, 

LAE) 

Event mapping for event name with eventID columns CEID 

and event column Ce, main table TFrom, other table links 

FLink, attribute mappings AME and list attributes LAE. The 

event column describes the ordering of the events, most 

likely containing timestamp values 
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LA = {LA1,...,LAn} Set of n list attributes 

LA = (key, CAID, TFrom, 

FLink, AML, LAL) 

List attribute (an attribute with multiple values) mapping 

with given key, attributeID columns CAID, main table 

TFrom, other table links FLink, attribute mappings AML and 

list attributes LAL 

AM = {AM1,...,AMn} Set of n attribute mappings 

AM = (key, type, Ca) Attribute mapping with given key, type and attribute 

column Ca 

AG = {ATG1,...,ATGn} Set of n global attributes 

AT = (key, type, value) Attribute with given key, type and value 

EX = {EX1,...,EXn} Set of n extensions 

EX = (name, prefix, URI) Extension with given name, prefix and URI 

CL = {CL1,...,CLn} Set of n classifiers 

CL = (name, keys) Classifier with given name and keys 

Table 11: Notations used 
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Appendix C: Translating to XESame 

The method decribed in this report provides a way to semi-automatically generate a 

mapping and event log from a source database to the XES log format, but no way to 

modify this mapping afterwards. XESame on the other hand provides an easy way to 

create a custom mapping, but no support to automatically generate (part of) the 

mapping. The section below describes how the mapping generated by the ACSI method 

can be translated to a XESame mapping, thus allowing the flexibility of XESame to be 

combined with the automated support of the ACSI method. 

 

The mapping model of XESame is show in Figure 28 below. The majority of the mapping 

created by the ACSI method can be translated to this model, but there are some 

exceptions: 

- ListAttributes cannot be translated to the XESame mapping model however, since 

variable length attribute lists cannot be handled by XESame.  

- Trace and event global attributes are generated automatically in XESame based 

on the available attributes in the mapping. Because of this these elements are not 

present in the class diagram of XESame and cannot be translated to from the 

ACSI mapping model. 

- The XESame connection element is not present in the ACSI mapping model, so 

this would need to be added manually. 

 

 
Figure 28: Class diagram of XESame domain model (from [41]) 

 

Table 12 below shows how elements in the ACSI mapping model can be translated to 

elements in the XESame model. Values between square brackets ([]) show the exact 

values that should be used in the XESame model. Between these brackets italic text 

refers to the value of the named element, while regular text refers to literal values that 

should be used. Finally, “Identical” means that the two attributes are one-on-one 

mapping. Therefore no translation is necessay in this case. 
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ACSI model XESame model Additional comments 

Class Attribute Class Attribute 

- - Mapping description No corresponding element 

available in ACSI model 

Log-

Mapping 

artifactName Mapping name Mapping name becomes 

[artifactName + ‘ log’] 

Extension name Extension name Identical 

 prefix  prefix Identical 

 URI  URI Identical 

Classifier name Classifier name Identical 

 keys  keys Identical 

Trace- from Trace from [Table name] 

Mapping traceID  traceID All columns joined together, i.e. if 

the ACSI traceID is {A, B} then 

the XESame traceID will be [A + 

‘_’ + B]16  

  Attribute key Always [traceID] 

  (trace) value The combined XESame traceID 

   type The XES type of the traceID 

column or [String] if the number 

of columns is greater than 1. 

  Attribute key Always [concept:name] 

  (trace) value The artifact name followed by the 

traceID: [artifactName + ‘ ’ + 

traceID] 

   type Always [String] 

  Event traceID The combined XESame traceID 

 link Link specification Join statement created from 

foreign key, e.g. [child table name  

ON parent table name.parent 

table primary key column = child 

table name.child table column] 

Event- from Event from [Table name] 

Mapping name Event displayName Identical 

  Attribute key Always [concept:name] 

  (event) value The ACSI event name [name] 

   type Always [String] 

 eventID Attribute key Always [eventID] 

  (event) value All columns joined together, i.e. if 

the ACSI eventID is {A, B} then 

the attribute value will be [A + ‘_’ 

+ B] 16  

   type The XES type of the eventID 

column or [String] if the number 

of columns is greater than 1 

 eventColumn Event eventOrder Identical 

  Event where [eventColumn IS NOT NULL] 

  Attribute 

(event) 

key [time:timestamp] if the 

eventColumn has a XES Date 

type, [time] otherwise 

   value [eventColumn] 

   type The XES type of the eventColumn 

                                           
16 If “+” is the SQL concatenation operator 
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ACSI model XESame model Additional comments 

Class Attribute Class Attribute 

Event- 

Mapping 

link Link specification Join statement created from 

foreign key, e.g. [child table name 

ON parent table name.parent 

table primary key column = child 

table name.child table column] 

Attribute- key Attribute key Identical 

Mapping type Attribute type Identical 

 sourceColumn Attribute value Identical 

Table 12: ACSI to XESame translation 
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Appendix D: More advanced algorithms 

D.I Efficiently selecting instance and event tables 

The algorithms below show how the selection of instance and event tables can be done 

more efficiently by keeping track of the validity of tables that are encountered. Here 

TIgnore consists of set of tables that should not be added (again) and should be treated as 

though they and their parents do not contain event columns. TEvents consists of the set of 

tables that should not be added because they or one of their parents contain event 

columns. Both TIgnore and TEvents can be implemented as bit vectors of length |TA|, with a 

value of 1 at the index of a specific table implying membership of the set. Membership of 

the set can then be calculated in O(1).  

 

In this case each table is checked for event columns once. The next time the table is 

encountered only the constant time lookup will be executed. When the table is checked it 

has to evaluate all of its columns C, all of its parent tables TP ⊆ TA and all of its child 

tables TC ⊆ TA. It is assumed that a parent table cannot also be a child table. Denote by 

|C|max the maximum number of columns in a table. Then to check a table an O(|C|+|TA|) 

operation is thus required. Therefore the total running time of both 

SelectInstanceChildTables and SelectEventChildTables reduces to O(|TA|⋅(|C|max+|TA|)). 

 

 
 

0.  SelectInstanceChildTables(T0, TIgnore, TEvents, SA) 
1. Tvalid   ∅ 

2. F r each T ∈ DirectChildren(T0, SA) 
3.  If  T ∈ TIgnore  ∨  T ∈ TEvents) Then 
4.   Next T 
 
5.  If (Event columns in T) Then 
6.    TEvents = TEvents ∪ {T} 
7.  Else 

8.   TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA) 
9.   If Parents with events found for T Then 
10.    TEvents = TEvents ∪ {T} 
12.   Else 
13.    TIgnore = TIgnore ∪ {T} ∪ TParents 
14.    Tvalid   = Tvalid ∪ {T} ∪ TParents 

15.    Tvalid   = Tvalid ∪ SelectInstanceChildTables(T, TIgnore, TEvents, SA) 
16. Return Tvalid 

 

17. TInstance = SelectInstanceChildTables(Tm, {Tm}  ∅, SA) 

18. TInstance = TInstance ∪ AllParents (TInstance, SA) 
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D.II Alternative main table selection 

The most basic selection of event columns assumes that events should also be generated 

for parent tables of the main table. This may not be desirable, since this could introduce 

duplicate events because a single value may be used for multiple instances. Subsection 

Assign attributes of section 4.2.1 describes a basic approach to handle this, but this 

results in the incorrect exclusion of event columns in parent tables for which the values 

are not shared between artifact instances. 

 

The algorithm below solves this by splitting Tinstance into a set of tables for which each 

record is associated with exactly one instance identifier TinstanceEvents and a set of tables 

that contain records that are linked to multiple instance identifiers TinstanceAttributes. The 

idea is that events should only be generated based for records in TinstanceEvents; the 

records in TinstanceAttributes should only be used to generate instance level attributes. The 

Fraction(T, T0) function should return the matched average fraction between the two 

tables as defined in the related work subsection of section 3.3, while the 

MatchedAvgFanout(T, T0) should return the matched average fanout as defined in the 

same subsection. 

 

0.  SelectEventChildTables(T0, TIgnore, TEvents, SA) 
1. Tvalid   ∅ 

2. F r each T ∈ DirectChildren(T0, SA) 
3.  If  T ∈ TIgnore  ∨  T ∈ TEvents) Then 
4.   Next T 
 
5.  If (Event columns in T) Then 
6.    TEvents = TEvents ∪ {T} 
7.  Else 

8.   TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA) 

9.   If Parents with events found for T Then 
10.    TEvents = TEvents ∪ {T}     
11.   Else 
12.    TIgnore = TIgnore ∪ {T} ∪ TParents 
13.    Tvalid   = Tvalid ∪ TParents 

14.   Tvalid   = Tvalid ∪ {T} 

15.   Tvalid   = Tvalid ∪ SelectEventChildTables(T, TIgnore, TEvents, SA) 
16. Return Tvalid 

 

17. TEvent = {TET} ∪ SelectEventChildTables(TET, Tmain  ∅, SA) 
 

0.  SelectParentsWithoutEvents(T0, TIgnore, TEvents, SA) 
1. Tvalid   ∅ 

2. F r each T ∈ DirectParents(T0, SA) 
3.  If  T ∈ TIgnore  ∨  T ∈ TEvents) Then 
4.   Next T 
 
5.  If (Event columns in T) Then 
6.    TEvents = TEvents ∪ {T} 
7.  Else 

8.   TParents = SelectParentsWithoutEvents (T, TIgnore, TEvents, SA) 

9.   If Parents with events found for T Then 
10.    TEvents = TEvents ∪ {T} 
12.   Else 
13.    TIgnore = TIgnore ∪ {T} ∪ TParents 
14.    Tvalid   = Tvalid ∪ {T} ∪ TParents 
15. Return Tvalid 
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As a result of the algorithm above TinstanceEvents will contain all tables that could be 

merged into a single table with the same primary key as the given main table without 

introducing redundant values. The only exception are child tables that contain event 

columns for reasons explained below. Technically, if we take Cpm to be the primary key of 

the given main artifact table, CX as the set of all columns in TX and Cpx as the primary 

key of table TX then:  

 

    ∈         
    

                            

 

The last part of the equation excludes (parent) tables that would introduce duplicate 

values when merged with the main artifact table.  

 

If the ¬(Event columns in T) statement on line 10 is removed all columns that are 

functionally determined by the primary key of the main table will be mapped to attributes 

of the trace, including columns in child tables that contain events. This may be 

undesirable since it can be argued that these columns should be mapped as attributes to 

the event columns in the child table. 

 

If the Fraction(T, T0) = 1  statement on line 3 is removed then Tinstance will also contain 

parent tables that have a unique matching record for each record in the main table, but 

also contain records for which no matching record exists in the main table. For these 

additional table condition (6) does not hold, unless the non-matching records are 

removed. Since the extraction process only includes the matching records it may be 

desirable to keep these tables. 

0.  SelectMainInstanceParents(T0, SA) 
1. Tvalid   ∅ 

2. F r each T ∈ DirectParents(T0, SA) 
3.  If Fraction(T, T0) = 1    MatchedAvgFanout(T, T0) = 1  Then 
4.    Tvalid   = Tvalid ∪ {T} 

5.    Tvalid   = Tvalid ∪ SelectMainInstanceParents (T, SA) 
6. Return Tvalid 

 

7.  SelectMainInstanceChildren(T0, SA) 
8. Tvalid   ∅ 
9. For each T0 ∈ T0 

10.  F r each T ∈ DirectChildren(T0, SA) 
11.   If ¬(Event columns in T)   MatchedAvgFanout(T, T0) = 1  Then 
12.    Tvalid   = Tvalid ∪ {T} 

13.    Tvalid   = Tvalid ∪ SelectMainInstanceChildren ({T}, SA) 
14. Return Tvalid 

 

15. TinstanceEvents = SelectMainInstanceParents(Tm, SA)  

16. TinstanceEvents = TinstanceEvents  ∪ SelectMainInstanceChildren(TinstanceEvents, SA) 

17. TinstanceAttributes = SelectInstanceChildTables(Tm, TinstanceEvents  ∅, SA)  

18. TinstanceAttributes = TinstanceAttributes ∪ AllParents (TinstanceAttributes, SA) 
19. Tinstance = TinstanceEvents ∪ TinstanceAttributes 
 

(6) 
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Appendix E: Quote schema-to-log mapping 

<LogMapping logName="Quote log"> 
  <classifiers> 
    <XesClassifier name="Unique classifiers" keys="concept:name event_id"/> 
    <XesClassifier name="Activity classifiers" keys="concept:name"/> 
  </classifiers> 
  <extensions> 
    <XesExtension name="Time" prefix="time" URI="http://www.xes-

standard.org/time.xesext"/> 
    <XesExtension name="Concept" prefix="concept" URI="http://www.xes-

standard.org/concept.xesext"/> 
  </extensions> 
  <traceGlobalAttributes> 
    <Attribute key=String datatype=String value=""/> 
    <Attribute key=cdquote_order datatype=String value="MULTIPLE"/> 
    <Attribute key=trace_id datatype=String value=""/> 
    <Attribute key=Date datatype=Date value="01-01-1970"/> 
    <Attribute key=cd_request datatype=String value="MULTIPLE"/> 
    <Attribute key=inclusion datatype=String value="MULTIPLE"/> 
    <Attribute key=Integer datatype=Integer value="0"/> 
    <Attribute key=concept:name datatype=String value=""/> 
  </traceGlobalAttributes> 
  <eventGlobalAttributes> 
    <Attribute key=time:timestamp datatype=Date value="01-01-1970"/> 
    <Attribute key=event_id datatype=String value=""/> 
    <Attribute key=Integer datatype=Integer value="0"/> 
    <Attribute key=concept:name datatype=String value=""/> 
  </eventGlobalAttributes> 
  <traceMapping> 
    <fromTable name="quote"/> 
    <links> 
      <Reference parentTable="request" childTable="quote"> 
        <columns> 
          <ColumnPair parent="reqid" child="reqid"/> 
        </columns> 
      </Reference> 
      <Reference parentTable="customer" childTable="request"> 
        <columns> 
          <ColumnPair parent="name" child="customer_name"/> 
        </columns> 
      </Reference> 
    </links> 
    <generalAttributes> 
      <AttributeMapping key=Date datatype=Date sourceColumn="request_date"/> 
      <Attribute key=Integer datatype=Integer value="0"> 
        <AttributeMapping key=Price datatype=Integer sourceColumn="price"/> 
        <AttributeMapping key=Reqid datatype=Integer sourceColumn="reqid"/> 
      </Attribute> 
      <AttributeMapping key=String datatype=String sourceColumn="name"/> 
    </generalAttributes> 
    <listAttributes> 
      <ListAttribute key="cd_request"> 
        <fromTable reference="../../../fromTable"/> 
        <links> 
          <Reference reference="../../../../links/Reference"/> 
          <Reference parentTable="request" childTable="cd_request"> 
            <columns> 
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              <ColumnPair parent="reqid" child="request_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="quantity"/> 
          <AttributeMapping key=String datatype=String sourceColumn="cd_name"/> 
        </generalAttributes> 
        <listAttributes/> 
        <attributeId> 
          <Column name="cd_name"/> 
          <Column name="request_reqid"/> 
        </attributeId> 
      </ListAttribute> 
      <ListAttribute key="cdquote_order"> 
        <fromTable reference="../../../fromTable"/> 
        <links> 
          <Reference parentTable="quote" childTable="cdquote_order"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
            <AttributeMapping key=Deliverable_quantity datatype=Integer 

sourceColumn="deliverable_quantity"/> 
            <AttributeMapping key=Order_orderid datatype=Integer 

sourceColumn="order_orderid"/> 
            <AttributeMapping key=Quantity datatype=Integer 

sourceColumn="quantity"/> 
          </Attribute> 
          <AttributeMapping key=String datatype=String sourceColumn="cd_name"/> 
        </generalAttributes> 
        <listAttributes/> 
        <attributeId> 
          <Column name="cd_name"/> 
          <Column name="quote_reqid"/> 
          <Column name="order_orderid"/> 
        </attributeId> 
      </ListAttribute> 
      <ListAttribute key="inclusion"> 
        <fromTable reference="../../../fromTable"/> 
        <links> 
          <Reference parentTable="quote" childTable="inclusion"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="quantity"/> 
          <AttributeMapping key=String datatype=String sourceColumn="cd_name"/> 
        </generalAttributes> 
        <listAttributes/> 
        <attributeId> 
          <Column name="cd_name"/> 
          <Column name="quote_reqid"/> 
        </attributeId> 
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      </ListAttribute> 
    </listAttributes> 
    <traceId> 
      <Column name="reqid"/> 
    </traceId> 
    <eventMappings> 
      <EventMapping name="Reorder"> 
        <fromTable name="reorder"/> 
        <links> 
          <Reference parentTable="quote" childTable="reorder"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
            <AttributeMapping key=Quote_reqid datatype=Integer 

sourceColumn="quote_reqid"/> 
            <AttributeMapping key=Order_orderid datatype=Integer 

sourceColumn="order_orderid"/> 
          </Attribute> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="quote_reqid"/> 
          <Column name="order_orderid"/> 
        </eventId> 
        <eventColumn name="reorder_date"/> 
      </EventMapping> 
      <EventMapping name="Delivery customer accept shipment"> 
        <fromTable name="delivery"/> 
        <links> 
          <Reference parentTable="quote" childTable="delivery"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <AttributeMapping key=String datatype=String sourceColumn="delid"/> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="delid"/> 
        </eventId> 
        <eventColumn name="customer_accept_shipment_date"/> 
      </EventMapping> 
      <EventMapping name="Customer payment invoice issue"> 
        <fromTable name="customer_payment"/> 
        <links> 
          <Reference parentTable="quote" childTable="customer_payment"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
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            <AttributeMapping key=Price datatype=Integer sourceColumn="price"/> 
            <AttributeMapping key=Quote_reqid datatype=Integer 

sourceColumn="quote_reqid"/> 
          </Attribute> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="quote_reqid"/> 
        </eventId> 
        <eventColumn name="date_invoice_issue"/> 
      </EventMapping> 
      <EventMapping name="Customer payment sent"> 
        <fromTable reference="../../EventMapping[3]/fromTable"/> 
        <links> 
          <Reference reference="../../../EventMapping[3]/links/Reference"/> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
            <AttributeMapping key=Price datatype=Integer sourceColumn="price"/> 
            <AttributeMapping key=Quote_reqid datatype=Integer 

sourceColumn="quote_reqid"/> 
          </Attribute> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="quote_reqid"/> 
        </eventId> 
        <eventColumn name="date_payment_sent"/> 
      </EventMapping> 
      <EventMapping name="Customer payment received"> 
        <fromTable reference="../../EventMapping[3]/fromTable"/> 
        <links> 
          <Reference reference="../../../EventMapping[3]/links/Reference"/> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
            <AttributeMapping key=Price datatype=Integer sourceColumn="price"/> 
            <AttributeMapping key=Quote_reqid datatype=Integer 

sourceColumn="quote_reqid"/> 
          </Attribute> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="quote_reqid"/> 
        </eventId> 
        <eventColumn name="date_payment_received"/> 
      </EventMapping> 
      <EventMapping name="Opening"> 
        <fromTable name="quote"/> 
        <links/> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="reqid"/> 
        </eventId> 
        <eventColumn name="opening_date"/> 
      </EventMapping> 
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      <EventMapping name="Customer no deliverable notification"> 
        <fromTable reference="../../EventMapping[6]/fromTable"/> 
        <links/> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="reqid"/> 
        </eventId> 
        <eventColumn name="customer_no_deliverable_notification_date"/> 
      </EventMapping> 
      <EventMapping name="Rejection"> 
        <fromTable reference="../../EventMapping[6]/fromTable"/> 
        <links/> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="reqid"/> 
        </eventId> 
        <eventColumn name="rejection_quote_date"/> 
      </EventMapping> 
      <EventMapping name="Acceptance"> 
        <fromTable reference="../../EventMapping[6]/fromTable"/> 
        <links/> 
        <generalAttributes> 
          <AttributeMapping key=Integer datatype=Integer sourceColumn="reqid"/> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="reqid"/> 
        </eventId> 
        <eventColumn name="acceptance_quote_date"/> 
      </EventMapping> 
      <EventMapping name="Order adding"> 
        <fromTable name="quote_order"/> 
        <links> 
          <Reference parentTable="quote" childTable="quote_order"> 
            <columns> 
              <ColumnPair parent="reqid" child="quote_reqid"/> 
            </columns> 
          </Reference> 
        </links> 
        <generalAttributes> 
          <Attribute key=Integer datatype=Integer value="0"> 
            <AttributeMapping key=Quote_reqid datatype=Integer 

sourceColumn="quote_reqid"/> 
            <AttributeMapping key=Order_orderid datatype=Integer 

sourceColumn="order_orderid"/> 
          </Attribute> 
        </generalAttributes> 
        <listAttributes/> 
        <eventId> 
          <Column name="quote_reqid"/> 
          <Column name="order_orderid"/> 
        </eventId> 
        <eventColumn name="adding_date"/> 
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      </EventMapping> 
    </eventMappings> 
  </traceMapping> 
</LogMapping> 



  Artifact-Centric Process Analysis 

 

 

E.H.J. Nooijen 83/102  Master’s Thesis 

Appendix F: Prototype implementation 

A prototype was implemented in Java to demonstrate the approach. The prototype is 

available at http://dl.dropbox.com/u/18902457/Prototype.zip. This zip file contains the 

example files of the CD shop in the “CD Shop files” folder, the sources including the 

Eclipse project in the “Sources” folder and a compiled version of the prototype (the 

“Data2Events.jar” file and the “Data2Events_lib” folder). 

F.I Overview 

Architecture 

The prototype is implemented as a layered application based on the Data Access Object 

Pattern17. Figure 29 shows an overview of the relation between the main packages, 

except for the util package.  

- The util package does not depend on any other code (in the project package). 

This package contains general helper methods that could be useful in any 

application. 

- The model package depends only on the util package. The classes in this package 

are (data) transfer objects18 that do not contain any logic. 

- The data package depends only on the util and model packages. This package 

contains the actual data access objects that wrap the storage implementation. 

- The algorithms package depends only on the util, model and data packages. The 

classes in this package contain the logic of the prototype. 

- The UI package depends on all other sub-packages (but not on any code in the 

main package). The classes in this package only expose the logic in the algorithms 

package to the user. 

 

 
Figure 29: Prototype architecture 

 

Some sub-packages also contain a Util class. In this case other classes in the same sub-

package may use the Util class, but the Util class will not depend on any other code in 

the same sub-package. 

Starting the application and database connections 

In windows the application can be started using the “start Data2Events.bat” file; for 

other platforms this file also shows the required parameters. Note that the maximum 

                                           
17 http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html 
18 http://martinfowler.com/eaaCatalog/dataTransferObject.html 

http://dl.dropbox.com/u/18902457/Prototype.zip
http://java.sun.com/blueprints/corej2eepatterns/Patterns/DataAccessObject.html
http://martinfowler.com/eaaCatalog/dataTransferObject.html
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memory size was set to 500 MB to improve performance in general, but a significantly 

lower value is likely sufficient for the CD shop example. 

 

When starting the application a dialog asks for the connection parameters for an 

embedded HSQL database. This will connect to an existing database if one exists at the 

given path or create a new database if no database exists at the location (no installation 

required). The default path is the “internal db” subfolder (with “hsql.*” as the database 

file names). 

 
Figure 30: HSQLDB connection parameters 

 

A different internal database can be selected from the Settings > Storage mechanism 

menu as shown below. There are 3 options: 

- File based: This is meant for the transfer of data and metadata only. When this 

is used a number of xml and csv files will be created at the given location. These 

files can then easily be copied to another system and imported again as described 

in section F.II below. 

- HSQLDB: A fast embedded database with the capability to store up to 16 GB of 

data. The prototype will create the database (if it does not exist yet) and the 

required structure (e.g. tables). 

- PostgreSQL: A database suitable for larger datasets. To use this a PostgreSQL 

9.0 database needs to be installed and the database used by the prototype must 

exist in PostgreSQL. The prototype will create the required structure in the 

database though. 

 

 
Figure 31: Internal storage mechanisms 

 

Before any storage mechanism can be used it needs to be initialized using the 

Settings > Init/clear storage menu option. This will create the structure required for the 

storage mechanism to function. Note that this will remove any existing data in the 

storage. 

Trace information 

During the execution of the application various trace information will be written to the 

screen and log files. In the application this is shown in the area marked by (3) in Figure 

32. The settings in the main screen define (1) what kind of messages are shown and (2) 

how detailed the information on the screen should be. Note that the type of messages 

shown on the screen cannot be more detailed than the messages written to the log files 

(as described below). 
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Figure 32: Prototype trace information 

 

All trace messages are written to log files in the “\log” subfolder of the application. At 

most 10 files of 5 MB each will be created per day. The types of messages written to log 

files is defined by the Settings > Tracing > Source trace level menu item. The 

parameters of method calls can also be written to the log files. By default this is only 

done for error messages, but this can be changed to include other types of messages 

with the Settings > Tracing > Parameter trace level menu item. 

 

 
Figure 33: Prototype trace settings 

F.II Data transfer 

The starting point for the approach is a dataset with any metadata that is already known. 

The prototype was set up to import this information once so the source system would not 

have to be available for the remainder of the approach. This is done in a number of 

steps: 

1. Setting the storage mechanism to file based on the source system and importing 

the data and metadata as described below. 

2. Copying the created files to the system where the dataset will be analyzed. 

3. Settings the storage mechanism to HSQLDB or PostgreSQL and importing the data 

and metadata from the files as described below.  

Note that it is be possible to import the data and metadata from the source system 

directly to a HSQLDB or PostgreSQL storage, but in that case the information would 

obviously end up on the same system. More detailed information on data transfer is 

available in the javadoc documentation of the ui.transfer, data and data.dataImport 

packages. 
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For the CD shop example the first two steps were already done. The files are available in 

the “CD Shop files” folder. They can be imported with the following steps: 

 

1. Start the wizard from the Import > Import data & metadata menu item. 

 
 

2. Select “Csv data storage”. 

3. Click Next. 

 
 

4. Enter the path to the “CD shop files” folder (possibly via the “…” button) as the 

source folder. 

5. Click Connect. 
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6. Select “XML Metadata storage”. 

7. Click Next. 

 
 

8. Enter the path to the “metadata_root.xml” file in the “CD shop files” folder 

(possibly via the “…” button) as the file name. 

9. Click Connect. 

 
 

10. Click Next. 
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11. Click Next. 

 
 

12. Click Next. 

 
 

13. Wait until the import is complete and click Close. 
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F.III Artifact schema identification 

F.III.I Schema extraction 

All techniques used in the schema extraction step can be found in the Artifact schema 

identification > Schema extraction menu. These will only work if the storage mechanism 

is initialized and data is imported as described in the previous sections. 

Domain extraction 

Domain extraction can be activated by the Determine column domains menu item. A 

series of dialogs is shown to gather the required parameters.  

 

 
Figure 34: General domain extraction parameters dialog 

 

The first dialog requests general domain extraction parameters: 

- The Clustering method to be used: 

 “Datatype only” specificies that the XES datatypes will be determined 

heuristically, but no further domain clustering will be done. This setting 

was used as the basis for the results in the empirical evaluation in the 

steps following domain extraction. 

 “DBScan with column hashes” specifies that column distances will be 

calculated through q-gram min-hashes while the actual clustering will be 

done with the DBScan algorithm. 

 “DBScan with PCA-T” specifies that column distances will be calculated 

through column signatures obtained by principal component analysis (PCA) 

on the column x column covariance matrix while the actual clustering will 

be done with the DBScan algorithm. 

 “K-Center with column hashes” specifies that column distances will be 

calculated through q-gram min-hashes while the actual clustering will be 

done with the k-center algorithm. 

 “K-Center with PCA-T” specifies that column distances will be calculated 

through column signatures obtained by principal component analysis (PCA) 

on the column x column covariance matrix while the actual clustering will 

be done with the k-center algorithm. 

- Ignore datatypes specifies if the JDBC datatypes can be used to heuristically 

determine the XES datatypes. For the CD shop example the JDBC datatypes are 

not trustworthy and should therefore be ignored. 

- Sample size specifies the maximum number of records that should be used for the 

domain extraction process. This value is used for both the heuristic XES datatype 

determinination and the actual clustering approach. 

- Remove trailing white space can be used to properly handle fixed-length character 

values stored in databases. If trailing white space would not be removed in these 
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cases then resemblance between values would likely be much higher than 

desirable since each value likely contains a significant amount of whitespace. 

 

 
Figure 35: Example domain clustering method parameters dialog 

 

If any clustering method other than “Datatypes only” is chosen the second dialog will 

request the parameters for the clustering method: 

-  Q-gram size specifies the number of characters in each q-gram extracted. 

- Maximum IDF threshold specifies the maximum inverse document frequency a q-

gram can have to be included in the distance calculation. The default value 

includes all q-grams. 

- Hash size specifies the number of values that are used to calculate min-hash 

distances between columns. This is only relevant (and displayed) if a clustering 

method is chosen that uses these. 

- Variance fraction specificies the fraction of the total variance to use when 

selecting the number of principal components to calculate the column signatures 

with the the column x column covariance matrix. This is only relevant (and 

displayed) if a clustering method is used that calculates distances through 

principal component analysis. 

- Epsilon specifies the maximum range when adding new column nodes to a domain 

cluster as defined by the DBScan algorithm. This is only relevant (and displayed) 

if a clustering method based on DBScan is chosen. 

- Minumum points per cluster specifies the minimum number of other column nodes 

that need to be within range of a column to form a new domain cluster. Effectively 

this means that all domain clusters will contain at least minimum points per 

cluster + 1 column nodes or exactly one column (in case of isolated columns that 

are classified as noise by the DBScan algorithm). This is only relevant (and 

displayed) if a clustering method based on DBScan is chosen. 

- Number of clusters per datatype specifies the number of domain clusters 

generated for each XES datatype by the k-center algorithm. This is only relevant 

(and displayed) if a clustering method based on k-center is chosen.  
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Figure 36: Select tables dialog 

 

The final dialog will request for which tables the column domains should be extracted. 

After this dialog the domain extraction process will start. During the extraction process 

temporary files will be created in the default temporary file location of the system or 

user. 

 

The results of the domain extraction can be viewed using the View domain clustering 

results menu item. This opens the screen shown below (after a commercial dialog). 

 

 
Figure 37: Domain clustering results screen 
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Most columns in the domain clustering result screen are self-explanatory. The SQL 

datatype column shows the JDBC type number. Common type numbers are: char(1), 

varchar (12), numeric (2), decimal (3), float (6), real (7), double (8), integer (4), 

boolean (16), date (91), time (92) and timestamp (93). 

-  

 

More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.domaincategorization, algorithms.clustering, 

model.clustering and algorithms.qGramExtraction packages. 

Primary key extraction 

Primary key extraction can be activated by the Determine primary keys menu item. A 

dialog is shown to gather the specific primary key extraction parameters followed by the 

table selection dialog shown in Figure 36. 

 

 
Figure 38: Primary key extraction parameters dialog 

 

The dialog requests the following parameters: 

- Maximum column combination size specificies the number of columns a candidate 

key can contain. Column combinations that consist of more columns are not 

tested (and thus not returned) by the HCA algorithm. 

- Sample size specifies the maximum number of records to use when determining 

candidate keys. Note that the Gordian part of the candidate key extraction 

algorithm was implemented to never use more than 1 000 samples, but will use a 

smaller number if specified by the sample size.  

- Verify candidates found through sampling specificies if the candidate keys found 

by the HCA-Gordian algorithm should be verified using the complete dataset. Note 

that this parameter will have no effect for tables for which the sample size is 

larger the number of records they contain. 

- Maximum correct keys specifies the number of primary key candidates to extract. 

Less primary key candidates may be extracted if there are insufficient candidate 

keys found by the HCA-Gordian algorithm. 

- Invalid values fraction allowed specifies the fraction of records that are allowed to 

violate the candidate key when it is verified. Note that this parameter is only used 

by the verification step, thus the HCA-Gordian algorithm may still remove possible 

candidate keys even if the number of violating records for that key is less than the 

given fraction of the total number of records. 

 

The results of the primary key extraction can be viewed using the View primary keys 

results menu item. This opens the screen shown below (after a commercial dialog). 
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Figure 39: Primary key extraction results screen 

 

Most columns in the primary key extraction result screen are self-explanatory. Violated 

values shows the number of records that violated the candidate key. Candidate is 

Primary Key shows if the candidate key is defined as the primary key on the table. Finally 

Column is part of key shows if the candidate key column is part of the primary key of the 

table. 

 

More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.pkdiscovery package and subpackages. 

Foreign key extraction 

Foreign key extraction can be activated by the Determine foreign keys menu item. A 

dialog is shown to gather the specific foreign key extraction parameters followed by the 

table selection dialog shown in Figure 36. 

 

 
Figure 40: Foreign key extraction parameters dialog 

 

The dialog requests the following parameters: 

- Remove trailing white space can be used to properly handle fixed-length character 

values stored in databases. If this is checked then values that differ only in the 

amount of trailing whitespace will be treated as identical. 

- Check column domains specificies is candidate inclusion dependencies (IND) 

should be pruned based on the domains of the columns or column combinations. 

- Minimum column combination size and maximum column combination size specify 

the number of columns that can be on the left-hand and right-hand side of each 

IND to verify. 
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- Number of quantiles specifies the total number of “buckets” to use for the 

comparison of the value distribution histogram of the child and parent column 

combination of an IND. 

- Temporary files location specifies where temporary files will be created while the 

algorithm is running. The default location is the standard temporary file location of 

the system or user. 

 

The results of the foreign key extraction can be viewed using the View foreign keys 

results menu item. This opens the screen shown below (after a commercial dialog). Note 

that the pictures below are both parts of the same screen. The Filter results checkbox 

can be used to hide all candidate foreign keys for which the Quantile EMD value is 

greater than 1 or for which the LCNS score is not the highest LCNS score for that child 

column combination. 

 

 
Figure 41: Foreign keys extraction results screen (left) 

 

 
Figure 42: Foreign keys extraction results screen (right) 

 

Most columns in the foreign key extraction result screen are self-explanatory, given the 

definitions of the evaluation properties in subsection 3.2.3. True foreign key shows if the 

candidate foreign key is defined as an actual foreign key in the schema. Note that this 

column can be updated so the foreign key is taken into account for further steps. Existing 

id shows the identifier of the corresponding actual foreign key. Quantile EMD shows the 

(thresholded) Earth Movers Distance (EMD) between the value distribution of the parent 

and child colums. Maximum LCNS shows the maximum LCNS score of the child column 

combination and all of its identified parent column combinations. Similarly Maximum NDC 

shows the maximum name Dice’s coefficient score of the child column combination and 

all of its identified parent column combinations. 
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More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.fkdiscovery, algorithms.fkdiscovery.quantiles and 

algorithms.emd packages. 

F.III.II Identify artifact schemas 

All menu items related to this subject can be found in the Artifact schema identification > 

Identify artifact schemas menu. To identify artifact schemas 4 menu items must be 

activated in sequence: 

1. Calculate entropies. No further input is required. 

2. Calculate table importances. No further input is required. 

3. Calculate distances. No further input is required. 

4. Cluster tables. A dialog is shown to gather the specific table clustering parameters 

followed by the table selection dialog shown in Figure 36. Note that previously 

identified artifacts will be deleted when this menu item is activated. 

 

 
Figure 43: Cluster tables parameters dialog 

 

The dialog requests the following parameters: 

- Number of clusters specifies the number of artifacts to identify. 

- Expansion level specifies the maximum level of tables to add to the base clusters. 

 

The currently identified artifacts can be viewed using the View created artifacts menu 

item. This opens the screen shown below (after a commercial dialog). 

 

 
Figure 44: Artifact identification results screen 
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An alternative way to create an artifact schema is provided by the Create artifact menu 

item. Here a main table can be specified manually, which will be expanded to an artifact 

schema using the allowed list of tables. First a dialog is shown in which the main table 

and maximum expansion level can be defined. The allowed list of tables must then be 

selected using the table selection dialog shown in Figure 36.  

 

 
Figure 45: Create artifact parameters dialog 

 

More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.DBSummarization class and the algorithms.clustering 

and model.clustering package. 

F.IV Artifact lifecycle identification 

All techniques used in the artifact lifecycle identification step can be found in the Artifact 

lifecycle identification menu. These will only work if the artifact schemas were identified 

as specified in the previous section. 

F.IV.I Create schema to log mapping 

All menu items related to this subject can be found in the Artifact lifecycle identification > 

Create schema-to-log mapping menu.  

 

The identification of event types and assignment of attributes is actived by the Determine 

attribute & event selection menu item. A dialog is shown to gather the required 

parameters. 

 

 
Figure 46: Attribute & event selection parameters dialog 
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The dialog requests the following parameters: 

- Artifacts allows the selection of artifacts for which event types should be selected 

and attributes assigned. 

- Include artifact parent events specifies if event types should be generated for 

timestamp columns that are part of a parent table of the main table. 

- Include trace attributes specifies if non-event columns should be assigned as trace 

attributes. Note that the columns that would be trace attributes will never be 

assigned as event type attributes; this is just a way to limit the number of 

generated attributes. 

- Include event attributes specifies if non-event columns should be assigned as 

event type attributes. Note that the columns that would be event type attributes 

will never be assigned as trace attributes; this is just a way to limit the number of 

generated attributes. 

 

The result of the event type selection and attribute assignment can be shown using the 

View selected attributes & event types menu item. This opens the screen shown below 

(after a commercial dialog). 

 

 
Figure 47: Event type selection and attribute assignment results screen 

 

Most columns in the result screen are self-explanatory. The Event name shows the name 

of the event type or “INSTANCE” for columns assigned to traces. The Mapping column 

shows information about columns assigned to event types or instances. The Mapping 

column – type shows how the column is related to the event type or instance: part of the 

instanceId, part of the eventId or assigned as an attribute. 

 

The creation of the mapping is activated by the Create event log mapping menu item. A 

dialog is shown to gather the required parameters. 
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Figure 48: Create event log mapping parameters dialog 

 

The dialog requests the following parameters: 

- Artifacts allows the selection of artifacts for which the schema-to-log mapping 

should be created. 

- Eventlog mapping file name specifies the name of the resulting mapping file. 

“[ARTIFACT NAME]” will be replaced by the name of the artifact. 

- Direct attributes only specifies if ListAttributes should be included in the mapping. 

This can be used to limit the number of queries executed during the event log 

generation step. 

- Simplify mapping file can be used to create a more readable version of the 

mapping file. When this is selected various identifier fields will not be included, 

making the mapping more readable, but likely harder to process further. 

 

More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.eventextraction.ArtifactEventLogSelection and 

algorithms.eventextraction.ArtifactEventLogMapper classes and the model.mapping  

package. 

F.IV.II Event log generation 

All menu items related to this subject can be found in the Artifact lifecycle identification > 

Generating traces menu.  

 

The generation of an event log can be activated using the Create event log from 

datasource menu item. A dialog is shown to gather the required parameters. 

 

 
Figure 49: Create event log from datasource parameters dialog 
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The dialog requests the following parameters: 

- Artifacts allows the selection of artifacts for which an event log should be created. 

- Eventlog file name specifies the name of the resulting file. “[ARTIFACT NAME]” 

will be replaced by the name of the artifact. 

- Direct attributes only specifies if ListAttributes should be included in the event log. 

This can be used to limit the number of queries executed. 

- Maximum number of traces specifies the maximum number of traces that are to 

be included in the generated event log. 

After the OK button is clicked the generation process will start. Due to OpenXES an active 

internet connection is required to create the event log. 

 

If an event log was created before it can be created again from the cache database using 

the Create Event Log from Cache menu item. A dialog is shown to gather the required 

parameters. 

 

 
Figure 50: Create event log from cache parameters dialog 

 

The dialog requests the following parameters: 

- Log allows the selection of a cached event log. 

- Eventlog file name specifies the name of the resulting file. 

- Zip log file specifies if the created event log should be g-zipped. 

- Maximum number of traces specifies the maximum number of traces that are to 

be included in the generated event log.  

 

More detailed information about the implementation is available in the javadoc 

documentation of the algorithms.eventextraction.ArtifactEventLogExtraction and 

algorithms.eventextraction.CacheToXesConverter classes and the model.xes package. 

F.V License(s) 

A large number of libraries were used for this prototype that were all available under 

some form of open source license (e.g. GPL, LGPL, Apache, BSD). An overview of the 

used libraries and their licenses can be found in the “\Sources\packagelib” folder. 

 

Aside from the libraries some parts of the code were also largely based on an external 

source with an open source license: 

- Everything in the org.apache.lucene package was taken from Apache Lucene 

which is available under the Apache license. 

- The original Gordian-HCA primary key discovery implementation was kindly 

donated by Ziawasch Abedjan under the Apache license. This concerns the classes 

with “Gordian” as part  of their name in the algorithms.pkdiscovery package and 

the subpackages of this package with “gordian” or “histocount” in their name. 

- The TANE functional dependency discovery implementation was taken from its 

original implementation which is available under the GPL license. This concerns 

the TANE and FunctionalDependency classes in the algorithms.pkdiscovery 
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package, the taneutils subpackage and the ComparableSet class in the 

utils.collections package. 

- The DBScan clustering algorithm was taken from WEKA which is available under 

the GPL license. This is the DBScan class in the algorithms.clustering package. 

- The fast EMD computation was taken from its original Java implementation under 

the BSD license. This concerns everything in the algorithms.emd package. 

- The CacheToXesConverter class in the algorithms.eventextraction package is 

based on the CacheDBController class of XESame. XESame is available under the 

Eclipse public license. 



  Artifact-Centric Process Analysis 
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Appendix G: Lifecycle verification settings 

G.I Order 

The general mapping between the log and the original model is shown in Figure 51 

below. The finish order event in the model was not present in the database and could 

thus not be mapped. Since the goal of the behavioural replay was to compare the 

automatically generated mapping with the best possible manual mapping the cost of the 

finish order  event was set to 0 for the conformance check. Aside from this reorder event 

in the log could not be mapped to the original model, because it was not present there. 

 

 
Figure 51: Order original model - log mapping 

 

G.II Quote 

The general mapping between the log and the original model is shown in Figure 52 

below. The send quote, receive goods and finish quote events in the original model could 

not be mapped to an event in the log, because this information was not represented in 

the database. Similar to what was described for the order log the cost for these events 

was set to 0 for the conformance check. 
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Figure 52: Quote original model - log mapping 
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