426 research outputs found

    Alternating local search based VNS for linear classification

    Get PDF
    We consider the linear classification method consisting of separating two sets of points in d-space by a hyperplane. We wish to determine the hyperplane which minimises the sum of distances from all misclassified points to the hyperplane. To this end two local descent methods are developed, one grid-based and one optimisation-theory based, and are embedded in several ways into a VNS metaheuristic scheme. Computational results show these approaches to be complementary, leading to a single hybrid VNS strategy which combines both approaches to exploit the strong points of each. Extensive computational tests show that the resulting method performs well

    On Neighborhood Tree Search

    Get PDF
    We consider the neighborhood tree induced by alternating the use of different neighborhood structures within a local search descent. We investigate the issue of designing a search strategy operating at the neighborhood tree level by exploring different paths of the tree in a heuristic way. We show that allowing the search to 'backtrack' to a previously visited solution and resuming the iterative variable neighborhood descent by 'pruning' the already explored neighborhood branches leads to the design of effective and efficient search heuristics. We describe this idea by discussing its basic design components within a generic algorithmic scheme and we propose some simple and intuitive strategies to guide the search when traversing the neighborhood tree. We conduct a thorough experimental analysis of this approach by considering two different problem domains, namely, the Total Weighted Tardiness Problem (SMTWTP), and the more sophisticated Location Routing Problem (LRP). We show that independently of the considered domain, the approach is highly competitive. In particular, we show that using different branching and backtracking strategies when exploring the neighborhood tree allows us to achieve different trade-offs in terms of solution quality and computing cost.Comment: Genetic and Evolutionary Computation Conference (GECCO'12) (2012

    Kernel-based Inference of Functions over Graphs

    Get PDF
    The study of networks has witnessed an explosive growth over the past decades with several ground-breaking methods introduced. A particularly interesting -- and prevalent in several fields of study -- problem is that of inferring a function defined over the nodes of a network. This work presents a versatile kernel-based framework for tackling this inference problem that naturally subsumes and generalizes the reconstruction approaches put forth recently by the signal processing on graphs community. Both the static and the dynamic settings are considered along with effective modeling approaches for addressing real-world problems. The herein analytical discussion is complemented by a set of numerical examples, which showcase the effectiveness of the presented techniques, as well as their merits related to state-of-the-art methods.Comment: To be published as a chapter in `Adaptive Learning Methods for Nonlinear System Modeling', Elsevier Publishing, Eds. D. Comminiello and J.C. Principe (2018). This chapter surveys recent work on kernel-based inference of functions over graphs including arXiv:1612.03615 and arXiv:1605.07174 and arXiv:1711.0930

    Euclidean distance geometry and applications

    Full text link
    Euclidean distance geometry is the study of Euclidean geometry based on the concept of distance. This is useful in several applications where the input data consists of an incomplete set of distances, and the output is a set of points in Euclidean space that realizes the given distances. We survey some of the theory of Euclidean distance geometry and some of the most important applications: molecular conformation, localization of sensor networks and statics.Comment: 64 pages, 21 figure

    PACE solver description: KaPoCE: A heuristic cluster editing algorithm

    Get PDF
    The cluster editing problem is to transform an input graph into a cluster graph by performing a minimum number of edge editing operations. A cluster graph is a graph where each connected component is a clique. An edit operation can be either adding a new edge or removing an existing edge. In this write-up we outline the core techniques used in the heuristic cluster editing algorithm of the Karlsruhe and Potsdam Cluster Editing (KaPoCE) framework, submitted to the heuristic track of the 2021 PACE challenge

    PACE Solver Description: KaPoCE: A Heuristic Cluster Editing Algorithm

    Get PDF
    The cluster editing problem is to transform an input graph into a cluster graph by performing a minimum number of edge editing operations. A cluster graph is a graph where each connected component is a clique. An edit operation can be either adding a new edge or removing an existing edge. In this write-up we outline the core techniques used in the heuristic cluster editing algorithm of the Karlsruhe and Potsdam Cluster Editing (KaPoCE) framework, submitted to the heuristic track of the 2021 PACE challenge

    New error measures and methods for realizing protein graphs from distance data

    Full text link
    The interval Distance Geometry Problem (iDGP) consists in finding a realization in RK\mathbb{R}^K of a simple undirected graph G=(V,E)G=(V,E) with nonnegative intervals assigned to the edges in such a way that, for each edge, the Euclidean distance between the realization of the adjacent vertices is within the edge interval bounds. In this paper, we focus on the application to the conformation of proteins in space, which is a basic step in determining protein function: given interval estimations of some of the inter-atomic distances, find their shape. Among different families of methods for accomplishing this task, we look at mathematical programming based methods, which are well suited for dealing with intervals. The basic question we want to answer is: what is the best such method for the problem? The most meaningful error measure for evaluating solution quality is the coordinate root mean square deviation. We first introduce a new error measure which addresses a particular feature of protein backbones, i.e. many partial reflections also yield acceptable backbones. We then present a set of new and existing quadratic and semidefinite programming formulations of this problem, and a set of new and existing methods for solving these formulations. Finally, we perform a computational evaluation of all the feasible solver++formulation combinations according to new and existing error measures, finding that the best methodology is a new heuristic method based on multiplicative weights updates

    Ono: an open platform for social robotics

    Get PDF
    In recent times, the focal point of research in robotics has shifted from industrial ro- bots toward robots that interact with humans in an intuitive and safe manner. This evolution has resulted in the subfield of social robotics, which pertains to robots that function in a human environment and that can communicate with humans in an int- uitive way, e.g. with facial expressions. Social robots have the potential to impact many different aspects of our lives, but one particularly promising application is the use of robots in therapy, such as the treatment of children with autism. Unfortunately, many of the existing social robots are neither suited for practical use in therapy nor for large scale studies, mainly because they are expensive, one-of-a-kind robots that are hard to modify to suit a specific need. We created Ono, a social robotics platform, to tackle these issues. Ono is composed entirely from off-the-shelf components and cheap materials, and can be built at a local FabLab at the fraction of the cost of other robots. Ono is also entirely open source and the modular design further encourages modification and reuse of parts of the platform
    • …
    corecore