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Abstract

The study of networks has witnessed an explosive growth over the
past decades with several ground-breaking methods introduced. A par-
ticularly interesting – and prevalent in several fields of study – problem
is that of inferring a function defined over the nodes of a network. This
work presents a versatile kernel-based framework for tackling this infer-
ence problem that naturally subsumes and generalizes the reconstruction
approaches put forth recently by the signal processing on graphs commu-
nity. Both the static and the dynamic settings are considered along with
effective modeling approaches for addressing real-world problems. The
herein analytical discussion is complemented by a set of numerical exam-
ples, which showcase the effectiveness of the presented techniques, as well
as their merits related to state-of-the-art methods.

Index terms— Signal Processing on Graphs, Kernel-based learning, Graph
function reconstruction, Dynamic graphs, Kernel Kalman filter

1 Introduction

Numerous applications arising in diverse disciplines involve inference over net-
works [1]. Modelling nodal attributes as signals that take values over the vertices
of the underlying graph, allows the associated inference tasks to leverage node
dependencies captured by the graph structure. In many real settings one often
affords to work with only a limited number of node observations due to inher-
ent restrictions particular to the inference task at hand. In social networks, for
example, individuals may be reluctant to share personal information; in sensor
networks the nodes may report observations sporadically in order to save energy;
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in brain networks acquiring node samples may involve invasive procedures (e.g.
electrocorticography). In this context, a frequently encountered challenge that
often emerges is that of inferring the attributes for every node in the network
given the attributes for a subset of nodes. This is typically formulated as the
task of reconstructing a function defined on the nodes [1–6], given information
about some of its values.

Reconstruction of functions over graphs has been studied by the machine
learning community, in the context of semi-supervised learning under the term
of transductive regression and classification [6–8]. Existing approaches assume
“smoothness” with respect to the graph – in the sense that neighboring vertices
have similar values – and devise nonparametric methods [2,3,6,9] targeting pri-
marily the task of reconstructing binary-valued signals. Function estimation has
also been investigated recently by the community of signal processing on graphs
(SPoG) under the term signal reconstruction [10–17]. Most such approaches
commonly adopt parametric estimation tools, and rely on bandlimitedness, by
which the signal of interest is assumed to lie in the span of the B principal
eigenvectors of the graph’s Laplacian (or adjacency) matrix.

This chapter cross-pollinates ideas arising from both communities, and presents
a unifying framework for tackling signal reconstruction problems both in the
traditional time-invariant, as well as in the more challenging time-varying set-
ting. We begin by a comprehensive presentation of kernel-based learning for
solving problems of signal reconstruction over graphs (Section 2). Data-driven
techniques are then presented based on multi-kernel learning (MKL) that en-
ables combining optimally the kernels in a given dictionary, and simultaneously
estimating the graph function by solving a single optimization problem (Sec-
tion 2.3). For the case where prior information is available, semi-parametric
estimators are discussed that can incorporate seamlessly structured prior infor-
mation into the signal estimators (Section 2.4). We then move to the problem
of reconstructing time-evolving functions on dynamic graphs (Section 3). The
kernel-based framework is now extended to accommodate the time-evolving set-
ting building on the notion of graph extension, specific choices of which can lend
themselves to a reduced complexity online solver (Section 3.1). Next, a more
flexible model is introduced that captures multiple forms of time dynamics, and
kernel-based learning is employed to derive an online solver, that effects online
MKL by selecting the optimal combination of kernels on-the-fly (Section 3.2).
Our analytical exposition, in both parts, is supplemented by a set of numeri-
cal tests based on both real and synthetic data that highlight the effectiveness
of the methods, while providing examples of interesting realistic problems that
they can address.
Notation: Scalars are denoted by lowercase characters, vectors by bold low-
ercase, matrices by bold uppercase; (A)m,n is the (m,n)-th entry of matrix
A; superscripts T and † respectively denote transpose and pseudo-inverse. If
A := [a1, . . . ,aN ], then vec{A} := [aT1 , . . . ,a

T
N ]T := a. With N × N matrices

{At}Tt=1 and {Bt}Tt=2 satisfying At = AT
t ∀t, btridiag{A1, . . . ,AT ; B2, . . . ,BT }

represents the symmetric block tridiagonal matrix. Symbols �, ⊗, and ⊕ re-
spectively denote element-wise (Hadamard) matrix product, Kronecker product,
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and Kronecker sum, the latter being defined for A ∈ RM×M and B ∈ RN×N
as A ⊕ B := A ⊗ IN + IM ⊗ B. The n-th column of the identity matrix IN
is represented by iN,n. If A ∈ RN×N is positive definite and x ∈ RN , then
||x||2A := xTA−1x and ||x||2 := ||x||IN . The cone of N × N positive definite
matrices is denoted by SN+ . Finally, δ[·] stands for the Kronecker delta, and E
for expectation.

2 Reconstruction of Functions over Graphs

Before giving the formal problem statement, it is instructive to start with the
basic definitions that will be used throughout this chapter.
Definitions: A graph can be specified by a tuple G := (V,A), where V :=
{v1, . . . , vN} is the vertex set, and A is the N × N adjacency matrix, whose
(n, n′)-th entry, An,n′ ≥ 0, denotes the non-negative edge weight between ver-
tices vn and vn′ . For simplicity, it is assumed that the graph has no self-loops,
i.e. An,n = 0, ∀vn ∈ V. This chapter focuses on undirected graphs, for which
An′,n = An,n′ ∀vn, vn′ ∈ V. A graph is said to be unweighted if An,n′ is either
0 or 1. The edge set is defined as E := {(vn, vn′) ∈ V × V : An,n′ 6= 0}. Two
vertices vn and vn′ are adjacent, connected, or neighbors if (vn, vn′) ∈ E . The
Laplacian matrix is defined as L := diag {A1} −A, and is symmetric and pos-
itive semidefinite [1, Ch. 2]. A real-valued function (or signal) on a graph is a
map f : V → R. The value f(v) represents an attribute or feature of v ∈ V, such
as age, political alignment, or annual income of a person in a social network.
Signal f is thus represented by f := [f(v1), . . . , f(vN )]T .
Problem statement. Suppose that a collection of noisy samples (or obser-
vations) {ys|ys = f(vns) + es}Ss=1 is available, where es models noise and
S := {n1, . . . , nS} contains the indices 1 ≤ n1 < · · · < nS ≤ N of the sam-
pled vertices, with S ≤ N . Given {(ns, ys)}Ss=1, and assuming knowledge of G,
the goal is to estimate f . This will provide estimates of f(v) both at observed
and unobserved vertices.By defining y := [y1, . . . , yS ]T , the observation model
is summarized as

y = Sf + e (1)

where e := [e1, . . . , eS ]T and S is a known S ×N binary sampling matrix with
entries (s, ns), s = 1, . . . , S, set to one, and the rest set to zero.

2.1 Kernel Regression

Kernel methods constitute the “workhorse” of machine learning for nonlinear
function estimation [18]. Their popularity can be attributed to their simplic-
ity, flexibility, and good performance. Here, we present kernel regression as
a unifying framework for graph signal reconstruction along with the so-called
representer theorem.

Kernel regression seeks an estimate of f in a reproducing kernel Hilbert space
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(RKHS) H, which is the space of functions f : V → R defined as

H :=

{
f : f(v) =

N∑
n=1

αnκ(v, vn), αn ∈ R

}
(2)

where the kernel map κ : V × V → R is any function defining a symmetric
and positive semidefinite N ×N matrix with entries [K]n,n′ := κ(vn, vn′) [19].
Intuitively, κ(v, v′) is a basis function in (2) measuring similarity between the
values of f at v and v′. (For a more detailed treatment of RKHS, see e.g. [3]).

Note that for signals over graphs, the expansion in (2) is finite since V is
finite-dimensional. Thus, any f ∈ H can be expressed in compact form

f = Kα (3)

for some N × 1 vector α := [α1, . . . , αN ]T .

Given two functions f(v) :=
∑N
n=1 αnκ(v, vn) and f ′(v) :=

∑N
n=1 α

′
nκ(v, vn),

their RKHS inner product is defined as1

〈f, f ′〉H :=

N∑
n=1

N∑
n′=1

αnα
′
n′κ(vn, vn′) = αTKα′ (4)

where α′ := [α′1, . . . , α
′
N ]T and the reproducing property has been employed

that suggests 〈κ(·, vn0
), κ(·, vn′0)〉H = iTn0

Kin′0 = κ(vn0
, vn′0). The RKHS norm

is defined by

||f ||2H := 〈f, f〉H = αTKα (5)

and will be used as a regularizer to control overfitting and to cope with the
under-determined reconstruction problem. As a special case, setting K = IN
recovers the standard inner product 〈f, f ′〉H = fT f ′, and the Euclidean norm
||f ||2H = ||f ||22. Note that when K � 0, the set of functions of the form (3)
coincides with RN .

Given {ys}Ss=1, RKHS-based function estimators are obtained by solving
functional minimization problems formulated as (see also e.g. [18–20])

f̂ := arg min
f∈H

L(y, f̄) + µΩ(||f ||H) (6)

where the loss L measures how the estimated function f at the observed vertices
{vns}Ss=1, collected in f̄ := [f(vn1

), . . . , f(vnS )]T = Sf , deviates from the data

y. The so-called square loss L(y, f̄) := (1/S)
∑S
s=1 [ys − f(vns)]

2
constitutes a

popular choice for L. The increasing function Ω is used to promote smoothness
with typical choices including Ω(ζ) = |ζ| and Ω(ζ) = ζ2. The regularization

1While f denotes a function, f(v) represents the scalar resulting from evaluating f at
vertex v.
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parameter µ > 0 controls overfitting. Substituting (3) and (5) into (6) shows

that f̂ can be found as

α̂ := arg min
α∈RN

L(y,SKα) + µΩ((αTKα)1/2) (7a)

f̂ = Kα̂. (7b)

An alternative form of (5) that will be frequently used in the sequel results
upon noting that

αTKα = αTKK†Kα = fTK†f . (8)

Thus, one can rewrite (6) as

f̂ := arg min
f∈R{K}

L(y,Sf) + µΩ((fTK†f)1/2). (9)

Although graph signals can be reconstructed from (7), such an approach
involves optimizing over N variables. Thankfully, the solution can be obtained
by solving an optimization problem in S variables (where typically S � N), by
invoking the so-called representer theorem [19,21].

The representer theorem plays an instrumental role in the traditional infinite-
dimensional setting where (6) cannot be solved directly; however, even when H
comprises graph signals, it can still be beneficial to reduce the dimension of the
optimization in (7). The theorem essentially asserts that the solution to the
functional minimization in (6) can be expressed as

f̂(v) =

S∑
s=1

ᾱsκ(v, vns) (10)

for some ᾱs ∈ R, s = 1, . . . , S.
The representer theorem shows the form of f̂ , but does not provide the

optimal {ᾱs}Ss=1, which are found after substituting (10) into (6), and solving
the resulting optimization problem with respect to these coefficients. To this
end, let ᾱ := [ᾱ1, . . . , ᾱS ]T , and write α = ST ᾱ to deduce that

f̂ = Kα = KST ᾱ. (11)

With K̄ := SKST and using (7) and (11), the optimal ᾱ can be found as

ˆ̄α := arg min
ᾱ∈RS

L(y, K̄ᾱ) + µΩ((ᾱT K̄ᾱ)1/2). (12)

Kernel ridge regression. For L chosen as the square loss and Ω(ζ) = ζ2, the

f̂ in (6) is referred to as the kernel ridge regression (RR) estimate [18]. If K̄ is

full rank, this estimate is given by f̂RR = KST ˆ̄α, where

ˆ̄α := arg min
ᾱ∈RS

1

S

∥∥y − K̄ᾱ
∥∥2

+ µᾱT K̄ᾱ (13a)

= (K̄ + µSIS)−1y. (13b)

5



Therefore, f̂RR can be expressed as

f̂RR = KST (K̄ + µSIS)−1y. (14)

As we will see in the next section, (14) generalizes a number of existing signal
reconstructors upon properly selecting K.

2.2 Kernels on Graphs

When estimating functions on graphs, conventional kernels such as the Gaussian
kernel cannot be adopted because the underlying set where graph signals are
defined is not a metric space. Indeed, no vertex addition vn + vn′ , scaling βvn,
or norm ||vn|| can be naturally defined on V. An alternative is to embed V into
Euclidean space via a feature map φ : V → RD, and invoke a conventional kernel
afterwards. However, for a given graph it is generally unclear how to explicitly
design φ or select D. This motivates the adoption of kernels on graphs [3].

A common approach to designing kernels on graphs is to apply a transforma-
tion function on the graph Laplacian [3]. The term Laplacian kernel comprises
a wide family of kernels obtained by applying a certain function r(·) to the
Laplacian matrix L. Laplacian kernels are well motivated since they constitute
the graph counterpart of the so-called translation-invariant kernels in Euclidean
spaces [3]. This section reviews Laplacian kernels, provides beneficial insights
in terms of interpolating signals, and highlights their versatility in capturing
information about the graph Fourier transform of the estimated signal.

The reason why the graph Laplacian constitutes one of the prominent can-
didates for regularization on graphs, becomes clear upon recognizing that

fTLf =
1

2

∑
(n,n′)∈E

An,n′(fn − fn′)2, (15)

where An,n′ denotes weight associated with edge (n, n′). The quadratic form
of (15) becomes larger when function values vary a lot among connected vertices
and therefore quantifies the smoothness of f on G.

Let 0 = λ1 ≤ λ2 ≤ . . . ≤ λN denote the eigenvalues of the graph Lapla-
cian matrix L, and consider the eigendecomposition L = UΛUT , where Λ :=
diag {λ1, . . . , λN}. A Laplacian kernel matrix is defined by

K := r†(L) := Ur†(Λ)UT (16)

where r(Λ) is the result of applying a user-selected, scalar, non-negative map
r : R → R+ to the diagonal entries of Λ. The selection of map r generally
depends on desirable properties that the target function is expected to have.
Table 1 summarizes some well-known examples arising for specific choices of r.

At this point, it is prudent to offer interpretations and insights on the opera-
tion of Laplacian kernels. Towards this objective, note first that the regularizer
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Kernel name Function Parameters

Diffusion [2] r(λ) = exp{σ2λ/2} σ2

p-step random walk [3] r(λ) = (a− λ)−p a ≥ 2, p ≥ 0
Regularized Laplacian [3, 22] r(λ) = 1 + σ2λ σ2

Bandlimited [23] r(λ) =

{
1/β λ ≤ λmax

β otherwise
β > 0, λmax

Table 1: Common spectral weight functions.

from (9) is an increasing function of

αTKα = αTKK†Kα = fTK†f = fTUr(Λ)UT f = f̌T r(Λ)f̌ =

N∑
n=1

r(λn)|f̌n|2

(17)

where f̌ := UT f := [f̌1, . . . , f̌N ]T comprises the projections of f onto the
eigenspace of L, and is referred to as the graph Fourier transform of f in the
SPoG parlance [4]. Consequently, {f̌n}Nn=1 are called frequency components.
The so-called bandlimited functions in SPoG refer to those whose frequency
components only exist inside some band B, that is, f̌n = 0,∀n > B.

By adopting the aforementioned SPoG notions, one can intuitively interpret
the role of bandlimited kernels. Indeed, it follows from (17) that the regularizer
strongly penalizes those f̌n for which the corresponding r(λn) is large, thus
promoting a specific structure in this “frequency” domain. Specifically, one
prefers r(λn) to be large whenever |f̌n|2 is small and vice versa. The fact that
|f̌n|2 is expected to decrease with n for smooth f , motivates the adoption of
an increasing function r [3]. From (17) it is clear that r(λn) determines how
heavily f̌n is penalized. Therefore, by setting r(λn) to be small when n ≤ B
and extremely large when n > B, one can expect the result to be a bandlimited
signal.

Observe that Laplacian kernels can capture forms of prior information richer
than bandlimitedness [11, 13, 16, 17] by selecting function r accordingly. For
instance, using r(λ) = exp{σ2λ/2} (diffusion kernel) accounts not only for
smoothness of f as in (15), but also for the prior that f is generated by a
process diffusing over the graph. Similarly, the use of r(λ) = (α− λ)−1 (1-step
random walk) can accommodate cases where the signal captures a notion of
network centrality2.

So far, f has been assumed deterministic, which precludes accommodating
certain forms of prior information that probabilistic models can capture, such

2Smola et al. [3], for example, discuss the connection between r(λ) = (α − λ)−1 and
PageRank [24] whereby the sought-after signal is essentially defined as the limiting distribution
of a simple underlying “random surfing” process. For more about random surfing processes,
see also [25,26].
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as domain knowledge and historical data. Suppose without loss of generality
that {f(vn)}Nn=1 are zero-mean random variables. The LMMSE estimator of

f given y in (1) is the linear estimator f̂LMMSE minimizing E||f − f̂LMMSE||22,
where the expectation is over all f and noise realizations. With C := E

[
f fT
]
,

the LMMSE estimate is

f̂LMMSE = CST [SCST + σ2
eIS ]−1y (18)

where σ2
e := (1/S)E

[
||e||22

]
denotes the noise variance. Comparing (18) with

(14) and recalling that K̄ := SKST , it follows that f̂LMMSE = f̂RR if µS = σ2
e

and K = C. In other words, the similarity measure κ(vn, vn′) embodied in such
a kernel map is just the covariance cov[f(vn), f(vn′)]. A related observation was
pointed out in [27] for general kernel methods.

In short, one can interpret kernel ridge regression as the LMMSE estimator
of a signal f with covariance matrix equal to K; see also [28]. The LMMSE
interpretation also suggests the usage of C as a kernel matrix, which enables
signal reconstruction even when the graph topology is unknown. Although this
discussion hinges on kernel ridge regression after setting K = C, any other
kernel estimator of the form (7) can benefit from vertex-covariance kernels too.

In most contemporary networks, sets of nodes may depend among each other
via multiple types of relationships, which ordinary networks cannot capture [29].
Consequently, generalizing the traditional single-layer to multilayer networks
that organize the nodes into different groups, called layers,is well motivated.
For kernel-based approaches for function reconstruction over multilayer graphs
see also [30].

2.3 Selecting kernels from a dictionary

The selection of the pertinent kernel matrix is of paramount importance to
the performance of kernel-based methods [23, 31]. This section presents an
MKL approach that effects kernel selection in graph signal reconstruction. Two
algorithms with complementary strengths will be presented. Both rely on a
user-specified kernel dictionary, and the best kernel is built from the dictionary
in a data driven way.

The first algorithm, which we call RKHS superposition, is motivated by the
fact that one specificH in (6) is determined by some κ; therefore, kernel selection
is tantamount to RKHS selection. Consequently, a kernel dictionary {κm}Mm=1

gives rise to a RKHS dictionary {Hm}Mm=1, which motivates estimates of the
form3

f̂ =

M∑
m=1

f̂m, f̂m ∈ Hm. (19)

Upon adopting a criterion that controls sparsity in this expansion, the “best”
RKHSs will be selected. A reasonable approach is therefore to generalize (6)

3A sum is chosen here for tractability, but the right-hand side of (19) could in principle

combine the functions {f̂m}m in different forms.
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to accommodate multiple RKHSs. With L selected to be the square loss and
Ω(ζ) = |ζ|, one can pursue an estimate f̂ by solving

min
{fm∈Hm}Mm=1

1

S

S∑
s=1

[
ys −

M∑
m=1

fm(vns)

]2

+ µ

M∑
m=1

‖fm‖Hm . (20)

Invoking the representer theorem per fm establishes that the minimizers of (20)
can be written as

f̂m(v) =

S∑
s=1

ᾱms κm(v, vns), m = 1, . . . ,M (21)

for some coefficients ᾱms . Substituting (21) into (20) suggests obtaining these
coefficients as

arg min
{ᾱm}Mm=1

1

S

∥∥∥∥∥y −
M∑
m=1

K̄mᾱm

∥∥∥∥∥
2

+ µ

M∑
m=1

(
ᾱTmK̄mᾱm

)1/2
(22)

where ᾱm := [ᾱm1 , . . . , ᾱ
m
S ]T , and K̄m := SKmST with (Km)n,n′ := κm(vn, vn′).

Letting ˇ̄αm := K̄
1/2
m ᾱm, expression (22) becomes

arg min
{ ˇ̄αm}Mm=1

1

S

∥∥∥∥∥y −
M∑
m=1

K̄1/2
m

ˇ̄αm

∥∥∥∥∥
2

+ µ

M∑
m=1

‖ ˇ̄αm‖2. (23)

Interestingly, (23) can be efficiently solved using the alternating-direction
method of multipliers (ADMM) [32,33] after some nessecary reformulation [23].

After obtaining { ˇ̄αm}Mm=1, the sought-after function estimate can be recov-
ered as

f̂ =

M∑
m=1

KmST ᾱm =

M∑
m=1

KmST K̄−1/2
m

ˇ̄αm. (24)

This MKL algorithm can identify the best subset of RKHSs – and therefore
kernels – but entails MS unknowns (cf. (22)). Next, an alternative approach
is discussed which can reduce the number of variables to M + S at the price of
not beeing able to assure a sparse kernel expansion.

The alternative approach is to postulate a kernel of the form K(θ) =∑M
m=1 θmKm, where {Km}Mm=1 is given and θm ≥ 0 ∀m. The coefficients

θ := [θ1, . . . , θM ]T can be found by jointly minimizing (12) with respect to θ
and ᾱ [34]

(θ, ˆ̄α) := arg min
θ,ᾱ

1

S
L(v,y, K̄(θ)ᾱ) + µΩ((ᾱT K̄(θ)ᾱ)1/2) (25)

where K̄(θ) := SK(θ)ST . Except for degenerate cases, problem (25) is not
jointly convex in θ and ˆ̄α, but it is separately convex in each vector for a convex
L [34]. Iterative algorithms for solving (23) and (25) are available in [23].
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2.4 Semi-parametric reconstruction

The approaches discussed so far are applicable to various problems but they
are certainly limited by the modeling assumptions they make. In particular,
the performance of algorithms belonging to the parametric family [11,15,35] is
restricted by how well the signals actually adhere to the selected model. Non-
parametric models on the other hand [2,3,6,36], offer flexibility and robustness
but they cannot readily incorporate information available a priori.

In practice however, it is not uncommon that neither of these approaches
alone suffices for reliable inference. Consider, for instance, an employment-
oriented social network such as LinkedIn, and suppose the goal is to estimate
the salaries of all users given information about the salaries of a few. Clearly, be-
sides network connections, exploiting available information regarding the users’
education level and work experience could benefit the reconstruction task. The
same is true in problems arising in link analysis, where the exploitation of Web’s
hierarchical structure can aid the task of estimating the importance of Web
pages [37]. In recommender systems, inferring preference scores for every item,
given the users’ feedback about particular items, could be cast as a signal recon-
struction problem over the item correlation graph. Data sparsity imposes severe
limitations in the quality of pure collaborative filtering methods [38] Exploiting
side information about the items, is known to alleviate such limitations [39],
leading to considerably improved recommendation performance [40,41].

A promising direction to endow nonparametric methods with prior informa-
tion relies on a semi-parametric approach whereby the signal of interest is mod-
eled as the superposition of a parametric and a nonparametric component [42].
While the former leverages side information, the latter accounts for deviations
from the parametric part, and can also promote smoothness using kernels on
graphs. In this section we outline two simple and reliable semi-parametric esti-
mators with complementary strengths, as detailed in [42].

2.4.1 Semi-parametric Inference

Function f is modeled as the superposition4

f = fP + fNP (26)

where fP := [fP(v1), . . . , fP(vN )]T , and fNP := [fNP(v1), . . . , fNP(vN )]T .

The parametric term fP(v) :=
∑M
m=1 βmbm(v) captures the known signal

structure via the basis B := {bm}Mm=1, while the nonparametric term fNP be-
longs to an RKHS H, which accounts for deviations from the span of B. The
goal of this section is efficient and reliable estimation of f given y, S, B, H and
G.

Since fNP ∈ H, vector fNP can be represented as in (3). By defining
β := [β1, . . . , βM ]T , and the N ×M matrix B with entries (B)n,m := bm(vn),

4for simplicity here we consider only the case of semi-parametric partially linear models.
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the parametric term can be written in vector form as fP := Bβ. The semi-
parametric estimates can be found as the solution of the following optimization
problem

{α̂, β̂} = arg min
α,β

1

S

S∑
s=1

L(ys, f(vns)) + µ‖fNP‖2H (27)

s.t. f = Bβ + Kα

where the fitting loss L quantifies the deviation of f from the data, and µ > 0
is the regularization scalar that controls overfitting the nonparametric term.
Using (27), the semi-parametric estimates are expressed as f̂ = Bβ̂ + Kα̂.

Solving (27) entails minimization over N +M variables. Clearly, when deal-
ing with large-scale graphs this could lead to prohibitively large computational
cost. To reduce complexity, the semi-parametric version of the representer the-
orem [18,19] is employed, which establishes that

f̂ = Bβ̂ + KST ˆ̄α (28)

where ˆ̄α := [ ˆ̄α1, . . . , ˆ̄αS ]T . Estimates ˆ̄α, β̂ are found as

{ ˆ̄α, β̂} = arg min
ᾱ,β

1

S

S∑
s=1

L(ys, f(vns)) + µ‖fNP‖2H (29)

s.t. f = Bβ + KST ᾱ

where ᾱ := [ᾱ1, . . . , ᾱS ]T . The RKHS norm in (29) is expressed as ‖fNP‖2H =
ᾱT K̄ᾱ, with K̄ := SKST . Relative to (27), the number of optimization vari-
ables in (29) is reduced to the more affordable S +M , with S � N .

Next, two loss functions with complementary benefits will be considered: the
square loss and the ε-insensitive loss. The square loss function is

L(ys, f(vns)) := ‖ys − f(vns))‖22 (30)

and (29) admits the following closed-form solution

ˆ̄α = (PK̄ + µIS)−1Py (31a)

β̂ = (B̄T B̄)−1B̄T (y − K̄ ˆ̄α) (31b)

where B̄ := SB, P := IS − B̄(B̄T B̄)−1B̄T . The complexity of (31) is O(S3 +
M3).

The ε-insensitive loss function is given by

L(ys, f(vns)) := max(0, |ys − f(vns)| − ε) (32)

where ε is tuned, e.g. via cross-validation, to minimize the generalization error
and has well-documented merits in signal estimation from quantized data [43].
Substituting (32) into (29) yields a convex non-smooth quadratic problem that
can be solved efficiently for ᾱ and β using e.g. interior-point methods [18].
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2.5 Numerical tests

This section reports on the signal reconstruction performance of different meth-
ods using real as well as synthetic data. The performance of the estimators is
assessed via Monte Carlo simulation by comparing the normalized mean-square
error (NMSE)

NMSE = E
[
‖f̂ − f‖2

‖f‖2

]
. (33)

Multi-kernel reconstruction. The first data set contains departure and ar-
rival information for flights among U.S. airports [44], from which 3× 106 flights
in the months of July, August, and September of 2014 and 2015 were selected.
We construct a graph with N = 50 vertices corresponding to the airports with
highest traffic, and whenever the number of flights between the two airports ex-
ceeds 100 within the observation window, we connect the corresponding nodes
with an edge.

A signal was constructed per day averaging the arrival delay of all inbound
flights per selected airport. A total of 184 signals were considered, of which
the first 154 were used for training (July, August, September 2014, and July,
August 2015), and the remaining 30 for testing (September 2015). The weights
of the edges between airports were learned using the training data based on the
technique described in [23].

Multi-Kernel Reconstruction

NMSE RMSE[min]

KRR with cov. Kernel 0.34 3.95
Multi-kernel, RS 0.44 4.51
Multi-kernel, KS 0.43 4.45
BL for B=2 1.55 8.45
BL for B=3 32.64 38.72
BL, cut-off 3.97 13.5

Table 2: Multi-Kernel Reconstruction

Table 2 lists the NMSE and the RMSE in minutes for the task of predicting
the arrival delay at 40 airports when the delay at a randomly selected collection
of 10 airports is observed. The second row corresponds to the ridge regression
estimator that uses the nearly-optimal estimated covariance kernel. The next
two rows correspond to the multi-kernel approaches in §2.3 with a dictionary
of 30 diffusion kernels with values of σ2 uniformly spaced between 0.1 and
7. The rest of the rows pertain to graph-bandlimited estimators (BL). Table 2
demonstrates the reliable performance of covariance kernels as well as the herein
discussed multi-kernel approaches relative to competing alternatives.
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NMSE of the synthetic signal estimates.
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Figure 1: NMSE of the synthetic signal estimates.
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Semi-parametric reconstruction. An Erdős-Rènyi graph with probability
of edge presence 0.6 and N = 200 nodes was generated, and f was formed by
superimposing a bandlimited signal [13,15] plus a piecewise constant signal [45];
that is,

f =

10∑
i=1

γiui +

6∑
i=1

δi1Vc (34)

where {γi}10
i=1 and {δi}6i=1 are standardized Gaussian distributed; {ui}10

i=1 are
the eigenvectors associated with the 10 smallest eigenvalues of the Laplacian ma-
trix; {Vi}6i=1 are the vertex sets of 6 clusters obtained via spectral clustering [46];
and 1Vi is the indicator vector with entries (1Vi)n := 1, if vn ∈ Vi, and 0 other-
wise. The parametric basis B = {1Vi}6i=1 was used by the estimators capturing
the prior knowledge, and S vertices were sampled uniformly at random. The
subsequent experiments evaluate the performance of the semi-parametric graph
kernel estimators, SP-GK and SP-GK(ε) resulting from using (30) and (32)
in (29), respectively; the parametric (P) that considers only the parametric
term in (26); the nonparametric (NP) [2, 3] that considers only the nonpara-
metric term in (26); and the graph-bandlimited estimators (BL) from [13, 15],
which assume a bandlimited model with bandwidth B. For all the experiments,
the diffusion kernel (cf. Table 1) with parameter σ is employed. First, white
Gaussian noise es of variance σ2

e is added to each sample fs to yield signal-
to-noise ratio SNRe := ‖f‖22/(Nσ2

e). Fig. 1(b) presents the NMSE of different
methods. As expected, the limited flexibility of the parametric approaches, BL
and P, affects their ability to capture the true signal structure. The NP esti-
mator achieves smaller NMSE, but only when the amount of available samples
is adequate. Both semi-parametric estimators were found to outperform other
approaches, exhibiting reliable reconstruction even with few samples.

To illustrate the benefits of employing different loss functions (30) and (32),
we compare the performance of SP-GK and SP-GK(ε) in the presence of outlying
noise. Each sample fs is contaminated with Gaussian noise os of large variance
σ2
o with probability p = 0.1. Fig. 1(a) demonstrates the robustness of SP-GK(ε)

which is attributed to the ε−insensitive loss function (32). Further experiments
using real signals can be found in [42].

3 Inference of dynamic functions over dynamic
graphs

Networks that exhibit time-varying connectivity patterns with time-varying node
attributes arise in a plethora of network science related applications. Sometimes
these dynamic network topologies switch between a finite number of discrete
states, governed by sudden changes of the underlying dynamics [47,48]. A chal-
lenging problem that arises in this setting is that of reconstructing time-evolving
functions on graphs, given their values on a subset of vertices and time instants.
Efficiently exploiting spatiotemporal dynamics can markedly impact sampling
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costs by reducing the number of vertices that need to be observed to attain a
target performance. Such a reduction can be of paramount importance in cer-
tain applications eg. in monitoring time-dependent activity of different regions
of the brain through invasive electrocorticography (ECoG), where observing a
vertex requires the implantation of an intracranial electrode [47].

Although one could reconstruct a time-varying function per time slot us-
ing the non- or semi-parametric methods of §2, leveraging time correlations
typically yields estimators with improved performance. Schemes tailored for
time-evolving functions on graphs include [49] and [50], which predict the func-
tion values at time t given observations up to time t−1. However, these schemes
assume that the function of interest adheres to a specific vector autoregressive
model. Other works target time-invariant functions, but can only afford track-
ing sufficiently slow variations. This is the case with the dictionary learning
approach in [51] and the distributed algorithms in [52] and [53]. Unfortunately,
the flexibility of these algorithms to capture spatial information is also limited
since [51] focuses on Laplacian regularization, whereas [52] and [53] require the
signal to be bandlimited.

Motivated by the aforementioned limitations, in what comes next we extend
the framework presented in §2 accommodating time-varying function reconstruc-
tion over dynamic graphs. But before we delve into the time-varying setting, a
few definitions are in order.
Definitions: A time-varying graph is a tuple G(t) := (V,At), where V :=
{v1, . . . , vN} is the vertex set, and At ∈ RN×N is the adjacency matrix at time
t, whose (n, n′)-th entry An,n′(t) assigns a weight to the pair of vertices (vn, vn′)
at time t. A time-invariant graph is a special case with At = At′ ∀t, t′. Adopting
common assumptions made in related literature (e.g. [1, Ch. 2], [4, 9]), we also
define G(t) (i) to have non-negative weights (An,n′(t) ≥ 0 ∀t, and ∀n 6= n′); (ii)
to have no self-edges (An,n(t) = 0 ∀n, t); and, (iii) to be undirected (An,n′(t) =
An′,n(t) ∀n, n′, t).

A time-varying function or signal on a graph is a map f : V ×T → R, where
T := {1, 2, . . .} is the set of time indices. The value f(vn, t) of f at vertex vn
and time t, can be thought of as the value of an attribute of vn ∈ V at time t.
The values of f at time t will be collected in f t := [f(v1, t), . . . , f(vN , t)]

T .
At time t, vertices with indices in the time-dependent set St := {n1(t), . . . , nS(t)(t)},

1 ≤ n1(t) < · · · < nS(t)(t) ≤ N , are observed. The resulting samples can be
expressed as ys(t) = f(vns(t), t) + es(t), s = 1, . . . , S(t), where es(t) models ob-
servation error. By letting yt := [y1(t), . . . , yS(t)(t)]

T , the observations can be
conveniently expressed as

yt = Stf t + et, t = 1, 2, . . . (35)

where et := [e1(t), . . . , eS(t)(t)]
T , and the S(t)×N sampling matrix St contains

ones at positions (s, ns(t)), s = 1, . . . , S(t) and zeros elsewhere.
The broad goal of this section is to “reconstruct” f from the observations

{yt}t in (35). Two formulations will be considered.
Batch formulation. In the batch reconstruction problem, one aims at find-
ing {f t}Tt=1 given {G(t)}Tt=1, the sample locations {St}Tt=1, and all observations
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{yt}Tt=1.
Online formulation. At every time t, one is given G together with St and yt,
and the goal is to find f t. The latter can be obtained possibly based on a previous
estimate of f t−1, but the complexity per time slot t must be independent of t.

To solve these problems, we will rely on the assumption that f evolves
smoothly over space and time, yet more structured dynamics can be incor-
porated if known.

3.1 Kernels on extended graphs

This section extends the kernel-based learning framework of §2 to subsume time-
evolving functions over possibly dynamic graphs through the notion of graph
extension, by which the time dimension receives the same treatment as the
spatial dimension. The versatility of kernel-based methods to leverage spatial
information [23] is thereby inherited and broadened to account for temporal
dynamics as well. This vantage point also accommodates time-varying sampling
sets and topologies.

3.1.1 Extended graphs

An immediate approach to reconstructing time-evolving functions is to apply
(9) separately for each t = 1, . . . , T . This yields the instantaneous estimator
(IE)

f̂
(IE)
t := arg min

f

1

S(t)
||yt − Stf ||22 + µfTK†t f . (36)

Unfortunately, this estimator does not account for the possible relation between
e.g. f(vn, t) and f(vn, t− 1). If, for instance, f varies slowly over time, an
estimate of f(vn, t) may as well benefit from leveraging observations ys(τ) at
time instants τ 6= t. Exploiting temporal dynamics potentially reduces the
number of vertices that have to be sampled to attain a target reconstruction
performance, which in turn can markedly reduce sampling costs.

Incorporating temporal dynamics into kernel-based reconstruction, which
can only handle a single snapshot (cf. §2), necessitates an appropriate reformu-
lation of time-evolving function reconstruction as a problem of reconstructing
a time-invariant function. An appealing possibility is to replace G with its ex-
tended version G̃ := (Ṽ, Ã), where each vertex in V is replicated T times to
yield the extended vertex set Ṽ := {vn(t), n = 1, . . . , N, t = 1, . . . , T}, and the
(n+N(t−1), n′+N(t′−1))-th entry of the TN×TN extended adjacency matrix
Ã equals the weight of the edge (vn(t), vn′(t

′)). The time-varying function f
can thus be replaced with its extended time-invariant counterpart f̃ : Ṽ → R
with f̃(vn(t)) = f(vn, t).

Definition 1. Let V := {v1, . . . , vN} denote a vertex set and let G := (V, {At}Tt=1)
be a time-varying graph. A graph G̃ with vertex set Ṽ := {vn(t), n = 1, . . . , N, t =
1, . . . , T} and NT × NT adjacency matrix Ã is an extended graph of G if the
t-th N ×N diagonal block of Ã equals At.
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Figure 2: (a)Original graph (b) Extended graph G̃ for diagonal B
(T )
t . Edges

connecting vertices at the same time instant are represented by solid lines
whereas edges connecting vertices at different time instants are represented by
dashed lines.

In general, the diagonal blocks {At}Tt=1 do not provide full description of the
underlying extended graph. Indeed, one also needs to specify the off-diagonal
block entries of Ã to capture the spatio-temporal dynamics of f .

As an example, consider an extended graph with

Ã = btridiag{A1, . . . ,AT ; B
(T )
2 , . . . ,B

(T )
T } (37)

where B
(T )
t ∈ RN×N+ connects {vn(t− 1)}Nn=1 to {vn(t)}Nn=1, t = 2, . . . , T and

btridiag{A1, . . . ,AT ; B2, . . . ,BT } represents the symmetric block tridiagonal
matrix:

Ã =



A1 BT
2 0 . . . 0 0

B2 A2 BT
3 . . . 0 0

0 B3 A3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . AT−1 BT

T

0 0 0 . . . BT AT


.

For instance, each vertex can be connected to its neighbors at the previous

time instant by setting B
(T )
t = At−1, or it can be connected to its replicas at

adjacent time instants by setting B
(T )
t to be diagonal.

3.1.2 Batch and online reconstruction via space-time kernels

The extended graph enables a generalization of the estimators in §2 for time-
evolving functions. The rest of this subsection discusses two such KRR estima-
tors.

Consider first the batch formulation, where all the S̃ :=
∑T
t=1 St samples in

ỹ := [yT1 , . . . ,y
T
T ]T are available, and the goal is to estimate f̃ := [fT1 , . . . , f

T
T ]T .

Directly applying the KRR criterion in (9) to reconstruct f̃ on the extended
graph G̃ yields

ˆ̃
f := arg min

f̃

||ỹ − S̃̃f ||2D + µ̃fT K̃†̃f (38a)
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where K̃ is now a TN × TN “space-time” kernel matrix,
S̃ := bdiag {S1, . . . ,ST }, and D := bdiag

{
S(1)IS(1), . . . , S(T )IS(T )

}
. If K̃

is invertible, (38a) can be solved in closed form as

ˆ̃
f = K̃S̃T (S̃K̃S̃T + µD)−1ỹ. (38b)

The “space-time” kernel K̃, captures complex spatiotemporal dynamics. If the
topology is time invariant, K̃ can be specified in a bidimensional plane of spatio-
temporal frequency similar to §2.25.

In the online formulation, one aims to estimate f t after the S̃(t) :=
∑t
τ=1 S(τ)

samples in ỹt := [yT1 , . . . ,y
T
t ]T become available. Based on these samples, the

KRR estimate of f̃ , denoted as
ˆ̃
f1:T |t, is clearly

ˆ̃
f1:T |t := arg miñf ||ỹt − S̃t̃f ||2Dt

+ µ̃fT K̃−1̃f (39a)

= K̃S̃Tt (S̃tK̃S̃Tt + µDt)
−1ỹt. (39b)

where K̃ is assumed invertible for simplicity, Dt := bdiag
{
S(1)IS(1), . . . , S(t)IS(t)

}
,

and S̃t := [diag {S1, . . . ,St} ,0S̃(t)×(T−t)N ] ∈ {0, 1}S̃(t)×TN .

The estimate in (39) comprises the per slot estimates {f̂τ |t}Tτ=1; that is,
ˆ̃
f1:T |t := [f̂T1|t, . . . , f̂TT |t]

T with f̂τ |t := [f̂1(τ |t), . . . , f̂N (τ |t)]T , where f̂τ |t (respec-

tively f̂n(τ |t)) is the KRR estimate of fτ (f(vn, τ)) given the observations up
to time t. With this notation, it follows that for all t, τ

f̂τ |t = (iTT ,τ ⊗ IN )
ˆ̃
f1:T |t. (40)

Regarding t as the present, (39) therefore provides estimates of past, present,
and future values of f . The solution to the online problem comprises the se-
quence of present KRR estimates for all t, that is, {f̂ t|t}Tt=1. This can be ob-
tained by solving (39a) in closed form per t as in (39b), and then applying (40).
However, such an approach does not yield a desirable online algorithm since its

complexity per time slot is O(S̃
3
(t)), and therefore increasing with t. For this

reason, this approach is not satisfactory since the online problem formulation
requires the complexity per time slot of the desired algorithm to be indepen-
dent of t. An algorithm that does satisfy this requirement yet provides the exact
KRR estimate is presented next when the kernel matrix is any positive definite
matrix K̃ satisfying

K̃−1 = btridiag{D1, . . . ,DT ; C2, . . . ,CT } (41)

for some N×N matrices {Dt}Tt=1 and {Ct}Tt=2. Kernels in this important family
are designed in [54].

5For general designs of space-time kernels K̃ for time-invariant as well as time-varying
topologies see [54].
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Algorithm 1: Recursion to set the parameters of the KKF

Input: Dt, t = 1, . . . , T , Ct, t = 2, . . . , T .
1: Set Σ−1

T = DT

2: for t = T , T − 1, . . . , 2 do
3: Pt = −ΣtCt

4: Σ−1
t−1 = Dt−1 −PT

t Σ−1
t Pt

Output: Σt, t = 1, . . . , T , Pt, t = 2, . . . , T

If K̃ is of the form (41) then the kernel Kalman filter (KKF) in Algorithm 2

returns the sequence {f̂ t|t}Tt=1, where f̂ t|t is given by (40). The N × N matri-
ces {Pτ}Tτ=2 and {Στ}Tτ=1 are obtained offline by Algorithm 1, and σ2

e(τ) =
µS(τ) ∀τ .

The KKF generalizes the probabilistic KF since the latter is recovered upon
setting K̃ to be the covariance matrix of f̃ in the probabilistic KF. The as-
sumptions made by the probabilistic KF are stronger than those involved in the
KKF. Specifically, in the probabilistic KF, f t must adhere to a linear state-space
model, f t = Ptf t−1 +ηt, with known transition matrix Pt, where the state noise
ηt is uncorrelated over time and has known covariance matrix Σt. Furthermore,
the observation noise et must be uncorrelated over time and have known covari-
ance matrix. Correspondingly, the performance guarantees of the probabilistic
KF are also stronger: the resulting estimate is optimal in the mean-square er-
ror sense among all linear estimators. Furthermore, if ηt and yt are jointly
Gaussian, t = 1, . . . , T , then the probabilistic KF estimate is optimal in the
mean-square error sense among all (not necessarily linear) estimators. In con-
trast, the requirements of the proposed KKF are much weaker since they only
specify that f must evolve smoothly with respect to a given extended graph.
As expected, the performance guarantees are similarly weaker; see e.g. [18, Ch.
5]. However, since the KKF generalizes the probabilistic KF, the reconstruction
performance of the former for judiciously selected K̃ cannot be worse than the
reconstruction performance of the latter for any given criterion. The caveat,
however, is that such a selection is not necessarily easy.

For the rigorous statement and proof relating the celebrated KF [55, Ch. 17]
and the optimization problem in (39a), see [54]. Algorithm 2 requires O(N3)
operations per time slot, whereas the complexity of evaluating (39b) for the t-th

time slot is O(S̃
3
(t)), which increases with t and becomes eventually prohibitive.

Since distributed versions of the Kalman filter are well studied [56], decentralized
KKF algorithms can be pursued to further reduce the computational complexity.

3.2 Multi-kernel kriged Kalman filters

The following section applies the KRR framework presented in §2 to online data-
adaptive estimators of f t. Specifically, a spatio-temporal model is presented that
judiciously captures the dynamics over space and time. Based on this model
the KRR criterion over time and space is formulated, and an online algorithm
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Algorithm 2: Kernel Kalman filter (KKF)

Input: {Σt ∈ SN+}Tt=1, {Pt ∈ RN×N}Tt=2,

{yt ∈ RS(t)}Tt=1, {St ∈ {0, 1}S(t)×N}Tt=1,
{σ2

e(t) > 0}Tt=1.

1: Set f̂0|0 = 0, M0|0 = 0, P1 = 0
2: for t = 1, . . . , T do
3: f̂ t|t−1 = Ptf̂ t−1|t−1

4: Mt|t−1 = PtMt−1|t−1P
T
t + Σt

5: Gt = Mt|t−1S
T
t (σ2

e(t)I + StMt|t−1S
T
t )−1

6: f̂ t|t = f̂ t|t−1 + Gt(yt − Stf̂ t|t−1)
7: Mt|t = (I−GtSt)Mt|t−1

Output: f̂ t|t, t = 1, . . . , T ; Mt, t = 1, . . . , T .

is derived with affordable computational complexity, when the kernels are pre-
selected. To bypass the need for selecting an appropriate kernel, this section
discusses a data-adaptive multi-kernel learning extension of the KRR estimator
that learns the optimal kernel “on-the-fly.”

3.2.1 Spatio-temporal models

Consider modeling the dynamics of f t separately over time and space as f(vn, t) =
f (ν)(vn, t) + f (χ)(vn, t), or in vector form

f t = f
(ν)
t + f

(χ)
t (42)

where f
(ν)
t := [f (ν)(v1, t), . . . , f

(ν)(vN , t)]
T and f

(χ)
t := [f (χ)(v1, t), . . . , f

(χ)(vN , t)]
T .

The first term {f (ν)
t }t captures only spatial dependencies, and can be thought

of as exogenous input to the graph that does not affect the evolution of the
function in time.

The second term {f (χ)
t }t accounts for spatio-temporal dynamics. A popular

approach [57, Ch. 3] models f
(χ)
t with the state equation

f
(χ)
t = At,t−1f

(χ)
t−1 + ηt, t = 1, 2, . . . (43)

where At,t−1 is a generic transition matrix that can be chosen e.g. as the N×N
adjacency of a possibly directed “transition graph,” with f

(χ)
0 = 0, and ηt ∈ RN

capturing the state error. The state transition matrix At,t−1 can be selected
in accordance with the prior information available. Simplicity in estimation
motivates the random walk model [58], where At,t−1 = αIN with α > 0. On
the other hand, adherence to the graph, prompts the selection At,t−1 = αA, in
which case (43) amounts to a diffusion process on the time-invariant graph G.
The recursion in (43) is a vector autoregressive model (VARM) of order one,
and offers flexibility in tracking multiple forms of temporal dynamics [57, Ch.
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3]. The model in (43) captures the dependence between f (χ)(vn, t) and its time
lagged versions {f (χ)(vn, t− 1)}Nn=1.

Next, a model with increased flexibility is presented to account for instan-
taneous spatial dependencies as well

f
(χ)
t = At,tf

(χ)
t + At,t−1f

(χ)
t−1 + ηt, t = 1, 2, . . . (44)

where At,t encodes the instantaneous relation between f (χ)(vn, t) and {f (χ)(vn′ , t)}n′ 6=n.
The recursion in (44) amounts to a structural vector autoregressive model
(SVARM) [47]. Interestingly, (44) can be rewritten as

f
(χ)
t = (IN −At,t)

−1At,t−1f
(χ)
t−1 + (IN −At,t)

−1ηt (45)

where IN −At,t is assumed invertible. After defining η̃t := (IN −At,t)
−1ηt and

Ãt,t−1 := (IN −At,t)
−1At,t−1, (44) boils down to

f
(χ)
t = Ãt,t−1f

(χ)
t−1 + η̃t (46)

which is equivalent to (43). This section will focus on deriving estimators based
on (43), but can also accommodate (44) using the aforementioned reformulation.

Modeling f t as the superposition of a term f
(χ)
t capturing the slow dynam-

ics over time with a state space equation, and a term f
(ν)
t accounting for fast

dynamics is motivated by the application at hand [58–60]. In the kriging termi-

nology [59], f
(ν)
t is said to model small-scale spatial fluctuations, whereas f

(χ)
t

captures the so-called trend. The decomposition (42) is often dictated by the

sampling interval: while f
(χ)
t captures slow dynamics relative to the sampling

interval, fast variations are modeled with f
(ν)
t . Such a modeling approach is

motivated in the prediction of network delays [58], where f
(χ)
t represents the

queuing delay while f
(ν)
t the propagation, transmission, and processing delays.

Likewise, when predicting prices across different stocks, f
(χ)
t captures the daily

evolution of the stock market, which is correlated across stocks and time sam-

ples, while f
(ν)
t describes unexpected changes, such as the daily drop of the stock

market due to political statements, which are assumed uncorrelated over time.

3.2.2 Kernel kriged Kalman filter

The spatio-temporal model in (42), (43) can represent multiple forms of spatio-
temporal dynamics by judicious selection of the associated parameters. The
batch KRR estimator over time yields

arg min
{f (χ)
τ ,ητ ,f

(ν)
τ ,fτ}tτ=1

t∑
τ=1

1
S(τ)‖yτ − Sτ fτ‖2 + µ1

t∑
τ=1

‖ητ‖2K(η)
τ

+ µ2

t∑
τ=1

‖f (ν)
τ ‖2K(ν)

τ

s.t. ητ = f (χ)
τ −Aτ,τ−1f

(χ)
τ−1, fτ = f (ν)

τ + f (χ)
τ , τ = 1, . . . , t. (47)

The first term in (47) penalizes the fitting error in accordance with (1). The
scalars µ1, µ2 ≥ 0 are regularization parameters controlling the effect of the
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kernel regularizers, while prior information about {f (ν)
τ ,ητ}tτ=1 may guide the

selection of the appropriate kernel matrices. The constraints in (47) imply

adherence to (43) and (42). Since the f
(ν)
τ ,ητ are defined over the time-evolving

G(τ), a potential approach is to select Laplacian kernels as K
(ν)
τ ,K

(η)
τ , see §2.2.

Next, we rewrite (47) in a form amenable to online solvers, namely

arg min
{f (χ)
τ ,f

(ν)
τ }tτ=1

t∑
τ=1

1
S(τ)‖yτ − Sτ f

(χ)
τ − Sτ f

(ν)
τ ‖2 +

+µ1

t∑
τ=1

‖f (χ)
τ − Aτ,τ−1f

(χ)
τ−1‖2K(η)

τ
+

+µ2

t∑
τ=1

‖f (ν)
τ ‖2K(ν)

τ
. (48)

In a batch form the optimization in (48) yields {̂f (ν)
τ |t , and f̂

(χ)
τ |t }

t
τ=1 per

slot t with complexity that grows with t. Fortunately, the filtered solutions

{̂f (ν)
τ |τ , f̂

(χ)
τ |τ}

t
τ=1 of (48), are attained by the kernel kriged Kalman filter (KeKriKF)

in an online fashion. For the proof the reader is referred to [61]. One iteration
of the proposed KeKriKF is summarized as Algorithm 3. This online estimator
– with computational complexity O(N3) per t – tracks the temporal variations
of the signal of interest through (43), and promotes desired properties such

as smoothness over the graph, using K
(ν)
t . and K

(η)
t . Different from existing

KriKF approaches over graphs [58], the KeKriKF takes into account the un-

derlying graph structure in estimating f
(ν)
t as well as f

(χ)
t . Furthermore, by

using Lt in (16), it can also accommodate dynamic graph topologies. Finally, it
should be noted that KeKriKF encompasses as a special case the KriKF, which
relies on knowing the statistical properties of the function [58–60,62].

Lack of prior information prompts the development of data-driven approaches
that efficiently learn the appropriate kernel matrix. In the next section, we dis-
cuss an online MKL approach for achieving this goal.

3.2.3 Online multi-kernel Learning

To cope with lack of prior information about the pertinent kernel, the following
dictionaries of kernels will be considered Dν := {K(ν)(m) ∈ SN+}

Mν
m=1 and Dη :=

{K(η)(m) ∈ SN+}
Mη

m=1. For the following assume that K
(ν)
τ = K(ν), K

(η)
τ = K(η)

and Sτ = S, ∀τ . Moreover, we postulate that the kernel matrices are of the
form K(ν) = K(ν)(θ(ν)) =

∑Mν

m=1 θ
(ν)(m)K(ν)(m) and K(η) = K(η)(θ(η)) =∑Mη

m=1 θ
(η)(m)K(η)(m), where θ(η)(m), θ(ν)(m) ≥ 0, ∀m.

Next, in accordance with §2.3 the coefficients θ(ν) = [θ(ν)(1), . . . , θ(ν)(M)]T

and θ(η) = [θ(η)(1), . . . , θ(η)(M)]T can be found by jointly minimizing (48) with
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Algorithm 3: Kernel Kriged Kalman filter (KeKriKF)

Input: K
(η)
t ; K

(ν)
t ∈ SN+ ; At,t−1 ∈ RN×N ; yt ∈ RS(t); St ∈ {0, 1}S(t)×N .

1: K̄
(χ)
t = 1

µ2
StK

(ν)
t STt + S(t)IS(t)

2: f̂
(χ)
t|t−1 = At,t−1̂f

(χ)
t−1|t−1

3: Mt|t−1 = At,t−1Mt−1|t−1A
T
t,t−1 + 1

µ1
K

(η)
t

4: Gt = Mt|t−1S
T
t (K̄

(χ)
t + StMt|t−1S

T
t )−1

5: Mt|t = (I−GtSt)Mt|t−1

6: f̂
(χ)
t|t = f̂

(χ)
t|t−1 + Gt(yt − St̂f

(χ)
t|t−1)

7: f̂
(ν)
t|t = K

(ν)
t STt K̄

(χ)
t

−1
(yt − St̂f

(χ)
t|t )

Output: f̂
(χ)
t|t ; f̂

(ν)
t|t ; Mt|t.

respect to {f (χ)
τ , f

(ν)
τ }tτ=1,θ

(ν) and θ(η) that yields

arg min
{f(χ)
τ ,f

(ν)
τ }tτ=1,

θ(ν)≥0,θ(η)≥0

t∑
τ=1

1
S ‖yτ − Sf (χ)

τ − Sf (ν)
τ ‖2 + µ1

t∑
τ=1

‖f (χ)
τ − Aτ,τ−1f

(χ)
τ−1‖2K(η)(θ(η))

+µ2

t∑
τ=1

‖f (ν)
τ ‖2K(ν)(θ(ν)) + tρν‖θ(ν)‖22 + tρη‖θ(η)‖22 (49)

where ρν , ρη ≥ 0 are regularization parameters, that effect a ball constraint on
θ(ν) and θ(η), weighted by t to account for the first three terms that are growing
with t. Observe that the optimization problem in (49) gives time varying esti-

mates θ
(ν)
t and θ

(η)
t allowing to track the optimal K(ν) and K(η) that change

over time respectively.

The optimization problem in (49) is not jointly convex in {f (χ)
τ , f

(ν)
τ }tτ=1,θ

(ν),θ(η),
but it is separately convex in these variables. To solve (49) alternating mini-
mization strategies will be employed, that suggest optimizing with respect to
one variable, while keeping the other variables fixed [63]. If θ(ν),θ(η) are con-
sidered fixed, (49) reduces to (48), which can be solved by Algorithm 3 for

the estimates f̂
(χ)
t|t , f̂

(ν)
t|t at each t. For {f (χ)

τ , f
(ν)
τ }tτ=1 fixed and replaced by

{̂f (χ)
τ |τ , f̂

(ν)
τ |τ}

t
τ=1 in (48) the time-varying estimates of θ(ν),θ(η) are found by

θ̂
(η)
t = arg min

θ(η)≥0

1
t

t∑
τ=1

‖̂f (χ)
τ |τ − Aτ,τ−1̂f

(χ)
τ−1|τ−1‖

2
K(η)(θ(η)) +

ρη
µ1
‖θ(η)‖22 (50a)

θ̂
(ν)
t = arg min

θ(ν)≥0

1
t

t∑
τ=1

‖̂f (ν)
τ |τ‖

2
K(ν)(θ(ν)) + + ρν

µ2
‖θ(ν)‖22. (50b)

The optimization problems (50a) and (50b) are strongly convex and iterative
algorithms are available based on projected gradient descent (PGD) [64], or the
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Frank-Wolfe algorithm [65]. When the kernel matrices belong to the Laplacian
family (16), efficient algorithms that exploit the common eigenspace of the ker-
nels in the dictionary have been developed in [61]. The proposed method reduces
the per step computational complexity of PGD from a prohibitive O(N3M)
for general kernels to a more affordable O(NM) for Laplacian kernels. The
proposed algorithm, termed multi-kernel KriKF (MKriKF) alternates between

computing f̂
(χ)
t|t and f̂

(ν)
t|t utilizing the KKriKF and estimating θ̂

(ν)
t and θ̂

(η)
t from

solving (50b) and (50a).

3.3 Numerical tests

This section compares the performance of the methods we discussed in §3.1
and §3.2 with state-of-the-art alternatives, and illustrates some of the trade-offs
inherent to time-varying function reconstruction through real-data experiments.
The source code for the simulations is available at the authors’ websites.

Unless otherwise stated, the compared estimators include distributed least
squares reconstruction (DLSR) [52] with step size µDLSR and parameter βDLSR;
the least mean-squares (LMS) algorithm in [53] with step size µLMS; the ban-
dlimited instantaneous estimator (BL-IE), which results after applying [11, 13,
15] separately per t; and the KRR instantaneous estimator (KRR-IE) in (36)
with a diffusion kernel with parameter σ. DLSR, LMS, and BL-IE also use a
bandwidth parameter B.
Reconstruction via extended graphs. For our first experiment we use
a dataset obtained from an epilepsy study [66], which is used to showcase an
example analysis of electrocorticography (ECoG) data (analysis of ECoG data
is a standard tool in diagnosing epilepsy). Our next experiment utilizes the
ECoG time series in [66] from N = 76 electrodes implanted in a patient’s brain
before and after the onset of a seizure. A symmetric time-invariant adjacency
matrix A was obtained using the method in [47] with ECoG data before the
onset of the seizure. Function f(vn, t) comprises the electrical signal at the n-th
electrode and t-th sampling instant after the onset of the seizure, for a period
of T = 250 samples. The values of f(vn, t) were normalized by subtracting the
temporal mean of each time series before the onset of the seizure. The goal
of the experiment is to illustrate the reconstruction performance of KKF in
capturing the complex spatio-temporal dynamics of brain signals.

Fig. 3(a) depicts the NMSE(t, {Sτ}tτ=1), averaged over all sets St = S, ∀t,
of size S = 53. For the KKF, a space-time kernel was created (see [54]) with

Kt a time-invariant covariance kernel Kt = Σ̂, where Σ̂ was set to the sample
covariance matrix of the time series before the onset of the seizure, and with a
time-invariant B(T ) = b(T )I. The results clearly show the superior reconstruc-
tion performance of the KKF, which successfully exploits the statistics of the
signal when available, among competing approaches, even with a small num-
ber of samples. This result suggests that the ECoG diagnosis technique could
be efficiently conducted even with a smaller number of intracranial electrodes,
which may have a posite impact on the patient’s experience.
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Figure 3: NMSE for real data simulations.

Reconstruction via KeKriKF. The second dataset is provided by the Na-
tional Climatic Data Center [67], and comprises hourly temperature measuments
at N = 109 measuring stations across the continental United States in 2010. A
time-invariant graph was constructed as in [54], based on geographical distances.
The value f(vn, t) represents the temperature recorded at the n-th station and
t-th day.

Fig. 3(b) reports the performance of different reconstruction algorithms in
terms of NMSE, for S = 40. The KeKriKF Algorithm 3 adopts a diffusion
kernel for K(ν) with σ = 1.8, and for K(η) = sηIN with sη = 10−5. The multi-
kernel kriged Kalman filter (MKriKF) is configured with: Dν that contains Mν

diffusion kernels with parameters {σ(m)}Mν
m=1 drawn from a Gaussian distribu-

tion with mean µν and variance rν ; Dη that contains Mη sηIN with parameters

{sη(m)}Mη

m=1 drawn from a Gaussian distribution with mean µη and variance
rη. The specific kernel selection for KeKriKF leads to the smallest NMSE error
and were selected using cross validation. Observe that MKriKF captures the
spatio-temporal dynamics, successfully explores the pool of available kernels,
and achieves superior performance.

The third dataset is provided by the World Bank Group [68] and comprises
of the gross domestic product (GDP) per capita values for N = 127 countries
for the years 1960-2016. A time-invariant graph was constructed using the
correlation between the GDP values for the first 25 years of different countries.
The graph function f(vn, t) denotes the GDP value reported at the n-th country
and t-th year for t = 1985, . . . , 2016. The graph fourier transform of the GDP
values shows that the graph frequencies f̌k, 4 < k < 120 take small values
and large values otherwise. Motivated by the aforementioned observation, the
KKriKF is configured with a band-reject kernel K(ν) that results after applying
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Figure 4: NMSE for GDP data.

r(λn) = β for k ≤ n ≤ N − l and r(λn) = 1/β otherwise in (16) with k = 3, l =
6, β = 15 and for K(η) = sηIN with sη = 10−4. The MKriKF adopts a Dν
that contains band-reject kernels with k ∈ [2, 4], l ∈ [3, 6], β = 15 that result to
Mν = 12 kernels and a Dη that contains {sη(m)IN}40

m=1 with sη(m) drawn from
a Gaussian distribution with mean µη = 10−5 and variance rη = 10−6. Next,
the performance of different algorithms in tracking the GDP value is evaluated
after sampling S = 38 countries.

Fig. 4 illustrates the actual GDP as well as GDP estimates for Greece, that is
not contained in the sampled countries. Clearly, MKriKF, that learns the perti-
nent kernels from the data, achieves roughly the same performance of KKriKF,
that is configured manually to obtain the smallest possible NMSE.

4 Summary

The task of reconstructing functions defined on graphs arises naturally in a
plethora of applications. The kernel-based approach offers a clear, principled
and intuitive way for tackling this problem. In this chapter, we gave a con-
temporary treatment of this framework focusing on both time-invariant and
time-evolving domains. The methods presented herein offer the potential of
providing an expressive way to tackle interesting real-world problems. Besides
illustrating the effectiveness of the discussed approaches, our tests were also
chosen to showcase interesting application areas as well as reasonable modeling
approaches for the interested readers to build upon. For further details about
the models discussed here and their theoretical properties, the reader is referred
to [23,42,61,69–71] and the references therein.
Acknowledgement. The research was supported by NSF grants 1442686,
1500713, 1508993, 1509040, and 1739397.
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