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Université Lille 1

LIFL CNRS – INRIA Lille
France

bilel.derbel@lifl.fr

ABSTRACT
We consider the neighborhood tree induced by alternating the use

of different neighborhood structures within a local search descent.

We investigate the issue of designing a search strategy operating

at the neighborhood tree level by exploring different paths of the

tree in a heuristic way. We show that allowing the search to ’back-

track’ to a previously visited solution and resuming the iterative

variable neighborhood descent by ’pruning’ the already explored

neighborhood branches leads to the design of effective and effi-

cient search heuristics. We describe this idea by discussing its ba-

sic design components within a generic algorithmic scheme and

we propose some simple and intuitive strategies to guide the search

when traversing the neighborhood tree. We conduct a thorough ex-

perimental analysis of this approach by considering two different

problem domains, namely, the Total Weighted Tardiness Problem

(SMTWTP), and the more sophisticated Location Routing Problem

(LRP). We show that independently of the considered domain, the

approach is highly competitive. In particular, we show that using

different branching and backtracking strategies when exploring the

neighborhood tree allows us to achieve different trade-offs in terms

of solution quality and computing cost.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving and Search—Heuris-

tic methods

General Terms
Algorithms,

Keywords
Metaheuristics, neighborhood combination, VND, VNS.

1. INTRODUCTION
Context and Motivation: Metaheuristics are now considered as

a well established algorithmic framework providing flexible and

powerful tools to solve many hard optimization problems. Many

efforts are being made by the research community in order to de-

velop new search methods to help the design of both effective and
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efficient algorithms. In this paper, we build on previous techniques

by developing an intuitive idea based on exploiting different neigh-

borhoods in a forward-backward manner to explore what we term

the neighborhood tree. Generally speaking, we consider the possi-

bility of making backward moves to a solution previously explored

by some neighborhoods, and continue the search from there using

other different neighborhoods searching for a better neighborhood

combination. In the following, we first review some previous re-

lated works, then after, we give our contribution and describe our

findings in more details.

Background and related works: Among other search techniques,

variable neighborhood search (VNS) and its several variants [14]

are based on the systemic change of neighborhood within the search.

For instance, Variable Neighborhood Descent (VND) exploits the

idea of alternating between several neighborhoods within an itera-

tive local improvement descent to escape local optima. More pre-

cisely, starting with a first neighborhood structure, VND performs

local search until no further improvements are possible. From this

local optimum, the local search is continued with the next neigh-

borhood. If an improving solution is found, then the local search

continues with the first neighborhood, otherwise the next available

neighborhood is explored, and so on until no further improvements

can be obtained. It is well known that the performance of VND

can highly depend on the order the neighborhoods are alternated.

In standard variants of VND, it is often admitted that ordering

neighborhoods in an increasing cost/size is a reasonable strategy.

However, this standard strategy is not always applicable, for in-

stance, when the best ordering for a given problem can vary from

one instance to another one. Actually, the issue of how to com-

bine/exploit/search different neighborhoods is not new and one can

find many different studies on the subject. For instance, in [22],

a fast relaxation of neighborhoods is evaluated in order to select

the most accurate ones. In [16], a self-adaptive strategy is used

to rank neighborhoods and to dynamically choose the best suited

ordering. A number of specific multi-neighborhood combination

functions can also be found. For instance, many studies consider to

take the union of some basic neighborhoods. The so-called neigh-

borhood composition and the token-ring search are also other well

known neighborhood combination functions, see e.g., [18, 10, 12,

17]. More generally, hyperheuristics [4] can be considered as a

high level approach operating in the neighborhood space and aim-

ing at producing effective hyper-search strategies. For instance,

in [6, 21], simple hyperheuristic selection strategies are considered

where low level heuristics (neighborhoods) are chosen either ran-

domly, or greedily, or based on a score function. Several other

sophisticated hyper-strategies, mainly inspired by the way meta-

heuristics operate, can be found in the literature, see e.g., [5].



Technique overview and results: The study conducted in this pa-

per is based on the simple observation that defining how neigh-

borhoods are alternated within a local search descent is nothing

other than defining a specific strategy to traverse a neighborhood

tree, where the root of the tree represents the initial candidate solu-

tion and intermediate nodes represent solutions obtained by apply-

ing one of the possible neighborhoods. In other words, we view

the trajectory of a variable neighborhood search as a high level

neighborhood path, where path nodes are solutions and every path

hop represents the exploration of one solution using one neighbor-

hood among those available. Following this observation, we term a

neighborhood tree search (NTS) a strategy which is able to traverse

the neighborhood tree efficiently searching for promising paths. It

should be clear that a systematic traversal (exploration of all neigh-

borhood branches) could not be efficient especially when the num-

ber of neighborhoods is high.

In this paper, we focus on the possibility of backtracking to pre-

viously visited solutions while branching and pruning tree nodes

all along a search path. We show that this idea with basic itera-

tive improvement descents leads to efficient search strategies both

in terms of solution quality and computing cost. More specifically,

we consider a simple randomized neighborhood selection strategy,

where the choice of which neighborhood to select at runtime is

made uniformly at random among those not yet explored. When

effectively branching a neighborhood, we consider both determin-

istic and randomized adaptive strategies, basically relying on the

neighborhood path traversed by the search in previous rounds. As

for backtracking, we investigate intuitive strategies based on ran-

dom and tournament selection techniques. We would like to em-

phasize that the proposed approach and its design components are

generic and not specific to a fixed problem nor to any particular

neighborhood class.

We study the properties of the proposed approach by consider-

ing several instances coming from two different and well-studied

problem domains: the Single Machine Total Weighted Tardiness

Problem (SMTWTP) in the family of scheduling problems, and

Location Routing Problem (LRP). Both problems are NP-Hard.

Many previous studies have been successfully applied to solve the

SMTWTP using hybrid variable neighborhood like searches. LRP

is a more sophisticated problem which involves two simultaneous

decisions: which depots to open and what routes to plan. Common

to these two problems, many natural neighborhood structures can

be considered making them two excellent case studies to analyze

how our neighborhood tree based approach performs under differ-

ent scenarios. Through extensive experiments, we show that our ap-

proach leads to substantial improvements in the solving of the two

considered problems. More specifically, for SMTWTP we consider

three neighborhood structures and we show that NTS performs bet-

ter than standard VND executed with any neighborhood ordering,

i.e., NTS is able to dynamically find its way along the neighbor-

hood tree without any specific tuning. For LRP, we consider eleven

neighborhoods and a finely tuned VNS algorithm. Ultimately, we

show that NTS is able to beat VNS without requiring any specific

perturbation/shaking phase, but the backtracking it-slef. More im-

portantly, VNS is used as a base-line algorithm allowing us to show

how NTS performs when instantiating its components following

different strategies. This allows us to give insights into the behav-

ior of NTS and to better understand its critical design issues. In

particular, we show that NTS can lead to different (and incompa-

rable) trade-offs in terms of solution quality and running time. In

a general point of view, our study reveals that NTS is a promising

approach offering many interesting search abilities.

Outline: In Section 2, we give an algorithmic scheme for NTS and

describe intuitive strategies to be analyzed later. In Section 3, we

describe the considered problems and neighborhoods. In Section 4

(resp. 5), we analyze NTS and give our experimental results.

2. NEIGHBORHOOD TREE SEARCH (NTS)

2.1 Preliminaries
Let us assume that we are given an optimization problem and a

set of corresponding neighborhoods. We aim at designing an algo-

rithm that exploits those neighborhoods as efficiently as possible.

For simplicity, assume in addition that we have a step function that

given a candidate solution s returns a solution s′ computed w.r.t.

one neighborhood. Having an initial solution s0, we then term the

neighborhood tree T the (possibly infinite) tree structure obtained

by the following process. The root node of T is the initial solu-

tion s0. The first level of T , are the candidate solutions obtained

from s0 by applying the previously defined step function w.r.t. ev-

ery available neighborhood. The jth level is then constructed re-

cursively from the internal nodes in the (j − 1)th level and so on.

Notice that this is a rather informal definition which is only given

for the sake of illustration and to clarify our preliminary remarks.

It is clear that designing a local search algorithm exploiting the

available neighborhoods can be viewed as designing a specific strat-

egy to explore the considered neighborhood tree. This is what we

term a neighborhood tree search (NTS) algorithm, i.e., a traver-

sal strategy of the neighborhood tree searching for paths leading

to promising regions. Designing such a traversal search algorithm

can be difficult for many reasons. Firstly, for many optimization

problems there may exist a relatively high number of natural neigh-

borhood structures, say a constant k > 2. Hence, a trivial ex-

haustive traversal of all tree nodes at height g(n), a function of the

problem size n, would require at least order of kg(n) steps, which

can be intractable. Secondly, the goal is not to systematically tra-

verse as many as possible tree nodes, but to find a path leading to

high quality solutions while paying the minimum computing cost.

Fortunately, we know that there exist heuristic traversal techniques

leading to relatively efficient and effective search algorithms. For

instance, this is the case for VND like search algorithms and many

others that could be viewed as specific traversal strategies. In this

paper, we focus on designing dynamic traversal heuristics where

at each step, one have to decide what neighborhood to consider

when going deeper in the neighborhood tree while backtracking to

a previously visited solution whenever the search stacks into non

promising tree regions.

2.2 A basic randomized NTS
Algorithm 1 gives a relatively detailed description of our first NTS

example. As input, we assume that we are given a set of k neigh-

borhood structures {N1, · · · ,Nk} relative to a given problem and

a fitness/evaluation function f to be minimized. Algorithm 1 main-

tains a trajectory path (variable Path) containing an ordered se-

quence of visited solutions with their neighborhood usage. This

is encoded by variable hs = (h1
s, · · · , h

k
s) where hi

s is 1 when-

ever neighborhood Ni has been used to explore solution s and 0
otherwise. The algorithm then proceeds iteratively by consider-

ing the last solution s (function HEAD) appearing in the trajectory

path. For that solution, a neighborhood Ni is chosen uniformly at

random among those that have not been used to explore s. A STEP

function is then applied to compute a new solution s′ and neighbor-

hood usage variable hi
s is updated. The STEP function could be for



instance any local search heuristic based on neighborhood struc-

ture Ni, e.g., a hill-climbing. Having explored a new neighbor-

hood, we shall decide whether to continue the search with solution

s′ or to backtrack. In Algorithm 1, a simple acceptance criterion

is used. More precisely, if the new explored solution s′ is found to

improve s then, we make a move forward by pushing s′ at the end

the trajectory path. Otherwise, we check whether there exists some

neighborhoods which have not been used to explore s. If such a

situation exists, we simply continue the inner-loop, that is we try to

find an improving solution by selecting uniformly at random a non

explored neighborhood w.r.t. the current solution s. Otherwise, a

backtrack move is activated (’else’ condition). Notice that in this

case, current solution s is not necessarily a local optimum w.r.t. all

neighborhoods. In fact, this depends on the STEP function and the

depth of s in the search trajectory. Backtracking in Algorithm 1 is

done using a simple uniform randomized selection process. More

precisely, among path solutions which are not yet explored by all

neighborhoods, one is chosen uniformly at random, say solution sj
at position j. The trajectory path is then updated by deleting those

solutions laying between sj and s. The search then continues from

sj in the same way until the trajectory path becomes empty.

Algorithm 1: A simple randomized variant of NTS

Input: A set of k neighborhood structures {N1, · · · ,Nk}
s← initial solution ;

(h1
s, · · · , h

k
s )← (0, · · · , 0) ; Path←

{

(s, (h1
s, · · · , h

k
s ))

}

;

repeat
/
∗∗

Current trajectory solution
∗∗
/

(s, hs)← HEAD(Path) ;

/
∗∗

Neighborhood Selection
∗∗
/

Is ← {ℓ | h
ℓ
s = 0} ;

i← RANDOM(Is) ;

/
∗∗

Neighborhood Exploration
∗∗
/

s′ ← STEP(s,Ni);
hi
s ← 1 ;

/
∗∗

Move or Backtrack
∗∗
/

if f(s) < f(s′) then
hs′ ← (0, · · · , 0) ;

Path← PUSH
(

(s′, hs′), Path
)

;

else if |Is|+ 1 = k then
Path← RANDOM BACKTRACK(Path);

until Path = ∅ ;

2.3 NTS generic scheme and variants
Algorithm 1 given in the previous section is clearly a specific im-

plementation of the more generic scheme given in Algorithm 2.

Generally speaking, Algorithm 2 is in fact an attempt to give a high

level procedural description of a NTS like algorithm. In particular,

we identify the history variable which is typically used to record in-

formation about search trajectory and neighborhood performance.

We also have the neighborhood selection stage which role is to help

the search going towards promising neighborhood branches. The

STEP and ACCEPT function, play the role of branching/pruning.

These two functions should be thought in the same way classical

local search algorithms operate, but keeping in mind that possibly

several neighborhoods can be used. The third main stage of Algo-

rithm 2 is backtracking. Within NTS, backtracking serves mainly

to adapt the traversal when it is stack into paths that do not lead

to improvements. Backtracking should be thought with respect to

search history. In this paper, we study the properties of NTS by

considering the following particular variants.

Algorithm 2: general purpose design scheme for NTS

Input: A set of k neighborhood structures {N1, · · · ,Nk}.
s← initial solution; history ← ∅;

repeat
/∗∗ Neighborhood Selection Strategy ∗∗/

i← SELECT(s, history) ;

/
∗∗

Branching/Pruning Strategy
∗∗
/

s′ ← STEP(s,Ni, history);
if ACCEPT(s, s′, history) then

s← s′ ;

else
/
∗∗

Backtracking Strategy
∗∗
/

s← BACKTRACK(history) ;

until STOPPING CONDITION ;

Trajectory history: In all our variants, we record the path tra-

versed by the search and containing the branching solutions and

their relative neighborhood usage (exactly in the same way than in

Algorithm 1). We additionally record the (local) best fitness fbest
s

relative to each solution s and observed by the search when the

local step function STEP(s,Ni) is applied at position s.

Neighborhood Selection Strategy: We simply consider the ran-

domized process depicted in Algorithm 1, i.e., one neighborhood

among those not previously used at current path position is selected

uniformly at random.

Step function STEP(s,Ni) : we study four classical alternatives

denoted BI (best improvement), FI (first impr.), BD (best descent)

and FD (first descent). BI corresponds to the case where solution s′

is the neighbor of s (w.r.tNi) with the best fitness. For strategy FI,

s′ is the first neighbor of s which is found to have a better fitness

than s, when processing s neighbors in a random order. BD (resp.

FD) denotes a local search descent where BI (resp. FI) strategy is

applied until no improving neighbors can be found.

Acceptance/Branching criterion: We study three strategies de-

noted AA, AI, and AT. AA is exactly the same than in Algorithm 1,

i.e., any solution s′ that improves the fitness of current solution s
is accepted : f(s′) < f(s). AI denotes the strategy where solution

s′ is accepted if its fitness s is better than f best
s , i.e., f(s′) < f best

s .

AT is a combination of AA and AI. More specifically, a solution s′

is always accepted if f(s′) < f best
s . Otherwise, if f(s′) > f best

s ,

but f(s′) < f(s) then s′ is accepted with a probability parameter

pa. Otherwise s′ is not accepted. In our study, we adopt an adap-

tive strategy where pa = 1/d(s) with d(s) the position of solution

s in the trajectory path. In other words, a neighborhood, leading

to a branch improving s, but not improving the previous best local

fitness obtained using a different neighborhood, is accepted with a

probability which is proportional to the branch height in the neigh-

borhood tree, i.e., the more we are deep in the neighborhood tree,

the more it is unlikely to explore non improving branches.

Backtracking strategy: We consider three backtracking strategies

denoted BR, BH, BU. BR is the strategy depicted in Algorithm 1,

i.e., among path positions which are not yet explored by all neigh-

borhoods, one is chosen uniformly at random. BH and BR are

more sophisticated tournament-based selection strategies. More

precisely, for both BH and BR, we select two distinct path posi-

tions sj and sj′ uniformly at random among those not yet explored

by all neighborhoods. With BH, we backtrack to the solution which



is less deep in the trajectory path, i.e., if sj′ appears after sj in the

search path, then we backtrack to sj . With BU, we backtrack to the

solution which was explored less often by available neighborhoods.

Stopping Condition: We consider two different stopping condi-

tions: we end the search when (i) the path trajectory is empty, or

(ii) a maximum number of fitness evaluations is reached.

Terminology and notations: For clarity, we shall use the follow-

ing notation NTS-(X,Y,Z) where X ∈ {FI,BI,FD,BD} is

the step function, Y ∈ {AA,AI,AT} the branching/acceptance

strategy, and Z ∈ {BR,BH,BU} is the backtracking strategy.

3. PROBLEM DOMAINS
3.1 Single machine scheduling (SMTWTP)
Problem definition and motivation: In the Single Machine To-

tal Weighted Tardiness Problem, we are given n jobs. Each job

has to be processed without any interruption on a single machine

that can only process one job at a time. Each job has a process-

ing time pj , a due date dj and an associated weight wj (reflecting

the importance of the job). The tardiness of a job j is defined as

Tj = max{0, Cj − dj}, where Cj is the completion time of job

j in the current sequence of jobs. The goal is then to find a job

sequence minimizing the sum of the so-called weighted tardiness:
∑n

i=1 wi ·Ti. SMTWTP is NP-hard. Several different metaheuris-

tics have been proved to efficiently solve SMTWTP benchmark

instances, e.g., [11, 3, 13] to cite a few. SMTWTP is in fact a

well understood problem which is often used to study the proper-

ties of search heuristic methods. This paper is not an exception.

Although we are able to show that very simple NTS techniques

outperform previous more sophisticated and finely tuned heuristics

for SMTWTP, we shall rather focus on studying and understanding

the behavior of our NTS heuristics.

Neighborhoods: Permutations are the standard representation used

for SMTWTP. In this paper, we consider three standard neighbor-

hoods. Exchange (E): all permutations that can be obtained by

swapping adjacent jobs in the permutation. Swap (S): all permu-

tations that can be obtained by swapping adjacent jobs at the ith

and jth position. Insert (I): all permutations that can be obtained by

removing a job at position i and inserting it at position j.

Instances: We consider the well known 100 Job instance set, and at

a less extent, the 50 and 40 Job instances from the OR-Library [1].

Each instance set contains 125 instances.

3.2 Location Routing problem (LRP)
Problem definition and motivation: LRP [20, 19] deals with two

NP-hard problems, namely, facility location problem (FLP) and ve-

hicle routing problem (VRP). Roughly speaking, in LRP one has

to simultaneously decide which depots to open and what routes to

establish to satisfy client demands. Besides being a challenging

problem for local search heuristics, LRP is of special interest since

many neighborhoods can be naturally considered for both the loca-

tion and the routing level (which are known to be inter-dependent).

Many specific search strategies have been studied for LRP, e.g., [8,

7, 9] to cite a few. A common aspect in these studies is to find

a good balance for simultaneously searching the routing level and

the location level. In particular, there exist a rich literature on sev-

eral different neighborhoods dealing with the two LRP levels. This

makes the choice and the combination of neighborhoods critical

and thus LRP is an excellent candidate problem to study our ap-

proach. In this paper, we consider the uncapacitated vehicles and

capacitated LRP [2]. More specifically, we consider a set of n cus-

tomers and a set of m potential depots. Each depot has a limited

capacity and a fixed opening cost. Each depot is associated with

a single uncapacitated vehicle. Each customer has a non-negative

demand which is known in advance and should be satisfied. For

any pair of clients (or client-depot), there is an associated traveling

cost. LRP then consists in minimizing the total cumulative cost of

both depot opening (location) and client delivery (Routing).

Neighborhoods: We consider a natural representation of a candi-

date solution (not necessarily feasible) for LRP, namely, a list of

opened and non opened depots. For each depot, a permutation rep-

resents the assigned clients and their order in the route. We consider

eleven neighborhoods sketched in the following. N1 (resp. N2):

All solutions obtained by performing a client insertion move in the

permutation(s) encoding one single depot route (resp. two different

depot routes). N3 (resp. N4): All solutions obtained by performing

a swap move on the permutation(s) encoding one depot route (resp.

two depot routes). N5 (resp. N6): All solutions obtained by per-

forming a classical 2-opt move on the permutation(s) encoding one

depot route (resp. two depot routes). N7 (resp. N8): All solutions

obtained by performing an extended insertion move on the permu-

tation(s) encoding every route (resp. two different routes), that is

an insertion of any sub-route of any possible length, i.e., route bone

insertion. N9 (resp. N10): All solutions obtained by performing a

route bone insertion move as for neighborhoods N7 (resp. N8) but

while inserting clients sub-route in the reverse order. N11: All can-

didate solutions obtained by closing a depot and affecting its whole

route to a closed depot (close one depot and open a new one).

Since we are dealing with neighborhoods producing possibly un-

feasible solutions, we use an evaluation function f defined as fol-

lowing: f(s) = c(s)+ p(s) where c(s) is the cost of s as stated by

the objective function of LRP and p(s) is a penality on the viola-

tion of depot capacity constraints. It is calculated by the equation:

p(x) =
∑

j
α ·max{0, Qj(s)− bj} where α is a weight factor pa-

rameter, Qj(s) is the total demand of customers serviced by depot

j and bj is the capacity associated with depot j, i.e., the more depot

constraints are violated, the more is the penality and the more the

search is forced to move toward feasible regions.

Instances: We consider a set of 450 instances taken from the lit-

erature [2]. These instances can be grouped into finely defined

classes according LRP specific parameters. In our experimental

results, we simply group them into 5 sets according to the number

of clients (n) and the number of depots (m): (n,m) ∈ {(5, 10),
(5, 20), (5, 30), (10, 20), (10, 30)}. Each set is containing equally

the same number of instances, i.e., 90.

4. EXPERIMENTAL ANALYSIS: SMTWTP

4.1 Results with standard VND
For SMTWTP, we consider to study the behavior of our approach

compared to standard VND techniques. In Table 1, we report a

summary of results we have obtained for SMTWTP when running

a standard VND using the 6 possible ordering of neighborhoods

and the 4 possible strategies for making a local step move. In ac-

cordance with results reported in previous studies, e.g., [11], VND

is well suited for solving SMTWTP. In fact, the average percent-

age deviation from optimal is relatively low and around 90% of

instances are solved to optimality by at least one trial over 30 per-

formed in our experiments. However, one can notice that some

instances remain hard to solve by standard VND as reported in pre-

vious works. In addition, no fixed ordering nor local step strategy

outperforms all the others for all three measures reported in Table 1.

4.2 Results overview with NTS



Table 1: Results for standard VNDs with a random initial solution. Results are for the 100 job instances with 30 trials per instance.

First column gives neighborhood ordering, i.e., Exchange (E), Insert (I), Swap (S). FI, BI, FD and BD columns are for the local step

functions given in Section 2. Nopt is the number of optimal solutions found by at least one trial. ∆ is the average percentage deviation

from optimal and Eval is the average number of evaluations until search termination. Bold style is for best result (for each column).

Order
FI BI FD BD

Nopt Eval ∆ Nopt Eval ∆ Nopt Eval ∆ Nopt Eval ∆

EIS 102 140872.4 0.010 103 471156.4 0.015 113 121787.3 0.015 101 667976.4 0.019
ESI 106 121372.3 0.016 91 485211.7 0.018 102 106214.4 0.015 92 946366.1 0.019
IES 104 120262.4 0.017 96 1024409.3 0.022 95 101053.6 0.017 93 1006583.9 0.021
ISE 101 135572.1 0.013 96 865525.5 0.022 112 115144.1 0.014 103 871254.1 0.018
SEI 98 121220.9 0.017 93 1026960.0 0.021 102 100903.9 0.016 92 1007357.2 0.025
SIE 106 138007.4 0.015 101 864900.3 0.023 106 114412.0 0.014 105 871631.1 0.021
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Figure 1: Results for NTS-(*,AA,BR) Vs standard VND for 100
job instances (labels refer to search strategies). Top: cumula-

tive number of instances solved to optimality (Nopt) by at least

one trial over 30 as a function of number of fitness evaluations.

Bottom-Left: Evolution, with number of evaluations, of the av-

erage percentage deviation from optimal (∆) averaged over 30
trials. Bottom-Right: Evolution, with number of evaluations,

of the success rate averaged over the 125 instances.

For SMTWTP, the reported results are obtained with the simple

variant of NTS given in Algorithm 1, with random initial solution,

acceptance strategy AA, and backtracking strategy BR, i.e., NTS-

(∗, AA,BR). As stopping condition, the search terminates when

either a maximum number of evaluations, namely 107, is reached,

or the trajectory path becomes empty. Our results for NTS are sum-

marized in Fig. 1. Firstly, we remark that for both FD and BD local

step strategies, the search terminates before the maximum number

of evaluations is reached (Fig. 1 Top-left). At the opposite, for both

FI and BI the search continues without the backtracking being able

to force termination. This is mainly due to the relatively high tra-

jectory path length as we will discuss later. Furthermore, as could

be expected, first improvement strategies are less costly compared

to best improvement strategies. We also found that FI outperforms

all other step strategies both in computing cost and number of in-

stances solved to optimality. In fact, it is the only strategy which is

able to find an optimal solution (over the 30 performed trials) for

all the 125 instances.

Moreover, NTS using step functions FI and FD can be proved to

provide substantial improvements in all aspects over all the stan-

dard VND variants reported in Table 1. For the sake of clarity, we

only report our finding using one VND ordering, namely ESI. No-

tice however that similar conclusions can be drawn for the other

possible orderings. To be fair in our comparative study, we further

consider restarting the VND algorithm from a randomly generated

solution in the case VND terminates before the maximum number

of evaluations is reached. As shown in Fig.1 (Top-right and Bot-

tom), NTS outperforms VND both in terms of: cumulative number

of instances solved to optimality (Nopt), average percentage devi-

ation from optimal (∆), and average success rate that is the per-

centage of trials that do find the optimal solution, i.e., this can be

interpreted as the probability distribution of finding the optimal so-

lutions for all instances.

4.3 Run Time Distribution Analysis
In previous section, we showed that NTS performs better than VND

in general, i.e., results are mainly averaged over instances. In this

section, we go to a throughout comparative study. More specifi-

cally, we analyze the run-time behavior of NTS compared to stan-

dard VND by using run-time distributions (RTD) [15]. RTDs give

the cumulative empirically observed probability of finding an op-

timal solution (or a solution within a specific quality bound) for

a given instance as a function of the CPU time. In our study, we

use a slightly different definition, where probability is considered

as a function of number of evaluations. This is mainly to stay inde-

pendent of any specific implementation or operating system issues

(NTS running time issues are however studied in next section). We

examined the behavior of NTS with different step functions and

for several instances, mainly, those who are reputed to be relatively

hard. In Fig. 2 we present our results for only four instances, but

similar conclusions can be made for the others. The RTDs clearly

shows that NTS performs better than VND for three out of the four

instances, namely, 19, 38, and 41, even if optimality is not required.

For instance 86, the difference is less pronounced, with a small ad-

vantage in favor of NTS for fitness deviation of 1% from optimal.

4.4 NTS history analysis
Here, we give some basic observations about trajectory path used

by NTS. In Table 2, we report the maximum length hmax of the

trajectory path ever observed for any instance and any trial , and

hmax the maximum length (30 trials per one instance) averaged

over 125 instances of each problem size set.
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Figure 2: RTDs for NTS vs VND with random restart. The x-

axis gives the logarithm of the number of fitness evaluations,

the y-axis the cumulative empirical solution quality probabil-

ity. δ denotes the gap (in percentage) between the required so-

lution quality and the optimal solution. Top-Left figure (resp.

Top-Right, Bottom-Left and Bottom-Right) shows the results

for instance 19 (resp. 38, 42, and 86).

With the FD step function, the maximum length for the three in-

stance sets is at most 8 which is relatively very low. This is a

crucial observation that can be exploited in different manners for

backtracking. Let h be the maximum length that can be observed

which is also the maximum height for the neighborhood tree. As-

suming that the exploration of each of the k neighborhoods by the

step function FD requires a polynomial time in the problem size,

say p(n), then an exhaustive neighborhood tree traversal would

lead to an NTS algorithm with computing complexity of roughly

O(kh · p(n)). If h is proved to be a constant or even a very small

function in n, then an exhaustive neighborhood tree traversal could

lead to a relatively efficient NTS. In our experiments, h seems to be

very insensitive to n which suggests that other backtracking strate-

gies, e.g., using a fixed/adaptive number of backtrack steps, could

improve the search.

For the FI step function, it is clear that (compared to FD) there is

a significant increase in the trajectory path length. Therefore, the

previous discussion does not hold anymore using FI. In fact, assum-

ing that hmax = Ω(n), which seems to be the case, an exhaustive

search of the neighborhood tree is normally intractable. This is fur-

ther confirmed by the fact that in all our experiments with the FI

strategy, NTS always reaches the maximum number of iterations

without emptying the whole search path. We however remark that

using random backtracking (BR), FI produces better results than

FD. We attribute this to the fact that FI implies a neighborhood tree

of relatively high size but relatively diversified neighborhood paths.

To conclude this section, we would like to give some remarks on

the impact of maintaing and accessing the history path on CPU

running time. As discussed before, path trajectory is relatively low

compared to problem size. Knowing that the size of many neigh-

borhood structures is at least linear, and many often polynomial, in

problem size, the cost of maintaining the path history stays rela-

tively marginal. In our implementation using standard Java library,

without any specific code optimization, the average CPU-time to

perform one evaluation for problem size 100 on a standard 2.0 Ghz

Intel processor is 0.0005 millisecond.

Table 2: NTS maximum path length (hmax and hmax)

n

FI FD

hmax hmax hmax hmax

40 267 166.3 7 3.8
50 359 219.2 8 3.9
100 868 554.5 8 4.3

5. EXPERIMENTAL ANALYSIS: LRP

5.1 VNS baseline algorithm
For our comparative study, we take as a baseline algorithm a vari-

ant of the generalized VNS algorithm described in [7]. The VNS

algorithm was carefully designed with LRP specific neighborhood

combinations. More precisely, the baseline VNS has two standard

components: random shaking and local search both using different

neighborhood structures. For local search, a standard VND is used

with the following neighborhoods: N1 ∪ N2,N3 ∪N4,N5 ∪N6,

N7∪N8,N9∪N10, andN11. For shaking, both neighborhoodsN1,

N2 andN11 are combined to produce a random neighbor each time

the VND local search fails producing an improving local optimum.

The maximum strength of the shaking is fixed to be a function of

the problem size, namely, n+m. The standard VNS shaking strat-

egy is used, i.e., if a new improving local optimum is found, shak-

ing is rested to neighborhood 1, otherwise the next neighborhood

is considered and so on until reaching the last neighborhood. This

specific shaking and local search is motivated in [7] by its ability to

manage the two decision levels (Location and Routing) induced by

LRP.

Generally speaking, VNS is particularly interesting for our NTS

study since it uses a shaking phase combined with an efficient vari-

able neighborhood descent. Since NTS is not equipped with any

specific shaking (perturbation) procedure, the goal is to study whether

the backtracking component of NTS is able to efficiently escape the

local optima computed in the descent phase and to effectively find

better ones without any specific shaking (perturbation). Proving

that non problem specific backtracking strategies can lead to com-

petitive algorithms would help the design of generic search algo-

rithms that can be applied without any problem specific tuning. In

the following, starting from a randomly generated initial solution,

different solution quality / computing cost trade-offs are obtained

depending on NTS backtracking strategy, step function and accep-

tance criterion.

5.2 Solution Quality vs Computing Cost
We first examine solution quality obtained with NTS using FD and

BD local step strategies compared to VNS. We select ordinal data

analysis to compare the considered algorithms. For each algorithm

a and each experiment ℓ, an ordinal value oℓa representing the rank

of the algorithm is given. To compare the relative performance of

competing algorithms, we aggregate the obtained orders for each

algorithm into a unique order. We use a simple and intuitive ag-

gregation method, known as the Borda count voting method. An

algorithm having rank oℓa in an experiment is given oℓa points, and



the total score of an algorithm is simply the sum of its ranks over

all experiments. The algorithms are then compared to their cumu-

lative scores where the algorithm having the smallest score being

considered as the best performing algorithm. For each instance, the

ranks were computed using as a metric the solution gap to lower

bound averaged over 30 trials (The lower bounds were taken from

the work in [2].). In other words, for each instance, the algorithm

having the ith smaller average gap is ranked i and thus it is scored

with i points. The final score of each algorithm is them the sum of

its scores over all instances. For LRP, we consider 5 instance sets

according to problem size. Each set contains 90 instances. We will

consider 7 algorithms, i.e., 6 NTS variants and VNS. Thus, for a

given instance set, the best (resp. worst) possible score is 90 (resp.

630), while the best (resp. worst) possible total score is 450 (resp.

3150). Our first results are summarized in Table 3. We can ob-

serve that for lower instances sizes, FD step strategies outperforms

VNS with all backtrack strategies. However, for higher instances

sizes only BU performs better than VNS where as BH is the worst

performing strategy overall. We attribute this to the diversification

introduced by the BU strategy. Actually, the solution quality re-

sults reported in Table 3 have a price in terms of computing cost as

discussed below.

Table 3: Solution quality with Borda count voting method for

LRP using NTS variants and VNS. Notation NTS-(X,Y, Z)
was defined in Section 2. Acceptance criterion AA is fixed

for all variants. X ∈ {BD, FD} refers to step function.

Z ∈ {BH,BR,BU} is the backtracking strategy. In bold, we

highlight the scores in favor of NTS over VNS.

(n,m)

NTS− (∗, AA, ∗)

VNS
BH BR BU

BD FD BD FD BD FD

(10, 30) 598 438 519 348 230 99 286
(10, 20) 607 471 490 370 218 115 248
(5, 30) 488 359 401 266 141 91 399
(5, 20) 452 301 349 190 131 93 403
(5, 10) 368 250 322 225 203 115 310

Total 2513 1819 2081 1399 923 513 1646

In Table 4, we report the joint solution quality, and computing cost

(until termination) for NTS compared to VNS. We denote reval the

ratio obtained when dividing the total number of evaluations per-

formed by NTS by the total number of evaluations performed by

VNS. We denote n> a Borda like score computed as following.

For each instance, we compare the average gap to lower bound of

Table 4: Solution quality and computing cost of NTS with FD

and AA strategies compared to VNS.

(n,m)

NTS− (FD,AA, ∗)
BH BR BU

n> reval n> reval n> reval

(10, 30) −60 0.50 −37 0.84 73 5.00
(10, 20) −74 0.45 −52 0.77 56 3.75
(5, 30) 20 0.45 44 0.78 70 4.19
(5, 20) 40 0.76 53 1.32 59 6.18
(5, 10) 19 0.82 24 1.40 47 4.67

Total −55 0.60 32 1.02 305 4.76

NTS and VNS. If NTS is better we score it +1, in case of equality

we score it 0, and otherwise −1. n> is then obtained by summing

up the computed scores. Having 90 instances per problem size, the

best (resp. worst) score is +90 (resp. −90). A positive (resp. neg-

ative, zero) score means that NTS performs better on more (resp.

less, equally) number of instances. This gives a general idea on

the number of instances for which NTS performs better than VNS

(Taking n>/90 gives the ratio of instances where NTS performs

better or worst depending on n> sign). For simplicity we only re-

port results with FD step function. Notice that Table 4 gives an

idea not only about the performance of NTS compared to VNS,

but also the relative performance of the different NTS strategies.

One can clearly see the different trade-offs given by NTS in terms

of solution quality (BH < BR ≃ VNS < BU) and computing cost

(BU < VNS≃ BR < BH). E.g., for lower instance sizes, BH beats

VNS in both two measures. BR gives better solution quality with

comparable running cost. At higher instance sizes, only BU is able

to perform better than VNS in solution quality but at the price of

being around 4 times slower.

5.3 Speeding up the search
In this section, we give the results we have obtained by running

NTS with acceptance criterion AT. Recall that with the AT strategy

a neighborhood branch is explored depending on the best locally

observed fitness f best
s , and with a probability which is inversely pro-

portional to the trajectory path length. Results with FD step func-

tion are summarized in Table 5. One can clearly see that the AT

strategy has the effect of speeding-up the search (compared to re-

sults with AA given in Table 4). This is rather expected since neigh-

borhood branches producing solutions with poor quality compared

to other neighborhoods are likely to be pruned as we get deeper in

the search path. While strategy AT allows us to speed up the search,

it has two ’side-effects’. Firstly, compared to AA, AT produces

less high solution quality for all backtracking strategies. Secondly

and for the largest instances, AT is no more competitive against the

finely tuned VNS even using the most effective BU backtracking

strategy.

Table 5: Solution quality and computing cost of NTS with FD

and AT compared to VNS.

(n,m)

NTS− (FD,AT, ∗)
BH BR BU

n> reval n> reval n> reval

(10, 30) −80 0.22 −66 0.36 −9 1.03
(10, 20) −88 0.23 −82 0.35 −38 0.88
(5, 30) −22 0.22 13 0.35 66 0.92
(5, 20) 16 0.40 42 0.63 55 1.54
(5, 10) 0 0.53 14 0.81 32 1.53

Total −174 0.32 −79 0.50 106 1.18

5.4 Time to best with step function FI
In accordance with the results obtained for SMTWTP, we found

that NTS combined with FI step function is able to give very good

results for LRP. In the following, we report only our findings when

running NTS for a maximum number of evaluations, namely, 107

evaluations. For all competing algorithms, VNS included, we study

the number of evaluations it takes for an algorithm to find the best

fitness solution. Using acceptance conditions AA and AT, we re-

port the values of n> and r′eval which is now the ratio of the number

of fitness evaluations it takes for NTS and VNS to find the best



Table 6: Solution quality and computing cost of NTS with FI

and AA compared to VNS.

(n,m)

NTS− (FI,AA, ∗)
BH BR BU

n> r′eval n> r′eval n> r′eval

(10, 30) −25 0.67 −31 0.69 −24 0.70
(10, 20) 44 1.87 58 2.14 67 2.48
(5, 30) 70 0.26 70 0.26 70 0.26
(5, 20) 59 0.40 59 0.44 59 0.42
(5, 10) 46 0.18 48 0.24 50 0.27

Total 194 0.68 204 0.75 222 0.83

Table 7: Solution quality and computing cost of NTS with FI

and AT compared to VNS.

(n,m)

NTS− (FI,AT, ∗)
BH BR BU

n> r′eval n> r′eval n> reval

(10, 30) 11 1.49 35 2.64 −27 0.69
(10, 20) 8 0.84 33 1.45 69 2.47
(5, 30) 70 0.39 70 0.48 70 0.26
(5, 20) 59 0.34 59 0.40 59 0.44
(5, 10) 42 0.16 48 0.19 50 0.24

Total 190 0.64 245 1.03 221 0.82

solution. Our results are summarized in Tables 6 and 7. In ac-

cordance with the results obtained with FD, different trade-offs are

obtained. For instance, the computing cost of BH is better than BR

which is better than BU. For all instance sets, but for size (10, 30),
BU beats all other strategies in terms of solution quality. Actu-

ally, for instance set (10, 30) strategy BU needs more time to find

high quality solutions, i.e., BU is an exploration oriented strategy

which needs more time to converge but produces very high solu-

tion quality. Moreover, we can state that overall instance set NTS

with FI strategy performs better than VNS. In particular, backtrack-

ing strategies BH and BR provides very competitive results both

in computing cost and solution quality especially when combined

with the adaptive acceptance criterion AT.

6. CONCLUSION
In this paper, by operating at the level of the tree induced by a set

of several different neighborhood structures, we introduced a back-

tracking traversal algorithm called NTS and studied some of its

variants. Compared to standard VND where neighborhood order-

ing can be critical, NTS is able to find its way by simply piping dif-

ferent neighborhoods dynamically at runtime. Compared to VNS

where shaking is crucial, backtracking in NTS is able to escape

local optima searching for promising neighborhood paths. How-

ever, since exploring the neighborhood tree in an exhaustive man-

ner could be intractable, NTS components (step function, neigh-

borhood selection, branching, accepting, backtracking) have to be

carefully combined in order to obtain a good compromise between

solution quality and computing cost. In particular, the NTS vari-

ants described in this paper are based on the following two intuitive

claims: (i) the more we are deep in the neighborhood tree, the more

it is likely to find better local optima (intensification) (ii) the less we

are deep in the neighborhood tree, the more it is likely to explore

new search regions and thus to go forward through new high qual-

ity solutions (diversification). Generally speaking, we claim that

new adaptive backtracking strategies combined with new adaptive

acceptance criteria would be the key ingredients providing the ef-

ficient balance between intensification and diversification in NTS.

We believe that this is a challenging and interesting open question

which deserves further investigations.

7. REFERENCES
[1] http://people.brunel.ac.uk/ mastjjb/jeb/orlib/wtinfo.html.

[2] M. Albareda-Sambola, J. A. Diaz, and E. Fernandez, A

compact model and tight bounds for a combined

location-routing problem, Computers & Operations Research

32 (2005), no. 3, 407 – 428.

[3] M. D. Besten, T. Stutzle, and M. Dorigo, Design of iterated

local search algorithms: An example application to the

single machine total weighted tardiness problem,

EvoWorkshops, 2001, pp. 441–452.

[4] E. K. Burker, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
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