14 research outputs found

    Subclasses of Presburger Arithmetic and the Weak EXP Hierarchy

    Full text link
    It is shown that for any fixed i>0i>0, the Σi+1\Sigma_{i+1}-fragment of Presburger arithmetic, i.e., its restriction to i+1i+1 quantifier alternations beginning with an existential quantifier, is complete for ΣiEXP\mathsf{\Sigma}^{\mathsf{EXP}}_{i}, the ii-th level of the weak EXP hierarchy, an analogue to the polynomial-time hierarchy residing between NEXP\mathsf{NEXP} and EXPSPACE\mathsf{EXPSPACE}. This result completes the computational complexity landscape for Presburger arithmetic, a line of research which dates back to the seminal work by Fischer & Rabin in 1974. Moreover, we apply some of the techniques developed in the proof of the lower bound in order to establish bounds on sets of naturals definable in the Σ1\Sigma_1-fragment of Presburger arithmetic: given a Σ1\Sigma_1-formula Φ(x)\Phi(x), it is shown that the set of non-negative solutions is an ultimately periodic set whose period is at most doubly-exponential and that this bound is tight.Comment: 10 pages, 2 figure

    Applications of Finite Model Theory: Optimisation Problems, Hybrid Modal Logics and Games.

    Get PDF
    There exists an interesting relationships between two seemingly distinct fields: logic from the field of Model Theory, which deals with the truth of statements about discrete structures; and Computational Complexity, which deals with the classification of problems by how much of a particular computer resource is required in order to compute a solution. This relationship is known as Descriptive Complexity and it is the primary application of the tools from Model Theory when they are restricted to the finite; this restriction is commonly called Finite Model Theory. In this thesis, we investigate the extension of the results of Descriptive Complexity from classes of decision problems to classes of optimisation problems. When dealing with decision problems the natural mapping from true and false in logic to yes and no instances of a problem is used but when dealing with optimisation problems, other features of a logic need to be used. We investigate what these features are and provide results in the form of logical frameworks that can be used for describing optimisation problems in particular classes, building on the existing research into this area. Another application of Finite Model Theory that this thesis investigates is the relative expressiveness of various fragments of an extension of modal logic called hybrid modal logic. This is achieved through taking the Ehrenfeucht-Fraïssé game from Model Theory and modifying it so that it can be applied to hybrid modal logic. Then, by developing winning strategies for the players in the game, results are obtained that show strict hierarchies of expressiveness for fragments of hybrid modal logic that are generated by varying the quantifier depth and the number of proposition and nominal symbols available

    The limits of Nečiporuk’s method and the power of programs over monoids taken from small varieties of finite monoids

    Full text link
    Cotutelle avec l'École Normale Supérieure de Cachan, Université Paris-Saclay.Cette thèse porte sur des minorants pour des mesures de complexité liées à des sous-classes de la classe P de langages pouvant être décidés en temps polynomial par des machines de Turing. Nous considérons des modèles de calcul non uniformes tels que les programmes sur monoïdes et les programmes de branchement. Notre première contribution est un traitement abstrait de la méthode de Nečiporuk pour prouver des minorants, indépendamment de toute mesure de complexité spécifique. Cette méthode donne toujours les meilleurs minorants connus pour des mesures telles que la taille des programmes de branchements déterministes et non déterministes ou des formules avec des opérateurs booléens binaires arbitraires ; nous donnons une formulation abstraite de la méthode et utilisons ce cadre pour démontrer des limites au meilleur minorant obtenable en utilisant cette méthode pour plusieurs mesures de complexité. Par là, nous confirmons, dans ce cadre légèrement plus général, des résultats de limitation précédemment connus et exhibons de nouveaux résultats de limitation pour des mesures de complexité auxquelles la méthode de Nečiporuk n’avait jamais été appliquée. Notre seconde contribution est une meilleure compréhension de la puissance calculatoire des programmes sur monoïdes issus de petites variétés de monoïdes finis. Les programmes sur monoïdes furent introduits à la fin des années 1980 par Barrington et Thérien pour généraliser la reconnaissance par morphismes et ainsi obtenir une caractérisation en termes de semi-groupes finis de NC^1 et de ses sous-classes. Étant donné une variété V de monoïdes finis, on considère la classe P(V) de langages reconnus par une suite de programmes de longueur polynomiale sur un monoïde de V : lorsque l’on fait varier V parmi toutes les variétés de monoïdes finis, on obtient différentes sous-classes de NC^1, par exemple AC^0, ACC^0 et NC^1 quand V est respectivement la variété de tous les monoïdes apériodiques finis, résolubles finis et finis. Nous introduisons une nouvelle notion de docilité pour les variétés de monoïdes finis, renforçant une notion de Péladeau. L’intérêt principal de cette notion est que quand une variété V de monoïdes finis est docile, nous avons que P(V) contient seulement des langages réguliers qui sont quasi reconnus par morphisme par des monoïdes de V. De nombreuses questions ouvertes à propos de la structure interne de NC^1 seraient réglées en montrant qu’une variété de monoïdes finis appropriée est docile, et, dans cette thèse, nous débutons modestement une étude exhaustive de quelles variétés de monoïdes finis sont dociles. Plus précisément, nous portons notre attention sur deux petites variétés de monoïdes apériodiques finis bien connues : DA et J. D’une part, nous montrons que DA est docile en utilisant des arguments de théorie des semi-groupes finis. Cela nous permet de dériver une caractérisation algébrique exacte de la classe des langages réguliers dans P(DA). D’autre part, nous montrons que J n’est pas docile. Pour faire cela, nous présentons une astuce par laquelle des programmes sur monoïdes de J peuvent reconnaître beaucoup plus de langages réguliers que seulement ceux qui sont quasi reconnus par morphisme par des monoïdes de J. Cela nous amène à conjecturer une caractérisation algébrique exacte de la classe de langages réguliers dans P(J), et nous exposons quelques résultats partiels appuyant cette conjecture. Pour chacune des variétés DA et J, nous exhibons également une hiérarchie basée sur la longueur des programmes à l’intérieur de la classe des langages reconnus par programmes sur monoïdes de la variété, améliorant par là les résultats de Tesson et Thérien sur la propriété de longueur polynomiale pour les monoïdes de ces variétés.This thesis deals with lower bounds for complexity measures related to subclasses of the class P of languages that can be decided by Turing machines in polynomial time. We consider non-uniform computational models like programs over monoids and branching programs. Our first contribution is an abstract, measure-independent treatment of Nečiporuk’s method for proving lower bounds. This method still gives the best lower bounds known on measures such as the size of deterministic and non-deterministic branching programs or formulæ with arbitrary binary Boolean operators; we give an abstract formulation of the method and use this framework to prove limits on the best lower bounds obtainable using this method for several complexity measures. We thereby confirm previously known limitation results in this slightly more general framework and showcase new limitation results for complexity measures to which Nečiporuk’s method had never been applied. Our second contribution is a better understanding of the computational power of programs over monoids taken from small varieties of finite monoids. Programs over monoids were introduced in the late 1980s by Barrington and Thérien as a way to generalise recognition by morphisms so as to obtain a finite-semigroup-theoretic characterisation of NC^1 and its subclasses. Given a variety V of finite monoids, one considers the class P(V) of languages recognised by a sequence of polynomial-length programs over a monoid from V: as V ranges over all varieties of finite monoids, one obtains different subclasses of NC^1, for instance AC^0, ACC^0 and NC^1 when V respectively is the variety of all finite aperiodic, finite solvable and finite monoids. We introduce a new notion of tameness for varieties of finite monoids, strengthening a notion of Péladeau. The main interest of this notion is that when a variety V of finite monoids is tame, we have that P(V) does only contain regular languages that are quasi morphism-recognised by monoids from V. Many open questions about the internal structure of NC^1 would be settled by showing that some appropriate variety of finite monoids is tame, and, in this thesis, we modestly start an exhaustive study of which varieties of finite monoids are tame. More precisely, we focus on two well-known small varieties of finite aperiodic monoids: DA and J. On the one hand, we show that DA is tame using finite-semigroup- theoretic arguments. This allows us to derive an exact algebraic characterisation of the class of regular languages in P(DA). On the other hand, we show that J is not tame. To do this, we present a trick by which programs over monoids from J can recognise much more regular languages than only those that are quasi morphism-recognised by monoids from J. This brings us to conjecture an exact algebraic characterisation of the class of regular languages in P(J), and we lay out some partial results that support this conjecture. For each of the varieties DA and J, we also exhibit a program-length-based hierarchy within the class of languages recognised by programs over monoids from the variety, refining Tesson and Thérien’s results on the polynomial-length property for monoids from those varieties

    Graph Relations and Constrained Homomorphism Partial Orders

    Get PDF
    We consider constrained variants of graph homomorphisms such as embeddings, monomorphisms, full homomorphisms, surjective homomorpshims, and locally constrained homomorphisms. We also introduce a new variation on this theme which derives from relations between graphs and is related to multihomomorphisms. This gives a generalization of surjective homomorphisms and naturally leads to notions of R-retractions, R-cores, and R-cocores of graphs. Both R-cores and R-cocores of graphs are unique up to isomorphism and can be computed in polynomial time. The theory of the graph homomorphism order is well developed, and from it we consider analogous notions defined for orders induced by constrained homomorphisms. We identify corresponding cores, prove or disprove universality, characterize gaps and dualities. We give a new and significantly easier proof of the universality of the homomorphism order by showing that even the class of oriented cycles is universal. We provide a systematic approach to simplify the proofs of several earlier results in this area. We explore in greater detail locally injective homomorphisms on connected graphs, characterize gaps and show universality. We also prove that for every d3d\geq 3 the homomorphism order on the class of line graphs of graphs with maximum degree dd is universal

    Parametrised enumeration

    Get PDF
    In this thesis, we develop a framework of parametrised enumeration complexity. At first, we provide the reader with preliminary notions such as machine models and complexity classes besides proving them to be well-chosen. Then, we study the interplay and the landscape of these classes and present connections to classical enumeration classes. Afterwards, we translate the fundamental methods of kernelisation and self-reducibility into equivalent techniques in the setting of parametrised enumeration. Subsequently, we illustrate the introduced classes by investigating the parametrised enumeration complexity of Max-Ones-SAT and strong backdoor sets as well as sharpen the first result by presenting a dichotomy theorem for Max-Ones-SAT. After this, we extend the definitions of parametrised enumeration algorithms by allowing orders on the solution space. In this context, we study the relations ``order by size'' and ``lexicographic order'' for graph modification problems and observe a trade-off between enumeration delay and space requirements of enumeration algorithms. These results then yield an enumeration technique for generalised modification problems that is illustrated by applying this method to the problems closest string, weak and strong backdoor sets, and weighted satisfiability. Eventually, we consider the enumeration of satisfying teams of formulas of poor man's propositional dependence logic. There, we present an enumeration algorithm with FPT delay and exponential space which is one of the first enumeration complexity results of a problem in a team logic. Finally, we show how this algorithm can be modified such that only polynomial space is required, however, by increasing the delay to incremental FPT time.In diesem Werk begründen wir die Theorie der parametrisierten Enumeration, präsentieren die grundlegenden Definitionen und prüfen ihre Sinnhaftigkeit. Im nächsten Schritt, untersuchen wir das Zusammenspiel der eingeführten Komplexitätsklassen und zeigen Verbindungen zur klassischen Enumerationskomplexität auf. Anschließend übertragen wir die zwei fundamentalen Techniken der Kernelisierung und Selbstreduzierbarkeit in Entsprechungen in dem Gebiet der parametrisierten Enumeration. Schließlich untersuchen wir das Problem Max-Ones-SAT und das Problem der Aufzählung starker Backdoor-Mengen als typische Probleme in diesen Klassen. Die vorherigen Resultate zu Max-Ones-SAT werden anschließend in einem Dichotomie-Satz vervollständigt. Im nächsten Abschnitt erweitern wir die neuen Definitionen auf Ordnungen (auf dem Lösungsraum) und erforschen insbesondere die zwei Relationen \glqq Größenordnung\grqq\ und \glqq lexikographische Reihenfolge\grqq\ im Kontext von Graphen-Modifikationsproblemen. Hierbei scheint es, als müsste man zwischen Delay und Speicheranforderungen von Aufzählungsalgorithmen abwägen, wobei dies jedoch nicht abschließend gelöst werden kann. Aus den vorherigen Überlegungen wird schließlich ein generisches Enumerationsverfahren für allgemeine Modifikationsprobleme entwickelt und anhand der Probleme Closest String, schwacher und starker Backdoor-Mengen sowie gewichteter Erfüllbarkeit veranschaulicht. Im letzten Abschnitt betrachten wir die parametrisierte Enumerationskomplexität von Erfüllbarkeitsproblemen im Bereich der Poor Man's Propositional Dependence Logic und stellen einen Aufzählungsalgorithmus mit FPT Delay vor, der mit exponentiellem Platz arbeitet. Dies ist einer der ersten Aufzählungsalgorithmen im Bereich der Teamlogiken. Abschließend zeigen wir, wie dieser Algorithmus so modifiziert werden kann, dass nur polynomieller Speicherplatz benötigt wird, bezahlen jedoch diese Einsparung mit einem Anstieg des Delays auf inkrementelle FPT Zeit (IncFPT)

    Algebras of partial functions

    Get PDF
    This thesis collects together four sets of results, produced by investigating modifications, in four distinct directions, of the following. Some set-theoretic operations on partial functions are chosen—composition and intersection are examples—and the class of algebras isomorphic to a collection of partial functions, equipped with those operations, is studied. Typical questions asked are whether the class is axiomatisable, or indeed finitely axiomatisable, in any fragment of first-order logic, what computational complexity classes its equational/quasiequational/first-order theories lie in, and whether it is decidable if a finite algebra is in the class. The first modification to the basic picture asks that the isomorphisms turn any existing suprema into unions and/or infima into intersections, and examines the class so obtained. For composition, intersection, and antidomain together, we show that the suprema and infima conditions are equivalent. We show the resulting class is axiomatisable by a universal-existential-universal sentence, but not axiomatisable by any existential-universal-existential theory. The second contribution concerns what happens when we demand partial functions on some finite base set. The finite representation property is essentially the assertion that this restriction that the base set be finite does not restrict the algebras themselves. For composition, intersection, domain, and range, plus many supersignatures, we prove the finite representation property. It follows that it is decidable whether a finite algebra is a member of the relevant class. The third set of results generalises from unary to ‘multiplace’ functions. For the signatures investigated, finite equational or quasiequational axiomatisations are obtained; similarly when the functions are constrained to be injective. The finite representation property follows. The equational theories are shown to be coNP-complete. In the last section we consider operations that may only be partial. For most signatures the relevant class is found to be recursively, but not finitely, axiomatisable. For others, finite axiomatisations are provided

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Games for Modal and Temporal Logics

    Get PDF
    Every logic comes with several decision problems. One of them is the model checking problem: does a given structure satisfy a given formula? Another is the satisfiability problem: for a given formula, is there a structure fulfilling it? For modal and temporal logics; tableaux, automata and games are commonly accepted as helpful techniques that solve these problems. The fact that these logics possess the tree model property makes tableau structures suitable for these tasks. On the other hand, starting with Büchi's work, intimate connections between these logics and automata have been found. A formula can describe an automaton's behaviour, and automata are constructed to accept exactly the word or tree models of a formula. In recent years the use of games has become more popular. There, an existential and a universal player play on a formula (and a structure) to decide whether the formula is satisfiable, resp. satisfied. The logical problem at hand is then characterised by the question of whether or not the existential player has a winning strategy for the game. These three methodologies are closely related. For example the non-emptiness test for an alternating automaton is nothing more than a 2-player game, while winning strategies for games are very similar to tableaux. Game-theoretic characterisations of logical problems give rise to an interactive semantics for the underlying logics. This is particularly useful in the specification and verification of concurrent systems where games can be used to generate counterexamples to failing properties in a very natural way. We start by defining simple model checking games for Propositional Dynamic Logic, PDL, in Chapter 4. These allow model checking for PDL in linear running time. In fact, they can be obtained from existing model checking games for the alternating free µ-calculus. However, we include them here because of their usefulness in proving correctness of the satisfiability games for PDL later on. Their winning strategies are history-free. Chapter 5 contains model checking games for branching time logics. Beginning with the Full Branching Time Logic CTL* we introduce the notion of a focus game. Its key idea is to equip players with a tool that highlights a particular formula in a set of formulas. The winning conditions for these games consider the players' behaviours regarding the change of the focus. This proves to be useful in capturing the regeneration of least and greatest fixed point constructs in CTL*. Deciding the winner of these games can be done using space which is polynomial in the size of the input. Their winning strategies are history-free, too. We also show that model checking games for CTL+ arise from those for CTL* by disregarding the focus. This does not affect the polynomial space complexity. These can be further optimised to obtain model checking games for the Computation Tree Logic CTL which coincide with the model checking games for the alternating free µ-calculus applied to formulas translated from CTL into it. This optimisation improves the games' computational complexity, too. As in the PDL case, deciding the winner of such a game can be done in linear running time. The winning strategies remain history-free. Focus games are also used to give game-based accounts of the satisfiability problem for Linear Time Temporal Logic LTL, CTL and PDL in Chapter 6. They lead to a polynomial space decision procedure for LTL, and exponential time decision procedures for CTL and PDL. Here, winning strategies are only history-free for the existential player. The universal player s strategies depend on a finite part of the history of a play. In spite of the strong connections between tableaux, automata and games their differences are more than simply a matter of taste. Complete axiomatisations for LTL, CTL and PDL can be extracted from the satisfiability focus games in an elegant way. This is done in Chapter 7 by formulating the game rules, the winning conditions and the winning strategies in terms of an axiom system. Completeness of this system then follows from the fact that the existential player wins the game on a consistent formula, i.e. it is satisfiable. We also introduce satisfiability games for CTL* based on the focus approach. They lead to a double exponential time decision procedure. As in the LTL, CTL and PDL case, only the existential player has history-free winning strategies. Since these strategies witness satisfiability of a formula and stay in close relation to its syntactical structure, it might be possible to derive a complete axiomatisation for CTL* from these games as well. Finally, Chapter 9 deals with Fixed Point Logic with Chop, FLC. It extends modal µ-calculus with a sequential composition operator. Satisfiability for FLC is undecidable but its model checking problem remains decidable. In fact it is hard for polynomial space. We give two different game-based solutions to the model checking problem for FLC. Deciding the winner for both types of games meets this polynomial space lower bound for formulas with fixed alternation (and sequential) depth. In the general case the winner can be determined using exponential time, resp. exponential space. The former result holds for games that give rise to global model checking whereas the latter describes the complexity of local FLC model checking. FLC is interesting for verification purposes since it --- unlike all the other logics discussed here --– can describe properties which are non-regular. The thesis concludes with remarks and comments on further research in the area of games for modal and temporal logics

    Saturation-based decision procedures for extensions of the guarded fragment

    Get PDF
    We apply the framework of Bachmair and Ganzinger for saturation-based theorem proving to derive a range of decision procedures for logical formalisms, starting with a simple terminological language EL, which allows for conjunction and existential restrictions only, and ending with extensions of the guarded fragment with equality, constants, functionality, number restrictions and compositional axioms of form S ◦ T ⊆ H. Our procedures are derived in a uniform way using standard saturation-based calculi enhanced with simplification rules based on the general notion of redundancy. We argue that such decision procedures can be applied for reasoning in expressive description logics, where they have certain advantages over traditionally used tableau procedures, such as optimal worst-case complexity and direct correctness proofs.Wir wenden das Framework von Bachmair und Ganzinger für saturierungsbasiertes Theorembeweisen an, um eine Reihe von Entscheidungsverfahren für logische Formalismen abzuleiten, angefangen von einer simplen terminologischen Sprache EL, die nur Konjunktionen und existentielle Restriktionen erlaubt, bis zu Erweiterungen des Guarded Fragment mit Gleichheit, Konstanten, Funktionalität, Zahlenrestriktionen und Kompositionsaxiomen der Form S ◦ T ⊆ H. Unsere Verfahren sind einheitlich abgeleitet unter Benutzung herkömmlicher saturierungsbasierter Kalküle, verbessert durch Simplifikationsregeln, die auf dem Konzept der Redundanz basieren. Wir argumentieren, daß solche Entscheidungsprozeduren für das Beweisen in ausdrucksvollen Beschreibungslogiken angewendet werden können, wo sie gewisse Vorteile gegenüber traditionell benutzten Tableauverfahren besitzen, wie z.B. optimale worst-case Komplexität und direkte Korrektheitsbeweise
    corecore