
Games for Modal and Temporal Logics

Martin Lange
T

H
E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

Doctor of Philosophy

Laboratory for Foundations of Computer Science

School of Informatics

University of Edinburgh

2002

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Edinburgh Research Archive

https://core.ac.uk/display/429719228?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Abstract

Every logic comes with several decision problems. One of them is themodel checking

problem: does a given structure satisfy a given formula? Another is thesatisfiability

problem: for a given formula, is there a structure fulfilling it?

For modal and temporal logics; tableaux, automata and games are commonly accepted

as helpful techniques that solve these problems. The fact that these logics possess

the tree model property makes tableau structures suitable for these tasks. On the

other hand, starting with B̈uchi’s work, intimate connections between these logics and

automata have been found. A formula can describe an automaton’s behaviour, and

automata are constructed to accept exactly the word or tree models of a formula.

In recent years the use of games has become more popular. There, an existential and

a universal player play on a formula (and a structure) to decide whether the formula

is satisfiable, resp. satisfied. The logical problem at hand is then characterised by the

question of whether or not the existential player has a winning strategy for the game.

These three methodologies are closely related. For example the non-emptiness test

for an alternating automaton is nothing more than a 2-player game, while winning

strategies for games are very similar to tableaux.

Game-theoretic characterisations of logical problems give rise to an interactive

semantics for the underlying logics. This is particularly useful in the specification

and verification of concurrent systems where games can be used to generate

counterexamples to failing properties in a very natural way.

We start by defining simple model checking games for Propositional Dynamic Logic,

PDL, in Chapter4. These allow model checking for PDL in linear running time. In

fact, they can be obtained from existing model checking games for the alternating free

µ-calculus. However, we include them here because of their usefulness in proving

correctness of the satisfiability games for PDL later on. Their winning strategies are

history-free.

Chapter5 contains model checking games for branching time logics. Beginning

with the Full Branching Time Logic CTL∗ we introduce the notion of afocus game.

Its key idea is to equip players with a tool that highlights a particular formula in

iii

a set of formulas. The winning conditions for these games consider the players’

behaviours regarding the change of the focus. This proves to be useful in capturing

the regeneration of least and greatest fixed point constructs in CTL∗. Deciding the

winner of these games can be done using space which is polynomial in the size of the

input. Their winning strategies are history-free, too.

We also show that model checking games for CTL+ arise from those for CTL∗ by

disregarding the focus. This does not affect the polynomial space complexity. These

can be further optimised to obtain model checking games for the Computation Tree

Logic CTL which coincide with the model checking games for the alternating free

µ-calculus applied to formulas translated from CTL into it. This optimisation improves

the games’ computational complexity, too. As in the PDL case, deciding the winner

of such a game can be done in linear running time. The winning strategies remain

history-free.

Focus games are also used to give game-based accounts of the satisfiability problem

for Linear Time Temporal Logic LTL, CTL and PDL in Chapter6. They lead

to a polynomial space decision procedure for LTL, and exponential time decision

procedures for CTL and PDL. Here, winning strategies are only history-free for the

existential player. The universal player’s strategies depend on a finite part of the history

of a play.

In spite of the strong connections between tableaux, automata and games their

differences are more than simply a matter of taste. Complete axiomatisations for LTL,

CTL and PDL can be extracted from the satisfiability focus games in an elegant way.

This is done in Chapter7 by formulating the game rules, the winning conditions and

the winning strategies in terms of an axiom system. Completeness of this system then

follows from the fact that the existential player wins the game on a consistent formula,

i.e. it is satisfiable.

We also introduce satisfiability games for CTL∗ based on the focus approach. They

lead to a double exponential time decision procedure. As in the LTL, CTL and

PDL case, only the existential player has history-free winning strategies. Since these

strategies witness satisfiability of a formula and stay in close relation to its syntactical

structure, it might be possible to derive a complete axiomatisation for CTL∗ from these

iv

games as well.

Finally, Chapter9 deals with Fixed Point Logic with Chop, FLC. It extends

modal µ-calculus with a sequential composition operator. Satisfiability for FLC is

undecidable but its model checking problem remains decidable. In fact it is hard for

polynomial space.

We give two different game-based solutions to the model checking problem for FLC.

Deciding the winner for both types of games meets this polynomial space lower

bound for formulas with fixed alternation (and sequential) depth. In the general case

the winner can be determined using exponential time, resp. exponential space. The

former result holds for games that give rise to global model checking whereas the

latter describes the complexity of local FLC model checking. FLC is interesting for

verification purposes since it – unlike all the other logics discussed here – can describe

properties which are non-regular.

The thesis concludes with remarks and comments on further research in the area of

games for modal and temporal logics.

v

Acknowledgements

First of all, I wish to thank my supervisor Prof. Colin Stirling for the support and

guidance I got from him. His supervision was nothing less than excellent, mainly

because he gave me the freedom to choose the topic that I wanted to work on and

broadened my horizon by getting me interested in problems related to it. He was

always able to supply me with new and good ideas whenever I got stuck on a problem

that seemed unsolvable for me at that moment. It only took the first few months of

work with him in Edinburgh to make me realise that I need not worry about producing

a PhD thesis in reasonable time.

I also would like to thank Prof. Javier Esparza and Prof. Mogens Nielsen for agreeing

to examine this thesis. I hope they do not regret it once they have read through all of

this.

Further thanks go to LFCS which provided a nice and good research environment for

my time at Edinburgh. Although I began to like Edinburgh a lot after surviving a

dark and unpleasant winter I am very grateful to LFCS for letting me visit BRICS in

Århus, Denmark. Again, they provided a nice and good research environment during

my three months stay as a Marie Curie Fellow there as well. I would like to thank Prof.

Mogens Nielsen again, this time for the hospitality I received there. The same holds

for Uffe Engberg. Claus Brabrand did his best to provide me with a social life there,

too. Special thanks go to Jesper Henriksen for initiating my stay, for making me feel

welcome there, for not wasting my time on difficult and uninteresting problems and,

finally, for giving me special thanks credit in his thesis.

I also wish to thank various people at LFCS who became more than just colleagues. I

had a great time with my office mate Marco Kick, with Alex Simpson, Tom Chothia,

Daniele Turi, Martin Grohe and Markus Frick.

Prof. Colin Stirling and Prof. Martin Hofmann deserve to be thanked for agreeing on

a deal that enabled me to take up a position in Munich before finishing this thesis.

Then, I want to thank my parents who have always supported me in every way. Without

their help I would not have had the chance to go to Edinburgh, to study for a PhD or

to study at all. Equally, I wish to thank my non-academic friends for not losing touch

vii

with me after I went to Scotland.

Finally, I wish to express my utmost gratitude to my wife Becky who has been very

understanding and helpful whenever composing this thesis required it. I especially

thank her for her long-distance support during my time inÅrhus and, while I am

writing this, my time in Munich. She is without a doubt the best side-effect that my

PhD studies in Edinburgh have produced.

viii

Declaration

I declare that this thesis was composed by myself, that the work contained herein is

my own except where explicitly stated otherwise in the text, and that this work has not

been submitted for any other degree or professional qualification.

Chapter5 has been published in [LS02b], preliminary versions appeared as [LS00]

and [Lan00]. Sections6.1, 6.2, 7.1 and 7.3 have been published in [LS01]. A

slightly different version of Section9.1 can be found in [LS02a]. Section9.2 has

been published in [Lan02b].

(Martin Lange)

ix

To those who do not dedicate

their thesis to themselves.

xi

Table of Contents

1 Introduction 1

2 Preliminaries 9

2.1 Mathematical Logics. 9

2.2 Fixed Points. 12

2.3 Labelled Transition Systems. 16

2.4 Temporal Logics . 20

2.5 Modal Logics . 27

2.6 Games. 44

2.7 Winning Strategies. 50

2.8 Algorithms . 52

3 Background 57

3.1 Tableaux. 57

3.2 Automata . 60

3.3 Games. 67

3.4 Overviews. 71

4 Model Checking Games for Propositional Dynamic Logic 79

5 Model Checking Games for Branching Time Logics 93

5.1 Focus Games and Sets of Formulas. 93

xiii

5.2 Model Checking Games for CTL∗ 95

5.3 Model Checking Games for CTL. 123

5.4 Model Checking Games for CTL+ 127

5.5 Model Checking Games for BLTL. 131

6 Satisfiability Games for LTL, CTL and PDL 135

6.1 Satisfiability Games for LTL. 135

6.2 Satisfiability Games for CTL. 152

6.3 Satisfiability Games for PDL. 164

7 Complete Axiomatisations for LTL, CTL and PDL 177

7.1 A Complete Axiomatisation for LTL. 179

7.2 A Complete Axiomatisation for CTL. 186

7.3 A Complete Axiomatisation for PDL. 193

8 Satisfiability Games for CTL∗ 201

9 Model Checking Games for Fixed Point Logic with Chop 239

9.1 Global Model Checking Games for FLC. 239

9.2 Local Model Checking Games for FLC. 251

10 Further Research 267

Index 275

Bibliography 281

xiv

List of Figures

2.1 The transition system for Example25. 38

3.1 The history of model checking.. 72

3.2 The history of satisfiability checking.. 74

3.3 The model checking and satisfiability checking complexities.. 75

3.4 Expressiveness in the family of modal and temporal logics.. 77

4.1 The rules for the PDL model checking games.. 81

4.2 The full game tree for Example42. 83

4.3 The rules for extensions of PDL.. 91

5.1 The model checking games rules for CTL∗. 97

5.2 The unfolding rules for the CTL∗ model checking games.. 98

5.3 The transition system for Example57. 101

5.4 The game tree for player∃ of Example57. 102

5.5 The transition system for Example58. 103

5.6 The plays without focus of Example59. 104

5.7 The winning conditions for the CTL∗ model checking games.. 106

5.8 The rules for the CTL model checking games.. 124

5.9 The rules for the CTL+ model checking games.. 128

6.1 The satisfiability game rules for LTL.. 137

xv

6.2 The interesting part of the game tree of Example91. 139

6.3 The satisfiability game rules for CTL.. 154

6.4 The PDL satisfiability game rules for formulas.. 165

6.5 The PDL satisfiability game rules for programs.. 166

7.1 A complete axiomatisation for LTL.. 184

7.2 A complete axiomatisation for LTL from [GPSS80]. 185

7.3 A complete axiomatisation for CTL.. 191

7.4 A complete axiomatisation for CTL from [EH85]. 192

7.5 A complete axiomatisation for PDL.. 197

7.6 The Segerberg axiomatisation for PDL.. 198

8.1 The CTL∗ satisfiability game rules for boolean operators.. 204

8.2 The game rules for path quantified formulas.. 205

8.3 The game rules for propositions.. 207

8.4 The unfolding rules for the CTL∗ satisfiability games.. 208

8.5 The next-step and focus rules for the CTL∗ games. 209

8.6 Player∀’s winning play of Example159. 213

8.7 A simplified version of the game tree for Example160. 215

8.8 A modelT for A1,EΣ1. 227

9.1 The rules for the global FLC model checking games.. 241

9.2 The game tree for player∃ from Example182. 243

9.3 The rules for the local FLC model checking games.. 252

9.4 Player∃’s winning play of Example195. 254

9.5 Player∃’s game tree of Example205. 264

10.1 A sketch of player∃’s game tree for Example209. 273

xvi

Chapter 1

Introduction

What do you need that for, Dude?

—

THEODOREDONALD

KARABOTSOS

Formal Verification

Computers and electronic devices play an important role in our world today. People

constantly rely on the fact that they work correctly. One wants to be sure that a digital

alarm clock goes off exactly at the time it is set for. A phone call should be directed

only to the number that was dialed. Failure of these features of course is not life

threatening. But there are examples where computers perform tasks that simply must

not go wrong.

Take an airplane’s control for example. Many aspects of steering an airplane are

automated, especially those that take effect in a dangerous situation when a machine’s

precision or speed are preferred over human action. If the actions taken by the

2 Chapter 1. Introduction

computer are wrong it may leave the pilot in a situation without control over the aircraft

which can have hazardous effects.

It is therefore necessary toknowthat a computerworks. It is not within our powers to

ensure that a computer physically works. This is left to engineers and the hope that the

computer at hand is not hit by a bomb.

Instead, we deal with the question of whether thespecificationof an electronic device

or a piece of software functions correctly. Several mechanisms that abstract the

behaviour of a computer from the physical device have been developed in computer

science. These specification languages can be seen as programming languages whose

semantics is a mathematical structure which denotes such a behaviour.

Feasibility is not the only reason for dealing with specifications rather than real

applications. Developing costs for any products need to be kept low. Thus, it is

desirable to create correct specificationsbefore they are turned into a real product.

This avoids producing several versions most of which will be thrown away because of

faults in their specifications.

Next there is the question of determining whether a specification does what it is

supposed to do. It is too vague to say that it should function correctly. In the case of the

alarm clock this might be obvious. For the telephone network it is already less clear. If

the person whose number is dialed redirects calls then the property mentioned above

is not fulfilled. However, this should not be regarded as a failure of the underlying

system.

In the example of the airplane it is entirely unclear what it should mean for the control

software to function correctly. Therefore, formalisms are needed that allow us to

specify correctness properties. Mathematics, as a precise science that does not leave

space for interpretations, provides a framework for this: logics.

Logics formalise statements that are made about abstract mathematical structures.

This can be used for the formal verification of properties of real systems if their

specifications are given as such abstractions. Needed for this are automatic procedures

that check for example whether a given structure has a certain property which is

given by a logical formula. Such algorithms are calledmodel checkers. They are

3

used in verification tools like SPIN, [Hol97], SMV, [CGL93], the EDINBURGH

CONCURRENCYWORKBENCH, [Mol92], HYTECH, [HHWT97], TRUTH, [LLNT99],

and many more.

These programs typically allow a system to be modelled in a certain specification

language and automatically generate the mathematical structure from it. The latter is

normally a transition system, i.e. a labelled directed graph with nodes being interpreted

asstatesthat the underlying system can be in and edges as transitions between states

in time. This temporal aspect is a natural interpretation of the behaviour of a computer

program. Note that the operational semantics of a program is nothing more than such

a transition system. For a program that is modelled with such a transition system

the states can denote different evaluations for the set of variables that are used in the

program. Transitions between these states are then given by the program’s control

structures like variable assignments.

Consequently, these verification tools typically allow properties to be formalised in a

logic which captures temporal aspects of transition systems and to automatically check

whether it satisfies the property. Such logics are, not surprisingly, temporal logics

like Pnueli’s Linear Time Temporal Logic LTL, [Pnu77], Emerson and Halpern’s

Computation Tree Logic CTL, [EH85], and the Full Branching Time Logic CTL∗ by

Emerson, Halpern and Sistla, [EH86, ES84]. Typical statements that can be made in

these logics concern the question of whether or not something holds on all reachable

states or along a path through the transition system.

Modal logics which have their origin in philosophy and which are a superclass of

temporal logics are suitable for this task as well. This is because they are interpreted

over structures consisting of differentworlds where something can be true in one

world but false in another. Clearly, transition systems as abstractions of programs are

examples of such structures since different states need not have the same properties.

We will only deal with those modal logics that have gained interest in computer

science, namely Fischer and Ladner’s Propositional Dynamic Logic PDL, [FL79],

Kozen’s modalµ-calculusLµ, [Koz83], and Müller-Olm’s Fixed Point Logic with

Chop FLC, [MO99].

Logics can also be used as a specification formalism. Going back to the airplane

4 Chapter 1. Introduction

example, a system may be considered correct if it satisfies several properties. These

may interact, for example if a sensor’s signal should cause the plane to automatically

descend while the autopilot tries to keep it on a certain level.

Suppose each aspect of correctness is given by a logical formula, i.e. the one stating

correct behaviour of a single part. Then global correctness is given by the conjunction

of all these formulas. It is important to have automatic procedures that test satisfiability

of such formulas since some of the properties may exclude each other which causes

unsatisfiability of the conjunction. In this case the specification would be considered

incorrect.

It is desirable to have verification tools that do more than simply check whether or not

a specification satisfies a formula or a logical specification is satisfiable. If the answer

is yes then of course the specification and verification task is completed. However, if

the answer is no, i.e. the system at hand is incorrect with respect to some property, then

the error needs to be repaired. Thus, it is helpful to have verification tools that provide

guidance in finding the reasons for incorrectness, i.e. that show the userwhereor why

a certain property fails.

Gamesprovide a natural framework for this feature. This thesis contains two types of

games: model checking games and satisfiability checking games. Both are played

by two players on a certain game board. One of them has the task to show that

a specification is correct with respect to a certain property, resp. that a logical

specification does not contain a contradiction. The other player is given the opposite

task.

The outcome of a single play against each other provides little information about the

correctness of a specification. It carries even less information than a test run. Testing

cannot show the absence of errors, at least it can reveal their presence. Generally, a

single play cannot do either of these.

However, we define these games in a way such that they characterise the model

checking or satisfiability checking problem for a modal or temporal logic in terms of

strategies. Thus, a transition system has the property described by a formula if and only

if the player whose task it is to show this has awinning strategyfor the corresponding

game. In the satisfiability checking game she has a winning strategy if and only if the

5

underlying formula is satisfiable, i.e. does not contain a contradiction.

Model checking or satisfiability checking is then equivalent to finding a winning

strategy for this player. In most cases, certainly for the logics we introduce here and

for the class of finite transition systems, this is decidable. Hence, it can be automated.

So far, the game-based method does not reveal any advantage over other methods like

tableaux or automata for example. In fact, in computer science automata-theoretic

methods are widely believed to be the most efficient for verification purposes and,

hence, best.

However, a game-based model checker or satisfiability checking algorithm needs to

compute a winning strategy for one of the players in order to determine whether a

player has one. Suppose a transition system fails to have a desired property. The

corresponding game-based model checker computes a strategy for the player whose

task it was to show this. This strategy then witnesses the failure of the property and

can be used to prove this failure to the user of a verification tool.

This can be done by letting them play aninteractive playagainst the tool which takes

its choices according to the winning strategy it has computed. By definition, regardless

of the user’s choices the tool will win the resulting play. Typically the play follows a

path of a transition system and the syntactical structure of the formula representing the

desired property. Thus, each play that is won by the tool reveals at which moment in

the underlying system’s temporal behaviour which part of the property fails.

With game-based satisfiability checking the situation is similar. Here, a play reveals

which parts of the formula exactly cause the unsatisfiability, i.e. which parts exclude

each other.

Outline of this Thesis

The goal of this thesis is to give game-based characterisations of the model checking

and satisfiability checking problem for the modal and temporal logics mentioned

above. It is organised in the following way.

Chapter2 contains the definition of transition systems and the modal and temporal

logics that are studied here. It also recalls basic results about fixed points which are

6 Chapter 1. Introduction

necessary to understand the games of the following chapters since all the logics we

deal with feature constructs whose semantics is given as the solution to a certain fixed

point equation. 2-player games are formally introduced as well.

Chapter3 surveys other methods that have been used to tackle the model checking and

satisfiability checking problem for modal and temporal logics. Among them,tableaux

andautomatahave been established as methodologies, i.e. classes of methods, that are

useful for these purposes. For almost every logic mentioned here there is a tableau

procedure and an automata-theoretic characterisation for the model checking and the

satisfiability checking problem. Other techniques like graph-theoretic algorithms or

resolution methods only seem to be useful or applicable in special cases. We also

sketch areas in computer science that have benefitted from the use of games. This

thesis proposes the idea that games are another useful methodology for the logical

problems at hand.

The technical part of this thesis starts with Chapter4 which contains model checking

games for PDL. This characterisation in terms of games is straight-forward and not

very complicated. In fact, it can easily be derived from Stirling’s model checking

games for the alternation-freeµ-calculusL0
µ, [Sti95]. However, there are three reasons

for including them here. First, for the sake of completeness since, to the best of our

knowledge, they have not been published anywhere else. Second, because of their

simplicity they prepare the reader for the following chapters. The third and most

important reason is the fact that they serve as a helpful tool for proving correctness

of the PDL satisfiability games in Section6.3 later on.

Chapter5 contains model checking games for branching time logics. Beginning with

CTL∗ the notion of afocus game is introduced. It is simplified to obtain model

checking games for CTL∗’s fragments CTL+ and CTL. As with PDL, the CTL model

checking games are straight-forward and derivable from theL0
µ games. However, the

fact that a simplification of the CTL∗ games leads to such natural games can be seen

as an argument in favour of the focus game idea which makes them a natural approach

to the CTL∗ model checking problem.

Focus games are shown to be useful for satisfiability checking in Chapter6 that

contains games for LTL, CTL and PDL. Chapter7 contains a side-effect of these

7

games. We show how to extract axiom systems from the games that are easily proved to

be complete. This chapter can be seen as an argument for the usefulness of satisfiability

focus games or as an application of them.

Focus games are used again in Chapter8 to obtain a game-based characterisation of

CTL∗’s satisfiability problem. It is presented in a different chapter separated from the

other satisfiability games because the games are more complex and, as a consequence,

a complete axiomatisation is not easily derived.

Finally, Chapter9 is concerned with the model checking problem for FLC. Two

different game-based approaches to this problem are presented: a global and a local

one. These games are not focus games. The local approach is a generalisation of

Stirling’s Lµ model checking games just as FLC is an extension ofLµ.

Apart from the definitions of the games, all chapters contain their respective

correctness proofs, examples and analyses of the complexity of deciding which player

has a winning strategy for a given game.

The thesis concludes with remarks on further research in the area of games for

modal and temporal logics. In particular, extensions of the logics dealt with here are

mentioned for which it might be interesting to have game-theoretic characterisations

of their model checking or satisfiability checking problem as well.

Chapter 2

Preliminaries

Mathematics is the art of giving

the same name to different things.

—

HENRI POINCARÉ

2.1 Mathematical Logics

A relational structureis a tupleK = (U,R1, . . . ,Rn) whereU is a set called theuniverse

of K andR1, . . . ,Rn are relation symbols of aritiesa1, . . . ,an. This means that for every

i = 1, . . . ,n we have

Ri ⊆U× . . .×U︸ ︷︷ ︸
ai times

A logic L is a set of formulas. These are interpreted over a class of structuresK by

the |= relation. Letϕ ∈ L be a formula with freefirst-order variablesx1, . . . ,xn, i.e.

variables for elements of a relational structure’s universe. For every structureK ∈ K

10 Chapter 2. Preliminaries

and everyn-tuplek1, . . . ,kn of elements ofK,

K,k1, . . . ,kn |= ϕ(x1, . . . ,xn)

is written to denote that the structureK has the property described byϕ where each

variablexi is interpreted byki , i ∈ {1, . . . ,n}. In the second-order case, variables

ranging over relations are allowed, too.

We will only consider a few special logics, namelymodalandtemporal logics. They

are also interpreted over certain structures only, calledlabelled transition systems,

[Plo81]. These will be defined in Section2.3.

Most modal and temporal logics can be translated into First-Order or Second-Order

Predicate Logic. The resulting formula is not closed but has one free variable. An

elements of a structureK has a modal or temporal propertyϕ iff K satisfies the

translated propertỹϕ(x) where the free variablex is interpreted bys.

K,s |= ϕ̃(x) (2.1)

Thus, not only a structureK butK together with an elementsof its universe satisfies a

modal or temporal formulaϕ,

K,s |= ϕ

Note that the modal or temporal formulaϕ does not have any free variables in the sense

of (2.1). Often, we will consider the underlyingK to be fixed and omit it,s |= ϕ.

Themodel checking problemfor a modal or temporal logicL and a class of structures

K is: givenK ∈ K, an elements of K andϕ ∈ L, doesK,s |= ϕ hold?

The satisfiability checking problemfor a modal or temporal logicL and a class of

structuresK is: given aϕ ∈ L, is there aK ∈ K and ans∈ K, s.t.K,s |= ϕ?

The syntaxof a logic is usually given as a context-free grammar. Hence, formulas

are words over a certain alphabet. This enables the easy substitution of formulas into

formulas. Withϕ[ψ/χ] we denote the formula that arises fromϕ by replacing every

occurrence ofχ in ϕ’s syntax tree byψ.

All the logics defined later subsume propositional boolean logic. Their syntactical

definitions will not include negation since games usually require negation to be

2.1. Mathematical Logics 11

eliminated. But we will show that negation is implicitly present in most cases. We will

also use constructs like→ from propositional boolean logic appealing to its definition

using∨ and negation closure.

Thesemanticsof a logic will be given in one of two possible ways. Either directly, i.e.

in the styleK,x |= ϕ describing when a given structureK with an elementx satisfies a

givenϕ. Or indirectly in the style[[ϕ]] which describes the set of allx of a structureK

that satisfyϕ. The satisfaction relation is then easily derived as

s |= ϕ iff s∈ [[ϕ]]

In both cases the context-freeness of the logic’s syntax allows the semantics to be

defined inductively.

A fragment of a logic is simply a subset of all its formulas. In many cases this will be a

syntactical fragment, i.e. the question of whether or notϕ belongs to this fragment only

depends on the syntactical structure ofϕ. These fragments usually impose restrictions

on the occurrence of certain constructs of the logic because they permit more efficient

decision procedures than the general case.

Each logic also has important semantical fragments. These will of course depend on

the class of structuresK the logic is interpreted over. One such fragment is the set

of all satisfiableformulas, i.e. thoseϕ for which there is aK ∈ K and ans∈ K s.t.

K,s |= ϕ. Another important fragment considers the same question but universally

quantified: the set of all formulas that are satisfied by everyK ∈ K and everys∈ K.

These formulas are calledvalidities. To indicate thatϕ is valid we write|= ϕ.

Two formulasϕ,ψ of L areequivalentover K, written ϕ ≡ ψ, iff [[ϕ]] = [[ψ]] for all

K ∈ K, i.e. they are satisfied by the same structures and elements. If the semantics is

given directly then

ϕ≡ ψ iff for all K ∈ K ands∈ K : K,s |= ϕ iff K,s |= ψ

In other words,ϕ andψ essentially describe the same property. The semantics of a

logic should always be defined such that≡ is a congruence. This allow a subformula

ψ of ϕ for example to be substituted by an equivalent formula without changing the

meaning ofϕ.

12 Chapter 2. Preliminaries

Definition 1 We say that a logicL is negation closedif for every ϕ ∈ L there is a

ϕ ∈ L s.t. for everyK ∈ K and everys∈ K:

K,s |= ϕ iff K,s 6|= ϕ

Note that a formulaϕ is satisfiable iff its negationϕ is not valid.

A logic itself is a mathematical construct and, hence, has or lacks certain properties.

Important properties for modal and temporal logics are

• thetree model property: if ϕ is satisfiable then it has a model which is a tree.

• thefinite model property: if ϕ is satisfiable then it has a model of finite size.

• the small model property: there is a functionf : N→ N, s.t. if ϕ is satisfiable

then it has a model of sizef (|ϕ|), where|ϕ| denotes the syntactical length ofϕ.

Note that, if a logic has the tree model property and the finite model property, it does

not necessarily mean that every satisfiable formula is satisfied by a finite tree.

Another important aspect of a logic is itsexpressive power. L subsumesL′ in

expressive power overK if for every ϕ ∈ L′ there is aψ ∈ L s.t.ϕ≡ ψ overK.

One of the most important modal logics is themodal µ-calculus Lµ, defined in

[Koz83]. Its importance is based on the fact that it subsumes semantically most other

propositional modal and temporal logics. In fact, it does so for all logics defined in

Sections2.4and2.5apart from FLC which is itself an extension ofLµ. The relations

between all the logics used here andLµ are depicted in Figure3.4 at the end of

Chapter3.

[EFT94] contains a good introduction to the theory of mathematical logics. For

an overview of temporal and modal logics in particular consider [Eme90], [Sti92],

[Sti96b] and [BS01].

2.2 Fixed Points

It is well known that addingquantifiersto a logic usually increases its expressive

power. The degree of this increase is of course dependant on the kind of quantification.

2.2. Fixed Points 13

First-order quantifiers that speak about the existence or non-existence of elements

of the underlying domain are weaker than second-order quantifiers that speak about

relations between elements.

The increased expressive power goes hand in hand with an increase in the complexity

of decision problems associated with these logics and might even result in these

problems becoming undecidable. Therefore, compromises have been sought and

found which allowrestricted quantification. One example isguarded first-order logic,

[AvBN98], which features existential and universal first-order quantifiers over certain

elements only.

Another way of restricting the power of general quantification is by usingfixed points.

Mathematically, a fixed point of a functionf satisfies the equation

f (X) = X

[Tar55] has shown that this concept is particularly useful if the functionf is monotone

and applied to members of a complete lattice with bottom element⊥ and top element

>. In this case there are two distinguished fixed points with nice algorithmic properties.

Definition 2 Let (M,≤) be a set which is partially ordered by≤ s.t.

1. for all x∈M: x≤ x (reflexivity)

2. for all x,y,z∈M: if x≤ y andy≤ z thenx≤ z (transitivity)

3. for all x,y∈M: if x≤ y andy≤ x thenx = y (anti–symmetry)

The elementz is a maximumof x andy if x≤ z andy≤ z. If z≤ x andz≤ y thenz

is aminimumof x andy. Thesupremumis the least maximum of two elements and is

denotedxty while the greatest minimumxuy is calledinfimum.

A partially ordered set(M,≤) is called alattice if xt y andxu y exist in M for all

x,y∈M. It is calledcomplete, if
F

X and
d

X exist for allX ⊆M. In this case there

are two distinguished elements> :=
d

/0 and⊥ :=
F

/0 s.t. for allx∈ M: x≤ > and

⊥≤ x.

14 Chapter 2. Preliminaries

Theheightof a lattice(M,≤) is the maximal number of elements ofM in a chain

x1 ≤ x2 ≤ . . . ≤ xn−1 ≤ xn

Note that, ifM is not finite, it is possible to have such chains whose lengths can only

be measured using ordinals,Ord, beyond the natural numbers.

A function f : M →M is calledmonotoneiff

for all x,y∈M : x≤ y implies f (x)≤ f (y)

x is apre-fixed pointof f iff f (x)≤ x and apost-fixed pointof f iff x≤ f (x).

Theorem 3 (Knaster–Tarski)[Tar55] Let (M,≤) be a complete lattice, andf : M →
M a monotone function. The least fixed point off , denotedµ f, exists uniquely and is

the infimum of all pre-fixed points.

µ f :=
l
{ x∈M | f (x)≤ x }

Dually, the greatest fixed point is the supremum of all post-fixed points.

ν f :=
G
{ x∈M | x≤ f (x) }

For a proof see [Win93] or [Sti01] for example. However, there is a more efficient way

to evaluate fixed points other than to calculate the infimum of all pre-fixed points for

example.

Supposef is monotone. Then,f can be applied iteratively starting with⊥ to obtain a

sequence⊥, f (⊥), f (f (⊥)), . . . of elements ofM. By monotonicity

⊥ ≤ f (⊥) ≤ f (f (⊥)) ≤ . . . ≤ f i(⊥) ≤ . . . (2.2)

It is easy to show that

f i(⊥) = f i+1(⊥) implies f i(⊥) = f j(⊥) for all j ≥ i

Thus, if the underlying lattice has finite heighth ∈ N the sequence will eventually

become stationary with the valuef h(⊥).

2.2. Fixed Points 15

Dually, one obtains a monotonically decreasing sequence of elements of the lattice if

this iteration is started with>.

> ≥ f (>) ≥ f (f (>)) ≥ . . . ≥ f i(>) ≥ . . .

Again, the sequence becomes stationary withf h(>) or even earlier.

For general lattices with heights given by an ordinalα we defineapproximantsof f ’s

least fixed point for every ordinalβ≤ α.

f 0(⊥) := ⊥ , f β+1(⊥) := f (f β(⊥)) , f λ(⊥) :=
G

β<λ
f β(⊥)

with β,λ ∈Ord andλ being a limit ordinal. Dually, approximants of the greatest fixed

point of f are given by

f 0(>) := > , f β+1(>) := f (f β(>)) , f λ(>) :=
l

β<λ

f β(>)

Lemma 4 Let (M,≤) be a complete lattice with heightα ∈ Ord, and f : M → M a

monotone function. Then

µ f = f α(⊥) and ν f = f α(>)

PROOF f 0(⊥) =⊥≤ µ f by the definition of⊥. Then f 1(⊥) = f (⊥)≤ f (µ f)≤ µ f by

monotonicity and the fact thatµ f is a pre-fixed point off . Iterating this yieldsf n(⊥)≤
µ f for all n ∈ N. The claim holds for ordinals in general by transfinite induction.

Supposef β(⊥)≤ µ f for all β < λ, i.e.µ f is a maximum for allf β(⊥). Then f λ(⊥)≤
µ f becausef λ(⊥) is the least maximum of them all. The case forν f is dual. �

This means that in case the height of the underlying lattice is finite, least and greatest

fixed points of f can be found iteratively. This iterative nature has led to the idea of

using fixed point operators as quantifiers. All the logics introduced in the following

sections feature fixed point constructs. Most of them do this in an implicit way: they

have constructs which can be regarded as solutions to an equation in the above sense.

One of the logics allows explicit fixed point quantification, i.e. formulas withfree

variablesare interpreted as functions on elements of a certain lattice while fixed point

operators quantify exactly over those elements that are fixed points of these functions.

16 Chapter 2. Preliminaries

For further reading on the use of fixed points in mathematical logics consult [EF95].

[GW99] shows properties of the guarded fragment with fixed points which can be seen

as a generalization of modal and temporal logics with extremal fixed points. Finally,

[BS01] provides an introduction into fixed points for modal logics.

2.3 Labelled Transition Systems

Definition 5 Let P = {tt,ff,q,q, . . .} be a set of propositional constants, i.e. unary

relation symbols, that is closed under complementation: for everyq ∈ P there is a

q∈ P. Moreover,q = q andtt = ff. Let A = {a,b, . . .} be a set of action names. A

labelled transition system, LTS, is a triple

T = (S,{ a−→| a∈A},L)

where

• S = {s, t, . . .} is a set of states,

• a−→ for eacha∈A is a binary relation on states, and

• L : S→ 2P labels the states in a maximally consistent manner. This means for

everys∈ S and everyq∈ P eitherq∈ L(s) or q∈ L(s). Furthermore,tt ∈ L(s)

for everys∈ S.

If we mention a labelling of a certain state explicitly we will often omittt since it is

included by default.

We will use infix notations a−→ t instead of(s, t) ∈ a−→. To indicate that there is not

s.t.s a−→ t we will write s 6 a→, ands 6→ if shas no successor at all.

If the set of action names is a singleton,A = {a}, we omit the explicit mentioning of

the action and writes−→ t instead ofs a−→ t. In this case a transition system is denoted

T = (S,−→,L).

A pathof a transition systemT = (S,{ a−→| a∈A},L) is a maximal sequence of states

π = s0s1 . . . s.t. for all i there is anai ∈ A with si
ai−−→si+1 if si is not the last state of

2.3. Labelled Transition Systems 17

this sequence. Maximality means the path cannot be prolonged. This is the case if it is

infinite or a finite sequences0 . . .sn andsn 6→.

Let πk denote the suffix ofπ beginning with thek-th state, i.e.πk = sksk+1 Thek-th

statesk of π is denoted byπ(k).

A transition systemT = (S,−→,L) is total if for every s∈ S there is at least onet ∈ S

s.t.s−→ t. Note that paths of total transition systems are necessarily infinite.

Definition 6 Let T = (S,{ a−→| a ∈ A},L) with s0 ∈ S. The unravelling of T with

respect tos0 is an LTSRs0(T) = (S′,{ a→ ′ | a∈A},L′) with state set

S′ := { s0 . . .sn | for all i < n : si
a−→si+1 for somea∈A }

Transitions inRs0(T) are defined as

s0 . . .sn
a→ ′s0 . . .snsn+1 iff sn

a−→sn+1

Finally, the labelling of the states is given by

L′(s0 . . .sn) := L(sn)

Symbolic Representations

It is useful to distinguish finite and infinite transition systems. The first reason for

this is decidability. The model checking problems for the logics introduced in the

next section are undecidable for arbitrary infinite transition systems because they can

express properties like reachability of a certain state for example. However, for finite

transition systems they are decidable.

The second reason for this distinction is the question of representing a transition

system. In the finite case it can be written down as a directed graph with labellings.

Arbitrary infinite transition systems obviously cannot be represented in this way.

However, there are classes of infinite transition systems that have finite representations.

Depending on the expressive power of a logic regarded over these classes the model

checking problem might still be decidable.

18 Chapter 2. Preliminaries

Representations of infinite transition systems can be process algebraic ones like Basic

Process Algebra BPA, Basic Parallel Processes BPP, Pushdown Automata PDA, etc.

For an overview of these classes and their decidability results see [HM96] for example.

[May00] is about Process Rewrite Systems which subsume all these process algebras.

Other examples of process algebras are the Calculus of Communicating Systems

CCS, [Mil80], Communicating Sequential Processes CSP, [Hoa78a, Hoa78b], the

π-calculus, [MPW92] and Petri-Nets, [Pet62, Rei85]. However, in general all of these

give rise to arbitrary transition systems and not finite ones only. But the advantage of

using such process algebras is the fact that they allow model checking algorithms to be

local, see Section2.8for explanations.

The idea of using process algebras to represent infinite transition systems is also

beneficial for finite ones. In verification tasks the underlying transition systems can

be very large and a process algebraic specification can be a much more succinct

representation of a transition system than the adjacency matrix of a graph for example.

Moreover, if transition systems specify a hardware circuit or a software module then it

is often easier to find a process algebraic term that abstracts its behaviour.

The state-of-the-art formalism to represent finite transition systems areOrdered Binary

Decision Diagrams, [Bry86]. They are compact acyclic graph representations of

boolean functions. The reason why they can be used to encode transition system is

the fact that an LTST = (S,{ a−→| a ∈ A},L) is nothing more than a collection of

binary relations{ a−→ | a∈A} each of which can be stored as an OBDD.

OBDDs are particularly useful for model checking modal and temporal logics since it

is relatively easy to evaluate boolean operators and to calculate fixed points on OBDDs,

[McM93]. Using OBBDs for model checking resulted in a major breakthrough

concerning the size of transition systems up to which model checking is practically

feasible. In fact, thesesymbolic techniques enable model checking for transition

systems with more than 100 boolean variables, [BCM+92].

We will not be concerned with the question of how a given transition system is

represented. Generally, we will assume it to be present and represented in some way. If

it is known to be finite we will assume it can be represented in some process-algebraic

or other way that allows a construction to proceed state-by-state.

2.3. Labelled Transition Systems 19

For finite transition systems we will measure the complexity of deciding the winner of

a model checking game as a function of the formula size and the number of states a

transition system has.

Equivalences

There are a number of ways in which two statess and t of a transition system can

be regarded as equivalent. One criterion is graph isomorphism of the subgraphs of

reachable states froms andt. This is far too strong if one uses transition systems to

describe program behaviour. A much weaker version considerssandt to be equivalent

if the transition system regarded as a Büchi-automaton accepts the same language

regardless of whethersor t is the starting state. In order to do so, every state of such an

automaton is considered to be final. Hence, every run of the automaton is accepting.

A useful equivalence between graph isomorphism and language equivalence is

bisimilarity, [Mil89, vB96]. We mention this explicitly because Section2.5introduces

the logic FLC and proves that, like all other logics appearing in the next two sections,

it does not distinguish bisimilar states of a transition system.

Definition 7 Let T = (S,{ a−→| a ∈ A},L). A bisimulation is a symmetric binary

relationR⊆ S×S fulfilling the following.

• If (s, t) ∈ R ands a−→s′ for somea∈A then there is at ′ ∈ S, s.t.(s′, t ′) ∈ R.

• If (s, t) ∈ R andq∈ L(s) thenq∈ L(t).

s andt are calledbisimilar, s∼ t, if there is a bisimulationR s.t.(s, t) ∈ R.

A simulation is a relation with the same requirements as above but which is not

necessarily symmetric.t simulatess iff there is a simulation relatings andt.

We say that a logicL respects bisimulation if for allϕ ∈ L, all transition systems

T = (S,{ a−→| a∈A},L) and alls, t ∈ S: s∼ t impliess |= ϕ iff t |= ϕ.

20 Chapter 2. Preliminaries

2.4 Temporal Logics

The temporal logics defined here do not make use of different action labels, i.e. they

are interpreted over transition systems of the formT = (S,−→,L). Furthermore, we

assume these transition systems to be total. This is a common approach but also avoids

a lot of technical detail.

Linear Time Temporal Logic

Temporal logics over linear structures have been studied for a long time. The most

important result regarding these logics is from [Kam68] where it is shown that a

temporal logic with anuntil operator and its dual for the past,since, is equi-expressive

to first-order formulas with one free variable interpreted over linear orders. Because

of this, Linear Time Temporal LogicLTL is believed to be a natural specification

formalism for temporal properties. [Pnu77] introduced LTL to computer science

and showed that it can be used for program verification purposes. For a detailed

introduction to LTL see [MP92]. Here we regard LTL with future operators only. Its

syntaxis given by the following grammar.

ϕ ::= q | ϕ∨ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | ϕRϕ

whereq ranges overP. X is thenextoperator,U theuntil, andR its dual, calledrelease.

The traditionaleventuallyandgenerallyoperators are abbreviated as

Fϕ := ttUϕ and Gϕ := ffRϕ

LTL is interpreted over pathsπ = s0s1 . . . of a total LTS. We usually assume an LTS

to be fixed and writeπ |= ϕ instead ofT,π |= ϕ. Thesemanticsof an LTL formula is

inductively defined as

π |= q iff q∈ L(π(0))

π |= ϕ∨ψ iff π |= ϕ or π |= ψ
π |= ϕ∧ψ iff π |= ϕ and π |= ψ

2.4. Temporal Logics 21

π |= Xϕ iff π1 |= ϕ
π |= ϕUψ iff there is ak∈ N, s.t. πk |= ψ and

for all j ∈ N : if 0≤ j < k then π j |= ϕ
π |= ϕRψ iff for all k∈ N : πk |= ψ or

there is aj ∈ N s.t. 0≤ j < k and π j |= ϕ

The temporal operatorsU andR can also be characterised by the recursive equations

ϕUψ ≡ ψ∨ (ϕ∧X(ϕUψ))

ϕRψ ≡ ψ∧ (ϕ∨X(ϕRψ))

whereϕUψ is the least solution andϕRψ the greatest solution to the corresponding

equivalence. The right sides of these equations are called theunfoldingsof anU, resp.

aR.

As subformulasof aϕ ∈ LTL we do not just consider formulas that occur in the syntax

tree ofϕ. Instead, the unfoldings have to be taken care of as well.

Sub(q) = {q}
Sub(ϕ∨ψ) = {ϕ∨ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕ∧ψ) = {ϕ∧ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(Xϕ) = {Xϕ} ∪ Sub(ϕ)

Sub(ϕUψ) = {ϕUψ,X(ϕUψ),ϕ∧X(ϕUψ),ψ∨ (ϕ∧X(ϕUψ))}
∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕRψ) = {ϕRψ,X(ϕRψ),ϕ∨X(ϕRψ),ψ∧ (ϕ∨X(ϕRψ))}
∪ Sub(ϕ) ∪ Sub(ψ)

Lemma 8 (Negation closure) LTL is closed under negation.

PROOF For everyϕ ∈ LTL we defineϕ in the following way.

ϕ∧ψ := ϕ∨ψ ϕUψ := ϕRψ
ϕ∨ψ := ϕ∧ψ ϕRψ := ϕUψ
Xϕ := Xϕ

22 Chapter 2. Preliminaries

Then,

π |= ϕ iff π 6|= ϕ

for all LTL formulasϕ and all pathsπ of all total transition systemsT. Note that the

equivalenceXϕ≡ Xϕ in general does not hold on finite paths. �

For correctness proofs in later chapters we will need approximants ofU andR formulas.

Definition 9 Let k∈ N. Approximantsof ϕUψ are defined as

ϕU0ψ := ff

ϕUk+1ψ := ψ∨ (ϕ∧X(ϕUkψ))

Dually, approximants ofϕRψ are defined as

ϕR0ψ := tt

ϕRk+1ψ := ψ∧ (ϕ∨X(ϕRkψ))

Lemma 10 (Approximants) Letπ be a path of a total transition systemT andϕ,ψ∈
LTL.

a) π |= ϕUψ iff there is ak∈ N s.t.π |= ϕUkψ,

a) π |= ϕRψ iff for all k∈ N: π |= ϕRkψ.

PROOF a) Supposeπ |= ϕUψ. Then there is ak ∈ N s.t. πk |= ψ and for all j < k:

π j |= ϕ. Thus,

π |= ϕ∧X(ϕ∧X(. . .ϕ︸ ︷︷ ︸
k−1 times

∧Xψ))

Thenπ |= ϕUkψ because

ϕUkψ ≡ ψ∨ (ϕ∧X(ψ∨ (ϕ∧X(. . .ϕ︸ ︷︷ ︸
k−1 times

∧Xψ)))) (2.3)

Suppose nowπ |= ϕUkψ for somek ∈ N. Take the least suchk. Again, by (2.3), π |=
ϕUψ since every disjunction must be fulfilled by the disjunct containingϕ. Otherwise,

k would not be least.

2.4. Temporal Logics 23

b) First we show by induction onk thatϕRkψ≡ (ϕUkψ). This is true fork= 0. Suppose

it is true for an arbitraryk.

ϕRk+1ψ ≡ ψ∧ (ϕ∨X(ϕRkψ))

≡ ψ∧ (ϕ∨X(ϕUkψ))

≡ ψ∨ (ϕ∧X(ϕUkψ))

≡ ψ∨ (ϕ∧X(ϕUkψ))

≡ ϕUk+1ψ

Now, π |= ϕRψ iff π 6|= ϕUψ iff for all k∈ N: π 6|= ϕUkψ iff for all k∈ N: π |= ϕRkψ. �

Branching Time Logics

As in the case of LTL, branching time logics existed well before they found their way

into computer science. In this framework, the future of a moment is not unique, instead

there can be several possible future moments. I.e. states of models for branching time

logics have several successors in general. The question of which of these views on

time is preferable or more useful has been discussed by many people, see [EH86] and

[Sti89] for example. [Var01] is meant to be the final say in this controversial matter.

One of the first branching time temporal logics to be used in computer science is the

Computation Tree Logic CTL, introduced in [EH85] together with CTL+. Similar

logics have been proposed in [BAPM83], [EC80] and [Lam80]. Shorty afterwards,

[EH86] defined the Full Branching Time Logic CTL∗ which was meant to unify CTL

and LTL and allow them to be compared with one another.

Here, we build branching time logics from a set of operators similar to the ones of

linear time logic. In addition to that, they are able to quantify over paths and therefore

are interpreted over transition systems directly. These are assumed to be total, too. The

syntaxof CTL∗ is given by

ϕ ::= q | ϕ∨ϕ | ϕ∧ϕ | Xϕ | ϕUϕ | ϕRϕ | Aϕ | Eϕ

24 Chapter 2. Preliminaries

whereq ranges overP.

For a CTL∗ formulaϕ the set ofsubformulas Sub(ϕ) is defined in the same way as it

is for an LTL formula. Additionally,

Sub(Aϕ) = {Aϕ} ∪ Sub(ϕ)

Sub(Eϕ) = {Eϕ} ∪ Sub(ϕ)

The semanticsis defined inductively using pathsπ of a total transition systemT =

(S,−→,L).

π |= q iff q∈ L(π(0))

π |= ϕ∨ψ iff π |= ϕ or π |= ψ
π |= ϕ∧ψ iff π |= ϕ and π |= ψ
π |= Xϕ iff π1 |= ϕ
π |= ϕUψ iff there is ak∈ N, s.t. πk |= ψ and

for all j ∈ N : if 0≤ j < k then π j |= ϕ
π |= ϕRψ iff for all k∈ N : πk |= ψ or

there is aj ∈ N s.t. 0≤ j < k and π j |= ϕ
π |= Aϕ iff for all pathsπ′ : if π(0) = π′(0) then π′ |= ϕ
π |= Eϕ iff there is a pathπ′, s.t. π(0) = π′(0) and π′ |= ϕ

E andA are calledpath quantifiers.

A CTL∗ formula ϕ is called astate formulaiff ϕ ≡ Aϕ, andpath formulaotherwise.

We will consider state formulas only. Therefore, one can assume every CTL∗ state

formula to begin with anA. Note that

Q2Q1ϕ ≡ Q1ϕ for Q1,Q2 ∈ {A,E}

The truth value of state formulas only depends on a single state. Is is therefore possible

to writes0 |= ϕ if π |= ϕ for all π = s0s1

Thepure branching time logicCTL is obtained as a fragment of CTL∗ by requiring the

path operatorsX, U andR to be preceded immediately by a path quantifier.

ϕ ::= q | ϕ∨ϕ | ϕ∧ϕ | QXϕ | Q(ϕUϕ) | Q(ϕRϕ)

Q ::= A | E

2.4. Temporal Logics 25

Although the set ofsubformulasof a CTL formula can be defined by regarding it as a

CTL∗ formula it is helpful to use a more specialised definition.

Sub(q) = {q}
Sub(ϕ∨ψ) = {ϕ∨ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕ∧ψ) = {ϕ∧ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(QXϕ) = {QXϕ} ∪ Sub(ϕ)

Sub(Q(ϕUψ)) = {Q(ϕUψ),QXQ(ϕUψ),ϕ∧QXQ(ϕUψ),ψ∨ (ϕ∧QXQ(ϕUψ))}
∪ Sub(ϕ) ∪ Sub(ψ)

Sub(Q(ϕRψ)) = {Q(ϕRψ),QXQ(ϕRψ),ϕ∨QXQ(ϕRψ),ψ∧ (ϕ∨QXQ(ϕRψ))}
∪ Sub(ϕ) ∪ Sub(ψ)

In CTL the following equivalences hold:

Q(ϕUψ) ≡ ψ∨ (ϕ∧QXQ(ϕUψ))

Q(ϕRψ) ≡ ψ∧ (ϕ∨QXQ(ϕRψ))

CTL+ is the fragment of CTL∗ that allows boolean combinations of path formulas in

the immediate scope of a path quantifier but forbids nesting of them.

ϕ ::= q | ϕ∨ϕ | ϕ∧ϕ | Qψ
ψ ::= ψ∨ψ | ψ∧ψ | Xϕ | ϕUϕ | ϕRϕ
Q ::= A | E

Again,q∈ P. The set ofsubformulasfor a CTL+ formula is given by the subformula

definition for CTL∗. However, the CTL+ unfolding of aϕUψ or ϕRψ is the same as

the one for CTL.

Lemma 11 (Negation closure) CTL∗,CTL and CTL+ are closed under negation.

PROOF We define the complement of a branching time formula in the following way.

Aϕ := Eϕ ϕUψ := ϕRψ
Eϕ := Aϕ ϕRψ := ϕUψ
ϕ∧ψ := ϕ∨ψ Xϕ := Xϕ
ϕ∨ψ := ϕ∧ψ

26 Chapter 2. Preliminaries

This construction preserves the special structure of CTL and CTL+ formulas. �

LTL, as defined in this section, can be interpreted directly over total transition systems,

too. This is done by regardingall paths that begin with a designated states. This is

the same as preceding an LTL formulaϕ with theA path quantifier and regarding the

result as the CTL∗ state formulaAϕ interpreted ins.

However, not every CTL∗ formula can be represented in this way. Therefore, it is

useful to consider this fragment of CTL∗ as a logic on its own. To avoid confusion

with the real linear time LTL, we call this logic thebranching time version ofLTL,

BLTL. Its syntaxis given by

ϕ ::= Aψ
ψ ::= q | ψ∨ψ | ψ∧ψ | Xψ | ψUψ | ψRψ

whereq∈ P. The set ofsubformulasof an BLTL formula is given by regarding it as a

CTL∗ formula.

BLTL is not closed under negation according to Definition1. By Lemma11, the

negation of a BLTL formula is of the formEψ whereψ≡ ϕ for someϕ ∈ LTL. Since

LTL is negation closed (Lemma8) negation closure of BLTL would imply the fact

that every universally path quantified property can also be expressed as an existentially

quantified one. This is not the case.

Since the pure linear time part of BLTL, namely LTL, is negation closed one could

define negation in BLTL asAϕ := Aϕ. But this results in the fact that it is possible for a

transition system to neither satisfy a formula nor its negation. At least it is impossible

for a transition system to satisfy both.

If negation closure is defined as

Aϕ is satisfiable iff Aϕ is not valid

for an LTL formulaϕ then BLTL is negation closed.

Example 12 A simple CTL formula isAGEXtt which says that no reachable state is a

deadlock, i.e. does not have any successor states. This is in fact a validity since CTL is

interpreted over total transition system, i.e. this property is always trivially fulfilled.

2.5. Modal Logics 27

An example of a CTL∗ formula isϕ := E(qU(Gq)). It postulates the existence of an

infinite path with a finite prefix, s.t. no state on the prefix satisfiesq whereas all other

states do.

Another example isϕ := A(Xq∨Xq). ϕ simply says that every path’s next state is either

labelled withq or q. This is not the most interesting property but a simple and good

example to illustrate the CTL∗ model checking games in Chapter5.2. In fact, ϕ is

already a CTL+ and a BLTL formula.

As a last example we considerϕ := E(Fq∧ GFq). This is a genuine CTL∗ formula

that postulates the existence of a path on whichq holds infinitely often. It is not the

shortest formula that expresses this property but, again, will be useful to illustrate the

CTL∗ model checking games in Chapter5.

2.5 Modal Logics

Unlike temporal logics, modal logics distinguish transitions of an LTS with different

labels. Thus, they are interpreted over transition systemsT = (S,{ a−→| a∈A},L).

Propositional Dynamic Logic

PDL, as introduced in [FL79], augments basic modal logic with an infinite but regular

set of action names. They are usually calledprograms. Formulasϕ and programsα
are mutually recursively defined as

ϕ ::= q | ϕ∨ϕ | ϕ∧ϕ | 〈α〉ϕ | [α]ϕ
α ::= a | α∪α | α;α | α∗ | ϕ?

whereq ranges overP anda overA.

The transition relationsa−→ of an LTS can be extended to programsα in the following

way. In the case of thetest operatorϕ? it refers to the semantics ofϕ. Since the

formula sizes get reduced this mutual recursion is well-founded.

28 Chapter 2. Preliminaries

s α∪β−−−→ t iff s α−→ t or s β−→ t

s α;β−−→ t iff there is anu∈ S, s.t. s α−→u and u β−→ t

s α∗−−→ t iff there is ann∈ N, s.t. s αn−−→ t where

for all s, t ∈ S : s α0−−→s and s αk+1−−−→ t iff s α;αk−−−→ t

s ϕ?−−→s iff s |= ϕ

The subformulasof a PDL formulaϕ depend on bothϕ’s formula structure and the

programs contained in it.

Sub(q) = {q}
Sub(ϕ∨ψ) = {ϕ∨ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕ∧ψ) = {ϕ∧ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(〈a〉ϕ) = {〈a〉ϕ} ∪ Sub(ϕ)

Sub([a]ϕ) = {[a]ϕ} ∪ Sub(ϕ)

Sub(〈α∪β〉ϕ) = {〈α∪β〉ϕ} ∪ Sub(〈α〉ϕ∨〈β〉ϕ)

Sub([α∪β]ϕ) = {[α∪β]ϕ} ∪ Sub([α]ϕ∧ [β]ϕ)

Sub(〈α;β〉ϕ) = {〈α;β〉ϕ} ∪ Sub(〈α〉〈β〉ϕ)

Sub([α;β]ϕ) = {[α;β]ϕ} ∪ Sub([α][β]ϕ)

Sub(〈α∗〉ϕ) = {〈α∗〉ϕ,〈α〉〈α∗〉ϕ,ϕ∨〈α〉〈α∗〉ϕ} ∪ Sub(ϕ)

Sub([α∗]ϕ) = {[α∗]ϕ, [α][α∗]ϕ,ϕ∧ [α][α∗]ϕ} ∪ Sub(ϕ)

Sub(〈ϕ?〉ψ) = {〈ϕ?〉ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub([ϕ?]ψ) = {[ϕ?]ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

This is also called theFischer-Ladner closure. To maintain consistency with the other

logics we prefer the termSub(ϕ). The negationϕ of ϕ, needed in the subformula

definition of[ϕ?]ψ will be defined in Lemma13 later on.

Formulas of PDL are interpreted over states of an LTST which need not be total. Thus,

paths ofT can be finite or infinite. Again, we assume the LTS to be fixed and write

s |= ϕ instead ofT,s |= ϕ for s∈ S.

s |= q iff q∈ L(s)

s |= ϕ∨ψ iff s |= ϕ or s |= ψ

2.5. Modal Logics 29

s |= ϕ∧ψ iff s |= ϕ and s |= ψ
s |= 〈α〉ϕ iff there is at ∈ S s.t. s α−→ t and t |= ϕ
s |= [α]ϕ iff for all t ∈ S : if s α−→ t then t |= ϕ

The implicit fixed point constructs of PDL are〈α∗〉ϕ and [α∗]ϕ. They can be

characterised by the following equivalences.

〈α∗〉ϕ ≡ α∨〈α〉〈α∗〉ϕ
[α∗]ϕ ≡ α∧ [α][α∗]ϕ

As with the temporal logics, the first equivalence is to be taken as the least solution

and the second as the greatest.

Lemma 13 (Negation closure) PDL is closed under negation.

PROOF We define the complement of a PDL formula in the following way.

ϕ∨ψ := ϕ∧ψ 〈α〉ϕ := [α]ϕ
ϕ∧ψ := ϕ∨ψ [α]ϕ := 〈α〉ϕ �

Important equivalences of PDL formulas are

〈α∪β〉ϕ ≡ 〈α〉ϕ∨〈β〉ϕ 〈α;β〉ϕ ≡ 〈α〉〈β〉ϕ
[α∪β]ϕ ≡ [α]ϕ∧ [β]ϕ [α;β]ϕ ≡ [α][β]ϕ
〈ϕ?〉ψ ≡ ϕ∧ψ [ϕ?]ψ ≡ ϕ∨ψ

Again, for the correctness proofs of the PDL games in Chapter4 and Section6.3 we

need approximants of the implicit fixed point constructs in PDL.

Definition 14 Let α be a program,ϕ ∈ PDL, andk ∈ N. Approximants of〈α∗〉ϕ are

defined as

〈α0〉ϕ := ff

〈αk+1〉ϕ := ϕ∨〈α〉〈αk〉ϕ

30 Chapter 2. Preliminaries

Dually,

[α0]ϕ := tt

[αk+1]ϕ := ϕ∧ [α][αk]ϕ

are approximants of[α∗]ϕ.

Lemma 15 (Approximants) LetT = (S,{ a−→| a∈A},L) with s0 ∈ S andϕ ∈ PDL.

a) s0 |= 〈α∗〉ϕ iff there is ak∈ N, s.t.s0 |= 〈αk〉ϕ.

b) s0 |= [α∗]ϕ iff for all k∈ N: s0 |= [αk]ϕ.

PROOF a) Supposes |= 〈α∗〉ϕ. Then there is a pathπ = s0s1 . . .sk−1 . . . in T s.t.

si−1
α−→si for all 1 ≤ i < k and sk−1 |= ϕ. Thus, s0 |= 〈αk〉ϕ. Note thatk = 0 is

impossible.

Suppose nows0 |= 〈αk〉ϕ for somek∈N. Take the least suchk. By definitions0 |= ϕ or

s0 |= 〈α〉〈αk−1〉ϕ. If the former is true thens0 |= 〈α∗〉ϕ. Suppose the latter holds. Then

there is as1 ∈ S s.t.s0
α−→s1 ands1 |= 〈αk−1〉ϕ. This argument can be iterated until a

sk−1 ∈ S is reached s.t.sk−1 |= ϕ or sk−1 |= 〈α〉〈α0〉ϕ. But 〈α〉〈α0〉ϕ ≡ ff, hence, the

former must hold. But then the sequences0s1 . . .sk−1 witnesses thats0 |= 〈α∗〉ϕ.

b) s0 |= [α∗]ϕ iff s0 6|= [α∗]ϕ

iff s0 6|= 〈α∗〉ϕ
iff for all β ∈Ord : s0 6|= 〈αβ〉ϕ
iff for all β ∈Ord : s0 |= [αβ]ϕ

using part a), Definition14and Lemma13. �

Example 16 An example of a PDL formula is

ϕ := 〈(q?;a)∗〉q

It expresses an existentially path quantifieduntil property: “there is a path labelled

with as on whichq does not hold until it holds”. The〈α∗〉q makes sure thatq holds

eventually on some path. The programq?;a forces every state before that on this path

not to satisfyq and to have ana-transition to the next state.

2.5. Modal Logics 31

Several extensions of PDL have been considered in the literature, for instance in [Str81]

or [Str85]. One example is the use ofconverse operatorswhich allow formulas to

speak about the backwards-execution of a program. Formally, the set of programs is

defined as

α ::= a | α∪α | α;α | α∗ | ϕ? | α

wherea ranges overA.

Thesemanticsof converse transitions is given by

s α−→ t iff t α−→s

It is sufficient to allow the converse operator to be applied to atomic programs only

since the following equivalences hold.

s α∪β−−−→ t iff s α∪β−−−→ t

s α;β−−→ t iff s β;α−−→ t

s α∗−−→ t iff s α∗−−→ t

Another extension is PDL-∆ which features a new formula constructrepeat(α) where

α is a program. Itssemanticsis given by

s0 |= repeat(α) iff there is an infinite pathπ = s0s1 . . . s.t. si
α−→si+1 for all i ∈ N

Fixed Point Logic with Chop

Fixed point logic with chop, FLC, was defined in [MO99]. It extendsLµ and thus

features explicit fixed point constructs. Itssyntaxassumes the existence of a setV =

{Z,Y, . . .} of propositional variables, and is given by

ϕ ::= q | Z | τ | 〈a〉 | [a] | ϕ∨ϕ | ϕ∧ϕ | µZ.ϕ | νZ.ϕ | ϕ;ϕ

where q ∈ P, Z ∈ V, and a ∈ A. We let σZ.ϕ stand for eitherµZ.ϕ or νZ.ϕ.

Furthermore, we assume formulas to bewell-named, i.e. different fixed point formulas

do not use the same variable to do quantification. In this case there is a functionfp that

32 Chapter 2. Preliminaries

maps every variableZ to its defining fixed point formula, i.e.fp(Z) = σZ.ψ for some

ψ. Thefixed point typeof a variableZ is µ if fp(Z) = µZ.ψ for someψ andν otherwise.

The set ofsubformulasof an FLC formula is defined as follows.

Sub(q) = {q}
Sub(Z) = {Z}
Sub(τ) = {τ}
Sub(〈a〉) = {〈a〉}
Sub([a]) = {[a]}
Sub(ϕ∨ψ) = {ϕ∨ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(ϕ∧ψ) = {ϕ∧ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

Sub(σZ.ϕ) = {σZ.ϕ} ∪ Sub(ϕ)

Sub(ϕ;ψ) = {ϕ;ψ} ∪ Sub(ϕ) ∪ Sub(ψ)

The set offree variablesof an FLC formula is given by

free(q) := /0
free(Z) := {Z}
free(τ) := /0
free(〈a〉) := /0
free([a]) := /0
free(ϕ∨ψ) := free(ϕ) ∪ free(ψ)

free(ϕ∧ψ) := free(ϕ) ∪ free(ψ)

free(σZ.ϕ) := free(ϕ)−{Z}
free(ϕ;ψ) := free(ϕ) ∪ free(ψ)

A formula ϕ is closedif it contains no free variables, i.e.free(ϕ) = /0.

In the following we will define syntactical fragments of FLC. Like modalµ-calculus,

the alternation depth of a formula for example is an important factor for the efficiency

of a model checking algorithm. But it is not the only one. The number of times

variables occur sequentially composed to themselves is equally important.

We say thatZ depends onY in ϕ, writtenZ≺ϕ Y, if Y ∈ free(fp(Z)). We writeZ <ϕ Y

iff (Z,Y) is in the transitive closure of≺ϕ. Thealternation depthof ϕ, ad(ϕ), is the

2.5. Modal Logics 33

maximal numberk in a chain of variablesZ0 <ϕ Z1 <ϕ . . . <ϕ Zk s.t.Zi−1 andZi are of

different fixed point types for0 < i ≤ k.

Informally thesequential depthof a formula measures the number of times a variable

occurs in a sequence of formulas that are sequentially composed.

Definition 17 The sequential depth ofϕ is defined as

sd(ϕ) := max { sdZ(fp(Z)) | Z ∈ Sub(ϕ) }

where

sdZ(ψ) := 0 if ψ ∈ P∪{〈a〉, [a],τ}
sdZ(ϕ∨ψ) := max{ sdZ(ϕ),sdZ(ψ) }
sdZ(ϕ∧ψ) := max{ sdZ(ϕ),sdZ(ψ) }
sdZ(ϕ;ψ) := sdZ(ϕ)+sdZ(ψ)

sdZ(σY.ϕ) := sdZ(ϕ)

sdZ(Y) :=

{
1 if Y = Z

0 o.w.

Important syntactical fragments of FLC are those with fixed alternation and sequential

depth because they allow model checking algorithms to be more efficient than those for

the general FLC. However, this usually comes at the expense of a reduced expressive

power. The question of whether or not the hierarchy of levels with fixed alternation,

resp. sequential depth is strict, is open.

FLCk,n := { ϕ ∈ FLC | ad(ϕ)≤ k,sd(ϕ)≤ n }
FLCk :=

S
n∈N

FLCk,n

FLCω,n :=
S

k∈N
FLCk,n

Definition 18 The tail of a variableZ in a formulaϕ, tlZ, is a set consisting of those

formulas that occur “behind”Z in fp(Z). In order to define it technically we use

sequential composition for sets of formulas in a straightforward way:

{ϕ0, . . . ,ϕn};ψ := {ϕ0;ψ, . . . ,ϕn;ψ}

34 Chapter 2. Preliminaries

We also use the eponymous functiontlZ : Sub(ϕ)→ 2Sub(ϕ) where

tlZ(q) := {q}
tlZ(τ) := {τ}
tlZ(〈a〉) := {〈a〉}
tlZ([a]) := {[a]}
tlZ(ϕ∨ψ) := tlZ(ϕ) ∪ tlZ(ψ)

tlZ(ϕ∧ψ) := tlZ(ϕ) ∪ tlZ(ψ)

tlZ(σY.ψ) := tlZ(ψ)

tlZ(Y) :=

{
{Y} if Y 6= Z

{τ} o.w.

tlZ(ϕ;ψ) := T1∪T2

with

T1 :=

{
tlZ(ϕ);ψ if Z ∈ Sub(ϕ)

{τ} o.w.

T2 :=

{
tlZ(ψ) if Z ∈ Sub(ψ)

{τ} o.w.

The tail ofZ in ϕ is simply calculated astlZ := tlZ(fp(Z)).

Another important syntactical fragment of FLC is the one containing those formulas

whose variables have trivial tails only.

FLC− := { ϕ ∈ FLC | tlZ = {τ} for all Z ∈ Sub(ϕ) }

Note that FLC− subsumesLµ, [MO99]. It is the fragment of FLC considered here

which permits the most efficient model checking procedure. This is basically because

it does not bear an essential difference to modalµ-calculus.

FLC is interpreted over transition systemsT = (S,{ a−→| a∈A},L) which need not be

total. Thesemanticsof an FLC formula is a monotonestate transformerf : 2S→ 2S.

To allow an inductive definition one needs to handleopenformulas. This is done using

2.5. Modal Logics 35

an environmentwhich is a functionρ : V → (2S → 2S) that maps variables to state

transformers.ρ[Z 7→ f] is the function that mapsZ to f and agrees withρ on all other

arguments. The semantics[[·]]Tρ : 2S→ 2S of an FLC formula, relative toT andρ, is

a monotone function on subsets of states with respect to the inclusion ordering on2S.

These functions together with the partial order given by

f v g iff for all X ⊆ S : f (X)⊆ g(X)

form a complete lattice with supremat and infimau. By Theorem3, the least and

greatest fixed points of functionalsF : (2S→ 2S)→ (2S→ 2S) exist. They are used to

interpret fixed point formulas of FLC. We useλ-notation for functions.

[[q]]ρ = λX.{s∈ S | q∈ L(s)}
[[Z]]ρ = ρ(Z)

[[τ]]ρ = λX.X

[[〈a〉]]ρ = λX.{s∈ S | ∃t ∈ X, s.t. s a−→ t}
[[[a]]]ρ = λX.{s∈ S | ∀t ∈ S, if s a−→ t thent ∈ X}
[[ϕ∨ψ]]ρ = λX.[[ϕ]]ρ(X)∪ [[ψ]]ρ(X)

[[ϕ∧ψ]]ρ = λX.[[ϕ]]ρ(X)∩ [[ψ]]ρ(X)

[[µZ.ϕ]]ρ =
d { f : 2S→ 2S | f monotone,[[ϕ]]ρ[Z7→ f] v f}

[[νZ.ϕ]]ρ =
F { f : 2S→ 2S | f monotone,f v [[ϕ]]ρ[Z7→ f]}

[[ϕ;ψ]]ρ = [[ϕ]]ρ ◦ [[ψ]]ρ

Given aT = (S,{ a−→| a ∈ A},L), a states∈ S satisfies a formula,s |=ρ ϕ, if s∈
[[ϕ]]Tρ (S). Note that an environment is not needed ifϕ is closed.

Lemma 19 [MO99] Let ϕ ∈ FLC be closed. Then[[ϕ]] is monotone, i.e. for all

S,T ⊆ S of an LTST = (S,{ a−→| a∈A},L): if S⊆ T then[[ϕ]](S)⊆ [[ϕ]](T).

Two formulasϕ andψ areequivalent, ϕ≡ ψ, iff their semantics are the same, i.e. for

everyT and everyρ: [[ϕ]]Tρ = [[ψ]]Tρ . This equivalence is a congruence and thus permits

substituitivity. There is no FLC formulaϕ that does not containτ as a subformula, s.t.

ϕ≡ τ.

36 Chapter 2. Preliminaries

For model checking purposes it is useful to consider a weaker equivalence.ϕ andψ
are calledweakly equivalent, written ϕ ≈ ψ, iff they are satisfied by the same states,

i.e. s |=ρ ϕ iff s |=ρ ψ for any states of any transition systemT and everyρ. Note that

weak equivalence is not a congruence as the next example shows.

Example 20 Consider the two FLC formulas〈a〉 and 〈a〉;tt. They are weakly

equivalent because both say that a state has ana-transition to any other state. Now

take the context;〈a〉.

〈a〉;〈a〉;tt≈ 〈a〉;〈a〉 6≈ 〈a〉;tt;〈a〉 ≡ 〈a〉;tt

In this context the second formula still requires a state to have onea-transition whereas

the first now says that two successivea-transitions must be possible.

In [MO99] it is shown how to embedLµ into FLC by using sequential composition.

For instance,〈a〉ϕ becomes〈a〉;ϕ. Therefore, we will sometimes omit the semicolon

to maintain a strong resemblance to the syntax ofLµ. For example,〈a〉Z〈a〉 abbreviates

〈a〉;Z;〈a〉.
Again, for correctness proofs we need to introduce approximants of FLC fixed point

formulas. However, unlike the LTL and PDL cases,N does not suffice. Instead, one

has to use ordinals.

Definition 21 (Approximants) Let fp(Z) = µZ.ϕ for someϕ and letα,λ∈Ord where

λ is a limit ordinal. Then

Z0 := ff, Zα+1 = ϕ[Zα/Z], Zλ =
_

α<λ
Zα

For greatest fixed points the approximants are defined dually. Letfp(Z) = νZ.ϕ for

someϕ and, again,α,λ ∈Ord with λ being a limit ordinal. Then

Z0 := tt, Zα+1 = ϕ[Zα/Z], Zλ =
α̂<λ

Zα

Note thatµZ.ϕ ≡ Wα∈OrdZα andνZ.ϕ ≡ Vα∈OrdZα. If only finite transition systems

are consideredOrd can be replaced byN. If the underlying transition system is fixed

then its size is an upper bound on the number of approximants needed to calculate

fixed point formulas.

2.5. Modal Logics 37

Example 22 Let A = {a,b} and

ϕ := νY.[b]ff∧ [a](νZ.[b]∧ [a](Z;Z));(([a]ff∧ [b]ff)∨Y)

ϕ expresses “on every path at every moment the number ofbs so far never exceeds the

number ofas so far”. This property is non-regular and, hence, is not expressible in

Lµ. This is an interesting property of protocols whena andb are the actionssendand

receive.

The subformulaψ = νZ.[b]∧ [a](Z;Z) expresses “there can be at most oneb more than

there areas”. This is understood best by unfolding the fixed point formula and thus

obtaining sequences of modalities and variables. Replacing aZ with a [b] decreases

the number ofZs whereas replacing it with the other conjunct adds a newZ to the

sequence. The games of Chapter9 will provide a better way of explaining what

property is expressed by a given FLC formula.

Then,[b]ff∧ [a]ψ postulates that at the beginning nob is possible and for everyn as

there can be at mostn bs. Finally, theY in ϕ allows such sequences to be composed or

finished in a deadlock state.

Among the logics presented in this and the previous section, FLC is without a doubt

the least known. Therefore, we present a few basic results pertaining to FLC in order

to get the reader acquainted with it and to show that FLC is indeed a modal logic in

the sense that it has the properties a modal logic is expected to have.

Theorem 23 [MO99] Satisfiability of FLC formulas is undecidable.

This is proved by reduction from the simulation equivalence problem for BPA

processes. For a BPA process Q one can construct FLC formulasφQ,φ−Q,φ+
Q s.t.

P |= φQ iff P∼Q

P |= φ−Q iff P simulatesQ

P |= φ+
Q iff P is simulated byQ

A consequence of this is the following.

Theorem 24 [MO99] FLC does not have the finite model property.

38 Chapter 2. Preliminaries

a a a a

b b b

bbb

Figure 2.1: The transition system for Example 25.

The finite model property would imply that every BPA process is bisimilar to a finite

state transition system.

Next, we give an example of an FLC formula that is satisfiable but does not have a

finite model.

Example 25 Let A = {a,b} and

ϕ := (νZ.〈a〉(Z∧ τ);([b]∧〈b〉));([a]ff∧ [b]ff)

The formula postulates the existence of an infinitea-path, s.t. after every prefix ofn as

exactlyn bs are possible. The body of the fixed point formula can be rewritten as

〈a〉(([b]∧〈b〉)∧Z;([b]∧〈b〉))

This expresses that there must be a path with transition labelsab at the beginning and

all suchbs lead to states that have similar properties. Moreover, after thea there is

another path of the same style with one moreb at the end.

ϕ has an infinite model like the one depicted in Figure2.1. Supposeϕ has a finite

model, too. This could be regarded as a finite automatonA with final states being

the deadlock states. ButA would accept the context-free and non-regular language

L = {anbn | n∈ N}.

For model checking purposesconverse modalitiesthat allow formulas to speak about

predecessors of states can be integrated without causing any difficulties. Note that in

general this does not hold for satisfiability checking problems.

2.5. Modal Logics 39

The syntax of FLC can be extended with primitives〈a〉 and[a] wherea ranges overA.

Their semantics is

[[〈a〉]] = λX.{s∈ S | ∃t ∈ X, s.t. t a−→s}
[[[a]]] = λX.{s∈ S | ∀t ∈ S, t a−→s⇒ t ∈ X}

But note that in generalS 6= [[〈a〉;〈a〉]](S), i.e.[[〈a〉]] is not the inverse function of[[〈a〉]].
As a counterexample take the transition system with states{1,2,3} and transitions

1 a−→3 and2 a−→3. Then{3}= [[〈a〉]]({1}) but{1,2}= [[〈a〉]]({3}).
This extension of FLC is capable of defininguniform inevitability, which means

propertyψ holds on all paths of a transition system at the same moment. In [Eme87]

it is shown thatLµ cannot do this.

Example 26 Let A = {a} and

ϕ := µY.〈a〉Y∨ (ψ∧ (νZ.[a];(Z∧ τ); [a]);ψ)

ϕ is an instance of aneventuallyformula of Lµ, i.e. µY.〈a〉Y∨ψ′ says that there is

a path on whichψ′ eventually holds.(νZ.[a];(Z∧ τ); [a]);ψ says that at every state

that can be reached by a sequence ofn as backwards and thenn as forwardsψ holds.

Composing these two formulas achieves uniform inevitability.

Lemma 27 (Equivalences)

a) If ϕ≡ ψ then ϕ≈ ψ.

b) If ϕ≈ ψ then ϕ;tt≡ ψ;tt.

c) ϕ≈ ϕ;tt.

d) LetI⊆Ord. (
W

i∈Iϕi);ψ≡Wi∈I(ϕi ;ψ) and (
V

i∈Iϕi);ψ≡Vi∈I(ϕi ;ψ)

e) τ;ϕ≡ ϕ≡ ϕ;τ.

f) q;ϕ≡ q for q∈ P.

PROOF a) If ϕ≡ ψ then[[ϕ]]ρ(S) = [[ψ]]ρ(S) for everyρ and every set of statesS⊆ S,

in particularS= S. Thereforeϕ≈ ψ.

b) [[ϕ;tt]]ρ = [[ϕ]]ρ ◦ [[tt]]ρ = λX.[[ϕ]]ρ(X)◦λX.S = [[ϕ]]ρ(S) for any transition system

with state setS and anyρ. But ϕ ≈ ψ means[[ϕ]]ρ(S) = [[ψ]]ρ(S) and therefore

40 Chapter 2. Preliminaries

ϕ;tt≡ ψ;tt.

c) Trivial.

d) [[(
W

i∈Iϕi);ψ]]ρ = (
F

i∈I [[ϕi]]ρ) ◦ [[ψ]]ρ = (λX.
S

i∈I [[ϕi]]ρ(X)) ◦ [[ψ]]ρ =

(λX.
S

i∈I [[ϕi]]ρ([[ψ]]ρ(X))) =
F

i∈I([[ϕi]]ρ ◦ [[ψ]]ρ) = [[
W

i∈I(ϕi ;ψ)]]ρ. The case of

distributivity for conjunctions is similar.

e)–f) Trivial. �

Theorem 28 (Bisimulation invariance) LetT = (S,{ a−→| a∈A},L) ands, t ∈ S. If

sandt are bisimilar,s∼ t, then for all closedϕ ∈ FLC: s |= ϕ iff t |= ϕ.

PROOF Let ϕ ∈ FLC be closed.ϕ is equivalent to aϕ′ of infinitary FLC without

fixed point operators and variables, usingµZ.ψ ≡ Wα∈OrdZα andνZ.ψ ≡ Vα∈OrdZα.

Note that each approximant has a finite representation. Lemma27 c) says thatϕ′ is

weakly equivalent toϕ′;tt. Using parts d)–f) of Lemma27, one can transformϕ′;tt
into a formulaα that does not containτ and which is a (possibly infinitary) boolean

combination of sequences of the formq or 〈a〉;ψ or [a];ψ whereψ again is of the

described form. Everyα, obtained in such a way, is equivalent to an infinitary modal

formulaq or 〈a〉ψ or [a]ψ, where equivalence means being satisfied by the same states.

But a formula of infinitary modal logic cannot distinguish between bisimilar states and

weak equivalence preserves this property. �

An immediate consequence of Theorem28 is the tree model property.

Corollary 29 (Tree model property) FLC has the tree model property.

Theorem 30 (Approximants) LetT = (S,{ a−→| a∈A},L) be finite withs∈ S,S⊆ S.

a) s∈ [[µZ.ψ]]Tρ (S) iff ∃k≤ |S|, s.t.s∈ [[Zk]]Tρ (S).

b) s∈ [[νZ.ψ]]Tρ (S) iff ∀k≤ |S|: s∈ [[Zk]]Tρ (S).

PROOF a) The “if” part is trivial. For the “only if” part consider the general

approximant characterisation of fixed point formulas. It implies the existence of a

α ∈Ord that makess∈ [[Zα]]ρ(S) true. To show that it is bounded we introduce a new

propositionqS s.t. [[qS]]ρ = λX.S. Thens∈ [[µZ.ψ]]ρ(S) iff s |= (µZ.ψ);qS. According

to Theorem28, (µZ.ϕ);qS can be translated into a set{ϕ′α | α ∈ Ord} of formulas of

2.5. Modal Logics 41

infinitary modal logic. We show by induction on the fixed point depth of the formula

at hand that finitary modal logic suffices.

Supposeϕ does not contain anyσY.ψ. In this case everyαi is a formula of finitary

modal logic. Consider now the functionf : ϕ′α 7→ ϕ′α+1 for every α ∈ Ord. f is

monotone sinceϕ′α+1 arises fromϕ′α by variable substitution and transformations that

preserve equivalence. Then,

/0 = [[ϕ′0]] ⊆ [[ϕ′1]] ⊆ . . .

Thus, ifs∈ [[ϕ′k]] for somek thens∈ [[ϕ′j]] for all j ≥ k. Therefore[[ϕ′|S|]] = [[ϕ′j]] for all

j ≥ |S|. This means thats |= (µZ.ψ);qS implies the existence of ak≤ |S| s.t.s |= ϕ′k.
But thens∈ [[Zk]](S).

Suppose now thatϕ has fixed point depthn+ 1 and everyσY.ψ ∈ Sub(ϕ) has fixed

point depth at mostn and can therefore be translated into a formula of finitary modal

logic. Replacing every suchµY.ψ in ϕ by
W|S|

k=0Zk, and everyνY.ψ with
V|S|

k=0Zk yields

a formulaϕ′ of fixed point depth 1 that is equivalent toϕ. The latter substitution uses

part b) of the lemma on a smaller formula. The same argument as above holds now for

translatingµZ.ϕ′ into a sequence{ϕ′′k | k≤ |S|}.
b) Here, the “only if” part is trivial. The “if” part is dual to the “only if” of part a).�

In [MO99], Müller-Olm has shown that FLC model checking is undecidable for BPA

processes already. We improve this result slightly.

Theorem 31 FLC model checking is undecidable for normed deterministic BPA.

PROOF Based on an early result from language theory in [Fri76] it is shown in [GH94]

that the simulation problem for deterministic normed BPA is undecidable. Given a

BPA processQ one can construct an FLC formulaφ−Q, s.t. P |= φ−Q iff P simulates

Q. The construction for arbitrary BPA processes is shown in [MO99] and works in

particular for normed deterministic BPA. �

Modal µ-Calculus

With FLC being defined it is possible to introduce Kozen’s modalµ-calculusLµ,

[Koz83], as a fragment of FLC. InLµ formulas the left argument of a sequential

42 Chapter 2. Preliminaries

composition operator is always a modality. Conversely, modalities can only occur at

these positions. Thesyntaxof Lµ is given by the following grammar.

ϕ ::= q | Z | 〈a〉;ϕ | [a];ϕ | ϕ∨ϕ | ϕ∧ϕ | µZ.ϕ | νZ.ϕ

whereq ranges overP, Z overV anda overA. Note thatτ is not anLµ formula.

Since sequential composition inLµ formulas is only used in this restricted form we

omit the semicolon and write〈a〉ϕ and[a]ϕ instead.

Theorem 32 [MO99] FLC is strictly more expressive thanLµ.

In fact, the FLC formulas of Examples22 and25 are not expressible inLµ. This is

becauseLµ can only express properties that are definable in the bisimulation invariant

fragment of Monadic Second-Order Logic, [JW96]. However, these properties are

“regular” in the sense that the language of strings formed by the actions along paths

of a model for aLµ formula is regular. However, the formulas of Example22 and25

express context-free properties. An attempt to measure FLC’s exact expressive power

has been made in [Lan02a] showing that on linear models FLC can express exactly

those properties that are definable by alternating context-freeω-grammars with a parity

generation condition. There are context-sensitive properties which cannot be defined

in FLC unless PTIME=PSPACE.

The definition of subformulas and alternation depth for aLµ formula can easily be

derived from the definitions for FLC formulas. We do not include them here since the

following chapters do not contain games forLµ. As for FLC,Lk
µ denotes the fragment

of Lµ which contains formulas of alternation depth at mostk only. We only useLµ to

link together the modal and temporal logics that we introduce games for.

For an introduction toLµ see [Koz83]. Model checking games forLµ have been

defined in [Sti95] already. Lµ’s satisfiability problem was addressed in [NW97] in

a game-based way.

CTL and PDL can easily be embedded intoLµ. Thus, games for these logics could

be obtained from the corresponding games forLµ applied to translated formulas. The

PDL and CTL model checking games of Chapter4 and Section5.3are essentially the

same as theLµ model checking games from [Sti95] with the following translations.

2.5. Modal Logics 43

The translationt : PDL→ L0
µ is defined inductively as follows.

t(q) = q

t(Y) = Y

t(ϕ∨ψ) = t(ϕ)∨ t(ψ)

t(ϕ∧ψ) = t(ϕ)∧ t(ψ)

t(〈a〉ϕ) = 〈a〉t(ϕ)

t([a]ϕ) = [a]t(ϕ)

t(〈α∪β〉ϕ) = t(〈α〉ϕ)∨ t(〈β〉ϕ)

t([α∪β]ϕ) = t([α]ϕ)∧ t([β]ϕ)

t(〈α;β〉ϕ) = t(〈α〉〈β〉ϕ)

t([α;β]ϕ) = t([α][β]ϕ)

t(〈ψ?〉ϕ) = t(ψ)∧ t(ϕ)

t([ψ?]ϕ) = t(ψ)∨ t(ϕ)

t(〈α∗〉ϕ) = µY.t(ϕ)∨ t(〈α〉Y)

t([α∗]ϕ) = νY.t(ϕ)∧ t([α]Y)

wherea is an atomic program andq ∈ P. Note that PDL’s syntax does not contain

variables. But since the translation introduces variables in the scope of a modality the

translation function must be defined for them as well.

CTL does not distinguish different action names. Therefore we use the abbreviations

〈−〉ϕ :=
_

a∈A
〈a〉ϕ and [−]ϕ :=

â∈A
[a]ϕ

The translationt : CTL → L0
µ is given by

t(q) = q

t(ϕ∨ψ) = t(ϕ)∨ t(ψ)

t(ϕ∧ψ) = t(ϕ)∧ t(ψ)

t(AXϕ) = [−]t(ϕ)

t(EXϕ) = 〈−〉t(ϕ)

t(A(ϕUψ)) = µZ.t(ψ)∨ (t(ϕ)∧〈−〉tt∧ [−]X)

t(E(ϕUψ)) = µZ.t(ψ)∨ (t(ϕ)∧〈−〉X)

44 Chapter 2. Preliminaries

t(A(ϕRψ)) = νZ.t(ψ)∧ (t(ϕ)∨ (〈−〉tt∧ [−]X))

t(E(ϕRψ)) = νZ.t(ψ)∧ (t(ϕ)∨〈−〉X)

The 〈−〉tt formulas are needed to take into account the fact that CTL unlikeLµ is

interpreted over total transition systems only. They require each state in which the

formula is examined to have a successor state.

CTL∗ can be translated intoL1
µ, [Dam94]. However, this translation is not as simple as

the two above since it does not map subformulas to subformulas. Therefore, we will

not try to compare the CTL∗ model checking games that will be presented in Chapter5

to theLµ model checking games applied to translated formulas. Consequently, we will

not present this translation here.

2.6 Games

The games of the following chapters are played by twoplayers, called∀ and∃. Other

usual names for them are I and II,AbelardandEloise, refuter andverifier, opponent

andplayer, pessimistandoptimist, etc. We will writep to denote either of them, andp

to denotep’s opponent. Furthermore, we will use personal pronouns according to the

genders ofAbelardandEloise, i.e. player∀ will be male and player∃ will be female.

Definition 33 A gameG is a quintuple(C,λ,C0,P,W) where

• C is a set ofconfigurations, also known as thegame board,

• λ : C→{∀,∃} assigns to each configuration a player, namely the one who makes

the next move,

• C0 is the starting configuration,

• P, the set ofplays, is a prefixed closed set of finite and infinite sequences of

configurations starting withC0. A play P is calledfinishedif it is maximal inP,

i.e. there is noP′ ∈ P s.t.P is a genuine prefix ofP′.

2.6. Games 45

• W assigns to each finished play a winner, i.e.

W : P→{∀,∃}, W(P) = undef iff P is not finished

Even though according to this definition one of the players formally has a choice in the

last configuration of a finished play this choice can be ignored since there is nothing to

be chosen.

Prefix closure makes it possible to regard a game as a tree, with a play being a branch

in this tree.

It is more convenient to use a slightly specialised definition for the games in this thesis.

For example, it is possible to finitely represent the plays and winning assignments.

We will usually introduce a game as a quadruple(C,C0,R,W) whereC is the set of

configurations as above withC0 being the starting configuration.R is a finite set of

rules which determinesλ andP from above.W is a finite set ofwinning conditions

which replaces the winning assignment above.

In this notation, a play is a maximal finite or infinite sequence of configurations

C0,C1, . . . iff

• C0 is the starting configuration, and

• every pair(Ci ,Ci+1) is an instance of a ruler ∈ R.

The winner of a play is determined by the finite setW of winning conditions. Each

condition is a scheme of a play, i.e. a play either fulfills a winning condition or not. It

is part of the correctness proof of the games to show that every play fulfils at least one

condition and that there is no play which fulfils two conditions that assign different

winners to the play.

Definition 34 Thegame graphof G = (C,C0,R,W) is a directed graph(V,E) whose

set of nodes is the set of configurations ofG, i.e.V = C. Edges in the game graph are

given by

(C,C′) ∈ E iff (C,C′) is an instance of a ruler ∈ R

The game treeis the tree of all plays, and is also obtained as the unravelling of the

game graph.

46 Chapter 2. Preliminaries

Definition 35 A game G = (C,C0,R,W) is called finite if the underlying set of

configurationsC is finite, |C|< ∞.

It is called ofperfect informationif at every moment of the game both players have

full knowledge about the actual configuration and the history of the play. This means

their strategies can make use of the entire history.

Note that our definition of games does not allow hiding of information. We do not

formalise this since all the games in this thesis are of perfect information. All of them

are finite provided that underlying transition systems are finite apart from the ones of

Section9.2.

The definition of the winner of a play gives rise to the winner of a game: playerp is

said to win a particular gameG if p can enforce a play that is winning for herself. In

other terms, winning a game is short-hand for having a winning strategy for that game.

Note the crucial difference between winning a play and winning a game.

Definition 36 A winning strategyfor p in a gameG = (C,λ,C0,P,W) is a partial

functionη : C+ → C satisfying

• if (C0, . . . ,Cn) ∈ P andλ(Cn) = p thenη(C0, . . . ,Cn) is defined, and

• if p always choosesη(C0, . . . ,Cn) at this moment then he or she wins every

possible resulting play regardless of their opponent’s moves.

If p has a winning strategyη for G then thegame tree for playerp is derived from the

full game tree in the following way.

• For every finite prefixC0, . . . ,Cn of a play s.t.λ(Cn) = p discard all subtrees

except the one starting withη(C0, . . . ,Cn).

• Retain all other nodes.

The game tree for playerp can be seen as either a determinisation ofp’s role in the

game, or a representation of the winning strategyη.

2.6. Games 47

A class of games has the property ofdeterminacyif for every possible game of this

class one of the players has a winning strategy. Note that by definition at most one can

have a winning strategy.Zermelo’s Theorem, an important general theorem that proves

determinacy for most games of the following chapters is one of the earliest results in

game theory. Actually, Zermelo was concerned with the question of whether or not

there is a winning strategy for a chess player.

Theorem 37 [Zer13] LetG be a 2-player game of perfect information, s.t. every play

is of finite length and has a unique winner. Then one of the players has a winning

strategy forG.

Much stronger results have been found since, mostly relaxing the requirement that

plays can only be of finite length. See the Gale-Stewart Theorem, [GS53], and Martin’s

Theorem, [Mar75], for example.

We introduce two different types of games:model checking gamesandsatisfiability

games. A model checking gameGT(s,ϕ) is played on the set of states of an LTS

T = (S,{ a−→| a ∈ A},L) with s∈ S, and the set of subformulas of a formulaϕ of

one of the logics introduced in Sections2.4 and2.5. It is player∀’s task to show that

T,s 6|= ϕ whereas player∃ tries to show thatT,s |= ϕ.

A satisfiability gameG(ϕ) is played on the set of subformulas ofϕ. Player∀ attempts

to show thatϕ is not satisfiable whereas player∃’s task is to show thatϕ is satisfiable.

The goal of the following chapters is to characterise model checking and satisfiability

checking problems for the logics of Sections2.4and2.5in a game-theoretic way. This

means the rules and winning conditions of the games need to be defined such that a

player has a winning strategy for a particular game iff the semantical property he or

she intends to show is true.

In general the correctness proofs split up into two parts: soundness and completeness.

A class of games for a logic and possibly a class of structures is sound if, whenever

player ∃ wins a game then the corresponding semantical property holds. This is

equivalent to saying that player∀ wins if the semantical property fails. It is complete

if the converse holds: player∃ wins if the semantical property is true.

48 Chapter 2. Preliminaries

Definition 38 A class of model checking games for a logicL and a class of structures

K is closed underdual gamesif the logic is closed under negation and

• for every rule that requires playerp to make a choice on a formulaϕ there is a

dual rule in which playerp makes a choice on the negated formulaϕ, and

• for every winning condition for playerp there is adual winning conditionfor

playerp s.t. every occurrence of a formulaϕ is replaced by its negationϕ.

Then for everyGT(s,ϕ) of this class of games there is the dual gameGT(s,ϕ) for the

negated formula.

Theorem 39 (Duality principle) LetGT(s,ϕ) be a model checking game of a class of

games which is closed under dual games. Playerp winsGT(s,ϕ) iff player p wins the

dual gameGT(s,ϕ).

PROOF Suppose playerp wins GT(s,ϕ), i.e. there is a strategy forp which enforces

a winning play forp regardless ofp’s choices. Thenp can use this strategy in the

gameGT(s,ϕ) because whenever he has to make a choice then by duality there is a

corresponding rule which requiresp to make a choice inGT(s,ϕ). This way, regardless

of playerp’s choices, he is able to enforce a winning play for himself, namely one that

is dual to a winning play forp in GT(s,ϕ). Thus, he or she winsGT(s,ϕ). �

Fixed Point Constructs and Unfolding

The way fixed point operators are handled in the games of the following chapters is

calledunfolding. Whenever a fixed point construct occurs it is simply replaced by its

defining equation. This islocally correct because a fixed point can by definition be

replaced with its defining equation without changing its semantics. However,global

correctnessmust also be obeyed which distinguishes least from greatest fixed points.

If a fixed point constructX gets replaced by a formulaf (X) then at some point

later in a playX can occur again since game rules follow the syntactical structure of

formulas. In this case we callX regeneratingif its second occurrence stems from the

2.6. Games 49

unfolding. Note that sometimes configurations are sets andX could get unfolded but

then disappear since the play might follow another path in the syntax tree off (X). On

the other hand,X might appear in a later configuration again if it occurs as a subformula

of another formula in there. In this caseX is not regenerating.

A least fixed point is only found if the corresponding construct is not unfolded infinitely

often. Suppose it is, i.e. there is an infinite play in which a certain configurationC

occurs infinitely often. Moreover, supposeC features a least fixed point construct.

Since the game rules follow the syntactical structure of formulas and fixed point

constructs are unfolded the situation at hand can be interpreted in the following way.

The truth value of the least fixed point construct in a certain context depends on itself.

Note that the context is given by everything else inC which can be other formulas, a

state of a transition system, etc. In other words, the truth value of thej-th unfolding of

the construct is actually determined by thei-th unfolding wherei < j. This argument

can be iterated down the sequence (2.2). At the end of this sequence there is the bottom

element⊥ of the underlying lattice. For model checking and satisfiability checking, the

lattices can be regarded as boolean in some way, i.e. the⊥ is usually the booleanfalse.

Thus, an infinite unfolding of a least fixed point construct indicates that, regardless of

where one starts in the sequence (2.2), it is always⊥ that determines the truth value of

the fixed point construct. Hence, it is not fulfilled.

The same argument applied to greatest fixed points shows that an infinite unfolding

corresponds to the construct being true in the actual context since the top element>
will be the booleantrue in some way.

Greatest fixed points are in every way dual to least fixed point. Thus, in order to refute

a property described in terms of an explicit or implicit greatest fixed point constructor

one must eventually leave the unfolding.

This has consequences for model checking and satisfiability checking games.

Depending on the nature of configurations of a game, one of the players will have

the task to explicitly show the regeneration of a least or greatest fixed point construct.

For instance, if configurations are sets of formulas that are interpreted conjunctively

then player∀ will win if he is able to show the regeneration of a least fixed point in this

set. If there is a regenerating one then it will be false according to the argumentation

50 Chapter 2. Preliminaries

above. By the nature of these configurations they will be false which is what player∀
wants to show. On the other hand, regenerating greatest fixed points are uninteresting

in such a situation since they are fulfilled which does not determine the truth value of

a conjunction.

2.7 Winning Strategies

The history of a prefixC0, . . . ,Cn of a play which is in the actual configurationCn

is the sequenceC0, . . . ,Cn−1. Remember that in general awinning strategyis a

partial functionη : C+ → C. A winning strategyη is calledhistory-freeiff for all

sequencesC0,C1, . . . ,Cn andC0,C′1, . . . ,C
′
m and configurationsC: η(C0,C1 . . . ,Cn,C) =

η(C0,C′1, . . . ,C
′
m,C). Thus, it can be seen as a function of the typeη : C→ C since the

player’s choices only depend on the actual configuration.

If winning strategies for a game are history-free, then game trees can be represented

as a graph. The graph representation simply results from the tree representation by

identifying nodes in the tree that represent syntactically equal configurations. Since

the winning strategies for the underlying game are assumed to be history-free, the

winning player’s choices only depend on the actual configuration. Thus, the choices

are always the same regardless of the position in the tree. The choices made by the

loser of the game are all preserved anyway.

This has an important consequence for finite games. In this case the graph

representation of a winning strategy is always finite even though a tree representation

of the same winning strategy might be infinite. If this is the case then winning

conditions can be simplified. A play of the formC0, . . . ,Cn, . . . ,Cm, . . . with Cn = Cm

can be terminated afterCm since the winner of this play is already determined at this

moment.

When considering a game as a tree, namely its game tree, the notion of asubgame

comes for free. It is given by a subtree in the whole game tree. As well as a game can

be composed of several subgames, a strategy for a game can be composed of strategies

for subgames in a natural way if they are history-free.

2.7. Winning Strategies 51

Suppose the set of configurationsC of a game is partitioned intoC1,C2, . . . s.t. eachCi

represents a subgame. Moreover, suppose there are strategiesη1,η2, . . ., ηi : Ci → C,

i.e. a strategy can require a player to move into another subgame. Then they extend to

a strategyη : C→ C by

η(C) = C′ iff C∈ Ci for somei andηi(C) = C′

Fact 40 The union of history-free strategies is a history-free strategy.

This thesis features history-free as well as history-dependent games. However, in the

latter case the contained games are not fully history-dependent in the sense that one

of the player’s choices depends on more than the actual configuration but not on the

entire history of the play so far. They depend on a finite amount of information about

the history of a play.

In fact, the history-dependence is even more restricted. The player’s choices only

depend on the order in which a finite number of configurations has been visited, but

not on the number of times a certain configuration occurred in the play. This idea is

captured by the definition of alatest visitation recordLVR, [McN93, GH82]. For a set

I ⊆ C of “interesting configurations”, at any moment of the play, it contains the order

in which the elements ofI have appeared in the history of the play.

Definition 41 Let C be the set of configurations of a game withI ⊆ C. A LVRover I

is a sequencel = C1, . . . ,Cn of configurations with

• Ci ∈ I for all i = 1, . . . ,n, and

• Ci 6= Cj for all 1≤ i < j ≤ n, and

• n≤ |I |.

Let I denote the set of all LVRs overI . An LVR winning strategyis a strategyη :

C×I→ C that is winning in the above sense.

52 Chapter 2. Preliminaries

2.8 Algorithms

The games introduced in the following chapters characterise the model checking and

satisfiability checking problem for various logics (and classes of transition systems).

This means they provide results like “ϕ is satisfiable iff player∃ wins the game

associated withϕ”. The games alone do not yield an automatic procedure to check

satisfiability of a formula for example. However, the soundness and completeness

results of the next chapters can be used to construct algorithms which decide the winner

of a game and thus solve the logical problem.

We assume the reader to be familiar with the notion of a deterministic and a

nondeterministic Turing Machine, and thus the basic complexity classes DTIME(t(n)),

DSPACE(s(n)), NTIME(t(n)) and NSPACE(s(n)). For technical definitions and an

introduction see [Pap94]. The complexity classes that will be mentioned here are

defined using these basic classes in the following way.

LINTIME :=
S

k∈N DTIME(k ·n)

PTIME :=
S

k∈N DTIME(nk)

NP :=
S

k∈N NTIME(nk)

PSPACE :=
S

k∈N DSPACE(nk)

NPSPACE :=
S

k∈N NSPACE(nk)

EXPTIME :=
S

k∈N DTIME(2k·n)

EXPSPACE :=
S

k∈N DSPACE(2k·n)

2-EXPTIME :=
S

k∈N DTIME(2(2k·n))

Furthermore, the class∆2 of the so-called polynomial-time hierarchy consists of all

problems that can be solved in polynomial time by a deterministic Turing Machine

with an NP oracle. See [Sto76] for further details on the polynomial-time hierarchy.

Note that PSPACE = NPSPACE according to [Sav69].

Another class that will be mentioned in Chapter9 is co-NP. In general, the co-class of

a complexity classC contains all the complements of languages inC.

co-C := { L | L ∈ C }

2.8. Algorithms 53

Alternating Algorithms

The theory of alternating algorithms proves to be helpful for analysing the

complexities of game-based algorithms. Remember that nondeterministic algorithms

are allowed to guess the next right step in a computation, i.e. the one that leads to

an accepting configuration. Co-nondeterministic algorithms, also calleduniversal,

have the ability to guess the next wrong step, i.e. the one that leads to a rejecting

configuration. An alternating algorithm can do both. It is nothing more than a game

played by two players of which one tries to reach an accepting configuration in a

Turing Machine’s computation by choosing successor configurations of existential

ones. The other player tries to reach a refuting configuration by choosing successors of

universal configurations. This gives rise to the basic complexity classes ATIME(t(n))

and ASPACE(s(n)). Classes like APTIME or APSPACE are constructed just like their

deterministic counterparts.

Alternating algorithms and the corresponding complexity classes have been studied

in [CKS81]. The results concerning us are the relationships between alternating

and deterministic complexity classes. If a problem can be decided by an alternating

algorithm using timef (n), then it can be decided by a deterministic algorithm using

space(f (n))2. On the other hand, alternating spacef (n) can be embedded into

deterministic time2O(f (n)). Similar results hold for the converse inclusions. This yields

the following useful equalities of complexity classes.

ALOGSPACE = PTIME

APTIME = PSPACE

APSPACE = EXPTIME

AEXPTIME = EXPSPACE

AEXPSPACE = 2-EXPTIME

We will make use of these results to give upper bounds on the complexity of deciding

the winner of the games in the next chapters. The size of the input for a model checking

algorithm will always be the number of states of the underlying transition systemT and

the size of the formulaϕ where

|ϕ| := |Sub(ϕ)|

54 Chapter 2. Preliminaries

Note that the number of subformulas ofϕ is linear in its syntactical length.

Local Algorithms

Regarding the model checking problem we distinguish between two different kinds of

algorithms:global and local ones. A model checking algorithm is local if it fulfills

two conditions:

1. It must be local with respect to the formula. This means it does not necessarily

exploit the entire game graph of a game because the evaluation of disjunctions

and conjunctions isnon-strict: if a disjunct evaluates to true then the other can

be ignored. The condition is dual for conjuncts.

2. It must be local with respect to the transition system. This means it avoids

necessarily exploiting the entire game graph by constructing the transition

systemon demand. If the evaluation of a subformula on a successor state

determines the truth value of a superformula on the predecessor state then other

successor states are not examined anymore.

The second condition implies that the algorithm does not “jump” to arbitrary states in

the transition system at hand. Any model checking algorithm not satisfying these two

conditions will be called global.

This is just one definition of locality and by no means the only possibility.

For verification purposes local algorithms are desirable, [CVWY91]. Since the

transition systems used there tend to be very large it is helpful to use algorithms that do

not need to allocate space for the entire game graph at the beginning of their execution.

Note that an algorithm can be local and still construct a game graph completely. This

is for example the case with universal properties for which there is no counterexample.

The Subformula Property

Another requirement for model checking and satisfiability checking algorithms is the

subformula property. In order to make these algorithms useful for verification purposes

2.8. Algorithms 55

they should only work on subformulas of the input formula. Suppose player∀’s

winning strategy in a model checking game is used to illustrate that a transition system

fails to have a certain property given by the input formula. The subformula property

guarantees that the overall failure is linked to player∀’s moves in the game. This is

because the syntax and the semantics of formulas are defined inductively.

One way of defining games for the temporal logics introduced in Section2.4 is to

translate them into the modalµ-calculusLµ as was shown in [Dam94] for CTL∗. Then,

theLµ model checking games from [Sti95] can be applied to the translated formulas.

This violates the subformula requirement and makes it hard for the user of a verification

tool to understand why a certain property fails if the failure is demonstrated to the user

by letting him play against the tool’s winning strategy.

Chapter 3

Background

I can’t believe it! Reading

and writing actually paid off!

—

HOMER J. SIMPSON

3.1 Tableaux

A tableauis simply a tree whose nodes are labelled in some way. The name suggests

that originally they were table-like structures. When using tableaux to decide the model

checking or satisfiability checking problem for modal and temporal logics the node

labellings are usually formulas or sets of formulas or one of these plus states of a

transition system. A branch of a tableau tree comes with the notion of being successful,

and a tableau is successful if all its branches are.

Branches are sequences of configurations which are built from a set of rules in a very

similar way to game rules. Usually, existential constructs in the underlying logic are

reflected by choices in the tableau rules while universal constructs cause a branching

58 Chapter 3. Background

in the tree. Fixed point constructs are unfolded and can potentially lead to infinite

branches.

A tableau-based model checker or satisfiability checker attempts to build a successful

tableau for a formula, resp. a formula and a state of a transition system.

The logical problem at hand is characterised by the question of whether there exists a

successful tableau for a formula (and a state of a transition system). While a successful

tableau witnesses a positive instance of the problem at hand, there is usually no witness

for a negative answer. For example, a formula is satisfiable if there is a successful

tableau for it. Hence, it is unsatisfiable if all possible tableaux fail to be successful. I.e.

unsatisfiability is a universal property which in this way cannot easily be illustrated to

hold.

Tableaux, as they are used nowadays, have two different roots, a syntactic and a

semantic one. The history of syntactic tableaux dates back to the work of Gentzen

who used tableaux for syntax-directed proofs in classical logics, [Gen35]. His work

has been extended to modal logics, for example in [Cur52, Kan57].

Tableaux systems with a semantic flavour are rooted in the work of Beth who was

also studying classical logics, [Bet55]. With the introduction of Kripke semantics,

these tableau systems became interesting for modal logics as well, [Kri59]. Moreover,

Hintikka structures, [Hin69], which are based on Smullyan’s semantical tableaux,

[Smu95], have been used to decide modal and temporal logics as well, [EH85].

These two routes merged later on when it was realised that they are essentially the

same, [Zem73, Rau79, Fit83]. Nowadays, syntactic tableaux have their applications in

proof theory while semantic tableaux are mostly used for automated reasoning, i.e. to

decide whether a given formula is valid for instance.

Tableaux have been used to solve model checking and satisfiability checking problems

for modal and temporal logics, [Gor99]. One of the reasons for the usefulness of

tableaux for these logics is the tree model property which all the logics discussed in

this thesis possess. [Pra80] for example used tableaux to decide satisfiability of PDL.

A successful tableau basically incorporates a model for the formula at hand.

Recently, tableaux have also been used to decide satisfiability of LTL formulas, for

3.1. Tableaux 59

example in [LP00] and [SGL97]. The latter construction uses intervals of points in

a possible model for the formula. In contrast to this, the tableaux of [LP00] work

on subformulas of the input formula only. They also are used to obtain a complete

axiomatisation.

The advantage that tableau-based satisfiability checking offers is the close connection

between the syntactical structure of the input formula and the tableau which witnesses

a semantical property. Tableaux could be used to construct complete axiomatisations

for various logics. This is because completeness of an axiom system is a connection

between syntax and semantics: every consistent formula must be satisfiable, see

Chapter7 for details.

[EH85] gives a tableau-like decision procedure for satisfiability of CTL formulas and

uses the tableaux to prove completeness of a certain axiomatisation. This usually

involves a processing of the tableaux in order to construct a model for the formula

at hand. Other tableau approaches to decide the satisfiability problem for branching

time logics can be found in [EC82, BAPM83]. [Eme85] states that they are essentially

the same together with the maximal model constructions of [VW86b, SVW83].

The completeness of PDL was shown in a similar way, based on the satisfiability

tableaux from [Pra80], see [KT90] for details.

A tableau model checker for BLTL was given in [LP85]. Its running time is exponential

in the size of the formula but linear in the size of the underlying transition system.

This was the reason to believe that despite the relatively high complexity LTL model

checking can efficiently be done since formulas tend to be small while a transition

system usually forms the biggest part of the input to a model checker when the number

of states is taken as the size of a transition system.

A local tableau model checker for CTL∗ was given in [BCG95]. In fact it is a model

checker for BLTL which is not surprising since it has been observed that model

checking for LTL and CTL∗ is basically the same. This means both problems are

easily reducible to each other. A CTL∗ formula can be seen as a collection of BLTL

formulas.

In general, a CTL∗ model checker has to determine whether a path quantifiedQψ holds

60 Chapter 3. Background

in a certain states of a transition system. This only depends ons andψ. Doing this

inductively one can assumeψ to be free of path quantifiers. Thus, in case ofQ = A the

input is a transition system and a BLTL formula. IfQ = E then one can model check

the BLTL formulaAψ and negate the result to establish whether the state satisfiesEψ.

We will also make use of this observation in Section5.2.

3.2 Automata

An automatonis a simple technical device that takes an input, runs on it and outputs

either yes or no. According to Church’s Thesis, Turing Machines are the most

general automata. Several downgraded versions of them – usually called automata

for short – have been defined since, mainly to capture levels of the Chomsky hierarchy

algorithmically.

In the setting of linear time temporal logic one regards automata over strings or words.

A string is a finite or infinite sequence of symbols over an alphabetΣ. Let Σ∗ denote

the set of all finite strings overΣ andΣω the set of all infinite strings overΣ.

In general, an automaton consists of a finite set of states with a distinguished starting

state, an acceptance condition, a memory and a transition function. Its behaviour is

determined by the transition function which, applied to a current state, a position in the

input string and the state of the memory, yields the next actual state, a possible change

of the memory and a new position in the input word.

A run of an automaton is a sequence of configurations consisting of the actual state,

the content of the memory and the position in the input word. An automaton accepts a

word if, beginning in the starting state, the run induced by the transition function meets

the acceptance condition. The set of allw∈ Σ∗, s.t. automatonA acceptsw is called

the language accepted byA and denotedL(A). The same holds of course forΣω.

Several different acceptance conditions for automata on infinite structures that lead to

different types of automata have been used. The most important ones are the following.

• Büchi automata. A run must visit at least one state of a given set infinitely often.

3.2. Automata 61

• Rabin automata. In a given set of pairs(Fi ,Gi), i = 1, . . . ,n, there is a pair of

sets of states(Fk,Gk) s.t. at least one state inGk is visited infinitely often while

states inFk are only visited a finite number of times.

• Streett automata. In a given set of pairs(Fi ,Gi), i = 1, . . . ,n, every pair(Fi ,Gi)

satisfies the following. A state inGi is visited infinitely often or all states inFi

are only visited a finite number of times.

• Muller automate. For a given set of sets of statesF1, . . . ,Fn there is ani s.t. Fi

contains exactly those states which are visited infinitely often in a run.

• Parity automata. Each state is assigned a natural number called the parity index.

The least index which is seen infinitely often in a run must be even.

Büchi used finite automata to obtain a decision procedure forSecond-Order Logic

of One Successor FunctionS1S, a generalisation of Presburger Arithmetic, [Pre29].

The acceptance condition of these memoryless automata is, as it is stated above, the

existence of a certain state that is visited infinitely often in a run. In particular, he

showed that for every formulaφ of Monadic Second-Order Logic with a Successor

Relation over Infinite StringsMSO[<], there is a finite-state automatonAφ s.t.

L(Aφ) = { w∈ Σω | w |= φ }

An infinite stringw can be regarded as a mathematical structure whose universe is the

set of natural numbers representing the positions of the string. Monadic predicates are

interpreted as labels on the positions, resp. letters of the string.

Furthermore, the converse inclusion also holds. For every automaton there is a formula

whose models are exactly the words accepted by the automaton. Thus, MSO[<] defines

exactly the regular languages.

Star-free languages, a genuine subclass of regular languages, were shown to coincide

exactly with the class of languages definable inFirst-Order Logicwith a successor

relation over strings FO, [Tho79]. In [Kam68] it was shown that LTL with past

operators is expressive complete, i.e. that it defines exactly those properties that are

expressible in FO. This is based on the observation that an infinite pathπ = s0s1 . . . of

62 Chapter 3. Background

an LTS where thesi are labelled with elements ofP is nothing more than an infinite

string over the alphabet2P.

Automata for Linear Time Temporal Logic

Since all these results relating to automata and temporal formulas are constructive

then finite-state automata can be used to decide the model checking and satisfiability

checking problem for LTL. Given aϕ ∈ LTL one can build the corresponding

automatonAϕ that accepts exactly the models ofϕ. Model checking for a wordw

and ϕ is done by testing whether the run induced byw is accepting. Satisfiability

checking is done by testing whether the language accepted byAϕ is non-empty.

In order to decide LTL the nondeterministic version of theseBüchi-automataproved

to be helpful, [VW86a, SVW83]. These guess truth values of subformulas at every

position of the path, and their transition function is used to check whether the guesses

are correct. The non-emptiness problem for these automata can be decided using

polynomial space, [Var96].

To do model checking for BLTL, i.e. to test whether all paths of a given total

transition system satisfy a linear time formula, the transition system is interpreted as

a Büchi-automatonT as well. This is done by regarding every state as final. Hence,

every run of the transition system is an accepting one since it necessarily visits a final

state infinitely often.

T is then paired with the automaton for the negation of the input formula. The product

automatonT×Aϕ simulates runs ofT andAϕ in parallel. Model checking BLTL

is then reduced to checking for language inclusion between these automata which is

nothing more than an emptiness test on the product automaton.

for all pathsπ of T : π |= ϕ iff L(T)⊆ L(Aϕ) iff L(T×Aϕ) = /0

Again, this is possible using polynomial space.

The translation from LTL formulas into nondeterministic Büchi-automata can yield

automata that are exponentially larger than the formula at hand. However, the

non-emptiness problem for Büchi-automata is just NLOGSPACE-complete, [VW94].

3.2. Automata 63

On the other hand, [Var96] gives a linear translation from LTL formulas into

alternating B̈uchi-automata.

A nondeterministic automaton allows existential choices in its transitions. Technically,

the transition function is in fact a relation. Thus, an input word generally induces

several runs. The acceptance condition then quantifies over these runs existentially,

i.e. a word is accepted by the automaton if there is an accepting run.

It is easy to imagine universal quantification which results in co-nondeterministic

automata. Alternating automata on the other hand allow both choices on the level

of a transition. This means there are some configurations which are accepting iff there

is a successor configuration which is accepting, and others which are accepting iff

all possible transitions lead to an accepting configuration. The run of an alternating

automaton is a tree of configurations which is nothing more than a system of boolean

equations. It is accepting iff the corresponding system has a solution. For this

correspondence configurations are regarded as boolean variables, nondeterministic

choices are translated into disjunctions while co-nondeterminism is modelled by

conjunctions.

This approach is more natural when translating formulas into automata since they

usually feature existential and universal constructs. Thus, it is not surprising that

the translation from LTL into alternating B̈uchi-automata given in [Var96] basically

follows the syntactical structure of the formula. Disjunctions are translated into

nondeterministic choices, conjunctions into co-nondeterministic ones, fixed point

constructs are unfolded, etc.

Since these automata are more succinct, their non-emptiness problem is expected to

be harder than the one for nondeterministic Büchi-automata. [Var96] showed that it is

PSPACE-complete.

The route via alternating automata promises better efficiency than the one using

nondeterministic automata because the costly operation is applied after the cheap

one: emptiness test after translation. For nondeterministic automata the former is

easy while the latter is hard. Generally, the composition of an exponential function

with a polynomial yields a function which is asymptotically worse than a polynomial

composed with an exponential function. Consider for example the two functions

64 Chapter 3. Background

f (n) = 2n and g(n) = n2. Theng◦ f = o(f ◦ g) because(g◦ f)(n) = (2n)2 = 22·n

and(f ◦g)(n) = 2n2
.

Automata for Branching Time Temporal and Modal Logics

For branching time logics as well as modal logics, automata over strings are not

applicable. This is simply because models of branching time formulas are not strings.

However, the general idea of using automata to decide the model checking and

satisfiability checking problem for these logics is still admissible. The right machinery

in this case are automata over trees.

Rabin noticed that B̈uchi’s work on Monadic Second-Order Logic with One Successor

Function can be extended to MSO with several successor relations. This is the natural

logical framework for trees instead of strings where sons of a node are considered to

be ordered different successors of the node.

The technicalities for automata over strings carry over to automata over trees.Σ∗, resp.

Σω, gets replaced by the set of all finite, resp. infinite, trees with nodes labelled byΣ.

The run of an automaton is necessarily a tree of configurations and is accepting if some

condition on its branches is met.

[Rab69] showed that finite state automata over trees accept exactly those languages

of trees that can be defined by MSO with several successor relations. This defines a

notion of aregular tree languages. Similar to LTL’s expressive completeness result

a fragment of MSO with several successors could be identified that coincides exactly

with CTL∗. [HT87] showed that CTL∗ can be translated intoMonadic Path Logic over

infinite binary treesMPL and vice-versa. The name “Path Logic” indicates that this

fragment of MSO allows second-order quantification over paths only. Later, it could

be shown that the requirement of regarding binary trees only can be relaxed, but then

CTL∗ only corresponds to the bisimulation-invariant fragment of MPL, [MR99].

Using the observation that a CTL∗ formula is simply a collection of existentially and

universally path quantified linear time formulas one can extend the approach taken for

LTL to CTL∗. The first attempts to use tree automata for testing satisfiability of a CTL∗

formula yielded a decision procedure whose running time is quadruple exponential in

3.2. Automata 65

the size of the formula. The reason for the high complexity is the need to determinise

automata in an inductive process and the testing for non-emptiness. Determinisation is

necessary because of the following.

Consider two paths with a finite common prefix and a CTL∗ formula Aϕ. Even if ϕ
holds on both paths the automaton in general has to guess which path it is going to

follow while it is still processing the common prefix.

One of the four nested exponents in this approach results from the translation

of LTL formulas into nondeterministic automata over strings with an acceptance

condition using pairs. Then using McNaughton’s construction for the determinisation

of these automata causes a double exponential blow-up of the automaton’s size,

[Büc62, McN66]. Finally, checking for non-emptiness of these automata needs

exponential time.

In several attempts the complexity could be pushed down to deterministic triple

exponential time, [ES84], nondeterministic double exponential time, [Eme85], and

finally deterministic double exponential time, [EJ00]. These optimisations exploit the

fact that automata resulting as a translation from CTL∗ have a very special structure

such that complementation and non-emptiness test can be done more efficiently than it

is possible in the general case, [Saf88, MS95, Tho99]. In [VS85] it was shown that the

last result is optimal.

The downside of this automata-theoretic approach is the fact that determinisation

only preserves the semantical connection between a formula and an automaton. The

syntactical relationship, however, is destroyed. This is the reason why automata for

example are believed to be of no use in constructing a complete axiom system for

CTL∗.

There is one thing that distinguishes the branching time from the linear time framework

conceptually. For linear time logics the model checking problem as well as the

satisfiability checking problem can be reduced to the inclusion problem for languages

of infinite words. Remember that automata-based model checking for BLTL is done

by checking language inclusion between two Büchi-automata.

In the branching time setting, the model checking problem cannot easily be reduced

66 Chapter 3. Background

to a language inclusion problem. Instead, formulas are translated into automata that

accept trees, i.e. to check whether a given tree satisfies a formulaϕ, one has to test for

membership of the tree in the language accepted by the automaton corresponding toϕ.

This holds of course for general transition systems as well which can be unravelled to

a tree.

T,s |= ϕ iff Rs(T) ∈ L(Aϕ)

whereRs(T) is the unravelling ofT with respect to the states.

This conceptual difference has consequences regarding the efficiency of the

automata-theoretic approach to branching time model checking.

The model checking problem for CTL for example is PTIME-complete. [CES83]

gives a decision procedure that runs in linear time in both the size of the transition

system and the formula. The satisfiability checking problem on the other hand is

EXPTIME-complete.

The gap for CTL∗ is even wider: model checking is PSPACE-complete, [EL87],

while satisfiability checking is 2-EXPTIME-complete. For CTL+ the model checking

problem was shown to be∆2-complete, [LMS01]. The satisfiability problem is in

2-EXPTIME and EXPTIME-hard. There are known exponential lower bounds for the

translation of CTL+ formulas into CTL, [Wil99, AI01].

These results make the approach taken for linear time formulas seem unfeasible for

branching time logics. Solving the model checking problem by building automata

used for satisfiability testing cannot lead to optimal decision procedures unless the

translation yields suitably small automata.

Another technical problem dates back to Rabin’s work on tree automata. Remember

that they were originally used to decide MSO withn successor relations,n ∈ N.

Therefore, those tree automata work on trees in which every node has exactlyn sons.

For satisfiability checking this is no impediment since all the logics discussed here

preserve bisimulation. Thus, if a formula has a tree model in which every node has

at mostn sons then it is also satisfied by the tree which results from the original one

by duplicating subtrees such that every node has exactlyn sons. This is, however,

not possible in model checking where the underlying tree is derived from a transition

3.3. Games 67

system in which states can have arbitrary and different out-degrees.

[KG96] uses automata with flexible transition relations that adapt to various

out-degrees of a node of a transition system. It also usessimultaneous treeswhich

allow different nodes of a path to be visited simultaneously. The CTL model checking

problem is then reduced in linear time to the non-emptiness problem for these automata

and trees which can be checked in quadratic time.

Later, [KVW00] used alternating automata over trees to decide the model checking

problem for CTL. It is observed that the linear translation from CTL formulas into

alternating automata yields automata of a special structure, so-calledweak alternating

automata, already identified in [MSS88]. The product of these with a transition system

is an even more special structure, a so-calledhesitant alternating automaton. Model

checking CTL is then reduced to the 1-letter non-emptiness problem for these automata

which can be decided in space linear in the size of the formula and polylogarithmic in

the size of the transition system.

The same approach works for CTL∗ as well. Not surprisingly, the automata resulting

from this translation admit a less efficient non-emptiness check. [VB00] describes

how non-emptiness checking for these automata can be seen as a game which can be

implemented efficiently.

[VW86b] showed that B̈uchi automata on infinite trees can be used to decide

satisfiability of PDL formulas as well.

3.3 Games

In computer science games have often been used to provide an understandable account

of a certain problem. It is maybe because games are part of everyday life that

game-based solutions are considered accessible. In fact, many situations besides

obvious games can be defined in terms of two players and the notion of a play which is

won by one of them. An exam is nothing more than a game between the examiner and

a candidate in which the candidate wins iff he or she is able to produce correct answers

to at least half of the examiners questions regardless of what exactly they are.

68 Chapter 3. Background

Besides the area of logics in computer science, games have also proved useful in other

fields like combinatorics, [Dem01], or programming languages semantics for example,

[Abr97].

Probably the most commonly known example of a logical game is that of an

Ehrenfeucht-Fräısśe game which is played on two mathematical structures in order

to establish whether a formula of a certain logic can distinguish them from each other,

[Ehr61, Fra54].

In Ehrenfeucht-Fräısśe games two players take turns in colouring or picking elements

of one of the structures such that player∃ always has to reply to player∀’s moves in the

other structure. The moves are designed for a certain logicL to obtain a result of the

following form. Player∃ wins the game of lengthn on K1 andK2 iff for all n-tuples

k1 of K1 andk2 of K2 and all formulasϕ(x1, . . . ,xn) ∈ L with n free variables

K1,k1 |= ϕ(x1, . . . ,xn) iff K2,k2 |= ϕ(x1, . . . ,xn)

Remember that a model checking game is played on a structure and a formula

in order to establish whether the structure satisfies the formula. In this respect,

an Ehrenfeucht-Fraı̈sśe game can be seen as two model checking games that are

synchronised on the formula component. If one of the model checking players makes a

move in one structure then this is guided by the underlying formula. Thus, for the other

structure to also (not) satisfy the formula at hand, the same move must be possible in

the other structure.

Ehrenfeucht-Fräısśe games have mostly been used for classical logics like First- or

Second-Order Logics and fixed point extensions of them. This is because they have

become the main tool to separate logics from each other in terms of their expressive

power. This is done by finding two structures such that player∀ has a winning

strategy for the game corresponding to one logic while player∃ wins all the games

corresponding to the other logic.

Separation results for these logics are important in Finite Model Theory since many

complexity classes have logical characterisation. NP for example corresponds to the

existential fragment of Second-Order LogicΣ1
1, [Fag74], and on ordered structures

PSPACE is characterised by First-Order Logic with Partial Fixed Points FO+PFP,

3.3. Games 69

[Imm82, AVV97], while First-Order Logic with Least Fixed Points FO+LFP captures

PTIME, [Imm86, Var82]. For surveys see [Imm89] and [EF95].

Ehrenfeucht-Fräısśe games for modal and temporal logics have not been studied with

such intensity. This might be because it is easier to obtain separation results for these

logics in a direct way, see the section on their expressive powers at the end of this

chapter.

On the other hand, Ehrenfeucht-Fraı̈sśe games for logics with extremal fixed point

constructs are interesting because they provide insight into the question about the

differences between fixed point and general quantifiers. Ehrenfeucht-Fraı̈sśe games

for Lµ can be found in [Sti96a]. For basic modal logics, i.e. modal logics without

any recursion mechanism like fixed points in FLC orLµ or the Kleene-Star in

PDL programs, Ehrenfeucht-Fraı̈sśe games coincide with simple bisimulation games,

[Sti96a].

In computer science, modal and temporal logics are widely used for program

specification and verification purposes. Not surprisingly, games for these logics deal

with problems arising in this area as well. Besides the model checking and satisfiability

checking problem there is program synthesis for example, [Tho95].

The basis for most of the games in this thesis is [Sti95] where a game-based approach to

Lµ’s model checking problem is presented. In these games the players essentially move

one pebble through the underlying transition system and one through the syntax tree of

the formula at hand. Moves are guided by the formula, and players do not necessarily

take turns to move. The winner of a play is determined by an atomic formula, or

a situation in which one of the players cannot move anymore, or a condition on the

visited formulas in an infinite play.

This condition concerns the occurrence of fixed point constructs. In fact, the winner

is decided by the fixed point type of the outermost variable occurring infinitely often.

This is where the strength of games for modal and temporal logics can be seen. The

winning condition is very natural to the underlying logic and not too hard to understand

for those who are reasonably familiar with least and greatest fixed point in general.

Computationally,Lµ’s model checking problem is relatively hard since no polynomial

70 Chapter 3. Background

time algorithm has been found for it so far. However, the problem’s complexity is

entirely captured by the task of finding a winning strategy for one of the players.

Checking which player wins a particular play is easy. But it is the definition of a

play rather than a game which provides understanding of the property expressed by a

formula.

Games have also been used in a less direct way for two other problems concerning

the logics dealt with here. [VB00] defines games to determine whether the language

accepted by a CTL∗ model checking automaton is empty. [NW97] builds tableaux for

Lµ formulas and uses games to test whether particular branches of these tableaux are

successful.

Comparisons

Tableaux, automata and games are not entirely different techniques. Often, it is

possible to turn one of them into another.

The easiest transition is made from games to tableaux. Given a model checking or

satisfiability game as the ones in the following chapters, the game tree for player∃ is

nothing more than a tableau for a formula (and a state of a transition system). The

duality property of the games automatically yields refuting tableaux. These are player

∀’s winning strategies. To define a tableaux system formally from a given game one

would usually replace the notion of a play with a tree in a way that player∃’s choices

remain as they are while player∀’s choices correspond to a branching in the tree. Thus,

a play would be a branch of the resulting tree. A branch of this tree is successful iff it

fulfils one of player∃’s winning conditions.

The transition from tableaux to games is not much harder. Given a tableau system for

a logic it can be turned into a game in which player∃ chooses the form of successor

configurations to the actual one while player∀ selects the path to follow through the

tableau. The notion of a successful branch must be translated into a winning condition

for player∃ while player∀’s winning conditions need to be made complementary to

them such that a branch is not successful iff it corresponds to a winning play for player

∀.

3.4. Overviews 71

Often, alternating automata are seen as games. In fact, it is the non-emptiness test of

the language accepted by an alternating automaton which is a 2-player game. The

configurations are the automaton’s states while player∃’s winning conditions are

derived from the automaton’s acceptance condition. An accepting run can then be

seen as a game tree for player∃.

Conversely, player∀’s game trees, i.e. witnesses for the failure of a property, are

accepting runs of the dual automaton in which nondeterministic and universal choices

are swapped, and the acceptance conditions are dualised. This is particularly easy if the

automaton is of a type whose acceptance conditions are closed under complementation,

for example Rabin or parity automata. This is why games correspond more closely to

these kinds of automata rather than Büchi automata, [Eme96, EJS01].

Finally, there is a close connection between automata and tableaux as well. The

transition table of an alternating automaton is in fact a tableau. Note that from an

existential point of view an automaton chooses the next state nondeterministically if

the actual one is existential, but spawns off copies that run simultaneously in a universal

state. This corresponds exactly to the idea underlying tableau rules described above.

See [Eme85] for details.

3.4 Overviews

Model Checking

Figure 3.1 lists the most important publications in the area of model checking for

the logics used in this thesis.Lµ andL0
µ are included for the sake of completeness.

Moreover, because of embeddings some of the results forLµ carry over to PDL for

example. To the best of our knowledge automata-based model checking for PDL has

not explicity been published but it can easily be obtained from automata forL0
µ. The

complexity remains the same.

The empty fields in theL0
µ row are due to the fact that tableaux or games forLµ can

easily be simplified to yield tableaux and games forL0
µ. Again, as far as we know

72 Chapter 3. Background

logic tableaux automata games others

BLTL

[LP85]

[BCG95]

[GPVW95]

[SVW83]

[VW86a]
Section5.5

CTL [BCG95]
[CES83]

[BVW94]
Section5.3 [QS82]

CTL∗ [BCG95]
[BVW94]

[VB00]
Section5.2

CTL+ Section5.4 [LMS01]

PDL Chapter4
[FL77]

[AI00]

FLC [LS02a] Chapter9

Lµ
[SW91]

[Cle90]
[BVW94] [Sti95] [Eme97]

L0
µ

[MSS92]

[BVW94]

[And94]

[CS92]

[BC96]

Figure 3.1: The history of model checking.

3.4. Overviews 73

the model checking problem for CTL+ has only been addressed in [LMS01] using a

reduction technique.

We do not include LTL in this table since model checking for linear time temporal logic

is only really interesting if it is interpreted over all paths of a total transition system,

i.e. if BLTL is considered in fact.

Remember that for branching time logics the detour via satisfiability checking

automata is not feasible for model checking. In the FLC case it is not even possible

since satisfiability checking is undecidable. Consequently, the right automaton model

for FLC formulas is one whose membership problem is decidable although the

emptiness checking problem is undecidable. Section9.2 will suggest that alternating

tree pushdown automata could serve as the right choice for automata-based FLC model

checking. This is also hinted in [Lan02a] where a translation from FLC interpreted

solely over linear models into alternating pushdown automata over finite and infinite

words is given.

Satisfiability Checking

Figure3.2 lists the most important publications concerning the satisfiability checking

problem for these logics. Here, there is no distinction between LTL and BLTL since

a model for an LTL formula is also a model for the corresponding BLTL formula.

Conversely, every path of a model for a BLTL formula is also a model for the

corresponding LTL formula. Thus, a BLTL formula is satisfiable iff its LTL pendant is

satisfiable.

The empty tableaux for CTL∗ field is due to a conjecture stated by Emerson that

determinisation is essential for checking satisfiability of CTL∗ formulas. Therefore

there would be no tableau-based decision procedure for CTL∗. This is refuted in

Chapter8. The winning strategies for the games introduced there can easily be seen as

tableaux for CTL∗.

The empty fields in the games column will be addressed at the end of this thesis

regarding further work. It is not entirely clear whether [NW97] should be listed under

tableaux or games or both. In fact, the method proposed there builds tableaux forLµ

74 Chapter 3. Background

logic tableaux automata games others

LTL
[LP00]

[SGL97]

[SVW83]

[VW86a]
Section6.1 [Fis91]

CTL
[CE81]

[BAPM83]
[VW86a] Section6.2 [EH85]

CTL∗
[ES84]

[Eme85]

[EJ00]

Chapter8

CTL+

PDL [Pra80] [VW86a] Section6.3
[FL77]

[Pra79]

Lµ [NW97]

[SE84]

[EJ91]

[EJ00]

L0
µ [BVW94]

Figure 3.2: The history of satisfiability checking.

3.4. Overviews 75

logic model checking satisfiability checking

PDL PTIME-complete EXPTIME-complete

LTL PTIME-complete PSPACE-complete

BLTL PSPACE-complete PSPACE-complete

CTL PTIME-complete EXPTIME-complete

CTL+ Π2-complete EXPTIME-hard,∈ 2-EXPTIME

CTL∗ PSPACE-complete 2-EXPTIME-complete

FLC PSPACE-hard,∈ EXPTIME undecidable

FLCk PSPACE-complete undecidable

Lµ PTIME-hard,∈ NP∩co-NP EXPTIME-complete

Lk
µ PTIME-complete EXPTIME-complete

Figure 3.3: The model checking and satisfiability checking complexities.

formulas which are only pre-witnesses for the satisfiability of a formula. To obtain

witnesses a game is played on these tableaux. This can be simplified to obtain a

decision procedure forL0
µ on the same basis.

Again, to the best of our knowledge, the only known decision procedures for CTL+

are based on regarding the input as a CTL∗ formula or translating it into CTL.

Complexities

Figure3.3 shows known lower and upper bounds for the computational complexities

of these logics. Again, we includeLµ andLk
µ to allow comparisons. Note that FLCk

andLk
µ denote all fragments of arbitrary but fixed alternation depth.

PTIME-hardness of the model checking problems follows trivially from the

76 Chapter 3. Background

PTIME-hardness of the evaluation problem for boolean formulas. Note that all the

logics featured here subsume propositional boolean logic.

PSPACE-hardness of BLTL’s model checking and LTL’s satisfiability checking

problem was shown in [SC85]. The former also proves that CTL∗ model checking

is PSPACE-hard. PSPACE-hardness of FLC’s and FLCk’s model checking problem

was shown in [LS02a]. A different but unpublished proof was found by Müller-Olm

earlier on.

CTL+’s lower bound for model checking was found in [LMS01] together with its

upper bound. All the other upper bounds result from complexity analyses of the work

summarised in Figure3.1.

EXPTIME-hardness of PDL’s satisfiability problem was proved in [FL77]. L0
µ’s

and Lµ’s EXPTIME-hardness is a consequence of this. The proof of CTL’s

EXPTIME-hardness is not a consequence of this but proceeds along the same lines.

This makes it a lower bound for the complexity of CTL+’s satisfiability problem, too.

2-EXPTIME-hardness of CTL∗’s satisfiability problem was shown in [VS85]. [MO99]

proved that FLC0 and with it FLC and FLCk are undecidable for allk∈ N.

Membership in EXPTIME of PDL’s satisfiability problem was shown in [Pra79].

Again, the other results providing upper bounds can be found in Figure3.2.

Expressiveness

Figure3.4 shows how the logics discussed here relate to each other in terms of their

expressive powers.

PDL is easily seen to be embeddable intoL0
µ, [KT90]. The translation is uniform and,

hence, even preserves the subformula property to some extend. The same holds for the

translation of CTL intoL0
µ, as well as the translation fromLµ into FLC, [MO99].

A translation from CTL∗ into L1
µ is given in [Dam94]. It does not preserve the

subformula property. This is not surprising if one considers the complexities for these

logics. Clearly, an embedding that preserves the syntactical structure of a formula

gives rise to a polynomial reduction from one logic’s satisfiability checking problem

3.4. Overviews 77

L1
µ

CTL∗

CTL+

Lµ

FLC

FLC−

CTL PDL

L0
µ

BLTL

FLC0,1

FLC0

FLC1

semantical fragment

semantical fragment

same expressive power
syntactical fragment with

syntactical fragment

with uniform translation

Figure 3.4: Expressiveness in the family of modal and temporal logics.

to the other’s. But the fact that there is a double exponential lower bound for deciding

CTL∗ and the membership ofLµ’s satisfiability problem in EXPTIME show that every

translation from CTL∗ to Lµ has to produce certain formulas of exponential length.

Chapter 4

Model Checking Games for

Propositional Dynamic Logic

Though this be madness,

yet there is method in it.

—

POLONIUS

Model checking games for PDL are played on an LTST = (S,{ a−→| a∈ A},L) with

starting states∈ S and a PDL formulaϕ. Player∃ wants to show thats |= ϕ whereas

player∀ tries to shows 6|= ϕ. The set of configurations of the gameGT(s,ϕ) is

C = S×Sub(ϕ)

A configuration is writtent ` ψ wheret ∈ S andψ ∈ Sub(ϕ).

The game rules are given in Figure4.1. They are usually written

(r)
C

C′
p c

80 Chapter 4. Model Checking Games for Propositional Dynamic Logic

and to be read as: If the actual configurationCi in a play is of the formC then playerp

performs a choicec and the next configurationCi+1 is C′ with the same instantiations

as those forC. (r) is the name of the rule. A player/choice combination like∀i means

that player∀ chooses ani from a domain which should become clear by inspectingC

andC′.

One of the reasons for calling the players∀ and∃ becomes apparent in this moment.

A notation like∃i can be read as “player∃ chooses ani” but also as “if the upper

configuration is true then there exists ani that makes the lower configuration true”.

The same holds for a player/choice combination like∀i for example.

An empty p c means the rule is deterministic. In this case it does not matter which

player makes the next move since the outcome would be the same. Therefore, we omit

player names in deterministic rules.

Another possible game rule pattern is

(r)
C

C′ | C′′
p

Here, if the actual configurationCi is an instance ofC then playerp has the choice

whether the next configurationCi+1 will be an instance ofC′ or C′′.

A disjunction is easy to prove, therefore it is player∃’s task to choose a disjunct with

rule (∨). A conjunction is easy to refute. This is done by player∀ in rule (∧). Rules

(〈∪〉), ([∪]), (〈;〉), ([;]), (〈∗〉), ([∗]), (〈?〉) and([?]) simply apply the equivalences for

PDL formulas with modalities given in Section2.5 to obtain formulas or programs of

smaller size. Some of these equivalences yield boolean combinations. In these cases

the following choice using rule(∨) or (∧) has been built into the modality rule already.

Finally, if the actual configuration contains a modality with an atomic program one of

the players has to choose a successor state that is reachable along a transition labelled

with the program at hand. This is reflected in rules(〈a〉) and([a]).

There are three different types of plays. An atomic formula can be reached in which

case no rule applies. One of the players can get stuck by being unable to choose a

successor state. Or the play can proceed ad infinitum.

81

(∨)
s` ϕ0∨ϕ1

s` ϕi

∃i (∧)
s` ϕ0∧ϕ1

s` ϕi

∀i

(〈∪〉) s` 〈α0∪α1〉ϕ
s` 〈αi〉ϕ

∃i ([∪])
s` [α0∪α1]ϕ

s` [αi]ϕ
∀i

(〈;〉) s` 〈α0;α1〉ϕ
s` 〈α0〉〈α1〉ϕ

([;])
s` [α0;α1]ϕ

s` [α0][α1]ϕ

(〈∗〉) s` 〈α∗〉ϕ
s` ϕ | s` 〈α〉〈α∗〉ϕ

∃ ([∗]) s` [α∗]ϕ

s` ϕ | s` [α][α∗]ϕ
∀

(〈?〉) s` 〈ϕ0?〉ϕ1

s` ϕi

∀i ([?])
s` [ψ?]ϕ

s` ψ | s` ϕ
∃

(〈a〉) s` 〈a〉ϕ
t ` ϕ

∃ s a−→ t ([a])
s` [a]ϕ

t ` ϕ
∀ s a−→ t

Figure 4.1: The rules for the PDL model checking games.

Player∀ wins the playC0,C1, . . . iff

1. there is ann∈ N s.t. Cn = t ` q and q 6∈ L(t), or

2. there is ann∈ N s.t. Cn = t ` 〈a〉ψ and t 6 a→, or

3. there are infinitely manyi ∈ N s.t. Ci = ti ` 〈α∗〉ψ for someti ∈ S.

Player∃ wins the playC0,C1, . . . iff

4. there is ann∈ N s.t. Cn = t ` q and q∈ L(t), or

5. there is ann∈ N s.t. Cn = t ` [a]ψ and t 6 a→, or

82 Chapter 4. Model Checking Games for Propositional Dynamic Logic

6. there are infinitely manyi ∈ N s.t. Ci = ti ` [α∗]ψ for someti ∈ S.

Example 42 Let T be the transition system consisting of states{s, t} with transitions

s a−→ t andt a−→ t. The labelling of the states isL(s) = {q} andL(t) = {q}. The formula

to be checked is

ϕ := 〈(q?;a)∗〉q

ϕ says “there is a path labelled withas on whichq does not hold until it holds”, see

also Example16. T with starting states satisfiesϕ. The full game tree is given in

Figure4.2. The players’ choices are annotated at the right side of the rules.

Player∀ wins the plays ending withs ` q and t ` q because of condition 1. The

rightmost path results in an infinite play that visits the configuration

t ` 〈(q?;a)∗〉q

infinitely often. Thus, it is won by player∀, too. Player∃ wins the other plays with

winning condition 4. She has a winning strategy since she can force the game into the

positiont ` q unless player∀ has forced it into a defeat for himself beforehand.

We remark that applying the model checking games forLµ from [Sti95] to translations

of PDL formulas intoL0
µ results in basically the same games as the PDL model

checking games of this chapter.

Correctness

Fact 43 Rules(∨), (∧), (〈∪〉), ([∪]), (〈?〉), ([?]), (〈a〉) and ([a]) reduce the size of

the actual configuration. Rules(〈∗〉) and([∗]) can both decrease or increase it. Rules

(〈;〉) and([;]) reduce the size of a program occurring in the actual configuration.

Lemma 44 Every play ofGT(s,ϕ) has a uniquely determined winner.

PROOF A play can either be of finite or infinite length. Suppose it is of finite

length. Note that there is a rule for each type of formula except atomic propositions

q. Furthermore, all rules apart from(〈a〉) and ([a]) are always applicable in a

83

s` 〈(q?;a)∗〉q
∃

s` q s` 〈q?;a〉〈(q?;a)∗〉q

s` 〈q?〉〈a〉〈(q?;a)∗〉q
∀

s` q s` 〈a〉〈(q?;a)∗〉q
∃s a−→ t

t ` 〈(q?;a)∗〉q
∃

t ` q t ` 〈q?;a〉〈(q?;a)∗〉q

t ` 〈q?〉〈a〉〈(q?;a)∗〉q
∀

t ` q t ` 〈a〉〈(q?;a)∗〉q
∃t a−→ t

t ` 〈(q?;a)∗〉q
...

Figure 4.2: The full game tree for Example 42.

corresponding configuration since the players only choose subformulas. Rules(〈a〉)
and([a]) may not be applicable in case there is no corresponding transition to choose

in the underlying transition system.

Thus, a finite play must end in a configuration of either of the formst ` q, t ` 〈a〉ψ
or t ` [a]ψ. In the second case, winning condition 2 determines the winner. Winning

condition 5 does the same for the third case. For the first case, note that eitherq∈ L(t)

or q 6∈ L(t). Therefore, the winner is uniquely determined by winning condition 1 or 4,

too.

Suppose now that the play at hand is of infinite length. According to Fact43, this

is only possible if rule(〈∗〉) or ([∗]) is played infinitely often since all other rules

genuinely decrease the size of the configuration or a program occurring in it. Moreover,

the players must choose the option that increases the size of the actual configuration

infinitely often.

84 Chapter 4. Model Checking Games for Propositional Dynamic Logic

Note that, if player∃ choosesϕ in the unfolding of〈α∗〉ϕ for example,〈α∗〉ϕ cannot

occur in the play again. Otherwise it would be a genuine subformula of itself. The

same holds for player∀ and[α∗]ϕ.

Thus, in an infinite play they will almost always choose〈α〉〈α∗〉ϕ, resp.[α][α∗]ϕ, in

applications of rules(〈∗〉) and ([∗]). Suppose both are played infinitely often, i.e.

there are〈α∗〉ϕ and[β∗]ψ that occur infinitely often in a play. One of them must be a

subformula of the other, say[β∗]ψ ∈ Sub(ϕ). But if player∃ always chooses〈α〉〈α∗〉ϕ
in an application of rule(〈∗〉) thenϕ will never occur as the formula component of a

configuration in the play. Consequently,[β∗]ψ cannot either.

Hence, in every infinite play either a〈α∗〉ϕ or a [α∗]ϕ occurs infinitely often and the

winner of this play is uniquely determined by winning condition 3 or 6. �

Definition 45 Let T = (S,{ a−→| a∈A},L) with s, t ∈ S, ϕ ∈ PDL andψ ∈ Sub(ϕ). A

configurationt ` ψ of the gameGT(s,ϕ) is calledtrue if t |= ψ andfalseotherwise.

Lemma 46 Player∃ preserves falsity and can preserve truth with her choices. Player

∀ preserves truth and can preserve falsity with his choices.

PROOF First consider rule(∨). Take a configuration

C = t ` ϕ0∨ϕ1

SupposeC is false, i.e.t 6|= ϕ0 andt 6|= ϕ1. Regardless of whichi player∃ chooses, the

configurationt ` ϕi will be false. On the other hand, supposeC is true. Thent |= ϕ0 or

t |= ϕ1, and player∃ can preserve truth by choosingi accordingly. The proofs for rules

(∧), (〈∪〉) and([∪]) are similar or dual. The cases of rules(〈∗〉), ([∗]), (〈?〉) and([?])

can be reduced to the boolean connectives.

Consider now a configuration

C = t ` 〈a〉ψ
SupposeC is false. Then eithert 6 a→ or for everyt ′ ∈ S: if t a−→ t ′ thent ′ 6|= ψ. I.e. if

t has ana-successor then player∃ cannot make the following configuration true. Ift

does not have ana-successor then there will be no next configuration and consequently

player∃ cannot make it true either.

85

Suppose now thatC is true. Then there is at ′ ∈ S s.t.t a−→ t ′ andt ′ |= ψ. By choosing

this t ′, player∃ can preserve truth. The case of rule([a]) is dual. �

Note that the deterministic rules(〈;〉) and([;]) preserve both truth and falsity.

Preserving truth, resp. falsity, is going to play an important role in the following proofs

of soundness and completeness, Theorems48 and49. Consequently, it is going to

be an important part of player∃’s, resp. player∀’s, winning strategies. However, this

alone is not enough as the next example shows.

Example 47 Take the transition systemT consisting of one statesonly with ana-loop

to itself, i.e.s a−→s. Consider the formula

ϕ = 〈a∗〉〈a〉tt

which postulates the existence of a finite path whose transitions are labelled witha and

which has at least two states.

The gameGT(s,ϕ) only consists of unfoldingϕ and choosing the only possible

transitions a−→s. Note thats |= ψ for all ψ ∈ Sub(ϕ), i.e. regardless of player∃’s

choices with rule(〈∗〉), she will always preserve truth. However, in order to win she

needs to choose〈a〉tt at some point, otherwise player∀ would win with his winning

condition 3.

Therefore it is part of both players’ strategies to choose the smaller of two formulas if

both preserve truth, resp. falsity.

Theorem 48 (Soundness) If T,s 6|= ϕ then player∀ winsGT(s,ϕ).

PROOF If s 6|= ϕ then the starting configuration of every play ofGT(s,ϕ) is false. We

build a game tree for player∀ preserving falsity. I.e. whenever a rule requires him to

make a choice the tree will contain the successor configuration that preserves falsity

according to Lemma46. All of player∃’s choices are contained in the tree.

Player∃ cannot win a finite play of this tree since she only wins finite plays that end in

true configurations. Suppose she wins an infinite play. Then it must contain infinitely

86 Chapter 4. Model Checking Games for Propositional Dynamic Logic

many false configurations of the formCi = ti ` [α∗]ψ for i = 0,1, Consider the first

of these. By falsity

t0 6|= [α∗]ψ

According to Lemma15of Chapter2, there must be a smallestk∈ N s.t.

t0 6|= [αk]ψ

If C1 = t1 ` [α∗]ψ is reached it can be interpreted as

t1 ` [αk−1]ψ

The argument is iterated withC1.

By preservation of falsity the play must eventually reach a false configurationCk

interpreted as

tk ` [α0]ψ

But [α0]ψ≡ tt, i.e.Ck cannot be false.

We conclude that the assumption oft0` [α∗]ψ being false was wrong and that therefore

player∃ cannot win an infinite play either. Hence, player∀ winsGT(s,ϕ). �

Theorem 49 (Completeness) If T,s |= ϕ then player∃ winsGT(s,ϕ).

PROOF According to Lemma13, PDL is closed under negation. Furthermore, the

class of PDL model checking games is closed under dual games since for every game

rule there is a dual rule and for every winning condition there is a dual winning

conditions, too.

Suppose now thatT,s |= ϕ, i.e. T,s 6|= ϕ. According to Theorem48, player∀ wins

GT(s,ϕ). But then player∃ winsGT(s,ϕ) by Theorem39, the duality principle. �

Theorems48and49show that the PDL model checking games aredetermined, i.e. for

every game one of the players has a winning strategy.

Corollary 50 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

87

Theorem 51 (Winning strategies) The winning strategies for the PDL model

checking games are history-free.

PROOF Consider player∃’s winning strategies. According to the proof of Theorem49,

she needs to preserve truth. Note that the truth value of a configuration only depends

on its state and its formula component and not on the history of a play.

Furthermore, if she has the choice between two different successor configurations and

both are true, she chooses the smaller one. But the size of a successor configuration

does not depend on the history either.

The situation for player∀ is dual. Thus, his winning strategies are history-free as

well. �

PDL over Finite State Transition Systems

The completeness proof of the PDL satisfiability games that will be presented in

Section6.3depends on the fact that satisfiable PDL formulas have finite models.

Theorem 52 (Finite model property) PDL has the finite model property.

PROOF Supposeϕ0∈ PDL is satisfiable. Then it has a modelT = (S,{ a−→| a∈A},L)

with s0 ∈ S. Furthermore, there is a successful game treeT for player∃ and the game

GT(s0,ϕ0). We construct another treeT ′ and show that it is a successful game tree

for player∃ as well. Note that for every infinite branchC0,C1, . . . in T there is a

[α∗]ψ∈Sub(ϕ0) s.t. the branch contains infinitely many configurationsCi0,Ci1, . . . with

Ci j = t j ` [α∗]ψ for somet j ∈ S

To obtain a graphT1 from T we do the following. For every such branch inT we

discard the entire subtree beginning withCi1 and add an edge fromCi1−1 toCi0. Let T ′

be the unravelling ofT1 with respect to the starting configurationC0:

T ′ = RC0(T1)

In order to show thatT ′ is a game tree we need to consider the added edges from

a Ci1−1 to a Ci0. Regardless of which rule was applied toCi1−1 to obtainCi1, the

88 Chapter 4. Model Checking Games for Propositional Dynamic Logic

pair (Ci1−1,Ci0) is a valid instance of this rule as well. This is because the formula

components ofCi0 andCi1 are the same.

Moreover,T ′ is also a game tree for player∃. Note that she has a winning strategy for

the subgames starting in any configuration ofT, in particularCi0 andCi1 for any branch.

According to Theorem51, winning strategies are history-free. Thus, the subgame

starting withCi1 can be replaced by the subgame starting withCi0 without effecting the

winner of the entire game.

Note that there are only finitely many different states ofT occurring in a configuration

of T ′. Thus, it is possible to define a finite transition systemT′ = (S′,{ a→ ′ | a∈A},L)

by

S′ := { t ∈ S | there is aψ ∈ Sub(ϕ0) s.t. t ` ψ is a configuration inT1 }

with transitions given by

t1
a→ ′t2 iff there is a configurationt1 ` 〈a〉ψ or t1 ` [a]ψ, and

a configurationt2 ` ψ s.t. rule(〈a〉) or ([a]) was played

between them

The labelling of the states is taken from their respective labellings inT.

In fact, T ′ is a successful game tree for player∃ and the gameGT′(s0,ϕ0). Then

T′,s0 |= ϕ0 by Theorem48, i.e.ϕ0 has a finite model. �

If the underlying transition system is finite the winning conditions can be modified to

result in finite plays only. The game rules remain the same. Player∀ wins the play

C0, . . . ,Cn iff

1. Cn = t ` q and q 6∈ L(t), or

2. Cn = t ` 〈a〉ψ and t 6 a→, or

3. Cn = t ` 〈α∗〉ψ and there is aCi with i < n andCi = Cn.

Player∃ wins the playC0, . . . ,Cn iff

89

4. Cn = t ` q and q∈ L(t), or

5. Cn = t ` [a]ψ and t 6 a→, or

6. Cn = t ` [α∗]ψ and there is aCi with i < n andCi = Cn.

The new winning conditions are simplified versions of the ones for arbitrary transition

systems. Winning conditions 1,2,4 and 5 are just the same. By Theorem51, winning

strategies are history-free, and the new winning conditions 3 and 6 result from the old

ones by regarding plays in the game graph instead of in the game tree, see Section2.7.

Complexity

One way of analysing the complexity of finding winning strategies in the PDL model

checking games is to use the results on alternating complexity classes. It is not hard

to see that a play of a gameGT(s,ϕ) can be played using space that is logarithmic in

the size of the input only. This is done by encoding a configuration using two pebbles.

One of them is placed on a state of the transition system, the other on a subformula of

the input formula. The pebbles can be stored as counters which need logarithmic space

in the size of the transition system and the formula.

Therefore, the winner ofGT(s,ϕ) can be decided in alternating LOGSPACE which is

the same as PTIME according to [CKS81]. However, using a more explicit analysis

this result can be improved.

Theorem 53 (Complexity) Deciding the winner of a PDL model checking game is

in LINTIME.

PROOF We sketch a global algorithm that decides the winner ofGT(s,ϕ). Since

winning strategies are history-free the game can be represented by the game graph.

The algorithm simply labels nodes of this graph with either∀ or ∃ depending on which

player can win the game starting with the configuration at hand. This is done in a

bottom-up manner.

The game graph can be partitioned into blocks and these blocks can be enumerated

s.t. every path of the graph either stays in one block or leaves a block into another one

90 Chapter 4. Model Checking Games for Propositional Dynamic Logic

whose index is strictly greater than the first one’s. This block structure is induced by

the formula component of a configuration only. A block is in fact a strongly connected

component of the graph. And strongly connected components can be computed in

linear time using Tarjan’s algorithm for example, [Tar72].

Remember that most rules of the games reduce the size of the formula at hand.

Exceptions are formulas of the form〈α∗〉ψ and [α∗]ψ. These can cause the game

graph to have loops. Paths cannot lead back into a block they have been in because

once a play reaches a formula, say,〈α∗〉ψ it can never reach a proper superformula of

it again. Furthermore, each block can only have loops of one type, a〈α∗〉ψ or a[α∗]ψ.

Thus, the graph of blocks is directed and acyclic. It can be processed starting at those

blocks which are furthest away from the starting configuration

C0 = s` ϕ

The configurations in such a block can be labelled in the following way. Terminal

configurations, i.e. those that end a play with winning conditions 1,2,4 or 5 are labelled

with the corresponding winner. The last configuration of a path that exhibits a repeat

is labelled∀ if the type of this block is〈α∗〉ψ and with ∃ otherwise. The other

configurations can be labelled in a bottom-up manner depending on which player has a

choice in the configuration at hand and whether there is a successor configuration that

is labelled with their name already.

The algorithm only needs to visit each node of the game graph once. For a transition

system with state setS and a formulaϕ the size of the game graph is|S| · |ϕ|. Thus, the

claim follows. �

This is essentially the same technique that is used to show that model checking for the

alternation freeµ-calculusL0
µ can be done in linear time as well, [And94, CS92, BC96].

Extensions of PDL

The PDL model checking games can be extended in a straight-forward way in order to

capture extensions of PDL like Converse-PDL, [Str81], and PDL-∆, [Str85], as defined

in Section2.5.

91

s` 〈α∪β〉ϕ
s` 〈α∪β〉ϕ

s` [α∪β]ϕ

s` [α∪β]ϕ

s` 〈α;β〉ϕ
s` 〈β;α〉ϕ

s` [α;β]ϕ

s` [β;α]ϕ

s` 〈α∗〉ϕ
s` 〈α∗〉ϕ

s` [α∗]ϕ

s` [α∗]ϕ

s` 〈a〉ϕ
t ` ϕ

∃ t a−→s
s` [a]ϕ

t ` ϕ
∀ t a−→s

s` repeat(α)

s` 〈α〉repeat(α)

Figure 4.3: The rules for extensions of PDL.

To allow converse of programs and the repeat operator in the PDL model checking

games one simply has to add the rules of Figure4.3. They mimic the equivalences for

converse programs and use the unfolding characterisation of therepeatconstruct as

given in Section2.5.

The winning conditions have to be extended, too. There are two for the case of the

converse of an atomic program which cannot be executed in a particular state. I.e.

player∀ wins the playC0, . . . if there is an∈ N s.t.

Cn = t ` 〈a〉ψ

for somet andψ and there is no statess.t.s a−→ t. Consequently, player∃wins if player

∀ gets stuck in a configuration

Cn = t ` [a]ψ

and there is nos s.t.s a−→ t.

The repeat construct requires an additional winning condition for player∃. She wins

an infinite play if there are infinitely many configurationsC0,C1, . . . and a programα
s.t.

Ci = ti ` repeat(α)

92 Chapter 4. Model Checking Games for Propositional Dynamic Logic

for someti ∈ S and everyi ∈ N.

These extensions do not effect the complexity of game-based PDL model checking. It

is still possible in linear time.

Chapter 5

Model Checking Games for Branching

Time Logics

But I remembered a voice from my past

‘Gambling only pays when you’re winning’

—

GENESIS

5.1 Focus Games and Sets of Formulas

Some of the games in this and the following chapters will use a special tool called

focus. Mathematically, the focus simply is a function from a set to its elements. It

is used to highlight, resp. focus on one particular element in a set of formulas. A

focus gameis a model checking or satisfiability game that makes use of a focus. A

configuration in such a game involves a focus on a set of formulas. This is for example

written as [
ϕ
]
,Φ

94 Chapter 5. Model Checking Games for Branching Time Logics

and is to be understood in the following way:ϕ is a single formula,Φ is a set of

formulas. The configuration at hand is, or at least contains, the disjoint unionΦ∪{ϕ}
as a set of formulas in whichϕ is highlighted.

Confluence is a potential problem for the games whose configurations contain or are

sets of formulas. The rules of all the games in this thesis however deal withprinciple

formulas: there is usually one formula in a configuration which gets replaced by a

subformula of it in an application of this rule. The other formulas which are present at

this moment get discarded or copied into the next configuration. However, when using

sets, there are several candidates for a principle formula and, hence, more than one rule

might be admissible at a certain moment.

Informally, a game is calledconfluent if the order in which admissible rules are

applied does not effect the outcome of a play. The games of the following chapters

are confluent because of a simple argument. One only needs to consider possible

conflicts between rules that require different players to choose a particular subformula

of a possible principle formula. By doing so, another subformula might be discarded.

Later this could turn out to have been a bad choice since the other player discarded a

subformula of another principle formula of this moment which might be necessary for

the first player to win. On the other hand, if the first player had performed a different

choice, the opponent might have reacted differently as well.

This is, however, not possible for the games of the following chapters which use sets

of formulas since it is always at most one player who has the possibility to discard

formulas.

As it was mentioned in Section2.6already, regenerating fixed point constructs play an

important role in games that use sets of formulas.

Definition 54 In a play C0,C1, . . . of a game, a formulaϕ is called regenerating

betweenCk andCn for k < n iff

• ϕ is a fixed point construct, i.e. there is aψ ∈ Sub(ϕ) s.t.ϕ ∈ Sub(ψ), and

• ϕ ∈Ck andϕ ∈Cn and for alli with k≤ i < n: (Ci ,Ci+1) is an instance of a rule

that either preservedϕ, resp. its unfolding, or replaced it by a subformula of it.

5.2. Model Checking Games for CTL∗ 95

The fixed point constructϕ gets regeneratedinfinitely oftenin a playC0, . . . if there is

an i ∈ N s.t.ϕ gets regenerated betweenCi andCn for all n > i.

5.2 Model Checking Games for CTL ∗

Given a total LTST = (S,−→,L), s∈ S and a CTL∗ formulaϕ, the CTL∗ model checking

gameGT(s,ϕ) is afocus gamein the above sense. Player∃ wants to show thatT,s |= ϕ
whereas player∀ tries to show thatT,s 6|= ϕ.

The set of configurations ofGT(s,ϕ) is

C = S×{E,A}×Sub(ϕ)×2Sub(ϕ)

A configuration is written

t ` Q(
[
ψ

]
,Φ) (5.1)

wheret ∈ S, Q∈ {E,A}, ψ ∈ Sub(ϕ) andΦ ⊆ Sub(ϕ). With such a configuration we

associate a playerp called thepath player. This isp := ∀ if Q= A andp := ∃ if Q= E.

The path player’s opponentp will also be called thefocus player.

We will simply write t ` Q(Φ) if there is aψ ∈ Φ in focus that does not need explicit

mentioning.

The intuitive meaning of the configuration in (5.1) is as follows: The path playerp

constructs a pathπ in T starting witht in a state-by-state manner. The focus playerp

tries to highlight a particular formulaψ from the set of all formulas in this configuration

s.t.π 6|= ψ if p = ∀, andπ |= ψ if p = ∃.

In other words, ifQ = E, then player∃ wants to show that there is a pathπ = t . . . s.t.

π |= ψ∧
ϕ̂∈Φ

ϕ

although player∀ believes thatπ 6|= ψ. If Q = A then player∀ wants to show that there

is a pathπ = t . . . s.t.

π 6|= ψ∨
_

ϕ∈Φ
ϕ

although player∃ believes thatπ |= ψ.

96 Chapter 5. Model Checking Games for Branching Time Logics

Theside formulas, i.e. those that are not in focus, can be seen as an insurance for the

focus player to redo a move that she has done before. This is necessary because the

path player is allowed to choose the path stepwise along which a formula is examined.

At each configuration the set of side formulas together with the formula in focus can

be understood as a disjunction, resp. conjunction, of formulas in case the path player

is player∀, resp.∃. This is also justified by the equivalences

E(ϕ∨ψ)≡ Eϕ∨Eψ and A(ϕ∧ψ)≡ Aϕ∧Aψ

Each play ofGT(s,ϕ) begins with the configuration

s` A(
[
ϕ
]
)

Note thatϕ as a starting formula is a state formula and therefore equivalent toAϕ. Rule

(A) would set the path player to∀ anyway. Ifϕ = Eψ, as it will be in Example57 later

on, rule(E) sets the path player to∃ in the next move. This reflects the equivalence

AEψ≡ Eψ.

From then on, the play proceeds according to the rules given in Figures5.1and5.2. In

addition to the rule schemes introduced in Chapter4 we will use another one. A rule

of the form

(r)
C

C′
p

is to be read as follows: playerp canplay this rule in a configuration that matchesC

but does not have to.

We will motivate the CTL∗ model checking game rules in the following. Suppose

player∃ is constructing a pathπ and there is aϕ0∨ϕ1 in the actual configuration.

Since player∃ believes thatπ |= ϕ0∨ϕ1 she can choose one of the disjuncts and the

other one can be discarded. This is formalised in rules(E[∨]) and(E∨).

Suppose there is aϕ0∧ϕ1. Player∀ believes thatπ 6|= ϕ0∧ϕ1 and has to pick the

conjunctϕi that fails by setting the focus to it, see rule(E[∧]). However, since he does

not know which path player∃ is going to choose, the other conjunctϕ1−i is preserved.

Consequently, if the conjunction was not in focus there is no choice at all, see rule

(E∧). Later rule(FC) will allow him to pick out ϕ1−i if player ∃ was constructing a

5.2. Model Checking Games for CTL∗ 97

(A[∧])
s` A(

[
ϕ0∧ϕ1

]
,Φ)

s` A(
[
ϕi

]
,Φ)

∀i (E[∨])
s` E(

[
ϕ0∨ϕ1

]
,Φ)

s` E(
[
ϕi

]
,Φ)

∃i

(A[∨])
s` A(

[
ϕ0∨ϕ1

]
,Φ)

s` A(
[
ϕi

]
,ϕ1−i ,Φ)

∃i (E[∧])
s` E(

[
ϕ0∧ϕ1

]
,Φ)

s` E(
[
ϕi

]
,ϕ1−i ,Φ)

∀i

(A∧)
s` A(

[
ψ

]
,ϕ0∧ϕ1,Φ)

s` A(
[
ψ

]
,ϕi ,Φ)

∀i (E∨)
s` E(

[
ψ

]
,ϕ0∨ϕ1,Φ)

s` E(
[
ψ

]
,ϕi ,Φ)

∃i

(A∨)
s` A(

[
ψ

]
,ϕ0∨ϕ1,Φ)

s` A(
[
ψ

]
,ϕ0,ϕ1,Φ)

(E∧)
s` E(

[
ψ

]
,ϕ0∧ϕ1,Φ)

s` E(
[
ψ

]
,ϕ0,ϕ1,Φ)

(A)
s`Q(

[
Aϕ

]
,Φ)

s` A(
[
ϕ
]
)

(E)
s`Q(

[
Eϕ

]
,Φ)

s` E(
[
ϕ
]
)

(q/)
s`Q(

[
ϕ
]
,q,Φ)

s`Q(
[
ϕ
]
,Φ)

p (Q/)
s`Q′(

[
ϕ
]
,Qψ,Φ)

s`Q′(
[
ϕ
]
,Φ)

p

(FC)
s`Q(

[
ϕ
]
,ψ,Φ)

s`Q(
[
ψ

]
,ϕ,Φ)

p (X)
s`Q(

[
Xϕ0

]
,Xϕ1, . . . ,Xϕk)

t `Q(
[
ϕ0

]
,ϕ1, . . . ,ϕk)

p s−→ t

Figure 5.1: The model checking games rules for CTL∗.

98 Chapter 5. Model Checking Games for Branching Time Logics

([U])
s`Q(

[
ϕUψ

]
,Φ)

s`Q(
[
ψ∨ (ϕ∧X(ϕUψ))

]
,Φ)

([R])
s`Q(

[
ϕRψ

]
,Φ)

s`Q(
[
ψ∧ (ϕ∨X(ϕRψ))

]
,Φ)

(U)
s`Q(

[
χ
]
,ϕUψ,Φ)

s`Q(
[
χ
]
,ψ∨ (ϕ∧X(ϕUψ)),Φ)

(R)
s`Q(

[
χ
]
,ϕRψ,Φ)

s`Q(
[
χ
]
,ψ∧ (ϕ∨X(ϕRψ)),Φ)

Figure 5.2: The unfolding rules for the CTL∗ model checking games.

path on whichϕi actually holds. Rules(A[∧]), (A[∨]), (A∧), and(A∨) cover the dual

situations.

Once the focus player has decided to prove, resp. refute, a path quantified formula

a new pathπ needs to be chosen. The new path player depends on the new path

quantifier. The set of side formulas will be discarded since they were only relevant for

the old path, see rules(A) and(E).

Rule(q/) allows the path player to discard propositions if they do not prove, resp. refute,

the current disjunction, resp. conjunction, of formulas. The same is possible for path

quantified formulas using rule(Q/).

Using the fixed point characterisation of the temporal operatorsU andR they simply

get unfolded with rules([U]), ([R]), (U), and(R).

Applying these rules consecutively can result in a configuration in which every formula

is of the formXψ, i.e. speaks about the next state of the underlying path. Thus, the path

5.2. Model Checking Games for CTL∗ 99

player has to choose the next state and the according formulas are examined on this

one, see rule(X). Note that thep in this rule denotes the actual path player which

depends onQ.

Finally, the focus playerp – again depending on theQ of the actual configuration – is

allowed to reset the focus at any moment of the play using rule(FC). This might be

necessary whenever the path player reveals a further state of the path he or she is going

to choose. The focus player is always given the chance to reset the focus, particularly

beforea play is finished. Note that there are situations in which a play can get stuck if

he does not change it.

Definition 55 A configuration is calledterminal if it is of the form

s`Q(
[
q
]
,Φ)

for someq ∈ P and someΦ, and the focus player refuses or is unable to use rule

(FC). If Φ = /0 then the focus player is unable to use rule(FC). Moreover, remember

that he or she is given the chance to reset the focus after every application of another

rule. Thus, they refuse to change the focus if they do not make use of this possibility.

This is useful if the configuration at hand makes the focus player win the current play.

Therefore there is no need to change the focus.

Definition 56 A formula ϕUψ is calledpresentin a configurations`Q(Φ) iff

{ ϕUψ, ψ∨ (ϕ∧X(ϕUψ)), ϕ∧X(ϕUψ), X(ϕUψ) } ∩ Φ 6= /0

A ϕRψ is calledpresentin a configurations`Q(Φ) iff

{ ϕRψ, ψ∧ (ϕ∨X(ϕRψ)), ϕ∨X(ϕRψ), X(ϕRψ) } ∩ Φ 6= /0

Player∀ wins the playC0,C1, . . . of GT(s,ϕ0) iff

1. it reaches a terminal configurationCn = t `Q(
[
q
]
,Φ) and q 6∈ L(t), or

2. there is aϕUψ ∈ Sub(ϕ0) and infinitely many configurationsCi0,Ci1, . . . s.t. for

every j ∈ N:

100 Chapter 5. Model Checking Games for Branching Time Logics

• Ci j = ti j ` E(Φ) for someti j ∈ S andΦ, and

•
[
ϕUψ

]
is in focus in everyCi j , and

• afterCi0 player∀ has not used rule(FC), or

3. there are infinitely many configurationsCi0,Ci1, . . . s.t. for all j ∈ N there are

ti j ∈ S andΦ⊆ Sub(ϕ0) and Ci j = ti j ` A(Φ), and either

• player∃ has used rule(FC) infinitely often, or

• there is aϕUψ that is present and in focus in infinitely manyCi j .

Player∃ wins the playC0,C1, . . . of GT(s,ϕ0) iff

4. it reaches a terminal configurationCn = t `Q(
[
q
]
,Φ) and q∈ L(t), or

5. there is aϕRψ ∈ Sub(ϕ0) and infinitely many configurationsCi0,Ci1, . . . s.t. for

every j ∈ N:

• Ci j = ti j ` A(Φ) for someti j ∈ S andΦ, and

•
[
ϕRψ

]
is in focus in everyCi j , and

• afterCi0 player∃ has not used rule(FC), or

6. there are infinitely many configurationsCi0,Ci1, . . . s.t. for all j ∈ N there are

ti j ∈ S andΦ⊆ Sub(ϕ0) and Ci j = ti j ` E(Φ), and either

• player∀ has used rule(FC) infinitely often, or

• there is aϕRψ that is present and in focus in infinitely manyCi j .

The motivation for the conditions for infinite plays is the following. Condition 2 is

winning for player∀ because in this situation he managed to show the regeneration of

anU formula along a path that player∃ chose. Condition 3 is winning for him since

player∃ failed to show the regeneration of aR formula along a path he chose. The

conditions for player∃ are dual.

5.2. Model Checking Games for CTL∗ 101

ts

{q} {q}

Figure 5.3: The transition system for Example 57.

To illustrate the games we give an example that makes use of an abbreviatedG formula.

The simplified game rules for this construct and for anF formula can easily be derived

from rules([U]), ([R]), (U) and(R) and are

s`Q(
[
Fϕ

]
,Φ)

s`Q(
[
ϕ∨XFϕ

]
,Φ)

s`Q(
[
Gϕ

]
,Φ)

s`Q(
[
ϕ∧XGϕ

]
,Φ)

s`Q(
[
Xψ

]
,Fϕ,Φ)

s`Q(
[
Xψ

]
,ϕ∨XFϕ,Φ)

s`Q(
[
Xψ

]
,Gϕ,Φ)

s`Q(
[
Xψ

]
,ϕ∧XGϕ,Φ)

Example 57 Let T be the transition system of Figure5.3. The formula under

consideration is

ϕ := E(qU(Gq))

The property described byϕ is: “There exists a path with a finite prefix and an

infinite suffix. On the prefixq never holds, on the suffix it always does.” Confer also

Example12. T with starting states satisfiesϕ. The game tree for player∃ is depicted

in Figure5.4. Note that in the second configuration player∃ becomes the path player

which makes player∀ the focus player.

Since plays are of infinite length we can only depict them partially. Here, all plays

feature a repeating configuration. Later we will prove that winning strategies are

history-free. Thus, we can argue in the following way.

102 Chapter 5. Model Checking Games for Branching Time Logics

s` A(
[
E(qU(Gq))

]
)

s` E(
[
qU(Gq)

]
)

s` E(
[
Gq∨ (q∧X(qU(Gq)))

]
)

s` E(
[
q∧X(qU(Gq))

]
)

s` E(
[
q
]
,X(qU(Gq)))

s` E(
[
X(qU(Gq))

]
,q)

s` E(
[
X(qU(Gq))

]
)

t ` E(
[
qU(Gq)

]
)

t ` E(
[
Gq∨ (q∧X(qU(Gq)))

]
)

t ` E(
[
Gq

]
)

t ` E(
[
q∧XGq

]
)

t ` E(
[
q
]
,XGq)

t ` E(
[
XGq

]
,q)

t ` E(
[
XGq

]
)

t ` E(
[
Gq

]
)

...

t ` E(
[
XGq

]
,q)

t ` E(
[
XGq

]
)

t ` E(
[
Gq

]
)

...

s` E(
[
X(qU(Gq))

]
,q)

s` E(
[
X(qU(Gq))

]
)

t ` E(
[
qU(Gq)

]
)

t ` E(
[
Gq∨ (q∧X(qU(Gq)))

]
)

t ` E(
[
Gq

]
)

t ` E(
[
q∧XGq

]
)

t ` E(
[
q
]
,XGq)

t ` E(
[
XGq

]
,q)

t ` E(
[
XGq

]
)

t ` E(
[
Gq

]
)

...

t ` E(
[
XGq

]
,q)

t ` E(
[
XGq

]
)

t ` E(
[
Gq

]
)

...

Figure 5.4: The game tree for player ∃ of Example 57.

5.2. Model Checking Games for CTL∗ 103

t0 t1s

{q} {q}

Figure 5.5: The transition system for Example 58.

Player∃ wins the plays that proceed like the leftmost branch or the second from the

right with winning condition 6 since player∀ changes focus. She wins the others, i.e.

the rightmost path and the second from the left with winning condition 6 as well. Here,

player∀ is not able to show the regeneration of anU formula along the path player∃
selects.

Before we proceed to prove correctness of the games we give two further examples

that illustrate why a configuration in the model checking game needs to be a set of

formulas and, moreover, why the focus on this set is needed, too.

Example 58 Consider the CTL∗ formula

ϕ := A(Xq∨Xq)

from Example12. ϕ says that every path’s next state is labelled with eitherq or q.

ϕ is a tautology, so player∀ should not win the game on any transition system, in

particular the one shown in Figure5.5. Note that the labelling ofs is unimportant for

this example.

However, if we require configurations to contain one formula only, player∃ cannot win

GT(s,ϕ) anymore. This is because player∃ has to choose one of the disjunctsbefore

player∀ chooses a transition froms to ti , i ∈ {0,1}. If player∃ selectsXq for example

he would chooset0 and vice versa. Thus, configurations containing one formula only

can make the path player too strong provided paths are chosen stepwise.

Example 59 This example justifies the use of the focus structure on sets of formulas.

Consider

ϕ := E(Fq∧GFq)

104 Chapter 5. Model Checking Games for Branching Time Logics

...
s` E(Fq,XGFq)

...
s` E(Fq,XGFq)

...
s` E(Fq,GFq)

...
s` E(Fq,GFq)

Figure 5.6: The plays without focus of Example 59.

from Example12 and the two following transition systems.T1 andT2 consist of one

statesand one transitions−→sonly. The labelling function ofT1 assignsq to swhereas

the one ofT2 assignsq to s.

T1,s |= ϕ but T2,s 6|= ϕ sinceϕ postulates the existence of a path which visits a state

satisfyingq infinitely often. However, without an additional structure like the focus on

the set of formulas the gamesGT1(s,ϕ) andGT2(s,ϕ) would look like the ones depicted

in Figure5.6.

The difference betweenGT1(s,ϕ), depicted on the left, andGT2(s,ϕ) is the generation

of Fq. In the first case it is generated from theXGFq above, in the second it regenerates

itself. Hence, in that case player∀ can keep the focus onFq and explicitly show this

regeneration.

Correctness

Fact 60 Rules(A∧), (E∨), (q/), (Q/) and(X) reduce the size of the actual configuration.

Rules(A∨) and (E∧) reduce the number of connectives in the actual configuration.

Rules(A[∧]), (E[∨]), (A[∨]) and (E[∧]) reduce the size of the formula in focus and,

hence, the size of the entire configuration. Rules(A) and (E) reduce the number of

path quantifiers in the actual configuration and, hence, its size. Rules([U]), ([R]), (U)

and (R) increase the size of the actual configuration. Rule(FC) is the only one that

preserves both the size and the number of connectives in a configuration.

5.2. Model Checking Games for CTL∗ 105

Lemma 61 The path player can only change a finite number of times in a play.

PROOF The path player can only change with the rules(A) and(E). But these discard

the entire set of present sideformulas. LetQ1,Q2∈ {A,E} with Q1 6= Q2. SupposeQ1ϕ
is in focus and the path player changes. If after thatQ2ψ gets into focus to change the

path player again, thenQ2ψ is a genuine subformula ofϕ and thus is shorter thanQ1ϕ.

But the formula to start with is of finite length. Hence, this can only occur finitely

often. �

Note that Lemma61can be generalised slightly by considering all applications of rule

(A) and(E) and not just those that change the path player.

Theorem 62 Every play has a uniquely determined winner.

PROOF A play is either finite or infinite. It is only finite if it ends in a terminal

configuration

s ` Q(
[
q
]
,Φ)

Then eitherq∈ L(s) in which case player∃ wins orq 6∈ L(s) in which case player∀
wins.

Consider now an infinite play. According to Lemma61, the path player can only

change finitely many times, therefore in every infinite sequence of configurations one

of the players can only occur finitely many times as the path player. Thus we can speak

of thepath player for a particular infinite play as the player who is almost always the

path player in a configuration. Note that this also determinesthefocus player.

Moreover, for a play to be of infinite length there must be a formula of the formϕUψ
or ϕRψ that gets regenerated infinitely many times. Note that according to Fact60, at

least one of the rules([U]), ([R]), (U) and(R) must be played infinitely often since the

starting configuration is of finite size and all other rules reduce at least a component

of the configuration. But then there are only finitely many possibilities for aU or R

formula to get unfolded with these rules.

Thus, in every infinite play there is aϕUψ or a ϕRψ that is present infinitely many

times. Now, the focus player can change the focus finitely or infinitely many times. In

106 Chapter 5. Model Checking Games for Branching Time Logics

focus player (FC) infinitely often present formula winner condition

ϕUψ ∀ 2
no

ϕRψ ∃ 6
∀

yes ∃ 6

ϕRψ ∃ 5
no

ϕUψ ∀ 3
∃

yes ∀ 3

Figure 5.7: The winning conditions for the CTL∗ model checking games.

the latter case noU or R formula ever needs to occur in focus since the focus player can

always avoid it. However, in the former case, aϕUψ or aϕRψ must almost always be

present and in focus for otherwise Fact60 shows that the size of the formula in focus

would infinitely often get reduced.

Figure5.7depicts this as a nested case distinction and shows which winning condition

determines the winner in which case. Every possible infinite play is covered by one

of the cases. The first case distinction is on the player who eventually becomes and

remains the focus player. The second is on the question of whether he or she uses

rule (FC) infinitely often or not. Finally, the third case split concerns the question of

whether there is aϕUψ or aϕRψ that is present infinitely often. Note that this becomes

irrelevant if the focus is changed infinitely often since this behaviour determines the

focus player as the loser of the play already. �

The next result reestablishes an observation from [EL87] in terms of games: CTL∗

model checking can be polynomially reduced to LTL model checking. However, it

needs a technical definition first.

Definition 63 Let T = (S,−→,L) with s∈ S. A block of a game graph for a game

GT(s,ϕ0) is a subsetB⊆ C of the configurations ofGT(s,ϕ0) s.t. either

5.2. Model Checking Games for CTL∗ 107

• for all C∈B: C = t ` A(Φ) for somet ∈ S andΦ⊆ Sub(ϕ0), or

• for all C∈B: C = t ` E(Φ) for somet ∈ S andΦ⊆ Sub(ϕ0).

Lemma 64 Let T = (S,−→,L) with s ∈ S. The game graph forGT(s,ϕ) can be

partitioned into a finite set of blocksB1, . . . ,Bn, s.t. every play never leaves a blocki

into a block j with j < i. Moreover,n≤ |ϕ|
2 .

PROOF We sketch an algorithm that finds this partition. It is basically the same as the

standard algorithm for finding a topological order on the set of connected components

of a directed graph.

At the beginning leti := 1 and addC0 to Bi . Do the same repeatedly with its successor

configurations unless one of them is reached via an application of rule(E) or (A). If

so, then increasei by 1 and continue with the respective successors.

According to Lemma61, on every path through the game graph the path player

eventually remains the same, in fact no further application of rule(E) or (A) is

encountered. Note that even if the underlying transition system is not image-finite,

only a finite number of blocks is needed to cover the entire game graph. This is because

an infinite branching in the transition system is only reflected in the game graph at a

position in which rule(X) is played. However, there the actual configuration and its

successors are put into the same block.

No transitions from a block with a higher index to one with a lower index are possible

as they would correspond to an application of a game rule that strictly increases the

number of path quantifiers in a configuration. According to Fact60, this is impossible

since there is no such rule.

Finally, ϕ can contain at most|ϕ|2 irredundant path quantifiers because of the

equivalenceQ1Q2ψ≡Q2ψ for all Q1,Q2 ∈ {A,E}. �

Rules (Q/) and (q/) suggest that path quantified formulas bear a similarity to

propositions in the way they are treated in a game. Indeed, since an application of

rule (A) or (E) discards all present sideformulas, processing path quantified formulas

can be seen as starting a new subgame. Each of these subgames can be regarded as a

game for an LTL formula, either universally or existentially path quantified.

108 Chapter 5. Model Checking Games for Branching Time Logics

Definition 65 Take a states of a transition systemT and an ordered sequence

ϕ1, . . . ,ϕn of formulas. Assume that

s 6|= E(ϕ1∧ . . .∧ϕn)

i.e. no pathπ starting withs satisfies allϕi . With eachϕi and each such states we

associate a setP′ϕi
(s) of finite prefixes of paths starting withs in the following way. Let

σ = s. . . t be a finite sequence of states inT. SinceT is assumed to be total,σ is not

maximal.

σ ∈ P′ϕi
(s) iff there is a pathπ = σπ′ s.t. π 6|= ϕi

Let Pi(s)⊆ P′i (s) be defined by

σ ∈ Pϕi(s) iff σ ∈ P′ϕi
(s) and for all j < i : σ 6∈ P′ϕ j

(s)

Informally, P′ϕi
(s) consist of all finite prefixes of a path starting ins which can be

extended to an infinite path not satisfyingϕi . Pϕi(s) is the subset ofP′ϕi
(s) containing

all those finite prefixes that do not occur in aP′ϕ j
(s) for a smaller index already. This

makes

{ Pϕi(s) | i ∈ {1, . . . ,n} }

a partition on the set of finite sequences of paths starting ins.

Next we show that a finite sequence of statesσ can never occur in a set with a smaller

index than those containing prefixes ofσ. This gives the focus player an optimal

strategy in a CTL∗ model checking game.

Lemma 66 Take two formulasϕi ,ϕ j of an ordered sequence of formulas. Letσ1,σ2

be finite prefixes of a path starting ins, s.t.σ2 = σ1σ for someσ. If σ1 ∈ Pϕi(s) and

σ2 ∈ Pϕ j (s) then j ≥ i.

PROOF Supposeσ1∈Pϕi(s) for somei, σ2∈Pϕ j (s) for somej and j < i. By definition

σ2 can be extended to a pathπ = σ2 . . . s.t.π 6|= ϕ j for the accordingϕ j . But thenσ1

can be extended toπ as well and thereforeσ1∈P′ϕ j
(s). Thus,σ1∈Pϕi(s) is impossible

sincei > j is assumed. �

5.2. Model Checking Games for CTL∗ 109

The next lemma shows that it does not matter whether the setsPϕ(s) are calculated

at the beginning and the focus is set according to these sets or whether they are

recalculated after every application of rule(X).

Lemma 67 Take formulasXϕ1, . . . ,Xϕn and two statess, t of a transition systemT s.t.

s−→ t. Consider the setsPXϕ1(s), . . . ,PXϕn(s) and Pϕ1(t), . . . ,Pϕn(t). Let σ′ = t . . . be

some finite sequence of states andσ = sσ′. If σ ∈ PXϕi(s) andσ′ ∈ Pϕ j (t) then j ≥ i.

PROOF Supposeσ ∈ PXϕi(s), σ′ ∈ Pϕ j (t) and j < i. Thenσ′ can be extended to aπ′

s.t. π′ 6|= ϕ j . But then takeπ := sπ′. Clearly,π 6|= Xϕ j . Thereforeσ ∈ PXϕ j (s) which

contradicts the assumption thatσ ∈ PXϕi(s). �

The main correctness proof of the CTL∗ model checking games proceeds by induction

on the path quantifier depth of the input formula. The next two theorems form the

induction base case, i.e. we will prove soundness and completeness for input formulas

ϕ0 of the formAϕ or Eϕ whereϕ is a pure linear time formula.

Theorem 68 (Soundness) LetT = (S,−→,L) with s0∈ S andϕ0∈ CTL∗ s.t.ϕ0 = Qϕ
for a Q∈ {E,A} and aϕ not containing any path quantifiers. Ifs0 6|= ϕ0 then player∀
winsGT(s0,ϕ0).

PROOF There are two distinguishable cases depending on the path quantifier ofϕ0.

First, letϕ0 = Aϕ. This means there is a pathπ = s0s1 . . . s.t.π 6|= ϕ. We construct a

game tree for player∀ using this path. Note that disjuncts are preserved and conjuncts

are chosen since player∀ is the path player, i.e. the set of formulas of the configuration

at hand is interpreted disjunctively.

Whenever rule(X) has to be played player∀ chooses the next statesi of π. It is not hard

to see that the following invariant holds true: if the play visits a configurationsi ` A(Φ)

then for allψ ∈Φ: πi 6|= ψ.

Remember that at the beginning there is onlyϕ which is not fulfilled byπ. Unfolding

U andR formulas does not change this. Both disjuncts of a disjunction are not satisfied,

otherwise the disjunction would be satisfied on the remainderπi of the path chosen at

the beginning. And if

πi 6|= Xψ1∨ . . .∨Xψn

110 Chapter 5. Model Checking Games for Branching Time Logics

then

πi+1 6|= ψ1∨ . . .∨ψn

Thus, applications of rule(X) preserve this invariant. Whenever a conjunction occurs

he chooses the false conjunct. If both are false he chooses the smaller one.

It is impossible for player∃ to win with winning condition 4 since this requires a

formula to be present that is fulfilled on the remaining path.

Suppose player∃ wins a play of this game with her winning condition 5, i.e. she

eventually keeps the focus on aχRψ. More precisely, there is a configuration

C = si ` A(
[
χRψ

]
,Φ)

after which she does not use rule(FC) anymore. According to the invariant described

above,πi 6|= χRψ. By Lemma10of Chapter2 there is ak∈ N s.t.

πi 6|= χRkψ

At some point, player∀ will choose the next statesi+1 of π when playing rule(X).

Since player∃ keeps the focus onχRψ it will still be present in the configuration

si+1 ` A(
[
χRψ

]
,Φ′)

and

πi+1 6|= χRψ

holds by the invariant. But

χRkψ ≡ ψ∧ (χ∨X(χRk−1ψ))

Remember that in case of two false conjuncts player∀ chooses the smaller one.

Clearly, ψ is smaller thanχ∨ X(χRψ). But we can assume that he did not choose

ψ since it would immediately contradict the assumption that player∃ wins with her

winning condition 5. Therefore we can assume the other conjunct to be false. Then,

by definition of the approximants

πi+1 6|= χRk−1ψ

5.2. Model Checking Games for CTL∗ 111

This argument can be iterated until the statesi+k is reached with the condition

πi+k 6|= χR0ψ

But χR0ψ≡ tt which is satisfied byπi+k. We conclude that player∃ cannot win with

her winning condition 5.

Player∃ cannot win a play of this game with her winning condition 6 since it requires

her to be the path player which she is not.

The second case isϕ0 = Eϕ. Sinces0 6|= ϕ0, every pathπ = s0 . . . does not satisfy

ϕ. Now, player∃ is the path player and thus, conjuncts are preserved and disjuncts

are chosen. Setting the focus is the only thing that player∀ has control over. We use

Lemma66as a basis for player∀’s strategy.

At any point in the play, player∃ will have outlined a finite prefixσ = s0 . . .si of a path

starting withs0. The invariant we use in this case is the following: there is always at

least oneψ j in the actual configurationsi ` E(Φ) s.t.Pψ j (si) 6= /0.

At the beginningϕ is such a formula. Note that no path satisfiesϕ. Thus, if a

disjunction occurs player∃ cannot choose a disjunct and a corresponding path that

satisfies it. If a conjunction occurs then one of the conjuncts must be false regardless

of which path player∃ is going to follow. UnfoldingU andR formulas preserves this

invariant.

Hence, at any stagesi ` E(ψ1, . . . ,ψk) of the play there is at least oneψ j ∈Φ s.t. player

∃ cannot find a pathπ = si . . . with π |= ψ j . In other words,Pψ j (si) 6= /0.

Player∀ sets the focus to thisψ j . Since at any later point player∃ will have outlined

an extension ofs0 . . .si , Lemma66applies. It shows that player∀ only needs to change

the focus finitely many times because there are only finitely many subformulas ofϕ
and, hence, only finitely many setsPψ j (s) for any s∈ S. Remember the lemma says

that player∀ can change the focus in such a way that the index ofPψ j always gets

increased.

This shows that player∃ cannot win a play with the first part of her winning condition 6

because this requires player∀ to change the focus infinitely often. To avoid defeat with

the second part of this winning condition, player∀must eventually keep the focus on a

112 Chapter 5. Model Checking Games for Branching Time Logics

χUψ. Again, if the focus remains on a particular formula then it must be a regenerating

one. Thus, it can only be aχUψ or χRψ. Suppose the latter is true, i.e. there is a

configuration

si ` E(
[
χRψ

]
,Φ)

after which player∀ does not change focus anymore. As in the first case of this proof

one can show that there is a pathπ = si . . . s.t. π |= χRψ. Therefore,χRψ was not a

false formula, and there must have been a different one that player∀ could have set the

focus to.

Player∃ cannot win with her winning condition 4 since it requires aq to be present in

a terminal configurationsi ` E(
[
q
]
,Φ) s.t.q∈ L(si). But thenPq(si) = /0 since every

extension of this finite sequence of states trivially satisfiesq at si . Therefore player∀
would not have ended up with the focus onq in the first place.

Player∃ cannot win a play with winning condition 5 either, since it requires player∀
to be the path player which he is not.

Since player∀ has strategies for both cases of path quantified formulas that disable

winning plays for player∃ he must win the gameGT(s0,ϕ0). �

Completeness of the CTL∗ model checking games can be proved using the duality

principle Theorem39, and the soundness Theorem68. However, since this is based on

Definition65and Lemma66 it is necessary to dualise these first.

Definition 69 Take a states of a transition systemT and an ordered sequence

ϕ1, . . . ,ϕn of satisfiable formulas. Assume thats |= A(ϕ1∨ . . .∨ϕn), i.e. every pathπ
starting withssatisfies at least oneϕi . With eachϕi and each such stateswe associate

a setP′ϕi
(s) of finite prefixes of paths starting withs in the following way. Letσ = s. . . t

be a finite sequence of states inT.

σ ∈ P′ϕi
(s) iff there is a pathπ = σπ′ s.t. π |= ϕi

Let Pi(s)⊆ P′i (s) be defined by

σ ∈ Pϕi(s) iff σ ∈ P′ϕi
(s) and for all j < i : σ 6∈ P′ϕ j

(s)

5.2. Model Checking Games for CTL∗ 113

Here,P′ϕi
(s) consist of all finite prefixes of a path starting inswhich can be extended to

an infinite path satisfyingϕi. Again,Pϕi(s) is its subset containing only those elements

that are not included in a set with a smaller index.

The next lemma is proved exactly in the same way as Lemma66 for the soundness

part.

Lemma 70 Take two formulasϕi ,ϕ j of an ordered sequence of formulas. Letσ1,σ2

be finite prefixes of a path starting ins, s.t.σ2 = σ1σ for someσ. If σ1 ∈ Pϕi(s) and

σ2 ∈ Pϕ j (s) then j ≥ i.

Theorem 71 (Completeness) LetT = (S,−→,L) with s0 ∈ S andϕ0 ∈ CTL∗ s.t.ϕ0 =

Qϕ for a Q∈ {E,A} and aϕ not containing any path quantifiers. Ifs0 |= ϕ0 then player

∃ winsGT(s0,ϕ0).

PROOF Note that CTL∗ is closed under negation and that the class of CTL∗ model

checking games is closed under dual games. Furthermore, the negation of aϕ0 with

one path quantifier at the top-level position only is aϕ0 of the same form.

Suppose now thats0 |= ϕ0, i.e. s0 6|= ϕ0. According to Theorem68, player∀ wins

GT(s0,ϕ0). But then player∃ winsGT(s0,ϕ0) according to Theorem39. �

The next theorem proves general correctness of the CTL∗ model checking games.ϕ0

can be an arbitrary CTL∗ formula now.

Theorem 72 (Correctness) LetT = (S,−→,L) with s∈ S. Player∃ winsGT(s,ϕ0) iff

s |= ϕ0.

PROOF This is true if ϕ0 is an atomic proposition. For formulas with one path

quantifier only the claim is proved in Theorems68 and 71. Supposeϕ0 has path

quantifier depthk. By induction the claim is true for formulas with path quantifier

depth less thank.

In general,GT(s,ϕ0) has configurationst `Q′(Φ) with aQϕ∈Φ. Qϕ is a state formula

with a path quantifier depth strictly less thanϕ0’s because it is a genuine subformula

of ϕ0. Since it is a state formula, eithert |= Qϕ or t 6|= Qϕ holds. By hypothesis either

of the players has a winning strategy for the gameGT(t,Qϕ).

114 Chapter 5. Model Checking Games for Branching Time Logics

Suppose it is the one who is also the focus player at the current moment in the game

at hand. He or she can set the focus toQϕ with rule (FC) and play rule(E) or (A)

depending onQ. Note that the resulting configuration is of the same form as a general

starting configuration. Furthermore, Lemma64 shows that in the following a repeat

on an earlier configuration cannot occur anymore. Thus, in fact they play the game for

t andQϕ. By hypothesis player∃ wins this one ifft |= Qϕ. Thus, if the actual focus

player wins this game he or she also has a strategy for the game onϕ0.

Suppose the focus player does not winGT(t,Qϕ). Then he or she can discard it by

playing rule(Q/). The following configuration corresponds to a state formula with path

quantifier depth strictly less thank. Thus, the claim follows by hypothesis as well.�

As in the PDL case, Theorem72shows that for every CTL∗ model checking game one

of the players has a winning strategy.

Corollary 73 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

The proofs of Theorems68 and71 show that the games can be simplified regarding

the positioning of the focus.

• It suffices to allow focus change moves immediately after an application of rule

(X) only.

• Player∀ only needs to consider formulas that contain aϕUψ to set the focus to.

Dually, player∃ can do the same with formulas containing aϕRψ.

Theorem 74 (Winning strategies) The winning strategies for the CTL∗ model

checking games are history-free.

PROOF Again, first we regard formulas with one path quantifier only which is at the

top-level position. Consider player∀’s winning strategies. Suppose the formula at hand

is ϕ0 = Aϕ. Then he is the path player. One part of his strategy consists of choosing a

pathπ in the underlying transition system that does not satisfyψ. This path does not

depend on the play.

5.2. Model Checking Games for CTL∗ 115

Furthermore, whenever a conjunction occurs he chooses the conjunct that is not

satisfied byπ or its remaining suffix. If both conjuncts are false he chooses the smaller

one. This is necessary forR formulas that are not fulfilled along the path that a play

follows. Note thatϕRψ unfolds to a conjunction in whichψ is one of the conjuncts.

Supposeπ 6|= ϕRψ whereπ is the path he is going to choose for the remainder of the

play. Thenπ 6|= ψ but alsoπ 6|= ϕ∨X(ϕRψ), i.e. player∀ has no choice but to preserve

falsity. However, only the first choice guarantees him to win. If he infinitely often

postpones to refuteψ, i.e. always makes the second choice, then player∃ is going to

win with her winning condition 5 since she can leave the focus onϕRψ.

The choices of this strategy only depend on the formula and state component of the

actual configuration, but not on the history of a play. Thus, this strategy is history-free.

Suppose nowϕ0 = Eϕ. Player∀’s actions are reduced to setting the focus to a formula

which he believes is not satisfied by the path that player∃ is going to reveal. He can

order all possibly occurring subformulas at the beginning of the play, s.t.

ϕi ∈ Sub(ϕ j) implies j > i

where aϕUψ or aϕRψ is identified with their unfoldings. Then, at any point

t ` E(ψ1, . . . ,ψn)

during the play he can compute the setsPψ1(t), . . . ,Pψn(t) according to Definition65.

His strategy simply tells him to set the focus to the formula with the least index

whose corresponding set is non-empty. Lemma67 shows that even if he forgets and

recalculates these sets each time rule(X) is played, this still guarantees that he does

not need to change the focus back to a formula as long as he preserves the order of the

subformulas he chose at the beginning. According to the proof of Theorem68, he only

needs to change the focus after an application of rule(X), i.e. whenever he calculates

the setsPψi(t).

Between applications of rule(X) he might have to set the focus to a particular conjunct.

Suppose the actual configuration is

t ` E(
[
ψi ∧ψ j

]
,Φ)

116 Chapter 5. Model Checking Games for Branching Time Logics

with path setsPψi(t) andPψ j (t). Setting the focus to either of these will at most increase

the index of the associated set since both conjuncts are obviously subformulas of the

conjunction. Therefore it is safe for player∀ to set the focus to the conjunct with the

smaller index according to the order he chose at the start of the game. This choice does

not depend on the history of the play either.

By duality, player∃’s winning strategies are history-free, too.

Finally, strategies for games involving formulas with more than one path quantifier

can be composed inductively in the same way as subgames are in the proof of

Theorem72. Correctness of this construction is guaranteed by the hypothesis of

having a history-free winning strategy for subgames on formulas with a smaller

quantifier depth. More importantly, the composition of history-free winning strategies

is history-free. �

In order to prove the small model property for LTL and CTL in Chapter6 based on

their satisfiability games we show that CTL∗ possesses the finite model property. It is

based on the following lemma.

Lemma 75 Let T = (S,−→,L) with s∈ S andRs(T) be its unravelling with respect to

s. Then for allϕ ∈ CTL∗: T,s |= ϕ iff Rs(T) |= ϕ.

PROOF For every path inT there is a path inRs(T) with the same state labellings and

vice versa. Moreover,T ∼ Rs(T) and CTL∗ cannot distinguish bisimilar states. �

This lemma is in fact nothing more than the tree model property for CTL∗ according

to Section2.1.

Lemma 76 Let T = (S,−→,L) with s0 ∈ S, ϕ0 ∈ CTL∗, s.t. T,s0 |= ϕ0. Let T be a

successful game tree for player∃ and the gameGT(s0,ϕ0). Then there exists a finite

tree prefixT ′ of T, s.t. every maximal branchP= C0, . . . ,Cn throughT ′ satisfies one of

the following properties.

1. Cn is terminal, or

2. Cn = t `Q(
[
ϕRψ

]
,Φ) and there is ani < n s.t. Ci = s`Q(

[
ϕRψ

]
,Φ) and

there is no application of rule(FC) betweenCi andCn, or

5.2. Model Checking Games for CTL∗ 117

3. Cn = t ` E(
[
ϕ
]
,Φ) and there is ani < n s.t. Ci = s` E(

[
ϕ
]
,Φ) and there

is an application of rule(FC) betweenCi andCn.

PROOF T is a successful game tree for player∃. Thus, every path throughT is a

winning play for her. The finite tree prefixT ′ can be constructed by cutting paths at

appropriate positions.

If the corresponding play is won with condition 4 then it is finite and included inT ′. It

fulfils the first condition of the claim.

Suppose it is won with condition 5, i.e. from some point on player∃ keeps the focus

on aϕRψ. By finiteness ofSub(ϕ0) this play can be cut to fulfil the second condition

of the claim.

Finally, if it is won with condition 6 there must be a moment after which player∀ has

used rule(FC) and the play can be cut to satisfy the third condition of the claim. Or he

left the focus on aϕRψ in which case the second condition of the claim can be fulfilled.

Note that, ifT is finite then every path in it fulfils condition 1 above and thereforeT

itself is the required finite tree prefix already. �

Theorem 77 (Finite model property) CTL∗ has the finite model property.

PROOF Supposeϕ0 ∈ CTL∗ is satisfiable. Then it has a modelT = (S,−→,L) with

s0 ∈ S. By Theorem72 there is a game treeT for player∃ for the gameGT(s0,ϕ0). If

|S|< ∞ then the claim is proved already.

Suppose therefore that|S| = ∞. In general,T will be infinite as well. According to

Lemma76, there is a finite tree prefixT1 of T. We will amend this to an infinite game

tree and show that it is a successful game tree for player∃.

According to Lemma76, every path inT1 either ends in a terminal configuration or in a

leafCn that has a companionCi , i < n, that differs fromCn only in the state component.

In the next step we remove each suchCn and add a transition fromCn−1 to the

companionCi instead. Note that this represents a valid application of a game rule

since the formula components ofCi andCn are equal.

118 Chapter 5. Model Checking Games for Branching Time Logics

This construction yields a finite graphT ′ with loops. Consider now its unravelling

RC0(T
′) with respect to the starting configurationC0. Every path inRC0(T

′) represents

a play of a gameGT′(s0,ϕ0) whereT′ = (S′,{ a→ ′ | a∈A},L) is defined by

S′ := { t ∈ S | there is a configurationt `Q(Φ) in T ′ }

with transitions given by

t1
a→ ′t2 iff there are configurationst1 `Q(Xψ1, . . . ,Xψm)

andt2 `Q(ψ1, . . . ,ψm) in T ′ s.t. rule(X)

was played between them

The labelling of the states is taken from their respective labellings inT.

It remains to be seen thatRC0(T
′) is a successful game tree for player∃. Every finite

path inRC0(T
′) fulfils her winning condition 4 since it is taken from her successful

game treeT. Each infinite path inT ′ is eventually cyclic and was constructed to fulfil

winning condition 5 or 6 depending on which condition of Lemma76 the underlying

finite part fulfils.

As RC0(T
′) is a successful game tree for player∃, T′ with starting states0 must be a

model forϕ0, according to Theorem68. But T′ consists of those states only that occur

in the finite tree prefixT1. Thus,ϕ0 has a finite model. �

CTL∗ over Finite State Transition Systems

Similar to the model checking games for PDL from Chapter4 the winning conditions

for the CTL∗ model checking games can be simplified if the underlying transition

system is finite. Then, player∀ wins the playC0, . . . ,Cn of GT(s,ϕ0) iff

1. Cn = t `Q(
[
q
]
,Φ) is terminal andq 6∈ L(t), or

2. there is arei < n, t ∈ S, ϕ,ψ ∈ Sub(ϕ0) andΦ⊆ Sub(ϕ0) s.t.

• Ci = Cn = t ` E(
[
ϕUψ

]
,Φ), and

• betweenCi andCn player∀ has not used rule(FC), or

5.2. Model Checking Games for CTL∗ 119

3. there arei < n, t ∈ S, ϕ ∈ Sub(ϕ0) andΦ ⊆ Sub(ϕ0) s.t. Cn = t ` A(
[
ϕ
]
,Φ)

andCi = Cn and either

• player∃ has used rule(FC) betweenCi andCn, or

• ϕ is of the formχUψ.

Player∃ wins the playC0, . . . ,Cn of GT(s,ϕ0) iff

4. Cn = t `Q(
[
q
]
,Φ) is terminal andq∈ L(t), or

5. there arei < n, t ∈ S, ϕ,ψ ∈ Sub(ϕ0) andΦ⊆ Sub(ϕ0) s.t.

• Ci = Cn = t ` A(
[
ϕRψ

]
,Φ), and

• betweenCi andCn player∃ has not used rule(FC), or

6. there arei < n, t ∈ S, ϕ ∈ Sub(ϕ0) andΦ ⊆ Sub(ϕ0) s.t. Cn = t ` E(
[
ϕ
]
,Φ)

andCi = Cn and either

• player∀ has used rule(FC) betweenCi andCn, or

• ϕ is of the formχRψ.

The new winning conditions for finite transition systems are equivalent to the old

ones for arbitrary transition systems. If the underlying transition system is finite then

there are only finitely many possible configurations. Since the winning strategies are

history-free, see Theorem74, the game tree can be represented as a graph according

to Section2.7. The new winning conditions then simply are a reformulation of the old

ones on graphs.

We can give an upper complexity bound for game-based CTL∗ model checking that

matches the upper bound from [CES83] and the lower bound from [SC85].

Lemma 78 LetT = (S,−→,L) be finite withs∈ S andϕ∈CTL∗. Every play ofGT(s,ϕ)

according to the winning conditions for games with underlying finite transition systems

has length at most|S| · |ϕ| ·2|ϕ|+3.

120 Chapter 5. Model Checking Games for Branching Time Logics

PROOF There are|S| · |ϕ| · 2|ϕ| many different configurations for the gameGT(s,ϕ).

Note that the two different possibilities for theQ component of a configuration are

annulled by the fact that there are only2|ϕ|−1 many possible sets of subformulas ofϕ
not containing the actual formula in focus. Hence, every play of length more than this

must repeat on a configuration.

This does not meet the requirements in the winning conditions 2 and 5 exactly. The

formula in focus can possibly be the unfolding of aU or aR formula. In this case at

most three more steps are necessary to obtain a situation to which one of the winning

conditions applies. �

Theorem 79 (Complexity) Deciding the winner of a CTL∗ model checking game is

in PSPACE.

PROOF An alternating algorithm can easily be extracted from the games by letting

player∃ make nondeterministic choices and player∀ universal ones. However, this

would result in an alternating PSPACE procedure which, by [CKS81], can only be

transformed into a deterministic EXPTIME algorithm. This would be suboptimal

because CTL∗ model checking is PSPACE-complete. To obtain a PSPACE procedure

we need to determinise one of the player’s choices without using more than polynomial

space.

First, we describe a nondeterministic algorithm that decides whether or not the path

player has a winning strategy for a game on a formulaϕ0 with one top-level path

quantifier only.

Supposeϕ0 = Eψ, i.e. player∃ is the path player. The algorithm nondeterministically

chooses disjuncts and successor states whenever rule(E[∨]), (E∨) or (X) is played.

Remember that player∀’s choices in such a game are reduced to setting the focus and

finding a configuration with anU formula that gets repeated upon s.t. he did not change

the focus between the two occurrences of this configuration.

First we describe how to determinise the positioning of the focus. The only formulas

that are interesting for him are of the formϕUψ. The algorithm maintains a list of all

U subformulas of the input formula. At the beginning the formulas occur in the list in

decreasing order of size. At any point in the play, the focus is placed on the firstϕUψ

5.2. Model Checking Games for CTL∗ 121

formula in the list that is present in the actual configuration. Once player∃ discards it

by choosingψ after the unfolding, it is moved to the end of the list. The focus is placed

onto the present formula that is next in the new list. Whenever there is a conjunction in

focus, he puts it onto the conjunct that contains the nextU formula from the list. This

strategy guarantees that every possibly reoccurringU formula occurred in focus before

the play can perform a repeat. Moreover, it is deterministic.

We let the algorithm store two configurations: the actual one which gets overwritten

each time a game rule is played, and a configurationCr to find a repeat upon. At the

beginningCr is set to the starting configuration.

The algorithm needs to store a binary flag to indicate whether or not the focus has been

changed after a possibly repeating configuration was stored. At last, it needs to store

a counter that measures the length of the play at hand to terminate it in case the play

does not repeat onCr . The maximal length of a play without a repeat is

|S| · |ϕ0| ·2|ϕ0| + 3

according to Lemma78. Thus the size of the counter is bounded by

|ϕ0| + log|S| + log|ϕ0| + const

Furthermore, the actual value of the counter is stored wheneverCr is set.

The algorithm returns “∀” if at some point the actual configuration equals the stored

one and the focus change flag is set to false. It returns ”?” if in this situation the flag is

true or the counter reaches its maximal value. In this case the game is restarted withCr

and the stored counter value, i.e.Cr gets overwritten by the next configuration and the

algorithm attempts to show that there is a repeat on the newCr . If the counter value

stored withCr reaches the maximal value

|S| · |ϕ0| ·2|ϕ0| + 3

it outputs “∃”. In this case, there was no chance for player∀ to show that he could

enforce a play with a regeneratingϕUψ, hence, player∃ wins with condition 6.

If the input formula is of the formϕ0 = Aψ then the algorithm to be used is simply

the dual of the one described. It universally chooses conjuncts, and the maintained list

consists ofR formulas. The return values are swapped.

122 Chapter 5. Model Checking Games for Branching Time Logics

Both algorithms are either nondeterministic or co-nondeterministic and use space

which is polynomial in the size of the input: two configurations, two counters and

a flag. By Savitch’s Theorem, there is also a deterministic PSPACE procedure that

decides the winner ofGT(s,ϕ0), [Sav69].

For arbitrary formulas the appropriate algorithm above can be called for every block of

the game graph. There can only be|ϕ0|
2 irredundant path quantifiers inϕ0. Thus, there

can only be|ϕ0|
2 blocks in the game graph, and the algorithms need to be called at most

|ϕ0|
2 many times. The space they need can be reused for every call. Hence, deciding the

winner ofGT(s,ϕ0) is in PSPACE for arbitraryϕ0. �

Comparing Automata and Games for CTL ∗ Model Checking

[KVW00] uses hesitant alternating automataHAA to do space-efficient model

checking for CTL∗.

It is possible to view the games of this section as automata as well. Configurations

of the games correspond to states of an automaton and winning conditions become

acceptance conditions. However, the winning conditions proposed here depend on the

position of the focus which is not easily translatable into a Büchi acceptance condition

for example. The reason for this is the fact that Büchi acceptance conditions are only

concerned with states but do not consider what happens in an automaton’s run between

two visits of a certain state.

Another difference between the games of this section and the HAA of [KVW00] is

the fact that configurations of the games are sets of formulas whereas states of the

automata are single subformulas only. It is known that alternating automata can be

transformed into nondeterministic ones at the cost of an exponential blow-up. For

alternating automata with single formulas as components of their states this means the

nondeterministic version will have states featuring sets of formulas.

The games of this section compare to something between alternating and

nondeterministic automata. One of the player’s choices regarding boolean connectives

have been eliminated by using sets of formulas. Alternating automata branch

nondeterministically or universally at these points. However, the games are not like

5.3. Model Checking Games for CTL 123

nondeterministic automata either since not all of one player’s choices have been

determinised. Instead, the problem of detecting whether there is a regenerating fixed

point construct has been built into the games as a task for one of the players. For

automata, this question is answered on the level of deciding non-emptiness of the

accepted language.

The acceptance condition for HAA’s is a combination of a Rabin and a Streett

condition, especially tailored to the requirements of model checking branching time

logics. The idea of using a mixture of two different acceptance conditions can be

found in the games as well where they appear as winning conditions for two different

players.

There is one thing that the games of this section and the HAA’s have in common.

Beinghesitantmeans the automaton’s state set can be partitioned into blocks such that

transitions only lead to blocks with a lower index and each block is either existential

or universal. This idea was in essence formulated in Lemma64. It is also used in

tableau-based model checking for CTL∗ in [BCG95]. In fact, this property is a feature

of the logic rather than the method with which model checking is decided, and the key

to the observation that LTL and CTL∗ model checking are polynomially interreducible.

5.3 Model Checking Games for CTL

In the case of a model checking game on a CTL formula no sets of formulas and hence

no focus are needed. Since every temporal operator is immediately preceded by a path

quantifier situations like the ones in Examples58 and 59 cannot occur. Moreover,

whenever a temporal operator is handled the corresponding quantifier would cause all

side formulas to be erased from a configuration anyway. Thus, the model checking

game rules can be simplified vastly for the CTL case. In this section,GT(s,ϕ) denotes

a model checking game according to the rules presented in Figure5.8.

The set of configurations for a game onT = (S,−→,L),s∈ S andϕ0 ∈ CTL is

C = S×Sub(ϕ0)

Every play begins withC0 = s` ϕ0. Player∀ wins the playC0,C1, . . . iff

124 Chapter 5. Model Checking Games for Branching Time Logics

s` ϕ0∧ϕ1

s` ϕi

∀i
s` ϕ0∨ϕ1

s` ϕi

∃i

s` AXϕ

t ` ϕ
∀ s−→ t

s` EXϕ

t ` ϕ
∃ s−→ t

s`Q(ϕUψ)

s` ψ∨ (ϕ∧QXQ(ϕUψ))

s`Q(ϕRψ)

s` ψ∧ (ϕ∨QXQ(ϕRψ))

Figure 5.8: The rules for the CTL model checking games.

1. there is ann∈ N s.t.Cn = t ` q andq 6∈ L(t), or

2. there are infinitely many configurationsCi0,Ci1, . . . andϕ,ψ ∈ Sub(ϕ0) s.t. for

all j ∈ N: Ci j = ti j `Q(ϕUψ) for someti j ∈ S.

Player∃ wins the playC0,C1, . . . iff

3. there is ann∈ N s.t.Cn = t ` q andq∈ L(t), or

4. there are infinitely many configurationsCi0,Ci1, . . . andϕ,ψ ∈ Sub(ϕ0) s.t. for

all j ∈ N: Ci j = ti j `Q(ϕRψ) for someti j ∈ S.

Lemma 80 Every play has a uniquely determined winner.

PROOF The winning conditions are mutually exclusive, i.e. a play can be won by at

most one player. Moreover, formulas of the formQ(ϕUψ) andQ(ϕRψ) are exactly

those that do not reduce the size of the actual configuration. Thus, every play must

either reach an atomic proposition in which case it either holds or does not hold in

the actual state. Or it proceeds ad infinitum with one of these formulas being visited

infinitely often. �

5.3. Model Checking Games for CTL 125

Theorem 81 (Correctness) LetT = (S,−→,L), s∈ S, ϕ ∈ CTL.T,s |= ϕ iff player∃
winsGT(s,ϕ).

PROOF Every rule in a CTL game can be seen as a combination of rules of a CTL∗

game, and the winning conditions are simply amended to these combined rules and

simplified configurations.

Note that the CTL winning conditions are the same as the winning conditions for the

CTL∗ games if configurations only contain the formula in focus. In this case the focus

itself can be discarded of course.

If the CTL∗ game rules are applied to CTL formulas then no sideformula can persist.

In fact, whenever they occur they will be discarded immediately. Take a conjunction

for example that occurs in a CTL∗ game configuration

t ` Q(
[
ψ0∧ψ1

]
,Φ

If Q = A then player∀ chooses one of the conjuncts like he does in a CTL game. If

Q= E then he chooses ani ∈ {0,1} and the focus is set toψi while ψ1−i is added to the

sideformulas. Butψi is a CTL formula, too, i.e. it is of the formQ′χ with Q′ ∈ {E,A}.
Rule(E) or (A) causes the sideformulas includingψ1−i to be discarded in the next step.

Thus, in the CTL∗ game the next configuration would bet `Q′(χ) which is written as

t `Q′χ in the CTL game.

All the other cases are similar or dual to this one. �

Corollary 82 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

History-freeness of the winning strategies carries over from the CTL∗ model checking

games.

Corollary 83 (Winning strategies) The winning strategies for the CTL model

checking games are history-free.

126 Chapter 5. Model Checking Games for Branching Time Logics

CTL over Finite State Transition Systems

If the underlying transition system is finite, the winning conditions can be reformulated

as in the CTL∗ case. Player∀ wins the playC0, . . . ,Cn iff

1. Cn = t ` q and q 6∈ L(t), or

2. there is ani < n and at ∈ S s.t.Ci = Cn = t ` Q(ϕUψ) for someϕ,ψ and

Q∈ {A,E}.

Player∃ wins the playC0, . . . ,Cn iff

3. Cn = t ` q andq∈ L(t), or

4. there is ani < n and at ∈ S s.t.Ci = Cn = t ` Q(ϕRψ) for someϕ,ψ and

Q∈ {A,E}.

Correctness of these winning conditions follows from Theorems74and81.

Regarding a CTL formula as a CTL∗ formula does not result in an optimal model

checking procedure. Considering the fact that no focus changes occur and that every

configuration is of size linear in the input formula would still result in a PSPACE

procedure. However, this does not take into account the special structure of CTL

formulas. In particular, every block of the game graph is of constant size.

Using the alternation results from [CKS81] it is easy to see that the winner of a CTL

model checking game can be determined in polynomial time. Again, the games give

rise to an alternating algorithm that needs logarithmic space only. However, this can

be improved even further by using a more explicit approach.

Theorem 84 (Complexity) Deciding the winner of a CTL model checking game is

in LINTIME.

PROOF It makes more sense to use the same notion ofblock as it was introduced in

Chapter4 for PDL model checking. Here, blocks of the game graph are given by

the formula component s.t. every path traverses blocks in increasing order of index and

5.4. Model Checking Games for CTL+ 127

eventually remains in one block only. Note that the index of a block basically measures

how far it is away from the starting configuration.

This is possible since formulas of the formQ(ϕUψ) andQ(ϕRψ) are the only ones that

do not reduce the size of a configuration. Also, blocks can have loops induced by one

of these formulas only. Thus, each block has a typeU or R. The global CTL model

checking procedure works bottom-up just like the one for PDL. It also needs to visit

each node of the game graph at most once. Remember that the size of the game graph

is |S| · |ϕ| for a transition system with state setS and a formulaϕ. �

Comparing Automata and Games for CTL Model Checking

Similar to the CTL∗ case,hesitant alternating automatahave also been used in

[KVW00] to decide the model checking problem for CTL based onweak alternating

automata, WAA, [MSS88]. Their state set is partitioned into blocks like those of HAA.

However, they accept with a simple Büchi condition.

Given that the CTL model checking games feature single formulas in their

configurations only, there is a certain similarity between them and the WAA for

CTL model checking. Also, the choices made by the two players correspond to the

nondeterministic and universal branches in an alternating automaton. It is not hard to

see that the winning conditions of the CTL model checking games can be modelled by

a Büchi condition. The configurations that can be visited infinitely often are exactly

those of the formt `Q(ϕRψ).

This similarity is not surprising since the main difference between games and HAA is

due to the use of the focus, but the CTL model checking game is not a focus game.

5.4 Model Checking Games for CTL +

Since CTL+ is known to be exponentially more succinct than CTL, [Wil99, AI01],

one cannot expect the same radical simplifications from CTL∗ games to CTL games.

Example58 suggests that configurations in a model checking gameGT(s,ϕ) for a

CTL+ formula ϕ must contain sets of subformulas. However, since the formula of

128 Chapter 5. Model Checking Games for Branching Time Logics

(A∧)
s` A(ϕ0∧ϕ1,Φ)

s` A(ϕi ,Φ)
∀i (U)

s`Q(ϕUψ,Φ)

s`Q(ψ∨ (ϕ∧QXQ(ϕUψ)),Φ)

(E∨)
s` E(ϕ0∨ϕ1,Φ)

s` E(ϕi ,Φ)
∃i (R)

s`Q(ϕRψ,Φ)

s`Q(ψ∧ (ϕ∨QXQ(ϕRψ)),Φ)

(A∨)
s` A(ϕ0∨ϕ1,Φ)

s` A(ϕ0,ϕ1,Φ)
(X)

s`Q(Xϕ0, . . . ,Xϕk)

t `Q(ϕ0, . . . ,ϕk)
p s−→ t

(E∧)
s` E(ϕ0∧ϕ1,Φ)

s` E(ϕ0,ϕ1,Φ)
(q/)

s`Q(q,Φ)

s`Q(Φ)
p

(A)
s`Q(Aϕ,Φ)

s` A(ϕ)
p (A)

s`Q(Aϕ,Φ)

s`Q(Φ)
p, if Φ 6= /0

(E)
s`Q(Eϕ,Φ)

s` E(ϕ)
p (E)

s`Q(Eϕ,Φ)

s`Q(Φ)
p, if Φ 6= /0

Figure 5.9: The rules for the CTL+ model checking games.

Example59 that justifies the use of the focus is not in CTL+ the question of whether

a focus is needed for CTL+ games is reasonable to ask. CTL+ does not allow nested

temporal operators, therefore the answer is no.

Configurations of a CTL+ model checking game are

C = S×{A,E}×2Sub(ϕ)

containing at least one subformula.

The game rules are given in Figure5.9. In addition to the rule schemes introduced in

Chapter4 and Section5.2, a rule of the form

(r)
C

C′
p c, d

5.4. Model Checking Games for CTL+ 129

is only applicable if the conditiond is met in the actual configuration.

Here, this applies to rules(A) and(E). Note that there are two cases for each of them.

A quantified formula or an atomic proposition can only be discarded if least one side

formula is present. There is no requirement for discarding sideformulas. However,

in both cases the rule operates on the same formula. Therefore, we consider them to

be one rule only. The other rules result from the CTL∗ model checking game rules in

Figure5.1by disregarding the focus.

Every play ofGT(s,ϕ) starts with C0 = s` A(ϕ). Let T = (S,−→,L) with s0 ∈ S.

Player∀ wins the playC0,C1, . . . of GT(s0,ϕ0) iff

1. there is ann∈ N s.t. Cn = t `Q(q,Φ) andq 6∈ L(t), or

2. there are infinitely many configurationsCi0,Ci0, . . . andϕ,ψ∈Sub(ϕ0) s.t. for all

j ∈ N: Ci j = ti j ` E(ϕUψ,Φ) for someti j ∈ S andΦ.

3. there are infinitely many configurationsCi0,Ci0, . . . andΦ ⊆ Sub(ϕ0) s.t. for all

j ∈ N:

• Ci j = ti j ` A(Φ) for someti j ∈ S, and

• no formula of the formχRψ is present inΦ.

Player∃ wins the playC0,C1, . . . of GT(s0,ϕ0) iff

4. there is ann∈ N s.t. Cn = t `Q(q,Φ) andq∈ L(t), or

5. there are infinitely many configurationsCi0,Ci0, . . . andϕ,ψ∈Sub(ϕ0) s.t. for all

j ∈ N: Ci j = ti j ` A(ϕRψ,Φ) for someti j ∈ S andΦ.

6. there are infinitely many configurationsCi0,Ci0, . . . andΦ ⊆ Sub(ϕ0) s.t. for all

j ∈ N:

• Ci j = ti j ` E(Φ) for someti j ∈ S, and

• no formula of the formχUψ is present inΦ.

Note that the path player’s opponent must be allowed to discard atomic propositions

beforeone of the winning conditions can apply.

130 Chapter 5. Model Checking Games for Branching Time Logics

Theorem 85 (Correctness) LetT = (S,−→,L) with s∈ S andϕ ∈ CTL+. T,s |= ϕ iff

player∃ winsGT(s,ϕ).

PROOF The game rules and winning conditions for the CTL+ games arise from the

CTL∗ games by removing the focus. Thus, it suffices to show that, whenever a play

is infinite, there is no ambiguity about the regeneration ofU or R formulas. Assume a

play like

s` A(ϕ)
...

t ` E(χUψ,Φ)
...

t ′ ` E(χUψ,Φ)
...

We will show that in this caseχUψ in the lower configuration can only stem from itself

in the upper one. Suppose it does not, i.e. there is aϕ′ ∈Φ s.t.χUψ∈Sub(ϕ′). Between

these two configurations rule(X) has been played at least once, otherwise nothing has

been done toχUψ and it trivially stems from itself.

Remember that CTL+ does not allow temporal operators to be nested. Therefore,χUψ
occurred in the scope of a path quantifierE or A in ϕ′. In order forχUψ to appear

in the lower configuration, rule(E) or (A) must have been played between the two

configurations at hand. But they either cause theχUψ or all present sideformulas

to be discarded. In particular,ϕ′ cannot have regenerated itself. Thus, either it is

wrong to assume thatΦ occurs again, or there is a superformula ofϕ′ that generated

ϕ′ again. But then the argument applies to this one and there are only finitely many

superformulas of a formula. Therefore, ifχUψ occurs infinitely often it must be the

case that it regenerates itself. The same holds of course for aχRψ. �

Corollary 86 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

The winning conditions can be simplified as in the CTL∗ and the CTL case if the

underlying transition system is finite.

5.5. Model Checking Games for BLTL 131

Again, since the CTL+ games are only a special case of the CTL∗ model checking

games their winning strategies are history-free as well.

Corollary 87 (Winning strategies) The winning strategies for the CTL+ model

checking games are history-free.

Deciding the winner of a CTL+ model checking play can be at most as hard as it is

for CTL∗ formulas. However, simply ignoring the focus in a CTL∗ model checking

game to obtain a CTL+ model checking does not effect the complexity of deciding the

winner.

Theorem 88 (Complexity) Deciding the winner of a CTL+ model checking game is

in PSPACE.

This is slightly worse than the known upper and lower bound of∆2 from [LMS01].

It seems like a far more explicit analysis of the structure of a CTL+ model checking

graph etc. is needed to obtain a better game based complexity bound than PSPACE. Just

ignoring the focus also does not make use of the special structure of CTL+ formulas

as opposed to arbitrary CTL∗ formulas.

To the best of our knowledge, the model checking problem for CTL+ has not attracted

a great deal of attention. In particular, there is no special class of automata which have

been shown to be applicable directly to the CTL+ model checking problem without

translation CTL+ formulas into CTL first. Note that the upper complexity bound in

[LMS01] has been established by a reduction technique.

5.5 Model Checking Games for BLTL

Since BLTL formulas can contain arbitrary nestings of path operators together with

boolean connectives the focus approach on sets of formulas is needed in that case, too.

However, according to Lemma64, the game graph for an BLTL formula consists of

one block only. Therefore it is not necessary to memorise the path player explicitly.

Rules(A), (E), (Q/) and (q/) never apply, and in rule(X) it is always player∀ who

chooses the next state from the transition system.

132 Chapter 5. Model Checking Games for Branching Time Logics

These optimisations do not provide better complexity results of game based BLTL

model checking compared to CTL∗ model checking. The proof of the next theorem is

the same as the proof of Theorem79. The fact that the model checking procedure only

needs to be called once does not affect the space complexity of the problem. Again,

this result matches the known lower and upper bounds.

Theorem 89 (Complexity) Deciding the winner of a BLTL model checking game is

in PSPACE.

Comparing Automata and Games for BLTL Model Checking

The automata-theoretic approach to BLTL model checking has been studied in detail,

for example in [VW86a]. First, nondeterministic B̈uchi automata were used for this

task based on the observation that BLTL formulas can be translated into these at the

cost of an exponential blow-up. This is not suboptimal since BLTL model checking

is PSPACE-complete and, hence, is very likely to require exponential time. The

non-emptiness problem for these automata, to which BLTL model checking is reduced

is decidable in polynomial time and nondeterministic logarithmic space.

A different approach is taken in [Var96] which proposes the use of alternating automata

for this task as well. Similar to automata-theoretic CTL∗ model checking, a BLTL

formula is translated into an alternating Büchi automaton which is possible in linear

time. However, this translation makes the non-emptiness problem for these automata

PSPACE-hard. In fact it is PSPACE-complete.

Comparing these automata with the BLTL games leads to the same conclusions as

those that were made for CTL∗ in Section5.2. The two main differences between the

games and the automata are the following.

• The automata feature more alternation by branching universally at conjunctions

and nondeterministically at disjunctions. The games however determinise one

of these by using sets of formulas for disjunctions.

• The question of whether or not a run of an alternating automaton is accepting

is decided on top of the automata. It is done graph-theoretically by solving a

5.5. Model Checking Games for BLTL 133

certain reachability problem. For the games this is implicitly done by giving

player∃ control over the focus and making the focus setting behaviour a part of

the winning conditions. The algorithmics used for deciding whether there is a

successful game tree is simpler than the one used for automata.

Having the same conclusions as those for CTL∗ is not surprising since the CTL∗ games

basically consist of several BLTL games played consecutively. This is reflected on the

automata side as well. For BLTL, normal alternating automata suffice. The property of

being weak or hesitant is only needed for branching time logics since the linear time

logic does not impose a block structure on the game graph, resp. the automaton.

Chapter 6

Satisfiability Games for

LTL, CTL and PDL

Let no one ignorant of

Mathematics enter here.

—

PLATO

6.1 Satisfiability Games for LTL

Given an LTL formulaϕ0 thesatisfiability gameG(ϕ0) is played to determine whether

ϕ0 has a model or not. It is player∃’s task to show that it does, whereas player∀ wants

to show that there is no pathπ of any total transition system s.t.π |= ϕ0.

Configurations ofG(ϕ0) are nonempty sets of subformulas ofϕ0 with a focus like the

one in Chapter5,

C = Sub(ϕ0)×2Sub(ϕ0)

136 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Every play ofG(ϕ0) starts withC0 =
[
ϕ0

]
. It is always player∀ who has control over

the position of the focus.

There are two possibilities for aϕ0 to be unsatisfiable. Either it inevitably forces a

state of a possible model to be labelled withff or a propositionq and its complement

q, or it does not enable a least fixed point operator, i.e. anU formula, to be fulfilled

at some point. The inevitability of one of these situations is reflected in a possible

winning strategy for player∀. The situations themselves are modelled by the winning

conditions.

A configuration
[
ϕUψ

]
,Φ is to be read as: Player∃ wants to build a model for

(ϕUψ)∧
χ̂∈Φ

χ

while player∀ tries to show thatϕUψ does not get fulfilled along the play. Player∀
is allowed to set the focus to formulas of other forms. This is obviously necessary if

there is noϕUψ present in the actual configuration.

The game rules are given in Figure6.1. Rules([∨]) and(∨) are justified by the fact that

a disjunction is satisfiable iff one of the disjuncts is satisfiable. For a conjunction to be

satisfiable the combination of both conjuncts must be satisfiable. Thus, rules([∧]) and

(∧) simply flatten conjunctions to sets. Fixed point operators are unfolded with rules

([U]), (U), ([R]) and(R). Finally, player∀ controls the position of the focus with rules

(FC) and([∧]).

Definition 90 A configuration isterminal if it is of the form
[
q
]
,Φ and player∀

refuses or is unable to move the focus.

Next we define the outcome of a play. Player∀ wins the playC0, . . . ,Cn iff

1. Cn =
[
q
]
,Φ is terminal andq = ff or q∈Φ, or

2. Cn =
[
ϕUψ

]
,Φ and there is ani ∈ N, s.t. i < n andCi = Cn, and player∀ has

not used rule(FC) betweenCi andCn.

6.1. Satisfiability Games for LTL 137

([∨])

[
ϕ0∨ϕ1

]
,Φ

[
ϕi

]
,Φ

∃i (∨)

[
ψ

]
,ϕ0∨ϕ1,Φ

[
ψ

]
,ϕi ,Φ

∃i

([∧])

[
ϕ0∧ϕ1

]
,Φ

[
ϕi

]
,ϕ1−i ,Φ

∀i (∧)

[
ψ

]
,ϕ0∧ϕ1,Φ

[
ψ

]
,ϕ0,ϕ1,Φ

([U])

[
ϕUψ

]
,Φ

[
ψ∨ (ϕ∧X(ϕUψ))

]
,Φ

([R])

[
ϕRψ

]
,Φ

[
ψ∧ (ϕ∨X(ϕRψ))

]
,Φ

(U)

[
χ
]
,ϕUψ,Φ

[
χ
]
,ψ∨ (ϕ∧X(ϕUψ)),Φ

(R)

[
χ
]
,ϕRψ,Φ

[
χ
]
,ψ∧ (ϕ∨X(ϕRψ)),Φ

(X)

[
Xϕ1

]
, . . . ,Xϕk,q1, . . . ,qn
[
ϕ1

]
, . . . ,ϕk

(FC)

[
ϕ
]
,ψ,Φ

[
ψ

]
,ϕ,Φ

∀

Figure 6.1: The satisfiability game rules for LTL.

Player∃ wins the playC0, . . . ,Cn iff

3. Cn =
[
q
]
,Φ is terminal,q 6= ff andq 6∈Φ, or

4. Cn =
[
ϕ
]
,Φ and there is ani ∈N, s.t.i < n andCi =Cn, and player∀ has used

rule (FC) betweenCi andCn.

5. Cn =
[
ϕRψ

]
,Φ and there is ani ∈ N, s.t. i < n andCi = Cn, and player∀ has

not used rule(FC) betweenCi andCn.

To illustrate the satisfiability games we consider a formula that is very similar to the

CTL∗ formula of Example59which was used to justify the use of a focus. Again, it is

138 Chapter 6. Satisfiability Games for LTL, CTL and PDL

very easy to extend the game rules to handle abbreviatedF andG formulas explicitly.

The rules are [
Fϕ

]
,Φ

[
ϕ∨XFϕ

]
,Φ

[
Gϕ

]
,Φ

[
ϕ∧XGϕ

]
,Φ

[
ψ

]
,Fϕ,Φ

[
ψ

]
,ϕ∨XFϕ,Φ

[
ψ

]
,Gϕ,Φ

[
ψ

]
,ϕ,XGϕ,Φ

Example 91 Let

ϕ := Fq∧GFq

ϕ is satisfiable as Example59 shows. An excerpt of the full game tree is depicted

in Figure6.2. Since player∀ is allowed to use rule(FC) at any moment in the game

the entire game tree has more branches. We only include “sensible” choices for the

positioning of the focus, i.e. those that do not make him lose immediately.

Indeed, player∃ has a winning strategy for this game. It consists of enforcing either

the leftmost play or the right one of the pair in the middle. She wins both of these with

winning condition 4 since player∀ had to change the focus at some point. The left

play of the two in the middle and both plays at the right side are won by player∀ with

winning condition 2. This is because player∃ never fulfilled theFq although she could

have and, hence, it stayed in focus.

Correctness

Before we can prove correctness of the games we need to establish a few facts about

the rules and prove a few lemmas.

Fact 92 (FC) is the only rule that maintains the size of a configuration. Rules([∨]),

(∨), ([∧]), (∧) and (X) reduce the number of connectives in a configuration, while

rules([U]), (U), ([R]) and(R) increase the number of connectives.

6.1. Satisfiability Games for LTL 139

[
Fq∧GFq

]

∀[
Fq

]
,GFq

[
q∨XFq

]
,Fq,XGFq

∃[
q
]
,q∨XFq,XGFq

∃[
q
]
,XFq,XGFq

∀
q,

[
XFq

]
,XGFq

[
Fq

]
,GFq

[
q
]
,XGFq

∀
q,

[
XGFq

]

[
GFq

]

[
Fq∧XGFq

]

[
Fq

]
,XGFq

[
q∨XFq

]
,XGFq

∃[
q
]
,XGFq

q,
[
XGFq

]

[
XFq

]
,XGFq

[
Fq

]
,GFq

[
XFq

]
,Fq,XGFq

[
XFq

]
,q∨XFq,XGFq

∃[
XFq

]
,q,XGFq

[
Fq

]
,GFq

[
XFq

]
,XGFq

[
Fq

]
,GFq

Figure 6.2: The interesting part of the game tree of Example 91.

Lemma 93 Every play ofG(ϕ) has finite length less than|ϕ| ·2|ϕ|+3.

PROOF |ϕ| ·2|ϕ| is the maximal number of possible different configurations in a play

of G(ϕ). Therefore, every play of length more than|ϕ| ·2|ϕ| must have a repeat on a

configuration.

There are two possibilities for such a play. Either, player∀ has used rule(FC) between

the two occurrences of a repeating configuration. Or he has not used rule(FC) in

between. But then at least one other rule must have been played. By Fact92, all other

rules either reduce or increase the number of connectives in a configuration. Thus, one

of the unfolding rules([U]), (U), ([R]) or (R) must have been applied to obtain a repeat.

Note that anU or aR is guarded by anX in its unfolding. Thus, there must have been

140 Chapter 6. Satisfiability Games for LTL, CTL and PDL

at least one application of rule(X) between the repeating configurations. This reduces

the size of the formula in focus.

Since the focus change rule has not been used rule([U]) or ([R]) must have been played

in fact. This means that the focus has been kept on anU or a R and their respective

unfoldings. Then there also are configurations of the form
[
ϕUψ

]
,Φ, resp.

[
ϕRψ

]
,Φ

that the play repeats on.

The repeat on these configurations must occur at most3 steps later because the formula

in focus can be at most3 connectives larger than aϕUψ or ϕRψ. �

Lemma 94 Every play has a uniquely determined winner.

PROOF A play either ends in a terminal configuration or performs a repeat. In the first

case, winning conditions 1 and 3 determine the winner. Note that they are mutually

exclusive and cover all possible scenarios.

In the second case player∀ either has used rule(FC) between the repeating

configurations or not. If he has, player∃ wins with winning condition 4. If he has

not, then the winner is determined by the formula that remained in focus while being

regenerated. According to the proof of Lemma93, it is either aϕUψ or a ϕRψ. In

the first case he wins with winning condition 2, in the second case player∃ wins with

condition 5. �

Corollary 95 (Determinacy) Player∀ winsG(ϕ) iff player∃ does not winG(ϕ).

PROOF The “only if” part is trivial. The “if” part follows from Theorem37 of

Section2.6and Lemmas93and94. �

Lemma 96 The game rules preserve unsatisfiability.

PROOF Player∀ preserves unsatisfiability since his moves are only concerned with the

position of the focus.

Player∃ preserves unsatisfiability with her moves as well since the only thing she does

is to choose disjuncts. Suppose

(ψ0∨ψ1)∧Φ

6.1. Satisfiability Games for LTL 141

is unsatisfiable. Then so areψ0∧Φ andψ1∧Φ. Consequently, player∃ cannot force

the play into a satisfiable configuration.

Unfolding U andR formulas preserves unsatisfiability because they are replaced by a

logically equivalent formula.

Finally, consider an application of rule(X). Supposeψ1∧ . . .∧ψk is satisfiable, i.e. it

has a modelπ. Suppose furthermore thatq1∧ . . .∧qn is satisfiable. Letπ′ := sπ for

some stateswith L(s) = {q1, . . . ,qn}. Then,

π′ |= Xψ1, . . . ,Xψk,q1, . . . ,qn

In other words, ifXψ1, . . . ,Xψk,q1, . . . ,qn is unsatisfiable then so isq1, . . . ,qn or

ψ1, . . . ,ψk. In the first case player∀ can change the focus to theqi that causes

unsatisfiability and the resulting terminal configuration is unsatisfiable. In the latter

case rule(X) is applied deterministically and the next configuration is unsatisfiable as

well. �

Next we describe a strategy for player∀ and the gameG(ϕ0) and prove that it is

optimal.

Definition 97 (Priority list strategy) Let l be apriority list of all U subformulas of

the input formulaϕ0 in decreasing order of size, i.e.

l = ϕ1Uψ1, . . . ,ϕnUψn

with

ϕiUψi ∈ Sub(ϕ jUψ j) and ϕiUψi 6= ϕ jUψ j implies j < i

In that caseϕ jUψ j is said to have higher priority thanϕiUψi .

We say thatϕUψ is present in a configurationC if

{ ϕUψ, ψ∨ (ϕ∧X(ϕUψ)), ϕ∧X(ϕUψ), X(ϕUψ) } ∩ C 6= /0

Player∀ starts with the focus onϕ0. If the formula in focus is aϕRψ formula and

there is aϕ′Uψ′ ∈ Sub(ψ) then∀ sets the focus toψ whenϕRψ gets unfolded with rule

([R]) or (R). If the formula in focus is a conjunction then∀ chooses the conjunct that

142 Chapter 6. Satisfiability Games for LTL, CTL and PDL

contains theU formula with the highest priority inl if possible. If the focus remains on

aR formula or ends up on a propositional constant then∀ changes focus to avoid defeat

by winning condition 3 or 5. He sets the focus to the formula with highest priority inl

or a superformula of it.

If the focus is on aϕUψ then he keeps it there until it becomes “fulfilled”, i.e. player∃
chooses the disjunctψ when it is unfolded.ϕUψ is then moved to the end ofl and gets

the lowest priority. Again, player∀ changes focus to the formula with highest priority

that is present in the actual configuration if possible.

If at any point the actual configurationC contains an atomic contradiction, i.e. there is

a q∈C and aq∈C then player∀ immediately sets the focus to one of them and wins

with condition 1. The same holds for aff ∈C.

Lemma 98 (Optimality) If player ∀ winsG(ϕ0) then he wins it with the priority list

strategy.

PROOF Suppose he winsG(ϕ0), i.e. he is always able to enforce a play that is winning

for himself. If he wins it with his winning condition 1 then he does so with the priority

list strategy since it requires him to check at any moment whether he can do so.

Suppose therefore that it is won with his winning condition 2, i.e.ϕ0 contains aϕUψ
that does not get fulfilled during the play. W.l.o.g. we assume that it is the biggest, i.e.

there is no superformula of it which is anU formula as well and which does not get

fulfilled either. At the beginning,ϕUψ is inserted into the priority list. Note that the

formulas before it in the list can be assumed to be superformulas ofϕUψ.

Player∀’s optimal strategy tells him to set the focus to the earliest element of the list

that is present in the actual configuration and to keep it there. By assumption, thisU

formula gets fulfilled at some point and he changes focus to the next one. SinceϕUψ
is assumed to regenerate it must be present at any time and therefore, there must be a

moment when player∀ sets the focus to it. Since it does not get fulfilled he leaves the

focus there and, by Lemma94, wins eventually with his winning condition 2.

Note that he never changes the focus back to anU that has been in focus already before

he has tried all other presentU formulas. This is because fulfilledU formulas get

appended to the end of the priority list. �

6.1. Satisfiability Games for LTL 143

Definition 99 (Minimal formula) Let P = C0, . . . ,Cn be a play ofG(ϕ0). Assume

everyCi is unsatisfiable and given as a sequence of formulas in increasing order of

size, i.e.

Ci = ϕi,0, . . . ,ϕi,ni with ϕi, j ∈ Sub(ϕi,k) implies j ≤ k

for eachi ∈ {0, . . . ,n}. Let χCi denote theϕi,k in Ci s.t.

ĵ<k

ϕi, j is satisfiable, but
ĵ≤k

ϕi, j is unsatisfiable.

Theminimal formula causing unsatisfiabilityin P is the syntactically smallest formula

that occurs first among theχCi for everyCi .

χP := χCk s.t.∀i = 0, . . . ,n : |χCk| ≤ |χCi | and∀ j < k : |χCk|< |χCj |

Lemma 100 Let ϕ0 be unsatisfiable andP be a play ofG(ϕ0). ThenχP exists and is

unique.

PROOF According to Lemma96, all configurationsCi of P must be unsatisfiable.

Thus, eachχCi exists. The syntactically smallest among them exists but may not be

unique. However, the indices of the configurations are linearly ordered, andχP is the

χCi with the smallesti among them. Thus, it is unique. �

Lemma 101 Letϕ0 be unsatisfiable andP be a play ofG(ϕ0). ThenχP is either atomic

or of the formϕUψ.

PROOF Let P = C0, . . . ,Cn and Ci = Φi with some formula in focus. For a

configurationCi whose elements can be ordered asϕi,0, . . . ,ϕi,ni and withχCi = ϕi,k

for somek according to Definition99 we letΦi denote the smallest satisfiable part of

Ci , i.e.

Φi :=
ĵ<k

ϕi, j

Note that|= Φi → χCi for everyi = 0, . . . ,n.

Let k = min { i | χP ∈Ci } be the index of the earliest configuration containingχP. We

will show the claim by case analysis onχP.

144 Chapter 6. Satisfiability Games for LTL, CTL and PDL

SupposeχP = q. |= Φk → q only if q ∈ Φk. Note thatq could occur in another

formula of Φk, for exampleΦk = qRq. But then there would be a smaller formula,

namelyq, which causes unsatisfiability since the game rules remove connectives whilst

preserving unsatisfiability. The smallest such formula isq itself since it occurs within

the scope of no connective, i.e.q∈Φk.

SupposeχP = ψ0∨ψ1. |= Φk→ (ψ0∨ψ1) only if |= Φk→ψ0 and|= Φk→ψ1. But if

rule([∨]) or (∨) was applied toψ0∨ψ1 the following configuration will contain either

ψ0 or ψ1 which are both syntactically smaller thanχP and cause unsatisfiability.

SupposeχP = ψ0∧ψ1. Then |= Φk → ψ0 or |= Φk → ψ1. Note that conjuncts are

preserved with rules([∧]) and(∧). Thus,χP cannot be the smallest formula occurring

earliest that causes unsatisfiability.

SupposeχP = Xψ. EitherΦk consists of atomic propositions and formulas of the form

Xψ′ only, or there is a later configuration that does. This is because the game rules

eventually produce a configuration to which rule(X) is applicable. But

|= Xψ1, . . . ,Xψm,q1, . . . ,ql → Xψ

only if

|= ψ1, . . . ,ψm→ ψ

Hence, the configuration following the next application of rule(X) contains a smaller

candidate forχP.

SupposeχP = ϕRψ. ϕRψ≡ ϕUψ. Therefore,|= Φk→ ϕRψ only if |= Φk→ ϕUψ. Note

that rules([R]) and(R) unfold χP to a conjunction in whichψ is one of the conjuncts.

Conjuncts are preserved which means thatψ is present and the other conjunct will

either generateψ after the next application of rule(X) or get replaced byϕ. In the first

case there will be a configurationCm = ψ,Φm s.t.m> k and|= Φm→ψ which shows

thatχP was not smallest. In the second caseCm = ϕ,Φm with m> k and|= Φm→ ϕ.

Again, there would be a smaller formula thanχP that causes unsatisfiability.

Finally, supposeχP = ϕUψ. |= Φk → ϕUψ means either there is anm> k s.t.

|= Φm→ ϕ∨ψ but 6|= Φ j → ϕ for all k≤ j < m

6.1. Satisfiability Games for LTL 145

or for all m≥ k:

6|= Φm→ ϕ and |= Φm→ ψ

In the first case bothϕ andψ are smaller formulas thanχP and cause unsatisfiability as

well. Remember that as long asϕUψ is unfolded eitherϕ or ψ occurs in a configuration.

As long as it occurs it must result from the unfolding ofχP.

However, the second case does not contradict the assumption thatχP is syntactically

smallest. It results from a play in which player∃ never fulfilsϕUψ s.t.ϕ occurs between

each two unfoldings butψ never does. �

Theorem 102 (Soundness) If ϕ0 is unsatisfiable then player∀ winsG(ϕ0).

PROOF Assumeϕ0 is unsatisfiable. We show that player∀ wins G(ϕ0) by using the

priority list strategy.

Take any playC0, . . . ,Cn of G(ϕ0). By Lemma96, eachCi is unsatisfiable, in particular

Cn. Thus, player∃ cannot win this play with her winning condition 3 since it requires

the last configuration of the play to be satisfiable if player∀ is unable to change the

focus. It is impossible for him simply to refuse to do so even though he would be able

to as this is excluded by his priority list strategy.

Sinceϕ0 is assumed to be unsatisfiable, Lemma101applies. Regardless of which play

is played,χP is either atomic or anU formula. LetCk be the earliest configuration

containingχP s.t.

Ck = χP,Φk and |= Φk → χP

If χP = q thenq must implicitly be present inΦk, e.g. in the formqRq. But the rules

remove connectives whilst preserving unsatisfiability andq cannot be in the scope of a

X. Note that aX is the only unary connective of LTL. Therefore, after at mostlog|ϕ0|
steps the priority list strategy causes player∀ to win the play since he will set the focus

to eitherq or q onceq becomes present.

SupposeχP is of the formϕUψ. If player ∀ sets the focus toχP whenCk is reached

then he wins the resulting play with his winning condition 2. Note that player∃ can

never fulfil χP by assumption. Thus, player∀ can leave the focus on it.

146 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Suppose this is not the case, i.e.

Ck =
[
ϕ′

]
,χP,Φ

ϕ′ is anU formula as well since player∀’s strategy only allows him to set the focus to

a formula other than that if noU formula is present. ButχP is going to remain present

since player∃ cannot fulfil it. Moreover,χP is a member of the priority list at this

moment.

We can assumeϕ′ to get fulfilled at some point. If it does not then player∀ will win

with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and player∀ resets

the focus to theU formula which has highest priority and is present. Note thatχP is

present and that two formulas only swap their priority order if the one with the higher

priority gets fulfilled. Therefore, there are only finitely manyU formulas other thanχP

the focus can be set to. As soon as one of them persists, player∀ wins with winning

condition 2. Eventually, this will beχP unless another one did beforehand.

Note that this argumentation holds for every play ofG(ϕ0). Thus, player∀ will win

each play with his winning condition 1 or 2 if he uses his priority list strategy. �

Theorem 103 (Completeness) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF If ϕ0 is satisfiable then it has a modelπ = s0,s1, The LTL formulaϕ0 can

be regarded as a CTL∗ path formula interpreted over the transition systemπ. Since

π consists of a single path only, it is also a model for the proper CTL∗ formulaEϕ0.

According to Theorem77, π can be assumed to be a finite representation of an infinite

path, and according to Theorem72, player∃ wins the CTL∗ model checking game

Gπ(s0,Eϕ0). We will use this game to construct a winning strategy for player∃ in the

satisfiability gameG(ϕ0).

Eϕ0 contains one CTL∗ path quantifier only, therefore each play stays in one single

block according to Lemma64. Player∃ is the path player but her choices with model

checking game rule(X) are deterministic since every statesi has a unique successor

si+1. Player∀ has control over the focus in the satisfiability game and the model

checking game.

6.1. Satisfiability Games for LTL 147

The model checking game starts with rule(E) which removes the existential path

quantifier and yields the configuration

s0 ` E(
[
ϕ0

]
)

From then on, every move in the satisfiability game is guided by the model checking

game. If G(ϕ0) reaches a configuration with a disjunction then player∃ uses her

winning strategy inGπ(s0,ϕ0) to choose a disjunct and makes the same choice in

G(ϕ0). Conjunctions are flattened in both games. However, player∀ can set the focus

in G(ϕ0) to a different formula than the one in focus inGπ(s0,ϕ0). But the rules of the

model checking game allow him to reset the focus at any point. This means that there

is a position in the model checking game tree for player∃ which corresponds to the

actual position inG(ϕ0), s.t. player∃ has a winning strategy for the game continuing

with this configuration.

Suppose the model checking play visits a configuration

sj ` E(
[
ψ

]
,Φ)

after it visited

si ` E(
[
ψ

]
,Φ)

This is not a repeat since these configurations differ in the state component. However,

such a play would correspond to a repeat inG(ϕ0). To maintain a full correspondence

between the model checking and the satisfiability game we restart the construction of

player∃’s game tree forG(ϕ0) at the first occurrence of the position

[
ψ

]
,Φ

Note that this is only done if the model checking play visits two configurations with

different state components.

Then there is a repeat inG(ϕ0) iff there is a repeat inGπ(s0,ϕ0). By assumption,π
is a finite representation of an infinite path, therefore the model checking play will

eventually perform a repeat. Thus, the restarting process for the satisfiability play will

eventually terminate.

148 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Player∀ cannot win a play ofG(ϕ0) with his winning condition 2. Remember that this

means he is able to keep the focus on aϕUψ until the play performs a repeat. But this

would only be possible if he was also able to do this inGπ(s0,ϕ0) which contradicts

the assumption that player∃ is the winner of this.

He cannot win by condition 1 either since this would enable him to win the model

checking play by setting the focus to a proposition that is not satisfied by the actual

state. Remember that state labellings are total, i.e. for everyq ∈ P and every states

eitherq∈ L(s) or q∈ L(s). But his winning condition 1 requires both of them to be

present in a configuration which cannot occur in player∃’s model checking game tree

for Gπ(s0,ϕ0).

By Corollary95, player∃ winsG(ϕ0). �

Theorem 104 (Small model property) If ϕ0 ∈ LTL is satisfiable then it has a model

of size less than|ϕ0| ·2|ϕ0|.

PROOF Supposeϕ0 is satisfiable. By Theorem103, player ∃ wins G(ϕ0). Let

C0, . . . ,Cn be the resulting play. We define a finite representation of a possibly infinite

pathπ of a transition system in the following way. The states ofπ are equivalence

classes[Ci] of the set of all occurring configurationsC0, . . . ,Cn under the equivalence

relation

Ci ∼Cj iff betweenCi andCj there is no application of rule(X).

Then[Ci] := {Cj |Cj ∼Ci}. Transitions inπ are defined as

[Ci]−→[Ck] iff Ci 6∼Ck and there is aj ∈ N s.t.Ci ∼Cj andCj+1∼Ck.

The labelling of the states ofπ is defined as

q∈ L([Ci]) iff there is a j ∈ N s.t.Ci ∼Cj andq∈Cj .

π is an eventually cyclic finite representation of an infinite path if the corresponding

play was won with winning condition 4 or 5. It is a finite path if it was won with

winning condition 3. In that case add an arbitrary loop to its end to fulfil the totality

requirement.

6.1. Satisfiability Games for LTL 149

Lemma93shows that the size of this representation ofπ is bounded by|ϕ0| ·2|ϕ0|.

We claim thatπ is a model forϕ0. Let π([Ci]) denote the suffix ofπ that begins with

[Ci]. We show by induction on the formula structure that for alli, j < n:

π([Ci]) |= ψ for all ψ ∈Cj if Ci ∼Cj

This is true for atomic propositionsq because of the way the labellings of the states

were chosen. Suppose it is true forϕ andψ.

If ϕ∨ψ ∈Cj for somej then game rules([∨]) and(∨) guarantee that there is aCi with

Ci ∼Cj and eitherϕ ∈Ci or ψ ∈Ci . But thenπ([Ci]) |= ϕ or π([Ci]) |= ψ by hypothesis

and, hence,π([Ci]) |= ϕ∨ψ. The cases ofϕ∧ψ andXϕ are similar.

If ϕUψ ∈ Cj for some j then player∃’s winning strategy guarantees that there is a

Ck with ψ ∈Ck because she has fulfilled all occurringU formulas. Otherwise player

∀ would have won the corresponding play with his winning condition 2 according to

Lemma98. The induction hypothesis yieldsπ([Ck]) |= ψ. Furthermore, for everyi with

j ≤ i < k′ wherek′ is chosen least s.t.Ck ∼Ck′, there is ani′ s.t.Ci ∼Ci′ andϕ ∈Ci′ .

But thenπ([Ci]) |= ϕUψ.

Finally, the case ofϕRψ ∈Cj is similar. Now note thatϕ0 ∈C0 andπ([C0]) = π. Thus,

π |= ϕ0. �

History-freeness of player∃’s winning strategy carries over from the CTL∗ model

checking game to the LTL satisfiability game. The situation for player∀ is different.

Theorem 105 (Winning strategies)

a) Player∃’s winning strategies are history-free.

b) Player∀’s priority list strategies are LVR strategies.

PROOF Player∃’s winning strategy forG(ϕ0) with a satisfiableϕ0 consists of choosing

a modelπ for ϕ0 and playing according to her strategy for the CTL∗ model checking

gameGπ(s0,Eϕ0). The choice of the model does not depend on the play, and by

Theorem74, her winning strategy forGπ(s0,Eϕ0) is history-free. Hence, so is her

winning strategy forG(ϕ0).

150 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Player∀’s winning strategy forG(ϕ0) with an unsatisfiableϕ0 is different. Remember

that he is only concerned with the position of the focus. His priority list is in fact a

latest visitation record. According to Definition41 of Chapter2, the set of interesting

configurations for him is the set of all possible configurations of the form
[
ϕUψ

]
,Φ

for everyϕUψ ∈ Sub(ϕ0).

The priority list of Definition97 is a succinct representation of this LVR. Note that it

is essential but also sufficient for player∀ to keep the focus on aϕUψ. Maintaining a

priority list of all configurations would not give him more information than is needed

to win.

Player∀ only moves elements from positions in the list to its end. At the beginning,

no element occurs twice. Thus, the requirements for a LVR are fulfilled. �

Complexity

The close correspondence between CTL∗ model checking games and LTL satisfiability

games is reflected in the analysis of its complexity. The proof of the following theorem

is similar to the one of Theorem79.

Theorem 106 (Complexity) Deciding the winner of an LTL satisfiability game is in

PSPACE.

PROOF A game based satisfiability checking algorithm for LTL can make use of the

priority list strategy described in the proof of Theorem102. This determinises player

∀’s moves. What remains is a nondeterministic game since the existential player is left

with some choices. To find a winning play for player∃ the algorithm needs to store

two configurations: the actual one which gets overwritten each time a game rule is

played, and one which is used to find a repeat on.

It is up to player∀ to find a repeat on a configuration
[
ϕUψ

]
,Φ without changing focus

between the two occurrences. Therefore, he would at some point universally choose

to store such a configuration. However, the result would be an alternating procedure

which will not have optimal complexity. Therefore, we determinise player∀’s choice

of the configuration to repeat on, similar to the proof of Theorem79.

6.1. Satisfiability Games for LTL 151

Let ϕ be the input formula. The algorithm maintains a counter to measure the length

of the play at hand. It starts by storing the first configuration. With this it stores

the counter value. It proceeds to check whether there is a play that repeats on this

configuration. A simple flag is used to indicate whether the focus was changed in

between or not. If there is a repeat and the focus was not changed it returns∀ as the

winner. If there is no repeat then a counter is used to terminate the play at hand. The

algorithm returns ? as soon as the counter value reaches|ϕ| ·2|ϕ|+3 which is justified

by Lemma93. Then it restarts with the successor of the stored configuration and the

stored counter value increased by one.

If the stored counter value reaches|ϕ| · 2|ϕ| + 3 then the algorithm terminates and

returns∃ as the winner.

The size of the counter is polynomial in the size of the input. The size of the

memory needed to store two configurations is polynomial in the size of the input as

well. Therefore, LTL satisfiability checking can be done in nondeterministic PSPACE.

According to [Sav69], there is a deterministic PSPACE algorithm for this problem as

well. �

Comparing Automata and Games for LTL Satisfiability Checking

The first automata to be used for deciding satisfiability of LTL formulas were

nondeterministic B̈uchi automata. There is of course an obvious difference to the

games of this section since 2-player games correspond to alternating rather than

nondeterministic automata. However, as Theorem106 shows, applying the priority

list strategy determinises player∀’s moves and leaves a nondeterministic game.

These nondeterministic automata guess truth values for each subformula of the input

formula at each state of a possible model and verify these guesses with their transition

relation. The games of this section are more flexible in this respect since configurations

only contain necessary subformulas. The verification of the correctness of the

automaton’s choices can be seen as the automata-theoretic counterpart to Lemma96

which states that unsatisfiability is preserved.

There is an intimate relationship between the model checking problem for CTL∗

152 Chapter 6. Satisfiability Games for LTL, CTL and PDL

and the satisfiability checking problem for LTL. This is not only reflected in their

computational complexities – both are PSPACE-complete – but also in the similarities

between the BLTL model checking games of Chapter5 and the LTL satisfiability

games of this section. Remember that a CTL∗ model checking games is in fact a

collection of BLTL model checking games.

The proof of Theorem103 is based heavily on the close relationship between these

games. In fact, an LTL satisfiability game is a BLTL model checking game without the

state component in a configuration.

Since these relationships are merely a feature of the games but a property of the logics,

the automata that have been used for BLTL model checking can also be used for

LTL satisfiability checking. This means that the alternating automata from [Var96]

are useful for the satisfiability problem as well, see the comparisons in Section5.5.

Again, the games of this section can be seen as an intermediate step between the

alternating automata and their translation into nondeterministic ones. Remember that

the alternating automata’s states consist of single formulas only.

The question of whether there is a regeneratingU formula is answered in the

non-emptiness test of the language accepted by the automaton. This problem is

PSPACE-complete. For the games this question is easier to answer as the proof of

Theorem106 shows. It is simply done by querying the value of a boolean flag.

However, it is only easier since a game’s configuration is more complex than an

automaton’s state. But it is the size of a configuration in a game that causes the

PSPACE complexity.

6.2 Satisfiability Games for CTL

The satisfiability gameG(ϕ0) for a CTL formula ϕ0 is defined along the lines of

Section6.1. Player∃ attempts to show thatϕ0 has a model, whereas player∀ tries

to show that there is none. Here, a model is a total transition systemT. The set of

configurations of the focus gameG(ϕ0) is

C = Sub(ϕ0)×2Sub(ϕ0)

6.2. Satisfiability Games for CTL 153

The game rules are depicted in Figure6.3. Boolean combinators are handled in the

same way as they are in the LTL games, and so is the focus. Rules([QU]), ([QR]),

(QU) and(QR) are justified by the unfoldings of the temporal operators in CTL.

Because of the path quantifiers, applying the above rules will result in a configuration

in which every formula is either propositional or of the formEXψ or AXψ. Such

a configuration postulates the existence of several successor states, each of them

satisfying all of the universally quantified formulas and at least one existentially

quantified formula, s.t. everyEXϕ is covered by one successor state. This is modelled

in the rules(EX) and(AX).

The winning conditions for the CTL games are similar to those for the LTL games, and

so is the definition of a terminal configuration. Player∀ wins the playC0, . . . ,Cn iff

1. Cn =
[
q
]
,Φ is terminal andq = ff or q∈Φ, or

2. Cn =
[
Q(ϕUψ)

]
,Φ for someQ∈ {E,A} and there is ani ∈ N, s.t. i < n and

Ci = Cn, and player∀ has not used rule(FC) betweenCi andCn.

Player∃ wins the playC0, . . . ,Cn iff

3. Cn =
[
q
]
,Φ is terminal,q 6= ff andq 6∈Φ, or

4. Cn =
[
ϕ
]
,Φ and there is ani ∈N, s.t.i < n andCi =Cn, and player∀ has used

rule (FC) betweenCi andCn.

5. Cn =
[
Q(ϕRψ)

]
,Φ for someQ∈ {E,A} and there is ani ∈ N, s.t. i < n and

Ci = Cn, and player∀ has not used rule(FC) betweenCi andCn.

Correctness

As in the LTL case we need to establish a few facts and lemmas before we can proceed

to prove the games correct.

154 Chapter 6. Satisfiability Games for LTL, CTL and PDL

([∨])

[
ϕ0∨ϕ1

]
,Φ

[
ϕi

]
,Φ

∃i ([QU])

[
Q(ϕUψ)

]
,Φ

[
ψ∨ (ϕ∧QXQ(ϕUψ))

]
,Φ

([∧])

[
ϕ0∧ϕ1

]
,Φ

[
ϕi

]
,ϕ1−i ,Φ

∀i ([QR])

[
Q(ϕRψ)

]
,Φ

[
ψ∧ (ϕ∨QXQ(ϕRψ))

]
,Φ

(∨)

[
ψ

]
,ϕ0∨ϕ1,Φ

[
ψ

]
,ϕi ,Φ

∃i (QU)

[
χ
]
,Q(ϕUψ),Φ

[
χ
]
,ψ∨ (ϕ∧QXQ(ϕUψ)),Φ

(∧)

[
ψ

]
,ϕ0∧ϕ1,Φ

[
ψ

]
,ϕ0,ϕ1,Φ

(QR)

[
χ
]
,Q(ϕRψ),Φ

[
χ
]
,ψ∧ (ϕ∨QXQ(ϕRψ)),Φ

(EX)
AXψ1, . . . ,AXψm,

[
EXϕ1

]
, . . . ,EXϕk,q1, . . . ,qn

ψ1, . . . ,ψm,
[
ϕ1

] (FC)

[
ϕ
]
,ψ,Φ

[
ψ

]
,ϕ,Φ

∀

(AX)

[
AXψ1

]
, . . . ,AXψm,EXϕ1, . . . ,EXϕk,q1, . . . ,qn

[
ψ1

]
, . . . ,ψm,ϕi

∀i

Figure 6.3: The satisfiability game rules for CTL.

6.2. Satisfiability Games for CTL 155

Fact 107 (FC) is the only rule that maintains the size of a configuration. Rules([∨]),

(∨), ([∧]), (∧), (EX) and (AX) reduce the number of connectives in a configuration,

while rules([QU]), (QU), ([QR]) and(QR) increase the number of connectives.

Lemma 108 Every play ofG(ϕ) has finite length less than|ϕ| ·2|ϕ|+3 and a uniquely

determined winner.

This is proved exactly like Lemmas93 and94 for LTL. Consequently, determinacy

follows for the CTL satisfiability games in the same way.

Corollary 109 (Determinacy) Player∀ winsG(ϕ) iff player∃ does not winG(ϕ).

Lemma 110 Player∃ preserves unsatisfiability with her rules. Player∀ can preserve

unsatisfiability.

PROOF The rules for boolean connectives and the focus change rule are present in the

LTL games as well. Since player∃ only chooses disjuncts the claim follows for her

from Lemma96already.

Preservation of unsatisfiability with the deterministic unfolding rules([QU]), (QU),

([QR]) and(QR) follows from the unfolding characterisation ofU andR formulas in

CTL which was presented in Section2.4.

The only new cases are those of rules(EX) and(AX). They do not need to be looked at

separately. Suppose

ψ1, . . . ,ψm,ϕi

is satisfiable for everyϕi , i = 1, . . . ,k. Thus each has a modelTi with a statesi s.t.

si |= ϕi andsi |= ψ j for j = 1, . . . ,m. Define a new LTST′ as the disjoint union over

all Ti with a new states′ s.t.s′−→si for eachi = 1, . . . ,k. Let s′ be consistently labelled

with L(s′) = {q1, . . . ,qn}. Then,

T′,s′ |= AXψ1, . . . ,AXψm,EXϕ1, . . . ,EXϕk,q1, . . . ,qn

Thus, this formula is satisfiable. Therefore, if it is unsatisfiable then one of the

ϕi ,ψ1, . . . ,ψm must be unsatisfiable as well. In rule(AX) player ∀ can choose it

accordingly and preserve unsatisfiability.

156 Chapter 6. Satisfiability Games for LTL, CTL and PDL

In order to preserve unsatisfiability with rule(EX) he might have to change focus to the

EXϕi that causes the unsatisfiability before the rule is played. Note that he is allowed

to change focus at any moment in the play. �

As in the LTL case, we will describe a priority list strategy for player∀. The difference

to Definition97 is the fact that player∀ has to use several lists in a gameG(ϕ0).

Definition 111 (Priority list strategy) Let l be apriority list of all U subformulas of

ϕ0 in decreasing order of size, i.e.

l = Q1(ϕ1Uψ1), . . . ,Qn(ϕnUψn)

with

Qi(ϕiUψi) ∈ Sub(Q j(ϕ jUψ j)) and Qi(ϕiUψi) 6= Q j(ϕ jUψ j) implies j < i

In that caseQ j(ϕ jUψ j) is said to have higher priority thanQi(ϕiUψi). We say that

Q(ϕUψ) is present in a configurationC if

{ Q(ϕUψ), ψ∨ (ϕ∧QXQ(ϕUψ)), ϕ∧QXQ(ϕUψ) ∈C, QXQ(ϕUψ) } ∩ C 6= /0

Player∀ uses the priority list as it is described in Definition97. He attempts to set

the focus to theU formula with the highest priority that is present or a superformula

of it. Here, anU formula means a formula of the formE(ϕUψ) or A(ϕUψ). Fulfilled U

formulas get appended to the end of the list. At any moment he checks whether he can

win by setting the focus to an atomic proposition.

Note an essential difference between the LTL and the CTL satisfiability games. In

the LTL case player∀ only chooses the position of the focus. This is entirely

determinised by the priority list strategy. Here, player∀ also makes choices with rule

(AX). This is unaffected by the priority list strategy. His overall strategy is therefore

composed of several priority list strategies, each corresponding to a certain sequence

of choices he makes with rule(AX) in a play. In addition, whenever this rule has to be

played he chooses theEXϕi that preserves unsatisfiability if the actual configuration is

unsatisfiable. If it is satisfiable he can choose any formula.

6.2. Satisfiability Games for CTL 157

Thus, in a game tree for player∃, player∀ will have used several priority list strategies

since the presence of anU formula generally depends on the choices made with rule

(AX).

We will speak ofthepriority list strategy to denote his overall strategy that combines

the priority list idea with the preservation of unsatisfiability.

The next lemma is proved in the same way as Lemma98 for the LTL games.

Lemma 112 (Optimality) If player∀ winsG(ϕ0) then he wins it with the priority list

strategy.

The minimal formulaχP causing unsatisfiability in a playP of a CTL satisfiability

game is defined just as it is in Definition99 for LTL. χP is the syntactically least

formula that causes unsatisfiability and that occurs earliest in a configuration ofP.

Lemma 113 Let ϕ0 be unsatisfiable andP be a play ofG(ϕ0) in which player∀ uses

his priority list strategy. ThenχP is either atomic or of the formQ(ϕUψ) for a Q ∈
{E,A}.

PROOF This is proved by case analysis onχP as well. Note that the cases of atomic

propositions, disjunctions and conjunctions are the same as the ones in the proof of

Lemma101.

χP = EXψ is impossible as well asχp = AXψ since rules(EX) and(AX) produce the

syntactically smallerψ in the latter case anyway and in the former case if the priority

list strategy is used.

The cases ofχP = Q(ϕRψ) are similar to the case of aR formula in the proof of

Lemma101. Regardless ofQ, the syntactically smallerψ will always be present in

later configurations and eventually cause unsatisfiability unlessϕ does.

The remaining cases are those ofχP = Q(ϕUψ), Q ∈ {E,A}. Let Ck = χP,Φk be the

first configuration inP containingχP, s.t. |= Φk → Q(ϕUψ). Again, Φk denotes the

satisfiable part ofCk in the sense of Lemma101. Then either there is anm> k s.t.

|= Φm→ ϕ∨ψ but 6|= Φ j → ϕ for all k≤ j < m

158 Chapter 6. Satisfiability Games for LTL, CTL and PDL

or for all m≥ k:

6|= Φm→ ϕ and |= Φm→ ψ

In the first case bothϕ andψ are smaller formulas thanχP and cause unsatisfiability

as well. Remember that as long asQ(ϕUψ) is unfolded eitherϕ or ψ occurs in a

configuration. As long as it occurs it must result from the unfolding ofχP.

Again, the second case does not contradict the assumption thatχP is syntactically

smallest. It is found in a play in which player∃ never fulfilsQ(ϕUψ) s.t. ϕ occurs

between each two unfoldings butψ never does. �

Theorem 114 (Soundness) If ϕ0 is unsatisfiable then player∀ winsG(ϕ0).

PROOF Assumeϕ0 is unsatisfiable. As in the proof of Theorem102, we show that

player∀ winsG(ϕ0) by using his priority list strategy.

Consider a playC0, . . . ,Cn of G(ϕ0). By Lemma 96, eachCi is unsatisfiable, in

particularCn. Thus, player∃ cannot win this play with her winning condition 3 since

it requires the last configuration of the play to be satisfiable. Remember that the case

of player∀ simply refusing to continue to play is excluded by using the priority list

strategy.

Sinceϕ0 is assumed to be unsatisfiable, Lemma113 applies. Regardless of which

play P is played,χP is either atomic or of the formQ(ϕUψ). Let Ck be the earliest

configuration containingχP s.t.

Ck = χP,Φk and |= Φk → χP

If χP = q then the priority list strategy causes player∀ to win the play since he will

set the focus to eitherq or q. Note thatq must either be present inCk or occur at most

log|ϕ0| steps later.

SupposeχP is of the formQ(ϕUψ). If player∀ sets the focus toχP whenCk is reached

then he wins the resulting play with his winning condition 2. Note that player∃ can

never fulfil χP by assumption. Thus, player∀ can leave the focus on it.

Suppose this is not the case, i.e.

Ck =
[
ϕ′

]
,χP,Φ

6.2. Satisfiability Games for CTL 159

ϕ′ is anU formula as well since player∀’s strategy only allows him to set the focus to

a formula other than that if noU formula is present. But if theU formula is of the form

A(ϕUψ) thenχP is going to remain present since player∃ cannot fulfil it. Moreover,χP

is a member of the priority list at this moment. If it is of the formE(ϕUψ) then it could

theoretically be discarded by an application of rule(EX). But since player∀ is assumed

to preserve unsatisfiability it would not be theχP for the playP at hand. Hence, player

∃ cannot fulfil it either and it is also a member of the priority list.

We can assumeϕ′ to get fulfilled at some point. If it does not then player∀ will win

with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and player∀ resets

the focus to theU formula which has highest priority and is present. Note thatχP is

present and that two formulas only swap their priority order if the one with the higher

priority gets fulfilled. Therefore, there are only finitely manyU formulas other thanχP

the focus can be set to. As soon as one of them persists, player∀ wins with winning

condition 2. Eventually, this will beχP unless another one did beforehand.

Note that the argumentation above holds for every play ofG(ϕ0). Thus, player∀
will win each play either with his winning condition 1 or 2 if he uses his priority list

strategy. �

Similar to the proof of Theorem103, we will relate the satisfiability games for CTL

to its model checking games of Section5.3 and obtain completeness in this way.

However, one satisfiability play must be related to several model checking plays since

configurations of the latter contain single formulas only.

Theorem 115 (Completeness) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable, i.e. it has a modelT = (S,−→,L) with s0 ∈ S s.t.

s0 |= ϕ0. ϕ0 is also a CTL∗ formula. Thus, by Theorem77, T can be assumed to

be finite. Player∃’s moves inG(ϕ0) will be guided by her moves in the CTL model

checking gamesGT(s,ψ) wheres∈ S andψ∈Sub(ϕ0). Remember that the CTL model

checking game is not a focus game.

The starting positions for both plays are
[
ϕ0

]
and s0 ` ϕ0. Suppose the actual

formula in focus is a disjunction. Then player∃ uses her winning strategy in

160 Chapter 6. Satisfiability Games for LTL, CTL and PDL

GT(s0,ϕ0) to choose the disjunct that guarantees her to win the remaining play. In

the satisfiability game she chooses the same disjunct. Unfolding of temporal operators

is deterministically done in the same way in both plays.

The only interesting case is the one of a conjunction inG(ϕ0). Consider the first

occurrence of such a situation inG(ϕ0). At this moment no sideformula can be present.

Let therefore
[
ψ0∧ψ1

]
be such a configuration. This must correspond to a position

s ` ψ0∧ψ1

in the model checking play. Since player∃ is assumed to have a winning strategy

for this game she must have winning strategies for bothGT(s,ψ0) and GT(s,ψ1).

In G(ϕ0) player∀ sets the focus to one of the conjuncts, sayψ0. Then all choices

regarding formulas in focus are matched by choices inGT(s,ψ0), whereas all choices

regarding sideformulas correspond to choices inGT(s,ψ1). Thus, at any moment in

the satisfiability game a configuration containingn formulas is matched byn model

checking plays. Furthermore, the state component of all model checking plays is

always the same. Changing focus does not alter the situation on the model checking

side at all.

Finally, if the satisfiability play reaches a configuration

AXψ1, . . . ,AXψm,
[
EXϕ1

]
, . . . ,EXϕk,q1, . . . ,qn

the model checking plays corresponding toEXϕ2, . . . ,EXϕk are discarded. Player∃
chooses a successor statet in the play forEXϕ1. By assumption she has winning

strategies for the remaining model checking games

GT(t,ϕ1), GT(t,ψ1), . . . , GT(t,ψm)

The same argument holds for a configuration with the focus on anAXψ, the only

difference being player∀ who determines the model checking play in which player

∃ chooses a successor state.

It is possible for the satisfiability play to perform a repeat on a configuration
[
ψ0

]
,Φ

while the set of model checking plays does not. LetΦ = ψ1, . . . ,ψn. Whenever the

model checking plays are at stages

t ` ψi for i = 1, . . . ,n

6.2. Satisfiability Games for CTL 161

after they were at stagess` ψi , ands 6= t, and the focus is on the same formula, then

the satisfiability game is restarted at the first occurrence of
[
ψ0

]
,Φ. This is not done

if s= t.

Suppose now that player∀ wins the satisfiability game. If he does so with winning

condition 1 then there must be two configurations

t ` q and t ` q

in the set of model checking plays. Player∃ cannot win both of the model checking

plays as she is assumed to. Suppose therefore that player∀ wins with condition 2. But

a repeat with aQ(ϕUψ) in focus corresponds to a model checking play that repeats on

Q(ϕUψ) as well and would be won by player∀, too.

We conclude therefore that player∀ cannot win any play ofG(ϕ0) and by Corollary109

that player∃ must have a winning strategy forG(ϕ0). �

Theorem 116 (Small model property) If ϕ0∈ CTL is satisfiable then it has a model

of size less than|ϕ0| ·2|ϕ0|.

PROOF Supposeϕ0 is satisfiable. By Theorem115, player∃ has a winning strategy

for the gameG(ϕ0). We extract a transition systemT from player∃’s game tree.T will

be a tree-like structure. A play in the game tree will be transformed into a branchπ of

T. For each playC0,C1, . . . ,Cn the branchπ consists of states which are equivalence

classes[Ci] of the set of all occurring configurationsCi under the equivalence relation

Ci ∼Cj iff betweenCi andCj there is no application of rule(EX) or (AX).

Then[Ci] := {Cj |Cj ∼Ci}. Transitions inT are defined as

[Ci]−→[Ck] iff Ci 6∼Ck and there is aj ∈ N s.t.Ci ∼Cj andCj+1∼Ck.

The labelling of the states ofT is defined as

q∈ L([Ci]) iff there is a j ∈ N s.t.Ci ∼Cj andq∈Cj .

162 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Eachπ is an eventually cyclic finite representation of an infinite path unless it resulted

from a play which is won by player∃ with her winning condition 3. In that caseπ can

be made into an eventually cyclic path model by appending another state[Cn+1] with

[Cn]−→[Cn+1] and [Cn+1]−→[Cn+1]

The paths can be put together to obtain a finite representationT of an infinite tree. Note

that each pathπ starts with[C0].

Since there are only|ϕ0| ·2|ϕ0| many different configurations ofG(ϕ0) this is also an

upper bound on the number of equivalence classes[Ci] and, hence, the size ofT.

It remains to be seen thatT, [C0] is a model forϕ0. In fact, the following stronger

proposition holds for alli, j < n:

[Ci] |= ψ for all ψ ∈Cj if Ci ∼Cj

This is done by induction onψ similar to the proof of Theorem104for LTL. Note that

the cases ofψ = EXϕ andψ = AXϕ hold because all of player∀’s choices with rule

(AX) are contained in player∃’s game tree.

Finally, ϕ0 ∈C0 and, thus,[C0] |= ϕ0. �

A consequence of this proof is the tree model property for CTL. However, it also

follows from Lemma75which shows the tree model property for CTL∗.

Corollary 117 (Tree model property) CTL has the tree model property.

For two LVRs l1 and l2 the interleavingof l1 and l2 is a sequence containing each

element ofl1 and l2 exactly once such that the order of the elements inl1 and l2 is

preserved.

Lemma 118 The interleaving of two disjoint LVRs is an LVR.

PROOF Let l = C1, . . . ,Cn be the interleaving ofl1 and l2 which are LVRs over the

disjoint I1 andI2. ThenCi ∈ I1∪ I2 for everyi = 1, . . . ,n. Ci 6= Cj for all 1≤ i < j ≤ n

6.2. Satisfiability Games for CTL 163

becauseI1∩ I2 = /0. Finally,

n = |l1|+ |l2| ≤ |I1|+ |I2| = |I1∪ I2|

Thus,l is an LVR. �

Theorem 119 (Winning strategies)

a) Player∃’s winning strategies are history-free.

b) Player∀’s winning strategies are LVR strategies.

PROOF Player ∃’s winning strategy forG(ϕ0) with a satisfiableϕ0 consists of

choosing a modelT = (S,−→,L) for ϕ0 and playing according to her strategies in the

corresponding CTL model checking gamesGT(s,ψ) for s∈ S andψ ∈ Sub(ϕ0). The

choice of the model does not depend on the play, and by Theorem83, her model

checking winning strategies are history-free. They add up to a history-free strategy for

G(ϕ0) since there is no interaction between the model checking games.

Player∀’s winning strategies are latest visitation record strategies. Note that he uses

essentially the same strategy as in the LTL games. The fact that his overall strategy

consists of using one priority list for each sequence of applications of rules(AX) and

(EX) does not change this. All the lists can be interleaved to one overall list in which

the origin of eachU formula is used as an annotation to fulfil the requirements of being

a LVR.

Note that he simply ignores unimportant parts of the LVR because he always changes

focus to presentU formulas only. According to Lemma118, the result is a LVR, too.

The only conceptual difference to the LTL games is the additional choice he has with

rule (AX). Choosing anEXϕi determines the state of his priority list. In terms of the

proof of Theorem114 it determines which list to continue his strategy with. But all

he needs to do with rule(AX) to win the remaining game is to preserve unsatisfiability.

This choice does not depend on the history of the play.

Thus, his overall strategy consisting of preserving unsatisfiability and maintaining a

priority list is a LVR strategy. �

164 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Complexity

Theorem 120 (Complexity) Deciding the winner of a CTL satisfiability game is in

EXPTIME.

PROOF Unlike the proofs of Theorems79 and106, here player∀’s moves cannot be

determinised using the priority list strategy described in the proof of Theorem114.

The reason is game rule(AX) which requires player∀ to make a choice other than

positioning the focus.

An alternating algorithm only needs to store two configurations and a counter to find

a winning play for one of the players. Again, the configurations are the actual one and

one chosen by player∀ on which he tries to find a repeat. The counter is bounded by

|ϕ| ·2|ϕ|+3 and, hence, requires space which is polynomial in the size of the inputϕ.

Therefore, checking whether a CTL formula is satisfiable is in APSPACE which is the

same as EXPTIME, [CKS81]. �

6.3 Satisfiability Games for PDL

The set of configurations of thesatisfiability gameG(ϕ0) for a PDL formulaϕ0 is

C = Sub(ϕ0)×2Sub(ϕ0)

Again,G(ϕ0) is a focus game like the ones of Sections6.1and6.2with the difference

that the modelT = (S,{ a−→| a∈ A},L) for ϕ0 which player∃ implicitly attempts to

construct need not be total.

The presentation of the game rules is split into two sets. The first set deals with boolean

combinators and modalities with atomic programs. They can be found in Figure6.4.

Rules([∨]), (∨), ([∧]) and(∧) are the usual ones for disjunctions and conjunctions.

There also is the focus change rule(FC) that player∀ can use at any point in a play.

Rules(〈a〉) and([a]) are parametrised by the actiona and are the PDL counterparts

to the CTL rules(EX) and(AX). Note that PDL, unlike CTL, distinguishes transitions

with different labels. Therefore only those formulas that speak about successor states

6.3. Satisfiability Games for PDL 165

([∨])

[
ϕ0∨ϕ1

]
,Φ

[
ϕi

]
,Φ

∃i ([∧])

[
ϕ0∧ϕ1

]
,Φ

[
ϕi

]
,ϕ1−i ,Φ

∀i (FC)

[
ϕ
]
,ψ,Φ

[
ψ

]
,ϕ,Φ

∀

(∨)

[
ψ

]
,ϕ0∨ϕ1,Φ

[
ψ

]
,ϕi ,Φ

∃i (∧)

[
ψ

]
,ϕ0∧ϕ1,Φ

[
ψ

]
,ϕ0,ϕ1,Φ

(〈a1〉)

[
〈a1〉ϕ1

]
, . . . ,〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm,q1, . . . ,ql

[
ϕ1

]
,Ψ

where for alli = 1, . . . ,m : ψi ∈Ψ iff bi = a1

([ai])
〈a1〉ϕ1, . . . ,〈an〉ϕn,

[
[b1]ψ1

]
, . . . , [bm]ψm,q1, . . . ,ql

ϕi ,
[
ψ1

]
,Ψ

∀i

whereai = b1 and for all j = 2, . . . ,m : ψ j ∈Ψ iff b j = b1

Figure 6.4: The PDL satisfiability game rules for formulas.

which can be reached with the same atomic program are included in an application of

rule (〈a〉) or ([a]).

The second set of rules deals with non-atomic programs. Basically, they apply the

equivalences given in Section2.5 to obtain formulas with smaller programs. Rules

([〈∪〉]), (〈∪〉), ([[∪]]) and([∪]) have been optimised in the sense that the corresponding

equivalences yield a disjunction or a conjunction, and the following choice by one of

the players has been built into the rule already. Note thatψ in rules([[?]]) and([?])

denotes the complement ofψ according to Lemma13of Section2.5.

166 Chapter 6. Satisfiability Games for LTL, CTL and PDL

([〈∪〉])

[
〈α0∪α1〉ϕ

]
,Φ

[
〈αi〉ϕ

]
,Φ

∃i ([[∪]])

[
[α0∪α1]ϕ

]
,Φ

[
[αi]ϕ

]
, [α1−i]ϕ,Φ

∀i

(〈∪〉)

[
ψ

]
,〈α0∪α1〉ϕ,Φ

[
ψ

]
,〈αi〉ϕ,Φ

∃i ([∪])

[
ψ

]
, [α0∪α1]ϕ,Φ

[
ψ

]
, [α0]ϕ, [α1]ϕ,Φ

([〈;〉])

[
〈α0;α1〉ϕ

]
,Φ

[
〈α0〉〈α1〉ϕ

]
,Φ

([〈?〉])

[
〈ψ?〉ϕ

]
,Φ

ψ,
[
ϕ
]
,Φ

(〈?〉)

[
χ
]
,〈ψ?〉ϕ,Φ

[
χ
]
,ψ,ϕ,Φ

([[;]])

[
[α0;α1]ϕ

]
,Φ

[
[α0][α1]ϕ

]
,Φ

([[?]])

[
[ψ?]ϕ

]
,Φ

[
ψ∨ϕ

]
,Φ

([?])

[
χ
]
, [ψ?]ϕ,Φ

[
χ
]
,ψ∨ϕ,Φ

(〈;〉)

[
ψ

]
,〈α0;α1〉ϕ,Φ

[
ψ

]
,〈α0〉〈α1〉ϕ,Φ

([;])

[
ψ

]
, [α0;α1]ϕ,Φ

[
ψ

]
, [α0][α1]ϕ,Φ

([〈∗〉])

[
〈α∗〉ϕ

]
,Φ

[
ϕ
]
,Φ |

[
〈α〉〈α∗〉ϕ

]
,Φ

∃ ([[∗]])

[
[α∗]ϕ

]
,Φ

[
ϕ∧ [α][α∗]ϕ

]
,Φ

(〈∗〉)

[
ψ

]
,〈α∗〉ϕ,Φ

[
ψ

]
,ϕ,Φ |

[
ψ

]
,〈α〉〈α∗〉ϕ,Φ

∃ ([∗])

[
ψ

]
, [α∗]ϕ,Φ

[
ψ

]
,ϕ, [α][α∗]ϕ,Φ

Figure 6.5: The PDL satisfiability game rules for programs.

6.3. Satisfiability Games for PDL 167

Definition 121 A configurationC of G(ϕ0) is calledterminal if

• C =
[
[a1]ψ1

]
, . . . , [an]ψn,q1, . . . ,qk, or

• C =
[
q
]
,Φ and player∀ refuses or is unable to move the focus with rule(FC).

The slightly different definition of a terminal configuration compared to those in LTL

or CTL games is due to the fact that models of PDL formulas are not required to be

total.

The winning conditions for the PDL games are similar to those for the CTL games.

Player∀ wins the playC0, . . . ,Cn iff

1. Cn =
[
q
]
,Φ is terminal, andq = ff or q∈Φ, or

2. Cn =
[
〈α∗〉ϕ

]
,Φ and there is ani ∈N, s.t.i < n andCi = Cn, and player∀ has

not used rule(FC) betweenCi andCn.

Player∃ wins the playC0, . . . ,Cn iff

3. Cn is terminal, andff 6∈C and for everyq∈C: q 6∈C, or

4. Cn =
[
ϕ
]
,Φ and there is ani ∈N, s.t.i < n andCi =Cn, and player∀ has used

rule (FC) betweenCi andCn.

5. Cn =
[
[α∗]ϕ

]
,Φ and there is ani ∈ N, s.t.i < n andCi = Cn, and player∀ has

not used rule(FC) betweenCi andCn.

Correctness

Again, finiteness of every play and uniqueness of their winners are proved in the same

way as they are for LTL and CTL, see Lemmas93, 94 and108. The same holds for

determinacy.

168 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Fact 122 (FC) is the only rule that maintains the size of a configuration. Rules([〈∗〉]),
(〈∗〉), ([[∗]]) and([∗]) increase the number of connectives in a configuration. All other

rules either reduce the number of connectives in a programα or the number of boolean

connectives and modalities in a formula.

Lemma 123 Every play ofG(ϕ) has finite length less than|ϕ| ·2|ϕ|+3 and a uniquely

determined winner.

Corollary 124 (Determinacy) Player∀ winsG(ϕ) iff player∃ does not winG(ϕ).

Lemma 125 Player∃ preserves unsatisfiability with her rules. Player∀ can preserve

unsatisfiability.

PROOF The cases of the rules for boolean connectives have been dealt with in the LTL

or CTL version of this lemma already (Lemmas96 and110). All the deterministic

rules preserve unsatisfiability because the apply equivalences for PDL formulas.

Note that player∃’s choices are all special instances of configurations containing

disjunctions. Player∀’s choice with rule([[∪]]) is an instance of a conjunctive choice.

Preservation of unsatisfiability with rule(FC) is trivial.

For the remaining cases of rules(〈ai〉) and ([ai]) suppose thatϕi ,ψi,1, . . . ,ψi,mi is

satisfiable for everyϕi with i ∈ {1, . . . ,n}. Then each of them has a modelTi ,si s.t.

Ti ,si |= ϕi ∧ψi,1∧ . . .∧ψi,mi for all i ∈ {1, . . . ,n}

We defineT′ as the disjoint union over allTi with a new statesand transitionss ai−−→si ,

s.t.ai 6= a j if i 6= j, and a consistent labellingL(s) = {q1, . . . ,ql}. Then

T′,s |=
l̂

i=1

qi ∧
n̂

i=1

(〈ai〉ϕi ∧
mî

j=1

[ai]ψi, j)

The conjuncts can be permuted into the form that is presented in rule(〈ai〉) or ([ai]).

Conversely, if this formula is unsatisfiable then there must be ani ∈ {1, . . . ,n} s.t.

ϕi , ψi,1, . . . , ψi,mi

is unsatisfiable. This shows that player∀ can preserve unsatisfiability with rules([ai])

and with rule(〈ai〉) by possibly changing focus accordingly before it is applied.�

6.3. Satisfiability Games for PDL 169

As in the CTL case, we describe a priority list strategy for player∀. Again, the actual

list during a play depends on player∀’s choices with game rule([ai]).

Definition 126 (Priority list strategy) Let l be apriority list of all subformulas of

ϕ0 of the form〈α∗〉ψ for some programα in decreasing order of size, i.e.

l = 〈α∗1〉ψ1, . . . ,〈α∗n〉ψn

with

〈α∗i 〉ψi ∈ Sub(〈α∗j 〉ψ j) and 〈α∗i 〉ψi 6= 〈α∗j 〉ψ j implies j < i

In that case〈α∗j 〉ψ j is said to have higher priority than〈α∗i 〉ψi . We say that〈α∗〉ψ is

present in a configurationC if 〈α∗〉ψ ∈C or 〈α〉〈α∗〉ψ ∈C.

Player∀ uses the priority list as it is described in Definition97. He attempts to set

the focus to the〈α∗〉ψ with the highest priority that is present or a superformula of it.

〈α∗〉ψ gets appended to the end of the list when player∃ choosesψ in the unfolding

instead of〈α〉〈α∗〉ψ. At any moment player∀ checks whether he can win by setting

the focus to an atomic proposition.

The next lemma is proved in the same way as Lemma98 for the LTL games. Note

that, as in the CTL case, we speak ofthe priority list strategy as his overall strategy

that includes the preservation of unsatisfiability according to Lemma125.

Lemma 127 (Optimality) If player∀ winsG(ϕ0) then he wins it with the priority list

strategy.

The minimal formulaχP causing unsatisfiability in a playP of a PDL satisfiability

game is defined just as it is in Definition99 for LTL. χP is the syntactically least

formula that causes unsatisfiability and that occurs earliest in a configuration ofP.

Here,〈α〉ϕ counts as smaller than〈β〉ψ if the number of connectives inα is less than

the number of connectives inβ. The same holds for formulas of the form[α]ϕ. This is

important for applications of rule([〈;〉]) for example that replace formulas with others

that have the same number of connectives but with a reduced number of connectives

inside a modality.

170 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Lemma 128 Let ϕ0 be unsatisfiable andP be a play ofG(ϕ0) in which player∀ uses

his priority list strategy. ThenχP is either atomic or of the form〈α∗〉ψ.

PROOF This is proved by case analysis onχP. Note that the cases of atomic

propositions, disjunctions and conjunctions are the same as the ones in the proof of

Lemma101.

Thus,χP can only be of the form〈β〉ϕ or [β]ϕ. The following cases are excluded:

〈α0∪α1〉ϕ, [α0∪α1]ϕ, 〈ψ?〉ϕ and [ψ?]ϕ

They can all be reduced to the case of a disjunction or a conjunction. For[ψ?]ϕ note

thatψ is of the same size asψ.

If β = a for somea∈ A then rule(〈a〉) or ([a]) will eventually remove the modality

from ϕ which is then a better candidate forχP. Compare this case also to the case of a

Xϕ in LTL and aQXϕ in CTL.

Next, there are the cases of〈α0;α1〉ϕ and[α0;α1]ϕ. Game rules([〈;〉]), (〈;〉), ([[;]])

and([;]) applied to a formula of this form produce a semantically equivalent formula

that is smaller by convention since the sequential composition operator is removed.

Thus, they cannot be minimal formulas causing unsatisfiability either.

The two remaining cases are[α∗]ϕ and〈α∗〉ϕ. The former can be excluded again since

it only causes unsatisfiability if the smallerϕ causes unsatisfiability later on in the play.

Note that the unfolding of[α∗]ϕ guaranteesϕ or a subformula of it to be present at any

moment in the play.

Finally, supposeχP = 〈α∗〉ϕ. Thus, there is a configurationCk = χP,Φk in the play

s.t.

|= Φk → 〈α∗〉ϕ

This means|= Φk→ [α∗]ϕ. Remember rule(〈∗〉) for the unfolding of〈α∗〉ϕ. Player∃
chooses eitherϕ or 〈α〉〈α∗〉ϕ. In the first case,ϕ contradicts the assumption thatχP is

of the form〈α∗〉ϕ sinceϕ is syntactically smaller. This is because

[α∗]ϕ ≡ ϕ∧ [α][α∗]ϕ

6.3. Satisfiability Games for PDL 171

and, hence,

|= Φk → ϕ

However, the case where player∃ always chooses〈α〉〈α∗〉ϕ instead does not contradict

the assumption since〈α〉〈α∗〉ϕ is not syntactically smaller than〈α∗〉ϕ. In this case,

〈α∗〉ϕ is the smallest formula causing unsatisfiability. �

Theorem 129 (Soundness) If ϕ0 is unsatisfiable then player∀ winsG(ϕ0).

PROOF Assumeϕ0 is unsatisfiable. As in the proofs of Theorems102 and 114,

we show that player∀ wins G(ϕ0) by using his priority list strategy and preserving

unsatisfiability.

Let the two players play a playC0, . . . ,Cn of G(ϕ0). By Lemma125, eachCi is

unsatisfiable, in particularCn. Thus, player∃ cannot win this play with her winning

condition 3 since it requires the last configuration of the play to be satisfiable.

Sinceϕ0 is assumed to be unsatisfiable, Lemma128 applies. Regardless of which

play P is played,χP is either atomic or of the form〈α∗〉ϕ. Let Ck be the earliest

configuration containingχP s.t.

Ck = χP,Φk and |= Φk → χP

If χP = q then the priority list strategy causes player∀ to win the play since he will set

the focus to eitherq or q in Ck or at mostlog|ϕ0| steps later.

SupposeχP is of the form〈α∗〉ϕ. If player∀ sets the focus toχP whenCk is reached

then he wins the resulting play with his winning condition 2. Note that player∃ can

never fulfil χP by assumption. Thus, player∀ can leave the focus on it.

Suppose this is not the case, i.e.

Ck =
[
ϕ′

]
,χP,Φ

ϕ′ is of the form〈α∗〉ϕ as well since player∀’s strategy only allows him to set the

focus to a formula other than that if no〈α∗〉ϕ formula is present. ButχP is going to

remain present since player∃ cannot fulfil it. Moreover,χP is a member of the priority

list at this moment.

172 Chapter 6. Satisfiability Games for LTL, CTL and PDL

We can assumeϕ′ to get fulfilled at some point. If it does not then player∀ will win

with condition 2 just as he does in the preceding case.

The moment it gets fulfilled it is moved to the end of the priority list and player∀
resets the focus to the〈α∗〉ϕ formula which has highest priority and is present. Note

thatχP is present and that two formulas only swap their priority order if the one with

the higher priority gets fulfilled. Therefore, there are only finitely many formulas of

the form 〈α∗〉ϕ other thanχP that the focus can be set to. As soon as one of them

persists, player∀ wins with winning condition 2. Eventually, this will beχP unless

another one did beforehand.

Note that the argumentation above holds for every play ofG(ϕ0). Thus, player∀
will win each play either with his winning condition 1 or 2 if he uses his priority list

strategy. �

Similar to the proofs of Theorems103and115, we will relate the satisfiability games

for PDL to its model checking games of Chapter4 and obtain completeness in this

way. Again, one satisfiability play must be related to several model checking plays

since configurations of the latter contain single formulas only.

Theorem 130 (Completeness) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable. Then it has a modelT = (S,{ a−→| a∈ A},L) with

s0 ∈ S. By Theorem52, T can be assumed to be finite. Player∃’s moves inG(ϕ0) will

be guided by her winning strategies in the PDL model checking gamesGT(s,ψ) where

s∈ S andψ ∈ Sub(ϕ0). Remember that a PDL model checking game is not a focus

game.

The starting positions for both plays are
[
ϕ0

]
and s0 ` ϕ0. Suppose the actual

formula in focus is a disjunction. Then player∃ uses her winning strategy in

GT(s0,ϕ0) to choose the disjunct that guarantees her to win the remaining play. In

the satisfiability game she chooses the same disjunct. Unfolding of temporal operators

is deterministically done in the same way in both plays.

The only interesting case is a conjunction inG(ϕ0). Consider the first occurrence of

such a situation inG(ϕ0). At this moment no sideformula can be present. Let therefore

6.3. Satisfiability Games for PDL 173

[
ψ0∧ψ1

]
be such a configuration. This must correspond to a position

s ` ψ0∧ψ1

in the model checking play. Since player∃ is assumed to have a winning strategy

for this game she must have winning strategies for bothGT(s,ψ0) and GT(s,ψ1).

In G(ϕ0) player∀ sets the focus to one of the conjuncts, sayψ0. Then all choices

regarding formulas in focus are matched by choices inGT(s,ψ0), whereas all choices

regarding sideformulas correspond to choices inGT(s,ψ1). Thus, at any moment in

the satisfiability game a configuration containingn formulas is matched byn model

checking plays. Furthermore, the state component of all model checking plays is

always the same. Changing focus does not alter the situation on the model checking

side at all.

Finally, if the satisfiability play reaches a configuration

[
〈a1〉ϕ1

]
, . . . ,〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm,q1, . . . ,ql

the model checking plays corresponding to〈ai〉ϕi are discarded for alli = 2, . . . ,n, as

well as those for[b j]ψ j for all j = 1, . . . ,mwith b j 6= a1. Player∃ chooses a successor

statet of s in the play for〈a1〉ϕ1. This guarantees that a transitions a1−−→ t exists.

By assumption she has winning strategies for the remaining model checking games

GT(t,ϕ1) andGT(t,ψ j) for all j = 1, . . . ,m with b j = a1. This is becauses a1−−→ t and

player∃ wins the model checking gamesGT(s, [b j]ψ j).

The same argument holds for a configuration with the focus on a[b]ψ, the only

difference being player∀ who determines the model checking play in which player

∃ chooses a successor state.

It is possible for the satisfiability play to perform a repeat on a configuration
[
ψ0

]
,Φ

while the set of model checking plays does not. LetΦ = ψ1, . . . ,ψn. Whenever the

model checking plays are at stagest ` ψi , for i = 1, . . . ,n, after they were at stages

s` ψi , ands 6= t, and the focus is on the same formula, then the satisfiability game

is restarted at the first occurrence of
[
ψ0

]
,Φ. This is not done ifs = t. SinceT is

assumed to be finite this iteration process will eventually terminate.

174 Chapter 6. Satisfiability Games for LTL, CTL and PDL

Suppose now that player∀ wins the satisfiability game. If he does with winning

condition 1 then there must be two configurationst ` q andt ` q in the set of model

checking plays. Player∃ cannot win both of the model checking plays as she is

assumed to. Suppose therefore that player∀ wins with condition 2. But a repeat

with a 〈α∗〉ϕ in focus corresponds to a model checking play that repeats on〈α∗〉ϕ as

well and would be won by player∀, too.

We conclude therefore that player∀ cannot win any play ofG(ϕ0) and by Corollary109

that player∃ must have a winning strategy forG(ϕ0). �

Theorem 131 (Small model property) If ϕ0∈ PDL is satisfiable then it has a model

of size less than|ϕ0| ·2|ϕ0|.

PROOF Supposeϕ0 is satisfiable. By Theorem130, player∃ has a winning strategy

for the gameG(ϕ0). Her game tree is used to build a modelT for ϕ0. Let two

configurations that occur in the same play be equivalent if they denote the same state

in a model.

Ci ∼Cj iff there is no application of rule(〈a〉) or ([a]) in between

Again,[Ci] is the equivalence class ofCi . States ofT are collapsed configurations under

the relation∼. Transitions inT are defined by

[Ci] a−→[Ck] iff there is a j ∈ N s.t.Ci ∼Cj ,Cj+1∼Ck and

betweenCj andCj+1 rule (〈a〉) or ([a]) has been played

The states inT are labelled as follows.

q∈ L([Ci]) iff there is a j ∈ N s.t.Ci ∼Cj andq∈Cj

As in the proofs of Theorems104 and 116 it is possible to show the following by

induction on the structure ofψ for all i, j < n:

[Ci] |= ψ for all ψ ∈Cj if Ci ∼Cj

6.3. Satisfiability Games for PDL 175

Again, the fact thatT arises from player∃’s game graph guarantees that this holds for

formulas of the form〈α〉ϕ and [α]ϕ, and that each〈α∗〉ϕ gets fulfilled inT. Thus,

[C0] |= ϕ0.

Lemma123shows that the size of the constructed model is bounded by|ϕ0| ·2|ϕ0| since

this is the maximal number of different configurations inG(ϕ0). �

Corollary 132 (Tree model property) PDL has the tree model property.

Theorem 133 (Winning strategies)

a) Player∃’s winning strategies are history-free.

b) Player∀’s winning strategies are LVR strategies.

PROOF This is proved in the same way as Theorem119for CTL. Player∃’s winning

strategy forG(ϕ0) with a satisfiableϕ0 consists of choosing a model forϕ0 and playing

according to her strategies in the corresponding PDL model checking gamesGT(s,ψ)

for s∈ S andψ ∈Sub(ϕ0). By Theorem51, her model checking winning strategies are

history-free.

Player∀’s winning strategies are latest visitation record strategies since he uses the

same strategy as he does in the CTL games. �

Complexity

The proofs of soundness and completeness show that the satisfiability problem for

PDL is very similar to the satisfiability problem for CTL. This is reflected in their

computational complexities as well.

Theorem 134 (Complexity) Deciding the winner of a PDL satisfiability game is in

EXPTIME.

PROOF As in the proof of Theorem120, player∀’s moves cannot be determinised at no

additional cost. The priority list strategy from the proof of Theorem129is applicable

but leaves choices with rule([a]).

As in the CTL case, an alternating algorithm only needs to store two configurations

and a counter to find a winning play for one of the players. Again, the configurations

176 Chapter 6. Satisfiability Games for LTL, CTL and PDL

are the actual one and one chosen by player∀ on which he tries to find a repeat. The

maximal counter value is bounded by

|ϕ| ·2|ϕ| + 3

Thus, the counter requires space polynomial in the size of the inputϕ. Therefore,

checking whether a CTL formula is satisfiable is in APSPACE which is the same as

EXPTIME, [CKS81]. �

Chapter 7

Complete Axiomatisations

for LTL, CTL and PDL

And now for something

completely different . . .

—

MONTY PYTHON

This chapter provides an example of the usefulness of satisfiability games. By using

a different technique to prove completeness in Theorems103, 115 and130 we can

extract complete axiomatisations for LTL, CTL and PDL from the satisfiability games.

In all cases, complete axiomatisations already exist. The axiom systems presented

and developed here do not have any advantages over the existing ones as such. It is

the game-based approach to satisfiability checking which bears advantages over other

approaches because it provides a uniform way of creating complete axiomatisations

for different logics.

We will make use of the fact that LTL, CTL and PDL are closed under negation.

However, here we prefer the semantical notation¬ϕ of the negation ofϕ.

178 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Definition 135 An axiom systemA for a logicL is a set ofaxiomsandrules, s.t. every

axiom is of the form ` ϕ for a ϕ ∈ L, and every rule is of the form

if ` ϕ then ` ψ

In both cases,ϕ andψ are allowed to contain formula variables. In this case they are

interpreted as formula schemes.

An A-proof of a formulaϕ ∈ L is a finite sequenceϕ0, . . . ,ϕn of formulas ofL, s.t.

ϕ = ϕn and for alli = 0, . . . ,n:

• ϕi is an instance of an axiom inA, or

• there is aj < i s.t. ϕi follows from ϕ j as an instance of a rule inA.

We will write `A ϕ to indicate thatϕ is provable inA. If the axiom system can be

derived from the context we drop the index and simply write` ϕ. A formulaϕ whose

negation cannot be proved inA, 6`A ¬ϕ, is calledA-consistentor consistentfor short.

An axiom system is calledsoundif every provable formula is valid, i.e.

` ϕ implies |= ϕ

for everyϕ ∈ L. It is calledcompleteif the converse holds, i.e.

|= ϕ implies ` ϕ

for everyϕ ∈ L.

Completeness of an axiomatisation is an important property since it guarantees that

every validity of a logic can be captured syntactically. Note that being valid is a

semantical property.

Soundness is equally important since an axiomatisation that allows non-valid formulas

to be proved is not very useful. Soundness is often very easy to establish. The standard

technique is rule induction on the structure ofA.

Completeness is usually harder to prove. One possibility is proof by contraposition. If

the underlying logic is closed under negation then completeness can be rephrased as

6` ¬ϕ implies 6|= ¬ϕ

7.1. A Complete Axiomatisation for LTL 179

This means if every consistent formula is satisfiable then the axiom system is complete.

In the following sections we will give alternative proofs of the completeness of the

satisfiability games in the previous chapter. This technique will not make use of a

model of a formula. Instead it changes the games slightly to rule out plays in a game

tree for player∃ that are won by player∀. In these modified games, player∀ cannot

win a single play on a satisfiable formula.

The task is completed by extracting axioms from the game rules and winning

conditions such that the rules preserve consistency. Then, player∀ cannot win a play

on a consistent formula which, by soundness of the games, means that the formula

must be satisfiable. Hence, the axiomatisation is complete.

Finally, the axiom systems need to be proved sound which is very easy in all three

cases.

7.1 A Complete Axiomatisation for LTL

In this sectionG(ϕ) always refers to a satisfiability game for an LTL formulaϕ in the

sense of Section6.1.

Lemma 136 If χ∧ (ϕUψ) is satisfiable then

χ∧ (ψ∨ (ϕ∧X((ϕ∧¬χ)U(ψ∧¬χ))))

is satisfiable.

PROOF Suppose there is a modelπ for χ∧(ϕUψ), i.e.π |= χ andπ |= ϕUψ. Then there

is ak∈ N s.t.πk |= ψ and for all j < k: π j |= ϕ. Suppose furthermore, that

χ∧ (ψ∨ (ϕ∧X((ϕ∧¬χ)U(ψ∧¬χ))))

is not satisfiable. This means

|= χ→ (¬ψ∧ (¬ϕ∨X((¬ϕ∨χ)R(¬ψ∨χ))))

k = 0 is impossible sinceπ |= χ impliesπ |=¬ψ. But if k > 0 thenπ |= ϕ and therefore

π |= X((¬ϕ∨χ)R(¬ψ∨χ))

180 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

But this meansπ1 |= ¬ψ∨χ, and

π1 |= ¬ϕ∨χ or π1 |= X((¬ϕ∨χ)R(¬ψ∨χ))

If π1 |= χ thenπ1 |= ¬ψ. But π1 |= ϕ because ofπ |= ϕUψ, and therefore

π1 |= X((¬ϕ∨χ)R(¬ψ∨χ))

by the assumed validity. Ifπ1 6|= χ then a contradiction toπ |= ϕUψ is reached

immediately.

This argument can be iterated starting withπ1 instead ofπ now. At some point,πk must

be reached. By assumptionπk |= ψ, and the iteration yieldedπk |= χ. But the latter

implies πk |= ¬ψ which contradicts the assumption. We conclude that the validity

above cannot hold and that therefore

χ∧ (ψ∨ (ϕ∧X((ϕ∧¬χ)U(ψ∧¬χ))))

must be satisfiable. �

Now we change the LTL satisfiability games from Section6.1slightly. The goal is the

following: player∀ should not be able to win a single play on a satisfiable formula

anymore. Note that with the original games this is possible, for example if player∃
delays the fulfilling of anU formula for too long.

We allow player∃ to subscriptU formulas in a very restricted way. Whenever a play

of G(ϕ0) reaches a configuration
[
ϕUψ

]
,Φ she takes a note of the contextΦ at theU

after it has been unfolded. This means the next configuration will be

[
ψ∨ (ϕ∧X(ϕUΦψ))

]
,Φ

Since configurations in the satisfiability games are understood conjunctively we simply

write¬Φ to denote¬Vϕ∈Φ ϕ. The subscripted formulaϕUΦψ is to be interpreted as

(ϕ∧¬Φ)U(ψ∧¬Φ)

Note that multiple subscripts are possible, i.e. a subscriptedU formula can be

subscripted again.

7.1. A Complete Axiomatisation for LTL 181

There are two reasons for using subscripts instead of spelling the formulas out. A

play according to the amended game rules should be finished if and only if the

corresponding play without subscripts is finished. If the strengthening of anU formula

is spelled out then a repeat on a configuration does not necessarily occur at the same

moment anymore. I.e. an occurrence of a configuration
[
ϕUΨψ

]
,Φ should count as a

repeat if for example the configuration
[
ϕUψ

]
,Φ was visited before.

Moreover, once anU formula is subscripted with aΦ for example, it should not be

possible anymore to changeΦ through the game rules, i.e. to play on it.

Formally, the amended LTL satisfiability game is obtained from the one of Section6.1

by replacing rule([U]) with

([U])

[
ϕUΨψ

]
,Φ

[
ψ∨ (ϕ∧X(ϕUΨ,Φψ))

]
,Φ

and by adding the following instance to rule(FC)

(FC)

[
ϕUΨψ

]
,χ,Φ

[
χ
]
,ϕUψ,Φ

∀

The winning conditions are the same except that anU formula can be arbitrarily

subscripted.

Lemma 137 Player ∃ can preserve satisfiability with the rules of the amended LTL

games. Player∀ preserves satisfiability.

PROOF Player∀ preserves satisfiability since he is only concerned with the position

of the focus. Suppose

(ϕ0∨ϕ1)∧Φ

is satisfiable, then eitherϕ0∧Φ or ϕ1∧Φ is satisfiable which shows that player∃ can

preserve satisfiability by choosing disjuncts accordingly.

Suppose

Xψ1∧ . . .∧Xψn∧q1∧ . . .∧qk

182 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

is satisfiable, i.e. it has a modelπ. Thenπ1 is a model forψ1∧ . . .∧ψn which shows that

rule (X) preserves satisfiability, too. So does unfolding ofR formulas andU formulas

that are not in focus.

Unfolding U formulas in focus and subscripting preserves satisfiability, too, as it is

shown in Lemma136. �

Theorem 138 (Completeness II) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable. According to Lemma137, player∃ can play in a

way such that every reached configuration is satisfiable. Whenever player∀ sets the

focus to anU formula in a configuration
[
ϕUψ

]
,Φ

she adds the sideformulas to the index of theU after it has been unfolded. The indices

are dropped if player∀ removes the focus from thisU formula.

By Lemma137, player∀ cannot win a play with his winning condition 1 since the final

configuration of this play would be unsatisfiable. However, if the starting formula is

satisfiable then he cannot win a play by a repeat on anU formula in focus either.

Suppose a play visits a position
[
ϕUψ

]
,Φ twice such that player∀ has not changed

focus in between. Then, at the second time this configuration is

C =
[
ϕUΦ1,...,Φkψ

]
,Φ

whereΦ1, . . . ,Φk for somek ∈ N are all the sets of sideformulas that were present

every timeϕUψ was unfolded. Therefore there is aj ∈ {1, . . . ,k} s.t.Φ = Φ j . But then

C is unsatisfiable since

|= (ϕ∧¬Φ1∧ . . .∧¬Φk) U (ψ∧¬Φ1∧ . . .∧¬Φk) → ¬Φ j

for all j = 1, . . . ,k. But this contradicts the assumption according to Lemma137. We

therefore conclude that player∃ must winG(ϕ0). �

All that remains to be done in order to obtain a complete axiomatisation for LTL is

to extract an axiom system from the game rules. This is done rule by rule such that

Lemma137holds if “satisfiability” is replaced by “consistency”.

7.1. A Complete Axiomatisation for LTL 183

Example 139 We will exemplarily do this for rule(X). The goal is the following

proposition. Ifϕ1∧ . . .∧ϕk is inconsistent butq1∧ . . .∧qn is consistent then

Xϕ1∧ . . .∧Xϕk∧q1∧ . . .∧qn (7.1)

is inconsistent. Suppose there is a proof of

` ϕ2∧ . . .∧ϕk → ¬ϕ1

First of all we need to put anX in front. Therefore we need a rule like (XGen). Then

we can prove

` X(ϕ2∧ . . .∧ϕk → ¬ϕ1)

With (MP) and the two axioms 4 and 5 we are able to prove

` Xϕ2∧ . . .∧Xϕk → X¬ϕ1

By propositional reasoning we can add a consistent set of propositional constants and

prove

` q1∧ . . .∧qn∧Xϕ2∧ . . .∧Xϕk → X¬ϕ1

Finally, we need an axiom that switches the position of theX and the¬ symbol, namely

axiom 3. Then we can prove

` q1∧ . . .∧qn∧Xϕ2∧ . . .∧Xϕk → ¬Xϕ1

which means we have a proof of the inconsistency of the formula in (7.1).

The axiom system that results if this is done to all the rules is presented in Figure7.1.

Lemma 140 Let A be the LTL axiom system of Figure7.1. The game rules of the

amended LTL satisfiability games preserveA-consistency.

PROOF Preservation of consistency by rule(∧) is trivial. Supposeϕ0 ∨ ϕ1,Φ is

consistent. By axiom 1 and rule (MP), ϕi ,Φ is consistent for somei ∈ {0,1}. The

unfolding of aR or anU formula that is not in focus preserves consistency using axiom

2 and 3.

Preservation of consistency by rule(X) was already shown in Example139.

Finally, rule (Rel) and axiom 7 are used to capture player∃’s winning strategy and to

prove that indexing formulas preserves consistency too. �

184 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Axioms:

1. any propositional tautology

2. ϕUψ→ ψ∨ (ϕ∧X(ϕUψ))

3. ϕRψ→ ψ∧ (ϕ∨X(ϕRψ))

4. ¬Xϕ↔ X¬ϕ

5. Xϕ∧Xψ→ X(ϕ∧ψ)

6. X(ϕ→ ψ)→ Xϕ→ Xψ

7. ¬(ϕUψ)↔ (¬ϕ)R(¬ψ)

Rules:

(MP) if ` ϕ and ` ϕ→ ψ then ` ψ
(XGen) if ` ϕ then ` Xϕ
(Rel) if ` χ→ ψ∧ (ϕ∨X((ϕ∨χ)R(ψ∨χ))) then ` χ→ ϕRψ

Figure 7.1: A complete axiomatisation for LTL.

Theorem 141 (Completeness) The LTL axiom systemA of Figure7.1 is complete.

PROOF Supposeϕ is A-consistent. Player∃ wins the gameG(ϕ) because every

winning position for player∀ is A-inconsistent. By Lemma140, ϕ can only be

A-consistent if all winning positions are. By Theorem102, ϕ is satisfiable. �

Theorem 142 (Soundness) The LTL axiom systemA of Figure7.1 is sound.

PROOF Validity of axiom 1 is trivial. Validity of the other axioms has been shown

in Section2.4 already. Rule (MP) preserves validity. Suppose6|= Xϕ. Then¬Xϕ has a

modelπ s.t.π1 |= ¬ϕ. Thus,6|= ϕ which proves preservation of validity in rule (XGen).

Finally, Lemma136shows that rule (Rel) preserves validity. �

Another axiom systemDUX for LTL was proposed in [GPSS80]. It is presented in

Figure7.2. Its completeness was shown using maximal consistent sets of formulas.

7.1. A Complete Axiomatisation for LTL 185

A1. ffR(ϕ→ ψ)→ (ffRϕ→ ffRψ)

A2. ¬Xϕ↔ X¬ϕ

A3. X(ϕ→ ψ)→ Xϕ→ Xψ

A4. ffRϕ→ ϕ∧X(ffRϕ)

A5. ffR(ϕ∧Xϕ)→ (ϕ→ ffRϕ)

U1. ϕUψ→ Fψ

U2. ϕUψ→ ψ∨ (ϕ∧X(ϕUψ))

R1. any propositional tautology

R2. if ` ϕ and ` ϕ→ ψ then ` ψ

R3. if ` ψ then ` ffRψ

Figure 7.2: A complete axiomatisation for LTL from [GPSS80].

Soundness ofDUXand completeness ofA ensure that if`DUX ϕ then `A ϕ, i.e. every

formula that is provable inDUXis also provable inA. This holds in particular for the

axioms and rules ofDUX. Nevertheless, we will show how they can be derived inA.

Theorem 143 For all ϕ ∈ LTL: if `DUX ϕ then `A ϕ.

PROOF We show that theDUXaxioms are provable inA and that theDUXrules can be

simulated inA.

A2,A3,U2,R1 and R1 are present inA. A4 is an instance of axiom 3 and U1 simply

reflects our abbreviation of aF formula.

R3 can be simulated as follows. We use induction on the length of a proof inDUX.

Suppose there is a proof using R3. Then there is a shorter proof of` ψ in DUX. By

hypothesis,̀ A ψ. Instantiate rule(Rel) with χ = tt andϕ = ff. Then

`A ffRψ if `A ψ∧Xtt

But this is provable using the hypothesis, axiom 1 and rule(XGen).

186 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Axioms A1 and A5 are more complicated to prove inA. We will show that player∀
winsG(¬A5). The negation of axiom A5 is

ϕ∧ (ffR(ϕ∧Xϕ))∧ (ttU¬ϕ)

Let ϕ′ = ϕ∧ (ffR(ϕ∧Xϕ)). The winning play for player∀ is

ϕ,ffR(ϕ∧Xϕ),
[
ttU¬ϕ

]

ϕ,Xϕ,X(ffR(ϕ∧Xϕ)),
[
¬ϕ∨X(ttUϕ′¬ϕ)

]

ϕ,Xϕ,X(ffR(ϕ∧Xϕ)),
[
X(ttUϕ′¬ϕ)

]

ϕ,ffR(ϕ∧Xϕ),
[
ttUϕ′¬ϕ

]

The game rules used for this play are(R), ([U]) with indexing,([∨]) and(X). Therefore

the axioms and rules needed to prove A5 are 1 and(MP) for ([∨]), 2 and 3 for the

unfoldings, 4 – 6 and(XGen) for (X), 7 for the negation of A5, and(Rel) to describe

the winning condition.

Axiom A1 can be shown to be provable inA in the same way. �

7.2 A Complete Axiomatisation for CTL

In this sectionG(ϕ) always refers to a satisfiability game for a CTL formulaϕ in the

sense of Section6.2.

Lemma 144

a) If χ∧E(ϕUψ) is satisfiable then so isχ∧ (ψ∨ (ϕ∧EXE((ϕ∧¬χ)U(ψ∧¬χ)))).

b) If χ∧A(ϕUψ) is satisfiable then so isχ∧ (ψ∨ (ϕ∧AXA((ϕ∧¬χ)U(ψ∧¬χ)))).

PROOF a) Suppose there is a modelT = (S,−→,L) for χ∧E(ϕUψ), i.e. there is a state

s∈ S s.t.s |= χ ands |= E(ϕUψ). Then there is a pathπ = s0,s1, . . . in T s.t.s0 = s and

for somek∈ N: sk |= ψ andsj |= ϕ for every j < k. Suppose furthermore, that

χ∧ (ψ∨ (ϕ∧EXE((ϕ∧¬χ)U(ψ∧¬χ))))

7.2. A Complete Axiomatisation for CTL 187

is not satisfiable, i.e.

|= χ→ (¬ψ∧ (¬ϕ∨AXA((¬ϕ∨χ)R(¬ψ∨χ))))

k = 0 is impossible sinces0 |= χ implies s0 |= ¬ψ. But if k > 0 then s0 |= ϕ and

therefore

s0 |= AXA((¬ϕ∨χ)R(¬ψ∨χ))

But this means thats1 |= ¬ψ∨χ, and

s1 |= ¬ϕ∨χ or s1 |= AXA((¬ϕ∨χ)R(¬ψ∨χ))

If s1 |= χ thens1 |= ¬ψ ands1 |= ϕ because ofπ |= ϕUψ. But then

s1 |= AXA((¬ϕ∨χ)R(¬ψ∨χ))

by the assumed validity. Ifs1 6|= χ then a contradiction toπ |= ϕUψ is encountered

immediately.

This argument can be iterated alongπ. At some point,sk must be reached. By

assumptionsk |= ψ, and the iteration yieldssk |= χ. But the latter impliessk |= ¬ψ
which contradicts the assumption. We conclude that the validity above cannot hold

and that therefore

χ∧ (ψ∨ (ϕ∧EXE((ϕ∧¬χ)U(ψ∧¬χ))))

must be satisfiable.

b) Suppose there is a modelT = (S,−→,L) for χ∧ A(ϕUψ), i.e. there is a states0 ∈ S

s.t. s0 |= χ ands0 |= A(ϕUψ). This meansπ |= ϕUψ for every pathπ with π(0) = s0.

Suppose furthermore, that

χ∧ (ψ∨ (ϕ∧AXA((ϕ∧¬χ)U(ψ∧¬χ))))

is not satisfiable, i.e.

|= χ→ (¬ψ∧ (¬ϕ∨EXE((¬ϕ∨χ)R(¬ψ∨χ))))

s0 |= ¬ψ because ofs0 |= χ. Then,s0 |= ϕ because ofs0 |= A(ϕUψ). But from the

validity above follows

s0 |= EXE((¬ϕ∨χ)R(¬ψ∨χ))

188 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

I.e. there is a states1 s.t.s0−→s1 and

s1 |= E((¬ϕ∨χ)R(¬ψ∨χ))

Then,s1 |= ¬ψ∨χ, and

s1 |= ¬ϕ∨χ or s1 |= EXE((¬ϕ∨χ)R(¬ψ∨χ))

If s1 6|= χ thens1 |= ¬ψ and

s1 |= EXE((¬ϕ∨χ)R(¬ψ∨χ))

sinces1 |= ϕ is impossible. Ifs1 |= χ then by the assumed validity,s1 |= ¬ψ and

s1 |= EXE((¬ϕ∨χ)R(¬ψ∨χ))

holds, too. Now this argument can be iterated with statess2,s3, . . . s.t.si |= ¬ψ for all

i ∈ N. But si−→si+1 for all i ∈ N. By limit closure,π := s0,s1,s2, . . . is a path inT s.t.

π 6|= ϕUψ which contradicts the assumption. We conclude that the assumed validity

cannot be true and that therefore

χ∧ (ψ∨ (ϕ∧AXA((ϕ∧¬χ)U(ψ∧¬χ))))

must be satisfiable. �

Now we amend the CTL satisfiability games from Section6.2. Again, the goal is to

disable winning plays for player∀ on a satisfiable input formula.

We allow player∃ to subscriptQ(ϕUψ) formulas in the same way as in Section7.1.

Whenever a play ofG(ϕ0) reaches a configuration
[
Q(ϕUψ)

]
,Φ she takes a note of the

contextΦ at theU after it has been unfolded. This means the next configuration will be

[
ψ∨ (ϕ∧QXQ(ϕUΦψ))

]
,Φ

Changing focus discards the collected indices.

7.2. A Complete Axiomatisation for CTL 189

Lemma 145 Player∃ can preserve satisfiability with the rules of the amended CTL

games. Player∀ preserves satisfiability with his choices.

PROOF Most of this was already proved in Lemma137for the amended LTL games.

Suppose

EXϕ1∧ . . .∧EXϕn∧AXψ1∧ . . .∧AXψm∧q1∧ . . .∧qk

is satisfiable. According to Corollary117, it has a tree modelT. This must contain

subtrees which are models for

ϕi ∧ψ1∧ . . .∧ψm

for eachi = 1, . . . ,n, which shows that rule(EX) preserves satisfiability as well as rule

(AX) regardless of player∀’s choice.

Preservation of satisfiability with the new rule for indexing unfoldedU formulas in

CTL is shown in Lemma144. �

Theorem 146 (Completeness II) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable. According to Lemma145, player∃ can play in a

way such that every reached configuration is satisfiable. Whenever player∀ sets the

focus to aQ(ϕUψ) formula in a configuration
[
Q(ϕUψ)

]
,Φ

she adds the sideformulas to the indices of theU after it has been unfolded. They are

dropped if player∀ removes the focus from thisU formula.

By Lemma145, player∀ cannot win a play with his winning condition 1 since the final

configuration of this play would be unsatisfiable. However, if the starting formula is

satisfiable then he cannot win a play by a repeat on aQ(ϕUψ) in focus either.

Suppose a play visits a position
[
Q(ϕUψ)

]
,Φ

twice such that player∀ has not changed focus in between. Then, at the second time

this configuration is

190 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

C =
[
Q(ϕUΦ1,...,Φkψ)

]
,Φ

whereΦ1, . . . ,Φk for somek ∈ N are all the sets of sideformulas that were present

wheneverQ(ϕUψ) has been unfolded. Therefore there is aj ∈ {1, . . . ,k} s.t.Φ = Φ j .

But thenC is unsatisfiable since

|= Q((ϕ∧¬Φ1∧ . . .∧¬Φk) U (ψ∧¬Φ1∧ . . .∧¬Φk)) → ¬Φ j

for all j = 1, . . . ,k. But this contradicts the assumption according to Lemma145. We

therefore conclude that player∃ must winG(ϕ0). �

To obtain a complete axiomatisation for CTL we need to translate the game rules into

an axiom system. Again, the axiom system must be chosen such that Lemma145holds

if “satisfiability” is replaced by “consistency”. It is presented in Figure7.3.

Lemma 147 Let A be the CTL axiom system of Figure7.3. The game rules of the

amended CTL satisfiability games preserveA-consistency.

PROOF Preservation of consistency by rule(∧) and(∨) is the same as in the proof of

Lemma140. The same holds for the rules that unfoldQ(ϕUψ) andQ(ϕRψ).

Suppose now thatϕ0, . . . ,ϕk is inconsistent, i.e.

` ϕ1∧ . . .∧ϕk → ¬ϕ0

By rule (AXGen)

` AX(ϕ1∧ . . .∧ϕk → ¬ϕ0)

Then

` AXϕ1∧ . . .∧AXϕk → ¬EXϕ0

by rule (MP) and axioms 4,6 and 7. This proves preservation of consistency by rules

(AX) and(EX). Axiom 5 is used instead of 4 if there are noEXψ formulas in the actual

configuration.

Finally, rule (Rel) and axioms 8 and 9 are used to capture player∃’s winning strategy

and to prove that indexing formulas preserves consistency too. �

7.2. A Complete Axiomatisation for CTL 191

Axioms:

1. any propositional tautology

2. Q(ϕUψ)→ ψ∨ (ϕ∧QXQ(ϕUψ))

3. Q(ϕRψ)→ ψ∧ (ϕ∨QXQ(ϕRψ))

4. ¬AXϕ↔ EX¬ϕ

5. AX¬ϕ→¬AXϕ

6. AXϕ∧AXψ→ AX(ϕ∧ψ)

7. AX(ϕ→ ψ)→ AXϕ→ AXψ

8. ¬A(ϕUψ)↔ E(¬ϕ)R(¬ψ)

9. ¬E(ϕUψ)↔ A(¬ϕ)R(¬ψ)

Rules:

(MP) if ` ϕ and ` ϕ→ ψ then ` ψ
(AXGen) if ` ϕ then ` AXϕ

(Rel) if ` χ→ ψ∧ (ϕ∨QXQ((ϕ∨χ)R(ψ∨χ))) then ` χ→Q(ϕRψ)

Figure 7.3: A complete axiomatisation for CTL.

Theorem 148 (Completeness) The CTL axiom systemA of Figure7.3 is complete.

PROOF Supposeϕ is consistent. Then player∃ wins the gameG(ϕ). This is because

all of player ∀’s winning positions inG(ϕ) are A-inconsistent. But according to

Lemma 147, ϕ can only be consistent if all winning positions inG(ϕ) are. By

Theorem114, ϕ is satisfiable in this case. �

Theorem 149 (Soundness) The CTL axiom systemA of Figure7.3 is sound.

PROOF This is proved in the same way as Theorem142: the axioms are valid and the

rules preserve validity. The only interesting case of the latter part is Lemma144. �

192 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

Ax1. any propositional tautology

Ax2. E(ttUψ)↔ EFψ

Ax3. A(ttUψ)↔ AFψ

Ax4. EX(ϕ∨ψ)↔ EXϕ∨EXψ

Ax5. AXϕ↔¬EX¬ϕ

Ax6. E(ϕUψ)↔ ψ∨ (ϕ∧EXE(ϕUψ))

Ax7. A(ϕUψ)↔ ψ∨ (ϕ∧AXA(ϕUψ))

Ax8. EXtt∧AXtt
R1. if ` ϕ→ ψ then ` EXϕ→ EXψ

R2. if ` χ→ ψ∧EXχ then ` χ→ E(ffRψ)

R3. if ` χ→ ψ∧AX(χ∨A(ϕRχ)) then ` χ→ A(ϕRψ)

R4. if ` ϕ and ` ϕ→ ψ then ` ψ

Figure 7.4: A complete axiomatisation for CTL from [EH85].

Another axiom systemB for CTL was proposed in [EH85]. It is presented in Figure7.4.

Soundness ofB and completeness ofA ensure that if̀ B ϕ then`A ϕ, i.e. every formula

that is provable inB is also provable inA. This holds in particular for the axioms and

rules ofB.

Theorem 150 For all ϕ ∈ CTL: if `B ϕ then `A ϕ.

PROOF We show that theB axioms are provable inA and that theB rules can be

simulated inA.

Axioms Ax1, Ax5, Ax6 and Ax7 as well as rule R4 are present inA. We have

introduced Ax2 and Ax3 as abbreviations. AnA-proof of Ax8 is the following.

tt, AXtt, AXtt→¬AXff, ¬AXff, ¬AXff→ EXtt, EXtt, AXtt∧EXtt

It uses axioms 1, 4 and 5 and rules(MP) and(AXGen). In a similar way, axioms 1 and

6 – 9, and rule(MP) are needed to prove Ax4. R2 is an instance of rule(Rel) with

Q = E andϕ = ff. R1 is simulated using(AXGen), 9, (MP) and 7.

7.3. A Complete Axiomatisation for PDL 193

Finally, R3 is simulated using rule(Rel) with Q= A. By hypothesis there is anA-proof

for

` χ→ ψ∧AX(χ∨A(ϕRψ))

It is used to obtain a proof for

` ψ∧ (ϕ∨AXA((ϕ∨χ)R(ψ∨χ)))

using 1, 3 and(MP). Then,` χ→ A(ϕRψ) follows with rule(Rel). �

7.3 A Complete Axiomatisation for PDL

Here,G(ϕ) always refers to a satisfiability game for a PDL formulaϕ in the sense of

Section6.3.

Lemma 151 If χ∧〈α∗〉ϕ is satisfiable then

χ∧ (ϕ∨〈α〉〈((¬χ)?;α)∗〉(ϕ∧¬χ))

is satisfiable.

PROOF Suppose there is a modelT = (S,{ a−→| a∈ A},L) for χ∧〈α∗〉ϕ, i.e. there

is a states∈ S s.t. s |= χ ands |= 〈α∗〉ϕ. Then there is a pathπ = s0,s1, . . . in T s.t.

s0 = s and for somek∈ N: sk |= ϕ, sk |= ¬χ and for everyj < k: sj
α−→sj+1. Suppose

furthermore, that

χ∧ (ϕ∨〈α〉〈((¬χ)?;α)∗〉(ϕ∧¬χ))

is not satisfiable, i.e.

|= χ→ (¬ϕ∧ [α][((¬χ)?;α)∗](¬ϕ∨χ))

Thus,s0 |= χ impliess0 |= ¬ϕ and

s0 |= [α][((¬χ)?;α)∗](¬ϕ∨χ))

Then,

s1 |= [((¬χ)?;α)∗](¬ϕ∨χ)

194 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

becauses0
α−→s1, i.e.s1 |= ¬ϕ or s1 |= χ, and

s1 |= [(¬χ)?][α][((¬χ)?;α)∗](¬ϕ∨χ)

This is equivalent tos1 |= χ or

s1 |= [α][((¬χ)?;α)∗](¬ϕ∨χ)

Thus, ifs1 6|= χ thens1 |= ¬ϕ and

s1 |= [α][((¬χ)?;α)∗](¬ϕ∨χ)

On the other hand, ifs1 |= χ then, by the assumed validity,s1 |= ¬ϕ and

s1 |= [α][((¬χ)?;α)∗](¬ϕ∨χ)

holds, too. Thus,s1 6|= ϕ and, in particular,

s2 |= [((¬χ)?;α)∗](¬ϕ∨χ)

This argument can now be iterated along the pathπ showing thatsi 6|= ϕ for all i ∈ N.

But this contradicts the assumptionsk |= ϕ for somek ∈ N. We conclude that the

assumed validity cannot be true and that therefore

χ∧ (ϕ∨〈α〉〈((¬χ)?;α)∗〉(ϕ∧¬χ)

must be satisfiable. �

Again we amend the PDL satisfiability games from Section6.3. We allow player∃
to take a note of the sideformulas in a configuration

[
〈α∗〉ϕ

]
,Φ after 〈α∗〉ϕ has been

unfolded to [
ϕ∨〈α〉〈α∗〉Φϕ

]
,Φ

In such a case,〈α∗〉Φϕ will be interpreted as

〈((¬Φ)?;α)∗〉(ϕ∧¬Φ)

Again, adding new subscripts to already existing ones is allowed. We interpret multiply

subscripted formulas〈α∗〉Φ1,...,Φnϕ as

〈((¬Φ1)?;. . . ;(¬Φn)?;α)∗〉(ϕ∧¬Φ1∧ . . .∧¬Φn)

7.3. A Complete Axiomatisation for PDL 195

Lemma 152 Player∃ can preserve satisfiability with the rules of the amended PDL

games. Player∀ preserves satisfiability with his choices.

PROOF The cases of rules([∧]) and ([∨]) as well as(∧) and (∨) are proved as in

Lemma137or 145. The cases of unfolding a〈α∗〉ϕ if it is not in focus or a[α∗]ϕ are

trivial. So are all the cases that deal with game rules for programs. This is because the

game rules are derived from the PDL equivalences introduced in Section2.5. In some

cases, a following choice of a disjunct is built into the rule already. This does not affect

preservation of satisfiability.

Rules(〈a〉) and([a]) remain to be analysed. Suppose that a configuration

C = 〈a1〉ϕ1, . . . ,〈an〉ϕn, [b1]ψ1, . . . , [bm]ψm,q1, . . . ,ql

is satisfiable in which the position of the focus does not matter. Then its modelsof an

LTS T must have successor states for every〈ai〉ϕi ∈C. These states must be reachable

through a ai−−→ transition and must satisfyϕi . Furthermore for every[ai]ψ j these states

must satisfyψ j . Note thatai = b j for somej ≤m is possible. Therefore, the following

configurationϕi ,ψ j1, . . . ,ψ jk will be satisfiable regardless of player∀’s choice with

rule ([ai]).

Finally, preservation of satisfiability by the amended unfolding of a〈α∗〉ϕ was proved

in Lemma151already. �

Theorem 153 (Completeness II) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable. According to Lemma152, player∃ can play in a

way such that every reached configuration is satisfiable. Whenever player∀ sets the

focus to a〈α∗〉ϕ formula in a configuration

[
〈α∗〉ϕ

]
,Φ

she adds the sideformulas to the index of〈α∗〉ϕ after it has been unfolded. The indices

are dropped if player∀ removes the focus from this formula.

By Lemma152player∀ cannot win a play with his winning condition 1 since the final

196 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

configuration of this play would be unsatisfiable. However, if the starting formula is

satisfiable then he cannot win a play by a repeat on a〈α∗〉 in focus either.

Suppose a play visits a position
[
〈α∗〉ϕ

]
,Φ twice such that player∀ has not changed

focus in between. Then, at the second time this configuration is

C =
[
〈α∗〉Φ1,...,Φkϕ

]
,Φ

whereΦ1, . . . ,Φk for somek ∈ N are all the sets of sideformulas that were present

whenever〈α∗〉ϕ has been unfolded. Therefore there is aj ∈ {1, . . . ,k} s.t. Φ = Φ j .

But thenC is unsatisfiable since

〈α∗〉Φ1,...,Φkϕ ≡ (ϕ∧¬Φ1∧ . . .∧¬Φk) ∨
(¬Φ1∧ . . .∧¬Φk∧〈α〉〈α∗〉Φ1,...,Φkϕ)

Hence,

|= 〈α∗〉Φ1,...,Φkϕ → ¬Φ

which means the final configuration of such a play is not satisfiable. But this

contradicts the assumption according to Lemma145. We therefore conclude that

player∃ must winG(ϕ0). �

All that remains to be done in order to obtain a complete axiomatisation for PDL

is to translate the game rules into an axiom system. Again, it must be chosen such

that Lemma152 holds if “satisfiability” is replaced by “consistency”. The result is

presented in Figure7.5.

Lemma 154 Let A be the PDL axiom system of Figure7.5. The game rules of the

amended PDL satisfiability games preserveA-consistency.

PROOF Preservation of consistency by rules([∧]), ([∨]), (∧) and(∨) is the same as in

the proofs of Lemmas140and147. Axioms 1,2,6 and rule (MP) are used to prove that

an unfolding of a〈α∗〉ϕ which is not in focus and a[α∗]ϕ preserves consistency.

The other rules for PDL programs preserve consistency by axioms 1 and 3 – 6 and rule

(MP).

7.3. A Complete Axiomatisation for PDL 197

Axioms:

1. any propositional tautology

2. ¬〈α〉ϕ↔ [α]¬ϕ

3. 〈α∪β〉ϕ↔ 〈α〉ϕ∨〈β〉ϕ

4. 〈α;β〉ϕ↔ 〈α〉〈β〉ϕ

5. 〈α∗〉ϕ↔ ϕ∨〈α〉〈α∗〉ϕ

6. 〈ψ?〉ϕ↔ ψ∧ϕ

7. [a]ϕ∧ [a]ψ→ [a](ϕ∧ψ)

8. [a](ϕ→ ψ)→ [a]ϕ→ [a]ψ

Rules:

(MP) if ` ϕ and ` ϕ→ ψ then ` ψ
(Gen) if ` ϕ then ` [a]ϕ for anya∈A

([α∗]) if ` χ→ ϕ∧ [α][((¬χ)?;α)∗](ϕ∨χ) then ` χ→ [α∗]ϕ

Figure 7.5: A complete axiomatisation for PDL.

Suppose now thatϕ0, . . . ,ϕk is inconsistent, i.e.

` ϕ1∧ . . .∧ϕk →¬ϕ0

By rule (Gen)

` [a](ϕ1∧ . . .∧ϕk →¬ϕ0)

for anya∈A. Then

` [a]ϕ1∧ . . .∧ [a]ϕk →¬〈a〉ϕ0

by rule (MP) and axioms 2,7 and 8. This proves preservation of consistency by rules

(〈a〉) and([a]).

Finally, rule (Rel) and axioms 7 and 8 are used to capture player∃’s winning strategy

and to prove that indexing formulas preserves consistency too. �

198 Chapter 7. Complete Axiomatisations for LTL, CTL and PDL

S1. any propositional tautology

S2. 〈α〉ϕ∧ [α]ψ→ 〈α〉(ϕ∧ψ)

S3. 〈α〉(ϕ∨ψ)↔ 〈α〉ϕ∨〈α〉ψ
S4. 〈α∪β〉ϕ↔ 〈α〉ϕ∨〈β〉ϕ
S5. 〈α;β〉ϕ↔ 〈α〉〈β〉ϕ
S6. 〈ψ?〉ϕ↔ ψ∧ϕ

S7. ϕ∨〈α〉〈α∗〉ϕ→ 〈α∗〉ϕ
S8. 〈α∗〉ϕ→ ϕ∨〈α∗〉(¬ϕ∧〈α〉ϕ)

R1. if ` ϕ and ` ϕ→ ψ then ` ψ

R2. if ` ϕ then ` [α]ϕ for anyα

Figure 7.6: The Segerberg axiomatisation for PDL.

Theorem 155 (Completeness) The PDL axiom systemA of Figure7.5 is complete.

PROOF Supposeϕ is consistent. Then player∃ wins the gameG(ϕ). This is because

all of player ∀’s winning positions inG(ϕ) are A-inconsistent. But according to

Lemma154, ϕ can only be consistent if all winning positions inG(ϕ) are. According

to Theorem129, ϕ is satisfiable in this case. �

Theorem 156 (Soundness) The PDL axiom systemA of Figure7.5 is sound.

PROOF This is proved in the same way as Theorems142 and149: the axioms are

valid and the rules preserve validity. The only interesting case of the latter part is

Lemma151. �

Another axiom systemS for PDL was proposed in [Seg77], usually called the

Segerberg axiom system. It is presented in Figure7.6.

Soundness ofS and completeness ofA ensure that if̀ S ϕ then`A ϕ, i.e. every formula

that is provable inS is also provable inA. This holds in particular for the axioms and

rules ofS. Nevertheless, we will show how they can be derived inA.

7.3. A Complete Axiomatisation for PDL 199

Theorem 157 For all ϕ ∈ PDL: if `S ϕ then `A ϕ.

PROOF Axioms S1, and S4 – S7 as well as rule R1 are present inA. S2 and S3 are

proved using axioms 1,2,7,8 and rule(MP). Note the difference between theS-rule R2

and(Gen) in A. To prove R2 for arbitraryα with (Gen) for atomica∈A only one can

use induction on the structure ofα. The casesα = α1;α2, α = α1∪α2 andα = ψ?

need axioms 1,2, rules(MP) and(Gen) and the corresponding axiom 3,4 or 6. For the

case ofα = β∗, rule([α∗]) is needed with the instantiationχ = tt. It reduces to proving

` ϕ∧ [β][(ff?;β)∗]tt

under the hypothesis of having a proof for` ϕ. But the other conjunct is equivalent to

tt and can be derived inA. Note that by induction hypothesis̀ [β]ϕ if ` ϕ sinceβ
is syntactically smaller thanα.

To show thatA can derive axiom S8 we consider player∀’s strategy forG(¬S8). The

negation of axiom S8 is

〈α∗〉ϕ∧¬ϕ∧ [α∗](ϕ∨ [α]¬ϕ)

Let ϕ′ := ¬ϕ∧ [α∗](ϕ∨ [α]¬ϕ). Player∀’s winning play looks like

[
〈α∗〉ϕ

]
,¬ϕ, [α∗](ϕ∨ [α]¬ϕ)

[
ϕ∨〈α〉〈α∗〉ϕ′ϕ

]
,¬ϕ,ϕ∨ [α]¬ϕ, [α][α∗](ϕ∨ [α]¬ϕ)

[
〈α〉〈α∗〉ϕ′ϕ

]
,¬ϕ, [α]¬ϕ, [α][α∗](ϕ∨ [α]¬ϕ)

[
〈α∗〉ϕ′ϕ

]
,¬ϕ, [α∗](ϕ∨ [α]¬ϕ)

The game rules used in this play are([〈∗〉]),([∗]),(∧),([∨]),(∨) and(〈a〉) depending on

the exact structure ofα. The axioms and rules corresponding to these game rules are

listed in the proof of Lemma154. �

Chapter 8

Satisfiability Games for CTL ∗

This isn’t ’Nam. This is

bowling. There are rules.

—

WALTER SOBCHAK

Satisfiability games for CTL∗ are played by player∀ and∃ in the same sense as the

games for LTL, CTL and PDL of Chapter6. Note that models of CTL∗ formulas are

total transition systemsT = (S,−→,L).

However, configurations of the CTL∗ games are more complicated. The

2-EXPTIME-hardness of the satisfiability checking problem for CTL∗ proved in

[VS85] suggests that simple sets of subformulas do not suffice. Instead, one has to

use sets of sets of formulas.

We will use the following abbreviations:Γ and Σ are nonempty sets{ϕ0, . . . ,ϕn}
of formulas that are interpreted conjunctively.E denotes a possibly empty set

EΣ1, . . . ,EΣn of suchΣs preceded by existential path quantifiers.A stands for either

the empty set or anA(Γ1; . . . ;Γn) with n≥ 1. We will also use this notation withn = 0

to denote the empty set. A semicolon is interpreted as a disjunction.Π is a maximally

202 Chapter 8. Satisfiability Games for CTL∗

consistent finite set of atomic propositions, i.e. for allq∈ Prop: tt ∈Π, andq∈Π iff

q 6∈Π.

To indicate that aΓ or Σ consists solely of formulas of the formXψ we writeXΓ, resp.

XΣ. If XΓ or XΣ occurs in a rule thenΓ, resp.Σ, consists of allψ s.t.Xψ ∈ XΓ, resp.XΣ.

The basis for a configurationC of the satisfiability gameG(ϕ0) for a CTL∗ formulaϕ0

is a set of sets of formulas and is written

A(Γ1; . . . ;Γn),EΣ1, . . . ,EΣm,Π (8.1)

possibly using the abbreviations introduced above. TheΓi are permutable, and so are

theEΣi. For example,

A(Γ1;Γ2),EΣ1,EΣ2,Π

is not distinguished from

A(Γ2;Γ1),EΣ2,EΣ1,Π

As usual, we omit curly set brackets and writeϕ1, . . . ,ϕn instead of{ϕ1, . . . ,ϕn} as

well asΓ1; . . . ;Γm instead of{Γ1; . . . ;Γm}.
The meaning of a configurationC like the one in (8.1) is: if C is satisfiable then it is

satisfied by a statesof a transition systemT s.t.s is labelled withΠ. There arempaths

π1, . . . ,πm starting ins s.t. πi |= Σi for i = 1, . . . ,m. Furthermore, for alli = 1, . . . ,m

there is aj ∈ {1, . . . ,n}, s.t.πi |= Γ j .

Since every configuration of a game will be of this form it can be seen as anormal

form for CTL∗ formulas.

Like the games of Chapter6, the CTL∗ satisfiability games arefocus games. We

omitted the focus in the sample configuration basis (8.1) above because there are

several possible positions it can be placed onto. It can either be on a single formula of

a conjunction inside the universally path quantified partA,

A(
[
ψ

]
,Γ1; . . . ;Γm),EΣ1, . . . ,EΣn,Π

or on a single formula inside an existentially path quantified conjunction.

A(Γ1; . . . ;Γm),E(
[
ψ

]
,Σ1), . . . ,EΣn,Π

203

Furthermore, it can be placed on theA part of a configuration
[
A(Γ1; . . . ;Γm)

]
,EΣ1, . . . ,EΣn,Π

or on a disjunct inside of it.

A(
[
Γ1

]
; . . . ;Γm),EΣ1, . . . ,EΣn,Π

It can never be onΠ, one of its elements, or on an entireEΣi .

For a configurationC we writeψ ∈C if

C = A(Γ1; . . . ;Γm),EΣ1, . . . ,EΣn,Π

andψ ∈ Γi for somei ∈ {1, . . . ,m}, or ψ ∈ Σi for somei ∈ {1, . . . ,n}, or ψ ∈ Π. The

case of a
[
ψ

]
∈C is defined analogously. However,

[
ψ

]
∈Π is impossible.

To start a play ofG(ϕ0) player∃ chooses a maximally consistent setΠ of propositional

constants and the first configuration is
[
A(ϕ0)

]
,Π

Note that puttingϕ0 into the universally path quantified part does not impose a

restriction on the formulas sinceϕ0 is a state formula by definition, and therefore

ϕ0≡ Aϕ0.

To reduce the number of rules we use the
p
xϕ
q
y construct. A rule containing this should

be read as at least two different rules. The first rule is obtained by replacing every
p
xϕ
q
y with

[
ϕ
]
. The other rules result from this rule scheme by imagining any otherψ

with ψ 6= ϕ in the upper configuration to be in focus and remain there for the lower

configuration. For example,

A(
p
xϕ0∧ϕ1

q
y ,Γ; . . .),E,Π

A(
p
xϕi
q
y ,ϕ1−i ,Γ; . . .),E,Π

∀i

abbreviates the following rules.

A(
[
ϕ0∧ϕ1

]
,Γ; . . .),E,Π

A(
[
ϕi

]
,ϕ1−i ,Γ; . . .),E,Π

∀i and
A(ϕ0∧ϕ1,Γ;Γ′; . . .),EΣ,E,Π

A(ϕ0,ϕ1,Γ;Γ′; . . .),EΣ,E,Π

204 Chapter 8. Satisfiability Games for CTL∗

(A∧)
A(
p
xϕ0∧ϕ1

q
y ,Γ; . . .),E,Π

A(
p
xϕi
q
y ,ϕ1−i ,Γ; . . .),E,Π

∀i (E∧)
A,E(

p
xϕ0∧ϕ1

q
y ,Σ1),E,Π

A,E(
p
xϕi
q
y ,ϕ1−i ,Σ1),E,Π

∀i

(A∨)
A(
p
xϕ0∨ϕ1

q
y ,Γ; . . .),E,Π

A(
p
xϕi
q
y ,Γ;ϕ1−i ,Γ; . . .),E,Π

∃i (E∨)
A,E(

p
xϕ0∨ϕ1

q
y ,Σ),E,Π

A,E(
p
xϕi
q
y ,Σ),E,Π

∃i

Figure 8.1: The CTL∗ satisfiability game rules for boolean operators.

with a
[
ψ

]
in Γ, Γ′ or Σ, or the focus on theA part or on a disjunct inside. Note that

player∀’s choice becomes obsolete in the second case ifϕ0∧ϕ1 is not in focus.

The game rules are presented in Figures8.1 – 8.5. Figure 8.1 contains the rules

for boolean connectives. Rules(A∧), (E∧) and(E∨) are very similar to those of the

satisfiability games in Chapter6. However, disjunctions inside anA are preserved.

Rule (A∨) handles this and transforms the formulas insideA into disjunctive normal

form. The reason for this preservation is the inequivalence

A(ϕ∨ψ) 6≡ Aϕ∨Aψ

I.e. in order to construct a model forA(ϕ∨ψ) it is not possible to discard one of

the disjuncts since some paths in the model might satisfyϕ while others satisfyψ.

Moreover, compare this to the model checking games for CTL∗ of Chapter5 where

disjuncts are preserved if player∀ is the path player.

Figure8.2 contains the rules for path quantified formulas. Basically, they are moved

outside and merged with an existingA, resp.E, in order to maintain the normal form

and obtain a configuration in which all formulas inside these parts are preceded by aX

operator.

Note that there are two rule schemata labelled(EA) for universally path quantified

formulas inside anEΣ. Since they operate on the same formula in the same position

205

(EA)
A(Γ1; . . . ;Γn),E(

p
xAϕqy ,Σ),E,Π

A(ϕ,Γ1; . . . ;
p
xϕ
q
y ,Γi ; . . . ;ϕ,Γn),EΣ,E,Π

∃i if Σ 6= /0

(EA)
A(Γ1; . . . ;Γn),E(

p
xAϕqy),E,Π

A(ϕ,Γ1; . . . ;
p
xϕ
q
y ,Γi ; . . . ;ϕ,Γn),E,Π

∃i

(EE)
A,E(

p
xEϕqy ,Σ),E,Π

A,E(
p
xϕ
q
y),EΣ,E,Π

if Σ 6= /0 (EE)
A,E(

p
xEϕqy),E,Π

A,E(
p
xϕ
q
y),E,Π

(AE)
A(
p
xEϕqy ,Γ; . . .),E,Π

A(Γ; . . .),E(
p
xϕ
q
y),E,Π

∃ if Γ 6= /0 (AE)
A(
p
xEϕqy),E,Π

E(
p
xϕ
q
y),E,Π

(AE)
A(
p
xEϕqy ;Γ; . . .),E,Π

A(Γ; . . .),E(
p
xϕ
q
y),E,Π

∃ if Γ 6= /0

(AA)
A(
p
xAϕqy ,Γ1; . . . ;Γn),E,Π

A(
p
xϕ
q
y ,Γ1; . . . ;ϕ,Γn),E,Π

∃ (AA)
A(
p
xAϕqy),E,Π

A(
p
xϕ
q
y),E,Π

(Γ/)
A(Γ;Γ′; . . .),E,Π

A(Γ′; . . .),E,Π
∃ if no

[
ψ

]
∈ Γ, Γ′ 6= /0

Figure 8.2: The game rules for path quantified formulas.

206 Chapter 8. Satisfiability Games for CTL∗

and only vary in the conditionΣ = /0, resp.Σ 6= /0, we can regard them as one rule only.

Thus, whenever rule(EA) is used it will in fact be one of the two cases. Note that these

cases do not result in different configurations in the sense that the action performed on

the particularAϕ is the same.

Similarly, there are two cases for existentially path quantified formulas at these

positions, see rule(EE). These formulas are moved outside into the presentE.

Depending onΣ, one of theE quantifiers might become redundant.

There are three cases for existentially path quantified formulas inside anA with rule

(AE). In the simplest case it is just moved outside and joins the currentE. If there

are no other formulas in its disjunct then this disjunct disappears. If this is the case

and there are no other disjuncts, the entireA disappears. This reflects the equivalence

AEϕ≡ Eϕ.

Finally, if a universally path quantified formulaAϕ appears insideA then ϕ gets

distributed over all the present disjuncts. Note that this is a choice for player∃. The

reason for this is the following. If she believes the disjunct containingAϕ to be true

then all paths in a possible model for the entire configuration must satisfyϕ regardless

of which otherΓi they satisfy as well. If she believesAϕ to be false then she can discard

the whole disjunct containing it with rule(Γ/). However, this is only possible if at least

one more disjunct is present. Otherwise she could make an unsatisfiable configuration

trivially satisfiable.

Again, there is a second case for rule(AA) in which no other formulas are present

insideA. According to the equivalenceAAϕ ≡ Aϕ, the outer path quantifier is simply

removed. In this case there is nothing to choose for player∃, neither the position of

the focus nor whether to discard or keep the disjunct.

Figure8.3 lists the rules that deal with atomic propositions occurring anywhere else

than in aΠ. Here the basic consensus is: true propositions, i.e. those that occur

in the actualΠ, are removed fromA or E to obtain a configuration in which every

formula apart from the propositions inΠ begins with aX operator. This is done with

all instances of rules(Aq) and (Eq). Note that all rules are deterministic but only

applicable if the corresponding condition is met.

207

(Aq)
A(q,Γ; . . .),E,Π

A(Γ; . . .),E,Π
if q∈Π, Γ 6= /0

(Aq)
A(q;Γ; . . .),E,Π

A(Γ; . . .),E,Π
if q∈Π, Γ 6= /0 (Aq)

A(q),E,Π

E,Π
if q∈Π

(q/)
A(q,Γ;Γ′; . . .),E,Π

A(Γ′; . . .),E,Π
if q∈Π, Γ′ 6= /0

(Eq)
A,E(q,Σ),E,Π

A,EΣ,E,Π
if q∈Π, Σ 6= /0 (Eq)

A,E(q),E,Π

A,E,Π
if q∈Π

Figure 8.3: The game rules for propositions.

If there are no other formulas besides the atomic propositionq in its conjunction, resp.

in its disjunct and there are no other disjuncts, then the corresponding path quantifier

is removed together with theq. This reflects the equivalencesAq≡ q≡ Eq.

False propositions, i.e. those that are not included in the actualΠ, cannot simply be

discarded. If they occur inside anEΣ then they witness the fact that thisEΣ together

with Π is unsatisfiable. However, if they occur in aΓ insideA which contains at least

one moreΓ′ thenΓ is unsatisfiable with the currentΠ and can be discarded with rule

(Γ/). This does not make an unsatisfiable configuration satisfiable sinceΓ′ might be

satisfiable together withΠ.

Figure8.4shows the rules regarding the temporal operatorsU andR. They simply are

unfolded regardless of their position. Again, it is easy to extend the set of rules to

includeF andG formulas as primitives.

A(
p
xFϕqy ,Γ; . . .),E,Π

A(
p
xϕ∨XFϕqy ,Γ; . . .),E,Π

A,E(
p
xFϕqy ,Σ),E,Π

A,E(
p
xϕ∨XFϕqy ,Σ),E,Π

208 Chapter 8. Satisfiability Games for CTL∗

(AU)
A(
p
xϕUψqy ,Γ; . . .),E,Π

A(
p
xψ∨ (ϕ∧X(ϕUψ))

q
y ,Γ; . . .),E,Π

(EU)
A,E(

p
xϕUψqy ,Σ),E,Π

A,E(
p
xψ∨ (ϕ∧X(ϕUψ))

q
y ,Σ),E,Π

(AR)
A(
p
xϕRψqy ,Γ; . . .),E,Π

A(
p
xψ∧ (ϕ∨X(ϕRψ))

q
y ,Γ; . . .),E,Π

(ER)
A,E(

p
xϕRψqy ,Σ),E,Π

A,E(
p
xψ∧ (ϕ∨X(ϕRψ))

q
y ,Σ),E,Π

Figure 8.4: The unfolding rules for the CTL∗ satisfiability games.

A(
p
xGϕqy ,Γ; . . .),E,Π

A(
p
xϕ∧XGϕqy ,Γ; . . .),E,Π

A,E(
p
xGϕqy ,Σ),E,Π

A,E(
p
xϕ∧XGϕqy ,Σ),E,Π

Applying these rules consecutively will eventually result in a configuration in which

every formula inside theA and theE part is of the formXψ unless a false proposition

could not be discarded. Recalling the intended meaning of a configuration this situation

requires the game to construct successor states of the state at hand. If the focus is inside

a particularEΣ then the prospective path satisfyingΣ must be followed in order not to

lose the focus. This is formalised in rule(EX) shown in Figure8.5. Note that theA

part can also be empty in this case.

If the focus is inside theA part then every possible path can be examined in the play

at hand. Thus, player∀ selects one by choosing a particularEΣ with rule (AX). After

209

(EX)
A(XΓ1; . . . ;XΓn),E(

[
Xψ

]
,XΣ),EXΣ1, . . . ,EXΣm,Π′

A(Γ1; . . . ;Γn),E(
[
ψ

]
,Σ),Π

∃Π, n≥ 0, m≥ 0

(AX)
A(

[
Xψ

]
,XΓ1; . . . ;XΓn),EXΣ1, . . . ,EXΣm,Π′

A(
[
ψ

]
,Γ1; . . . ;Γn),E(ψ,Σi),Π

∀i ∃Π, n≥ 1, m≥ 1

(AXE/)
A(

[
Xψ

]
,XΓ1; . . . ;XΓn),Π′

A(
[
ψ

]
,Γ1; . . . ;Γn),E(ψ),Π

∃Π, n≥ 1

(FM1)

[
A(Γ; . . .)

]
,E,Π

A(
[
Γ
]
; . . .),E,Π

∃Γ (FM2)
A(

[
ϕ,Γ

]
; . . .),E,Π

A(
[
ϕ
]
,Γ; . . .),E,Π

∀ϕ

(FC1)
A(

[
ψ

]
,Γ;Γ′; . . .),E,Π

A(ψ,Γ;
[
Γ′

]
; . . .),E,Π

∃ (FC2)
A(

[
ϕ
]
,ψ,Γ; . . .),E,Π

A(ϕ,
[
ψ

]
,Γ; . . .),E,Π

∀

(FC3)
A(

[
ϕ
]
,Γ; . . .),E(ψ,Σ),E,Π

A(ϕ,Γ; . . .),E(
[
ψ

]
,Σ),E,Π

∀ (FC4)
A,E(

[
ϕ
]
,ψ,Σ),E,Π

A,E(ϕ,
[
ψ

]
,Σ),E,Π

∀

(FC4)
A,E(

[
ϕ
]
,Σ),E(ψ,Σ′),E,Π

A,E(ϕ,Σ),E(
[
ψ

]
,Σ′),E,Π

∀ (FC5)
A,E(

[
ϕ
]
,Σ),E,Π

[
A

]
,E(ϕ,Σ),E,Π

∀

Figure 8.5: The next-step and focus rules for the CTL∗ games.

210 Chapter 8. Satisfiability Games for CTL∗

that, player∃ chooses a maximal consistentΠ.

Rule (AXE/) takes into account a situation without anyEΣ formulas. In this case we

imagine a singleE(Xtt) to be present. This reflects the requirement of transition

systems being total, i.e. every state has at least one successor.

In all cases player∃ chooses a new maximal consistent setΠ of propositions which

will serve as the labelling of the new state. Note that in an application of rule(AX) or

(AXE/) the formula that is currently in focus gets duplicated into the chosen or created

EΣ. We will illustrate the reason for this with an example later on. A justification for

the correctness of this move is the validity

|= Aϕ∧Eψ → E(ϕ∧ψ)

The remaining rules formalise the changing and positioning of the focus. Remember

that every play ofG(ϕ0) starts with the configuration
[
A(ϕ0)

]
,Π

for someΠ. If ϕ0 is a disjunction then player∃ can put the focus onto one of the

disjuncts with rule(FM1). She will choose the one that she believes is satisfied by

the path the play will outline in a possible model. A disjunctΓ itself is interpreted

conjunctively, thus player∀ puts the focus onto one formula insideΓ using rule(FM2).

At last, both players have their chances to reset the focus in order to respond to the

other player’s moves accordingly. Player∃ is allowed to change her mind about which

Γ insideA is satisfied by the path that the play at hand forms. This is necessary since

the path depends on player∀’s choices with rule(AX). However, in order not to make

player∃ too strong she is only allowed to change the focus with rule(FC1) after an

application of rule(AX) or (AXE/).

Player∀ must be allowed to change the focus to respond to player∃’s choices of

disjuncts insideE and her focus moves insideA. He can change the focus inside aΓ
to any other formula using rule(FC2). He can also move it out ofA and place it onto

any formula insideE with rule (FC3). Without this the duplication of formulas into an

EΣ would become meaningless. Finally, he can move it from oneEΣ into another with

rule (FC4) or back ontoA with rule (FC5) to let player∃ put it onto aΓ again.

211

Again, note that there are two instances of rule(FC4). In both cases player∀ changes

focus from aϕ to aψ which both occur in theE part of the actual configuration. There

is no need to distinguish the two cases in whichϕ andψ occur in two different or the

sameEΣ. The important point is the fact that player∀ changes focus at all. Therefore,

we list these two cases of a rule under one name.

Definition 158 A configurationC is calledterminal if

C = A(
[
q
]
,Γ; . . .),E,Π or C = A,E(

[
q
]
,Σ),E,Π

and both players refuse to or are unable to move the focus.

Player∀ wins the playC0,C1, . . . ,Cn iff

1. Cn = A(
[
q
]
,Γ; . . .),E,Π or Cn = A,E(

[
q
]
,Σ),E,Π, Cn is terminal and

q∈Π, or

2. there is ani < n s.t. Ci = Cn and a
[
ϕUψ

]
∈ Cn and none of the rules(FCi),

i = 1, . . . ,5, has been used betweenCi andCn.

3. there is ani < n s.t.Ci = Cn and betweenCi andCn player∃ has used rule(FC1)

and player∀ has not used rule(FC3), (FC4) or (FC5).

Player∃ wins the playC0,C1, . . . ,Cn iff

4. Cn = A(
[
q
]
,Γ; . . .),E,Π or Cn = A,E(

[
q
]
,Σ),E,Π, Cn is terminal and

q∈Π, or

5. there is ani < n s.t. Ci = Cn and a
[
ϕRψ

]
∈ Cn and none of the rules(FCi),

i = 1, . . . ,5, has been used betweenCi andCn.

6. there is ani < n s.t.Ci = Cn and either

• player∃ has not used rule(FC1) but player∀ has used one of the rules

(FC2), . . . ,(FC5), or

• player∃ has used rule(FC1) and player∀ has used rule(FC3), (FC4) or

(FC5).

Winning conditions 1 and 4 are straightforward and similar to the winning conditions

for the LTL, CTL and PDL games concerning terminal configurations.

212 Chapter 8. Satisfiability Games for CTL∗

Again, if the focus stays on anU formula until a repeat is found player∀ should win

since he managed to show that this particularU formula regenerates itself and, hence,

that player∃ did not fulfil it. Conversely, if the formula in focus is aR and the focus

has not been changed then player∃ is be the winner.

A player should also win a play in which they did not use their focus change rules

whereas their opponent did. This is formalised in the first part of winning condition 6

and, to some extent, in condition 3. Player∀ should win if he uses rule(FC2) as long

as player∃ uses(FC1). If the Γ in which player∀ changed focus was not false at this

moment then player∃ could have left the focus there in order to win with her winning

condition 6.

The motivation for the second part of winning condition 6 is the following. Rules

(FC3) and (FC5) can only occur in conjunction with each other between repeating

configurations since they switch the focus between theA andE parts of a configuration.

If rule (FC4) was played but neither(FC3) nor(FC5) then player∃ could not have used

her focus change rule. Suppose therefore, she has and player∀ has changed focus with

both rules(FC3) and(FC5).

He has either done so after player∃ changed focus forth and back betweenA andE

or beforehand. If it was afterwards he was reluctant to show that theΓ which player

∃ has put the focus to does not get satisfied during the play. If it was beforehand he

refused to show unsatisfaction of anotherΓ′ and player∃’s focus change can be seen

as a response to that. Thus, in both cases she should be the winner of the underlying

play.

Remember that rules(AX) and(AXE/) copy formulas from theA part of a configuration

into anEΣ. Without this player∀ would be too weak. As in the model checking games

for CTL∗ of Section5.2 and the satisfiability games for LTL and CTL of Chapter6,

he uses the focus to follow the unfolding ofU formulas. But, since disjuncts insideA

are preserved, there is never a need for player∃ to fulfil a ϕUψ formula. Instead, she

can always set the focus toψ and redo her choice toϕ∧X(ϕUψ) wheneverψ does not

guarantee her to win. However, ifϕUψ gets duplicated into anEΣ then player∀ has the

chance to follow the regeneration there.

213

[
A(AFGq∧EGFq)

]
,q

A(
[
AFGq

]
,EGFq),q

A(
[
FGq

]
),E(GFq),q

A(
[
Gq∨XFGq

]
),E(Fq,XGFq),q

A(
[
q∧XGq

]
;XFGq),E(q∨XFq,XGFq),q

A(q,
[
XGq

]
;XFGq),E(XFq,XGFq),q

A(
[
XGq

]
;XFGq),E(XFq,XGFq),q

A(
[
Gq

]
;FGq),E(Fq,GFq,Gq),q

A(Gq;FGq),E(
[
Fq

]
,GFq,Gq),q

A(q,XGq;Gq;XFGq),E(
[
q∨XFq

]
,Fq,XGFq,q,XGq),q

A(XGq;XFGq),E(
[
XFq

]
,XGFq,XGq),q

A(Gq;FGq),E(
[
Fq

]
,GFq,Gq),q

Figure 8.6: Player ∀’s winning play of Example 159.

Example 159 Let

ϕ := AGFq∧EFGq

ϕ is unsatisfiable since

AGFq ≡ EFGq

Player∀’s winning play is depicted in Figure8.6. Not every move is shown explicitly.

If for example aG is unfolded we implicitly flatten the created conjunction. We

also omit configurations if two rules operate on different formulas and present the

application as one rule.

Assume player∃ has chosenq as the propositional part to start with. We also omittt

there since it is trivially part of theΠ in any configuration of every play and game.

214 Chapter 8. Satisfiability Games for CTL∗

First the formula at hand is brought into the correct form for the game. The temporal

operators are unfolded and a∧ is removed. Then, player∃ has the choice whether to

put the focus ontoGq or XFGq. She chooses the former because otherwise player∀
could exhibit a repeat on theF inside the latter.

Sinceq is present outside, player∀ can only set the focus toXGq. For the same reason

player∃ cannot choose to fulfil theFq in theE part.

Note that, if player∀ had started with the focus inE(FGq) then player∃ would have

chosenq for the propositional part at any time. She also would have fulfilled theF

formula immediately. The same holds for the case where player∀ changes focus into

E at some point. In any way, theF that is not in the part containing the focus would not

get fulfilled and player∀ would be unable to show this.

But now theGq in focus gets copied into theE and player∀ can change the focus to the

F inside of it. From now on, player∃ must always chooseq for the propositional part.

Otherwise, player∀ could simply change focus to theq that results from the unfolding

of Gq in E, and win with his winning condition 1.

But then she cannot fulfil theFq in E and player∀ can keep the focus on it until a

repeat occurs and win with condition 2 since he does not change the focus between the

repeating configurations.

Example 160 Now, take the similar formula

ϕ := AGEFq∧EFGq

This time,ϕ is satisfiable. The simplest possible modelT for ϕ consists of two states

sandt with L(s) = {q} andL(t) = {q}. The transitions ofT ares−→s, s−→ t andt−→ t.

s |= ϕ because every path is either an infinite loop throughs or eventually becomes an

infinite loop throught. Thus, there is a pathπ on whichq holds infinitely often, namely

π = ss. . .. On the other hand, every reachable state is the origin of a path on whichq

holds eventually.

A simplified version of the game tree for player∃ is given in Figure8.7. Not every

application of a rule is listed explicitly in order to keep the size of the tree small. Also,

we omit to put the focus into the configurations. Instead we discuss what the players

215

A(GEFq),E(FGq),q

A(EFq,XGEFq),E(Gq),q

A(XGEFq),E(XGq),E(XFq),q

A(GEFq),E(Gq,GEFq),q A(GEFq),E(Fq),q

A(XGEFq),E(XGq,XGEFq),E(Fq),q A(XGEFq),q
...

...

Figure 8.7: A simplified version of the game tree for Example 160.

can do about its position.

Player∃ choosesq at the beginning. This gives her the chance to fulfil theFGq and get

rid of XFGq in its unfolding. In the next step theGq gets unfolded and, sinceq is present

outside, onlyXGq remains. InsideA, theEFq gets promoted to the outside since there

is only one disjunct, leavingXGEFq. Player∀ does not set the focus toGq since player

∀ will always chooseq and he cannot win with the repeat onGq. Thus, he has to set

it to XGEFq at this point and choose one of theE(. . .). If he selectsE(XGq) thenGEFq

gets copied into it, theG formulas get unfolded,EFq is put outside, etc. The resulting

configuration is almost the same as the one of the third row. The difference only lies

in the E(. . .). Since player∀ has not won so far he could only by putting the focus

into E(XGq,XGEFq). However, the play proceeds in a similar way without ever giving

player∀ a chance to win.

The path on the right corresponds to player∀’s choice ofE(XFq). In this case player

∃ selectsq as the next propositional part and fulfils theFq which disappears. Player∀
must keep the focus onXGEFq. He cannot win on this formula anymore since player

∃ can always chooseq as the next proposition. The fact that in the next step another

E(GEFq) is created does not change anything about this, since the formulas insideE(. . .)

will always be present insideA as well.

216 Chapter 8. Satisfiability Games for CTL∗

Correctness

Fact 161 Rules(A∧), (E∧), (A∨), (E∨), (EA), (AA) and (EX) reduce the number of

connectives in the actual configuration. Rules(Eq), (Aq), (q/) and(Γ/) reduce the size

of the actual configuration. Rules(AE) and(EE) reduce the size of the actualA or a Σ
in the actual configuration.

Rules(AX) and(AXE/) can potentially increase the size of the actual configuration, but

they reduce the size of itsA part.

Rules(AU), (AR), (EU), (ER) increase the size and the number of connectives of the

actual configuration.

Rules (FM1), (FM2) and (FCi), i = 1, . . . ,5, preserve both size and number of

connectives in a configuration. Rule(FC5) puts anA into focus, while rules(FM1)

and (FM2) reverse this process by reducing the object in focus to aΓ, resp. a single

formula again.

Lemma 162 Every play has a uniquely determined winner.

PROOF Suppose a play does not visit a configuration twice. It can only be finished in

a terminal configuration. But then the focus must be on aq which is either insideA or

E. Furthermore,q is either present in the actualΠ or not. These four cases are covered

by the mutually exclusive winning conditions 1 and 4.

Now consider a play with a repeating configuration. There are two possibilities for

such a repeat. Suppose the focus was not changed in between. This is only possible if

a ϕUψ or aϕRψ stayed in focus since a combination of rules that reduce and increase

the number of connectives in a configuration must have been played. But reducing the

number of connectives leads to a situation in which all formulas inside theA part and

everyEΣ are preceded by aX operator. Then, rule(EX), (AX) or (AXE/) must apply, i.e.

the formula in focus gets reduced as well. Only one of the unfolding rules can restore

the original formula in focus eventually which means it is aϕUψ or ϕRψ.

In the first case, player∀ wins with his winning condition 2. In the second case player

∃ wins the play at hand with her winning condition 5.

217

Suppose now that the focus was changed between the occurrences of a repeating

configuration. Consequently, one of the players must have used one of their focus

change rules. If player∃ did not use hers she wins with the first part of condition 6. If

she used hers but player∀ did not use any of his then he wins with condition 3. If both

have changed focus then it depends on which rules player∀ has used. He still wins

with the second part of condition 3 if it was only(FC2). If it was one of the others then

player∃ wins with the second part of condition 6.

This shows that the winning conditions cover all possible situations and that the winner

of a play is uniquely determined. �

Lemma 163 Every play ofG(ϕ0) is of length less thanO(2|ϕ0| ·2(2|ϕ0|)).

PROOF There are22|ϕ0| possible sets of sets of subformulas ofϕ0. Furthermore, the

focus can be on any formula which can be in any set, or onA or anyΓ insideA. Thus,

there are at most

(1+ |ϕ0|+2|ϕ0|) ·22|ϕ0|

possible different configurations inG(ϕ0) and every play of lengthn or more must visit

a configuration twice.

This is an upper bound on the length of a play if it is won with winning condition 3 or

6. If the condition that applies is 2 or 5 then the additional requirement of the formula

in focus being aϕUψ or ϕRψ must be fulfilled. The proof of Lemma162shows that

in such a case a formula of this form must stay in focus. I.e. the moment the play

performs a repeat aϕUψ or aϕRψ must be present in focus. Note that this can be in the

form of an unfolding for instance. In any case, it can have at most three connectives

more than aϕUψ or ϕRψ. Therefore, after five more steps – three for the connectives

and two focus moves – a situation like the ones required for winning conditions 2 or 5

to apply must be reached. Thus,

(1+ |ϕ0|+2|ϕ0|) ·2(2|ϕ0|) +5 = O(2|ϕ0| ·2(2|ϕ0|))

is the maximal length of a play in the gameG(ϕ0). �

218 Chapter 8. Satisfiability Games for CTL∗

Corollary 164 (Determinacy) Player∀ winsG(ϕ) iff player∃ does not winG(ϕ).

PROOF By Lemmas162 and 163, every play ofG(ϕ) has a uniquely determined

winner and is of finite length. Then, Theorem37 applies which says that for every

gameG(ϕ) one of the players has a winning strategy. �

Lemma 165 Player ∃ preserves unsatisfiability with her choices. Player∀ can

preserve unsatisfiability with his choices.

PROOF Player∀ is mostly concerned with the position of the focus. Those moves

preserve unsatisfiability. The only rule that requires him to make a genuine choice is

rule (AX). Suppose

A(ψ,Γ1; . . . ;Γn),E(ψ,Σi),Π

is satisfiable for everyi ∈ {1, . . . ,m}. Then each of them has a modelTi = (Si ,−→i ,Li)

with ansi ∈ S s.t. there is a pathπ = si . . . with

π |= ψ∧ϕ for every ϕ ∈ Σi

Furthermore, for every pathπ′ with π′ = si . . . there is aj ∈ {1, . . . ,n} s.t.

π′ |= ϕ for all ϕ ∈ Γ j and j = 1 implies π′ |= ψ

We assume the state sets of theTi to be pairwise disjoint. Take the transition system

T′ := ({s0}∪
m[

i=1

Si ,
m[

i=1

−→
i
,

m[
i=1

Li)

with the additional transitions

s0−→si for every i ∈ {1, . . . ,m}

andL(s0) := Π′ for some maximally consistentΠ′. Then,

s0 |= A(Xψ,XΓ1; . . . ;XΓn),EXΣ1, . . . ,EXΣm,Π′ (8.2)

i.e. this formula is satisfiable, too. Conversely, if this formula is unsatisfiable andΠ′ is

maximally consistent then there is ani ∈ {1, . . . ,m} s.t.

A(ψ,Γ1; . . . ;Γn),E(ψ,Σi),Π

219

is unsatisfiable. Note that, if the focus is onXψ, player∀ can apply rule(AX) to the

configuration in (8.2). By choosing the righti he can preserve unsatisfiability. This is

also possible ifE = /0. If the focus is in aΣi that is not the one to choose he can change

the focus with rule(FC4) and then preserve unsatisfiability with rule(EX).

The rules that require player∃ to set the focus preserve unsatisfiability. So do those

that make her choose a disjunct. The cases of rules(EA) and(EE) are given by the

equivalencesQ2Q1ϕ≡Q1ϕ for Q1,Q2 ∈ {E,A}.
Now consider rule(AE). Suppose there is a modelT,s for

A(Γ1; . . . ;Γn),E(ψ),E,Π

ThenT,s is also a model for

A(Γ1; . . . ;Eψ,Γi ; . . . ;Γn),E,Π

for everyi = 1, . . . ,n because every path starting ins satisfiesEψ regardless of which

Γ j it fulfils, too. The case of rule(AA) is similar.

Player ∃ also preserves unsatisfiability with her choices of a set of propositional

constants in rules(AX), (EX) and(AXE/).

Finally, note that the deterministic rules like unfolding of anU or a R preserve

unsatisfiability as well. �

Definition 166 An EΣ is called theimmediate descendantof EΣ′ in a playC0, . . . ,Cn

of G(ϕ0) if there are two configurationsCi andCi+1 s.t.

Ci = A′,EΣ′,EΣ′1, . . . ,EΣ′n′ ,Π
′

and

Ci+1 = A,EΣ,EΣ1, . . . ,EΣn,Π

and there is a rule that transformedEΣ′ into EΣ. Both n = 0 andn′ = 0 are possible

which is needed for applications of rule(EX) or (AXE/) for example.

EΣ is adescendantof EΣ′ if they are elements of the transitive closure of its immediate

descendant relation.

220 Chapter 8. Satisfiability Games for CTL∗

If there are two configurationsCi andCi+1 s.t.

Ci = A(Γ′;Γ′1; . . . ;Γ′n′),EΣ′1, . . . ,EΣ′m′ ,Π
′

and

Ci+1 = A(Γ;Γ1; . . . ;Γn),EΣ,EΣ1, . . . ,EΣm,Π

and there is a rule that transformedΓ′ into Γ thenΓ is an immediate descendant ofΓ′.
Moreover,A(Γ;Γ1; . . . ;Γn) is an immediate descendant ofA(Γ′;Γ′1; . . . ;Γ′n′). Again, the

descendant relation is given as the transitive closure of the immediate version.

An EΣ is calledpersistingin a play at some point if it was not discarded in the last

application of rule(AX) or (EX) or was created in the last application of rule(AXE/).

Formally,EΣ is persisting in the configurationCi of the playC0, . . . ,Cn, 0 < i ≤ n, if

there is aj ≤ i s.t.

• betweenj andi none of the rules(AX), (EX) or (AXE/) has been played, and

• (Cj−1,Cj) is an instance of rule(AX), (EX) or (AXE/), and

• there is noEΣ′ ∈Cj−1, or EΣ is the descendant of anEΣ′ ∈Cj−1.

Definition 167 (Top-level list strategy) For a setΣ of formulas letlΣ be apriority

list of all top-levelU subformulas inΣ, i.e.

lΣ = ϕ1Uψ1, . . . ,ϕnUψn

with ϕiUψi ∈ Σ for all i = 1, . . . ,n. A list lΓ is defined for a setΓ of formulas in the

same way.

After each application of rule(FM1) or (FC1) with the actual configuration

A(
[
Γ1

]
; . . . ;Γn),EΣ1, . . . ,EΣn,Π

player∀ creates the listlΓ1 and plays according to the following strategy. He sets the

focus to the first elementϕ1Uψ1 of the list and leaves it there until player∃ sets the

focus toψ1 after it has been unfolded. Then player∀ deletesϕ1Uψ1 from lΓ1 and

changes focus with rule(FC2) to the next element oflΓ1.

221

If at some point player∃ changes focus to anotherΓi with rule (FC1) he restarts this

strategy with the listlΓi . If his actual list is empty or no element of the list is present

anymore he calculateslΣ for a persistingEΣ if one exists, changes focus to the first

element oflΣ with rule (FC3) and plays the same strategy there.

If it does not contain any top-levelU formulas he puts the focus to the largest formula

in Σ and leaves it there until someU becomes top-level and calculateslΣ at this point.

If there is none than he changes focus to the next biggest formula at the moment when

the play is about to perform a repeat.

If lΣ becomes empty or all the top-levelU formulas have been fulfilled he puts the

focus back onto the actualA part with rule(FC5) and restarts the entire process with

the current configuration.

Of course, player∀ checks at any point in the play whether he can change the focus

to an atomic propositionq, s.t. q∈ Π for the actual propositional partΠ. This can be

done with rule(FC3) or (FC4) if q∈ Σ for some presentEΣ. It is also possible with

rule (FC2) inside aΓ if player ∃ does not take the focus away from it. Finally, if all

presentΓ contain such aq he can do so with rule(FC5) and(FM2) since player∃ has

to choose one of theΓs with rule(FM1) in between.

Lemma 168 (Optimality) Player∀’s top-level list strategy is optimal.

PROOF As in the proof of Lemma98, we need to show that with this strategy player

∀ does not miss anyU formulas. This holds only if he selects the rightEΣ when using

rule (FC3), namely the one that contains a regeneratingU formula. Note that during a

play,EΣ components can get lost when rule(AX) or (EX) is played.

For the moment we assume that he nondeterministically makes the best choice when

using rule(FC3).

Remember that a configuration represents a combination of conjunctions and

disjunctions. Therefore, not missing a regeneratingU formula is to be interpreted in

the following way. If there is one in anEΣ then player∀ will eventually set the focus

to it. If all Γi and their descendants contain one then he will eventually keep the focus

on one of them.

222 Chapter 8. Satisfiability Games for CTL∗

Suppose there is a regeneratingU formula. It must become top-level in its component

at some point. Suppose this is inside anEΣ. It remains there since player∃ cannot

fulfil it. If the focus is already inΣ it will be found unless there is another one which

does not get fulfilled either. If the focus is insideA then player∀ chooses thisEΣ or its

descendant when playing rule(AX). Remember that we assume player∀ to be able to

guess which presentEΣ is best. Eventually, he will move the focus into thisΣ, find the

U formula there and win with his winning condition 2.

Suppose now that all theΓs inside the presentA contain a regeneratingU formula that

is top-level already. Player∀’s strategy makes him set the focus toA when all the

formulas inside the persistingEΣ have been fulfilled. Regardless of whichΓ is chosen

by player∃ the regeneratingU formula will be a member oflΓ. W.l.o.g. we assume

that it is the first of its kind in the list. Therefore, player∀ will eventually put the focus

onto it.

Unlike the case of aϕUψ formula in aΣ, player∃ can simply put the focus ontoψ
each time it gets unfolded. ButϕUψ is regenerating, i.e. player∃ is assumed not to

be able to do so if the formula was inside aΣ. This means player∀ would also win

with the focus inside theΓ now containingψ. This is possible if it contains another

regeneratingU formula likeψ itself for example which has now become top-level. This

reduces the argument to a smallerU formula. Finally, the regeneration of anU formula

must be due to an atomic contradiction. But player∀’s strategy will make him change

focus and win with his condition 1 if this is the case.

Therefore player∃ will at some point change focus with her rule(FC1). Remember

that she can only set it to anotherΓ which is assumed to contain a regeneratingU

formula as well. This holds in particular for the other descendant of theΓ the focus

was in beforehand. With the same argument she will at some point be forced to change

focus again. Eventually, she will have created a repeat and player∀ wins this play with

his winning condition 3.

Now consider a strategy for player∀ other than the top-level list strategy and suppose

that player∃ has a winning strategy for the game at hand. An optimal strategy must

enable player∀ to try to put the focus onto every possibleU formula and avoid repeating

configurations for as long as possible in every play of player∃’s game tree.

223

Candidates for possibleU formulas are those inside anEΣ that is present and those

inside aΓ that player∃ has set the focus to. Lemma162shows that between repeating

configurations one of the rules(AX), (EX) or (AXE/) must have been played. This will

select oneEΣ as persisting for each of player∀’s choices that are present in player∃’s

game tree.

Note that the top-level list strategy behaves like two interleaved priority list strategies

in the sense of Definition97. The first formulas in a priority list are those that are

top-level. If they have been processed player∀’s strategy switches to the other top-level

list which contains thoseU formulas that would be first in a priority list for the actual

Γ, resp.Σ.

This interleaving guarantees player∀ to try all possibleU formulas before a repeat is

performed. Note that he also avoids repeats by changing focus in the last moment

before one occurs. �

Lemma 169 SupposeΠ is satisfiable but

A(Γ1∨ . . .∨Γn)∧EΣ1∧ . . .∧EΣm∧Π

is unsatisfiable. Then one of the following cases holds.

1. All Σi and at least oneΓ j is satisfiable fori = 1, . . . ,m and j ∈ {1, . . . ,n}, but

there is aq∈Π s.t. |= Σi → q for somei ∈ {1, . . . ,m}, or |= Γi → q for all

i = 1, . . . ,n, or

2. there is ani ∈ {1, . . . ,m} s.t. EΣi is unsatisfiable but A(Γ1 ∨ . . . ∨ Γn) is

satisfiable, or

3. for everyi = 1, . . . ,n: Γi is unsatisfiable butEΣ1∧ . . .∧EΣm is satisfiable, or

4. there is ani ∈ {1, . . . ,m} s.t. |= A(Γ1∨ . . .∨Γn)→ EΣi .

PROOF A conjunction is unsatisfiable if and only if one of its conjuncts is unsatisfiable

or the combination of some of them imply the negation of another one. Note that the

latter case is not possible for two existentially quantified formulas since they can only

contradict each other in the propositional part. But then one of them has to contradict a

224 Chapter 8. Satisfiability Games for CTL∗

q∈Π because ofΠ’s maximal consistency already. Note that the last case also covers

a situation in which both theA part and anEΣi are unsatisfiable on their own already.

Furthermore, theA part can only be unsatisfiable if all of its disjuncts are

unsatisfiable. �

The next lemma analyses how these cases of unsatisfiability occur in a play.

Lemma 170 Supposeϕ0 is unsatisfiable. Take a playC0, . . . ,Cn of G(ϕ0) in which

player∀ uses his top-level list strategy and preserves unsatisfiability. Let

Ci = Ai ,Ei ,Πi

for i = 0, . . . ,n. Then eitherCn is terminal and satisfies case 1 of Lemma169or there

is a j with 0≤ j ≤ n s.t.

• Ai ∧Πi is unsatisfiable for alli with j ≤ i ≤ n, or

• there is an unsatisfiableEΣ ∈Cj that persists and remains unsatisfiable untilCn.

Moreover, a repeat can only occur afterCj .

PROOF The existence of an unsatisfiable configurationCj is simply given by the

preservation of unsatisfiability. The fact that a repeat can only occur afterCj is based

on the observation that two configurations which satisfy different cases of Lemma169

cannot be syntactically equal. But the claim states that eventually one of the cases will

hold generally.

SupposeCj is unsatisfiable according to the first case of Lemma169. If there is an

EΣ ∈ E j with |= Σ→ q then there must be aψ ∈ Σ s.t.q∈ Sub(ψ). As in the proofs

of Lemmas101and113, one can show that the game rules will create a configuration

with a descendantΣ′ of Σ s.t.q∈ Σ′. But then player∀’s top-level list strategy tells him

to set the focus toq immediately which makes the configuration terminal.

The other part of case 1 of Lemma169states that|= Γi → q for all Γi ∈A j andq∈Π j .

The play need not reach a terminal configuration since player∃ may always be able

to change the focus insideA j . However, because of preservation of unsatisfiability,q

225

will always occur in a descendant of aΓi after finitely many steps. As this holds for

everyΓi , player∃ cannot discard them all with rule(Γ/) and one will remain. Game

rules(AX), (EX) and(AXE/) can then not be played since there is no need for player∀
to put the focus to a formula of the formXψ. But then

|= Ai →Πi

for all i with j ≤ i ≤ n.

Suppose now thatCj is unsatisfiable because of case 2 or 3 of Lemma169. According

to Lemma165, all Ci are unsatisfiable fori ≥ j.

Note that, if case 2 holds forCi then Ci+1 can fulfil case 3 because of rule(EA)

for example. Conversely, rule(AE) can swap unsatisfiability from theA part of a

configuration to anEΣ. However, this can only happen if one of these parts contains

a path quantified formula. Thus, applying these rules alternatingly can only happen

at mostm times wherem is bounded by the quantifier depth ofϕ0. Note that theAi

are assumed to be satisfiable and unsatisfiable alternatingly. It is not possible for an

unsatisfiableEΣ to be regenerated from aR formula insideAi for example because this

would causeAi and all its descendants to be unsatisfiable.

Moreover, each application of rule(EA), i.e. each swap of unsatisfiability from anEΣ
to Ai destroys a path quantifier in the actual configuration that cannot be regenerated.

Each application of rule(AE) reduces the number of path quantifiers inside the actual

A. Thus, a repeat is only possible in a part of a play where unsatisfiability remains

with eitherAi or anEΣ ∈ Ei .

This shows that eventually either the first case of the claim holds or eachCi contains

an unsatisfiableEΣ which does not become satisfiable anymore. But it is part of player

∀’s strategy to let an unsatisfiableEΣ persist.

What remains is case 4 of Lemma169. Suppose thatA∧ EΣ is unsatisfiable. If

both conjuncts are unsatisfiable on their own then theEΣ will persist and remain

unsatisfiable. Assume therefore that both conjuncts are satisfiable. Player∀’s strategy

will make him move the focus intoA once all the top-levelU formulas in Σ are

processed. Whenever rule(AX) is played he chooses the descendant ofEΣ as long

as the combination of this with the presentA is still unsatisfiable. Eventually, the

226 Chapter 8. Satisfiability Games for CTL∗

important formulas fromA will have been copied into the descendant ofEΣ. This will

eventually make it unsatisfiable on its own and player∀ will move the focus into it at

some point. A repeat can only occur after that since the unsatisfiable descendant ofEΣ
must be syntactically different from a satisfiableEΣ.

However, at some point the conjunction of the presentA and the descendant ofEΣ
can become satisfiable. But this is only possible if anotherEΣ′ appeared such that the

currentA∧EΣ′ is unsatisfiable. Then player∀ continues with his focus strategy inside

A but choosesEΣ′ with rule (AX). Note that at this point he loses the copied formulas.

Suppose the play proceeds as follows. We will only consider configurations before and

after an application of rule(AX). Assume there are configurations of the form

A(XΓ1
i ; . . . ;XΓni

i),EXΣ′i−1,EXΣi ,Π′

with successors

A(Γ1
i ; . . . ;Γni

i),EΣi ,Π

for i = 1, . . .n and somek ∈ N. Suppose that eachEXΣ′i is the descendant ofEΣi and

that eachA(XΓ1
i ; . . . ;XΓni

i) is the descendant ofA(Γ1
i−1; . . . ;Γni−1

i−1). As usual,Ai stands

for A(Γ1
i ; . . . ;Γni

i) while AX
i is used to denoteA(XΓ1

i ; . . . ;XΓni
i). Now suppose that every

Ai ∧ EΣi is unsatisfiable whereas everyAX
i ,EXΣ′i−1 is satisfiable. This captures the

situation mentioned above: everyEΣ that is unsatisfiable with the presentA becomes

satisfiable while a newEΣ′ appears that is unsatisfiable with the currentA.

According to Lemma163, a repeat on a configuration must eventually occur. W.l.o.g.

we assume that it is onAX
1,EXΣ1. I.e. the descendant ofEΣk isEXΣ1, and the descendant

of Ak is AX
1. For i = 1, . . . ,k−1 let κi denote the number of applications of rule(AX)

or (EX) betweenAi ,EΣi and AX
i+1,EXΣ′i ,EXΣi+1 plus 1. Note that rule(AXE/) cannot

be applied as there is always at least one presentEΣ.

Since everyAX
i ∧EXΣ′i−1 is satisfiable, it has a modelTi . EachTi is a possibly infinite

tree containing one path satisfyingXΣ′i−1, while this and every other path satisfies at

least oneXΓ j
i . Therefore, eachTi begins with one transition after whichΣi−1 or aΓ j

i

might require the tree to branch. We paste theseTi together to form an infinite treeT

that is finitely represented as shown in Figure8.8.

227

κ3

κk−1

T2

κ1

κ2 κk

T1

Tk−1

Figure 8.8: A model T for A1,EΣ1.

A sequence of states of lengthκi corresponds to a sequence of applications of rules

(AX) or (EX) in which the last persistingEΣ was chosen. The labelling of each

state is the maximal consistentΠ that player∃ chose for the corresponding block of

configurations. Here, a block is a part of the play in which neither rule(AX) nor (EX)

was played.

We show that the transition system of Figure8.8 is a model forA1∧EΣ1. Remember

thatEΣ1 has the descendantEXΣ′1 which is fulfilled in T1. The same holds for every

otherEΣi that occurs during the play. Therefore, every occurringEΣi is fulfilled in T

which also satisfies the correspondingAi .

Note that we have restricted ourselves to the case of only twoEΣ components per

configuration. The argument can easily be extended to deal with more than two.

It remains to be seen that the paths from the origin to eachTi satisfy theA formulas.

Remember that the first part of lengthκ1 does not bear a contradiction toEΣ1 or any

occurringΠ in this part, for otherwise player∀would have won the corresponding play

228 Chapter 8. Satisfiability Games for CTL∗

with condition 1. Moreover, the second part of lengthκ2 starting from the root ofT1

does not exhibit a contradiction to the next persistingEΣ2 and the correspondingΠ’s.

Thus, it satisfies at least oneΓi
2. But A2 is the descendant ofA1. Therefore the paths

starting from the root intoT2 must satisfy at least oneΓi
1, for if this was not the case

then the play would not have proceeded this way. Iterating this argument shows that

the infinite path connecting all theTi must satisfy one of theΓi
1. Thus,A1,EΣ1 cannot

be unsatisfiable.

Conversely, there is at least oneEΣ which remains unsatisfiable. But then it is going to

persist according to player∀’s strategy of preserving unsatisfiability. �

Theorem 171 (Soundness) If ϕ0 is unsatisfiable then player∀ winsG(ϕ0).

PROOF We let player ∀ use his top-level list strategy as it is described in

Definition 167. Furthermore, whenever an application of rule(AX) or (EX) requires

him to choose anEΣ he selects the one that preserves unsatisfiability according to

Lemma165.

With the top-level list strategy a terminal configuration is only reached if it contains an

atomic contradiction which makes player∀ the winner of the play at hand, or if there

are no non-atomic formulas that player∀ can set the focus to. But by preservation of

unsatisfiability the resulting configuration must be unsatisfiable, i.e. a win for player∀
with winning condition 1.

According to Lemma169, there are four possibilities for a configuration

A(Γ1; . . . ;Γm),EΣ1, . . . ,EΣn,Π

to be unsatisfiable. Lemma170shows that, if no terminal configuration is reached, the

A part remains unsatisfiable possibly in conjunction with the respective propositional

parts, or eventually an unsatisfiableEΣ must persist.

Remember that player∃ always choosesΠ to be satisfiable, and ifΠ is unsatisfiable in

conjunction with theEΣi then player∀ can immediately win with his winning condition

1 by setting the focus to the appropriate proposition. If the conjunction of theA part

and theΠ is unsatisfiable then player∃ can only change focus insideA but player

∀ can always play such that the focus reaches aq for a q ∈ Π. But then a repeat

229

will eventually occur and player∃ has used rule(FC1) whereas player∀ has used at

most rule(FC2) since the focus did not leaveA. Hence, he wins with his winning

condition 3 unless player∃ has left the focus on a particularΓ in which case he wins

with condition 1.

Lemma170shows that, if this is not the case, then eventually all configurations will

contain anEΣ which is either unsatisfiable or whose negation is implied by theA

component. It also shows that eventually one of these must persist.

But unsatisfiability must be given by one or severalU formulas which cannot get

fulfilled. If one of them occurs in the persistingEΣ then player∀ will eventually set

the focus to it according to Lemma168. If eachΓ of the A part contains one then,

again by Lemma168, player∀ will eventually set the focus to one of them which gets

copied into the persistingEΣ. Finally, player∀ will change focus to it inEΣ and win

with condition 2. �

Next we recall Definition69 and Lemma70 of Chapter5. These form the basis for

player∃’s winning strategy on a satisfiable formula in the completeness proof for the

satisfiability games.

Definition 172 Take a states0 of a transition systemT and satisfiable formulas

Γ1, . . . ,Γn

Assume thats0 |= A(Γ1∨ . . .∨Γn), i.e. every pathπ starting withs0 satisfies at least

oneΓi . With eachΓi we associate a setP′Γi
(s0) of finite prefixes of paths starting with

s0 in the following way. Letσ = s0 . . .sk be a finite sequence of states s.t.si−→si+1 for

all i = 0, . . . ,k−1.

σ ∈ P′Γi
(s0) iff there is a pathπ = σπ′ s.t. π |= Γi

Thus,P′Γi
(s) consist of all finite sequences of states starting withs that can be extended

to a path satisfyingΓi . In the next step we make these sets disjoint. LetPΓi(s)⊆ P′Γi
(s)

be defined by

σ ∈ PΓi(s) iff σ ∈ P′Γi
(s) and for all j < i : σ 6∈ P′Γ j

(s)

230 Chapter 8. Satisfiability Games for CTL∗

A path can never occur in a set with a smaller index than any of its prefixes. Thus,

s∈ PΓ1(s) in any case.

Lemma 173 Letσ1,σ2 be finite prefixes of a path starting ins, s.t.σ2 = σ1σ for some

σ. If σ1 ∈ PΓi(s) andσ2 ∈ PΓ j (s) then j ≥ i.

This is the same as Lemma70 of Chapter5, simply reformulated to take care of the

normal form for CTL∗ formulas needed in this chapter.

Definition 174 An extended configurationof a CTL∗ satisfiability gameG(ϕ0) and an

LTS T = (S,−→,L) is of the form

t ` A,E,Π

wheret ∈ S and A,E,Π is an ordinary configuration ofG(ϕ0). It is called true if

t |= A,E,Π andfalseotherwise.

An extended gameis an ordinary satisfiability game with each configuration extended

in the following way. Ift is the state component of an extended configuration to which

rule (AX), (EX) or (AXE/) is applied andt ′ is the state component of the successor

configuration thent−→ t ′. Player∃ is allowed to choose such at ′. All other rules

preserve the state component.

Note the intended similarity to a model checking configuration. It is only the CTL∗

normal form that detains us from proving completeness by relating a satisfiability game

to one or several model checking games as it is done in Chapter6.

Lemma 175 Player∃ can preserve truth in an extended game, player∀must preserve

truth.

PROOF There is only one situation in which player∃ performs a genuine choice on a

formula: that of a disjunction insideE. All the other rules requiring her to take a choice

deal with the position of the focus insideA. Suppose the actual extended configuration

is

t ` A,E(ψ0∨ψ1,Σ),E,Π

231

Player∃ simply chooses theψi that is true. Note thatE(ψ0∨ψ1)≡ Eψ0∨Eψ1.

Preservation of truth with the rules for the other boolean connectives, the focus moves

and changes, and the unfolding ofU andR formulas is trivial.

The other interesting case is the one where rule(AX), (EX) or (AXE/) is played. Suppose

s0 |= A(XΓ1; . . . ;XΓn),EXΣ1, . . . ,EXΣm,Π

Then, for everyi = 1, . . . ,m, there must be a pathπi = s0 . . . s.t.

πi |= XΣi ∧XΓ j

for somej ∈ {1, . . . ,n}. Lets1 := π(1)
i . Player∃ can chooses1 andΠ′ := L(s1) to make

the next extended configuration

s1 ` A(Γ1; . . . ;Γn),EΣi ,Π′

true, too. Note that the position of the focus only determines which rule exactly is

played. �

Lemma 176 Consider the set of all setsΓ that can occur inside anA in a

configuration ofG(ϕ0). It can be ordered asL = L1, . . . ,Lm, whereLi = Γi,1, . . . ,Γi,ni

for all i = 1, . . . ,m s.t.

• if Γ′ is a descendant ofΓ but Γ is not a descendant ofΓ′, and Γ ∈ Li , Γ′ ∈ L j

then j > i.

• if Γ and Γ′ are descendants of each other, then there is ani ∈ {1, . . . ,m} s.t.

Γ,Γ′ ∈ Li

PROOF The set of all such configurations together with the immediate descendant

relation forms a graph. Each partLi of the list L represents a strongly connected

component of this graph. They can be sorted topologically to obtainL. �

232 Chapter 8. Satisfiability Games for CTL∗

Theorem 177 (Completeness) If ϕ0 is satisfiable then player∃ winsG(ϕ0).

PROOF Supposeϕ0 is satisfiable. Then there is a transition systemT = (S,−→,L) with

a states0 ∈ S s.t. s0 |= ϕ0. Moreover,s0 |= Aϕ0 sinceϕ0 is a state formula. Consider

the extended game forG(ϕ0) andT. Its first configuration

s0 ` A(
[
ϕ0

]
)

is true.

Lemma175 shows that all reached configurations will be true regardless of player

∀’s choices. Thus, if a play reaches a terminal configuration she will win it with her

winning condition 4.

It remains to be described how player∃ has to set the focus inside anA in order to win

G(ϕ0). Since the extended play follows states inT along the−→ relation, there will be

a selected finite sequenceσ = s0s1 . . .sk of states at any moment in the play. Let

L = L1, . . . ,Lm = Γ1, . . . ,Γn

be the sorted list of allΓ that can possibly occur inG(ϕ0) according to Lemma176.

Furthermore, let

PΓ1(s0), . . . , PΓn(s0)

be the sets of finite sequences of states starting ins0 according to Definition172. Note

that at any moment in a play one of these finite sequences will have been selected.

Whenever the play has outlined the sequenceσ and player∀ sets the focus to
[
A

]
,

then player∃ sets it to theΓi s.t. σ ∈ PΓi(s0). Note that at the beginning an eligible

one exists and, similar to the proof of Theorem71, the rules preserve the following

invariant. At any moment in a play that has outlinedσ = s0 . . .sk there is at least one

Γi present in the actualA s.t.σ ∈ PΓi(s0). On the other hand, they are disjoint. Thus,

there is always exactly onePΓi(s0) that containsσ.

Suppose the actual extended configuration is

t ` A(
[
ψ0∨ψ1

]
,Γ′; . . .),E,Π

233

with Γ := ψ0∨ψ1,Γ′, andΓ ∈ Li for somei ∈ {1, . . . ,m}. Player∃ has to set the focus

to one of the two possible descendants. Assume she choosesψ0,Γ′. Then eitherΓ is a

descendant ofψ0,Γ′ itself, in which caseψ0,Γ′ ∈ Li . Or Γ is not reachable fromψ0,Γ′

anymore. Thenψ0,Γ′ ∈ L j for somej > i according to Lemma176.

Thus, she either remains in the currentLi or increases the index of the actual sublistLi

whenever rule(A∨) is played.

Note that there is no need for player∃ to change focus betweenΓi andΓ j if both are

descendants of each other. Either they never occur in the same configuration in which

case a focus change is simply not possible. Or there is anotherΓ s.t. bothΓi andΓ j

are descendants ofΓ and vice versa. If the focus was onΓ and is onΓi later on for

example although player∃ would like to change it toΓ j then she could have set the

focus accordingly earlier on. If it was not onΓ then she can wait until it is onΓ and

then direct it toΓ j . In both cases she does not change focus.

Now consider an application of rule(AX), (EX) or (AXE/). Remember that after that,

player∃ is allowed to change the focus. This might be necessary since the sequence of

statesσ outlined so far is prolonged with another statet ′.

Suppose the focus was inΓi . Then we know thatσ ∈ PΓi(s0). But σt ′ is an extension

of σ and according to Lemma173, σt ′ ∈ PΓ j (s0) only if j ≥ i. If j = i then player∃
can leave the focus in the actualΓ. Otherwise, the path that player∀ is going to choose

by selecting anotherEΣ does not fulfilΓi . Therefore, player∃ needs to change focus.

Lemma176shows that it increases the index of the actual sublistLi .

If there is a
[
q
]

in the actualΓ then player∀ has to change focus since he would

inevitably lose at this point. Letσ = s0 . . .sk be the prefix that has been selected so

far. ThenΠ = L(sk) for the propositional part of the actual configuration. But also

σ ∈ PΓi(s0) for theΓi containing the focus and thereforeq∈Π.

If the focus is on an
[
Eϕ

]
then it is removed from player∃’s control since theEϕ gets

promoted into the actualE part and with it the focus. If it is on an
[
Aϕ

]
the sets ofΓs get

modified. LetΓi =
[
Aϕ

]
,Γ for someΓ andΓ j some other set insideA. If σ = s0 . . .sk

is the selected finite sequence for this moment thensk |= Aϕ. But thenπ |= ϕ for any

π starting withsk, in particular those paths which have a sequence inPΓ j (s0). Thus,

234 Chapter 8. Satisfiability Games for CTL∗

player∃ can continue with the focus inside the actualΓ.

All in all, player ∃ can change focus s.t. the index of the actual sublist always gets

increased. But this means she sets the focus to aΓ which cannot regenerate theΓ′ the

focus has been on before. Therefore a repeat is not possible as long as she changes

focus appropriately.

Whenever the extended play visits a configurationsk `C s.t. sj `C was visited before

andsk 6= sj then the satisfiability game is restarted at the first occurrence ofC with

the extended configurationsk ` C. This does not influence the choice of the focus

position since theΓs insideA of C are the same. Therefore player∃ can choose the

position of the focus according to the paths0 . . .sj . . .sk. If a repeat on an extended

configuration is detected such that the states are the same then the satisfiability game

is not restarted. Note that in this case one of the winning conditions applies at most 3

steps later according to Lemma163.

This strategy guarantees player∃ to win G(ϕ0). Player∀ cannot win a play with his

condition 1 since this would imply an inconsistency in the labelling of a state in the

model. He also cannot win with condition 2 because Lemma173ensures that player

∃ does not change the focus back to aΓ where it was before. Moreover, since every

selected prefix of a path is guaranteed to be extendable to a path satisfying at least one

Γ, player∃ can “fulfil” every ϕUψ eventually. The satisfiability play cannot perform

a repeat before player∃ choosesψ in its unfolding since this would correspond to a

selected prefixs0 . . .sk . . .sk such that this cyclic path does not satisfyψ at any state.�

As in the cases of LTL, CTL and PDL, the small model property for CTL∗ can be

derived from its satisfiability games.

Theorem 178 (Small model property) If ϕ0∈CTL∗ is satisfiable then it has a model

of size less than2|ϕ0| ·2(2|ϕ0|).

PROOF Supposeϕ0 is satisfiable. By Theorem177, player∃ has a winning strategy

for the gameG(ϕ0). A transition systemT = (S,−→,L) can be extracted from the game

tree in the same way as it is done for CTL in the proof of Theorem116. States ofT

are equivalence classes of configurations, and transitions are given by applications of

235

rules(AX), (EX) and(AXE/). The labelling of the states is taken from player∃’s choices

of the maximal consistent setsΠ.

However, it is much simpler to consider the game tree of the extended game in the

proof of Theorem177. Ignoring the state components of the extended configurations

results in a game tree for player∃ and the gameG(ϕ0).

On the other hand, the state components alone form a transition systemT with

transitions given by applications of rules(AX), (EX) and (AXE/). The fact that they

occur as state components in an extended game tree for player∃ shows thatT is a

model forϕ0. Its size is bounded by2|ϕ0| ·2(2|ϕ0|) since this is the maximal number of

configurations in the (extended) game tree according to Lemma163. �

Corollary 179 (Tree model property) CTL∗ has the tree model property.

Theorem 180 (Winning strategies)

a) Player∃’s winning strategies are history-free.

b) Player∀’s winning strategies are LVR strategies.

PROOF History-freeness of player∃’s winning strategies is proved in the same way as

it is for the LTL satisfiability games and, hence, for the CTL∗ model checking games.

First of all, the strategy described in Theorem177requires her to choose a model for

the underlying formula. This model does not depend on the history of a play. Then

she follows the states of the extended configurations in the model and uses the outlined

finite paths to put the focus onto a particularΓ whenever player∀ wants the focus to

be insideA.

Lemma67of Chapter5 proved for the CTL∗ model checking games that player∀ does

not need to remember whichΓ he set the focus to. Instead, he can recalculate the sets

PΓ1(s), . . . , PΓn(s)

every time rule(AX) or (EX) is played. It is the fixed index ordering of theΓis which

ensures that he can change focus in such a way that indices only get increased. But

the order of the formulas is chosen at the beginning, too, and does not depend on the

history of a play. The same holds of course for player∃ in this case, too.

236 Chapter 8. Satisfiability Games for CTL∗

On one hand, player∀’s winning strategy forG(ϕ0) with an unsatisfiableϕ0 tells him

to preserve unsatisfiability. This is history-free since unsatisfiability of a configuration

only depends on the configuration itself. On the other hand his strategy tells him how to

set the focus. Similar to the satisfiability games for LTL, CTL and PDL from Chapter6

he can use a list ofU formulas.

The proof of Lemma168 states that player∀’s top-level list strategy is obtained as

the interleaving of several priority list strategies according to Lemma97 for the LTL

satisfiability games for example. By Lemma118, proved in Section6.2, an interleaving

of two disjoint LVRs is an LVR again. Note that the LVRs in this case consist of all

configurations containingU formulas or, in a simplified version, of allU formulas only.

EachEΣ andA of G(ϕ0) has its own LVR ofU formulas occurring in them. They can

easily be made disjoint be markingU formulas according to whichEΣ or A they come

from. Thus, player∀’s winning strategies are LVR strategies. �

Complexity

Theorem 181 (Complexity) Deciding the winner ofG(ϕ) is in 2-EXPTIME.

PROOF An alternating algorithm can be used to determine the winner of the

satisfiability gameG(ϕ). It simply needs to store three configurations: the actual one

and two (co-)nondeterministically chosen ones to find a repeat on. The size of each

configuration is exponential in the size of the input. The size of a set of subformulas

of ϕ is linear in the size ofϕ, and there can be exponentially many different sets of that

kind.

Each time one of the players uses their focus change rule their stored configuration

is deleted. Thus, if the play performs a repeat without focus change it is detected by

the algorithm. To detect repeats with focus change the algorithm stores a counter to

measure the length of a play. According to Lemma163, its maximal size is

log ((1+ |ϕ|+2|ϕ|) ·2(2|ϕ|) +5) = O(|ϕ| ·2|ϕ|)

Thus, deciding the winner ofG(ϕ) can be done in alternating EXPSPACE which is the

same as 2-EXPTIME, [CKS81]. �

237

Comparing Automata and Games for CTL ∗ Satisfiability Checking

So far, automata have been the only successful tool that was used to automatically

decide satisfiability of CTL∗ formulas. Since CTL∗ is a branching time logic, automata

over trees are needed.

As with all the other logics, a CTL∗ formula ϕ is translated into an automatonAϕ,

and satisfiability checking is reduced to the non-emptiness testL(Aϕ) 6= /0. However,

in a naive approach the size of the automaton is doubly exponential in the size ofϕ,

and the non-emptiness test requires time which is double exponential in the size of the

automaton.

As outlined in Section3.2, this has been optimised by inspecting both the structure of

CTL∗ formulas to obtain smaller automata, and by finding more efficient procedures

for the non-emptiness test. They make use of the fact that automata arising from this

translation are not arbitrary but have a special structure, too.

The first optimisation mainly deals with the complementation problem for these

automata. Complementation is necessary to handle embedded quantifiers. Note that

Eϕ≡ Aϕ. Thus, an automaton for an existentially quantified subformula is obtained as

the complement of an automaton for a universally quantified subformula.

But complementation generally requires determinisation, i.e. deterministic automata

are easy to complement whereas nondeterministic are not. It is possible to complement

non-deterministic automata without explicitly transforming them into an equivalent

deterministic one. But this can also be seen as an implicit determinisation.

On the other hand, remember the close connection between Büchi automata

and LTL formulas as well as the relationship between CTL∗ formulas and LTL

formulas. Deterministic B̈uchi automata are strictly weaker than nondeterministic

ones. Therefore, a translation into them is not even possible. The complementation

problem for B̈uchi automata generally requires an intricate construction using

combinatorial results.

This shows that the real work involved in automata-theoretic satisfiability checking for

CTL∗ is done on top of the automaton. Consequently, the resulting automata that have

undergone an optimised determinisation process bear no syntactic relationship to the

238 Chapter 8. Satisfiability Games for CTL∗

original formula anymore.

This distinguishes them from the satisfiability games of this chapter completely. There,

the whole complexity of the problem at hand is simply captured by the size of a

configuration and, consequently, is expressed in the relatively high number of rules

compared to LTL or CTL satisfiability checking games. On the other hand, the

algorithm that decides which player has a winning strategy for aG(ϕ0) is not more

complicated than the ones used for LTL and CTL in Theorems106and120.

As opposed to the automata-theoretic approach the games have the advantage of

yielding a structure which does have a close relationship to the input formula. In

fact, the game tree is entirely made up of its subformulas. In contrast, the automata for

CTL∗ formulas need to be regarded as an abstract graph of which a certain reachability

property needs to be checked.

Chapter 9

Model Checking Games for

Fixed Point Logic with Chop

Mad world! Mad kings!

Mad composition!

—

PHILIP THE BASTARD

9.1 Global Model Checking Games for FLC

For a finite transition systemT = (S,{ a−→| a∈A},L) with s∈ S and an FLC formula

ϕ0 theglobal model checking gameGT(s,ϕ0) is played by players∀ and∃ on the game

board

C = S×2S×Sub(ϕ0)

The intended meaning of a configurations,S` ϕ is s∈ [[ϕ]](S). Remember that the

semantics ofϕ is a function from sets of states to sets of states. This is the reason for

the statesetin a configuration.

240 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Here, a play is a finite sequenceC0, . . . ,Cn of configurations withC0 = s,S ` ϕ0. This

takes into account the definition of the|= relation for FLC from Section2.5.

The rules for the global model checking games are presented in Figure9.1. Rules(∧)

and(∨) are like the rules for boolean connectives in the PDL model checking games

for example. Rule(FP) is the usual unfolding for fixed point formulas. Rule(VAR)

expresses the property of a fixed point being equivalent to its unfolding.

The most interesting rule is(;). Here, player∃ chooses aT first. Then player∀ chooses

a t ∈ T and decides whether to follow the left or the right of the lower configurations.

The motivation for this is as follows. Lets,S` ϕ;ψ be the actual configuration. Note

that its intended meaning iss∈ [[ϕ]]([[ψ]](S)). To prove this, player∃ has to name a set

T s.t.T ⊆ [[ψ]](S). Then, player∀ who wants to show that

s 6∈ [[ϕ]]([[ψ]](S))

has two possibilities to do so. Either he showss 6∈ [[ϕ]](T). In this case, player∃’s

choice ofT was not good enough. The best she can do isT = [[ψ]](S).

On the other hand he can decide to refute player∃’s claim thatT ⊆ [[ψ]](S) in which

case he has to name at ∈ T of which he believest 6∈ [[ψ]](S). Therefore the play can

continue with eithers,T ` ϕ or t,S` ψ.

Note that there are no restrictions on the choice ofT ⊆ S. This is the point where the

games violate the locality conditions stated in Section2.8.

Player∃ is allowed to chooseT = /0. In this case player∀ has no choice with this

rule and the next configuration is necessarilys, /0 ` ϕ. This is justified by the fact that

trivially /0 ⊆ [[ψ]](S) for anyψ and anyS. Thus, player∀ could not refute this branch

anyway.

Player∀ wins the playC0, . . . ,Cn of the gameGT(s,ϕ) iff

1. Cn = t,T ` q andq 6∈ L(t), or

2. Cn = t,T ` τ andt 6∈ T, or

3. Cn = t,T ` 〈a〉 and for allt ′ ∈ S : if t a−→ t ′ thent 6∈ T, or

9.1. Global Model Checking Games for FLC 241

(∧)
s,S` ϕ0∧ϕ1

s,S` ϕi

∀i (∨)
s,S` ϕ0∨ϕ1

s,S` ϕi

∃i

(FP)
s,S` σZ.ϕ

s,S` Z
(VAR)

s,S` Z

s,S` ϕ
if fp(Z) = σZ.ϕ

(;)
s,S` ϕ;ψ

s,T ` ϕ |∀ t,S` ψ
∃T ⊆ S,∀t ∈ T

Figure 9.1: The rules for the global FLC model checking games.

4. Cn = t,T ` [a] and there ist ′ ∈ S s.t.t a−→ t ′ andt ′ 6∈ T, or

5. Cn = t,T ′ `Y s.t.fp(Y) = µY.ψ for someψ, and there is ani ∈ N, s.t.

• Ci = t,T `Y with T ′ ⊆ T, and

• there is noCj with i < j < n s.t. Cj = t ′,S′ ` Z for somet ′,S′

with fp(Z) = νZ.ψ′ andY <ϕ Z.

Player∃ wins the playC0, . . . ,Cn of GT(s,ϕ) iff

6. Cn = t,T ` q andq∈ L(t), or

7. Cn = t,T ` τ andt ∈ T, or

8. Cn = t,T ` 〈a〉 and there is at ′ ∈ T s.t.t a−→ t ′, or

9. Cn = t,T ` [a] and for allt ′ ∈ S : if t a−→ t ′ thent ∈ T, or

10. Cn = t,T ′ `Y s.t.fp(Y) = νY.ψ for someψ, and there is ani ∈ N, s.t.

• Ci = t,T `Y with T ′ ⊇ T, and

• there is noCj with i < j < n s.t. Cj = t ′,S′ ` Z for somet ′,S′

with fp(Z) = µZ.ψ′ andY <ϕ Z.

242 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Example 182 Let T be the transition system consisting of states{s, t} with transitions

s a−→ t, t a−→ t andt b−→s. Consider the FLC formula

ϕ = νY.[b]ff∧ [a](νZ.[b]∧ [a](Z;Z));(([a]ff∧ [b]ff)∨Y)

from Example22. ϕ requires the number ofb’s that have been seen on every path

never to exceed the number ofas that have been seen so far. States of T satisfiesϕ.

The full game tree for player∃ is shown in Figure9.2. Let ψ := νZ.[b]∧ [a](Z;Z) and

δ := ([a]ff∧ [b]ff)∨Y.

She wins all the plays which end on a[a] or [b] with her winning condition 9. She wins

the other plays with condition 10 since the only fixed point formulas occurring inϕ are

greatest ones.

Correctness

Fact 183 Rule(VAR) is the only rule that increases the size of the formula in the actual

configuration. All other rules decrease it.

Lemma 184 Every play ofGT(s,ϕ) has a uniquely determined winner.

PROOF Suppose the play at hand reaches an atomic formula. Then no further game

rule applies. The winner is uniquely determined since winning conditions 1 – 4 and 6

– 9 cover these cases and are mutually exclusive.

Now take a play that does not reach an atomic formula. According to Fact183, all the

game rules apart from(VAR) decrease the size of the formula component in the actual

configuration. Therefore, there must be at least one variableZ which gets replaced by

its defining fixed point formula each time it occurs in the actual configuration. Since

the underlying transition system is finite a configuration must eventually be reached

such that the first part of condition 5 or 10 is fulfilled. The second part will also be

fulfilled eventually since for every variableZ that does not regenerate itself there must

be another variableY such thatZ <ϕ Y. But there are only finitely many variables

in a formula. Thus, one must be outermost. Its fixed point type determines whether

condition 5 or 10 applies. �

9.1. Global Model Checking Games for FLC 243

s,{s, t} ` ϕ

s,{s, t} `Y

s,{s, t} ` [b]ff∧ [a](ψ;δ)

s,{s, t} ` [b]ff s,{s, t} ` [a](ψ;δ)

s, /0 ` [b] s,{t} ` [a] t,{s, t} ` ψ;δ

t,{s} ` ψ s,{s, t} ` δ

t,{s} ` Z s,{s, t} `Y

t,{s} ` [b]∧ [a](Z;Z)

t,{s} ` [b] t,{s} ` [a](Z;Z)

t,{t} ` [a] t,{s} ` Z;Z

t,{s} ` Z s,{s} ` Z

s,{s} ` [b]∧ [a](Z;Z)

s,{s} ` [b] s,{s} ` Z;Z

s,{s} ` Z s,{s} ` Z

Figure 9.2: The game tree for player ∃ from Example 182.

244 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Lemma 185 Every play ofGT(s,ϕ) has length at most(|S| ·2|S| · |ϕ|)ad(ϕ)+1.

PROOF This upper bound on the length of a play is proved by induction on the fixed

point depth ofϕ. Supposead(ϕ) = 0. Then the requirement of being outermost in

winning conditions 5 and 10 becomes void. In a configurationt,T ` ψ there are|S|
many possibilities fort and|ϕ|many forψ. There are2|S| many possibilities to choose

subsetsT1, . . . ,Tn of S s.t. thatTi 6⊆ Tj , resp.Ti 6⊇ Tj for all 1≤ i < j ≤ n.

Suppose nowk := ad(ϕ) > 0. Let Z be the outermost variable withfp(Z) = σZ.ψ.

ThenZ can be unfolded at most|S| ·2|S| · |Sub(ϕ)| times. Each unfolding can result in

an embedded subplay starting withψ which has fixed point depthk−1. �

The next result follows from Lemmas184, 185and Theorem37.

Corollary 186 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

Generally, correctness proofs for model checking games split up into two parts:

soundness and completeness. According to Theorem39 of Section2.6, one part can

easily be used to prove the other if

• the logic is closed under negation, i.e. for everyϕ there is aϕ s.t.s |= ϕ iff s 6|= ϕ,

and

• the rules and winning conditions of the games are dual in the sense that playerp

can usep’s winning strategy fromGT(s,ϕ) to win GT(s,ϕ).

This is given for the PDL model checking games in Chapter4 and the CTL∗ model

checking games in Section5.2.

For the FLC model checking games we have to prove both soundness and completeness

explicitly. The reason is the requirement of being closed under negation. Remember

that the |= relation for FLC formulas is defined indirectly via the semantics[[·]].
Therefore the right complement formulaϕ satisfies

[[ϕ]](S) = S− [[ϕ]](S) for all S⊆ S

9.1. Global Model Checking Games for FLC 245

But according to this definition of complementation, FLC is not negation closed. A

simple counterexample is the formulaτ which has no complement. This follows from

Lemma19 of Section2.5 which states that the semantics of any FLC formula is a

monotone state transformer. But

[[τ]] = λX.S−X (9.1)

is not monotone. Also, it is not obviously clear how to expressϕ;ψ with the operators

of FLC.

One solution to this problem would be to extend the syntax and semantics of FLC. In

fact, it would suffice to addτ as a new primitive. Then the complement of a formula

ϕ can be defined asϕ := τ;ϕ. But functionsλ f .[[ϕ(X)]][X 7→ f] need to be monotone

for fixed points over these functions to exist. A simple criterion like the one used for

Lµ formulas where variables are required to occur in the scope of an even number of

negations does not seem to exist for FLC. Note that because of (9.1) the following

holds.

ϕ;ψ ≡ ϕ;ψ

Thus, an occurrence of a variable inψ on the right side of this has to take the negation

of ϕ into account as well. This means thescopeof a negation symbol is not its subtree

in the formula’s syntax tree anymore.

The second way to repair negation closure of FLC is to consider complementation with

respect to weak equivalence. This means anyψ is a candidate forϕ if for every state

s of every transition systems |= ϕ iff s 6|= ψ holds. But there must be an effective way

to constructψ from ϕ to meet the second requirement above. One possibility is to use

deMorgan’s laws, the duality of least and greatest fixed points, the complementation

closure of atomic propositions and the duality of the modal operators to eliminate

negation from formulas. But thenτ has to be eliminated too, which can destroy the

original structure of the formula at hand. This will result in games onϕ andϕ that are

not obviously dual to each other anymore.

Definition 187 A configuration t,T ` ψ in the gameGT(s,ϕ0) is called true if

t ∈ [[ψ]](T) andfalseotherwise.

246 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Lemma 188 Player ∃ preserves falsity and can preserve truth with her choices.

Player∀ preserves truth and can preserve falsity with his choices.

PROOF First consider rule(∨). Take a configuration

C = t,T ` ϕ0∨ϕ1

SupposeC is false, i.e.t 6∈ [[ϕ0]](T) and t 6∈ [[ϕ1]](T). Regardless of whichi player

∃ chooses, the configurationt,T ` ϕi will be false. On the other hand, supposeC is

true. Thent ∈ [[ϕ0]](T) or t ∈ [[ϕ1]](T), and player∃ can preserve truth by choosingi

accordingly. The proof for rule(∧) where player∀ makes a choice is dual.

Consider now a configuration

C = t,T ` ϕ;ψ

SupposeC is true, i.e.t ∈ [[ϕ]]([[ψ]](T)). Then player∃ can chooseT ′ = [[ψ]](T) and

the configurationt,T ′ ` ϕ will be true. Moreover, for everyt ′ ∈ T ′ the configuration

t ′,T ` ψ will be true, too. Therefore, player∀ must preserve truth with his choice in

rule (;).

Suppose on the other hand thatC is false, i.e.

t 6∈ [[ϕ]]([[ψ]](T))

In the application of rule(;), player∃ choosesT ′ first. Assume she choosesT ′ =

[[ψ]](T). Then player∀ can continue with the false configurationt,T ′ ` ϕ. Assume

therefore, player∃ chooses any otherT ′ s.t.t ∈ [[ϕ]](T ′). Then there must be at ′ ∈ T ′

s.t.t ′ 6∈ [[ψ]](T) and player∀ can continue with the false configurationt ′,T ` ψ.

To prove this last claim assume thatT ′ ⊆ [[ψ]](T). By monotonicity of[[ϕ]] we have

[[ϕ]](T ′) ⊆ [[ϕ]]([[ψ]](T))

But thent ∈ [[ϕ]](T ′) contradicts the assumption thatt 6∈ [[ϕ]]([[ψ]](T)).

Note that both truth and falsity are preserved by application of the deterministic rules

(FP) and(VAR) if variables are interpreted by their approximants. �

9.1. Global Model Checking Games for FLC 247

For the correctness proofs it is helpful to consider a more flexible definition of a game.

In order to do so we will, overloading notation, denote bys,S` ϕ the game starting

with the configurations,S` ϕ. An underlying transition system is implicitly assumed

so that player∃ knows which set of states to choose from. The model checking game

GT(s,ϕ0) in the original sense is simply the same as the game fors,S ` ϕ0.

Theorem 189 (Soundness) Player∀ wins the game fors,S` ϕ0 if s 6∈ [[ϕ0]](S).

PROOF Supposes 6∈ [[ϕ0]](S), i.e. the configurations,S` ϕ0 is false. Preserving falsity

in the sense of Lemma188, we will construct a game tree for player∀. Whenever rules

(∨), (∧) or (;) need to be played, continue with the false configurations as in the proof

of Lemma188. Rules(FP) and(VAR) are applied deterministically.

This way, the game tree cannot contain a play which is won by player∃ with her

winning condition 6,7,8 or 9. These conditions require the last configuration of the

play to be true which is excluded by the preservation of falsity.

It remains to be shown that player∃ cannot win a play with her winning condition 10

either. In order to do so we interpretν-variables by their approximants. Suppose the

construction of the game tree reaches a configuration

C = t,T ` νZ.ψ

By preservation of falsityC is false as well as the following configurationt,T ` Z.

There we interpretZ as the least approximant that makes it false, i.e. as theZk s.t.

t 6∈ [[Zk]](T) but t ∈ [[Zk−1]](T)

By the definition of approximantsk = 0 is impossible. k ∈ N since the underlying

transition system is assumed to be finite.

Note that the game rules follow the syntactic structure of formulas and thatZk is

defined asψ[Zk−1/Z]. This means that the next time a configuration

C′ = s′,S′ ` Z

is reached,Z can be interpreted asZk−1 to makeC′ false. This does not hold if the

computation ofνZ.ψ has been restarted in the meantime, i.e. a least fixed point variable

Y has been visited in between, s.t.Z≤ϕ0 Y.

248 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

Suppose now the construction of the game tree reaches a configurationC′ = t,T ′ ` Z,

s.t.C andC′ fulfill the requirements of winning condition 10. Then there must have

been at least one unfolding ofZ with rule (VAR) betweenC andC′, and there is no

µ-variableY on this path such thatZ <ϕ0 Y. Therefore, in the false configurationC′, Z

will be interpreted asZm with m< k. But if t 6∈ [[Zm]](T ′) andT ′ ⊇ T thent 6∈ [[Zm]](T)

by monotonicity.

From this we conclude that there is no leastk that makest,T `Zk false. By Theorem30

of Section2.5

t,T ` νZ.ψ

could not have been false either without contradicting the assumption. Thus, player∃
cannot win a single play in the game tree constructed in this way and, by Corollary186,

player∀ wins the game fors,S` ϕ0. �

Theorem 190 (Completeness) Player∃ wins the game fors,S` ϕ0 if s∈ [[ϕ0]](S).

PROOF Supposes∈ [[ϕ0]](S), i.e. the configurations,S` ϕ0 is true. In a similar way

to the proof of Theorem189, we will construct a game tree for player∃ preserving

truth. Starting with configurations,S` ϕ0, whenever rules(∨), (∧) or (;) need to be

played, continue with the true successor configurations as described in the proof of

Lemma188. Again, rules(FP) and(VAR) are applied deterministically.

This way, the game tree cannot contain a play which is won by player∀ with his

winning condition 1, 2 or 3. These conditions require the last configuration of the play

to be false which is impossible by the preservation of truth.

It remains to be shown that player∀ cannot win a play with her winning condition

4 either. This time we interpretµ-variables by their approximants. Suppose the

construction of the game tree reaches a configuration

C = t,T ` µY.ψ

By preservation of truthC is true as well as the following configurationt,T `Y where

Y is interpreted as the least approximant that makes it true, i.e. as theYk s.t.

t ∈ [[Yk]](T) but t 6∈ [[Yk−1]](T)

9.1. Global Model Checking Games for FLC 249

Again, by the definition of the approximantsk = 0 is impossible.

With the same argument as used in the proof of Theorem189, the next time a

configurationC′ = s′,S′ `Y is reached,Y can be interpreted asYk−1 to makeC′ true.

This holds of course only if no greatest fixed point variableZ has been visited in

between, s.t.Y ≤ϕ0 Z.

Suppose now the construction of the game tree reaches a configurationC′ = t,T ′ `Y,

s.t.C andC′ fulfill the requirements of winning condition 4. Then there must have been

at least one unfolding ofY with rule (VAR) betweenC andC′, andY is the outermost

variable on this path. Therefore, in the true configurationC′, Y will be interpreted as

Ym with m< k. But if t ∈ [[Ym]](T ′) andT ′ ⊆ T thent ∈ [[Ym]](T) by monotonicity.

From this we conclude that there is no leastk that makest,T `Yk true. By Theorem30,

t,T ` νY.ψ could not have been true either without contradicting the assumption. Thus,

player∀ cannot win a single play in the game tree constructed in this way and, by

Corollary186, player∃ wins the game fors,S` ϕ0. �

Remember that preservation of truth and falsity plays an important role in the winning

strategies of the PDL model checking games. Here, the situation is similar. However,

unlike the least fixed point formulas in FLC, their PDL counterparts exhibit a very

simple structure. There is only one path through their syntax trees that leads from a

least fixed point construct〈α∗〉ψ via the subformula relation back to itself. This is the

reason why it is sufficient in the PDL case to choose the smaller formula of two that

both preserve truth. The same holds for greatest fixed point constructs and falsity of

course.

The syntax trees of FLC formulas however can have several different loops. Moreover,

the explicit use of propositional variables rules out the possibility of simply choosing

the smaller of two options since variables are smallest formulas. The following formula

is equivalent to the PDL property〈a∗〉〈a〉tt used in Example47.

µY.〈a〉;Y∨〈a〉;tt;Y

Note that theY in the right disjunct has no effect and could be left out without

changing the semantics of the formula. However, it shows that even a criterion which

250 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

considers the occurrences of variables in disjuncts, resp. conjuncts, does not suffice. It

might, however, work forLµ formulas. Instead, it is necessary for both players to use

approximants as done in the proofs of Theorems189and190.

Theorem 191 (Winning strategies) The winning strategies for the global FLC

model checking games are history-free.

PROOF Player∀’s winning strategies for these games consist of preserving falsity with

his choices and annotating variables with their respective approximant indices. Then,

he cannot postpone showing falsity of a greatest fixed point formula infinitely often

since his task simply is to avoid a formulaZ0 in a play if fp(Z) = νZ.ψ for someψ.

But falsity and approximant indices only depend on the actual configuration, in

particular on the state components of the actual configuration and not on the history of

a play.

The case for player∃ who preserves truth and attempts to avoid aY0 if fp(Z) = µZ.ψ
for someψ, is dual. Thus, her winning strategies are history-free, too. �

Complexity

Theorem 192 (Complexity) Deciding the winner of a global FLC model checking

game is in EXPTIME.

PROOF Let GT(s,ϕ) be the game at hand. An alternating algorithm can determine the

winner using polynomial space only. As in the proofs of Theorems120and134, we let

the algorithm store the actual configuration, one for each player to recognise a repeat

in the sense of winning conditions 5 and 10, and a counter to stop a play that has not

found a repeat. The size of each configuration is polynomial in the size of the input,

and so is the space needed for the counter according to Lemma184.

Furthermore, the algorithm needs to store a flagf ∈ {µ,ν} to indicate the fixed point

type of the greatest variable w.r.t.<ϕ that occurred after a configuration was stored.

This flag is also used to indicate whether a stored configuration can be overwritten if

the variable in it cannot be outermost in the play at hand anymore.

Again, alternating PSPACE is the same as EXPTIME, [CKS81]. �

9.2. Local Model Checking Games for FLC 251

Corollary 193 (Complexity) Deciding the winner of a global FLCk model checking

game is in PSPACE for everyk∈ N.

PROOF The same algorithm as in the proof of Theorem192 can be used in this

case. However, here we analyse the time the alternating algorithm needs. This is

proportional to the length of a play. Lemma184shows that the maximal length of a

play is polynomial in the size of the input if the alternation depth of the input formula

is fixed. But APTIME = PSPACE according to [CKS81]. �

Global model checking games for FLC over infinite transition systems would result in

game trees with infinite out-degree even if the underlying transition system has finite

out-degree. The reason for this is the unrestricted choice player∃ has in rule(;).

Therefore we resist the urge to amend the definition of the global games to capture

infinite-state transition systems as well.

9.2 Local Model Checking Games for FLC

Thelocal model checking gameGT(s,ϕ0) is played on an LTST = (S,{ a−→| a∈A},L)

with s∈ S and an FLC formulaϕ0. Here we do not restrict ourselves to finite transition

systems only. Player∃ tries to establish thatssatisfiesϕ0, whereas∀ tries to show that

s 6|= ϕ0.

A play is a (possibly infinite) sequenceC0,C1, . . . of configurations, and a configuration

is an element of

C = S×Sub(ϕ)∗×Sub(ϕ)

It is written s,δ ` ψ whereδ is interpreted as a stack of subformulas with its top on

the left. The empty stack is denoted byε. With a stackδ = ϕ0 . . .ϕk we associate the

eponymous formulaδ := ϕ0; . . . ;ϕk while ε is associated with the formulaτ.

The intended meaning of a configurationt,δ `ψ is: t ∈ [[ψ]]([[δ]](S)). Thus, the stackδ
plays the role of the state set component in a global FLC model checking game. Note

that this condition is equivalent tot ∈ [[ψ;δ]](S).

252 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

(∨)
s,δ ` ϕ0∨ϕ1

s,δ ` ϕi

∃i (∧)
s,δ ` ϕ0∧ϕ1

s,δ ` ϕi

∀i

(FP)
s,δ ` σZ.ϕ

s,δ ` Z
(VAR)

s,δ ` Z

s,δ ` ϕ
if fp(Z) = σZ.ϕ

(;)
s,δ ` ϕ0;ϕ1

s,ϕ1δ ` ϕ0
(τ)

s,ψδ ` τ

s,δ ` ψ

(〈a〉) s,ψδ ` 〈a〉
t,δ ` ψ

∃s a−→ t ([a])
s,ψδ ` [a]

t,δ ` ψ
∀s a−→ t

Figure 9.3: The rules for the local FLC model checking games.

Each play ofGT(s0,ϕ0) begins with

C0 = s0,ε ` ϕ0

A play proceeds according to the rules given in Figure9.3. Rules(∨) and (∧) are

straightforward. Rules(VAR) and(FP) are justified by the unfolding characterisations

of fixed points:σZ.ϕ ≡ ϕ[σZ.ϕ/Z]. If a formulaϕ;ψ is encounteredψ is stored on

the stack with rule(;) to be dealt with later on while the players try to prove resp.

refuteϕ. Modalities cause either of the players to choose a successor state. After that,

rules(〈a〉) and([a]) pop the top formula from the stack into the right side of the actual

configuration. Rule(τ) does the same without a choice by one of the players. In both

cases the last formula on the right-hand side has been proved and the next thing to do

is to prove, resp. refute, those formulas that have been collected on the stack.

Definition 194 Recall the tailtlZ of a variableZ from Definition 18 of Section2.5.

A variableZ is calledstack-increasingin a playC0,C1, . . . if there are infinitely many

configurationsCi0,Ci1, . . ., s.t.

9.2. Local Model Checking Games for FLC 253

• i j < i j+1 for all j ∈ N

• Ci j = sj ,δ j ` Z for somesj andδ j ,

• for all j ∈ N existsγ ∈ tlZ s.t.δ j+1 = γδ j , whereδ = τδ for example.

Player∀ wins the playC0,C1, . . . of GT(s,ϕ) iff

1. there is ann∈ N s.t. Cn = t,δ ` q andq 6∈ L(t), or

2. there is ann∈ N s.t. Cn = t,δ ` 〈a〉 andt 6 a→, or

3. the play is infinite, and there is aY that is the greatest, w.r.t.<ϕ, stack-increasing

variable andfp(Y) = µY.ψ for someψ.

Player∃ wins the playC0,C1, . . . of GT(s,ϕ) iff

4. there is ann∈ N s.t. Cn = t,δ ` q andq∈ L(t), or

5. there is ann∈ N s.t. Cn = t,ε ` τ, or

6. there is ann∈ N s.t. Cn = t,ε ` 〈a〉 and there is at ∈ S with t a−→ t ′, or

7. there is ann∈ N s.t. Cn = t,δ ` [a], andδ = ε or t 6 a→, or

8. the play is infinite, and there is aZ that is the greatest, w.r.t.<ϕ, stack-increasing

variable andfp(Z) = νZ.ψ for someψ.

Winning conditions 1 and 4 suggest that game rule(;) can be refined. Whenever the

formula to be put on the stack is aq∈ Prop then the existing stack can be discarded.

s,δ ` ϕ;q

s,q` ϕ

This does not effect the worst-case complexities, therefore we merely mention this

optimisation.

The following example illustrates the importance of being stack-increasing. Note that

in a Lµ model checking game the winner is determined by the outermost variable

254 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

s,ε ` µY.〈b〉∨ 〈a〉νZ.Y;Z;Y

s,ε `Y

s,ε ` 〈b〉∨ 〈a〉νZ.Y;Z;Y

s,ε ` 〈a〉νZ.Y;Z;Y

s,νZ.Y;Z;Y ` 〈a〉
t,ε ` νZ.Y;Z;Y

t,ε ` Z

t,ε `Y;Z;Y

t,Z;Y `Y

t,Z;Y ` 〈b〉∨ 〈a〉νZ.Y;Z;Y

t,Z;Y ` 〈b〉
t,Y ` Z

t,Y `Y;Z;Y

t,Z;Y;Y `Y
...

Figure 9.4: Player ∃’s winning play of Example 195.

that occurs infinitely often. There, if two variablesY andZ occur infinitely often and

Y <ϕ Z for example, thenfp(Y) occurs infinitely often, too. Thus, two occurrences

of Y cannot be related to each other in terms of their approximants. FLC only

has this property for stack-increasing variables. But note also that according to

Definition 194 every variable of aLµ formula that gets unfolded infinitely often in

a play is stack-increasing.

Example 195 Take the formula

ϕ = µY.〈b〉∨ 〈a〉νZ.Y;Z;Y

ad(ϕ) = 1 andsd(ϕ) = 2. Let T be the transition system consisting of states{s, t} and

transitionss a−→ t andt b−→ t. s |= ϕ. The game tree for player∃ is shown in Figure9.4.

9.2. Local Model Checking Games for FLC 255

Sinceϕ does not contain any∧, [a] or [b], player∀ does not make any choices and the

tree is in fact a single play.

BothY andZ occur infinitely often in the play. However, neitherfp(Y) nor fp(Z) does.

Note thatZ <ϕ Y. Y gets “fulfilled” each time it is replaced by its defining fixed point

formula, but reproduced byZ. On the other hand,Y does not start a new computation

of fp(Z) each time it is reproduced. ButY is not stack-increasing whereasZ is. AndZ

denotes a greatest fixed point, therefore player∃ wins this play.

Correctness

Before we can prove soundness and completeness of the games we need a few technical

lemmas. LetT = (S,{ a−→| a ∈ A},L), s ∈ S, ϕ ∈ FLC, andC = s,δ ` ψ be a

configuration in a game fors andϕ. As usual,C is calledtrue if s∈ [[ϕ]]([[δ]](S)),

andfalseotherwise.

Lemma 196 Player ∃ preserves falsity and can preserve truth with her choices.

Player∀ preserves truth and can preserve falsity with his choices.

PROOF The cases of disjunctions and conjunctions are similar to those of Lemma188.

Consider a configuration

C = s,ψδ ` 〈a〉

If C is true then there is at s.t.s a−→ t andt ∈ [[ψ;δ]](S). By choosing thist, player∃
can make the next configurationt,δ ` ψ true. If C is false then there is no sucht and

regardless of which transition∃ chooses the following configuration will be false, too.

The proofs of the other cases are dual or similar to preservation of truth and falsity for

the global model checking games in Lemma188.

Note that the rules which do not require a player to make a choice preserve both truth

and falsity if variables are interpreted via their approximants. �

Lemma 197 Let T = (S,{ a−→| a ∈ A},L), s ∈ S, ϕ ∈ FLC. In an infinite play

C0,C1, . . . for s andϕ there is a unique greatest, with respect to<ϕ, stack-increasing

variableZ.

256 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

PROOF Note that a finite play trivially cannot have a stack-increasing variable. Let

the play at handC0,C1, . . . be infinite. Suppose first there are two stack-increasing

variablesZ andY. Then there must be two configurations

Ci = s,δ ` Z and Cj = t,δ′ `Y

with i < j. EitherY has been generated from the unfolding ofZ in which case one of

them is greater than the other. The reason is that the stack only contains elements of

tlV for some variableV up to a fixed part at its bottom which is never popped. But

Y ∈ tlZ implies eitherY is free infp(Z) or fp(Y) ∈ Sub(fp(Z)). Therefore they must be

comparable.

Supposeδ = δ0Yδ1. But thenZ has either been generated from the unfolding ofY

and they are comparable orδ′ = δ′0Zδ′1. At every configuration the stack can only

hold a finite number of variables. Therefore, in such an infinite play it is not possible

that neither of the variables generates the other one infinitely often, and they must be

comparable.

It remains to be shown that at least one variable is stack-increasing. There must be a

variableZ that occurs infinitely often. Moreover, thisZ must generate itself infinitely

often. Letfp(Z) = σZ.ϕ. This means that for every occurrence ofZ in aCi = s,δ ` Z,

whenZ is replaced byϕ, the play must follow the syntactical structure ofϕ to one

occurrence ofZ in ϕ. In order to pop an element fromδ an atomic formula inϕ
must have been reached, andZ in Ci did not regenerate itself. Suppose it did and the

stack has been increased. Since rule(VAR) replaces a variableZ with its defining fixed

point formulaϕ the additional part of the stack must consist of subformulas ofϕ only.

Moreover, every subformula that occurs “before”Z in ϕ must have been removed from

the stack beforeZ can be reached again. Therefore, the extension of the stack must be

an element oftlZ. �

One important property of an outermost stack-increasing variable is: If its occurrence

in a configurations,δ ` Z is interpreted as the approximantZα then in its next

occurrenceZ will denoteZα−1. This is becauseZ is outermost in the play at hand and

the second occurrence stems from the first, i.e. the play has followed the syntactical

9.2. Local Model Checking Games for FLC 257

structure offp(Z) between these occurrences. Thus the computation offp(Z) does not

get restarted.

Fact 198 Rules(∨), (∧), (FP), (τ), (〈a〉) and ([a]) decrease the size of the actual

configuration. Rule(VAR) increases it. Rule(;) maintains its size.

Lemma 199 Every play ofGT(s,ϕ) has a uniquely determined winner.

PROOF Suppose the play reaches a configuration to which no rule can be applied. This

is either because a proposition has been reached. But then either player∀ wins with

winning condition 1 or player∃ wins with condition 4.

The other possibility to get stuck is to reach a configurationt,δ ` 〈a〉 or t,δ ` [a] with

t 6 a→. In the first case player∀ wins with condition 2. In the second case player∃ wins

with condition 7.

Finally, the stack can become empty and the last formula on the right side is atomic.

If it is a τ then player∃ wins with condition 5, with condition 6 if it is a〈a〉 and with

condition 7 if it is a[a].

If it never reaches such a configuration then it must be of infinite length. According to

Lemma197, there is a unique outermost stack-increasing variable that determines the

winner with condition 3 or 8. �

Again, in order to prove soundness and completeness we generalise the notion of an

FLC model checking game. Overloading notation we lets,δ ` ϕ also denote the game

that starts with this configuration. Then,GT(s,ϕ) is equivalent tos,ε ` ϕ wheres is a

state ofT.

Theorem 200 (Soundness) LetT = (S,{ a−→| a∈A},L) with s∈ S andϕ,δ0∈ FLC.

If s 6∈ [[ϕ;δ0]](S) then player∀ wins s,δ0 ` ϕ.

PROOF Supposes 6∈ [[ϕ]]([[δ0]](S)). We construct a (possibly infinite) game tree for

∀ starting withs,δ0 ` ϕ. If ϕ = ϕ0∧ϕ1, ∀ chooses theϕi that makess,δ ` ϕi false.

If ϕ = ϕ0∨ϕ1 then the game tree is extended with both false configurationss,δ ` ϕi .

Similar arguments hold for the applications of rules(〈a〉), ([a]), and(τ). Since falsity

258 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

is preserved no finite path can be won by player∃ since a false leaf implies that∀ is

the winner of that particular play.

The game tree can be constructed such that player∃ cannot win an infinite play either.

Let its construction reach a configuration

t,δ ` νZ.ψ

s.t.Z is the unique stack-increasing variable according to Lemma197. In the following

configurationt,δ ` Z, Z is interpreted as the least approximantZα s.t.

t 6∈ [[Zα]]([[δ]](S)) but t ∈ [[Zα−1]]([[δ]](S))

Note thatα cannot be a limit ordinalλ sincet 6∈ [[
V

β<λ Zβ]](S) for anyS⊆ S implies

t 6∈ [[Zβ]](S) for someβ < λ. The next time a configurationt ′,δ′ ` Z is reachedZ is

consequently interpreted asZα−1. Again, if α−1 is a limit ordinalλ, then there must

be aβ < λ such that

t ′ 6∈ [[Zβ]]([[δ′]](S))

But ordinals are well-founded, i.e. the play must eventually reach a false configuration

t ′′,δ′′ ` Z in whichZ is interpreted asZ0. But Z0≡ tt andt ′′ 6∈ [[tt]](S) is not possible

for anyS⊆ S. We conclude that there is no leastα that makest,δ ` Zα false and, by

Theorem30, that thereforet,δ ` νZ.ψ could not have been false either.

Since player∃ cannot win any play in the game tree that is constructed in the described

way player∀ must win the game ons,δ0 ` ϕ. �

Theorem 201 (Completeness) Let T = (S,{ a−→| a∈ A},L) with s∈ S andϕ,δ0 ∈
FLC. If s∈ [[ϕ;δ0]](S) then player∃ wins s,δ0 ` ϕ.

PROOF This is dual to the proof of Theorem200. Assumings∈ [[ϕ]]([[δ0]](S)) we

build a game tree for player∃ starting with the true configurations,δ0 ` ϕ whilst

preserving truth. If the construction of the game tree reaches a leaf the corresponding

play must be won by∃ since only she wins a finite play that ends in a true configuration.

Again, we show that player∀ cannot win an infinite play either. Suppose there is a

configurationt,δ ` µY.ψ with Y being stack-increasing and outermost according to

9.2. Local Model Checking Games for FLC 259

Lemma197. In the next step,Y is interpreted as the least approximantYα s.t.

t ∈ [[Yα]]([[δ]](S)) but t 6∈ [[Yα−1]]([[δ]](S))

Again, α cannot be a limit ordinal. The next time a configurationt ′,δ′ `Y is reached

it becomes true ifY is interpreted asYα−1. If α−1 is a limit ordinal then there is a

smaller one that makes the configuration true.

Because of well-foundedness of the ordinals every infinite play must reach a

configurationt ′′,δ′′ ` Y in which Y is interpreted asY0. But Y0 ≡ ff and therefore

t ′′,δ′′ `Y cannot be true. Thus,t,δ ` µY.ψ could not have been true either.

Since player∀ cannot win any play of the game tree that is constructed in the described

way player∃ must win the game starting withs,δ0 ` ϕ. �

From Theorems200and201follows that the model checking problem for FLC can be

rephrased as:s |= ϕ iff player ∃ wins s,ε ` ϕ.

Corollary 202 (Determinacy) Player ∀ wins GT(s,ϕ) iff player ∃ does not win

GT(s,ϕ).

The next theorem is proved in the same way as the history-freeness of winning

strategies for the global model checking games, see Theorem191. Note that, again,

winning strategies consist of preserving truth, resp. falsity, and using approximant

indices.

Theorem 203 (Winning strategies) The winning strategies for the local FLC model

checking games are history-free.

Complexity

Theorem 204 (Complexity) Let T = (S,{ a−→| a ∈ A},L) be finite withs∈ S and

ϕ,δ ∈ FLCk,n. Deciding the winner ofs,δ ` ϕ is in PSPACE for allk,n∈ N.

PROOF We can assumeδ = ε since the game fors,δ ` ϕ is equivalent to the game for

s,ε ` ϕ;δ. Note thatϕ;δ has fixed alternation and sequential depth, too.

260 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

If the underlying transition system is finite then the least approximants used in the

proofs of Theorems200 and 201 are bounded by|S| according to Lemma30. An

algorithm deciding the winner ofs,ε ` ϕ can index variables occurring in a play as the

corresponding approximant. This means, rules(FP) and(VAR) are used as

s,δ ` σZ.ϕ

s,δ ` Z|S|
and

s,δ ` Zk

s,δ ` ϕ[Zk−1/Z]
if fp(Z) = σZ.ϕ

Then, configurations of the formt,δ ` Z0 with fp(Z) = σZ.ψ for someψ,δ andt are

winning for player∃ if σ = ν and winning for player∀ if σ = µ. Infinite plays are ruled

out.

Next we analyse the maximal length of a play ofs,ε ` ϕ. Supposead(ϕ) = 0. At most

|S| · |ϕ| steps are possible before a terminal configuration with aZ0 must be reached, if

the sequential depth ofϕ is 1. However, if it is greater than0 then at the beginning aZ|S|

can be pushed onto the stack where it remains while anotherZk gets unfolded at most

|S| times before it might disappear. Then theZ|S| from the stack can be popped and

create the same situation by unfolding to more than oneZ|S|−1 of which one remains

on the stack again. Generally,(|S| · |ϕ|)sd(ϕ) is the maximal length of a play in this

situation.

Let nowad(ϕ) = k > 0. Take the outermost variableZ that occurs in the play at hand.

With each unfolding it can start a subplay on a formula with alternation depthk−1.

Therefore the overall maximum length of the play is

((|S| · |ϕ|)sd(ϕ))ad(ϕ)+1 = (|S| · |ϕ|)O(sd(ϕ)·ad(ϕ))

An alternating algorithm can decide the winner ofs,ε ` ϕ by simply playing the game

for it. For input formulasδ,ϕ ∈ FLCk,n the alternation depth and sequential depth

are bounded. Thus, the time needed is polynomial in the size of the formula and the

size of the transition system. According to [CKS81] there is a deterministic procedure

that needs space which is polynomial in the size of the formula and in the size of the

transition system. �

9.2. Local Model Checking Games for FLC 261

This argument, applied to formulas of arbitrary alternation or sequential depth, yields

an EXPSPACE procedure. This follows from the fact that the alternating algorithm

needs time exponential in the alternation and sequential depth of the input formula,

and AEXPTIME = EXPSPACE. To show that game-based model checking for FLC

can be done in EXPTIME an alternating algorithm must not use more than polynomial

space. Equally, a single play must be playable using polynomially bounded space.

We will leave it as an open question where there exists a local model checking

procedure for FLC which runs in exponential time. However, we illustrate the problem

of finding an EXPTIME procedure. First we consider a slightly different way of

proving soundness and completeness of the games which only applies if the underlying

transition system is finite. Remember that in the proofs of Theorems200 and 201

variables are interpreted as approximants, and contradictions arise at configurations

t,δ′ ` Z0. Supposefp(Z) = µZ.ψ and the game tree is constructed preserving

truth. Then at its first occurrenceZ is interpreted as the leastZk which makes the

configuration, say,t,δ′ ` Zk true. However, if later another true configurationt,δ′′ ` Z j

is seen and[[δ′]](S) ⊆ [[δ′′]](S) then this already contradicts the fact thatk was chosen

least. Compare this to the winning conditions of the global FLC model checking

games.

This occurs trivially after|S| · 2|S| · |ϕ| steps since there are only|S| many different

states and2|S| many different sets of them. In most cases this situation will occur in a

stack of polynomial size already. However, there are cases in which the stack can grow

super-polynomially. This means there arem configurationssi ,δi ` Z s.t.

[[δi]](S) 6⊆ [[δ j]](S)

for j < i ≤m andm is not polynomially bounded by the input size.

Example 205 Let a,b∈ A. Taken pairwise different prime numbersp1, . . . , pn. Let

P0 = 0 andPi = ∑i
j=1 p j be the sum of the firsti prime numbers fori = 1, . . . ,n−1.

We construct a transition systemT = (S,{ a−→| a ∈ A},L) with S = {0, . . . ,Pn− 1}.
Transitions inT are given by

j a−→(j +1) for all j < Pn, s.t. j 6= Pi−1 for all i ∈ {1, . . . ,n}

262 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

and

(Pi−1) a−→Pi−1 for all i ∈ {1, . . . ,n}
Finally, i b−→ j iff j a−→ i. T consists of n cycles of length p1, . . . , pn which

can be traversed alonga-transitions, say, clockwise and throughb-transitions

counterclockwise. Feel free to add as manyc-transitions ifc 6= a andc 6= b to makeT

connected. Finally, we use one propositionq which holds on one state of each cycle

only.

q∈ L(j) iff j = Pi for somei ∈ {0, . . . ,n−1}
The formula under examination is

ϕ := (νZ.τ∧〈a〉Z〈b〉);q

It says that there is an infinitea-path s.t. after every sequence ofn a’s anothern b’s can

be made to a state which satisfiesq. 0 |= ϕ which can also be seen using the games

of this section. Player∀ can never chooseτ since0 |= q and every sequence ofm

a-transitions away from0 leads to a state that can dom b-transitions back to0. But

then player∃ wins because the play repeats on aν-variable. Her game tree is shown in

Figure9.5.

If approximants are used explicitly as suggested in the proof of Theorem204, the stack

cannot grow larger thanPn. This is not surprising sinceϕ ∈ FLC0,1. However, let

Sq := {Pi | i ∈ {0, . . . ,n−1}}

be the set of all states satisfyingq. We claim that

[[〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

]](Sq) 6= [[〈b〉 . . .〈b〉︸ ︷︷ ︸
j times

]](Sq) for i, j <
n

∏
i=1

pi , i 6= j

and even

[[〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

]](Sq) 6⊆ [[〈b〉 . . .〈b〉︸ ︷︷ ︸
j times

]](Sq) for i, j <
n

∏
i=1

pi , i 6= j

because

|[[〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

]](Sq)| = n for all i <
n

∏
i=1

pi

9.2. Local Model Checking Games for FLC 263

Take a state in thek-th cycle. It belongs to

[[〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

]](Sq)

iff it is the (i mod pk)-th b-predecessor ofPk−1. In other words, the sets

[[〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

]](Sq)

can be defined by moving markers alonga-transitions in each cycle starting withSq.

Since the lengths of the cycles are pairwise different prime numbers the same set is

only marked after∏n
i=1 pi steps.

This means that the stacks

〈b〉 . . .〈b〉︸ ︷︷ ︸
i times

;q

with i + 1 elements,1≤ i < (∏n
j=1 p j), define pairwise incomparable sets of states.

Note that∏n
j=1 p j 6∈O(nk) for anyk∈ N.

Corollary 206 (Complexity) Let T = (S,{ a−→| a ∈ A},L) be finite withs∈ S and

ϕ,δ ∈ FLC. Deciding the winner ofs,δ ` ϕ is in EXPSPACE.

The next theorem analyses the complexity of the games if applied toLµ formulas. In

this case it is helpful to start the game with an empty stack.

Theorem 207 (Complexity) Let T = (S,{ a−→| a ∈ A},L) be finite withs∈ S and

ϕ ∈ FLC−. Deciding the winner ofs,ε ` ϕ is in NP∩co-NP.

PROOF The stack can never grow larger thanϕ and will be empty each time a variable

is reached. The resulting games are essentially the same as the model checking games

for Lµ from [Sti95]. It is known from [EJS01] for example that the winner of those

games can be decided in NP∩co-NP. The same technique applies here.

The game graph fors,ε ` ϕ is finite and of size polynomial in the input. To decide

whether player∃ wins s,ε ` ϕ a nondeterministic algorithm can guess annotations

(k1, . . . ,kn) for eachµ-variableY. The meaning of such an annotation is:Y has to be

264 Chapter 9. Model Checking Games for Fixed Point Logic with Chop

0,ε ` (νZ.τ∧〈a〉Z〈b〉);q
0,q` νZ.τ∧〈a〉Z〈b〉

0,q` Z

0,q` τ∧〈a〉Z〈b〉
0,q` τ

0,ε ` q

0,q` 〈a〉Z〈b〉
0,Z〈b〉q` 〈a〉

1,〈b〉q` Z

1,〈b〉q` τ∧〈a〉Z〈b〉
1,〈b〉q` τ

1,q` 〈b〉
∃1 b−→0

0,ε ` q

1,〈b〉q` 〈a〉Z〈b〉
1,〈b〉Z〈b〉q` 〈a〉

2,〈b〉〈b〉q` Z
...

3,〈b〉〈b〉〈b〉q` Z
...

4,〈b〉〈b〉〈b〉〈b〉q` Z
...

Figure 9.5: Player ∃’s game tree of Example 205.

unfoldedkn times at this moment and there are outer variablesZ1, . . . ,Zn−1 of typeν
which have to be unfoldedk1, . . . ,kn−1 times. The maximal size of such an annotation

is O(ad(ϕ) · log|S|).
Finally, the algorithm has to verify that the order of the annotations is well-founded, i.e.

for everyµ-variableY: if there is a path froms,δ `Y with annotationk = (k1, . . . ,kn)

to t,δ′ `Y with annotationk
′ = (k′1, . . . ,k

′
n) thenk

′
is lexicographically smaller thank.

This proves that deciding the winner ofs,ε ` ϕ is in NP. Inclusion in co-NP follows

from the fact that the same argument applies to player∀ and ν-variables to decide

whether he winss,ε ` ϕ. �

9.2. Local Model Checking Games for FLC 265

This is not a contradiction to the PSPACE-hardness of FLC model checking proved in

[LS02a]. There, reductions from the validity problem for QBF and from the universal

acceptance problem for NFAs are presented. The latter is courtesy of Müller-Olm. In

both cases the constructed formulas are not in FLC−.

Even if the starting stack in the game of Theorem207is non-empty, the semantics of

approximants will always be evaluated on the same set of states. However, if the stack

is δ = ψδ′ and deciding the winner oft,δ′ ` ψ is in the complexity classC for any

t ∈ S, then deciding the winner ofs,δ ` ϕ is in (NP∩co-NP)∪C.

Theorem207 becomes interesting if applied to formulas in FLC− that are not a

translation of aLµ formula but are equivalent to a formula inLµ. One example is

νZ.(〈a0〉∧ 〈b0〉); . . . ;(〈a0〉∧ 〈b0〉);Z

which is exponentially more succinct than its equivalent inLµ, see [LS02a].

Chapter 10

Further Research

Smokey my friend, you’re

entering a world of pain.

—

WALTER SOBCHAK

Extensions of PDL

We have shown how to extend the PDL model checking games in order to handle

variations like PDL with the repeat construct or converse modalities. Another variant

of PDL that has attracted some attention because of its relationship to description logics

is PDL with intersection, PDL-∩, [Dan84]. There, programs can contain an operator

α∩β with the following semantics.

s α∩β−−−→ t iff s α−→ t and s β−→ t

It is not obvious how to extend the PDL model checking games in order to handle this

operator, too.

268 Chapter 10. Further Research

PDL with intersection is known to be decidable. However, a direct decision procedure

has not been given yet. It remains to be seen whether focus games in the style of

Chapter6 can be used to decide this logic. It also remains to be seen whether such

focus games yield an axiomatisation of PDL with intersection.

One of the problems that comes with this logic is the loss of bisimulation invariance.

PDL-∩ can distinguish bisimilar models.

Example 208 Let T1 be the transition system consisting of statess, t1, t2 with

transitionss a−→ t1 and s b−→ t2. Let T2 arise fromT1 by collapsing statest1 and t2.

Clearly,T1 andT2 are bisimilar. However, take the PDL-∩ formula

ϕ = 〈a∩b〉tt

T1,s 6|= ϕ whereasT2,s |= ϕ.

This also comes with a loss of the tree model property depending on whetherT2 is still

considered to be a tree. The satisfiability games of Chapters6 and8 seem to work well

because of the tree model properties the considered logics have. This is why a model

for a satisfiable formula can easily be extracted from a game tree for player∃. In the

case of PDL with intersection the game structure might have to be a graph rather than

a tree.

Logics with Past Operators

Another extension of PDL that the focus approach might be applicable to is PDL with

converse operators. In general, it remains to be seen whether focus games can decide

the satisfiability problem of modal and temporal logics with past operators and yield

complete axiomatisations for them.

In this setting it makes sense to distinguish LTL with Past from CTL and PDL with

their respective past or converse operators. In the linear time framework, forwards and

backwards operators cancel each other out, i.e.

XYϕ ≡ YXϕ ≡ ϕ (10.1)

269

whereY is thepreviousoperator which behaves likeX for the past. Its semantics is

defined as

πi |= Yψ iff πi−1 |= ψ

In a satisfiability game with past operators one cannot simply discard formulas that

speak about the present moment and make a step towards the next future moment with

a rule like(X). They need to be preserved since formulas speaking about the future can

contain formulas speaking about the future’s past which can also be the present’s past.

However, because of (10.1) it is not possible for a satisfiability play to create arbitrarily

large formulas that alternatingly speak about the past and the future. Another way of

seeing this is LTL with Past’sseparation theorem: every formula can be transformed

into a boolean conjunction of three formulas, each speaking about the past, the present

and the future respectively, [Gab89].

In the branching time setting, arbitrarily large formulas can indeed be created. This is

reflected in general inequivalences of the form

〈a〉〈a〉ϕ 6≡ ϕ

However, some formulas can speak about the past and influence the present, like the

validity

|= 〈a〉[a]ϕ→ ϕ

Thus, satisfiability games for these logics need to carry much more information around

than the games for LTL with Past. This can potentially result in an infinite set of

configurations.

Logics without Until Operators

Instead of extending logics and asking whether the focus idea is still applicable, it

is also possible to restrict logics and consider syntactic fragments in order to obtain

complete axiomatisations for them. One example is LTL or CTL withoutU andR butF

andG instead. Clearly, the satisfiability games from Sections6.1and6.2still work for

these fragments. However, the axiomatisations in Sections7.1and7.3heavily depend

on the presence of anU.

270 Chapter 10. Further Research

It remains to be seen whether there are different forms of Lemma136 and144 that

allow player∃ to strengthenF formulas s.t. a repeat on such a formula is only possible

if the input formula is unsatisfiable. Note that the strengthening ofFϕ with a ψ,

considered as an abbreviation of anU, becomes

¬ψU(ϕ∧¬ψ)

which is not expressible in LTL withoutU, [Kam68].

First-Order Temporal Logics

First-Order Temporal Logicsfeature constructs of both temporal logics and predicate

calculi. There, the propositional part of a temporal formula is replaced by a fragment

of First-Order logic, see [Eme90] for an introduction. In general, these logics are

undecidable, but depending on which fragment of First-Order Logic is used, the

resulting logic might be decidable.

As with their propositional counterparts one distinguishes linear and branching time

logics. For an overview over decidable fragments in general see [HWZ00] and

[HWZ02] for branching time logics in particular.

It would be interesting to see whether the elegance of the focus approach for

propositional temporal logics carries over to decidable predicate temporal logics as

well. Moreover, if it does it also remains to be seen whether this yields complete

axiomatisations in a relatively simple way, too.

A Complete Axiomatisation for CTL ∗

The most obvious piece of further work based on this thesis is the extraction of

a complete axiomatisation from the CTL∗ satisfiability games in Chapter8. The

existence of a complete axiom system for CTL∗ had been an open question for

approximately 15 years until recently. However, the completeness proof in [Rey01]

is rather intricate and long. There is reason to believe that the focus games

for satisfiability of CTL∗ formulas would yield a much shorter proof of CTL∗’s

271

completeness. It remains to be seen what the right strengthening lemma for CTL∗

along the lines of Lemmas136, 144 and 151 would be. Furthermore, parts of the

soundness proof of the games (Theorem171) need to be formalised as CTL∗ axioms,

in particular Lemma170.

Other modal logics

The Linear Time µ-Calculus µ-LIN is Lµ’s counterpart interpreted over linear

structures only, [Sti92]. A model checking procedure forµ-LIN was given in [BEM96]

for example. Similar to LTL, the fact that the underlying transition system is only built

state-by-state requires the use of sets of formulas. Sinceµ-LIN features explicit fixed

point operators it is reasonable to ask whether focus games can provide an elegant

characterisation ofµ-LIN’s model checking problem.

It also remains to be seen whether satisfiability games forµ-LIN can be defined along

the same lines as Section6.1 and whether a complete axiomatisation can easily be

extracted from them.

Another way of getting beyond the restricted expressive power ofLµ is by using fixed

point constructs other than just least and greatest. [DGK01] defined MIC, theModal

Iteration Calculus, which extends multi-modal logic with simultaneous inflationary

fixed points. There, the semantics of a formulaϕ(X) is not required to be monotone in

X anymore. Hence, it can feature negation. Approximants for inflationary fixed points

are defined as

X0 := /0 , Xα+1 := Xα ∪ [[ϕ(X)]][X 7→Xα] , Xλ :=
[

α<λ
Xα

Thus, the chain of approximants is always increasing. The inflationary fixed point is

found when this chain becomes stationary.

Since a variableX is allowed to occur negatively in aϕ(X), formulas of MIC are even

less easy to understand thanLµ formulas. Therefore, a game-based account of MIC’s

model checking problem could help to make MIC more usable.

There is no point in trying to define satisfiability games for MIC since it is undecidable

as shown in [DGK01].

272 Chapter 10. Further Research

Satisfiability Games for Lµ

Another interesting issue this thesis has not touched at all is a game-based account of

the satisfiability problem forLµ. A tableau-based decision procedure that uses games

to determine successful branches has been given in [NW97]. An axiomatisation came

already with the introduction ofLµ in [Koz83] and was finally proved to be complete

in a series of papers, [Wal93, Wal95, Wal96], using these tableaux.

Comparable to the situation for CTL∗ it might be desirable to have a simpler and more

intuitive proof ofLµ’s completeness. Moreover, it would be interesting to see whether

the focus game approach works forLµ as well and how it might have to be tailored to

this specific logic.

One of the problems with focus games forLµ is the fact that variables can occur more

than once in a fixed point formula. Thus, there are several different ways through the

syntax tree of a formula that lead to a variable. We will illustrate this with an example.

Example 209 Let A = {a,b}. Take theLµ formula

ϕ = µY.νZ.(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

It stipulates the existence of an infinite path labelled withas or bs, such that from

any state on this path onwards only finitely manyas andbs are possible. Clearly,

ϕ is unsatisfiable. Suppose satisfiability games forLµ are defined along the lines of

Chapter6, i.e. configurations are sets of formulas which are interpreted conjunctively,

and player∀ controls a focus. Then player∃ can winG(ϕ) in the way that is shown in

Figure10.1.

Her strategy is the following: if player∀ sets the focus to[a]Y then choose the

disjunct 〈b〉Z and vice versa. Note that player∀ has to put the focus onto one of

the [−]-formulas because only they contain a least fixed point variable. This way,

player∃ forces him to change focus in order to keep the play going once it reaches a

configuration in which all formulas begin with a modal operator.

Thus, if a repeat occurs player∀ will have changed focus and therefore should lose.

But none of the least fixed point formulas became fulfilled. Hence, player∃ should

indeed have lost the game.

273

[
µY.νZ.(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

[
Y

]

[
νZ.(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

[
Z
]

[
(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

〈a〉Z∨〈b〉Z,
[
[a]Y

]
, [b]Y

〈b〉Z,
[
[a]Y

]
, [b]Y

〈b〉Z, [a]Y,
[
[b]Y

]

Z,
[
Y

]

Z,
[
νZ.(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

[
Z
]

[
(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

〈a〉Z∨〈b〉Z,
[
[a]Y

]
, [b]Y

〈b〉Z,
[
[a]Y

]
, [b]Y

〈b〉Z, [a]Y,
[
[b]Y

]

Z,
[
Y

]

〈a〉Z∨〈b〉Z, [a]Y,
[
[b]Y

]

〈a〉Z, [a]Y,
[
[b]Y

]

〈a〉Z,
[
[a]Y

]
, [b]Y

Z,
[
Y

]

Z,
[
νZ.(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

[
Z
]

[
(〈a〉Z∨〈b〉Z)∧ [a]Y∧ [b]Y

]

〈a〉Z∨〈b〉Z, [a]Y,
[
[b]Y

]

〈a〉Z, [a]Y,
[
[b]Y

]

〈a〉Z,
[
[a]Y

]
, [b]Y

Z,
[
Y

]

Figure 10.1: A sketch of player ∃’s game tree for Example 209.

Index

algorithm

alternating,53

global,54

local,54

alternation depth,32

approximant,15

FLC, 36, 40

LTL, 22

PDL, 30

automaton,6, 60

alternating,63

Büchi,60, 62

hesitant,67, 122, 127

Muller, 61

parity,61

Rabin,61

Streett,61

weak,67, 127

axiom,178

system,178

axiom system

Segerberg,198

bisimulation,19

invariance,40

block,106, 127

BLTL, 26

completeness

CTL∗ model checking,113

CTL∗ satisfiability,232

CTL axiomatisation,192

CTL satisfiability,159, 189

FLC model checking,248, 258

LTL axiomatisation,184

LTL satisfiability,146, 182

PDL axiomatisation,198

PDL model checking,86

PDL satisfiability,172, 196

complexity

BLTL model checking,132

CTL∗ model checking,120

CTL∗ satisfiability,236

CTL+ model checking,131

CTL model checking,127

CTL satisfiability,163

FLCk model checking,251

FLC model checking,250, 259,

263

LTL satisfiability,150

PDL model checking,89

PDL satisfiability,175

275

276 INDEX

configuration,44

extended,230

false,84, 230, 245, 255

terminal,99, 136, 165, 211

true,84, 230, 245, 255

confluency,94

consistency,178

Converse-PDL,31

correctness

CTL∗ model checking,114

CTL+ model checking,130

CTL model checking,125

CTL∗, 23

CTL+, 25

CTL, 24

descendant,219

determinacy,47

CTL∗ model checking,114

CTL∗ satisfiability,218

CTL+ model checking,131

CTL model checking,125

CTL satisfiability,155

FLC model checking,244, 259

LTL satisfiability,140

PDL model checking,86

PDL satisfiability,168

environment,35

equivalence,11

FLC, 35

eventually,20, 39

expressive power,12

finite model property,12

CTL∗, 117

PDL, 87

First-Order Temporal,270

Fischer-Ladner closure,28

fixed point,13

greatest,14

least,14

post-,14

pre-,14

type,32

unfolding,48

FLC−, 34

FLCk,n, 33

FLCk, 33

FLC, 31

FO,61

focus,6, 93, 103

game,93, 95, 136, 152, 164, 202

player,95

formula

closed,32

minimal,143, 157, 169

open,34

path,24

persisting,220

present,99

principle,94

side,96

state,24

well-named,31

INDEX 277

game,4, 44

board,44

dual,48

extended,230

finite, 46

graph,45

tree,45, 46

generally,20

guarded FO,13

history,50

-free,50

infimum,13

Lµ, 41

lattice,13

complete,13

height,14

µ-LIN, 271

logic, 9

modal,10

temporal,10

LTL, 20

LTL with Past,268

LTS, 10, 16

total,17

LVR, 51

interleaving,162

maximum,13

MIC, 271

minimum,13

modalµ-calculus,12

modality

converse,38

model checking,2, 10

model checking game,47

CTL∗, 95

CTL+, 128

CTL, 124

FLC, 239, 251

PDL, 79

monotonicity,14

MPL, 64

MSO,61

negation closure,12

CTL∗, 25

CTL+, 25

CTL, 25

LTL, 21

PDL, 29

next,20

normal form,202

OBDD, 18

optimal strategy

CTL∗ satisfiability,220

CTL satisfiability,156

LTL satisfiability,141

PDL satisfiability,168

path,16

player,95

quantifier,24

PDL, 27

278 INDEX

PDL-∩, 267

PDL-∆, 31

perfect information,46

play,44

interactive,5

player,44

previous,269

priority list, 141, 156, 168, 220

program,27

quantifier,12

regeneration,48, 94

release,20

rule,45, 178

dual,48

run,60

S1S,61

satisfiability,10, 11

satisfiability game,47

CTL∗, 201

CTL, 152

LTL, 135

PDL, 164

scope,245

semantics,11

Converse-PDL,31

CTL∗, 24

FLC, 34

LTL, 20

PDL, 28

PDL-∆, 31

separation theorem,269

sequential depth,33

simulation,19

simultaneous trees,67

since,20

small model property,12

CTL∗, 234

CTL, 161

LTL, 148

PDL, 174

soundness

CTL∗ model checking,109

CTL∗ satisfiability,228

CTL axiomatisation,192

CTL satisfiability,158

FLC model checking,247, 257

LTL axiomatisation,184

LTL satisfiability,145

PDL axiomatisation,198

PDL model checking,85

PDL satisfiability,171

specification,2

state,3

state transformer,34

structure

relational,9

subformula

BLTL, 26

CTL∗, 24

CTL+, 25

CTL, 25

INDEX 279

FLC, 32

LTL, 21

PDL, 28

property,54

subgame,50

supremum,13

syntax,10

BLTL, 26

CTL∗, 23

CTL+, 25

CTL, 24

FLC, 31

Lµ, 42

LTL, 20

PDL, 27

tableau,6, 57

test operator,27

tree model property,12

CTL∗, 235

CTL, 162

FLC, 40

PDL, 174

unfolding,21

uniform inevitability,39

universal,53

universe,9

unravelling,17

until, 20, 30

top-level,220

validity, 11

variable

first-order,9

free,15, 32

propositional,31

stack-increasing,252

verification tool,3

EDIN . CONC. WORKB., 3

HYTECH, 3

SMV, 3

SPIN, 3

TRUTH, 3

winning condition,45

dual,48

winning strategies,4, 46, 50

CTL∗ model checking,115

CTL∗ satisfiability,235

CTL+ model checking,131

CTL model checking,126

CTL satisfiability,163

FLC model checking,250, 259

LTL satisfiability,149

PDL model checking,87

PDL satisfiability,175

Zermelo’s Theorem,47

Bibliography

[Abr97] S. Abramsky. Game semantics for programming languages (abstract). In

I. Pŕıvara and P. Ruzicka, editors,Proc. 22nd Symp. on Math. Foundations

of Computer Science, MFCS’97, volume 1295 ofLNCS, pages 3–4,

Bratislava, Slovakia, August 1997. Springer.

[AI00] N. Alechina and N. Immerman. Reachability logic: An efficient fragment

of transitive closure logic.Logic Journal of the IGPL, 8(3):325–338, May

2000.

[AI01] M. Adler and N. Immerman. Ann! lower bound on formula size. InProc.

16th Symp. on Logic in Computer Science, LICS’01, pages 197–208,

Boston, MA, USA, June 2001. IEEE.

[And94] H. R. Andersen. Model checking and Boolean graphs.TCS, 126(1):3–30,

April 1994.

[AvBN98] H. Andréka, J. van Benthem, and I. Németi. Modal languages and

bounded fragments of predicate logic.Journal of Philosophical Logic,

27(3):217–274, 1998.

[AVV97] S. Abiteboul, M. Y. Vardi, and V. Vianu. Fixpoint logics, relational

machines, and computational complexity. Journal of the ACM,

44(1):30–56, January 1997.

[BAPM83] M. Ben-Ari, A. Pnueli, and Z. Manna. The temporal logic of branching

time. Acta Informatica, 20(3):207–226, December 1983.

281

282 Bibliography

[BC96] G. Bhat and R. Cleaveland. Efficient local model-checking for fragments

of the modalµ-calculus. In T. Margaria and B. Steffen, editors,Proc. 2nd

Int. Workshop on Tools and Algorithms for Construction and Analysis

of Systems, TACAS’96, volume 1055 ofLNCS, pages 107–126. Springer,

March 1996.

[BCG95] G. Bhat, R. Cleaveland, and O. Grumberg. Efficient on-the-fly model

checking for CTL∗. In Proc. 10th Symp. on Logic in Computer Science,

LICS’95, pages 388–397, San Diego, CA, USA, June 1995. IEEE.

[BCM+92] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking:1020 states and beyond.Information and

Computation, 98(2):142–170, June 1992.

[BEM96] J. Bradfield, J. Esparza, and A. Mader. An effective tableau system for

the linear timeµ-calculus.LNCS, 1099:98–109, 1996.

[Bet55] E. W. Beth. Semantic entailment and formal derivability.Mededelingen

van de Koninklijke Nederlandse Akademie van Wetenschappen, Afdeling

Letterkunde, N.R., 18(13):309–342, 1955.

[Bry86] R. E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Transactions on Computers, 35(8):677–691, August 1986.

[BS01] J. Bradfield and C. Stirling. Modal logics andµ-calculi: an introduction.

In J. Bergstra, A. Ponse, and S. Smolka, editors,Handbook of Process

Algebra. Elsevier, 2001.

[Büc62] J. R. B̈uchi. On a decision method in restricted second order arithmetic.

In Proc. Congress on Logic, Method, and Philosophy of Science, pages

1–12, Stanford, CA, USA, 1962. Stanford University Press.

[BVW94] O. Bernholtz, M.Y. Vardi, and P. Wolper. An automata-theoretic approach

to branching-time model checking. In D. L. Dill, editor,Proc. 6th Conf.

on Computer Aided Verification, CAV’94, volume 818 ofLNCS, pages

142–155, Stanford, June 1994. Springer.

Bibliography 283

[CE81] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. In D. Kozen, editor,Proc.

Workshop on Logics of Programs, volume 131 ofLNCS, pages 52–71,

Yorktown Heights, New York, May 1981. Springer.

[CES83] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification

of finite state concurrent systems using temporal logic specifications. In

Proc. 10th Symp. on Principles of Programming Languages, POPL’83,

pages 117–126. ACM, January 1983.

[CGL93] E. M. Clarke, O. Grumberg, and D. Long. Verification tools for

finite-state concurrent systems. In J. W. de Bakker, W. P. de Roever,

and G. Rozenberg, editors,Proceedings REX School/Symp. A Decade

of Concurrency,Noordwijkerhout, The Netherlands, June 1993, volume

803 ofLNCS, pages 124–175. Springer, 1993.

[CKS81] A. K. Chandra, D. C. Kozen, and L. J. Stockmeyer. Alternation.Journal

of the ACM, 28(1):114–133, January 1981.

[Cle90] R. Cleaveland. Tableau-based model checking in the propositional

µ-calculus.Acta Informatica, 27(8):725–748, 1990.

[CS92] R. Cleaveland and B. Steffen. A linear–time model–checking algorithm

for the alternation–free modalµ–calculus. In K. G. Larsen and A. Skou,

editors,Proc. 3rd Int. Conf. on Computer Aided Verification, CAV’91,

volume 575 ofLNCS, pages 48–58, Berlin, Germany, July 1992. Springer.

[Cur52] H. B. Curry. The elimination theorem when modality is present.Journal

of Symbolic Logic, 17(4):249–265, 1952.

[CVWY91] C. Courcoubetis, M. Y. Vardi, P. Wolper, and M. Yannakakis. Memory

efficient algorithms for the verification of temporal properties. In E. M.

Clarke and R. P. Kurshan, editors,Proc. 2nd Conf. on Computer Aided

Verification, CAV’90, volume 531 ofLNCS, pages 233–242, Berlin,

Germany, June 1991. Springer.

284 Bibliography

[Dam94] M. Dam. CTL∗ and ECTL∗ as fragments of the modalµ-calculus.TCS,

126(1):77–96, April 1994.

[Dan84] S. Danecki. Nondeterministic propositional dynamic logic with

intersection is decidable. In A. Skowron, editor,Proc. 5th Symp. on

Computation Theory, volume 208 ofLNCS, pages 34–53, Zaborów,

Poland, December 1984. Springer.

[Dem01] E. D. Demaine. Playing games with algorithms: algorithmic

combinatorial game theory. In J. Sgall, A. Pultr, and P. Kolman, editors,

Proc. 22nd Symp. on Math. Foundations of Computer Science, MFCS’01,

volume 2136 ofLNCS, pages 18–32. Springer, 2001.

[DGK01] A. Dawar, E. Gr̈adel, and S. Kreutzer. Inflationary fixed points in modal

logic. In L. Fribourg, editor,Proc. 15th Workshop on Computer Science

Logic, CSL’01, LNCS, pages 277–291, Paris, France, September 2001.

Springer.

[EC80] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of

parallel programs using fixpoints. In J. W. de Bakker and J. van Leeuwen,

editors,Proc. 7th Int. Coll. on Automata, Languages and Programming,

ICALP’80, volume 85 ofLNCS, pages 169–181, Noordweijkerhout, NL,

July 1980. Springer.

[EC82] E. A. Emerson and E. M. Clarke. Using branching time temporal

logic to synthesize synchronization skeletons.Science of Computer

Programming, 2(3):241–266, December 1982.

[EF95] H.-D. Ebbinghaus and J. Flum.Finite Model Theory. Perspectives in

Math. Logic. Springer, Berlin, 1995.

[EFT94] H.-D. Ebbinghaus, J. Flum, and W. Thomas.Mathematical Logic.

Undergraduate Texts in Mathematics. Springer, Berlin, 2nd edition, 1994.

Bibliography 285

[EH85] E. A. Emerson and J. Y. Halpern. Decision procedures and expressiveness

in the temporal logic of branching time.Journal of Computer and System

Sciences, 30:1–24, 1985.

[EH86] E. A. Emerson and J. Y. Halpern. “Sometimes” and “not never” revisited:

On branching versus linear time temporal logic.Journal of the ACM,

33(1):151–178, January 1986.

[Ehr61] A. Ehrenfeucht. An application of games to the completeness problem

for formalized theories.Fund. Math., 49:129–141, 1961.

[EJ91] E. A. Emerson and C. S. Jutla. Tree automata,µ-calculus and determinacy.

In Proc. 32nd Symp. on Foundations of Computer Science, pages

368–377, San Juan, Puerto Rico, October 1991. IEEE.

[EJ00] E. A. Emerson and C. S. Jutla. The complexity of tree automata and logics

of programs. SIAM Journal on Computing, 29(1):132–158, February

2000.

[EJS01] E. A. Emerson, C. S. Jutla, and A. P. Sistla. On model checking for the

µ-calculus and its fragments.TCS, 258(1–3):491–522, 2001.

[EL87] E. A. Emerson and C.-L. Lei. Modalities for model checking:

Branching time logic strikes back.Science of Computer Programming,

8(3):275–306, 1987.

[Eme85] E. A. Emerson. Automata, tableaux and temporal logics. In R. Parikh,

editor, Proc. Conf. on Logic of Programs, volume 193 ofLNCS, pages

79–87, Brooklyn, NY, June 1985. Springer.

[Eme87] E. A. Emerson. Uniform inevitability is tree automaton ineffable.

Information Processing Letters, 24(2):77–79, January 1987.

[Eme90] E. A. Emerson. Temporal and modal logic. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B: Formal Models

and Semantics, chapter 16, pages 996–1072. Elsevier and MIT Press, New

York, USA, 1990.

286 Bibliography

[Eme96] E. A. Emerson.Automated Temporal Reasoning about Reactive Systems,

volume 1043 ofLNCS, pages 41–101. Springer, New York, NY, USA,

1996.

[Eme97] E. A. Emerson. Model checking and theµ-calculus. In N. Immerman

and P. G. Kolaitis, editors,Descriptive Complexity and Finite Models,

volume 31 ofDIMACS: Series in Discrete Mathematics and Theoretical

Computer Science, chapter 6. AMS, 1997.

[ES84] E. A. Emerson and A. P. Sistla. Deciding full branching time logic.

Information and Control, 61(3):175–201, June 1984.

[Fag74] R. Fagin. Generalized first-order spectra and polynomial-time

recognizable sets.Complexity and Computation, 7:43–73, 1974.

[Fis91] M. Fisher. A resolution method for temporal logic. In J. Mylopoulos and

R. Reiter, editors,Proc. 12th Joint Conf. on Artificial Intelligence, pages

99–104, Sydney, Australia, August 1991. Morgan Kaufmann.

[Fit83] M. C. Fitting. Proof Methods for Modal and Intutionistic Logics. Reidel,

Dordrecht, 1983.

[FL77] M. J. Fischer and R. E. Ladner. Propositional modal logic of programs

(extended abstract). InProc. 9th Symp. on Theory of Computing,

STOC’77, pages 286–294, Boulder, Colorado, May 1977. ACM.

[FL79] M. J. Fischer and R. E. Ladner. Propositional dynamic logic of regular

programs. Journal of Computer and System Sciences, 18(2):194–211,

April 1979.

[Fra54] R. Fräısśe. Sur quelques classifications des systèmes de relations.Publ.

Sci. Univ. Alger. Śer. A, 1:35–182, 1954.

[Fri76] E. P. Friedman. The inclusion problem for simple languages.TCS,

1(4):297–316, April 1976.

Bibliography 287

[Gab89] D. Gabbay. The declarative past and imperative future: Executable

temporal logic for interactive systems. In B. Banieqbal, H. Barringer,

and A. Pnueli, editors,Proc. Conf. on Temporal Logic in Specification,

volume 398 ofLNCS, pages 409–448, Berlin, April 1989. Springer.

[Gen35] G. Gentzen. Untersuchungen̈uber das logische Schliessen.Math.

Zeitschrift, 39:176–210,405–431, 1935.

[GH82] Y. Gurevich and L. Harrington. Trees, automata, and games. InProc. 14th

Symp. on Theory of Computing, STOC’82, pages 60–65, San Francisco,

California, May 1982. ACM.

[GH94] J. F. Groote and H. Ḧuttel. Undecidable equivalences for basic process

algebra.Information and Computation, 115(2):354–371, December 1994.

[Gor99] R. Goŕe. Tableau methods for modal and temporal logics. In

M. D’Agostino, D. Gabbay, R. Ḧahnle, and J. Posegga, editors,Handbook

of Tableau Methods. Kluwer, Dordrecht, 1999.

[GPSS80] D. Gabbay, A. Pnueli, S. Shelah, and J. Stavi. The temporal analysis of

fairness. InProc. 7th Symp. on Principles of Programming Languages,

POPL’80, pages 163–173. ACM, January 1980.

[GPVW95] R. Gerth, D. Peled, M. Vardi, and P. Wolper. Simple on-the-fly automatic

verification of linear temporal logic. InProtocol Specification Testing and

Verification, pages 3–18, Warsaw, Poland, 1995. Chapman & Hall.

[GS53] D. Gale and F. M. Stewart. Infinite games of perfect information.Ann.

Math. Studies, 28:245–266, 1953.

[GW99] E. Gr̈adel and I. Walukiewicz. Guarded fixed point logic. InProc. 14th

Symp. on Logic in Computer Science, LICS’99, pages 45–55. IEEE, July

1999.

[HHWT97] T. A. Henzinger, P.-H. Ho, and H. Wong-Toi.HYTECH: A Model

Checker for Hybrid Systems. In O. Grumberg, editor,Proc. 9th Conf.

288 Bibliography

on Computer Aided Verification, CAV’97, volume 1254 ofLNCS, pages

460–463. Springer, 1997.

[Hin69] J. Hintikka.Models for Modalities. D. Reidel, Dordrecht, 1969.

[HM96] Y. Hirshfeld and F. Moller.Decidability Results in Automata and Process

Theory, volume 1043 ofLNCS, pages 102–148. Springer, New York, NY,

USA, 1996.

[Hoa78a] C. A. R. Hoare. Communicating sequential processes.Communications

of the ACM, 21(8):666–677, August 1978. See corrigendum [Hoa78b].

[Hoa78b] C. A. R. Hoare. Corrigendum: “Communicating Sequential Processes”.

Communications of the ACM, 21(11):958–958, November 1978.

[Hol97] G. J. Holzmann. The Spin model checker.IEEE Transactions on Software

Engineering, 23(5):279–95, May 1997.

[HT87] T. Hafer and W. Thomas. Computation tree logic CTL∗ and path

quantifiers in the monadic theory of the binary tree. In T. Ottmann, editor,

Proc. 14th Coll. on Automata, Languages and Programming, ICALP’87,

volume 267 ofLNCS, pages 269–279, Karlsruhe, Germany, July 1987.

Springer.

[HWZ00] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable fragments

of first-order temporal logics. Annals of Pure and Applied Logic,

106(1–3):85–134, 2000.

[HWZ02] I. Hodkinson, F. Wolter, and M. Zakharyaschev. Decidable and

undecidable fragments of first-order branching temporal logics. InProc.

17th Symp. on Logic in Computer Science, LICS’02, pages 393–402.

IEEE, July 2002.

[Imm82] N. Immerman. Upper and lower bounds for first order expressibility.

Journal of Computer and System Sciences, 25(1):76–98, August 1982.

Bibliography 289

[Imm86] N. Immerman. Relational queries computable in polynomial time.

Information and Control, 68(1–3):86–104, 1986.

[Imm89] N. Immerman. Descriptive and computational complexity. In

J. Hartmanis, editor,Computational Complexity Theory, Proc. Symp.

Applied Math., volume 38, pages 75–91. AMS, 1989.

[JW96] D. Janin and I. Walukiewicz. On the expressive completeness of the

propositionalµ-calculus with respect to monadic second order logic. In

U. Montanari and V. Sassone, editors,Proc. 7th Conf. on Concurrency

Theory, CONCUR’96, volume 1119 ofLNCS, pages 263–277, Pisa, Italy,

August 1996. Springer.

[Kam68] H. W. Kamp. On tense logic and the theory of order. PhD thesis, Univ.

of California, 1968.

[Kan57] S. Kanger. Provability in Logic, volume 1 of Stockholm Studies in

Philosophy. Almqvist & Wiksell, Stockholm, 1957.

[KG96] O. Kupferman and O. Grumberg. Branching-time temporal logic and tree

automata.Information and Computation, 125(1):62–69, February 1996.

[Koz83] D. Kozen. Results on the propositionalµ-calculus. TCS, 27:333–354,

December 1983.

[Kri59] S. A. Kripke. A completeness theorem in modal logic.Journal of

Symbolic Logic, 24(1):1–14, 1959.

[KT90] D. Kozen and J. Tiuryn. Logics of programs. In J. van Leeuwen, editor,

Handbook of Theoretical Computer Science, volume B: Formal Models

and Semantics, chapter 14, pages 789–840. Elsevier and MIT Press, New

York, USA, 1990.

[KVW00] O. Kupferman, M. Y. Vardi, and P. Wolper. An automata-theoretic

approach to branching-time model checking.Journal of the ACM,

47(2):312–360, March 2000.

290 Bibliography

[Lam80] L. Lamport. ”Sometime” is sometimes ”not never”: on the temporal

logic of programs. InProc. 7th Symp. on Principles of Programming

Languages, POPL’80, pages 174–185, New York, USA, January 1980.

ACM.

[Lan00] M. Lange. A game based approach to CTL∗ model checking. InProc.

summer school MOVEP’2k, Nantes, France, June 2000.

[Lan02a] M. Lange. Alternating context-free languages and linear timeµ-calculus

with sequential composition. In P. Panangaden and U. Nestmann, editors,

Proc. 9th Workshop on Expressiveness in Concurrency, EXPRESS’02,

volume 68.2 ofENTCS, pages 71–87, Brno, Czech Republic, August

2002. Elsevier.

[Lan02b] M. Lange. Local model checking games for fixed point logic with chop. In

L. Brim, P. Jaňcar, M. Ǩret́ınsḱy, and A. Kǔcera, editors,Proc. 13th Conf.

on Concurrency Theory, CONCUR’02, volume 2421 ofLNCS, pages

240–254, Brno, Czech Republic, August 2002. Springer.

[LLNT99] M. Lange, M. Leucker, T. Noll, and S. Tobies. TRUTH – a

verification platform for concurrent systems. InTool Support for System

Specification, Development, and Verification, Advances in Computing

Science. Springer, 1999.

[LMS01] F. Laroussinie, N. Markey, and P. Schnoebelen. Model checkingCTL+

andFCTL is hard. InProc. 4th Conf. Foundations of Software Science

and Computation Structures, FOSSACS’01, volume 2030 ofLNCS, pages

318–331, Genova, Italy, April 2001. Springer.

[LP85] O. Lichtenstein and A. Pnueli. Checking that finite state concurrent

programs satisfy their linear specification. InProc. 12th Symp. on

Principles of Programming Languages, POPL’85, pages 97–107, New

York, January 1985. ACM.

Bibliography 291

[LP00] O. Lichtenstein and A. Pnueli. Propositional temporal logics:

Decidability and completeness.Logic Journal of the IGPL, 8(1):55–85,

2000.

[LS00] M. Lange and C. Stirling. Model checking games for CTL∗. In Proc.

Conf. on Temporal Logic, ICTL’00, pages 115–125, Leipzig, Germany,

October 2000.

[LS01] M. Lange and C. Stirling. Focus games for satisfiability and completeness

of temporal logic. InProc. 16th Symp. on Logic in Computer Science,

LICS’01, Boston, MA, USA, June 2001. IEEE.

[LS02a] M. Lange and C. Stirling. Model checking fixed point logic with chop. In

M. Nielsen and U. H. Engberg, editors,Proc. 5th Conf. on Foundations

of Software Science and Computation Structures, FOSSACS’02, volume

2303 ofLNCS, pages 250–263, Grenoble, France, April 2002. Springer.

[LS02b] M. Lange and C. Stirling. Model checking games for branching time

logics. Journal of Logic and Computation, 12(4):623–639, 2002.

[Mar75] D. A. Martin. Borel determinacy.Ann. Math., 102:363–371, 1975.

[May00] R. Mayr. Process rewrite systems.Information and Computation,

156:264–286, 2000.

[McM93] K. L. McMillan. Symbolic Model Checking. Kluwer Academic

Publishers, Norwell Massachusetts, 1993.

[McN66] R. McNaughton. Testing and generating infinite sequences by a finite

automaton.Information and Control, 9(5):521–530, October 1966.

[McN93] R. McNaughton. Infinite games played on finite graphs.Annals of Pure

and Applied Logic, 65(2):149–184, December 1993.

[Mil80] R. Milner. A calculus of communicating systems.LNCS, 92, 1980.

292 Bibliography

[Mil89] R. Milner. Communication and Concurrency. International Series in

Computer Science. Prentice Hall, 1989.

[MO99] M. Müller-Olm. A modal fixpoint logic with chop. In C. Meinel

and S. Tison, editors,Proc. 16th Symp. on Theoretical Aspects of

Computer Science, STACS’99, volume 1563 ofLNCS, pages 510–520,

Trier, Germany, 1999. Springer.

[Mol92] F. Moller. The Edinburgh Concurrency Workbench (Version 6.1).

Department of Computer Science, University of Edinburgh, October

1992.

[MP92] Z. Manna and A. Pnueli.The Temporal Logic of Reactive and Concurrent

Systems Specification. Springer, 1992.

[MPW92] R. Milner, J. Parrow, and J. Walker. A calculus of mobile processes, I and

II. Information and Computation, 100(1):1–40,41–77, September 1992.

[MR99] F. Moller and A. Rabinovich. On the expressive power of CTL∗. In Proc.

14th Symp. on Logic in Computer Science, LICS’99, pages 360–369.

IEEE, July 1999.

[MS95] D. E. Muller and P. E. Schupp. Simulating alternating tree automata by

nondeterministic automata: New results and new proofs of the theorems

of Rabin, McNaughton and Safra.TCS, 141(1–2):69–107, April 1995.

[MSS88] D. E. Muller, A. Saoudi, and P. E. Schupp. Weak alternating automata

give a simple explanation of why most temporal and dynamic logics are

decidable in exponential time. InProc. 3rd Symp. on Logic in Computer

Science, LICS’88, pages 422–427, Edinburgh, Scotland, July 1988. IEEE.

[MSS92] D. E. Muller, A. Saoudi, and P. E. Schupp. Alternating automata, the

weak monadic theory of trees and its complexity.TCS, 97(2):233–244,

April 1992.

Bibliography 293

[NW97] D. Niwiński and I. Walukiewicz. Games for theµ-calulus. TCS,

163:99–116, 1997.

[Pap94] C. H. Papadimitriou.Computational Complexity. Addison-Wesley, New

York, 1994.

[Pet62] C. A. Petri. Fundamentals of a theory of asynchronous information

flow. In C. M. Popplewell, editor,Proc. IFIP Congress, Information

Processing, pages 386–391. North-Holland, August 1962.

[Plo81] G. D. Plotkin. A structural approach to operational semantics.

Technical Report DAIMI FN-19, Computer Science Department, Aarhus

University, Aarhus, Denmark, September 1981.

[Pnu77] A. Pnueli. The temporal logic of programs. InProc. 18th Symp. on

Foundations of Computer Science, FOCS’77, pages 46–57, Providence,

RI, USA, October 1977. IEEE.

[Pra79] V. R. Pratt. Models of program logics. InProc. 20th Symp. on

Foundations of Computer Science, FOCS’79, pages 115 – 122. IEEE,

1979.

[Pra80] V. R. Pratt. A near optimal method for reasoning about action.Journal of

Computer and System Sciences, 2:231–254, April 1980.

[Pre29] M. Presburger. Über die Vollsẗandigkeit eines gewissen Systems

der Arithmetik ganzer Zahlen, in welchem die Addition als einzige

Operation hervortritt.Sprawozdanie z I Kongresu Matematikow Krajow

Slowcanskich Warszawa, 395:92–101, 1929.

[QS82] J. P. Queille and J. Sifakis. Specification and verification of concurrent

systems in CESAR. InProc. 5th Symp. on Programming, volume 137 of

LNCS, pages 337–371. Springer, 1982.

[Rab69] M. O. Rabin. Decidability of second-order theories and automata on

infinite trees.Trans. of Amer. Math. Soc., 141:1–35, 1969.

294 Bibliography

[Rau79] W. Rautenberg.Klassische und nichtklassische Aussagenlogik. Vieweg,

Braunschweig/Wiesbaden, 1979.

[Rei85] W. Reisig.Petri Nets (an Introduction). Number 4 in EATCS Monographs

on Theoretical Computer Science. Springer, 1985.

[Rey01] M. Reynolds. An axiomatization of full computation tree logic.Journal

of Symbolic Logic, 66(3):1011–1057, September 2001.

[Saf88] S. Safra. On the complexity ofω-automata. InProc. 29th Symp.

on Foundations of Computer Science, FOCS’88, pages 319–327. IEEE,

October 1988.

[Sav69] W. J. Savitch. Deterministic simulation of nondeterministic Turing

Machines. InSymp. on Theory of Computing, STOC’69, pages 247–248,

New York, May 1969. ACM.

[SC85] A. P. Sistla and E. M. Clarke. The complexity of propositional linear

temporal logics. Journal of the Association for Computing Machinery,

32(3):733–749, July 1985.

[SE84] R. S. Streett and E. A. Emerson. The propositionalµ-calculus is

elementary. In J. Paredaens, editor,Proc. 11th Coll. on Automata,

Languages, and Programming, ICALP’84, volume 172 ofLNCS, pages

465–472. Springer, Berlin, 1984.

[Seg77] K. Segerberg. A completeness theorem in the modal logic of programs.

Notices of the AMS, 24(6):A–552, October 1977.

[SGL97] P. H. Schmitt and J. Goubault-Larrecq. A tableau system for linear time

temporal logic. InProc. 3rd Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’97, volume 1217 ofLNCS,

pages 130–144. Springer, Enschede, Netherlands, April 1997.

[Smu95] R. M. Smullyan. First-Order Logic. Dover Publications, New York,

second corrected edition, 1995.

Bibliography 295

[Sti89] C. Stirling. Comparing linear and branching time temporal logics. In

B. Banieqbal, H. Barringer, and A. Pnueli, editors,Proc. Conf. on

Temporal Logic in Specification, volume 398 ofLNCS, pages 1–20,

Berlin, April 1989. Springer.

[Sti92] C. Stirling. Modal and temporal logics. In S. Abramsky, D. M. Gabbay,

and T. S. E. Maibaum, editors,Handbook of Logic in Computer Science,

volume 2 (Background: Computational Structures), pages 477–563.

Clarendon Press, Oxford, 1992.

[Sti95] C. Stirling. Local model checking games. In I. Lee and S. A. Smolka,

editors,Proc. 6th Conf. on Concurrency Theory, CONCUR’95, volume

962 ofLNCS, pages 1–11, Berlin, Germany, August 1995. Springer.

[Sti96a] C. Stirling. Games and modalµ-calculus. In T. Margaria and B. Steffen,

editors, Proc. 2nd Int. Workshop on Tools and Algorithms for the

Construction and Analysis of Systems, TACAS’96, volume 1055 ofLNCS,

pages 298–312. Springer, 1996.

[Sti96b] C. Stirling. Modal and Temporal Logics for Processes, volume 1043 of

LNCS, pages 149–237. Springer, NY, USA, 1996.

[Sti01] C. Stirling. Modal and Temporal Properties of Processes. Texts in

Computer Science. Springer, 2001.

[Sto76] L. J. Stockmeyer. The polynomial-time hierarchy.TCS, 3(1):1–22,

October 1976.

[Str81] R. S. Streett. Propositional dynamic logic of looping and converse. In

Proc. 13th Symp. on Theory of Computation, STOC’81, pages 375–383,

Milwaukee, Wisconsin, May 1981. ACM.

[Str85] R. S. Streett. Fixpoints and program looping: Reductions from the

propositionalµ-calculus into propositional dynamic logics of looping. In

R. Parikh, editor,Proc. Conf. on Logic of Programs, volume 193 ofLNCS,

pages 359–372, Brooklyn, NY, June 1985. Springer.

296 Bibliography

[SVW83] A. P. Sistla, M. Y. Vardi, and P. Wolper. Reasoning about infinite

computation paths. InProc. 24th Symp. on Foundations of Computer

Science, FOCS’83, pages 185–194, Los Alamitos, Ca., USA, November

1983. IEEE.

[SW91] C. Stirling and D. Walker. Local model checking in the modalµ–calculus.

TCS, 89(1):161–177, 1991.

[Tar55] A. Tarski. A lattice-theoretical fixpoint theorem and its application.

Pacific J.Math., 5:285–309, 1955.

[Tar72] R. E. Tarjan. Depth-first search and linear graph algorithms.SIAM J.

Computing, 1:146–160, 1972.

[Tho79] W. Thomas. Star-free regular sets ofω-sequences. Information and

Control, 42(2):148–156, August 1979.

[Tho95] W. Thomas. On the synthesis of strategies in infinite games. InProc. 12th

Symp. on Theoretical Aspects of Computer Science, STACS’95, volume

900 ofLNCS, pages 1–13, Munich, Germany, March 1995. Springer.

[Tho99] W. Thomas. Complementation of Büchi automata revisited. In

J. Karhum̈aki et al., editor, Jewels are Forever, Contributions on

Theoretical Computer Science in Honor of Arto Salomaa, pages 109–122.

Springer, 1999.

[Var82] M. Y. Vardi. The complexity of relational query languages (extended

abstract). InProc. 14th Symp. on Theory of Computing, STOC’82, pages

137–146, San Francisco, CA, USA, May 1982. ACM.

[Var96] M. Y. Vardi. An Automata-Theoretic Approach to Linear Temporal Logic,

volume 1043 ofLNCS, pages 238–266. Springer, New York, NY, USA,

1996.

[Var01] M. Y. Vardi. Branching vs. linear time: Final showdown. In T. Margaria

and W. Yi, editors,Proc. 7th Int. Conf. on Tools and Algorithms for the

Bibliography 297

Construction and Analysis of Systems, TACAS’01, volume 2031 ofLNCS,

pages 1–22. Springer, April 2001.

[vB96] J. van Benthem. Exploring Logical Dynamics. CSLI Publications,

Stanford, California, 1996.

[VB00] W. Visser and H. Barringer. Practical CTL∗ model checking: Should

SPIN be extended?Int. J. on Software Tools for Technology Transfer,

2(4):350–365, 2000.

[VS85] M. Y. Vardi and L. Stockmeyer. Improved upper and lower bounds for

modal logics of programs. InProc. 17th Symp. on Theory of Computing,

STOC’85, pages 240–251, Baltimore, USA, May 1985. ACM.

[VW86a] M. Y. Vardi and P. Wolper. An automata-theoretic approach to automatic

program verification (preliminary report). InProc. 1st Symp. on Logic

in Computer Science, LICS’86, pages 332–344. IEEE, Washington, DC,

1986.

[VW86b] M. Y. Vardi and P. Wolper. Automata-theoretic techniques for modal logic

of programs. Journal of Computer and System Sciences, 32:183–221,

1986.

[VW94] M. Y. Vardi and P. Wolper. Reasoning about infinite computations.

Information and Computation, 115(1):1–37, November 1994.

[Wal93] I. Walukiewicz. On completeness of theµ-calculus. InProc. 8th Symp.

on Logic in Computer Science, LICS’93, pages 136–146. IEEE, Los

Alamitos, CA, 1993.

[Wal95] I. Walukiewicz. Completeness of Kozen’s axiomatization of the

propositionalµ-calculus. InProc. 10th Symp. on Logic in Computer

Science, LICS’95, pages 14–24, Los Alamitos, CA, 1995. IEEE.

[Wal96] I. Walukiewicz. A note on the completeness of Kozen’s axiomatization of

the propositionalµ-calculus. Bulletin of Symbolic Logic, 2(3):349–366,

1996.

298 Bibliography

[Wil99] T. Wilke. CTL+ is exponentially more succinct than CTL. InProc. 19th

Conf. on Foundations of Software Technology and Theoretical Computer

Science, FSTTCS’99, volume 1738 ofLNCS, pages 110–121. Springer,

1999.

[Win93] Glynn Winskel. The Formal Semantics of Programming Languages: An

Introduction. Foundations of Computing series. MIT Press, February

1993.

[Zem73] J. J. Zeman.Modal Logic / the Lewis-Modal System. Oxford University

Press, Oxford, 1 edition, 1973.

[Zer13] E. Zermelo.Über eine Anwendung der Mengenlehre auf die Theorie des

Schachspiels. InProc. 5th Int. Congress of Mathematicians, volume II,

pages 501–504. Cambridge University Press, 1913.

