1,575 research outputs found

    Automatic Dating of Historical Documents

    Get PDF
    With the growing number of digitized documents available to researchers it is becoming possible to answer scientific questions by simply analyzing the image content. In this article, a new approach for the automatic dating of historical documents is proposed. It is based on an approach only recently proposed for scribe identification. It uses local RootSIFT descriptors which are encoded using VLAD. The method is evaluated using a dataset consisting of context areas of medieval papal charters covering around 150 years from 1049 to 1198 AD. Experimental results show very promising mean absolute errors of about 17 years

    Reconnaissance de parties de formes basée sur les géodésiques de formes

    No full text
    National audienceLes performances du système de reconnaissance de formes dépendent en grande partie de la qualité de l'image segmentée. Comme la segmentation complète est loin d'être toujours atteinte, nous abordons dans ce travail le problème de la reconnaissance de parties de formes. Nous nous plaçons dans le cas où seulement certaines parties de la forme entière sont disponibles. A cet effet, nous proposons une stratégie de reconnaissance basée sur les géodésiques dans l'espace de formes. Nous montrons que la mesure de similarité ainsi définie permet de gérer efficacement les déformations élastiques de formes. Les tests effectués sur des parties de formes de la base MPEG-7 et sur des parties issues d'images segmentées démontrent l'efficacité de notre schéma de reconnaissance. Abstract The performance of a pattern recognition system heavily depends on image segmentation quality. Since a complete segmentation cannot be always reached, we address here the problem of shape parts recognition where only some parts of the entire shape are available. For this purpose, we propose a recognition strategy that uses geodesics-based distance able to handle elastic deformations and articulations. Experiments carried out on parts of shapes of the MPEG-7 database and on parts issued from segmented images demonstrate the effectiveness of our proposed scheme

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    Structure in the 3D Galaxy Distribution: I. Methods and Example Results

    Full text link
    Three methods for detecting and characterizing structure in point data, such as that generated by redshift surveys, are described: classification using self-organizing maps, segmentation using Bayesian blocks, and density estimation using adaptive kernels. The first two methods are new, and allow detection and characterization of structures of arbitrary shape and at a wide range of spatial scales. These methods should elucidate not only clusters, but also the more distributed, wide-ranging filaments and sheets, and further allow the possibility of detecting and characterizing an even broader class of shapes. The methods are demonstrated and compared in application to three data sets: a carefully selected volume-limited sample from the Sloan Digital Sky Survey redshift data, a similarly selected sample from the Millennium Simulation, and a set of points independently drawn from a uniform probability distribution -- a so-called Poisson distribution. We demonstrate a few of the many ways in which these methods elucidate large scale structure in the distribution of galaxies in the nearby Universe.Comment: Re-posted after referee corrections along with partially re-written introduction. 80 pages, 31 figures, ApJ in Press. For full sized figures please download from: http://astrophysics.arc.nasa.gov/~mway/lss1.pd

    Expanded Parts Model for Semantic Description of Humans in Still Images

    Get PDF
    We introduce an Expanded Parts Model (EPM) for recognizing human attributes (e.g. young, short hair, wearing suit) and actions (e.g. running, jumping) in still images. An EPM is a collection of part templates which are learnt discriminatively to explain specific scale-space regions in the images (in human centric coordinates). This is in contrast to current models which consist of a relatively few (i.e. a mixture of) 'average' templates. EPM uses only a subset of the parts to score an image and scores the image sparsely in space, i.e. it ignores redundant and random background in an image. To learn our model, we propose an algorithm which automatically mines parts and learns corresponding discriminative templates together with their respective locations from a large number of candidate parts. We validate our method on three recent challenging datasets of human attributes and actions. We obtain convincing qualitative and state-of-the-art quantitative results on the three datasets.Comment: Accepted for publication in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI

    Quantitative Comparison of Benthic Habitat Maps Derived From Multibeam Echosounder Backscatter Data

    Get PDF
    In the last decade, following the growing concern for the conservation of marine ecosystems, a wide range of approaches has been developed to achieve the identification, classification and mapping of seabed types and of benthic habitats. These approaches, commonly grouped under the denominations of Benthic Habitat Mapping or Acoustic Seabed Classification, exploit the latest scientific and engineering advancements for the exploration of the bottom of the ocean, particularly in underwater acoustics. Among all acoustic seabed-mapping systems available for this purpose, a growing interest has recently developed for Multibeam Echosounders (MBES). This interest is mainly the result of the multiplicity of these systems’ outputs (that is, bathymetry, backscatter mosaic, angular response and water-column data), which allows for multiple approaches to seabed or habitat classification and mapping. While this diversity of mapping approaches and this multiplicity of MBES data products contribute to an increasing quality of the charting of the marine environment, they also unfortunately delay the future standardization of mapping methods, which is required for their effective integration in marine environment management strategies. As a preliminary step towards such standardization, there is a need for generalized efforts of comparison of systems, data products, and mapping approaches, in order to assess the most effective ones given mapping objectives and environment conditions. The main goal of this thesis is to contribute to this effort through the development and implementation of tools and methods for the comparison of categorical seabed or habitat maps, with a specific focus on maps obtained from up-to-date methodologies of classification of MBES backscatter data. This goal is attained through the achievement of specific objectives treated sequentially. First, the need for comparison is justified through a review of the diversity characterizing the fields of Benthic Habitat Mapping and Acoustic Seabed Classification, and of their use of MBES data products. Then, a case study is presented that compare the data products from a Kongsberg EM3000 MBES to the output map of an Acoustic Ground Discrimination Software based on data from a Single-beam Echosounder and to a Sidescan Sonar mosaic, in order to illustrate how map comparison measures could contribute to the comparison of these systems. Next, a number of measures for map-to-map comparison, inspired from the literature in land remote sensing, are presented, along with methodologies for their implementation in comparison of maps described with different legends. The benefit of these measures and methodologies is demonstrated through their application to maps obtained from the acoustic datasets presented previously. Finally, a more typical implementation of these measures is presented as a case study in which the development of two up-to-date classification methodologies of MBES backscatter data is complemented by the quantitative comparison of their output maps. In the process of developing and illustrating the use of methods for the assessment of map-to-map similarity, this thesis also presents methodologies for the processing and classification of backscatter data from MBES. In particular, the potential of the combined use of the spatial and angular information of these data for seabed classification is explored through the development of an original segmentation methodology that sequentially divides and aggregates segments defined from a MBES backscatter mosaic on the basis of their angular response content
    corecore