111 research outputs found

    Time-Oriented Cartographic Treemaps for the Visualization of Public Healthcare Data

    Get PDF

    VMap: An Interactive Rectangular Space-filling Visualization for Map-like Vertex-centric Graph Exploration

    Full text link
    We present VMap, a map-like rectangular space-filling visualization, to perform vertex-centric graph exploration. Existing visualizations have limited support for quality optimization among rectangular aspect ratios, vertex-edge intersection, and data encoding accuracy. To tackle this problem, VMap integrates three novel components: (1) a desired-aspect-ratio (DAR) rectangular partitioning algorithm, (2) a two-stage rectangle adjustment algorithm, and (3) a simulated annealing based heuristic optimizer. First, to generate a rectangular space-filling layout of an input graph, we subdivide the 2D embedding of the graph into rectangles with optimization of rectangles' aspect ratios toward a desired aspect ratio. Second, to route graph edges between rectangles without vertex-edge occlusion, we devise a two-stage algorithm to adjust a rectangular layout to insert border space between rectangles. Third, to produce and arrange rectangles by considering multiple visual criteria, we design a simulated annealing based heuristic optimization to adjust vertices' 2D embedding to support trade-offs among aspect ratio quality and the encoding accuracy of vertices' weights and adjacency. We evaluated the effectiveness of VMap on both synthetic and application datasets. The resulting rectangular layout has better aspect ratio quality on synthetic data compared with the existing method for the rectangular partitioning of 2D points. On three real-world datasets, VMap achieved better encoding accuracy and attained faster generation speed compared with existing methods on graphs' rectangular layout generation. We further illustrate the usefulness of VMap for vertex-centric graph exploration through three case studies on visualizing social networks, representing academic communities, and displaying geographic information.Comment: Submitted to IEEE Visualization Conference (IEEE VIS) 2019 and 202

    A Stable Greedy Insertion Treemap Algorithm for Software Evolution Visualization

    Get PDF
    Computing treemap layouts for time-dependent (dynamic) trees is an open problem in information visualization. In particular, the constraints of spatial quality (cell aspect ratio) and stability (small treemap changes mandated by given tree-data changes) are hard to satisfy simultaneously. Most existing treemap methods focus on spatial quality, but are not inherently designed to address stability. We propose here a new treemapping method that aims to jointly optimize both these constraints. Our method is simple to implement, generic (handles any types of dynamic hierarchies), and fast. We compare our method with 14 state of the art treemaping algorithms using four quality metrics, over 28 dynamic hierarchies extracted from evolving software codebases. The comparison shows that our proposal jointly optimizes spatial quality and stability better than existing methods

    Explorative Graph Visualization

    Get PDF
    Netzwerkstrukturen (Graphen) sind heutzutage weit verbreitet. Ihre Untersuchung dient dazu, ein besseres Verständnis ihrer Struktur und der durch sie modellierten realen Aspekte zu gewinnen. Die Exploration solcher Netzwerke wird zumeist mit Visualisierungstechniken unterstützt. Ziel dieser Arbeit ist es, einen Überblick über die Probleme dieser Visualisierungen zu geben und konkrete Lösungsansätze aufzuzeigen. Dabei werden neue Visualisierungstechniken eingeführt, um den Nutzen der geführten Diskussion für die explorative Graphvisualisierung am konkreten Beispiel zu belegen.Network structures (graphs) have become a natural part of everyday life and their analysis helps to gain an understanding of their inherent structure and the real-world aspects thereby expressed. The exploration of graphs is largely supported and driven by visual means. The aim of this thesis is to give a comprehensive view on the problems associated with these visual means and to detail concrete solution approaches for them. Concrete visualization techniques are introduced to underline the value of this comprehensive discussion for supporting explorative graph visualization

    Geographic grid embeddings

    Get PDF

    Hierarchical Aggregation for Information Visualization: Overview, Techniques, and Design Guidelines

    Full text link
    corecore