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Abstract—Computing treemap layouts for time-dependent (dy-
namic) trees is an open problem in information visualization. In
particular, the constraints of spatial quality (cell aspect ratio)
and stability (small treemap changes mandated by given tree-
data changes) are hard to satisfy simultaneously. Most existing
treemap methods focus on spatial quality, but are not inherently
designed to address stability. We propose here a new treemapping
method that aims to jointly optimize both these constraints. Our
method is simple to implement, generic (handles any types of
dynamic hierarchies), and fast. We compare our method with
14 state of the art treemaping algorithms using four quality
metrics, over 28 dynamic hierarchies extracted from evolving
software codebases. The comparison shows that our proposal
jointly optimizes spatial quality and stability better than existing
methods.

I. INTRODUCTION

Understanding the evolution of large and long-lasting soft-

ware projects is a major aspect of program comprehension.

Typically, evolution data for such projects is mined by fact

extraction tools from existing software control management

systems handing software repositories, such as Git [1], Sub-

version [2], and CVS [3]. Several types of data attributes are

collected (and explored) in this way, including the identity

of software items of interest (e.g., packages, folders, files,

classes, methods), various quality attributes measured on them

(e.g., testability, maintainability, modularity, and readability

metrics [4]), and relations that interrelate these items. Hierar-
chy relations, which describe the containment or aggregation

of software items, play a central role in virtually all such

evolution analyses, since they offer a powerful and natural

way to examine the (typically large) evolution data at multiple

levels of detail. As such, methods that can depict time-

dependent hierarchies are a central element of the program

evolution toolset.

Dynamic, or time-dependent, treemaps are one of the most

effective techniques for displaying time-dependent hierarchies.

Compared to other techniques, such as node-link tree layouts,

they use basically every pixel of the available screen space to

display information, and as such scale to tens of thousands

of items (tree nodes) per time step. Many treemap methods

exist for handling static (time-independent) hierarchies [5],

[6], which also have been shown to optimize various quality

measures that help readability, such as aspect ratio [6], [7]

and relative positions of nodes [8]–[12]. However, far fewer

methods are available for dynamic trees [13]–[15]. One key

problem for dynamic treemapping is instability, i.e., the fact

that relatively small changes in a tree can induce disproportion-

ately large changes in the resulting treemaps. Finding a good

way to quantify and reduce instability is an open problem for

dynamic treemap algorithms.

In this paper, we address the above limitations with

two main contributions. Firstly, we propose a new dynamic

treemap algorithm, called Greedy Insertion Treemap (GIT).

GIT aims to preserve treemap-cell neighborhoods over time

by constructing an initial so-called Layout Tree (LT), which

is next incrementally updated as the tree data changes, so as

to minimize undesired treemap-layout changes. Secondly, we

evaluate the quality of GIT both in the spatial domain and the

temporal domain against a large set of well-known treemap

algorithms using several established quality metrics, and on a

large set of dynamic hierarchies extracted from real-world soft-

ware repositories. Our evaluation results show that GIT strikes

a better balance between spatial and temporal quality than

the existing competing methods we evaluated against. As GIT

has a simple and computationally scalable implementation, we

argue that it represents a valuable contribution to the toolset

of techniques needed by program evolution comprehension.

The structure of this paper is as follows. Section II outlines

existing work on (dynamic) treemapping and related quality

metrics, and their use in program evolution comprehension,

and also introduces the treemap methods we compare against.

Section III details our new GIT algorithm. Section IV presents

our evaluation methodology for GIT and the obtained results

are revealed in Section V . Section VI discusses our proposal

and outlines directions for future improvement.

II. RELATED WORK

In this section, we will discuss the Algorithms (Sec-

tion II-A) and Quality Metrics (Section II-B) present in the

dynamic treemap literature. Let T = {ni} be a hierarchy (tree)

with nodes ni, each having a weight value ai ≥ 0. Weights

are given for leaf nodes and computed for non-leaf nodes as

the sum of their children weights, respectively. Let T (T ) be

the treemap layout of T , with a rectangle cell ri assigned to

each ni, so that the area of ri equals ai.
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A. Algorithms

Time-dependent hierarchies T (t) are a central artifact to

explore in program evolution comprehension. Since such

analyses usually involve tens or even hundreds of time steps

t, small-multiple visualizations (one image per time step)

do not scale well, hence showing an animated layout of

the changing hierarchy is preferred [16]. For this, several

techniques construct a so-called union tree ∪tT (t), build a

single layout of this union tree, display it using Icicle plots [17]

or Sunburst diagrams [18], and then highlight changes of T (t)
over time in it [19]. While this approach minimizes instability

(layout changes) over time, and is simple to implement, it

cannot handle long time sequences and/or large trees.

Treemaps cope well with the need for handling large

trees [20]–[23]. Slice and dice (SND) treemaps introduced the

idea but were found to create poor aspect-ratio (AR) cells

which are hard to see [5]. Squarified treemaps (SQR) propose

a heuristic that yields good (close to one) AR values [6].

A subsequent algorithm (APP) was designed to approximate

the optimal AR [7]. While treemaps were originally designed

to handle time-independent trees, the need for stability was

soon revealed – that is, small changes in the input tree

T should yield only small changes in the treemap T (T ).
Several algorithms were designed to improve stability. Ordered

treemaps (OT) [9] and Strip treemaps (STR) [24] lay out cells

ri using a given order of the nodes of T , using different

heuristics – Pivot-by-Middle (PBM), Pivot-by-Size (PBZ), and

Pivot-By-Split-Size (PBS) [9]. Other algorithms lay out cells

along a space-filling fractal-like curve, e.g., Spiral (SPI) [25],

and Hilbert (HIL) and Moore (MOO) methods [26]. Yet an-

other ordering technique considers node similarities: Spatially-

Ordered Treemaps (SOT) [8] processes sibling nodes ordered

by decreasing similarity; NMap [12] places cells according to

the similarity of their nodes using dimensionality reduction.

Variants thereof include NMap Alternate Cuts (NAC), which

splits the screen space alternating horizontal and vertical

slices; and NMap Equal Weights (NEW) which aims to create

similar-size cells.

Stability becomes a major concern when treemapping time-

independent trees with potentially long evolution and large

variations. However, only a few methods explicitly aim to

treat dynamic data. Stable treemaps [14] aim to improve both

AR and stability by using non-sliceable layouts. However, this

method is computationally expensive and not trivial to imple-

ment. Voronoi treemaps [27], [28] achieve, in general, good

AR values, and have been adapted to also handle dynamic trees

to visualize software structure evolution [29], [30]. There exist

also methods that propose other cell shapes, or combinations

of multiple shapes, such as bubble treemaps [31], jigsaw

treemaps [32], and orthoconvex treemaps [33]. However, such

methods have not been specifically designed with the aim of

maximizing stability.

B. Metrics

As outlined in Sec. II-A, treemap quality consists of two

main components:

Spatial quality captures how readable the treemap geometry

is. The best known, and most used, metric for this is the aspect

ratio (AR) of the cells ri which should ideally reach one. The

so-called readability metric measures how often a user’s gaze

changes direction while reading an ordered treemap along the

predefined node ordering [24]. The continuity metric measures

how often cells of nodes which are close in the given node

ordering are far apart in the treemap [25].

Stability metrics capture how easily can a user understand the

changing geometry of a dynamic treemap. This is measured

essentially by quantifying the visual change δ(ri(t), ri(t+1))
of the cells ri, and then aggregating such visual changes into

a single value using some function S. Early on, Shneiderman

and Wattenberg [9] defined the Layout Distance Change

metric, where they used for δ the distance between the vectors

(xi(t), yi(t), wi(t), hi(t)) and (xi(t + 1), yi(t + 1), wi(t +
1), hi(t + 1)), x and y being the coordinates of the top-left

corner, and w and h, the width, and the height of a rectangle ri.
They defined S as the average of δ for all cells and revisions.

Later, Hahn et al. [13] use for δ the distance between the

centers of ri(t) and ri(t+1) and also average for S. Tak and

Cockburn [26] use for S the variance and define δ as [9]. They

also propose a drift metric, which measures how much a cell’s

center moves away from its average position over long time

intervals. Recently, we have seen new metrics that measure

stability not by looking only at a single cell’s position relative

to its past states, but take into consideration the relationships

between all cells in the layout. Hahn et al. [34] propose the

relative direction change, which measures angle differences

between all centroids in the layout between consecutive time-

steps, and Sondag et al. [14] propose similar metric, where δ
measures how a cell moves with respect to all its neighbors,

where S is again the average. We will discuss these metrics

further, and also propose a new one in Section IV-A.

III. GREEDY INSERTION TREEMAP

As outlined in Sec. II, many treemapping methods exist in

the literature, and these have been evaluated by several metrics

for both spatial quality and stability. However, examining the

above in more detail, we find two limitations: (a) most existing

treemap methods have been designed without the explicit aim

of maximizing stability; (b) among the few methods where

stability was an aim, there is no clear optimal method which

yields both good spatial quality and stability for long time

sequences of trees exhibiting a high dynamics in terms of node

additions, deletions, and weight changes. We next propose

a method, Greedy Insertion Treemap (GIT), that aims to

outperform the current state-of-the-art in these two respects.

GIT is designed from the start with the aim of increased

stability. For this, GIT aims to preserve cell neighborhoods in

the treemap over time. To this end, we use a so-called Layout

Tree (LT ) help data structure (not to be confused with the

tree T we want to visualize). Each node l ∈ LT represents a

treemap cell, and may have two subtrees: (a) R(l) is rooted

at the top-right corner of l; and (b) B(l) is rooted at the

bottom-left corner of l. Together with the cell weights, LT
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Fig. 1. Space partitioning from LT .

fully encodes a treemap T . Indeed, we can construct T by

traversing LT breadth-first. During this, for each l ∈ LT , we

compute the total weight of its subtrees R(l) and B(l), and

cut the remaining drawing space vertically and horizontally

according to these summed weights, as illustrated in Fig. 1.

GIT proceeds in two phases: initialization and update, as

follows.

Initialization: To start with, we need to construct LT from

the first tree T (t = 0) in our sequence. For this, we can use

basically any method Tinit that constructs a (static) treemap for

T (0) from which we can next generate LT with the properties

(a) and (b) mentioned above. We have experimented with two

such initialization methods. First, we constructed LT from a

squarified treemap (i.e. Tinit is the SQR algorithm), since SQR

is well known to yield very good AR values. Alternatively, we

propose a simple heuristic T direct
init that directly builds LT from

the initial tree T (0). Both initialization methods are compared

next in Sec. V.

To explain our heuristic T direct
init , con-

sider a single-level tree T = [(ni, ai)] =
[(A, 10), (B, 2), (C, 8), (D, 4), (E, 1), (F, 3)], to be laid

our, for simplicity, in a square drawing area S of size 1;

handling general trees is trivial by top-down recursion. We

build LT by sequentially adding each ni ∈ T to it (Fig. 2).

After each addition, we rebuild T from the current LT as

explained above, so it covers the entire S. Thus, existing

nodes are ‘squeezed’ to make space for the new nodes. In

our example, we first add node A, which will cover the entire

S. To add B, we find the node n ∈ LT having the worst

aspect-ratio cell c ∈ T . If wc ≥ hc, we add B directly right

of n (as in our example), else we add B directly below n,

and update T from the new LT again. For the third node C,

as the worst-aspect-ratio cell is B, and since hB > wB , we

add C below B and update T from LT again. Fig. 2(d-f)

shows the addition of the remaining nodes of T .

For didactic purposes, nodes were added in alphabetical

order, but in reality, we want nodes to be added in random

order, hence when dealing with truly hierarchical data, one

sub-tree is not completely laid out before its siblings, which

could cause it to be ‘squeezed’.

Update: We now have an initial treemap T and its LT .

We next edit LT to handle weight changes, node additions,

and node deletions as T changes. Weight changes do not

change LT . Additions are handled just as adding regular nodes

when building the initial LT using T direct
init . Additions tend to

increase the cells’ aspect ratios, so we do them after node

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3))]

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3))]

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3))]

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3))]

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3))]

T=[(A,10), (B,2),
      (C,8), (D,4),
      (E,1), (F,3)]

(a) (b)

(c) (d)

(e) (f)

LT=LT=

LT= LT=

LT= LT=

D

B

Fig. 2. Building the initial layout tree LT (green: inserted cells).

removals and weight changes. Removals are done by editing

LT as follows (see also Fig. 3):

1) If a node n ∈ LT has a B(n) subtree, we replace n by

B(n);
2) else if n has a R(n) subtree, we replace n by R(n);
3) else n has no subtrees, so we just remove it from LT .

After handling all changes in a new revision of T , we

rebuild T from LT , as already explained. As we show next

in Sec. V, GIT scores a very good balance of spatial quality

vs stability.

(a)

(b)

(c)

Fig. 3. Removal of nodes (red) from layout tree and its treemap.
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IV. EVALUATION

To evaluate GIT, we considered the following aspects:

A. Metrics

To evaluate the quality of GIT, we proceed as follows.

For spatial quality, we use the well-known Aspect Ratio

metric (AR) [6]. For each cell c in a treemap T , ARc =
min(wc, hc)/max(wc, hc). This metric is considered by vir-

tually all rectangular treemap evaluations we are aware of.

For stability, we compute three metrics. The first two

are the Shneiderman-Wattenberg’s Layout Distance Change

(LDC) [9] and Tak-Cockburn’s Location Drift (LD) [26],

already introduced in Sec. II. The LDC metric captures the

instability of a cell between consecutive revisions. In contrast,

the LD metric captures the deviation of a cell’s position over

all timesteps.

We also propose a (new) third metric, which extends LDC
to also consider the change of the data. We define the visual
change of a cell ci as the Euclidean distance traveled by the

four corners of the rectangle ri between t and t+1, normalized

by the treemap diagonal
√
W 2 +H2, so δvi ∈ [0, 1]. Next, we

define the data change of ci as δai = |ai(t)−ai(t+1)|, where

ai is the relative weight of node ci. With these, we define the

stability Qi of a cell ci in a treemap as

Qi = (1− δvi)/(1− δai). (1)

We define the stability Q of an entire treemap as the average

of its cells’ stabilities Qi. In contrast to LDC, Q measures

how much a rectangle changes in relation to its data change.

Measuring only absolute changes of rectangles (LDC) does

not, we believe, fully characterize stability. Indeed, a rectangle

could (and should) change a lot if its underlying cell’s weight

changes a lot. However, this does not mean necessarily that

the treemap algorithm is unstable.

B. Techniques

We tested GIT against 14 other treemapping algorithms:

Approximate (APP), Hilbert (HIL), Stable treemaps (LM0,

LM4), Moore (MOO), NMap-Alternate-Cuts (NAC), NMap-

Equal-Weights (NEW), Pivot-by-Middle (PBM), Pivot-by-Size

(PBZ), Pivot-by-Split-Size (PBS), Slice- and-Dice (SND), Spi-

ral (SPI), Squarified (SQR), and Strip (STR). For NMap, we

use as seed layout the one computed by SQR [12]. We did not

consider non-rectangular treemap methods in the evaluation,

since not all the metrics in Sec. II-B directly generalize to

non-rectangular cells.

C. Datasets

We extracted 28 dynamic hierarchies by mining the structure

of software projects (folders, files, classes) from 28 corre-

sponding public GitHub repositories, using a custom auto-

mated pipeline that scans all available revisions and extracts

the code structure using Understand [35]. As weights wi, we

use the number of lines of code of the respective items. Other

software quality metrics delivered by Understand can be used

instead, if desired. For more details on this process, we refer

to [36]. The considered repositories have quite different sizes,

number of revisions, hierarchy depths and shapes, number

of developers, and code type (programming languages and

application types). Statistics about the datasets are available

in Table I.

Dataset Revisions Nodes (total) Average depth
animate.css 50 3454 2.87
AudioKit 22 11178 6.95
bdb 62 2658 3.83
beets 106 9844 3.75
brackets 88 120292 12.85
caffe 44 12969 4.93
calcuta 50 2882 10.76
cpython 321 584821 6.50
earthdata-search 46 18539 6.82
emcee 64 1746 3.62
exo 97 36436 11.88
fsharp 69 22906 7.89
gimp 72 170418 5.19
hospitalrun-frontend 38 16759 5.71
Hystrix 61 15530 13.29
iina 74 6849 4
jenkins 137 277185 11.94
Leaflet 84 13381 4.86
OptiKey 36 9782 6.72
osquery 37 14111 5.75
PhysicsJS 20 2022 4.6
pybuilder 53 5457 7
scikitlearn 88 48468 5.75
shellcheck 53 746 2.39
soundnode-app 35 3196 6.88
spacemacs 51 10201 4.96
standard 29 203 2
uws 122 4093 2.76

Totals: 2132 1458036 5.77
TABLE I

SOFTWARE EVOLUTION TREE DATASETS USED IN THE EVALUATION.

V. RESULTS

We evaluate GIT on the aforementioned datasets, algo-

rithms, and metrics collection from several perspectives, by

answering a series of questions. Below, average stability S
refers to the average of the LDC and Q metrics introduced in

Sec. II-B. All results that we were not able to fit in the paper

can be found at our online repository [37].

A. How does GIT’s initialization affect its quality?

As outlined in Sec. III, we can initialize GIT with various

treemap layouts, such as squarified (SQR) or using the direct

initialization illustrated in Fig. 2. Intuitively, one would think

that SQR initialization is to be preferred, since SQR is well

known for its high AR values. To test this, we ran GIT

using both initializations for all datasets. After initialization,

the same regular GIT update mechanism is used in both

cases. Figure 4 shows the per-dataset average stability and

AR values. Interestingly, we see that the higher-AR SQR

initialization actually yields slightly worse AR values for the

entire sequence. For stability, the two initializations behave

basically identically. We can explain this result by the fact

that the GIT direct initialization follows the same heuristics

as the update steps, while SQR forces GIT to start with a
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layout which needs more substantial updates next as the tree

data changes. At a higher level, this experiment suggests that

GIT performs very well using direct initialization. As such,

we use this initialization in all subsequent experiments.

Fig. 4. GIT performance using T direct
init (GIT) vs squarified initialization

(SGI).

B. How do visual quality and stability vary over time?

As we have already noted, spatial quality and stability are

roughly inversely correlated desiderates – a treemap that scores

well for one of these metrics tends to score less well for the

other one. Hence, comparing how these metrics change in time

is interesting. To answer this, we display, for one dataset and

all tested algorithms, two charts showing the median (black),

25-75% range (green), and 5-95% range (gray) of the AR
and S metrics (Fig. 5). We see that APP and SQR have the

best AR values, and SND the worst AR values. The other

algorithms, including GIT, score in-between. In contrast, GIT,

LM0, and SND score the best for stability, while all other

algorithms exhibit a non-negligible number of unstable time

moments. This suggests that GIT strikes a good compromise

between stability and aspect ratio.

While Fig. 5(right) shows how the per-timestep stability

changes over time, it does not show us which actual in-

stability patterns each method is prone to deliver. Knowing

this is useful, as we can better understand what to expect

in terms of (undesired) cell moves from a certain algorithm,

including GIT. To show this, we plot the trails connecting all

centers ki(t) of all rectangles ri(t) for consecutive t values

over a given tree sequence (Fig. 6). We set the opacity of

each line segment (ri(t), ri(t+ 1)) to the Euclidean distance

‖ki(t) − ki(t + 1)‖ normalized by the square root of the

number of time steps. Hence, dark long lines show big moves

(instability) while small moves (close to stability) are hardly

visible. The image confirms the high stability of GIT – in

contrast to most other methods, except SND, GIT creates

smaller cell moves (shorter dark lines), and most of these

are close to horizontal or vertical. Interestingly, we see that

other methods create quite different move patterns: SQR, PBS,

PBZ, and PBM have mostly (large) diagonal moves. SPI shows

a coil-like movement and in STR we see no vertical travel.

Overall, we see that GIT is more stable not only because it

yields smaller moves, but also because it constrains these to

fewer motion directions, thus causes less complex dynamics

(that the user must follow) in the resulting visualization. This

can be also checked by watching the actual videos showing

the algorithms in action [37].

C. How do all quality metrics vary over all datasets?

The experiments so far do not show the individual stability

metrics (including LD, which can be only computed for an

entire sequence), nor, for space reasons, the metrics over all

28 tested tree sequences. To get more insight in how GIT

performs in these respects, we show the per-dataset average

values (for AR and the three stability metrics) for all tested

methods, all datasets (Fig. 7). Cells are colored using a purple

(low values) to yellow (high values) colormap. We observe

the following: For AR, APP scores consistently better for

most datasets than all other tested methods. SQR reaches

the highest AR values, but only for a very few datasets.

SND, as expected, scores overall the poorest. The remaining

methods can be divided roughly into two groups, with NEW,

PBM, PBS, STR, and PBZ scoring overall higher than GIT,

HIL, LM0, LM4, MOO, and NAC. Concerning stability, SND

scores consistently the best for all three considered metrics,

and GIT, LM0, and LM4 come in the second place. This

strengthens our earlier observation that GIT strikes a good

balance between stability and spatial quality.

D. How to summarize GIT’s quality?

As noted, GIT seems to strike a good balance between

spatial quality and stability. We summarize both these metrics

for GIT and all other algorithms using a star plot (Fig. 8). The

figure shows a scatterplot with x mapping average stability

S and y aspect ratio AR, respectively. Categorically colored

points, one color per method, indicate the tested methods,

attributed by their S and AR values over all datasets, all time

steps. From each point (method), we draw lines connecting

it with the S and AR values obtained for all the 28 tested

datasets. A good algorithm has thus its ‘star’ center placed

top-right and relatively short star arms, indicating consistent

quality over the entire dataset collection. We see several

patterns, as follows.

At a high level, stability is roughly inversely correlated with

spatial quality – methods that score very well on one tend to

score worse on the other. We see three groups of methods:

APP, PBS, SQR, PBM, STR, PBZ and NEW score well on

spatial quality, but poorly (except NEW) on stability. SND

is the opposite outlier, scoring best on stability but clearly

poorest on spatial quality. A middle group of methods (GIT,

LM0, LM4, MOO, NAC, SPI, and HIL) trades well stability

vs spatial quality. Within these, GIT scores the best stability,

and LM0 the best spatial quality. As such, GIT and LM0

can be considered complementary methods with respect to

the stability vs spatial quality trade-off. However, LM0 has

a considerably more complex and slower implementation than

GIT – for details, we refer to [14]. Separately, we see that

GIT’s star size (convex hull containing the lines emerging from
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Fig. 5. Distribution of aspect ratio (AR, left) and average stability (S, right) values over time for the GIMP dataset.

Fig. 6. Instability (cell center motion) patterns, all methods, AudioKit, brackets, exo and fsharp datasets.
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Fig. 7. Average metric values for all techniques and all datasets.

the GIT point) is one of the smallest of all tested methods.

Hence, GIT offers one of the most consistent behaviors over

the entire dataset collection from all tested algorithms.

Fig. 8. Star plot summarizing both visual quality and stability, all algorithms,
all datasets.

VI. CONCLUSION

We have presented a new method for computing treemap

layouts for time-dependent hierarchies. As discussed earlier,

there are only a few methods in the literature that consider

quality aspects pertaining to both spatial quality and stability

of such treemaps. Our contribution, in brief, is proposing a new

method that takes both these quality aspects into account; and

evaluating our method comprehensively on a broad dataset

of 28 time-dependent hierarchies extracted from real-world

dynamic dataset (software repositories), against 14 well-known

treemapping methods, and using 4 quality metrics. Our results

show that our new method strikes a good balance between

spatial quality and stability as compared to state-of-the-art

methods. Additionally, our method is simple to implement,

fast, generic (with respect to the considered dynamic hierar-

chies), and has no hidden free parameters. More importantly,

our method is an addition of a very small set of so-called

stateful methods that consider the evolution of a dynamic tree

sequence when computing suitable treemaps thereof. Most

existing treemapping methods are not designed to consider

tree state, which arguably makes them suboptimal for handling

inherently stateful datasets like dynamic trees.

Several future work directions are possible, as follows.

Firstly, it is interesting to extend our evaluation to dynamic

hierarchies from other domains than software evolution. This

may show how much our proposal can effectively handle such

more diverse datasets. Secondly, we argue that more refined
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quality metrics are needed (in general, for our new method but

also any other treemapping methods) to capture the quality of

such methods, as perceived by end users and in sync with

their tasks. Finally, understanding the trade-off between the

(algorithmic) reasons behind spatial quality and stability, i.e.
what to do to optimally satisfy both these requirements, is an

open problem, to which we believe to have contributed to with

our current work.
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