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Small Multiples with Gaps
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Fig. 1: The effects of adding gaps (whitespace) to a small-multiples layout (blue squares) representing the 12 provinces of the
Netherlands, measured via our suite of metrics. Each metric is represented by a colored line in the chart, indicating at each axis
how well the layout below performs in the metric. The layout algorithm here optimizes for the displacement metric—which
aims to preserve the spatial (geographic) distribution—as whitespace is increased from left to right. Although some metrics show
improvement as gaps are added, others reflect the resulting smaller and more dispersed distribution, which may hinder comparison.

Abstract—Small multiples enable comparison by providing different views of a single data set in a dense and aligned manner. A
common frame defines each view, which varies based upon values of a conditioning variable. An increasingly popular use of this
technique is to project two-dimensional locations into a gridded space (e.g. grid maps), using the underlying distribution both as the
conditioning variable and to determine the grid layout. Using whitespace in this layout has the potential to carry information, especially
in a geographic context. Yet, the effects of doing so on the spatial properties of the original units are not understood. We explore
the design space offered by such small multiples with gaps. We do so by constructing a comprehensive suite of metrics that capture
properties of the layout used to arrange the small multiples for comparison (e.g. compactness and alignment) and the preservation
of the original data (e.g. distance, topology and shape). We study these metrics in geographic data sets with varying properties and
numbers of gaps. We use simulated annealing to optimize for each metric and measure the effects on the others. To explore these
effects systematically, we take a new approach, developing a system to visualize this design space using a set of interactive matrices.
We find that adding small amounts of whitespace to small multiple arrays improves some of the characteristics of 2D layouts, such as
shape, distance and direction. This comes at the cost of other metrics, such as the retention of topology. Effects vary according to the
input maps, with degree of variation in size of input regions found to be a factor. Optima exist for particular metrics in many cases, but
at different amounts of whitespace for different maps. We suggest multiple metrics be used in optimized layouts, finding topology to
be a primary factor in existing manually-crafted solutions, followed by a trade-off between shape and displacement. But the rich range
of possible optimized layouts leads us to challenge single-solution thinking; we suggest to consider alternative optimized layouts for
small multiples with gaps. Key to our work is the systematic, quantified and visual approach to exploring design spaces when facing
a trade-off between many competing criteria—an approach likely to be of value to the analysis of other design spaces.

Index Terms—Geographic visualization, small multiples, whitespace, design space, metrics, optimization

1 INTRODUCTION

One of the ideas most closely associated with Edward Tufte [33] is the
use of “small multiples to present data in a dense fashion that supports
comparison and enquiry”. Whilst such an ordered “series of graphics,
showing the same combination of variables, indexed by changes in an-
other variable” predates this description [6], the exposition is persua-
sive. Tufte introduced small multiples by example with a series of 23
maps originally produced by McRae et al. [23] to present the results
of an air pollution model [33]. Each individual map—or small mul-
tiple—shows modeled hydrocarbon emissions with the same spatial
frame and visual encoding, but for a different hour of the day. Orig-
inally presented sequentially as part of an animated video, Tufte jux-
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taposes the maps in a regular array of small multiples, whose spatial
arrangement conveys the temporal relationships between each, with
comparison facilitated by order and alignment [9, 19].

Since the conditioning variable in the example above is ordinal, a
1D arrangement is appropriate. Long ordinal sequences are frequently
split into rows for a more compact array that facilitates comparison
and allows for larger small-multiples graphics. Where the condition-
ing variable is two-dimensional, a 2D arrangement may be appropri-
ate. This is often the case for geography [16, 38, 40], but also for 2D
time such as hour & day [35], two independent parameters control-
ling a model [28] and other “abstract” projections such as scatter plots
(Fig. 3) or multidimensional scaling (MDS) [21].

Whitespace. We investigate how whitespace (gaps) can help con-
vey the distribution of space informing the small-multiples ordering.
For example, small-multiple maps by month, where some months are
missing, may benefit from gaps to reflect such omissions. Such gaps,
however, reduce the size of each small multiple, perhaps making them
less readable. In 2D, geographically arranged layouts may benefit
from gaps to better convey the spatial distribution of the conditioning
variable (Fig. 2). This may give a more accurate geographic depiction,
but limits the size of each small multiple. We emphasize that this can
apply to any 2D projection, as illustrated in Fig. 3 for a scatterplot-



Fig. 2: A BallotMap [38] in the original 8× 4 layout without gaps (left) and rearranged with our optimization method as a small multiples
with gaps (42.9% whitespace) to more clearly show the underlying spatial distribution (boroughs of London) in terms of shape (middle) and
displacement (right). The green curves in the right map show how small multiples (boroughs) moved with respect to the middle map. Note how
a gap is used to visually show the absence of data for City of London.

(a) Scatterplot (b) 66.0% gaps (c) 33.3% gaps

Fig. 3: (a) Scatterplot of petal width and height for 150 samples of 3
Iris species [34]. (b) Each sample is placed in a small-multiples ar-
ray, using a glyph whose width and height are sepal width and height
respectively. (c) Using fewer gaps reduces precision of the petal dis-
tribution, but increases the comparability of the sepal glyph.

based small-multiples graphic. Such simultaneous representation of
underlying distribution and other data in the small multiples allows
for a juxtaposed comparison; whitespace enables a trade-off in em-
phasis between the components. Moreover, adding gaps allows for
placing exterior graphic annotation with small multiples in the result-
ing whitespace.

In this paper we investigate the technique of small multiples with
gaps, formalizing the idea that has been implicitly informing exist-
ing designs but lacking in scientific attention. As the existing de-
signs with gaps use spatial conditioning and ordering, we focus on
such geographically-informed layouts, to study the effects of the num-
ber and position of gaps on the characteristics of the resulting small-
multiple arrays. Note that we do so from the perspective of a designer’s
intent, rather than a user’s interpretation thereof. We offer three related
contributions that inform and support researchers and practitioners us-
ing and studying small multiples with gaps:

1. a comprehensive suite of metrics to capture quality aspects of a
small-multiples layout, implemented in an optimization method
to compute layouts with good performance in these metrics;

2. an exploratory analysis of the impact of and interaction between
the metrics and the effects of adding whitespace in a range of
structurally varied cases;

3. a method for structurally conducting such analysis through visu-
alization of a design space defined by metrics.

In this paper the third contribution is instantiated in an interactive tool
for exploring trade-offs between the metrics used in computing and
assessing small multiples with gaps. We consider it to be an approach
that has the potential of being applied to comparable problems facing
a set of potentially conflicting design criteria.

Methodology. We introduce a set of metrics (Sect. 2) to quantify char-
acteristics of a small-multiples layout. They are used as optimization
criteria in an algorithm to compute such layouts (Sect. 3). Through a
series of experiments supported by interactive visualization software

(Sect. 4), we systematically “optimize” for one metric and introduce
varying degrees of whitespace to generate a multitude of layout alter-
natives, measuring the quality of the layouts according to all metrics.
We analyze the data for relations and conflicts between the metrics
(Sect. 5) and study them for existing layouts (Sect. 6).

2 MEASURING SMALL MULTIPLES

To assess the quality of the layout used in a small-multiples array, we
propose a rich set of metrics. The importance of a metric, of course,
depends on what is being shown in each multiple and the purpose of
the graphic. We categorize them according to the characteristic of the
layout that they aim to capture. We distinguish two types of metrics:
array characteristics that aim to capture how well we can see and
compare the multiples and projection characteristics that capture how
well the layout reflects the original continuous distribution1. Design of
small multiples with gaps involves trade-offs between these two objec-
tives: arrays that allow us to discern and compare graphics effectively
and those that more closely reflect the original positions and/or rela-
tionships between each multiple. Consider e.g. the balances sought
in Fig. 2 and Fig. 3 between map or distribution fidelity and frame
size. Our metrics can equally apply to non-rectangular small multiples
(e.g. hexagon-based), but here we focus on square multiples in regular
arrays based on geographic distributions. Our metrics are based on av-
erages, to avoid the number of small multiples dominating the effects
when comparing cases of varying sizes.

Notation. We denote by M the set of small multiples, effectively data
elements that are to be assigned to cells in the arrays to define a lay-
out. The set T ⊆ M2 describes neighbors—in maps, regions that share
a boundary—and thus the topology of M. We denote by A the ar-
ray into which we place the multiples in M. The set of rows is de-
noted by rows(A), each row is a subset of A; analogously, the set of
columns is given by columns(A). The layout L —an assignment be-
tween multiples and grid cells in the output array—is given by a bijec-
tion between M and a subset of A. We use L as a function mapping
multiples to their assigned grid cells and grid cells to their assigned
multiples (using NULL as a special value for empty grid cells). We use
FL (X) = {c | c ∈ X ∧L (c) 6= NULL} to denote the cells in some set
X ⊆ A with an assigned multiple. We use |X | to denote the size of a
set X : e.g. |M| and |A| denote the number of multiples and number of
cells in the array respectively. Moreover, we use the notation x,x′ ∈ X
to denote a pair of distinct elements in X , i.e., it is a shorthand for
{x,x′} ∈ {{a,b} | a 6= b∧ (a,b) ∈ X2}.

We use a metric d to measure distance. We may use a metric be-
tween their centroids or between their boundaries. We choose the for-
mer, since the latter does not allow us to distinguish compactness be-
tween a rook’s adjacency and a bishop’s adjacency2. As a metric, we

1The geographic map of provinces and boroughs in Fig. 1 and Fig. 2 respec-

tively; the 2D distribution of each sample’s petal width and length in Fig. 3.
2This refers to chess-piece adjacency: rook’s adjacency are the four hori-

zontal and vertical neighbors; bishop’s involves the four diagonal neighbors.



use the standard Euclidean distance. Hence, in all cases, we instantiate
d with the Euclidean distance between centroids.

2.1 Array characteristics

We identify three array characteristics, aimed to capture important fac-
tors related to effective reading and comparison within a layout.

Whitespace. As we add gaps to small multiples, we need to increase
the size of the array containing the layout. Accordingly, we can ei-
ther: (i) enlarge—increasing the space in which the array is depicted
to retain resolution, resulting in a bigger graphic—, or (ii) shrink—
decrease the resolution of the individual small-multiple graphic whilst
using the same space, resulting in smaller multiples (as is the case in
Fig. 1 where the individual cells reduce in size as whitespace is intro-
duced from left to right). Tufte identifies numbers per square inch and
entries in the data matrix per area of data graphic as means of quan-
tifying data density [33]. These metrics reduce in the enlarge case
and thus would be regarded as having resulted in a less dense data
graphic according to Tufte’s metric. They do not vary when adding
gaps to small multiples in the shrink case above and would result in an
equally data dense graphic, but may cause legibility problems. Both
cases move us away from the optimum in density and legibility. We
use proportion of gaps as a key metric for whitespace.

WHITESPACE = 1−
|M|

|A|

Note that Wongsuphasawat [37] considers the size of the array,
which indirectly measures our WHITESPACE metric, as only layouts
for the United States are considered.

Compactness. Smaller distances between small multiples is likely to
make it easier to compare their contents. Thus, compactness is often
a desirable characteristic. Evidently, our core interest is in relaxing
this condition and establishing the effects of adding gaps. To measure
compactness, we consider all pairwise distances between cells of the
layout that contain a multiple (and not a gap).

COMPACTNESS = average
m,m′∈M

{

d
(

L (m),L (m′)
)}

where d is the Euclidean distance between centroids. Hence, the best
layout for COMPACTNESS is an approximate circle.

Alignment. Estimation tasks are performed more successfully when
stimuli are aligned [9, 19] and as such aligning small multiples can
help in their comparison. The degree to which alignment occurs is
captured by our alignment metric. We distinguish between horizontal
(multiples in the same row) and vertical alignment (multiples in the
same column) separately, as the importance of each depends on the vi-
sualization used with a multiple. For example, a vertical-bar chart ben-
efits from horizontal alignment, whereas a horizontal-bar chart bene-
fits from vertical alignment. To quantify alignment, we measure the
number of pairs of multiples that lie within the same row or column.

HORIZONTAL ALIGNMENT = average
r∈rows(A)

{

1

2
|FL (r)| · (|FL (r)|−1)

}

VERTICAL ALIGNMENT = average
c∈columns(A)

{

1

2
|FL (c)| · (|FL (c)|−1)

}

2.2 Projection characteristics

One of Tufte’s key objectives in achieving graphical integrity is that
“the representation of numbers, as physically measured on the surface
of the graphic itself, should be directly proportional to the numeric
quantities represented” [33]. For small multiples, this implies a need
for relations in the spatial distribution to be maintained in the layout.
However, Tufte’s edict is unachievable as we force irregular continu-
ous space to a discrete array to ensure that small multiples are compa-
rable and do not overlap. This makes the problem at hand very similar
to that of map projections [31]: obtaining a good 2D representation
of a spherical world. This inspires us to consider measurements for

distance (equidistant projections), directions (azimuthal projections),
topology (interrupted projections) and shape (conformal projections).

Various efforts to reflect underlying spatial relations in regular grids
have been reported under a range of conditions, e.g. [12, 13, 21, 39].
Most relevant to our efforts here is the work of Eppstein et al. [13].
We identify the extent to which the following characteristics of the
underlying space are retained as indicative of the degree to which the
small-multiples layout reflects this space.

Displacement. We want to ensure little movement of multiples when
transforming the underlying space into the layout. A simple but ef-
fective method is to measure the displacement of each small multiple.

DISPLACEMENT = average
m∈M

{

d
(

m,L (m′)
)2
}

This metric (and variants of it) are used in the algorithmic work
of Eppstein et al. [13]. As defined here, it is generally not invariant
under any operation, but an optimal translation can be computed to
minimize this measure [10, 13]. We assume that the grid and the map
have been aligned already, permitting no translation or scaling to op-
timize this measure further. Although minor translations could have
a big effect on the measurement, the following three arguments sup-
port our choice: (i) we have no optimization algorithm that accurately
deals with the same restrictions for our other measures, potentially
making for unfair comparisons; (ii) it allows us to assess how well
this basic measure performs while avoiding the costly computational
overhead of optimizing the alignment; (iii) it is also not immediately
obvious how different a computed layout may be when translations are
included, when a reasonable alignment is already provided.

Distance. The DISPLACEMENT metric does not directly correspond
to Tufte’s principle mentioned above: we measure relative distances
only indirectly. To more accurately capture that relative distances are
preserved, we consider the change in distance between pairs.

DISTANCE (X) = average
(m,m′)∈X

{

(

d
(

m,m′
)

−d
(

L (m),L (m′)
))2
}

where X is the set of pairs to compare. For this we consider ALL = M2

(all pairs) and NBR = T (neighbors in the input map). As for COM-
PACTNESS, we have multiple choices for defining distance but focus
on the Euclidean distance between the centroids.

Direction. As with distances, directions in the layout should be equal
to directions in the underlying space. We consider an analogous metric
(using ALL or NBR for X) to establish differences in the directions
between pairs of regions in their geographic context and in the layout.

DIRECTION (X) = average
(m,m′)∈X

{

dev
(

m,m′,L (m),L (m′)
)}

where dev : M2 ×A2 → [0,π] measures absolute angular deviation of
the directions between the centroids. This metric is invariant under
translation and scaling. We measure precise angles, whereas Wong-
suphasawat [37] only counts those exceeding a threshold.

Similar to Eppstein et al. [13], we also define a measure that con-
siders the compass directions (orthogonal order violations: inversions
along x or y axis between input and output) between two regions.

COMPASS DIRECTION (X) = average
(m,m′)∈X

{

ortho
(

m,m′,L (m),L (m′)
)}

where ortho : M2 ×A2 → [0,2] measures the number of orthogonal-
order violations: it returns 0 if both north-south and east-west relations
are preserved; 1 if one of these is violated; and 2 if both are violated.
Note that Eppstein et al. [13] count only the pairs of regions with a
violation, whereas our metric counts the number of violations.

Vector–distance and direction. The invariances of DISTANCE can be
considered undesirable: flipping a layout upside down has no effect on
distances. To mitigate such effects, we combine the effects of distance
and direction into a single measure by considering vectors instead.

VECTOR (X) = average
(m,m′)∈X

{

d
(

m′−m,L (m′)−L (m)
)2
}



Topology. Ideally, the topology (adjacencies) of the underlying map
is perfectly reflected in the layout. To define measures of topology, we
should first consider what it means to be adjacent in the grid. To this
end, we use chess-adjacency again. We define sets R and B to contain
pairs of assigned cells with both rook’s and bishop’s case.

A primary aspect is measuring which elements should be adjacent
but are not adjacent in the layout: which neighbors have been split?

SPLIT NEIGHBORS = average
(m,m′)∈T

{

split(m,m′)
}

where split : M2 → [0,1] assigns as follows: split(m,m′) is 0 if
(L (m),L (m′)) ∈ R, 0.3 if this pair is in B and 1 otherwise. The
converse—false neighbors—also play a role in preserving topology:
are adjacent multiples in the layout adjacent in reality?

FALSE NEIGHBORS = average
(c,c′)∈R∪B

{

f alse(c,c′)
}

where f alse : A2 → [0,1] assigns a cost as follows: f alse(c,c′) is 0 if
(L (c),L (c′)) ∈ T , 0.3 if (c,c′) ∈ B and 1 otherwise. In both cases,
we weigh bishop’s adjacency at 30 percent, as they are visually less
salient than the rook’s case. Both of these violations are also measured
by Wongsuphasawat [37]. Finally, we also define a complete topology
measure, using a weighted average of the above two aspects, weighing
a split between neighbors more heavily than a false adjacency.

TOPOLOGY = 2 ·SPLIT NEIGHBORS+FALSE NEIGHBORS

Shape. As space-filling small multiples are the norm, small multiples
with gaps may be initially unfamiliar to many users. As such, it is
desirable for the overall shape of the layout to correspond to that of
the underlying map, to lower the acceptance threshold of the layout.
Crucial here is that we look at the overall appearance, a first impres-
sion, without necessarily considering which regions are assigned to
which cells. Whereas Wongsuphasawat [37] captures this as a subjec-
tive Boolean test, we make this quantifiable. Many geometric mea-
sures (e.g. [2, 3, 22]) require a matching between geometric objects;
though we have such implicitly, this defeats the purpose of quantify-
ing a first impression through the overall composition. The popular
Hausdorff distance [18] is a “bottleneck” measure, only quantifying
similarity through a locally worst situation. The symmetric differ-
ence (sum of areas covered by exactly one of the shapes) is unable
to accurately capture the similarity if the small-multiples layout covers
significantly more or significantly less area than the underlying map.

Intuitively, we want the layout to overlap the underlying map as
much as possible, while gaps overlap the map as little as possible; with
“too much whitespace”, we want the cells to spread out over the shape,
to capture roughly its spatial extent, whereas with “too little white-
space” we want cells that cannot overlap the underlying map to stay
close to the map (and not pick an arbitrary cell). We formalize this as
follows. First, we define a weight function w : A → [0,1], where w(c)
is the fraction of c overlapped by regions in M. We also define a spread
function s : A → R as the minimal sum of weighted distances for
distributing exactly one weight: s(c) = minω∈Ω{∑c′∈A φ(c′)d(c,c′)},
where Ω describes all ways of distributing one weight. More precisely,
ω : A → [0,1] is a function with ∑c′∈A φ(c′) = 1 and φ(c′)≤ w(c′) for
all c′ ∈A. As w and s do not depend on the layout, they can be precom-
puted. Moreover, s(c) can be computed greedily by taking the nearest
neighbors of c. Our measure of shape is now expressed as:

SHAPE =
1

|M|

(

∑
c∈A

min
c′∈FL (A)

{w(c) ·d(c,c′)}+ ∑
c∈FL (A)

s(c)

)

The rationale of the first sum is that for a largely overlapped cell,
we want to have a nearby assigned cell. The second term expresses
that every assigned cell should have a total weight of 1 in its vicinity.
The lower the value of SHAPE, the better the shape is preserved. Our
metric can be seen as a bidirectional take on the earth-mover’s distance
[10] with the symmetric difference, though we allow any amount of
“earth” to be piled up onto the target cell. It does not take topology
into account nor the number of underlying data items (regions). As
such, it is particularly suitable to measure a “first impression”.

3 CREATING SMALL MULTIPLES WITH GAPS

Existing examples. Various small multiples with gaps have been
created by hand and are being produced by design agencies, media
outlets, researchers and data enthusiasts to represent a wide range of
data sets. These include the London Squared Map produced by After
the Flood and the Future Cities Catapult and in which 33 boroughs
are represented with equally sized squares arranged spatially to help
“compare data across all of London” [1]; Radburn’s use of this layout
for spatial small multiples [27]; Die Zeit’s regional distribution maps
in which the 16 German states are represented in a similar manner [7];
and various efforts to map the US including, Guo et al.’s “Map2 Ma-
trix” with small-multiple maps of the US in a 2D ordinal arrangement
to reflect their geography [16] and Park’s small multiple grid maps
used in the New York Times to show the expansion of states autho-
rizing gay marriage [25], Powell et al. of the Guardian US Interactive
team [26] and Fong’s implementation in Tableau [15]. Semi-automatic
approaches also produce attractive outputs such as Krist Wongsupha-
sawat’s grid map of Thailand [36].

Algorithmic approaches. Spatially ordered treemaps [12,39] produce
ordinal 2D layouts. As with all treemap algorithms, they completely
partition rectangular space into tessellating rectangles that may have
different sizes and shapes. Specifying a fixed area for rectangles and
introducing well-placed “dummy nodes” [29, 30, 41, Fig. 4] can add
sufficient gaps, though getting the positions right involves some trial-
and-error.

Grid maps are ordinal 2D layouts that can be considered as can-
didates for small multiples with gaps. Eppstein et al. [13] turn this
into a point-matching problem, where a set of locations in continu-
ous space (e.g. geographic space) needs to be matched to a regular
array of cell locations. The approach involves a linear program that
achieves the matching by minimizing DISPLACEMENT between the
original and matched cell locations—one of the criteria that we aim
to minimize. Eppstein et al. [13] also minimize changes in orthog-
onal directions (similar to COMPASS DIRECTIONS (ALL)) and other
measures of displacement, concluding that minimizing total squared-
distance displacement produces the best results. However, they also
note that results are very dependent on the position and extent of the
candidate locations with respect to those of the original locations. Our
analysis partially extends these conclusions in the presence of gaps, on
systematically varied maps and with different metrics.

Optimizing the metrics. We are investigating a multitude of metrics
for optimizing small multiples with gaps. Foregoing in-depth algorith-
mic investigation for the time being, we use a heuristic optimization
approach that lets us optimize layouts according to any of our met-
rics and even combinations of these. To this end, we implemented a
simulated-annealing process [20]; below is a brief description of its
crucial aspects. Full details and the implementation itself are in the
online supplementary material.

The process starts with some layout and tries to make small adjust-
ments to improve its optimization function. To escape local optima,
the process sometimes accepts adjustments that lead to a worse solu-
tion, but the chances of doing so decreases in later iterations. Based
on observations by Eppstein et al. [13], the initial layout is computed
using their linear program optimizing DISPLACEMENT. If this is our
optimization criterion, no further steps occur.

As the annealing process provides no guarantee of optimality, we
perform an additional hillclimbing step afterwards, allowing any pair
to be swapped. We do this until either no swaps are made or t = 60
seconds have passed. This time bound was sufficient for the process
to end unconstrained in all considered cases.

When optimizing for metrics that are invariant under a transforma-
tion (e.g. translation for VECTOR (ALL)), we test whether any such
transformation can be applied to the layout to improve DISPLACE-
MENT. This allows us to make reasonable assessments of the per-
formance of other measures that are not invariant under the applied
operations. Array characteristics and SHAPE are invariant under ac-
tual region assignment. For these, we optimize DISPLACEMENT using
Eppstein et al.’s point matching approach [13].
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Fig. 4: A Parallel-Coordinates Plot of the map characteristics.

4 EXPERIMENTS

This process of generating small multiples with gaps allows us to pro-
duce myriad alternative layouts of varying size, optimizing according
to various metrics and computing our metrics for each solution. To do
so comprehensively and consistently, we structure our experiments to
involve spatial data with a range of characteristics and develop visual-
ization tools that enables us to explore effects in the design space.

Map generation. To ensure a range of map characteristics, we use
maps generated by aggregating output areas from random locations
across the UK [4]. We control for and measure the characteristics de-
tailed below (see Fig. 4 and online material for details). Each map was
fitted to a 500×500 box to ensure comparable distance measurements.
Map colors are assigned using ColorBrewer sequential schemes with
different hues [17] to reflect sequential and thematic differences.

We controlled for the number of multiples (regions in the map) to
be positioned in the small-multiples array. Small maps have 25 to 30
regions, Medium 48 to 51 and Large 66 to 75.

Map regions are assigned to equally sized cells in the array through
our processes. It is likely that the distortion is thus effected by size
variations in the input. We measure this via the coefficient of variance:
the standard deviation of region area divided by the mean area. A low
value means that the input regions have roughly the same size; a high
value implies large size differences. We controlled for this measure:
Uniform maps have a coefficient of variation between 0.28 and 0.37,
Regular from 1.37 to 1.4 and Irregular approximately 2.6.

The map’s aspect ratio may affect the results, particularly when us-
ing square target arrays. To compute it, we use the width w and height
h of the smallest axis-aligned bounding box containing the map. We
take the minimum of w/h and h/w to obtain comparable numbers for
vertically and horizontally elongated maps. Using the same bounding
box, we also measure the map whitespace: the amount of whitespace
inherent in the map. We define this as 100(1−A/B), where A is the
total area of all map regions and B is the bounding box area.

Running trials. For each of the above maps, we generate grids (tar-
get arrays) with various numbers of rows R and columns C, to vary
the whitespace in the eventual solution. In particular, we run two se-
quences: one in which the grid is required to be square (R = C) and
one with flexibility, in which the aspect ratio of the grid is at least 80
percent of the aspect ratio A of the map: 0.8A ≤ C/R ≤ 1 if A ≤ 1
and 1 ≤ C/R ≤ A/0.8 otherwise. For each sequence we compute for
0% up to and including 80% whitespace at 5% intervals, the smallest
grid that satisfies the constraint of the sequence and has at least the
specified whitespace; we use the actual percentage in our analysis.

For each combination of map and array, we run the simulated-
annealing algorithm to optimize each measure individually. The only
exception being that we never optimize for FALSE NEIGHBORS: early
experiments showed that optimizing only for this measure leads to in-
appropriate layouts that disperse the multiples in the layout.

The simulated annealing approach is not guaranteed to give us a
global optimum, only a local optimum after the hillclimbing step.
Therefore, we run 10 trials (including hillclimbing and postprocess-
ing) for each condition (map × grid × optimization criterion). In our
analysis, we consider only the best result of these trials.

Visualizing the design space. These trials produce a mass of data
that quantifies design-space characteristics for small multiples with
gaps. Appropriately, we use interactive visualization to reveal struc-
ture, trends and outliers as we explore these and provide software to
support this activity. Designed iteratively as needs were established
through our exploratory analysis, it provides interactive views that al-
low us to: compare characteristics of the input maps (Fig. 4); view and

configure representations of the layout with visual encodings of posi-
tional and topological error; and explore relationships between metrics
as whitespace varies, both between metrics and existing layouts. A
small-multiples matrix is the basis of three views designed to show the
effects of whitespace. This allows us to make comparisons between
the effects on the metrics for layouts optimized for each metric.

The Metrics Matrix is key here (see Fig. 5 with the details below),
with columns representing the optimized criteria and rows indicating
measured metrics. Each cell of the matrix is designed to show patterns
as whitespace varies: it displays a line chart of the measured metric
(row) as whitespace increases from left (0%) to right (100%), when
we optimize for the metric indicated by the column. These values have
been normalized according to the worst-case value occurring through
the entire row; data values are comparable within one row, though usu-
ally not across rows due to the different metrics. Comparison across
rows focuses trends rather than comparing actual values.

The Trade-Off Matrix uses a similar layout, but is designed to com-
pare differences in the values of the metrics (row) under a particular
optimization: it is designed to reveal how much we lose in one metric,
if we optimize for another, visually representing the trade-off. Each
cell contains a bidirectional bar chart; each bar shows the difference in
the measured metric (row) between two solutions for the same map-
array combination. One of the layouts, the “target”, is always opti-
mized for the metric of the column. The other layout, the “compara-
tor”, can be configured to be the layout optimized according to either:
(i) the metric of the row (in online material only); (ii) a specified fixed
metric (Fig. 6). The bar’s length indicates the magnitude of difference
between the target and comparator. Its direction shows which performs
better: a downwards bar indicates that the comparator performs better,
upwards means the target (column-metric optimized) performs better.
In setting (i) each small multiple involves two metrics and allows us to
assess how much better we could have done for the row-metric, had we
chosen to optimize for it instead of the column-metric. In other words,
how much did we lose by optimizing for something else? All bars
should be directed downward in this view, unless the annealing pro-
cess did not compute an optimal solution. In setting (ii) each graphic
involves three metrics, allowing us to assess a trade-off between the
column-metric and the metric specified for the comparator, to answer
questions such as “how much do we gain or lose in terms of FALSE

NEIGHBORS (row) if we choose to optimize for SHAPE (column) in-
stead of DISPLACEMENT (comparator)?” Bars are grouped by map,
ordered by increasing whitespace in the target array (left to right); this
is the same for both setting (i) and setting (ii).

The Examples Matrix operates nearly identically to the Trade-Off
Matrix with setting (ii). The only difference is that the comparator is
not set to another optimization, but to an existing layout instead. In
addition to the standard graphics, this view also allows for an addi-
tional column, showing the absolute values for each metric (row) as a
bar chart. The existing layout takes on the role of “target”, whereas
the metric of the column provides the “comparator”; a downward bar
means that our optimization outperforms the existing layout. Through
this representation, we may attempt to reverse-engineer the criteria
that played an important role in the existing layout’s construction.

The matrices support exploratory investigation with rich and rapid
interaction, through: reorderable rows and columns, details on demand
showing configurable sequences of layouts as whitespace varies, arrow
keys to aid within graphic selection of points, lines and bars, and pat-
tern matching to highlight sequences in which criteria change accord-
ing to particular characteristics as whitespace increases. The metrics
and maps used in a matrix can be selected or omitted instantly. Cells in
which the same metric is optimized and measured (the “diagonal” of
the matrix) are marked using a gray background. Our tools and data,
which readers are invited to explore, are available online3.

5 METRIC COMPARISON THROUGH OPTIMIZATION

We use our software to systematically compare the metrics, optimizing
for one and measuring the other in the result, for increasing amounts

3Online material: http://www.gicentre.net/smwg

http://www.gicentre.net/smwg


of whitespace under various conditions (map × array × optimization
metric). In particular, we focus our exploratory analysis on the follow-
ing four questions, considering the impact of whitespace:

Q1 How does capturing metrics (DISTANCE, VECTOR, DIRECTION

and COMPASS DIRECTION) between neighboring regions com-
pare to between all regions? Transitivity may imply that opti-
mizing (NBR) would automatically yield a good score on (ALL).

Q2 What is the relation between SHAPE and DISPLACEMENT? E.g.,
does keeping regions near their locations preserve shape?

Q3 How do the three topological measures compare? Is there
value from considering TOPOLOGY as a combination of FALSE

NEIGHBORS and SPLIT NEIGHBORS?
Q4 What relations exist between the best metrics for optimization, if

any, as uncovered with the previous questions?

Below, we present the main findings revealed using our interactive
matrices. We focus on the use of square arrays and briefly touch upon
non-square arrays at the end. We refer to the online supplementary
material for an extensive description and additional, extended figures.

Q1: All or neighbors. Here, we compare DISTANCE, VECTOR,
DIRECTION and COMPASS DIRECTION, each having two variants:
(ALL) in which all pairs of input regions are considered and (NBR)
in which relationships between neighboring regions are the sole fo-
cus. Fig. 5 shows that these metrics—when optimized, gray cells—
monotonically decrease (improve) as we increase whitespace; this is
to be expected as we simply allow for more flexibility. Two excep-
tions are DIRECTION (NBR) and COMPASS DIRECTION (NBR), al-
though optimal results should not get worse when enlarging the grid.
This suggests an inability of our simulated-annealing process to ade-
quately compute an optimal solution. This calls for more specialized
algorithms: can, for example, the algorithm by Eppstein et al. [13] for
compass directions be modified to approximate DIRECTION (NBR)?

The off-diagonal (white) cells allow us to compare the (ALL) and
(NBR) variants of the same metric. It is clear that optimizing for (ALL)
also implies good performance in (NBR). Moreover, we observe two
patterns: for DISTANCE and VECTOR, optimizing for (NBR) yields
reasonable performance for (ALL), at least for low amounts of white-
space; for DIRECTION and COMPASS DIRECTION this does not seem
to be the case as (NBR) yields poor performance for (ALL).

Performing similar comparisons between different characteristics
(see online material) reveals that DISTANCE performs poorly in the
other metrics, in spite of the postprocessing step to account for reflec-
tion and rotation. This may be caused by more structural flaws than
global transformations (e.g. rotation may not suffice to resolve these
issues), though we perform only rotations of 90 degrees: the perfect
alignment may not be possible. Similarly, the DIRECTION and COM-
PASS DIRECTION metrics perform poorly on the other two metrics, as
the former do not account for distances. We observe, however, that
there is reasonable performance if there is very little whitespace.

Not surprisingly, the VECTOR metric seems to perform best over-
all as it combines both distance and angle. Particularly, it performs
well for DISTANCE, but also has reasonable scores for the two di-
rectional metrics. Fig. 6 allows us to compare the performance of
VECTOR (ALL) more easily and confirms that, barring some loss on
preservation of (compass) directions, VECTOR (ALL) performs well
(only short upward bars on the diagonal) compared to the other met-
rics (long downward bars in any column).

It is worth reflecting on the trade-off for considering measurements
on neighbors (computational performance) and on all pairs of regions
(metric performance). The choice need not be a dichotomy: rather
than taking only direct neighbors, we can also include the neighbor’s
neighbors to compute relations, etc. This reduces the number of pairs
drastically and improves computational performance compared to all
pairs, and may improve the metric performance compared to consid-
ering only. Our visualization methodology would allow us to further
explore such effects for a range of cases with geographic variations.

Q2: Shape and displacement. We postprocessed solutions optimized
for SHAPE to assign regions to cells to minimize DISPLACEMENT—
but with cells constrained to those occupied in the computed layout.
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Fig. 5: Four Metrics Matrices to compare (ALL) and (NBR) variants
of four different metrics. A cell shows how the layouts of a map (line)
perform in a metric (row) when it is optimized for another (column),
as whitespace increases (left to right). Lower values mean better per-
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increasing whitespace from left to right per map (color).

The assigned cells are also drawn towards the location of the regions
in the map: we may expect DISPLACEMENT and SHAPE to perform
similarly. Fig. 7 shows that the differences between the two optimized
maps are very similar on regular maps, but the differences increase
with irregularity; Fig. 8 shows the different effect the two metrics have
on the layout for an irregular case. Interestingly, the difference seems
low in comparison, for the Large Irregular input. Inspecting this further
reveals that this input contains several clusters of small regions spread
out through a number of large regions, whereas the others have one
central cluster of smaller regions (see online material for the maps).
Hence, the coefficient of variation of region sizes is not sufficient to
capture map complexity for this task. Looking at the other measures,
we see that displacement tends to outperform shape, in particular for
measures involving direction (e.g. VECTOR and DIRECTION).

We conclude the following: if a map consists of regular regions or
if the small and large regions are relatively well dispersed, optimizing
for displacement is likely to provide a good shape, while also perform-
ing well on the other measures. On the other hand, if a map has a high
coefficient and the small regions are strongly clustered in one area,
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Fig. 8: Lineup of layouts for Medium Irregular, optimizing for DIS-
PLACEMENT (top row) and for SHAPE (bottom row).
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Fig. 10: Metrics Matrix displays common peaks (one highlighted)
with flexible array dimensions.

some degree of shape should be explicitly considered at higher levels
of whitespace. While this may negatively impact some other mea-
sures, it increases the first-glance resemblance and may thus lower the
threshold of initial acceptance of the layout. For further analysis, we
maintain comparisons with both SHAPE and DISPLACEMENT.

Q3: The effect of false neighbors. Early exploration quickly revealed
that FALSE NEIGHBORS as an optimization criterion, resulted in in-
appropriate layouts, essentially dispersing the regions to avoid any ad-
jacencies. Comparing the performance of the two other topological
metrics, we find that the differences are minor (see online material
for details). TOPOLOGY outperforms SPLIT NEIGHBORS in 17 out
of 75 cases, when measuring SPLIT NEIGHBORS; conversely, SPLIT

NEIGHBORS outperforms TOPOLOGY when measuring TOPOLOGY

in 49 cases. As with the (NBR) variants above, this suggests an in-
ability of the simulated-annealing process to properly optimize either
metric. This calls for better algorithms to optimize topological char-
acteristics, before making judgments between these.

Further comparison (online material) reveals that the topological
measures do not perform well in nontopological metrics. We con-
clude that the topological metrics are likely unsuitable as the sole opti-
mization criterion, at least for our simulated-annealing approach. Even
when provably optimizing for topological measures, the discrepancy
caused in other metrics is likely to be undesirable. If we combine these
metrics with others (e.g. DISPLACEMENT), we may obtain outputs
with desirable properties that ensure a good degree of topology.

Q4: Bringing it all together. With the results above, we now con-
tinue with comparisons between VECTOR (ALL), DISPLACEMENT

and SHAPE. Let us consider the line charts in Fig. 9. Comparing
DISPLACEMENT and VECTOR (ALL) shows that increasing white-
space improves the measured metric (row), irrespective of geometry
and these patterns are consistent between these two optimizations.

The SPLIT NEIGHBORS row shows a deterioration pattern for all
three optimized metrics: there is little to no improvement when adding
the first gaps, but at at some point the result deteriorates, drastically
decreasing performance in topology.

If we look at SHAPE, we see an interesting pattern: first, it starts
off poorly as with only little whitespace we cannot accurately capture
the shape of the input map. As whitespace increases, this improves as
gaps are placed on the boundary of the array. At some point, the shape
reaches its optimum (roughly at the percentage of the map whitespace;
see online material). After this point, cells become too small to cover
the original map, thus again losing on shape performance. This in-
flection point seems to roughly correspond to the percentage at which
SPLIT NEIGHBORS starts to worsen rapidly, the internal gaps in the
layout explaining this behavior of SPLIT NEIGHBORS.

Finally, we see that COMPACTNESS improves linearly with white-
space, until roughly this same percentage of whitespace, where some
differentiation occurs between the various input maps. Those with
more size variation (the red lines) then achieve better compactness
than those with less. This is likely caused by the clusters of small
regions that cause the assigned cells to remain closer together in the
computed layouts: this effect is geometry dependent. However, more
whitespace implies smaller multiples: we leave an investigation of
the relationship between smaller distances and larger arrays to future
work. Not surprisingly, alignment decreases as whitespace increases,
the retention of geography preventing alignment in the layout.

Eppstein et al. [13] found that optimizing for DISPLACEMENT

implies good performance in terms orthogonal directions and main-
taining correct adjacencies (though both are measured slightly differ-
ently). Here, we wish to dive deeper into this result, seeing whether
this finding generalizes. Fig. 11 illustrates the difference in perfor-
mance between DISPLACEMENT and optimization for the other met-
rics. This mostly verifies their conclusion, at least at low values
of whitespace. However, as discussed before, increasing whitespace
tends to reduce the effectiveness of optimizing DISPLACEMENT when
measuring SHAPE or SPLIT NEIGHBORS.

Flexible arrays. Turning briefly to the data collected for non-square
arrays, we observe mostly the same patterns. However, there is quite
a strong signal caused in nearly every metric as the aspect ratio of the
array is no longer fixed (Fig. 10). Even the straightforward, provably
optimized DISPLACEMENT shows such a pattern where adding some
whitespace may have a negative effect on this metric. In part, this can
be explained by the different alignment and scaling of the array with
the underlying map. However, adding a row and column to a square
array also causes a slightly different alignment of the centroids, but
no such effect was observed in the previous analysis. Moreover, the
peaks of this more erratic behavior seem to correspond across metrics.
This suggests that some aspect ratios fit more naturally to a given map;
choosing the right one thus is important. There is likely an association
between the map’s aspect ratio and the location of clusters with small
region sizes. Though our methodology would be useful in exploring
this, it calls for other aspects of the input to be controlled and is beyond
the scope of this analysis.

Summary of findings. Our findings suggest that using more white-
space than inherent in the map is not advisable, unless done intention-



ally to provide extra space for labels or auxiliary information. Such
whitespace is unlikely to be beneficial to the use of small multiples,
resulting in smaller graphics that are further apart and thus impacting
estimation and comparison tasks. We found that (NBR) variants do
not readily imply a good performance for (ALL); VECTOR (ALL) pro-
vides a good combination of maintaining directions and distances. At
little to no whitespace, we validated and extended Eppstein et al.’s re-
sult [13] that DISPLACEMENT yields good overall performance. How-
ever, with whitespace, we need more explicit consideration of shape
and topology. The main question concerns how to effectively compute
such layouts, without losing the benefits of having good DISPLACE-
MENT. These effects depend on the region-size differences in the input
and how the small and large regions are distributed across the map.

6 ANALYSIS OF EXISTING LAYOUTS

London. We consider two existing layouts of London’s boroughs, with
different amounts of whitespace: AfterTheFlood’s London Squared
design [1] shows all 33 boroughs, whilst the space-filling grid map
used by Wood et al. [38] as a BallotMap contains the 32 boroughs in
which local elections occur. Fig. 12 shows their performance, com-
pared to our optimization. The leftmost column shows that the Af-

terTheFlood solution outperforms the BallotMap in all projection char-
acteristics.4 However, the BallotMap performs better in HORIZONTAL

ALIGNMENT and uses less graphical space. If we consider the other
columns, we see how these existing layouts compare to our optimized
solutions. The right-hand bar in each cell compares with the BallotMap

and reveals that our DISPLACEMENT-optimized layout yields better
results for all projection characteristics; there is no difference in ar-
ray characteristics and SHAPE as there are no gaps. The left-side bar
compares with AfterTheFlood. We see that we can do better (blue bars)
on all metrics except SPLIT NEIGHBORS (red bar) if we optimize for
DISPLACEMENT. If we compare to optimizing SPLIT NEIGHBORS

instead, we find that we cannot perform better in that metric, but the
optimized result suffers quite strongly in terms of the other measures.
We conclude that AfterTheFlood has produced a strong layout in Lon-
don Squared, where SPLIT NEIGHBORS—the need to retain topology
between boroughs—has potentially been the predominant design cri-
terion. This is achieved while compromising only a little on the other
characteristics; our optimization can do slightly better in many met-
rics, but at the cost of losing topological features.

The United States. We study seven layouts of the US: FiveThir-
tyEight (538) [8]; Bloomberg [32]; Guardian [26]; NPR [11]; NYT [24];
WP [5]; and Map2 Matrix by Guo et al. [16]. Fig. 13 shows their per-
formance (left column) and compares it to our optimization approach.
Following the London analysis, we observe many of the same patterns
between our optimized solutions and the existing layouts, for both pro-
jections: SHAPE and DISPLACEMENT perform better on most metrics,
except SPLIT NEIGHBORS. It is worth noting that measuring and op-
timizing these two metrics are now less related, caused by the cluster
of small states in the northeast: as we know, this causes a discrepancy
between SHAPE and DISPLACEMENT. Whereas our optimization con-
siders only one of these metrics, the existing layouts seem to make a
trade-off between the two. Again, the most important outlier in this
pattern is topology. Although our optimized layouts are close in per-
formance to the Map2 Matrix layout by Guo et al. [16], their gaps are all
on the bottom row allowing them to be used for map-level annotation.

We used two base maps in this analysis: Albers projection with
Alaska and Hawaii moved to the bottom-left corner and a latitude-
longitude projection. The patterns described above are independent of
the projection. However, 538 and WP and the other layouts (except
for Map2 Matrix) change their relative performance, explained by these
layouts placing Alaska (arbitrarily) similarly to the base map in Albers
projection. Indeed, the definition of “the right direction” changes be-
tween the projections, since we measure directions in projected space.

In spite of defining metrics differently, our findings are in line with
those of Wongsuphasawat [37], who concludes that NYT performs best
among these layouts (excluding Map2 Matrix). However, Bloomberg

4We adjusted SHAPE to make this a fair comparison: see online material.
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and NPR have a (very) slight edge in terms of SHAPE (a subjective
pass/fail test in [37]) and DISPLACEMENT (not factored into [37]).

7 FUTURE WORK

We provide the first systematic attempt to study design criteria for spa-
tially ordered small multiples, exploring the role of whitespace. There
are many opportunities to extend and build upon our results.

Metrics. We use a range of metrics to capture small-multiple layout
characteristics, but the list is not exhaustive. For example, there are
other ways of quantifying shape, each with different properties. Our
experiments allowed us to explore the effect optimizing for different
metrics has on the other metrics. Understanding this relationship better
may lead to more rigorous algorithmic design to optimize single met-
rics (or combinations of these) in a more robust and efficient manner
than our experimental simulated-annealing approach.

Effects. The amount of whitespace affects characteristics of layouts
of small multiples in predictable and unpredictable ways. Some of
these are desirable and some undesirable but this is likely to depend
on the purpose of the graphic. This requires more investigation. We
did not study the effect of aligning the array to the map—see Eppstein
et al. [13] for algorithmic work—yet this has a strong effect on the
metrics and we have only touched upon the impact of map projections.
For example, does geographic data in a conical map projection (whose
lines of latitude are curved) translate to an orthogonal grid and is it
interpretable? We focused on square frames, but other shapes are pos-
sible e.g. hexagons, which improve our ability to show topology [11].

Non-geographic layouts. With Fig. 3 we argued that small multiples
with gaps generalize to non-geographic layouts. By turning scatter-
plots into small multiples with gaps, other properties of data points can
be shown in an aligned, non-occluding manner that facilitates compar-
ison, in trade-off with precision on the scatterplot axes. Some of our
metrics are transferable, but others such as SHAPE are not, calling for
new metrics. Where there are too many points, one might consider
aggregating or binning points based on proximity. This could be ap-
plied in a visual analytics context with various abstract projections of
high-dimensional data (e.g. [21]), but needs to be investigated further.

Interpretability. We focused on quantifying aspects of small multiples
with gaps from the perspective of a designer, but there are many open
questions on how the various characteristics affect human interpreta-
tion. How well can observers compare and detect trends in data with
different amounts of whitespace? Do gaps help or hinder to identify
large-scale spatial trends? This is likely to depend on the nature of
the graphic used within the small multiples, the data distribution and
task. The strength of small multiples lies in the structured way of pre-
senting data, but we cannot capture the full extent of the underlying
spatial arrangement. We need to understand how these distortions af-
fect interpretation. We could design and evaluate methods of revealing
such distortions, which may include annotation, various graphical en-
codings and animated transitions. These questions call for user studies
involving audiences with different expertise and expectations, possibly
both through lab studies and crowd-sourced evaluation systems.

Design through optimization. We took a metric-based approach to
exploring the design space of small multiples with gaps. We first con-
structed various measures to capture aspects of a small-multiples lay-
out. Subsequently, we optimized and measured these metrics in the
context of a wide variety of inputs, as we varied whitespace. We then
used visualization to explore the design space. We believe that this ap-
proach of metrics, measurements and visual analysis to exploring the
design space has been relatively successful here in supporting our at-
tempts at characterizing good small multiples with gaps. The approach
has potential for other design spaces where one faces many potentially
conflicting criteria and seems worthy of further investigation.

8 CONCLUSION

Small-multiple layouts usually reflect ordinal aspects of the condition-
ing variable; e.g. the temporal sequence of months. We focused on
2D ordinal small-multiple layouts that are conditioned by spatial dis-
tributions and ordered by location, but emphasize that this generalizes

to non-geographic spaces (e.g. Fig. 3). We build on existing work to
develop practice and to establish the effects of adding gaps to small-
multiple layouts to capture aspects of the spatial distribution of the
conditioning variable. We have shown that adding gaps to small mul-
tiples has beneficial effects, in retaining important characteristics of
the original maps such as “shape” which may help readers relate ab-
stract graphics to the more familiar locations that they represent, and in
supporting comparison tasks, for example “compactness” which cap-
tures the distance between small multiples to facilitate comparisons.
But this is at the cost of other characteristics: most importantly the
size of each small multiple, but also topological relationships that tend
to get more distorted as levels of whitespace increase. These effects
are strong and are not always readily predictable.

The design of small multiples with gaps is a complex task: there
is no perfect or optimal layout, similar to the myriad of map projec-
tions [31] each with its own benefits and drawbacks. Our metrics and
exploration of the design space provide reference points to steer good
(manual) design and inform future algorithms. The relations between
characteristics depend on the nature of the original geometry and the
grid onto which is it projected. Our exploration of the effects of region-
size variation revealed some complex solutions that perform badly, but
size variation alone does not explain this fully. The spatial structure of
size variance is a factor as much as size variance itself. We also found
that some existing layouts perform well in terms of projection met-
rics and characteristics important for the comparison of multiples. Af-
terTheFlood, for example, have generated an effective compact layout
of the London boroughs, skillfully capturing topology at only marginal
costs in terms of other projection characteristics. In line with existing
layouts, our analysis suggests that topology is a prominent metric, after
which a trade-off between shape and displacement is made—perhaps
providing some insights into how designers produced these layouts.
We have shown that optima exist (e.g. for shape), but at different lev-
els of whitespace for different maps. Even a few gaps—perhaps less
than used in existing layouts—may drastically improve some metrics.

We advocate the approach of quantifying a complex design space
through metrics and optimization, using interactive visualization soft-
ware to explore the effects as we have done throughout this paper. This
allowed us to systematically investigate this design space in the face
of many related criteria, establishing relations and conflicts between
these and gaining insight into a designer’s approach to resolving them.
It enabled us to generate evidence upon which to hypothesize and
make recommendations. Our exploration of the small-multiples-with-
gaps design space identified great variation in the effects of adding
gaps; each metric is affected differently and no single metric (that we
considered) consistently performs well on all fronts, irrespective of the
underlying map. This suggests that algorithms for computing layouts
may need to take multiple metrics into account, weighing them de-
pending on the spatial aspects of the input data. Moreover, the intent
of the graphic may factor into its design, something likely to be beyond
the scope of any single algorithm. This challenges the assumption of a
single-map solution: solutions may need to be developed or algorithms
be applied on a case-by-case basis, selecting appropriate characteris-
tics to inform their design. The legacy of static maps may still pervade
our thinking too strongly here [14]. Interactive graphics that trans-
form between layouts to emphasize different aspects may work well,
especially if visual encodings are used to convey inconsistencies in
the array. This will help us find candidate layouts and, through linking
with algorithms, may allow us to approach visual analytics for design.

We call for further work to establish the effectiveness of such dy-
namic solutions, layouts with different emphases and efforts to repre-
sent their deficiencies in small multiples, as we enhance one of Tufte’s
prominent devices to support those seeking spatial outliers, dependen-
cies and inconsistencies in faceted multivariate information.
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