
 Eindhoven University of Technology

MASTER

Geographic grid embeddings

Staals, F.

Award date:
2011

Link to publication

Disclaimer
This document contains a student thesis (bachelor's or master's), as authored by a student at Eindhoven University of Technology. Student
theses are made available in the TU/e repository upon obtaining the required degree. The grade received is not published on the document
as presented in the repository. The required complexity or quality of research of student theses may vary by program, and the required
minimum study period may vary in duration.

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain

https://research.tue.nl/en/studentTheses/83f90474-52a6-43d7-a5ce-dd2369fb1f96

technische universiteit eindhoven

Department of Mathematics and Computer Science

Master’s Thesis

Geographic Grid Embeddings

by

Frank Staals

Supervisor

dr. Bettina Speckmann

Eindhoven, July 20, 2011

Abstract

We study a novel approach for visualising data with a geographic com-
ponent which is inspired by, but more abstract than, spatially ordered
tree maps. Given a map with regions, and a number of data attributes
for each region, we wish to display the data such that we can easily com-
pare the data values for multiple regions. At the same time we would
like to get an overview of the geographical distribution of the data. Our
geographic grid embedding represents the map by a regular grid in which
spatial relations between the regions are preserved. We model the em-
bedding of the regions into grid cells as a point set matching problem,
and we give three criteria for this matching: minimising distance, pre-
serving adjacencies, and preserving directional relations. We present
methods to compute a matching that minimises the total distance un-
der translation when using the Manhattan- or squared Euclidean dis-
tance. For the Manhattan distance we can compute a minimal distance
matching under scaling as well. Furthermore, we show that the problem
of preserving adjacencies is NP-hard and give a 4-approximation algo-
rithm. Finally, we present an experimental validation of our geographic
grid embeddings.

iii

Contents

Abstract iii

1 Introduction 1

2 Related Work 5
2.1 Visualising geo-referenced data 5
2.2 Solving point set matching problems 7

3 Computing a Geographic Grid Embedding 11
3.1 Minimising the distance 11
3.2 Preserving adjacencies . 23
3.3 Preserving directional relations 30
3.4 Choosing a grid . 32

4 Evaluation 33

5 Concluding Remarks 41

v

1
Introduction

At every election you see them: long lists with the results per state,
county, or municipality. If you are lucky there is also a map in which
colours indicate the largest party in each region. However, there is often
no way to easily find and compare all results for multiple regions and
get a geographical overview at the same time.

We see data with an important geographic component in almost all
areas of our society. Whether it are election results, the number of cars
sold in each county, or demographic profiles per state, we encounter geo-
referenced data everywhere. As a result there is a need for proper tools
and techniques to visualise geo-referenced data.

1 electoral vote

Obama
McCain

other

U.S. Presidential Elections 2008

AL

AK

AZ

ARCA

CO

CT

DE

FLGA

HI

ID

IL IN

IA

KS KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY
Figure 1.1: Our
geographic grid em-
bedding allows for
a variety of visuali-
sation techniques to
display data for the
regions – for example
a bar chart-like visu-
alisation to display
election results.

Our goal is to design a new visualisation technique that can be used to
display detailed information per region whilst keeping an global overview
of the data. In particular we are aiming for a visualisation for geo-
referenced data with the following properties:

1

2 Chapter 1. Introduction

• the visualisation should be easy to read,
• it should be easy to find the data for a given region,
• the data for different regions should be easy to compare, and
• the visualisation should be usable for both scalar values and multi-

variate data.

To this end we propose a visualisation technique based on the embed-
ding of a map into a regular grid. Our method matches each region in
the map to a grid cell based on the region’s geographic location. The
matching is designed to preserve key spatial properties of the regions,
including adjacencies and directional relations. We then display the
data for a region in its corresponding grid cell using a visualisation tech-
nique of our choice. We call such an embedding of a map into a grid a
geographic grid embedding.

By embedding the map into a regular grid we get a simple and clean
visualisation. Since the embedding retains important spatial properties
it is relatively easy to locate the grid cell corresponding to a given region.
Furthermore, our approach does not impose restrictions on how the grid
cells themselves are used. This allows us to display the data in various
ways and ensures that the data for different regions are easy to compare.
Standard options to display the data include pie- or bar charts, but we
can also use more complex visualisations such as shown in Figure 1.1.
This figure shows the results of the U.S. presidential elections in 20081.
Each grid cell contains two areas. The upper area contains a number of
small rectangles, one for each electoral vote, coloured according to the
number of votes each candidate received. The lower area displays the
name of the state and indicates the overall winner.

Figure 1.2: The set
of blue points A rep-
resenting the regions
and the set of red
points B representing
the grid cells.

Matching regions to grid cells. For our visualisation to be effective
we need a matching between regions and grid cells that preserves spatial

1Data taken from http://www-personal.umich.edu/~mejn/election/2008/

http://www-personal.umich.edu/~mejn/election/2008/

3

properties. We model this as a one-to-one point set matching in the
plane. Each region is represented by a blue point (dark grey in greyscale)
and each grid cell is represented by a red point (white in greyscale). For
both the regions and the grid cells we use their centroid as representative
point. Given a map and a grid we obtain a set of blue points A and a
set of red points B as shown in Figure 1.2.

The goal now is to find the “best” one to one matching of the set of
blue points A to the set of red points B. We measure the quality of a
matching φ : A→ B based on the following three criteria:

Distance. The matching should minimise the total distance between
matched points. a1 a2

φ(a1) φ(a2)

Adjacencies. The matching should preserve the adjacencies of the re-
gions that are represented by the points. Given the map we con-
sider the dual graph G = (A,E) in which (a1, a2) ∈ E if and only
if the region represented by a1 is adjacent to the region repre-
sented by a2. Similarly we can consider the dual graph of the grid a

b

H = (B,Z). If a point a ∈ A is mapped to point b ∈ B then the
neighbours of a should be mapped to neighbours of b.

Directional Relation. The matching should preserve the directional
relation between pairs of points. For example, if a point a1 is
mapped to b1, a2 to b2, and a2 is to the north-east of a1, then b2
should also be to the north-east of b1.

NE

a1

a2

b2 = φ(a2)

b1 = φ(a1)

NE

The distance criterion measures the amount of work required to trans-
form A into B. By minimising this distance we maximise the similarity
between the two point sets. An alternative would be to minimise the
maximum distance between a pair of matched points. However, the
maximum distance is very sensitive to outliers. Consider, for example,
the case where both the blue and the red point set contain a copy of
the same regular grid and have one outlier each. The minimal (total)
distance matching is the desired matching in which we correctly match
the points from the grid, and match the outlier of A to the outlier of
B. However, this matching is not optimal with respect to the maximal
distance between a pair of matched points.

The remaining two criteria allow the user to navigate in the grid in
the same way as in the map. This further improves the ease with which
they can find a region.

We note that it may not be possible to completely satisfy a given
criterion. This holds especially for the second and third criterion. For
example when there are not enough grid points in a certain direction or
when a region has more than four neighbours. Additionally, it may be
the case the criteria themselves are contradictory; the distance criterion

4 Chapter 1. Introduction

may require a point a to be matched to b1, whereas the adjacencies
criterion requires a to be matched to b2.

We keep the red points stationary and allow two kinds of transfor-
mations on the blue point set: translation and (non-uniform) scaling.
These transformations can greatly improve the quality of the matching.
Note that we do not allow rotating the blue point set A. Rotating A
by 90◦ simply corresponds to choosing a different grid. Other rotations
of the input map may make it more difficult to find a given region. As
a result it is also harder to locate a region in the more abstract grid
representation.

Finally, there is one remaining issue: how to obtain a suitable grid?
The number of regions and the outline of the map are important fac-
tors in determining which grid, or which set of grid cells, to use. We
investigate this topic as well.

Results and Organisation. Our goal is to visualise geo-referenced data
such that we can easily compare data for multiple regions and get a
geographical overview as well. In Chapter 2 we consider several existing
visualisation techniques and discuss their pros and cons with these goals
in mind. Since we model our own visualisation technique as a point set
matching problem we also give an overview of existing work in this field.
We present our geographic grid embeddings technique in Chapter 3. The
point set matching used in our technique has three criteria: distance,
adjacencies, and directional relation. We treat computing an optimal
matching with respect to each criterion separately. In the last part of
Chapter 3 we discuss how to choose a suitable grid. We evaluate our
technique on real world maps in Chapter 4 and close by discussing future
work in Chapter 5.

2
Related Work

In this chapter we discuss existing literature related to geographic grid
embeddings. In Section 2.1 we describe alternative methods for visu-
alising geo-referenced data. The second part of this chapter focuses on
solving point set matching problems. There is a vast amount of literature
on this topic. We describe the most relevant approaches in Section 2.2.

Figure 2.1: The map
of the London bor-
oughs that is used
throughout this chap-
ter.

2.1 Visualising geo-referenced data

Perhaps the most well known visualisation for geo-referenced data is a
choropleth map. In a choropleth map the regions are coloured propor-
tional to the corresponding data. Choropleth maps are mainly suited
to display scalar values, like the gross national product of a country
or state sales tax rates [27]. We can display additional information by
adding another visual variable. For example by using lightness (colour)
for the first layer of information and spacing (texture) for the second.
This may however impede the readability of the resulting map. The

5

6 Chapter 2. Related Work

main disadvantage of choropleth maps is that it is difficult to compare
data from different regions. The size of a region greatly influences how
we interpret the data. Large regions are perceived as being important,
whereas small regions are perceived unimportant, independent of the
actual data. As a result choropleth maps are best used for scalar data
on maps with roughly equal sized regions [27].

Alternatively, one can use an (area) cartogram to display scalar data
[15]. In a cartogram the region’s size is proportional to the data being
displayed. This often means the shape of the regions becomes distorted.
To keep the figure readable the region’s shape is usually simplified (for
example by representing each region by a rectangle, which yields a rect-
angular cartogram [25]). Because of this distortion it can become dif-
ficult to recognise and find a given region. Additionally, the different
aspect ratios make it hard to compare the data for multiple regions.

A third option to display scalar data is to use a proportional symbol
map [27]. In a proportional symbol map we place symbols, often geo-
metric symbols such as a circles, on top of the regions in the map. The
size of a symbol is depends on the data corresponding to the region.
Van Kreveld, Schramm, and Wolff [30] study placing diagrams, for ex-
ample pie- or bar charts, on maps. This makes their method suitable
to display multi-variate data, and allows for easy comparison between
data of different regions. However, both methods suffer from the same
problem: adding the symbols or diagrams may result in a cluttered vi-
sualisation. This is especially true when the symbols or diagrams start
to overlap, which easily happens when the symbols and diagrams are
relatively large compared to their corresponding regions.

Our work is most closely related to spatially ordered tree maps [34].
A tree map is a recursive partition of a rectangle into rectangles [26].
Tree maps are designed to display hierarchical data, for example for
visualising hard-disk usage [31]. Wood and Dykes [34] propose spatially
ordered tree maps in which the rectangles are placed as closely to the
geographic location of the region as possible while minimising the aspect
ratio of the rectangles. This results in a visualisation in which each
region is represented by an almost square rectangle. These rectangles
can then be used to display the data corresponding to the region, similar
to our grid cells. This makes the spatially ordered tree maps suited to
display both scalar and multi-variate data.

Because not all rectangles in a tree map have to have the same size,
the resulting visualisation does not have to be a regular grid. Wood
and Dykes use (a variation of) their spatially ordered tree maps in the
London bike grid [33] that does yield a regular structure. This system
visualises the availability of bicycles in each docking station of Barclays
Cycle Hire system. One of the more advanced features in this visuali-

2.2. Solving point set matching problems 7

sation is that it preserves the relative position of the docking stations
compared to the river Thames. This approach essentially yields a ge-
ographic grid embedding, and inspired our study. The main difference
between their method and our own approach is that we aim for a map-
ping of regions to the grid which has a provable quality with respect to
our criteria.

2.2 Solving point set matching problems

We model our geographic grid embeddings as a (one-to-one) point set
matching problem. In this section we discuss existing methods for solv-
ing such point set matching problems. Point set matching problems have
been extensively studied in the literature. A survey of existing methods
is presented by Alt and Guibas [1], or more recently by Veltkamp and
Hagedoorn [32].

Point matching problems usually occur in the context of image com-
parisons. The similarity of two images is determined by computing the
distance between a set of points from one image and a set of points from
another image. This often involves comparing sets of points with differ-
ent sizes. In these cases it is common to express the distance using the
Hausdorff distance with the Lp(a, b) = (|(ax − bx)p| + |(ay − by)p|)1/p,
1 ≤ p ≤ ∞, distance, or the L2

2 squared Euclidean distance as the un-
derlying metric [21].

Huttenlocher, Kedem, and Sharir [20] provide an algorithm to com-
pute the Hausdorff distance using the upper envelope of Voronoi surfaces.
Given two sets A and B of points in the plane they can compute the
minimum Hausdorff distance between A and B, and the translation of
A that achieves this minimum, in O(nm(n + m) log nm) time, where n
is the size of A and m is the size of B.

Hagedoorn and Veltkamp [17] give an approximation algorithm for
minimising the Hausdorff distance, and a new distance they call absolute
distance, under affine transformations. Their approach subdivides the
transformation space to search for a set of suitable transformations.
They show that if they have a set of transformations that does not yield
a matching that approximates the minimal Hausdorff distance within ε
they can find a “smaller” set that does.

None of these approaches is guaranteed to yield one-to-one matchings.
Atkinson [4] presents an algorithm for computing a one-to-one matching
in case the input point sets are assumed to be copies the same point set,
possibly with affine transformations applied on them. We can obtain
this so called exact matching in O(n log n) time by computing the polar
coordinates of all points in a set A with the centroid of A as origin.
This yields an ordering of the points. The same procedure is used for

8 Chapter 2. Related Work

input set B, after which the matching can be computed by checking if
the ordering of B, OB, is a cyclic shift of the ordering of A, OA. This
can be done by checking if OB is a substring of OA ++ OA using a fast
string matching algorithm.

Hong and Tan [19] present a similar procedure. They also transform
the coordinates of the points in A to polar coordinates around the cen-
troid. They call this the canonical form of A. After computing the
canonical forms of both A and B they find the rotation that aligns them
to compute a matching. The transformation step takes linear time, and
they compute the rotation in O(n2) average time. The algorithm by
Hong and Tan can also be used when the points sets are not exact
copies of each other. They allow a point p to be matched to q if q lies
in the error area of p. The error area E(p) of a point p is a convex
polygon for which the distance between p and the closest point on the
boundary of E(p) and the distance between p and the furthest point on
the boundary differs by at most a constant factor. It is assumed that
p is contained in E(p), and that for any point q we can check if E(p)
contains q in constant time. Furthermore, all error regions have to be
pairwise disjoint. Sprinzak and Werman [28] extend Hong and Tan’s
method for point sets in arbitrary dimensions.

Alt et al. [3] present algorithms for several types of point set matching
problems. Their algorithms can handle both the L2 Euclidian distance
metric, and the L∞ maximum distance metric. In case all points have
disjoint error areas with radius ε (a disk with radius ε in the Euclidean
case and a square with side lengths 2ε in case of the maximum distance
metric) they present an O(n log n) algorithm to compute the minimal
distance matching, and the translation that yields this matching.

In case the error regions are not given, but instead we should decide
whether or not there is a translation with corresponding matching such
that the distance between a pair of matched points is at most ε, Alt
et al. present an O(n6) algorithm. When we actually want to find the
smallest such ε the running time increases to O(n6 log n). Finally, Alt
et al. [3] show that if we want to allow rotating and mirroring our point
sets as well we can solve the decision version of the problem in O(n8)
time.

Efrat and Itai [13] investigate bottleneck matching. They show how to
find a one-to-one matching and translation that minimises the maximum
distance between the pairs of points (the distance using the L∞ metric)
in O(n5 log2 n) time. This improves the results of Alt et al. [3] by almost
a factor n. For the decision version of the problem their algorithm runs
in O(n5 log n) time.

There is also a point set matching approach by Cohen and Guibas [10]
which uses the Earth Mover’s Distance. In this setting each point has a

2.2. Solving point set matching problems 9

certain weight. The amount of work to match a point a ∈ A with a point
b ∈ B is determined by the distance between a and b and the weight of a
that is matched to b. The earth mover’s distance expresses the minimal
work required to match A and B. This approach allows for complete
matchings as well as partial matches in which we only match a part of
the weight. Cohen and Guibas [10] present an algorithm that can find a
transformation of point set A and a matching that locally minimises the
earth mover’s distance. In the case of equal weight point sets and L2

2 as
the underlying distance metric they show how to obtain the matching
with the global minimum distance. This is one of the methods that we
use in the computation of our geographic grid embeddings.

Recently Alt, Scharf, and Schymura [2] proposed a probabilistic method
for matching planar regions. Their algorithm picks a random set of
points A in one region and a random set of points B in the other. It
then computes a transformation (consisting of a translation and a rota-
tion) such that the area of overlap between the planar regions is close to
maximal. They argue that it may be possible to extend their approach
to compute a matching under affine transformations.

3
Computing a Geographic Grid Embedding

In this chapter we introduce geographic grid embeddings. A geographic
grid embedding matches regions to cells in a regular grid. We have three
criteria for determining the quality of such a matching: distance, adja-
cencies, and directional relation. We investigate optimising the match-
ing for the distance criterion in Section 3.1. In Section 3.2 we focus on
the adjacencies criterion, and in Section 3.3 we discuss the directional
relation criterion. Finally, in Section 3.4 we consider the problem of
choosing a suitable grid.

3.1 Minimising the distance

We start by formalising the distance criteria. We first introduce some
notation. For a point a = (ax, ay) and a translation t = (tx, ty) we write
a + t = (ax + tx, ay + ty). Similarly, for a scaling λ = (λx, λy) we write
λa = (λx ·ax, λy ·ay). We denote a transformation (either translation or
scaling) for which both components have the same value c with c = (c, c).

Let φ : A→ B be a one-to-one matching for the point sets A and B,
let t be a translation and let λ be a scaling. Then we define the total
distance of matching φ with translation t and scaling λ as

D(φ, t, λ) =
∑
a∈A

d(λa+ t, φ(a))

where, d is the underlying distance metric. Additionally, we define some
shorthands: DT (φ, t) = D(φ, t, 1), DΛ(φ, λ) = D(φ, 0, λ) and DI(φ) =
D(φ, 0, 1).

We now want to find a matching together with a translation and/or
scaling that minimises the total distance. More formally, let Φ be the
universe of one-to-one matchings between A and B, let T be the universe

11

12 Chapter 3. Computing a Geographic Grid Embedding

of translations, and let Λ be the universe of scalings, then we try to find
a matching φ∗ ∈ Φ, a translation t∗ ∈ T , and a scaling λ∗ ∈ Λ such that

D(φ∗, t∗, λ∗) = min
φ∈Φ,t∈T ,λ∈Λ

D(φ, t, λ).

We start by solving an easier variant of the problem in which we do
not allow translation or scaling. This means we want a matching φ∗

that minimises DI . We discuss how to compute such a matching in
Section 3.1.1. We use this as a building block for the more difficult
versions of the problem. In Section 3.1.2 we investigate these more
difficult versions using the L1 Manhattan distance as the underlying
metric, and in Section 3.1.3 we do the same for the case of the L2

2

squared Euclidean distance.

3.1.1 Computing point set matchings

To compute a minimal distance matching for two sets of points A and
B we use the same approach as Cohen [9]. This means we consider the
problem as an instance of the transportation problem, which we model
and solve using linear programming.

We say each point a ∈ A has a supply of one, and each point b ∈ B
has a demand of one. Each point a ∈ A can supply exactly one point
b ∈ B for a cost of d(a, b). We model this by variable fab denoting the
supply, or flow, from a to b. The objective is to find an assignment of
the flow that minimises the weighted total cost. This corresponds to
minimising DI . We can express this in the following linear program:

minimize
∑
a∈A

∑
b∈B

fabd(a, b)

subject to:

∑
b∈B

fab = 1 ∀a ∈ A∑
a∈A

fab = 1 ∀b ∈ B

0 ≤ fab ≤ 1 ∀a ∈ A, b ∈ B

Since all supplies and demands have integer values it can be shown
that all variables in the optimal flow fab also have integer values [18].
Therefore fab represents an optimal one to one matching φ ∈ Φ that
matches a to b if and only if fab = 1.

To solve this linear program we can use a regular LP solver. How-
ever, there are also specialised methods, like the transportation simplex

3.1. Minimising the distance 13

method, that use the structure in the transportation problem [18] to re-
duce computation times. Our linear program is even more specific which
means we can use algorithms for the assignment problem like the Hun-
garian method [23], the auction algorithm [6], or Edmond’s alternating
path algorithm [12]. This leads to the following theorem:

Theorem 1 Given two sets A and B of n points in the plane, a one-to-
one matching φ that minimises DI can be computed in O(n3) time.

The problem of finding a minimal distance matching under translation
and/or scaling is significantly more difficult than finding a matching that
minimises DI . However, we can use this method as a building block for
solving these more difficult versions of the problem. This follows from
the observation that finding a minimal distance matching between A
and B for a given translation t and scaling λ is identical to finding a
minimal distance matching between A′ = {λa+t | a ∈ A} and B. In case
the translation and scaling are not given we can now focus on finding a
suitable set of translations T ⊂ T and a suitable set of scalings S ⊂ Λ
for which we can use this procedure to find a matching that minimises
DT or DΛ.

3.1.2 Using the L1 Manhattan distance

In this section we focus on finding a minimal distance matching when
using the L1 Manhattan distance as the underlying metric. In other
words: we use d(a, b) = L1(a, b) = |ax − bx| + |ay − by| in our total
distance D. We note that in general there is no unique matching that
minimises D, or even DI . If we consider four points a1, a2, b1, b2 on a

b1 b2a1 a2

line, then there are two possible matchings: φ which matches ai to bi
(i ∈ {1, 2}) and ψ which matches a1 to b2 and a2 to b1. Both matchings
have the same total distance, which means both are optimal with respect
to DI .

A similar observation holds for finding a suitable translation and/or
scaling. In general there is no unique translation (scaling) with corre-
sponding matching that minimises DT (DΛ). It is very well possible
that there are multiple translations t1, .., tk with corresponding mini-
mal distance matchings φ1, .., φk that all have the same total distance
DT (φ1, t1) = ... = DT (φk, tk) = c. In fact, there can be infinitely many
such translations. The same is true for scalings.

. . .

Preliminaries. Before we show how to compute a minimal distance
matching under translation we prove the following useful lemmas:

14 Chapter 3. Computing a Geographic Grid Embedding

Lemma 2 Let f be a continuous piecewise linear function in which the
leftmost segment is decreasing and the rightmost segment is increasing,
and let m = f(xm) = minx f(x) be the minimum value f can attain.
Then there is a breakpoint v for which f(v) = m.

Proof. Let s be the range of a segment of f on which m occurs, and
let g be the function that defines this segment. So for all x ∈ s we have
f(x) = g(x) = ax + b for some real values a and b. We now prove the
lemma using a case distinction on a:

The case a = 0 is trivial; let v be one of the endpoints of s, and hence
one of the breakpoints of f . Since a = 0 we have f(v) = g(v) = g(xm) =
f(xm) = m. We prove the case a < 0 by contradiction. Assume xm is
not the rightmost point of s. Let x′ ∈ s be a point to the right of xm, i.e.
x′ > xm. This gives the contradiction f(x′) = g(x′) < g(xm) = f(xm) =
m. Hence xm is the rightmost point of s, and therefore a breakpoint of
f . The remaining case, a > 0, is symmetrical to a < 0. This completes
the proof. �

Lemma 3 Let f be a convex function. If f is minimal at x1 and x2,
x1 ≤ x2, then f is minimal at any x for which x1 ≤ x ≤ x2.

Proof. In case x1 = x2 the lemma trivially holds so we focus on the
case x1 < x2. We prove this by contradiction: assume that there is an
x, x1 < x < x2, for which f(x) > f(x1). Then there is an α, 0 < α < 1,
such that x = (1− α)x1 + αx2.

Since f is convex we have f(x) ≤ (1−α)f(x1) +αf(x2). Because f is
minimal for both x1 and x2 it follows that f(x2) = f(x1). This gives us
f(x) ≤ (1− α)f(x1) + αf(x1) = f(x1) which contradicts f(x) > f(x1).
The lemma follows. �

Minimal distance matchings under translation. To find a minimal
distance matching under translation, i.e. a matching that minimises
DT , we identify a (finite) set of translations T ⊂ T such that there is a
translation t ∈ T that allows for a minimal distance matching. We then
use the algorithm from Section 3.1.1 for each translation in T to find an
optimal matching.

We say a translation t is a horizontal translation if and only if t = (c, 0)
for some c ∈ R. Two point sets A and B are x-aligned if (and only if)
there is a point a ∈ A and a point b ∈ B with ax = bx. We define vertical
translation and y-aligned symmetrically.

The following observation is going to help us identify a finite set of
translations T . For any matching between two point sets A and B
that are not x-aligned we can decrease the distance of the matching
by x-aligning A and B. This is depicted in Figure 3.1. To prove this
we decompose the total distance DT (φ, t) into two parts: DT (φ, t) =
XT (φ, t) + YT (φ, t), with XT (φ, t) =

∑n
i=1 |ax + tx− bx|, and YT (φ, t) =

|ay + ty − by|.

3.1. Minimising the distance 15

Figure 3.1: We can
improve a matching
between A and B (in-
dicated by the dashed
lines) by x-aligning
the point sets (the
dotted lines).

Furthermore, we again introduce shorthands XI(φ) = XT (φ, 0) and
YI(φ) = YT (φ, 0). Given a one-to-one matching φ we write X ′(t) =
XT (φ, t). This function X ′ has the following properties:

1. X ′ is the sum of the set of continuous convex piecewise linear
functions Fx = {f | a ∈ A ∧ f(t) = |ax + tx − φ(a)x|},

2. X ′(0) = XI(φ),
3. X ′ is a piecewise linear function with as breakpoints the union of

all breakpoints of functions in Fx,
4. X ′ is continuous, and
5. X ′ is convex.

The first two properties follow directly from the definition of X ′. The
remaining properties result from the fact that X ′ is composed from
functions of Fx together with some basic function calculus (e.g. the
sum of two linear functions is linear). We also define the function
Y ′(t) = YT (φ, t), which has similar properties. We now prove the fol-
lowing lemmas:

Lemma 4 Let A and B be two non x-aligned sets of n points in the
plane, and let φ be a one-to-one matching between A and B. Then there
is a horizontal translation t∗ such that A∗ = {a+ t∗ | a ∈ A} and B are
x-aligned and DT (φ, t∗) ≤ DI(φ).

Proof. Since we are searching for a horizontal translation t∗ it follows
that YT (φ, t∗) = YI(φ). This means that we need to prove there is a t∗

such that A∗ and B are x-aligned and XT (φ, t∗) ≤ XI(φ). We show this
using the function X ′.

Given the matching φ the function X ′ is a convex continuous piece-
wise linear function with as breakpoints the union of all breakpoints of

16 Chapter 3. Computing a Geographic Grid Embedding

functions in Fx. Lemma 2 then gives us X ′ attains its minimum at one
of these breakpoints.

All functions in Fx are of the form f(t) = |ax+tx−φ(a)x| so they have
exactly one breakpoint: the point in which f(t) attains its minimal value
0. It follows that if X ′ attains its minimal value X ′(t∗) at breakpoint t∗

there is a function f ∈ Fx which is also minimal at t∗. Since f(t∗) = 0
there is a point a ∈ A for which a+ t∗ and φ(a) x-align. Hence A∗ and
B are x-aligned.

Using that X ′(t∗) is minimal it follows that XT (φ, t∗) = X ′(t∗) ≤
X ′(0) = XI(φ), and therefore also DT (φ, t∗) ≤ DI(φ). We conclude that
A∗ and B are x-aligned and that DT (φ, t∗) ≤ DI(φ). This completes
the proof. �

Lemma 5 Let A and B be two non y-aligned sets of n points in the
plane, and let φ be a one-to-one matching between A and B. Then there
is a vertical translation t∗ such that A∗ = {a + t∗ | a ∈ A} and B are
y-aligned and DT (φ, t∗) ≤ DI(φ).

Proof. Symmetrical to Lemma 4. �

We now consider the set of translations T such that t ∈ T if and only if
t both x-aligns and y-aligns A and B. A translation t ∈ T x-aligns a pair
of points (ax, bx), and independently y-aligns a pair of points (ay, by).
This means T contains at most n4 translations. From Lemmas 4 and 5 it
follows that T contains a translation t that allows for a minimal distance
matching. We then use the algorithm from Section 3.1.1 to compute a
matching between At = {a+ t | a ∈ A} and B for all t ∈ T , and pick a
matching with the smallest distance. This matching minimises DT . By
combining this result with Theorem 1 we obtain a method to compute
a minimal distance matching under translation in O(n4 · n3) = O(n7)
time. If we use the algorithm of Vaidya [29] instead we can improve
this to O(n4 · n2(log n)3) = O(n6(log n)3). This leads to the following
theorem:

Theorem 6 Given two sets A and B of n points in the plane, a one-to-
one matching φ and translation t that minimise DT can be computed in
O(n6(log n)3) time.

We note that in the case of our geographic grid embeddings we can
use the structure of point set B to improve the running time. Since B
is a regular grid any two points b1, b2 in the same column have the same
x-coordinate. Hence x-aligning a point a ∈ A with b1 has the same effect
as x-aligning a with b2. The same holds for any two points in the same
row. This implies the following corollary:

3.1. Minimising the distance 17

Corollary 7 Given a set A of n points in the plane and a set B of n grid
points in an R×C grid, a one-to-one matching φ and translation t that
minimise DT can be computed in O(nCnR ·n2(log n)3) = O(n5(log n)3)
time.

Additionally, we can characterise all translations that have a cor-
responding matching that minimise DT . We consider the universe of
translations T as a plane, which we call the translation plane. On the
horizontal axis we have the x-coordinate of the translations and on the
vertical axis the y-coordinate. We represent a translation as a point in
this translation plane. We observe that there is a rectangle R in this
translation plane such that all translations in R have a corresponding
matching that minimises DT . This is depicted in Figure 3.2.

a

Figure 3.2: The opti-
mal translations for a
point a form a rectan-
gle in the translation
space.

This leads us to the following lemma, in which we use D′(t) = DT (φ, t)
for a given matching φ.

Lemma 8 Let A and B be two sets of n points in the plane, and let φ
be a one-to-one matching between A and B. The set of translations T ∗

that minimises D′ forms a rectangle R in the translation plane.

Proof. We have to show that there is a rectangle R such that all trans-
lations in R are optimal, and that these translations are the only ones
that are optimal. We start with the first part.

We again consider the decomposition of DT (D′) into XT and YT
(X ′ and Y ′). Since X ′ is a convex function it follows from Lemma 3
that there is exactly one range of values, say [x`, xu], for which X ′ is
minimal. Hence any translation t such that x` ≤ tx ≤ xu minimises
X ′. A symmetric argument gives us a single range [y`, yu] such that any
translation t with y` ≤ ty ≤ yu minimises Y ′.

Since X ′ and Y ′ are independent this means all translations in the
rectangle R = [x`, xu] × [y`, yu] minimise both X ′ and Y ′. Hence all
translations in R also minimise D′.

18 Chapter 3. Computing a Geographic Grid Embedding

What remains to prove is that all optimal translations lie inside R.
Assume t is an optimal translation that lies outside of R = [x`, xu] ×
[y`, yu], and that R is maximal (i.e. there is no rectangle R′ ⊃ R such
that all translations in R′ are maximal). Consider the case in which
tx 6∈ [x`, xu] (the case that ty 6∈ [y`, yu] is symmetrical). We now show
that for translation t′ = (x`, ty) we have D′(t′) < D′(t). Since t′y = ty
we have Y ′(t′) = Y ′(t). This means we should show X ′(t′) < X ′(t).

All translations t∗ with t∗x ∈ [x`, xr] minimise X ′. This gives us
X ′(t′) ≤ X(t). Using that X ′ is convex and applying Lemma 3 we obtain
that there is a single range for which X ′ is minimal. This together with
the fact that R is maximal, and tx 6∈ [x`, xu] gives us X ′(t′) < X(t). We
therefore have D′(t′) < D′(t), which contradicts our assumption that t
was optimal. Hence we conclude all optimal translations lie within R.
This completes the proof. �

Minimal distance matchings under scaling. For scaling we use the
same procedure as for translation. We start by defining an horizontal
scaling λ = (c, 0), and we again use the decomposition of DΛ into sepa-
rate components for both x and y. For scaling this gives us DΛ(φ, λ) =
XΛ(φ, λ)+YS(φ, λ) with XΛ(φ, λ) =

∑
a∈A |λxax−φ(a)x| and YS defined

similarly.
Given a matching φ we define X ′′(λ) = XΛ(φ, λ). This function X ′′

then has the following properties:

1. X ′′ is the sum of the set of continuous convex piecewise linear
functions Gx = {g | a ∈ A ∧ g(λ) = |λxax − φ(a)x|},

2. X ′′((1, 1)) = XI(φ),
3. X ′′ is a piecewise linear function with as breakpoints the union of

all breakpoints of functions in Gx,
4. X ′′ is continuous, and
5. X ′′ is convex.

Similarly we define a vertical scaling and the function Y ′′. Using
the exact same arguments as in Lemma 4 we obtain the following two
lemmas:

Lemma 9 Let A and B be two non x-aligned sets of n points in the
plane, and let φ be a one-to-one matching from A to B. Then there is a
horizontal scaling λ∗ such that A∗ = {λ∗a | a ∈ A} and B are x-aligned
and DΛ(φ, λ∗) ≤ DI(φ).

Lemma 10 Let A and B be two non x-aligned sets of n points in the
plane, and let φ be a one-to-one matching from A to B. Then there is
a vertical scaling λ∗ such that A∗ = {λ∗a | a ∈ A} and B are x-aligned
and DΛ(φ, λ∗) ≤ DI(φ).

3.1. Minimising the distance 19

Using these lemmas we obtain a set S of at most n4 scalings such
that there is a λ ∈ S that allows for a minimal distance matching. This
implies Theorem 11. We again use that x-aligning (y-aligning) a point
a with either point b1 or b2 from the same column (row) yields the same
scaling. This yields Corollary 12.

Theorem 11 Given two sets A and B of n points in the plane, a one-
to-one matching φ and scaling λ that minimise DΛ can be computed in
O(n6(log n)3) time.

Corollary 12 Given a set A of n points in the plane and a set B of n
grid points in an R×C grid, a one-to-one matching φ and scaling λ that
minimise DΛ can be computed in O(nCnR ·n2(log n)3) = O(n5(log n)3)
time.

Minimal distance matchings under scaling and translation. We also
investigate the version of the problem in which we allow both scaling
and translating the point set A. The idea is to generalise the approach
used for only translation or scaling: if one transformation can x-align
(y-align) one pair of points, two transformations can x-align (y-align)
two pairs of points. Suppose that the translation t should x-align a and
b, and the scaling λ should x-align a′ and a′. This gives us the system
of equations

tx = |bx − ax|
λx = |b′x − a′x|.

This system of equations has a unique solution only if ax, a
′
x, bx, and

b′x are independent. Unfortunately this does not necessarily hold in our
setting. As a result, the set of transformations that x-aligns two points
can still contain infinitely many transformations. This means that at
this point give only a heuristic to minimise D.

We can, for example, consider the following iterative approach similar
to the FT-iteration scheme of Cohen and Guibas [10]. We first compute
a matching that minimises DT and then use the translated point set
in the computation of a minimal distance matching under scaling. We
repeat this procedure until the total distance no longer changes or we
reach a threshold on the number of iterations. In the first case we arrive
at a local minimum.

Translation spaces and the L1 min-max distance. To get a unique
minimal distance matching with the L1 distance we can consider not
only minimising the sum of the distances between matched points, but

20 Chapter 3. Computing a Geographic Grid Embedding

also the maximal distance between a pair of matched points. We refer
to this as the L1 min-max distance.

More specifically, we consider the set of matching-translation pairs
Ψ× T ′ ⊆ Φ× T such that for all (ψ, t′) ∈ Ψ× T ′, we have DT (ψ, t′) =
minφ∈Φ,t∈T DT (φ, t). We now choose the matching ψ ∈ Ψ that (lexico-
graphically) minimises the maximal distance m(a) = maxa∈A d(a, φ(a)).

We observe an interesting phenomenon in the set T of translations
that allow for the matching that minimises the L1 min-max distance.
We identify the following four cases for the set T , these are depicted in
Figure 3.3:

• T contains a single translation that allows for a minimal distance
matching. This can be represented as a single point in the trans-
lation plane (Figure 3.3a),

• T is a set of translations that lie on a diagonal line in the transla-
tion plane (Figure 3.3b),

• T consists of two separate translations with the same x-component,
say t1 = (x, y1) and t2 = (x, y2), with y2 ≤ y1. So any translation
t′ = (x, y′) with y2 ≤ y′ ≤ y1 does not allow for a minimal dis-
tance matching. This yields two separate x-aligned points in the
translation plane. Figure 3.3c1 corresponds to t1 and Figure 3.3c2

corresponds to t2.
• two separate translations with the same y-component. This is the

previous case rotated by 90◦ (Figure 3.3d).

(a) (b)

(c1)

(c2) (d1) (d2)

Figure 3.3: Optimal
translations for L1

min-max in the
translation plane.
(a) a single point
(representing the
translation 0). (b)
a diagonal line-
segment. (c) two
separate x-aligned
points. (d) two
separate y-aligned
points.

3.1. Minimising the distance 21

3.1.3 Using the L2
2 Squared Euclidean distance

In the case in which we use the L2
2 squared Euclidean distance in our

total distance D there is still no unique minimal distance matching.
However, finding the minimal distance matching under translation is
easier than in the case of the L1 distance. Cohen and Guibas [10] sketch
a proof that shows that there is a unique translation that allows for a
minimal distance matching: the translation that aligns the centroids of
the point sets. For completeness we include the full proof.

Theorem 13 Let A and B be two sets of n points in the plane, and let
t∗ be the translation that aligns the centroids of A and B. There exists
a matching φ∗ such that DT (φ∗, t∗) = minφ∈Φ,t∈T DT (φ, t).

Proof. We use the same formulation of the total distance as is used in
Section 3.1.1. For a given matching φ we consider the flow fab between
a and b that is one if φ matches a to b, and zero otherwise. For a
translation t we now define D′(t) expressing the total distance DT (φ, t)
as a function of t:

D′(t) =
∑
a∈A

∑
b∈B

fabd(a+t, b) =
∑
a∈A

∑
b∈B

fab((ax+tx−bx)2+(ay+ty−by)2)

To find the translation that minimises D′ we now simply compute the
extrema of D′. To this end we compute the derivative of D′ with respect
to t. We start with the x-component:

∂

∂tx
D′(t) =

∑
a∈A

∑
b∈B

fab
∂

∂tx
((ax + tx − bx)2 + (ay + ty − by)2)

=
∑
a∈A

∑
b∈B

fab(
∂

∂tx
(ax + tx − bx)2 + 0)

=
∑
a∈A

∑
b∈B

fab2(ax + tx − bx)

By solving the equation ∂
∂tx
D′(t) = 0 we get the extremal points of D′:

22 Chapter 3. Computing a Geographic Grid Embedding

∑
a∈A

∑
b∈B

fab2(ax + tx − bx) = 0∑
a∈A

∑
b∈B

fabtx +
∑
a∈A

∑
b∈B

fab(ax − bx) = 0

tx
∑
a∈A

∑
b∈B

fab = −
∑
a∈A

∑
b∈B

fab(ax − bx)

tx =

∑
a∈A

∑
b∈B fab(bx − ax)∑

a∈A
∑

b∈B fab

Since the flow models a one-to-one matching we can use that
∑

a∈A∑
b∈B fab = n, that

∑
b∈B fab = 1 for a given a, and

∑
a∈A fab = 1 for a

given b. Hence we obtain:

tx =

∑
a∈A

∑
b∈B fab(bx − ax)∑

a∈A
∑

b∈B fab

=

∑
a∈A

∑
b∈B fabbx −

∑
a∈A

∑
b∈B fabax

n

=

∑
b∈B bx

n
−
∑

a∈A ax

n

Using a similar derivation we obtain ty =
∑

b∈B by
n −

∑
a∈A ay
n . Hence the

translation t∗ that minimises D′ aligns the centroids of A and B. Since
D′(t) = DT (φ, t) this means t∗ satisfies D(φ, t∗) = mint∈T DT (φ, t).
This holds for an arbitrary matching φ, and therefore also for an optimal
matching φ∗. The lemma follows. �

The Squared Euclidean distance and scaling. We investigate using
the same approach that we used for translation for scaling as well. Let
fab again denote the flow from a to b for a given matching φ. We now
consider the total distance DΛ as a function D′′ of a scaling λ. This
gives us the following definition of D′′:

D′′(λ) =
∑
a∈A

∑
b∈B

fabd(λa, b) =
∑
a∈A

∑
b∈B

fab((λxax − bx)2 + (λyay − by)2)

We again compute the derivative of D′′ with respect to λ. For the
x-component we obtain

∂

∂λx
D′′(λ) =

∑
a∈A

∑
b∈B

fab2(λxa
2
x − axbx).

3.2. Preserving adjacencies 23

However solving the equation ∂
∂λx

D′′(λ) = 0 does not yield a unique
solution for λx. We obtain the equation

λx =

∑
a∈A

∑
b∈B fabaxbx∑
a∈A a

2
x

which we cannot simplify further. What we can do is the following: let
a− be the point with the smallest x-coordinate, and a+ is the point with
the largest x-coordinate. This yields the following bounds on λx:

b−x
∑

a∈A ax∑
a∈A a

2
x

≤ λx ≤
b+x
∑

a∈A ax∑
a∈A a

2
x

Unfortunately this still leaves a search space containing infinitely many
scalings. We currently have no way of reducing this further. The same
is true in the case we allow both translation and scaling.

3.2 Preserving adjacencies

The second criterion for the matching in our geographic grid embeddings
is that it preserves the adjacencies between neighbouring regions. We
consider the dual graph G = (A,E) with an edge (a, a′) ∈ E if and only
if the regions represented by a and a′ are neighbouring. Similarly, we
represent the grid by its dual graph H = (B,Z). We then try to find the
matching that preserves the maximum number of adjacencies from G.
This means our problem is an instance of the maximal common (edge)
subgraph problem.

The maximal common subgraph problem. Given two graphs G1 =
(V1, E1) and G2 = (V2, E2), the maximal common edge subgraph prob-
lem is to find the maximal size subsets E′1 ⊆ E1 and E′2 ⊆ E2 such that
(V1, E

′
1) and (V2, E

′
2) are isomorphic. Garey and Johnson [14] prove that

the corresponding decision problem for general graphs is NP-complete
by reduction from Clique. Since our version of the problem does not
involve general graphs but a planar graph and a grid graph this does not
necessarily mean our problem is also NP-hard. However, we now show
that it is NP-complete to embed a planar graph into a grid graph while
preserving at least k adjacencies. More formally, we prove the Adja-
cency Preserving Grid Embedding problem as defined as follows is
NP-complete:

Adjacency Preserving Grid Embedding.
Given a planar graph G = (V,E) and a grid graph H = (N,Z)
with |V | = |N |, is it possible to find an embedding φ : G ↪→ H
that preserves at least k adjacencies from G?

24 Chapter 3. Computing a Geographic Grid Embedding

Clearly Adjacency Preserving Grid Embedding is the decision
version of the problem we encounter in our geographic grid embeddings:

Maximum Adjacency Preserving Grid Embedding.
Given a planar graph G = (V,E) and a grid graph H = (N,Z)
with |V | = |N |, find an embedding φ : G ↪→ H that maximises the
number of preserved adjacencies from G.

We show Adjacency Preserving Grid Embedding is NP-complete
by reduction from 3-Partition:

3-Partition.
Given a natural number w, a multiset X of 3n natural numbers
such that w/4 < x < w/2 for all x ∈ X, is possible to par-
tition X into n multisets X1, .., Xn such that for all multisets
Xi,
∑

x∈Xi
x = w?

Garey and Johnson [14] show that 3-Partition is NP-complete in the
strong sense, meaning that even if the natural numbers in X are bounded
by a polynomial in n the problem is still NP-hard. Furthermore, we note
that because of the constraints on the elements of X it follows that each
Xi has to contain exactly three elements.

Theorem 14 Adjacency Preserving Grid Embedding is NP-com-
plete.

Proof. Given a planar graph G = (V,E), a grid graph H = (N,Z),
and an embedding φ of G into H, it can be verified that φ preserves at
least k adjacencies from G by simply checking each edge e ∈ E. Clearly
this can be done in polynomial time, which means Grid Embedding is
in NP. What remains to show is that the problem is NP-hard. We show
this by reduction from 3-Partition.

Given a multiset X of 3n natural numbers that are bounded by a
polynomial in n and a target weight w, we construct a graph G = (V,E)
and a grid H = (N,Z) such that the embedding φ : G ↪→ H preserves
|E| adjacencies if and only if X can be partitioned into n multisets of size
3 and weight w. The graph G consists of 3n+ 1 components. For each
number x ∈ X we add a simple path of length x. The one remaining
component is a large component, leaving n open holes of size w, that
can only be embedded in a specific way.

We start by defining the grid graph H. We use a grid of size R×3n+2,
where R = max(w+ 4, 3n+ 3). So let H = (N,Z) be a grid graph with

3.2. Preserving adjacencies 25

N = {ur,c | 1 ≤ r ≤ R ∧ 1 ≤ c ≤ 5m} and

Z = {(uc,r, uc+1,r) | 1 ≤ c < 3n+ 2 ∧ 1 ≤ r ≤ R} ∪
{(uc,r, uc,r+1) | 1 ≤ c ≤ 3n+ 2 ∧ 1 ≤ r < R}.

Next, we define some basic components to construct the planar graph
G. Let S = (Vs, Es) be a separator component consisting of the set of
vertices

Vs = {vc,r | 1 ≤ c ≤ 3n+ 2 ∧ 1 ≤ r ≤ R} \
{v3j,r | 1 ≤ j ≤ n ∧ 3 ≤ r < 3 + w}

and the set of edges

Es = {(vc,r, vc+1,r) | 1 ≤ c < 3n+ 2 ∧ 1 ≤ r ≤ R ∧ {vc,r, vc+1,r} ⊂ Vs} ∪
{(vc,r, vc,r+1) | 1 ≤ c ≤ 3n+ 2 ∧ 1 ≤ r < R ∧ {vc,r, vc,r+1} ⊂ Vs}.

v1,1

v1,R

...

...

...

...

v3n+2,R

v3(n−1),1

...

...

v3n,1

v3n,w+3

v3n,2

...

...

v3n+2,1

...

...

v3,1

v3,w+3

v3,2

... ...

... ...

Figure 3.4: The sepa-
rator component S.

Figure 3.4 depicts this component. The separator S consists of a
number of C4 = ({wi | 0 ≤ i < 4}, {(wi, w(i+1) mod 4) | 0 ≤ i < 4})
graphs (i.e. a number of simple cycles of length 4). Each C4 is connected
to at least one other C4 by at least two edges. So once we choose the
position of one C4 this fixes the position of the entire component. This
means there are only four possible placements of S that preserve all
adjacencies, and they only differ by rotation of c · 90◦ for 1 ≤ c ≤ 4.
We say the placement drawn in Figure 3.4 is the separator’s natural
orientation.

Additionally, we define a chain component C(i) = (Vi, Ei) with ver-
tices Vi = {vi,j | 1 ≤ j ≤ i} and edges Ei = {(vi,j , vi,j+1) | 1 ≤ j < i}.
Hence, C(i) a simple path of length i.

26 Chapter 3. Computing a Geographic Grid Embedding

Next, we define the planar graph G = (V,E) consisting of the separa-
tor S and a chain C(x) for each number x ∈ X. Note that we can make
sure there are as many copies of C(x) in G as there are copies of x in X
by simply using unique vertex labels for each component. This gives us
the graph G defined as:

G = (V,E) =
(
Vs ∪

⋃
x∈X

Vx, Es ∪
⋃

x∈X
Ex

)
The size of G depends on the numbers in the set X. However, as

all these values are bounded by a polynomial in n it follows that G is
polynomial in size and we can construct it in polynomial time. A similar
argument holds for H.

We now show that G has an embedding φ into H that preserves all |E|
adjacencies if and only if X has a 3-partition. For the ‘only if’ direction
assume φ is an embedding of G into H that preserves all adjacencies
from G. There are only four possible orientations for embedding S in
the grid. Since the grid graph H has only 3n+ 2 columns the only two
orientations that preserve all adjacencies in S are the natural orientation
and the natural orientation rotated by 180◦. It follows that the columns
3j, for 1 ≤ j ≤ n, all contain w consecutive vertices which are not
occupied by S. In case S is placed in its natural orientation these are the
vertices u3j,3, .., u3j,w+2, and otherwise the vertices u3j,R−1−w, .., u3j,R−2.
We call this set of vertices F (j). It follows φ places (the vertices from)
all chain components on the vertices from

⋃
1≤j≤n F (j).

Since φ preserves all adjacencies in G it also preserves the adjacencies
in a chain C(x). This means C(x) in its entirety is placed on consecutive
vertices of some F (j), 1 ≤ j ≤ n. Furthermore, as |V | = |N | it follows
that for every vertex u ∈ N there is a vertex v ∈ V that is mapped to
u. Hence every vertex in F (j) is occupied.

Now consider the partition X1, .., Xn of X that places x in set Xj

if and only if the vertices from C(j) are mapped onto F (j). Each Xj

has total weight w and contains exactly 3 elements (this follows from
the bounds on elements in X). Hence X1, .., Xn is a valid 3-partition.
This completes the only if direction of the proof. Figure 3.5 shows an
example embedding as used in the reduction procedure.

For the if direction suppose X1, ..., Xn is a 3-partition of X. For
each Xj = {x, y, z}, 1 ≤ j ≤ n, we map C(x) to the vertices u3j,3, ..,
u3j,x+2, C(y) to the vertices u3j,x+3, .., u3j,x+y+2, and C(z) to the ver-
tices u3j,x+y+3, .., u3j,w+2. Finally, we place the separator S in its natural
orientation such that v1,1 is mapped to u1,1. It is easy to see that such an
embedding preserves all adjacencies. Hence G can be embedded into H
if and only if X has a valid 3-partition. We conclude Adjacency Pre-
serving Grid Embedding is NP-hard. This completes the proof. �

3.2. Preserving adjacencies 27

Figure 3.5: An em-
bedding of G into
H that solves the 3-
Partition problem for
X = {47, 56, 63, 72}
with w = 15. The
dotted edges are
edges from H that
are not used in the
embedding.

An exact algorithm for preserving Adjacencies. Since maps usually
only have reasonably few regions we can still try to solve the Adjacency
Preserving Grid Embedding problem exactly, even though it is NP-
hard. We can use one of the existing algorithms to compute a maximum
common subgraph of G = (A,E) and H = (B,Z). Conte, Guidobaldi,
and Sansone [11] and Bunke et al. [7] do an experimental analysis of
several maximum common subgraph algorithms on labelled graphs. For
sparse graphs with few labels McGregor’s algorithm [24] performs best.
The McGregor algorithm is a backtracking algorithm that considers a
current common subgraph and tries to extend it with all feasible pairs
of edges. The resulting maximum common subgraph yields a partial
one-to-one matching between A and B. The remaining vertices from
A are matched to arbitrary remaining vertices from B (or instead of
matching the remaining vertices arbitrarily we can also optimise one
of the other criteria). The one-to-one matching that we obtain this
way maximises the number of preserved adjacencies. Unfortunately,
our experimental analysis (see Chapter 4) shows that this approach is
infeasible in practice.

A constant factor approximation algorithm. Alternatively we can ap-
proximate the Maximum Adjacency Preserving Grid Embedding
problem. However, Kann [22] shows that for a number of variants of the

28 Chapter 3. Computing a Geographic Grid Embedding

maximal common subgraph problem it is also NP-hard to approximate
the optimal solution within a constant factor. We show that there does
exist a constant factor approximation algorithm for Maximum Adja-
cency Preserving Grid Embedding. This algorithm decomposes G
into a set P of vertex-disjoint edge-maximal paths. It then concatenates
all paths in P into one long chain, which can easily be embedded into H
while preserving all adjacencies. The global algorithm looks as follows.

Algorithm PathPreserve(G,H)
Input. Planar graph G = (V,E) and grid graph H =
(N,Z) with R rows and C columns
Output. An embedding φ : G ↪→ H
1. U ← V ; P ← ∅
2. while U 6= ∅ do
3. Pick a vertex v ∈ U and remove it from U
4. p← [v] ; u← v
5. while ∃w ∈ U such that (u,w) ∈ E do
6. Append w to p and remove it from U
7. u← w
8. Repeat the while loop on lines 5 - 7 but instead

prepend w to p.
9. Add p to P
10. Concatenate all paths in P to one chain C.
11. Let φ be the embedding that places C[rC +

1], .., C[rC + C] onto row r + 1 for even r, and
C[rC + 1], .., C[rC +C] in reverse order onto row
r + 1 for uneven r.

12. return φ

Next, we show PathPreserve is a 4-approximation algorithm. The
key observation in this proof is that any vertex in H has degree at most
four. Hence any algorithm can preserve at most four edges incident to
a vertex.

Theorem 15 PathPreserve is a 4-approximation for Maximum Ad-
jacency Preserving Grid Embedding.

Proof. Let EP be the set of edges that is preserved in the grid embed-
ding computed by the PathPreserve algorithm and let EO be the set
of edges that is preserved in an optimal grid embedding.

We show that we can partition E into E1, .., Em such that from each
Ei the optimal solution EO contains xi edges and EP contains xi/4
edges. It follows that PathPreserve is a 4-approximation algorithm.

We show that such a partition of E exists by constructing a partition
of the vertices V into V1, .., Vm and identifying a set Ei of edges asso-

3.2. Preserving adjacencies 29

ciated with each Vi. We construct these partitions as follows (see also
Figure 3.6).

Let V ′ be the set of unpartitioned vertices, initially V , and E′ the
set of unpartitioned edges E′, initially E. Furthermore, let A(v) =
EP ∩ {(v, u) | u ∈ E′} denote the set of unpartitioned edges incident
to vertex v that are preserved in EP . To construct new sets Vi and Ei
we now pick an unpartitioned vertex v ∈ V ′. In case |A(v)| < 2 we
consider the set of vertices Vv = Vi = {v} ∪ (Neigh(v) ∩ V ′) consisting
of v and its unpartitioned neighbours, and a set of unpartitioned edges
Ev = Ei = {(u,w) | u ∈ Vv ∧ w ∈ V } ∩ E′ incident to vertices in
Vv. For the case |A(v)| = 2 we simply choose Vv = Vi = {v} and
Ev = Ei = {(v, u) | u ∈ V ′}. We repeat this procedure until there are
no more unpartitioned vertices. Clearly this yields a partition of the set
of vertices, and since all edges are incident to vertices we also obtain a
partition of the edges.

case A(v) < 2 case A(v) = 2

v
Vv

vVv

u

Figure 3.6: The con-
struction of the par-
tition. The edges Ev
corresponding to Vv
are drawn fat. The
regular edges (for ex-
ample (u, v)) are al-
ready used, dashed
edges are still unpar-
titioned.

We now show that if the optimal solution preserves xi edges from
Ei = Ev then PathPreserve preserves xi/4 edges. We consider three
cases based on |A(v)|:

Suppose |A(v)| = 0. This means [v] is a path in P . Using that all
paths in P are maximal it follows that all neighbours of v, so in particu-
lar those in Vv, have two incident edges in EP . Since a neighbour u may
be connected to another neighbour w we obtain that each neighbour pre-
serves at least one unique edge. This means EP contains at least |Vv|−1
edges from Ev. Each vertex in the grid has at most four neighbours, so
the optimal solution EO contains at most 4(|Vv| − 1) edges from Ev.

v

For the case |A(v)| = 1 we again use that all paths in P are maximal.
A similar argument as in the case |A(v)| = 0 gives us that EP preserves
at least |Vv|−1 edges from Ev whereas EO preserves at most 4(|Vv|−1).
Finally, we have the case |A(v)| = 2. The optimal solution can preserve
at most four edges incident to v. Since v is the only vertex in Vv it follows
that EO preserves at most 4 edges from Ev, whereas EP preserves two.

v

We conclude that for each set Ei in the partition EP preserves xi/4
edges. Hence |EO| ≤ 4|EP |. This shows that PathPreserve is a 4-ap-
proximation algorithm and concludes the proof. �

30 Chapter 3. Computing a Geographic Grid Embedding

3.3 Preserving directional relations

Our third and last criterion is that the matching preserves the directional
relation between pairs of points. We introduce the function dir(p, q) to
denote the directional relation of q with respect to p. We define this
function as follows:

dir(p, q) =

same if p = q

north if px = qx ∧ py < qy

northeast if px < qx ∧ py < qy

east if px < qx ∧ py = qy

southeast if px < qx ∧ py > qy

south if px = qx ∧ py > qy

southwest if px > qx ∧ py > qy

west if px > qx ∧ py = qy

northwest if px > qx ∧ py < qy.

east

northeast

southeast

west

south

north

northwest

southwest

same

The goal is now to find a matching φ∗ that maximises the number of
pairs (a, a′) ∈ A×A for which dir(a, a′) = dir(φ∗(a), φ∗(a′)). Stated dif-
ferently, we are looking for the matching φ∗ that minimises the number
of out-of-order pairs W defined as

W (φ) = |{(a, a′) | (a, a′) ∈ A×A ∧ dir(a, a′) 6= dir(φ(a), φ(a′))}|.

Next, we describe the global approach in our algorithm DirRel-
Preserve that computes a matching that approximately minimises W .
We consider the x-order and the y-order of the set of blue points A. The
x-order π1, .., πn is the order for which πi = a if and only if x -rank(a) = i,
with

x -rank(a) = |{a′ | a′x < ax ∨ (a′x = ax ∧ a′y ≤ ay)}|.
The x-rank denotes the number of points to the left of a (together with
the points that are below a if they have the same x-coordinate). The
y-order and y-rank are defined similarly. With these two orders we now
define the preferred location p(a) of a point a. The preferred location
p(a) = (r, c) indicates that with respect to the x- and y-order a is ideally
mapped to the grid point on row r and column c. More formally, for a
grid of size R× C we define p(a) as followsp(a1) = p(a2)

p(a3) = p(a4)

a1
a2
a3
a4

p(a) = (p(a)r, p(a)c) =

(⌈
y-rank(a)− 1

R

⌉
,

⌈
x -rank(a)− 1

C

⌉)
.

3.3. Preserving directional relations 31

Note that the preferred location is not necessarily a one-to-one matching.
It may be the case that multiple points from A have the same preferred
location.

p(a)

b

Figure 3.7: The dis-
tance w(a, b) corre-
sponds to the size of
the set of grid points
in the cross shape de-
fined by p(a) and b,
i.e. the number of
grid points in the grey
area.

The notion of preferred location allows us to define a distance measure
w(a, b) between points a ∈ A and b ∈ B. Let `(b) = (`(b)r, `(b)c) = (r, c)
denote that point b ∈ B is the grid point on row r and column c. We
define

w(a, b) = (|p(a)r − `(b)r|+ 1) · C+

(|p(a)c − `(b)c|+ 1) · (R− |p(a)r − `(b)r|)
as the size of the set C(a) of grid points in the cross shape defined by
p(a) and b (see Figure 3.7). We now compute the minimal distance
matching between A and B using w as distance measure. We conjecture
that the resulting matching approximately minimises W :

Conjecture 1 Given a set A of n points in the plane and a set B of n
grid points in an R×C grid, DirRel-Preserve computes a matching
φ such that W (φ) ≤ 4 ·minφ∗∈ΦW (φ∗).

In other words, we conjecture that DirRel-Preserve is a 4-approxi-
mation algorithm.

The intuition behind this approach is that if a point a has x-rank i,
there are i− 1 points to the left of a. Hence if we map a to a grid point
b, there need to be i − 1 grid points to the left of b. However, if there
are instead i− 1± δ grid points to the left of b then there are at least δ
points on the wrong side of b. A similar reasoning holds for the y-rank of
a. With this we can show that for any point a′ that is matched to a grid
point b′ ∈ C(a) the directional relation is wrong. Hence the distance
w(a, b) is a lower bound for the number of out-of-order pairs involving
a if we match a to b. What remains is to give an upper bound for the
number of pairs with the wrong directional relation in terms of the size
of the cross shape C(a).

32 Chapter 3. Computing a Geographic Grid Embedding

3.4 Choosing a grid

One topic we have not discussed until now is how to choose a suitable
grid. For a map with n regions we need a grid with m ≥ n grid cells.
However, there are infinitely many such grids. In case we restrict our-
selves to grids of exactly n points there are at most 2

√
n different grids.

However, in this restricted case most of the 2
√
n grids have large aspect

ratios, for example 1×n or n×1, and are ill suited for our geographic
grid embeddings (see Chapter 4 for examples). Furthermore, much more
suitable grids might be excluded. Consider for example the map of the
London boroughs. There are 33 boroughs, which means the only grids
with exactly 33 cells are the 33×1, 1×33, 11×3, and 3×11 grids. How-
ever, a more square grid seems much more suitable: for example a 6×6
grid from which we remove 3 cells. Our experiments confirm this (see
Chapter 4).

When using a grid of size m > n we need to select a subset of n grid
cells. Choosing the optimal size m > n as well as an optimal subset of
size n are two challenging problems. The selected subset should at least
be simply connected and if possible represent the shape of the country in
question. We currently cannot claim a solution for the general problem,
but the following heuristic might work well in practice.

To determine the grid size we compute the rectangular dual of the
map. We then use the maximum number of rectangles encountered
when walking from left to right (top to bottom) as the width (height)
of the grid. To select a suitable subset of the grid cells we can consider
a process in which we shrink the map and remove the cells that become
empty first. We note that additional research is required to evaluate the
quality of these methods.

4
Evaluation

In this chapter we present an experimental evaluation of our geographic
grid embeddings. We give both a quantitative and qualitative analysis
of the resulting visualisations. For the quantitative analysis we compare
the total distance of the matching, the percentage of pairs with the
correct directional relation, and the percentage of the adjacencies that
have been preserved. For the qualitative analysis we overlay the map
with a colour gradient, and compare the gradient in the original map
with the gradient in the resulting visualisation.

Implementation. To evaluate our geographic grid embeddings we de-
veloped a tool which can read maps in Ipe 7 XML format [8] and com-
putes a geographic grid embedding. The resulting embedding is again
stored in an Ipe 7 XML file. The tool is implemented in Scala and
uses lpsolve [5] to solve the underlying linear programming problems. It
currently supports the following methods to compute a geographic grid
embedding:

L1 trans This method uses the approach described in Section 3.1.2 to
compute an embedding that minimises the total distance under
translation with the L1 distance as underlying metric.

L1 scale This method computes the embedding that minimises DΛ

with the L1 distance as underlying metric. It uses the approach
described in Section 3.1.2.

L22 This method computes an embedding that minimises DT with the
L2

2 distance as underlying metric (Section 3.1.3).

adjacency This method uses the approximation algorithm from Sec-
tion 3.2 to compute a matching that approximately maximises the
number of adjacencies preserved.

33

34 Chapter 4. Evaluation

For the L1 metric we can minimise the total distance under either
translation (DT) or scaling (DΛ). For L2

2 we can minimise only the
total distance under translation (DT). Our initial experiments showed
that to obtain a good matching it is critical that the input map and the
grid are roughly the same size. We therefore always start by scaling the
grid such that it has the same size bounding box as the original input
map. This does not guarantee to give an optimal solution but works
reasonably well in practice.

We also implemented the McGregor [24] algorithm for computing the
maximum common edge subgraph so we could compute the matching
that preserves the maximum number of adjacencies exactly. Unfortu-
nately even for maps with very few regions this approach was computa-
tionally infeasible. For the map with the 12 provinces of the Netherlands
the algorithm already takes several hours.

Measuring the quality of geographic grid embeddings. We evaluate
the quality of our geographic grid embeddings by quantitative as quali-
tative quality criteria. We use the following three quantitative criteria:

• the total distance of the matching using the L1 and L2
2 metric,

• the percentage of pairs of regions that have the correct directional
relation. The directional relation between the regions is computed
using the cone based model by Haar [16].

• the percentage of adjacencies from G = (A,E) that are preserved
by the embedding into H = (B,Z): i.e. the number of edges
(a, a′) ∈ E for which (φ(a), φ(a′)) ∈ Z. Two regions are considered
adjacent if and only if they share a border. We compute this by
checking if the intersection of the two closed polygons representing
the regions is non-empty.

b∗

a∗

90

80

70

60

50

40

30

20

10

0

-10

-20

-30

-40

-50

-60

-70

-80

-90

9080706050403020100-10-20-30-40-50-60-70-80

100

Figure 4.1: The CIE
L∗a∗b∗ colour space
for L∗ = 50. The
area enclosed by the
dashed lines indicates
the area for which the
CIE L∗a∗b∗ colours
are properly defined.
The area enclosed by
the fat lines is the
space that we overlay
on the map1.

In the adjacency method we decompose the dual graph into a set of
vertex-disjoint edge-maximal paths. The method still leaves some choice
how to pick the next vertex on a path. Our method randomly picks a

1Image based on http://www.fho-emden.de/~hoffmann/cielab03022003.pdf

http://www.fho-emden.de/~hoffmann/cielab03022003.pdf

35

suitable vertex. We therefore run the adjacency method 20 times and
use the average values in our analysis.

Additionally, we use a qualitative analysis of the resulting grid based
on the colouring of the regions. Similar to Wood and Dykes [34], we map
the CIE L∗a∗b∗ colour space for L∗ = 50 onto our map (see Figure 4.1).
We identify the a∗ axis with the x-axis and the b∗ axis with the y-axis
and compute the colour for a given point by bilinear interpolation.

The departments of France. We use our geographic grid embedding
technique on the 96 departments of France. The results of the quali-
tative analysis are shown in Figure 4.2. We see the grid for the L22
method shows the most natural change of colours. This also shows in
the quantitative analysis (Table 4.1). The L22 method preserves the
most adjacencies, it has the most pairs with the correct directional re-
lation, and it has the smallest the L2

2 distance.

L22

L1 scaleL1 trans

adjacency

Figure 4.2: The
optimal grids for the
96 departments of
France for different
measures.

36 Chapter 4. Evaluation

Measure Distance Directional Rel. Adjacencies
L1 L2

2 # % # %

L1 trans 9026.64 788103.71 6560 71.93% 109 45.61%
L1 scale 9294.08 775423.66 6638 72.79% 105 43.93%
L22 9082.00 655798.18 7140 78.29% 127 53.56%
adjacency 33498.70 8533680.32 1185 12.99% 85 35.56%

Table 4.1: The op-
timal results for dif-
ferent measures to
compute a geographic
grid embedding.

Figure 4.2 shows that both the L1 trans and L1 scale method have
some out-of-order cells (mainly in the upper right and upper left cor-
ner). This also shows in the quantitative results: the number of correct
directional relation pairs and the number of preserved adjacencies are
slightly less than for the L22 method.

In the grid embedding computed by the adjacency method the colours
often change suddenly. The same results are visible in the quantitative
analysis. These results are not entirely surprising since the PathPre-
serve algorithm does not try to preserve more than two adjacencies
per cell. Additionally, the algorithm does not take the location of the
regions into account. The quantitative analysis also indicates that a
4-approximation algorithm for preserving adjacencies is not sufficient
since we observe in our experiments that the methods that focus on
minimising the distance already preserve almost half the adjacencies.

Grid size Distance Directional Rel. Adjacencies
L1 L2

2 # % # %

12×8 9234.70 622337.90 7140 78.29% 128 53.56%
8×12 9374.84 632905.18 6972 76.45% 117 48.95%
16×6 9367.98 635007.33 6966 76.38% 110 46.03%
6×16 9370.41 635873.83 7048 77.28% 101 42.26%
24×4 9513.38 664012.44 6690 73.36% 88 36.82%
4×24 9726.77 672187.95 6640 72.81% 70 29.29%
32×3 9567.07 702114.29 6410 70.29% 70 29.29%
3×32 10147.81 727028.42 6266 68.71% 63 26.36%
48×2 10467.50 866844.47 5418 59.41% 47 19.67%
2×48 10673.99 851302.40 5524 60.57% 44 18.41%
96×1 11978.28 1273845.27 2566 28.14% 22 9.21%
1×96 15879.70 1850449.51 1998 21.91% 29 12.13%

Table 4.2: The results
for different grid sizes
using the L22 mea-
sure.

37

Next, we investigate the influence of different grid sizes on the result-
ing embedding. The results for the L22 method are shown in Figure 4.3.
The most natural gradient occurs with the 12×8 grid. Since this is also
the optimal grid in terms of distance this is not entirely surprising. The
8×12, 16×6, and 6×16 grids also show a smooth transitions in colour.

12×8 8×12 16×6

6×16 24×4 4×24

32×3 3×32 48×2

2×48 96×1 1×96

Figure 4.3: The influ-
ence of different grid
sizes on grid embed-
dings using the L22
method.

Starting at the 24×4 grid we see more sudden colour changes, which
indicates the quality of the matching degrades. This is also visible in the
results of the quantitative analysis shown in Table 4.2. With these grids

38 Chapter 4. Evaluation

there is the additional problem of the aspect ratio of the grid cells. As
the aspect ratio grows the cells become less square, and therefore most
likely less suited to display data. We see similar results for the L1 trans
and L1 scale methods. For the adjacency method the grid size does not
influence the results. This was to be expected.

London Boroughs. We continue the analysis of the influence of differ-
ent grids and grid sizes by looking at a map of the 33 London boroughs.
Figure 4.4 shows the results for various grid sizes using the L22 method.
The 3×11 grid is the best grid found by our algorithm. The other grids
are all instances of a 6×6 grid in which we manually removed three grid
cells. The 6×6 grids all have better results (on all three criteria) than
the 3×11 grid (see Table 4.3). We can also see the set of excluded cells
significantly influences the total distance of the matching. What is inter-
esting to see is that the grids that minimise the distance not necessarily
have the best results for the other criteria. Therefore we cannot really
pinpoint the “best” embedding.

3×11 6×6

{(1, 5), (1, 6), (2, 6)}

{(1, 1), (1, 6), (6, 1)} {(1, 1), (6, 1), (6, 6)}{(1, 1), (1, 2), (1, 6)}

{(1, 1), (1, 5), (1, 6)} {(1, 1), (1, 6), (2, 6)}

{(1, 1), (2, 1), (3, 1)} {(1, 1), (1, 2), (2, 1)}
6×6

6×66×6

6×6

6×6

6×6 6×6

Figure 4.4: Various
grids for the Lon-
don Boroughs with
the L22 method. For
the 6×6 grids we also
denote the set of re-
moved cells.

39

Excluded Cells Distance Directional Rel. Adjacencies
L1 L2

2 # % # %

3×11 3533.15 261079.75 724 68.56% 36 44.44%
{(1, 1), (1, 2), (1, 3)} 3294.97 243011.82 752 71.21% 43 53.09%
{(1, 1), (1, 2), (2, 1)} 3278.22 242291.38 770 72.92% 43 53.09%
{(1, 1), (1, 2), (1, 6)} 3023.09 201956.91 770 72.92% 45 55.56%
{(1, 1), (1, 6), (6, 1)} 3015.52 200392.36 762 72.16% 44 54.32%
{(1, 1), (6, 1), (6, 6)} 3120.75 221855.40 730 69.13% 42 51.85%
{(1, 5), (1, 6), (2, 6)} 2986.31 186797.48 782 74.05% 41 50.62%
{(1, 1), (1, 5), (1, 6)} 2984.29 190687.77 758 71.78% 40 49.38%
{(1, 1), (1, 6), (2, 6)} 2936.34 177927.18 776 73.48% 40 49.38%

Table 4.3: The results
for a 6×6 grid with dif-
ferent cells removed.
The first line is the
3×11 grid found using
the algorithm in Sec-
tion 3.4.

United States. We also use our geographic grid embeddings to make
a grid for the United States. In order not to artificially inflate the
bounding box we only consider the 48 contiguous states. Figure 4.5
shows the resulting grid for each of the embedding methods. The results
are similar to those of France: the gradient in the grid corresponding to
the L22 method looks the most natural. Both the L1 trans and L1 scale
methods show some out-of-order cells in the bottom right. This also
shows in the quantitative results: the L22 method preserves roughly
52% of the adjacencies and 71% of the directional relations versus 49%
and 68% for the L1 trans method and 44% and 62% for the L1 scale
method. The adjacency method shows the same poor results as before.

L22

L1 trans L1 scale

adjacency

Figure 4.5: The opti-
mal grids for the 48
contiguous states of
the U.S.

40 Chapter 4. Evaluation

Examples. We also show some examples in which we use our geographic
grid embeddings to visualise various types of data. Figure 4.6 shows our
technique in combination with bar charts to display the results of the
2010 elections in the Netherlands.

CD
A

Ch
rist

en
Un
ie
D6

6

Gro
en

Lin
ks
Ot
her

s
PV

V

Par
tij
v.d

. D
iere

n
Pvd

ASG
P SPTO

N
VV

D

Figure 4.6: The 2010
election results in the
Netherlands. Data
courtesy of Election-
Resources.org

Finally, in Figure 4.7 we use our technique together with a tree map
to show the 2009 population estimate in the U.S. per race.

AL

AK

AZ

ARCA

CO

CT

DE

FLGA

HI

ID

IL IN

IA

KS KY

LA

ME

MD

MAMI

MN

MS

MO

MT

NENV

NH

NJ

NM

NY

NC

ND

OH

OK

OR PA

RI

SC

SD

TN

TX

UT

VT

VA

WA

WV

WI

WY

Am. Indian and Alaska Native
Asian

Black or African Am.
Pacific Islander

Two or More Races
White

Figure 4.7: The dis-
tribution of the pop-
ulation of the U.S. in
2009 based on race.
Data courtesy of the
U.S. Census Bureau.

5
Concluding Remarks

We present a novel technique for visualising geo-referenced data. Our
geographic grid embeddings technique computes an embedding of a map
into a regular grid that retains key spatial properties of the regions in
the map. We present three criteria for the matching between the re-
gions and the grid cells: distance, directional relation, and adjacencies.
We show how to compute optimal matchings for the distance criteria
when using the L1 Manhattan distance and the L2

2 distance. For both
distances we can compute the minimal distance matching under trans-
lation. For the L1 distance we can also compute the minimal distance
matching under scaling. Furthermore we show that it is NP-complete
to determine whether there exists an embedding of a planar graph into
a grid graph that preserves at least k edges. Hence we cannot hope for
a fast algorithm to compute a matching that optimises the adjacencies
criteria exactly. Instead we present a 4-approximation algorithm, which
is mainly useful from a theoretical point of view. We also present an
experimental evaluation of our approach.

There are still three important pieces missing in our work: how to
compute an embedding that provably optimises for the directional rela-
tion criterion, how to get an optimal matching with respect to all three
criteria, and how to determine the optimal grid and grid cells to use.

At this point we do not have a proof for Conjecture 1. This means we
cannot guarantee that our method for directional relations really (ap-
proximately) maximises the number of pairs with the correct directional
relation. This makes for an excellent opportunity for future work.

We know how to compute a matching that optimises one of the cri-
teria. However, we would like a matching that optimises, or approxi-
mately optimises, all three criteria. It is not clear how we can achieve
this. More research is also required to compute a matching that simul-
taneously minimises the distance under translation and scaling. We can

41

42 Chapter 5. Concluding Remarks

also investigate if the probabilistic matching approach from Alt, Scharf,
and Schymura [2] can be extended for our setting. Finally, there is the
question of how to find a suitable set of grid points to use. Preferably
we want an algorithm to compute an optimal solution, but alternatively
we are also interested in a good heuristic.

There is also more work remaining on the practical side. It would be
nice to do a more extensive experimental evaluation of our geographic
grid embeddings. An interesting question is for example how our method
compares to existing methods like the spatially ordered tree maps from
Wood and Dykes [34], or the diagram placement algorithms from van
Kreveld, Schramm, and Wolff [30].

References

[1] H. Alt and L.J. Guibas. Discrete geometric shapes: Matching, in-
terpolation, and approximation. In. Handbook of Computational
Geometry. Elsevier, 1996. Chap. 3, pages 121–153.

[2] H. Alt, L. Scharf, and D. Schymura. Probabilistic matching of
planar regions. Computational Geometry, 43(2):99–114, 2010.

[3] H. Alt, K. Mehlhorn, H. Wagener, and E. Welzl. Congruence, sim-
ilarity, and symmetries of geometric objects. Discrete and Com-
putational Geometry, 3(1):237–256, 1988.

[4] MD Atkinson. An optimal algorithm for geometrical congruence.
Journal of Algorithms, 8(2):159–172, 1987.

[5] M. Berkelaar, K. Eikland, P. Notebaert, et al. lpsolve: Open source
(mixed-integer) linear programming system. Eindhoven University
of Technology. 2010. url: http://lpsolve.sourceforge.net/
(visited on 06/29/2011).

[6] D. P. Bertsekas. The auction algorithm: A distributed relaxation
method for the assignment problem. Annals of Operations Re-
search, 14(1):105–123, 1988.

[7] H. Bunke, P. Foggia, C. Guidobaldi, C. Sansone, and M. Vento.
A Comparison of Algorithms for Maximum Common Subgraph on
Randomly Connected Graphs. In Structural, Syntactic, and Statis-
tical Pattern Recognition. Ed. by T. Caelli, A. Amin, R. Duin, D.
de Ridder, and M. Kamel. Vol. 2396. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2002, pages 85–106.

[8] O. Cheong. The Ipe extensible drawing editor. 2010. url: http:
//ipe7.sourceforge.net/ (visited on 06/29/2011).

43

http://lpsolve.sourceforge.net/
http://ipe7.sourceforge.net/
http://ipe7.sourceforge.net/

44 References

[9] S. Cohen. Finding color and shape patterns in images. PhD thesis.
Stanford University, Department of Computer Science, 1999.

[10] S. Cohen and L. Guibas. The Earth Mover’s Distance under trans-
formation sets. In The Proceedings of the Seventh IEEE Interna-
tional Conference on Computer Vision, volume 2, pages 1076 –
1083, 1999.

[11] D. Conte, C. Guidobaldi, and C. Sansone. A Comparison of Three
Maximum Common Subgraph Algorithms on a Large Database
of Labeled Graphs. In Graph Based Representations in Pattern
Recognition. Lecture Notes in Computer Science.

[12] J. Edmonds. Maximum matching and a polyhedron with 0, 1-
vertices. Journal of Research of the National Bureau of Standards,
69(1-2):125–130, 1965.

[13] A. Efrat and A. Itai. Improvements on bottleneck matching and
related problems using geometry. In Proceedings of the twelfth an-
nual ACM symposium on Computational Geometry, pages 301–
310, 1996.

[14] M.R. Garey and D.S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-completeness. WH Freeman & Co. New
York, NY, USA, 1979.

[15] M.T. Gastner and M.E.J. Newman. Diffusion-based method for
producing density-equalizing maps. Proceedings of the National
Academy of Sciences of the United States of America, 101(20):7499,
2004.

[16] R. Haar. Computational models of spatial relations. TR-478 MSC-
72-03610. Department of Computer Science, University of Mary-
land, 1976.

[17] M. Hagedoorn and R.C. Veltkamp. Reliable and efficient pattern
matching using an affine invariant metric. International Journal
of Computer Vision, 31(2):203–225, 1999.

[18] F.S. Hillier and G.J. Lieberman. Introduction to mathematical pro-
gramming. McGraw-Hill, 1990.

[19] Jiawei Hong and Xiaonan Tan. A new approach to point pattern
matching. In 9th International Conference on Pattern Recognition,
volume 1, pages 82 –84, 1988.

[20] D.P. Huttenlocher, K. Kedem, and M. Sharir. The upper envelope
of Voronoi surfaces and its applications. Discrete and Computa-
tional Geometry, 9(1):267–291, 1993.

References 45

[21] D.P Huttenlocher, G.A. Klanderman, and W.A. Rucklidge. Com-
paring Images Using the Hausdorff Distance. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 15(9):850–863, 1993.

[22] V. Kann. On the approximability of the maximum common sub-
graph problem. In STACS 92. Vol. 577. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 1992, pages 375–388.

[23] H.W. Kuhn. The Hungarian method for the assignment problem.
Naval research logistics quarterly, 2(1-2):83–97, 1955.

[24] J. J. McGregor. Backtrack search algorithms and the maximal
common subgraph problem. Software: Practice and Experience,
12(1):23–34, 1982.

[25] E. Raisz. The rectangular statistical cartogram. Geographical Re-
view, 24(2):292–296, 1934.

[26] B. Shneiderman. Tree visualization with tree-maps: 2-d space-
filling approach. ACM Transactions on Graphics, 11(1):92–99, 1992.

[27] T.A. Slocum, R.B. McMaster, F.C. Kessler, and H.H. Howard.
Thematic cartography and geovisualization. Second Edition. Pear-
son Prentice Hall, 2009.

[28] J. Sprinzak and M. Werman. Affine point matching. Pattern Recog-
nition Letters, 15(4):337–339, 1994.

[29] P. Vaidya. Geometry helps in matching. In Proceedings of the twen-
tieth annual ACM symposium on Theory of computing, pages 422–
425, 1988.

[30] M. van Kreveld, É. Schramm, and A. Wolff. Algorithms for the
placement of diagrams on maps. In Proceedings of the 12th ACM
International Symposium on Advances in Geographic Information
Systems, pages 222–231, 2004.

[31] J.J. Van Wijk and H. Van de Wetering. Cushion treemaps: Visu-
alization of hierarchical information. In Proceedings IEEE Sympo-
sium on Information Visualization, pages 73–78. IEEE, 1999.

[32] R.C. Veltkamp and M. Hagedoorn. State of the Art in Shape
Matching. In. Principles of visual information retrieval. Springer
Verlag, 2001. Chap. 4, pages 87 –115.

[33] J. Wood and J. Dykes. BikeGrid: Cycle hire docking station viewer.
2010. url: http://www.gicentre.org/bikegrid (visited on
06/27/2011).

[34] J. Wood and J. Dykes. Spatially ordered treemaps. IEEE Transac-
tions on Visualization and Computer Graphics, 14(6):1348–1355,
2008.

http://www.gicentre.org/bikegrid

	Abstract
	Contents
	1. Introduction
	2. Related Work
	Visualising geo-referenced data
	Solving point set matching problems

	3. Computing a Geographic Grid Embedding
	Minimising the distance
	Preserving adjacencies
	Preserving directional relations
	Choosing a grid

	4. Evaluation
	5. Concluding Remarks
	References

