412 research outputs found

    Adaptive robust control of an omnidirectional mobile platform for autonomous service robots in polar coordinates

    Get PDF
    This paper presents an adaptive robust control method for trajectory tracking and path following of an omni-directional wheeled mobile platform with actuators' uncertainties. The polar-space kinematic model of the platform with three independent driving omnidirectional wheels equally spaced at 120 from one another is briefly introduced, and the dynamic models of the three uncertain servomotors mounted on the driving wheels are also described. With the platform's kinematic model and the motors' dynamic model associated two unknown parameters, the adaptive robust controller is synthesized via the integral backstepping approach. Computer simulations and experimental results are conducted to show the effectiveness and merits of the proposed control method in comparison with a conventional PI feedback control method

    Adaptive Polar-Space Motion Control for Embedded Omnidirectional Mobile Robots with Parameter Variations and Uncertainties

    Get PDF
    This paper presents an adaptive polar-space motion controller for trajectory tracking and stabilization of a three-wheeled, embedded omnidirectional mobile robot with parameter variations and uncertainties caused by friction, slip and payloads. With the derived dynamic model in polar coordinates, an adaptive motion controller is synthesized via the adaptive backstepping approach. This proposed polar-space robust adaptive motion controller was implemented into an embedded processor using a field-programmable gate array (FPGA) chip. Furthermore, the embedded adaptive motion controller works with a reusable user IP (Intellectual Property) core library and an embedded real-time operating system (RTOS) in the same chip to steer the mobile robot to track the desired trajectory by using hardware/software co-design technique and SoPC (system-on-a-programmable-chip) technology. Simulation results are conducted to show the merit of the proposed polar-space control method in comparison with a conventional proportional-integral (PI) feedback controller and a non-adaptive polar-space kinematic controller. Finally, the effectiveness and performance of the proposed embedded adaptive motion controller are exemplified by conducting several experiments on steering an embedded omnidirectional mobile robot

    High and low level control for an Unmanned ground vehicle.

    Get PDF
    Esta Investigación presenta el desarrollo de una metodología de control de alto y bajo nivel para robot móvil o vehículo terrestre no tripulados que opera en un entorno definido, la aplicación de métodos de control automático lineal y no lineal, junto con algoritmos de búsqueda y planificación, proporcionan la plataforma de autonomía

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described

    Enhanced vision-based localization and control for navigation of non-holonomic omnidirectional mobile robots in GPS-denied environments

    Get PDF
    New Zealand’s economy relies on primary production to a great extent, where use of the technological advances can have a significant impact on the productivity. Robotics and automation can play a key role in increasing productivity in primary sector, leading to a boost in national economy. This thesis investigates novel methodologies for design, control, and navigation of a mobile robotic platform, aimed for field service applications, specifically in agricultural environments such as orchards to automate the agricultural tasks. The design process of this robotic platform as a non-holonomic omnidirectional mobile robot, includes an innovative integrated application of CAD, CAM, CAE, and RP for development and manufacturing of the platform. Robot Operating System (ROS) is employed for the optimum embedded software system design and development to enable control, sensing, and navigation of the platform. 3D modelling and simulation of the robotic system is performed through interfacing ROS and Gazebo simulator, aiming for off-line programming, optimal control system design, and system performance analysis. Gazebo simulator provides 3D simulation of the robotic system, sensors, and control interfaces. It also enables simulation of the world environment, allowing the simulated robot to operate in a modelled environment. The model based controller for kinematic control of the non-holonomic omnidirectional platform is tested and validated through experimental results obtained from the simulated and the physical robot. The challenges of the kinematic model based controller including the mathematical and kinematic singularities are discussed and the solution to enable an optimal kinematic model based controller is presented. The kinematic singularity associated with the non-holonomic omnidirectional robots is solved using a novel fuzzy logic based approach. The proposed approach is successfully validated and tested through the simulation and experimental results. Development of a reliable localization system is aimed to enable navigation of the platform in GPS-denied environments such as orchards. For this aim, stereo visual odometry (SVO) is considered as the core of the non-GPS localization system. Challenges of SVO are introduced and the SVO accumulative drift is considered as the main challenge to overcome. SVO drift is identified in form of rotational and translational drift. Sensor fusion is employed to improve the SVO rotational drift through the integration of IMU and SVO. A novel machine learning approach is proposed to improve the SVO translational drift using Neural-Fuzzy system and RBF neural network. The machine learning system is formulated as a drift estimator for each image frame, then correction is applied at that frame to avoid the accumulation of the drift over time. The experimental results and analyses are presented to validate the effectiveness of the methodology in improving the SVO accuracy. An enhanced SVO is aimed through combination of sensor fusion and machine learning methods to improve the SVO rotational and translational drifts. Furthermore, to achieve a robust non-GPS localization system for the platform, sensor fusion of the wheel odometry and the enhanced SVO is performed to increase the accuracy of the overall system, as well as the robustness of the non-GPS localization system. The experimental results and analyses are conducted to support the methodology

    Loop closure for topological mapping and navigation with omnidirectional images

    Get PDF
    Dans le cadre de la robotique mobile, des progrès significatifs ont été obtenus au cours des trois dernières décennies pour la cartographie et la localisation. La plupart des projets de recherche traitent du problème de SLAM métrique. Les techniques alors développées sont sensibles aux erreurs liées à la dérive ce qui restreint leur utilisation à des environnements de petite échelle. Dans des environnements de grande taille, l utilisation de cartes topologiques, qui sont indépendantes de l information métrique, se présentent comme une alternative aux approches métriques.Cette thèse porte principalement sur le problème de la construction de cartes topologiques pour la navigation de robots mobiles dans des environnements urbains de grande taille, en utilisant des caméras omnidirectionnelles. La principale contribution de cette thèse est la résolution efficace et avec précision du problème de fermeture de boucles, problème qui est au coeur de tout algorithme de cartographie topologique. Le cadre de cartographie topologique éparse / hiérarchique proposé allie une approche de partionnement de séquence d images (ISP) par regroupement des images visuellement similaires dans un noeud avec une approche de détection de fermeture de boucles permettant de connecter ces noeux. Le graphe topologique alors obtenu représente l environnement du robot. L algorithme de fermeture de boucle hiérarchique développé permet d extraire dans un premier temps les noeuds semblables puis, dans un second temps, l image la plus similaire. Cette détection de fermeture de boucles hiérarchique est rendue efficace par le stockage du contenu des cartes éparses sous la forme d une structure de données d indexation appelée fichier inversé hiérarchique (HIF). Nous proposons de combiner le score de pondération TFIDF avec des contraintes spatiales et la fréquence des amers détectés pour obtenir une meilleur robustesse de la fermeture de boucles. Les résultats en terme de densité et précision des cartes obtenues et d efficacité sont évaluées et comparées aux résultats obtenus avec des approches de l état de l art sur des séquences d images omnidirectionnelles acquises en milieu extérieur. Au niveau de la précision des détections de boucles, des résultats similaires ont été observés vis-à-vis des autres approches mais sans étape de vérification utilisant la géométrie épipolaire. Bien qu efficace, l approche basée sur HIF présente des inconvénients comme la faible densité des cartes et le faible taux de détection des boucles. Une seconde technique de fermeture de boucle a alors été développée pour combler ces lacunes. Le problème de la faible densité des cartes est causé par un sur-partionnement de la séquence d images. Celui-ci est résolu en utilisant des vecteurs de descripteurs agrégés localement (VLAD) lors de l étape de ISP. Une mesure de similarité basée sur une contrainte spatiale spécifique à la structure des images omnidirectionnelles a également été développée. Des résultats plus précis sont obtenus, même en présence de peu d appariements. Les taux de réussite sont meilleurs qu avec FABMAP 2.0, la méthode la plus utilisée actuellement, sans étape supplémentaire de vérification géométrique.L environnement est souvent supposé invariant au cours du temps : la carte de l environnement est construite lors d une phase d apprentissage puis n est pas modifiée ensuite. Une gestion de la mémoire à long terme est nécessaire pour prendre en compte les modifications dans l environnement au cours du temps. La deuxième contribution de cette thèse est la formulation d une approche de gestion de la mémoire visuelle à long terme qui peut être utilisée dans le cadre de cartes visuelles topologiques et métriques. Les premiers résultats obtenus sont encourageants. (...)Over the last three decades, research in mobile robotic mapping and localization has seen significant progress. However, most of the research projects these problems into the SLAM framework while trying to map and localize metrically. As metrical mapping techniques are vulnerable to errors caused by drift, their ability to produce consistent maps is limited to small scale environments. Consequently, topological mapping approaches which are independent of metrical information stand as an alternative to metrical approaches in large scale environments. This thesis mainly deals with the loop closure problem which is the crux of any topological mapping algorithm. Our main aim is to solve the loop closure problem efficiently and accurately using an omnidirectional imaging sensor. Sparse topological maps can be built by representing groups of visually similar images of a sequence as nodes of a topological graph. We propose a sparse / hierarchical topological mapping framework which uses Image Sequence Partitioning (ISP) to group visually similar images of a sequence as nodes which are then connected on occurrence of loop closures to form a topological graph. A hierarchical loop closure algorithm that can first retrieve the similar nodes and then perform an image similarity analysis on the retrieved nodes is used. An indexing data structure called Hierarchical Inverted File (HIF) is proposed to store the sparse maps to facilitate an efficient hierarchical loop closure. TFIDF weighting is combined with spatial and frequency constraints on the detected features for improved loop closure robustness. Sparsity, efficiency and accuracy of the resulting maps are evaluated and compared to that of the other two existing techniques on publicly available outdoor omni-directional image sequences. Modest loop closure recall rates have been observed without using the epi-polar geometry verification step common in other approaches. Although efficient, the HIF based approach has certain disadvantages like low sparsity of maps and low recall rate of loop closure. To address these shortcomings, another loop closure technique using spatial constraint based similarity measure on omnidirectional images has been proposed. The low sparsity of maps caused by over-partitioning of the input sequence has been overcome by using Vector of Locally Aggregated Descriptors (VLAD) for ISP. Poor resolution of the omnidirectional images causes fewer feature matches in image pairs resulting in reduced recall rates. A spatial constraint exploiting the omnidirectional image structure is used for feature matching which gives accurate results even with fewer feature matches. Recall rates better than the contemporary FABMAP 2.0 approach have been observed without the additional geometric verification. The second contribution of this thesis is the formulation of a visual memory management approach suitable for long term operability of mobile robots. The formulated approach is suitable for both topological and metrical visual maps. Initial results which demonstrate the capabilities of this approach have been provided. Finally, a detailed description of the acquisition and construction of our multi-sensor dataset is provided. The aim of this dataset is to serve the researchers working in the mobile robotics and vision communities for evaluating applications like visual SLAM, mapping and visual odometry. This is the first dataset with omnidirectional images acquired on a car-like vehicle driven along a trajectory with multiple loops. The dataset consists of 6 sequences with data from 11 sensors including 7 cameras, stretching 18 kilometers in a semi-urban environmental setting with complete and precise ground-truth.CLERMONT FD-Bib.électronique (631139902) / SudocSudocFranceF

    Challenges and Solutions for Autonomous Robotic Mobile Manipulation for Outdoor Sample Collection

    Get PDF
    In refinery, petrochemical, and chemical plants, process technicians collect uncontaminated samples to be analyzed in the quality control laboratory all time and all weather. This traditionally manual operation not only exposes the process technicians to hazardous chemicals, but also imposes an economical burden on the management. The recent development in mobile manipulation provides an opportunity to fully automate the operation of sample collection. This paper reviewed the various challenges in sample collection in terms of navigation of the mobile platform and manipulation of the robotic arm from four aspects, namely mobile robot positioning/attitude using global navigation satellite system (GNSS), vision-based navigation and visual servoing, robotic manipulation, mobile robot path planning and control. This paper further proposed solutions to these challenges and pointed the main direction of development in mobile manipulation

    Design and Development of an Automated Mobile Manipulator for Industrial Applications

    Get PDF
    This thesis presents the modeling, control and coordination of an automated mobile manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that includes a mobile platform for locomotion and a manipulator arm for manipulation. The structural complexity of a mobile manipulator is the main challenging issue because it includes several problems like adapting a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective of the thesis is to fabricate an automated mobile manipulator and develop control algorithms that effectively coordinate the arm manipulation and mobility of mobile platform. The research work starts with deriving the motion equations of mobile manipulators. The derivation introduced here makes use of motion equations of robot manipulators and mobile platforms separately, and then integrated them as one entity. The kinematic analysis is performed in two ways namely forward & inverse kinematics. The motion analysis is performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion analysis results, Differential three WMP is chosen as the mobile platform for the developed mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-Hartenberg representation is implemented to perform forward kinematic analysis. Because of this representation, one can easily understand the kinematic equation for a robotic arm. From the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is developed. Motion planning of an intelligent mobile robot is one of the most vital issues in the field of robotics, which includes the generation of optimal collision free trajectories within its work space and finally reaches its target position. For solving this problem, two evolutionary algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) are introduced to move the mobile platform in intelligent manner. The developed algorithms are effective in avoiding obstacles, trap situations and generating optimal paths within its unknown environments. Once the robot reaches its goal (within the work space of the manipulator), the manipulator will generate its trajectories according to task assigned by the user. Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility of the developed methodologies in various unknown environments. Additionally, experiments are carried out on an automated mobile manipulator. ATmega16 Microcontrollers are used to enable the entire robot system movement in desired trajectories by means of robot interface application program. The control program is developed in robot software (Keil) to control the mobile manipulator servomotors via a serial connection through a personal computer. To support the proposed control algorithms both simulation and experimental results are presented. Moreover, validation of the developed methodologies has been made with the ER-400 mobile platform
    corecore