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 Abstract         

This thesis presents the modeling, control and coordination of an automated mobile 

manipulator. A mobile manipulator in this investigation consists of a robotic manipulator and 

a mobile platform resulting in a hybrid mechanism that includes a mobile platform for 

locomotion and a manipulator arm for manipulation. The structural complexity of a mobile 

manipulator is the main challenging issue because it includes several problems like adapting 

a manipulator and a redundancy mobile platform at non-holonomic constraints. The objective 

of the thesis is to fabricate an automated mobile manipulator and develop control algorithms 

that effectively coordinate the arm manipulation and mobility of mobile platform. 

The research work starts with deriving the motion equations of mobile manipulators. The 

derivation introduced here makes use of motion equations of robot manipulators and mobile 

platforms separately, and then integrated them as one entity. The kinematic analysis is 

performed in two ways namely forward & inverse kinematics. The motion analysis is 

performed for various WMPs such as, Omnidirectional WMP, Differential three WMP, Three 

wheeled omni-steer WMP, Tricycle WMP and Two steer WMP. From the obtained motion 

analysis results, Differential three WMP is chosen as the mobile platform for the developed 

mobile manipulator. Later motion analysis is carried out for 4-axis articulated arm. Danvit-

Hartenberg representation is implemented to perform forward kinematic analysis. Because of 

this representation, one can easily understand the kinematic equation for a robotic arm. From 

the obtained arm equation, Inverse kinematic model for the 4-axis robotic manipulator is 

developed. 

Motion planning of an intelligent mobile robot is one of the most vital issues in the field of 

robotics, which includes the generation of optimal collision free trajectories within its work 

space and finally reaches its target position. For solving this problem, two evolutionary 

algorithms namely Particle Swarm Optimization (PSO) and Artificial Immune System (AIS) 

are introduced to move the mobile platform in intelligent manner. The developed algorithms 

are effective in avoiding obstacles, trap situations and generating optimal paths within its 

unknown environments. Once the robot reaches its goal (within the work space of the 

manipulator), the manipulator will generate its trajectories according to task assigned by the 

user.  
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Simulation analyses are performed using MATLAB-2010 in order to validate the feasibility 

of the developed methodologies in various unknown environments. Additionally, 

experiments are carried out on an automated mobile manipulator. ATmega16 

Microcontrollers are used to enable the entire robot system movement in desired trajectories 

by means of robot interface application program. The control program is developed in robot 

software (Keil) to control the mobile manipulator servomotors via a serial connection through 

a personal computer. To support the proposed control algorithms both simulation and 

experimental results are presented. Moreover, validation of the developed methodologies has 

been made with the ER-400 mobile platform. 
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1. INTRODUCTION 

With an incessant need for increased productivity and the delivery of end products with 

uniform quality, manufacturing industries are turning more and more toward the computer-

based automation. At the present time, industries are equipped with special-purpose machines 

to perform prearranged tasks in manufacturing process. But these machines are inflexible in 

performing variety of tasks and generally expensive. These limitations have led to the 

development of robots with capable of performing a variety of manufacturing functions in a 

more flexible working environment at lower production costs. 

It is claimed that robots are used to perform 4A works for 4D, or 3H environments as 

represented in Fig.1.1. 4A performances are automation, augmentation, assistance and 

autonomous tasks.  4D environments are Dangerous. Dirty, Dull and Difficult. 3H Means 

Hot, Heavy and Hazardous environments. 

 

Fig.1.1 Robot applications for 4A in 3D & 3H 

Robot is a multi-disciplinary engineering device that ranges in scope from the design of 

mechanical and electrical components to sensor technology, computer systems, and artificial 

intelligence as represented in Fig.1.2.   
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Fig.1.2 Multi-disciplinary nature of Robot 

Mechanical domain deals with the design of mechanical components (links, end-effectors) 

with respect to its kinematics, dynamics and control analyses of robots. Electrical engineering 

works on powered actuators to give the motion at each joint of the robot. System design 

engineering deals with perception, sensing and control methods of robots. 

Programming/software engineering is responsible to make the robot as expert system by 

integrating intelligence to it. 

1.1.Origin of the Work 

An industrial robot is a general-purpose, computer-controlled manipulator consists of several 

rigid links connected by revolute or prismatic joints as represented in Fig.1.3. One end of the 

robot arm is attached to a fixed base, while the other end of the manipulator is an end-effector 

called tool to perform various tasks. The end-effector may be a gripper, welding tool, or 

spraying gun attached to the robot according to the desired tasks such as manipulate objects, 

welding, painting and assembly tasks etc. End-effector motion is decided according to the 

motion of the joints which results in relative motion of the links. Mechanically, an industrial 

robot is composed of an arm (or mainframe) and a wrist subassembly plus a tool. It is 

designed to reach the end-effector to a specific position located within its work volume.  

Many commercially available industrial robots are widely used in manufacturing and 

assembly tasks, such as material handling, spot/arc welding, parts assembly, paint spraying, 
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loading and unloading numerically controlled machines, space and undersea exploration, 

prosthetic arm research, and in handling hazardous materials. 

 

Fig.1.3 Industrial robot system architecture 

Yet, for all of their successes, these industrial robots have a fundamental disadvantage: lack 

of mobility. A fixed manipulator has a limited work space that depends on where it is bolted 

down. In contrast, a mobile robot is able to travel all over the manufacturing plant and can 

apply its talents wherever it is most effective. 

Over the past twenty years, bulk amount of research and development have concentrated on 

stationary robotic manipulators because of their industrial applications. Less effort has been 

made on mobile robots. Typically, a mobile robot’s structure consists of a mobile platform 

that is driven with the aid of a pair of tracks, wheels/legs.  

Path planning is one of the important tasks in the navigation of an autonomous mobile robot. 

The most important characterization of a motion planner is according to the problem it 

solves. It means that the effectiveness of the motion planner depends on properties of the 

robot solving the task. The different aspects under mobile robot motion control scheme are 

shown in Fig.1.4. These aspects of motion planning problem for autonomous mobile 

robot/robots includes: 

1. Robot locomotive ability (most popular mechanism for robot motion) 

2. Perception (acquiring robots environment condition)  

3. Localization (determines the robot position in its environment) 

4. Cognition (decision-making and execution to achieve its highest-order goals) 

5. Motion Control (path execution in real world environment) 
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Fig.1.4 Mobile robot motion control scheme 

There are varieties of possible ways to move, and so the selection of a robot’s locomotion 

mechanism is an important aspect of mobile robot design. Most of these locomotion 

mechanisms are inspired by their biological counterparts such as walk, jump, run, slide, skate, 

swim, fly, and, of course roll. However, replicating nature in this regard is extremely difficult 

for several reasons. Although legged locomotion has been studied, the devastating majority of 

the mobile robots with wheel locomotion mechanism have been built and evaluated. In 

general, legged locomotion requires higher degrees of freedom and therefore greater 

mechanical complexity exists compared to wheeled locomotion. Wheels, in addition to being 

simple, are extremely well suited to flat ground and these are more energy efficient than 

legged/treaded robots on hard and smooth surfaces. Wheeled Mobile Robots (WMRs) find its 

widespread application in industry because of the hard, smooth plant floors in existing 

industrial environments.  

1.2. Problem Statement 

The new design is based on hybridization of locomotion and manipulation. In this approach, 

the mobile platform and manipulator arm are interchangeable in their roles so that both can 

support locomotion and manipulation in several modes of operation. In this system 

architecture, a manipulator is equipped on top of the mobile platform to provide the required 

manipulation capability (neutralization of bombs or landmines, manipulation of hazardous 

materials, etc). The development of the hybrid manipulator system covers mechanics of 

systems design, system dynamic modeling and simulations, design optimization, computer 

architecture and control system design.  
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1.3. Objectives 

The aim of the research work is to increase significantly the robot’s mobility and 

manipulability functionalities while increasing its reliability and reducing its complexity and 

cost. The objective of the current investigation is to develop a new paradigm for the design of 

hybrid manipulators in order to solve foremost existing problems and overcome barriers for 

of mobile platforms in unfamiliar terrain applications. The idea of the design paradigm is the 

interchangeability of the locomotion and manipulation functions, which benefits the robot’s 

overall operation and function.  

A mobile manipulator in this study is a manipulator mounted on a mobile platform. Since the 

motion of the arm is unknown a priori, the mobile platform has to use the joint position 

information of the manipulator for motion planning.  

The following objectives were accordingly specified for this project work:  

o Forward and inverse kinematic  analyses  are  performed  on  the  robotic  arm  and the 

mobile platform in  order  to navigate the robot and manipulate the objects in desired 

direction.  

o Modeling of the arm is carried out in CAD software ‘CATIA V6' in order to simulate 

each part of the manipulator. 

o Intelligent planning and control algorithms are developed for the platform so that the 

manipulator is always positioned at the preferred configurations measured by its 

manipulability. 

o To  plan  robot  trajectory  in  terms  of  the  kinematics  of  the  manipulator,  an  

intelligent algorithm is developed. The control scheme associates the mobile base 

activities and the manipulator activities to produce an intelligent hybrid system that 

performs a coordinated motion and manipulation. 

o The control program is developed in robot software ‘MATLAB & KIEL’ to control the 

arm servo through a personal computer. 

o Finally, experimental analysis is performed in order to validate the efficiency of the 

developed control strategies. Moreover, the developed methodologies are implemented 

to the fabricated hybrid robot and the procured ER-400 robot in various robotic 

environments.  
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1.4. Thesis Overview   

This dissertation is organized as follows 

 Chapter 2 provides a background to the field of development of mobile manipulator. This 

includes the literature survey on kinematic models of the manipulator & mobile platform. 

It also introduces the existed types of design architectures to control the mobile platform.  

 Chapter 3 devotes to mechanism development and simulation analysis for the 4-axis 

robot arm. This study is carried out on detailed parts of robotic arm assembly. Preliminary 

computations will be done to build relationship among the robotic arm joints parameters 

(angles and lengths).  These relations are used to control  the  position  and  orientation  of  

the  end  effector(gripper)  of  the robotic  arm. The  trajectories  generated  by  robotic  

arm  in  the  workspace  is  obtained  by performing  numerical  kinematic  analysis 

(forward & inverse)  in  "MATLAB-2010.  Simulation analysis of robotic arm is studied 

by performing mock-up in "CATIA V6". 

 Chapter 4 outlines the mechanical structure of the mobile platform to optimize the design 

by defining suitable operating parameters such as maneuverability and required motor 

torques. 

 Chapter 5 deals with the integration of the manipulation and locomotion functionalities to 

develop a new hybrid mobile manipulator. 

 Chapter 6 describes the control system design paradigms for the mobile platform. Two 

system architectures are developed those are based on Particle swarm optimization (PSO). 

The developed algorithms generate optimal trajectories within its search space based on 

the robot sensory information. 

 Chapter 7 addresses the control system design paradigms for the mobile platform. Two 

system architectures are developed those are based on Artificial Immune System (AIS). 

The developed algorithms generate optimal trajectories within its search space based on 

the robot sensory information. 

 Chapter 8 deals with the experimental analysis of the developed mobile manipulator to 

control its motion with techniques described in the previous chapters. And also this 

chapter presents the circuit diagram of the various parts interfacing with microcontroller 

& its descriptions to control the motion of the mobile manipulator. 

 Chapter 9 addresses the conclusions. 
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2. LITERATURE SURVEY 

A mobile manipulator in this study is a manipulator mounted on a mobile platform. Since the 

motion of the arm is unknown a priori, the mobile platform has to use the joint position 

information of the manipulator for motion planning. The study of the coordination and 

control of mobile manipulators includes several research domains. Major issues related to this 

thesis include the control of a wheeled mobile platform, the path planning of mobile robots 

and the coordination strategy of locomotion and manipulation of the mobile manipulator. A 

wide literature has been studied and analysed concerning the motion control issues for 

locomotion and manipulation. 

2.1. Manipulator Kinematics 

To perform various industrial operations robots can replace humans. The robot design 

engineers put forth assumptions as regard to the provision of links and joints of the 

mechanical articulated system. The Manipulation System of a robot arm is a mechanism 

which form a kinematic chain composed of rigid links and are joined by kinematic joints 

often with one degree of mobility (rotary or prismatic joints). A prime validation [1] of this 

choice is of a geometrical nature. At first sight the mechanical design architecture for a robot 

arm appears rather simple and yet it presents a very complex basic difficulty. Mechanisms 

and machines theory devoted greatly to planar and spatial mechanism synthesis with several 

degrees of freedom [2-4].  

An approach to find the mathematical solution for simple manipulators is described in [5]. 

Mitrouchev [6] presented an overview about the design process of an industrial robot 

kinematic chain. The method allows the generation of plane mechanical structures with 

different degrees of mobility. The generalized solution of manipulators [7] kinematics and 

dynamics has been presented. They used 4×4 homogenous transformation matrices to 

describe the rotation and translation of manipulator links. Two and three link manipulator 

kinematics has been presented in [8]. They also implemented soft computing techniques to 

solve robot kinematics. From the generalised kinematic models of a manipulator with 6 

degree of freedom; an  alternative  design  introduced  based  on  the  concept  of  an  in-

parallel actuated mechanism [9]. The offline programming of industrial robots for the use in 

machining applications, three possible solutions are presented in [10-13] for overcoming 

kinematic constraints (end-effector rotation, part translation, and part rotation). 
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A new formulation method to solve the kinematic problem of multi arm robot systems based 

on screw theory and quaternion algebra has been presented by Sariyildiz and Temeltas [10]. 

Using the robot kinematics equation, a kinematic error model [11] is deduced by mapping 

structural parameters to the joint angular parameter. Dynamic error compensation method 

also discussed in their work through adding control algorithm to the compensation software. 

Accuracy and repeatability characteristics of industrial robot are analysed by developing an 

error tree [12]. The accuracy and repeatability of the manipulator are investigated utilizing 

the Denavit-Hartenberg kinematics parameters, the homogeneous transformation matrix, and 

the differential transformation matrix theory, and corresponding measures are developed. A 

Laser Tracker system based low-cost position measurement [14] setup has been developed 

for industrial robot kinematic parameters estimation The theoretic derivation of this 

calibration approach showed that the base calibration is not necessary. 

The inverse kinematic models of a serial robot manipulator map the Cartesian space to the 

joint space. The solution for inverse kinematics problem is difficult since the relation between 

the joint space and Cartesian space is non-linear and involves complicated transcendental 

equations with multiple solutions.  

Pozna [15] has been focussed on robot manipulators with rotation joints which are 

reciprocally perpendicularly/parallel. The study ensured by the general form of the link which 

lies two successive joint and the generality of the connection type between the link and the 

joint. Aydın and Kucuk [16] have been presented closed form solutions of the 6-DOF 

industrial robot manipulators with Euler wrist using dual quaternions. The developed tool can 

represent rotation and translation simultaneously. Forward and inverse kinematics solutions 

are presented For the TR 4000 educational robot arm [17] with 5-DOF. Later a software 

program is interfaced to show the robot motion with respect to its mathematical analysis. 

Pashkevich [18]  has been dealt  with  the  inverse  transformation  of  coordinates  for  

robotic manipulators  with  high  payload  capacity,  those  are  widely  used  in  welding  

applications. The developed algorithms  allow  users  to  obtain solutions  to  the  prescribed 

configuration,  and  possess  good convergence,  even  for  singular  manipulator locations. 

Inverse kinematics and dynamics algorithms for serial robots are presented in [19]. These 

robots are controlled by the joint actuators (required joint torques and forces) to produce the 

desired trajectory by its end effector. 

As the complexity of robot increases, finding the inverse kinematics solution are difficult and 

computationally expensive since it requires the solution of nonlinear equations having 

transcendental functions. Alavandar and Nigam [20] have been presented the angular 
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difference is deduced and the data predicted with Adaptive Neuro-Fuzzy Inference System  

for two and three degree of freedom planar manipulator. In [21], for three-link planar 

manipulator inverse kinematic models have been developed for generating desired 

trajectories in the Cartesian space (2D) by using a feed-forward neural network. 

2.2. Mobile Platform Locomotion  

This section describes the preliminaries and the previous work related to solve mobile robot 

navigation problem. Numerous research works have been devoted to this area within the last 

decades. Large number of techniques has been developed in an attempt to solve this problem 

but no single technique has been universally accepted. An overview of major techniques used 

in mobile robot navigation has been addressed here. 

2.2.1. Overview of motion planning concepts 

The most important characterization of a motion planner is according to problem it solves. It 

means the effectiveness of the motion planner depends on properties of the robot solving the 

task. Once the task and the robot system are defined the next step is to develop algorithms to 

solve the specific problem.  

 

Fig.2.1 Control scheme for path execution of autonomous mobile robot 
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The different aspects under mobile robot motion control scheme are shown in Fig.2.1. These 

aspects of motion planning problem for autonomous mobile robot/robots includes: 

 Robot locomotive ability (most popular mechanism for robot motion) 

 Perception (acquiring robots environment condition)  

 Localization (determines the robot position in its environment) 

 Cognition (decision-making and execution to achieve its highest-order goals) 

 Motion Control (path execution in real world environment) 

2.2.2. Wheel locomotion 

In order to move a mobile robot from one position to another position it requires some 

locomotion mechanisms. So the selection of locomotion mechanism for a mobile robot 

design is an important aspect from a large number of possible ways to move. Most of these 

locomotion mechanisms [22-25] for a mobile robot, such as walk (human), slide (snake), run 

(4legged animal), jump (animals like kangaroo) etc. are biologically inspired. The selection 

of locomotion mechanism is desirable to motivate form the biological systems because they 

succeed in moving through various types of environments.  But the manmade structural 

replication of biological systems is extremely difficult for certain reasons includes with:  

 Mechanical complexity (each part must be fabricated individually) 

 Biological energy storage systems used by animals (manmade hydraulic activating 

system)   

 Mathematical complexity (if a biological system is having large number of parts then it is 

difficult for motion analysis of a manmade system) etc. 

Because of these limitations, the simplest biological locomotion mechanism with a small 

number of articulated legs are widely using.  

But the mechanical complexity is more in legged locomotion because it requires higher 

degrees of freedom. In order to avoid this difficulty active powered wheels are equipped to 

the mobile robot. Wheel type locomotion mechanism is quite simple and is suitable for flat 

ground type environments. The only limitation with this mechanism is, when the environment 

(surface) becomes very soft it gives inefficient results due to rolling friction (between contact 

point of wheel & surface). In the past research work, several well-known algorithms and 

techniques have been proposed [26-28] for controlling mobile robot motion.  

The relation between the robot chassis and the wheels equipped to it can be developed easily 

by considering the mobile robot as a planar rigid body [29]. The classification of wheels for a 

mobile robot can be classified into five types according to the geometrical constraints of 
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wheels. Then for each type of wheel, the structure of the kinematic and dynamic models has 

been analyzed in [30].  

When a mobile robot is equipped with three independent steered standard wheels, the 

developed wheel architecture [31] is helpful to provide omni-directional motions. Mobile 

robots equipped with steered standard wheels are widely using because of their reliability and 

simple in mechanism. Kinematic relationships between the wheel slips of a steered wheel 

robot and positions of the instantaneous rotation centers have been developed in [32]. Cariou 

et. al. [33] have been considered sliding phenomena as both lateral and angular deviations 

and generated automatic path for a four wheeled steering vehicle. Marcovitz and Kelly [34] 

have been developed a method based on perturbative models to represent slip in all degrees 

of freedom, later they have implemented it to skid-steered vehicles.  

Due to their mobility limitations of steered standard wheels on the plane, caster wheels are 

usually employing in most household goods utilize in home, offices and hospitals etc. The 

kinematics of a mobile robot having double-wheel-type active caster [35] has been 

investigated for moving the robot in its planar workspace. Chung et. al. [36] have developed 

kinematic models for holonomic and omni‐directional mobile robot when it is equipped with 

offset steerable wheels. The dynamic model of a wheeled mobile robot equipped with 

powered caster wheels has been derived based on vehicle dynamics by introducing contact 

stability condition [37].  Kim and lee [38] have been derived the isotropy conditions based on 

the kinematic model of an omnidirectional wheeled mobile robot with three active caster 

wheels. 

A Swedish wheel is nothing but a common wheel except that rollers are mounted on its 

perimeter. Because of rollers arrangement, the robot will have a full mobility the plane which 

means the robot can move in any direction i.e. the robot equipping with Swedish wheels is an 

omnidirectional mobile robot. Indiveri [39] has been introduced the issues of motion control 

and the kinematic models of wheeled mobile robot having N number of Swedish wheels. In 

[40], a path tracking control law has been addressed for wheeled mobile robots equipped with 

Swedish wheels. Doroftei  et. al. [41] have been designed a Mecanum-wheeled mobile robot. 

Their robot is having four Swedish wheels in order to move the robot Omni directionally 

without any conventional steering system. 

Another type of wheels is spherical wheels which offer greater mobility and stability to a 

mobile robot but the understanding of its controlling and motion planning is very complex. A 

novel spherical wheel has been introduced in [42] for an omni-directional mobile robot and is 

effective in step climbing capability with its hemispherical wheels. A novel combination of 
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Omni wheel and spherical wheel unit has been presented in [43] and its operating principle is 

basically a spherical wheel driven by two perpendicular pairs of Omni wheels. The motion 

planning problem for the rolling sphere is often referred as the ‘‘ball-plate problem,’’ and 

propose two different algorithms for reconfiguration as described in [44]. The first algorithm 

is based on standard kinematic model and invokes alternating inputs to obtain a solution 

comprised of circular arcs and straight line segments. The second algorithm is based on the 

Gauss-Bonet theorem which achieves reconfiguration through spherical triangle maneuvers. 

The kinematic model of a spherical wheeled mobile robot has been developed using 

quaternions [45] for the description of the orientation of the robot. Lauwers et. al. [46] have 

been presented the overall design of a single spherical wheel mobile robot, which can move 

directly in any direction. 

The fixed standard wheel has no vertical axis of rotation for steering. Its angle to the chassis 

is thus fixed, and it is limited to motion back and forth along the wheel plane and rotation 

around its contact point with the ground plane. Since for a wheeled mobile robot, three 

fundamental characteristics are required: maneuverability, controllability, and stability; 

minimum two wheels are sufficient for static stability. A large amount of research work [47-

52] has been focused on two-wheel differential-drive robot which can achieve static stability 

if the center of mass is below the wheel axle. Dhaouadi and Hatab [53] presented differential 

drive mobile robot dynamics, which will assist researchers in the modeling and design of 

suitable controllers for mobile robot navigation and trajectory tracking. 

A tracking control method for differential-drive mobile robots with non-holonomic 

constraints by using a back stepping-like feedback linearization [47]. A nonlinear feedback 

path controller [48] is presented for a differential drive mobile robot. To control the 

differential robot kinematic model are developed, then fuzzy logic based control strategy is 

implemented [49]. Menn et. al. [51] have been presented a generic kinematic modelling 

approach for articulated multi-monocycle mobile robots. Later this methodology is 

implemented to the RobuRoc mobile robot.  Feng et. al. [52] have been presented a model-

reference adaptive motion controller implemented to a differential-drive mobile robot. This 

controller provides compensation for external errors. 

2.2.3. Motion Control Strategy for differential mobile platform 

The motion control of nonholonomic wheeled mobile robot has received considerable 

attention over the last few years and several tracking control algorithms have been addressed 

to solve this issue. 
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A novel adaptive trajectory tracking controller for a nonholonomic wheeled mobile robot has 

been presented in [53] with unknown parameters and uncertain dynamics. Sluný et. al. [54] 

have been presented two motion control architectures, evolutionary algorithm and a 

traditional reinforcement learning algorithm based on robot’s localization. In [55], a local 

control strategy for the control of vehicle platoons has been addressed. In their investigation, 

the vehicle has the information about its own orientation, distance and azimuth of the leading 

vehicle. Ali [56] has been presented the development, implementation, and testing of a semi-

autonomous robotic platform, which is used for educational and research purposes. A 

modular hardware design is employed to interface different sensors and motor drivers to the 

ATMEL microcontroller chip (AVR ATmega32). With reference to the kinematical model of 

a differential mobile robot, a known path following control law [57] is adapted to account for 

actuator velocity saturation. The proposed solution is verified experimentally for high speed 

applications. 

2.3. Mobile Manipulator Structure  

Mobile manipulator is a widespread term in nowadays to refer to robots that combine the 

capabilities of locomotion and manipulation. A mobile manipulator in this investigation 

consists of a robotic manipulator and a mobile platform resulting in a hybrid mechanism that 

includes a mobile robot platform for locomotion and a manipulator for manipulation. The 

tasks allotted to these robotic systems are often in terms of end effector evolution, either in 

point-to-point or in continuous motion execution. 

Bayle et. al. [58] have been presented a generic approach of a kinematic controller for 

wheeled mobile manipulators. Their work discussed about the control of a simulated 

nonholonomic mobile manipulator, where the task is defined as a Cartesian trajectory of the 

end-effector. A simple and general kinematic model for non-holonomic mobile manipulator 

is derived in [59] by merging the manipulator kinematics with the permissible differential 

motion of the platform. A non-holonomic mobile manipulator has been considered in [60] 

which is built with a n DOF joint robotic arm and a non-holonomic mobile platform with two 

independently driven wheels. Viet et. al. [61] have been proposed a tracking control method 

for a three-wheeled omnidirectional manipulator system considering the effects of friction. 

The system is separated into two subsystems, a three-wheeled omnidirectional mobile 

platform and a selective compliant articulated robot for assembly type of manipulator. 



Literature Survey 

14 
 

Therefore, two controllers are designed; kinematic controller for the manipulator system and 

sliding mode controller to control the locomotion of the mobile platform.  

Compared to a conventional mobile platform with two or four regular driving wheels, an 

omnidirectional mobile platform equipped with three DOF have the dexterous ability to move 

in any direction and to attain the desired orientation simultaneously [62-66]. Xu et. al. [67] 

have been proposed a neural network-based trajectory controller of the omnidirectional 

mobile manipulator with three castor wheels. Hung et. al. [68] have been addressed a control 

strategy for omnidirectional manipulator system to track a desired trajectory with a constant 

velocity and a desired posture of links. Datta et. al. [69] have been developed an indigenous 

autonomous mobile robot with a manipulator for carrying out tasks related to manufacturing. 

The developed system can navigate autonomously and transport jobs and tools in a 

manufacturing environment. An integrated motion planning and control framework for a 

nonholonomic wheeled mobile manipulator is presented in [70] by taking advantage of the 

(differential) flatness property.  

Although the kinematic analysis of WMM has been treated a lot, but the concentration on 

dynamic analysis is few [71–75]. A novel approach [76] is presented for determining the 

maximum payload-carrying capacity of a coordinated mobile manipulator in an environment 

with presence of obstacle, based on stability. The suggested method considers the tip over 

stability on zero moment point criterion, when the path of the end-effector is predefined but 

the position of the mobile platform is free. Tchon et. al. [77] have been deduced a collection 

of inverse kinematic algorithms for mobile manipulators from a common root of inverse 

dynamic Jacobian. They defined the inverse dynamics with reference to the inequality that 

offers a sufficient condition for the convergence of the inverse kinematics algorithms. 

Trajectory tracking of a mobile manipulator has done by adapting a fuzzy control [78] and 

back stepping approach based on a dynamic model. The suggested control structure considers 

the dynamic interaction between the mobile platform and manipulator. Yamamoto and Yun 

[79-80] have been analyzed the effect of the dynamic interaction between a mobile platform 

and a mobile manipulator based on the task performance. Meghdari et. al. [81] have been 

studied the dynamic interaction between a one DOF manipulator and the vehicle of a mobile 

manipulator of a planar robotic system. 

2.4. Navigation of Mobile Platform 

Navigation related to mobile robots is moving towards the goal while avoiding local 

obstacles. Numerous researches have been devoted to this area within the last decades. Large 
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number of techniques has been developed in an attempt to solve this problem. No single 

technique has been universally accepted. Some techniques work only in ideal conditions and 

others solve local problems but not global problems. There are many approaches that 

combine both local and global navigation and seem to be the most effective ones. A large 

number approaches that capable of generating a valid path or trajectory through a cluttered 

environment. The research work presented in this thesis is an overview of techniques used in 

the navigation of mobile robots. Some short of obstacle avoidance is simply called as 

navigation of mobile robot. This problem includes:  

(i) Cognitive mapping “is knowledge of a large scale environment used to find routes and 

determine the relative positions of places that is acquired by integrating observations.”  

(ii) Localization describes “where the robot is in a given environment based on the sensed 

information.” 

(iii) Path planning represents “the necessary relationships among the sub goals in order to 

achieve a particular target”.  

(iv) Motion Control “Concerned with the controlling of robot motion in order to reach its 

ultimate goal by path planning” 

This section presents the path planning approaches of mobile robots. Path planning is 

classified into local path planning and global path planning. In former robot has prior 

knowledge about the orientation, shape and location even the movements of the obstacles in 

the environment. Later employs some reactive strategies to perceive the environment based 

on the sensory information such as distance information from either from sonar & laser 

sensors or visual information from cameras. Most of these approaches are basically dealt with 

the main problem of navigation of mobile robot.  

2.4.1. Roadmap Methods 

Roadmap methods basically used to reduce the dimensionality of the environment in which 

path planning and navigation of a mobile robot takes place. Well known methods in this type 

are the Voronoi diagrams and the visibility graphs.  

Voronoi Diagrams & Visibility Graphs 

 A voronoi diagram records information about the distances between sets of points in any 

dimensional space. For path planning, Voronoi tends to be used in two dimensional space, 

where sets of points all lie within a plane. A plane is divided into cells so that each cell 

contains exactly one site. For every point in the cell, the Euclidean distance of the point to the 

site within the cell must be smaller than the distance of that point to any other site in the 
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plane. If this rule is followed across the entire plane, then the boundaries of the cells known 

as Voronoi edges will represent the point’s equidistance from the nearest 2 sites. The point 

where multiple boundaries meet, called a Voronoi vertex, is equidistance from its 3 nearest 

sites. To find the generalized Voronoi diagram, it is necessary to compute the diagram 

exactly or use an approximation based on the simpler problem of computing the Voronoi 

diagram for a set of discrete points. O’Dunlaing and Yap [82] have been proposed the use of 

generalized voronoi diagram for motion planning in autonomous robots. Later many 

improvised models have been proposed. Ilhan and Howie [83] have been  addressed a new 

sensor roadmap model called generalized Voronoi graph incremental construction, which was 

included with an already existing incremental construction procedure.  

Vlassis et. al. [84] have been proposed a method which generated a Voronoi graph by the 

robot dynamically builds of its configuration space by applying an adaptive kk-means 

clustering algorithm to the robot’s free space. They developed a Voronoi diagram of the 

robot’s free space by the probabilistic clustering plan. The probabilistic growing cell 

structures algorithm includes i) Initialization, ii) Adaptation, iii) updating, iv) Cluster 

insertion and v) Cluster deletion. Later triangulation method applied to the resulting cluster 

centers to construct a graph. Lisien and Morales [85] have been presented a new map 

designed for robots operating in large free space and possibly in higher dimensions called 

hierarchical atlas. This hierarchical atlas has two levels: at the highest level there is a 

topological map that creates the free space into submaps at the lower level. The lower-level 

submaps are simply a collection of features. For other tasks such as navigation, obstacle 

avoidance, and global localization the resulting map is also useful. Lee and Howie [86] have 

been introduced a new roadmap which is used to guide a convex body to explore an unknown 

planar workspace called the convex hierarchical generalized Voronoi graph (convex-HGVG). 

The convex-HGVG composed of two components: 1) convex-GVG edges, which are three-

way equidistant; and 2) convex-R edges, which are two-way equidistant paths that connect 

disconnected convex-GVG edges.  

Visibility graphs 

The visibility graph of a polygon is a graph whose nodes relate to their vertices of the 

polygon, and whose edges correspond to the edges of the polygon formed by connecting the 

vertices that can see each other. Visibility graphs may be used to find the shortest Euclidean 

paths among a set of polygonal obstacles in the environment. The shortest path between two 

obstacles except at the vertices of the obstacles follows straight line segments. So the 

Euclidean shortest path is the shortest path in a visibility graph is the start and destination 
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points and the vertices of the obstacles. Therefore, the Euclidean shortest path problem may 

be solved in the manner: constructing the visibility graph then apply a shortest path algorithm 

such as Dijkstra's algorithm to the graph. For planning the motion of a robot that has non-

negligible size compared to the obstacles, a similar approach may be used after expanding the 

obstacles to compensate for this size of the robot.  

Yamamoto et. al. [87] have proposed a near-time-optimal trajectory planning for car-like 

robots, where the connectivity graph is generated in a fashion very similar to that of speed 

optimization algorithm as proposed by Lozano-Perez & Wesley [88]. Oommen et. al. [89] 

have been presented an algorithm for navigation process composed of a number of travels 

and each traversal is from an arbitrary source point to an arbitrary destination point. In any 

stage of knowledge, a learned visibility graph is represented as the partially learned terrain 

model. After each traversal, this visibility graph is updated. It was proven that when the 

source and destination points are chosen randomly, the learned visibility graph converges to 

the visibility graph with probability one. Ultimately, optimized global path plan of the mobile 

robot was enabled by the availability of the complete visibility graph and it also eliminates 

the further usage of sensors. This Optimization technique includes the following theorems: 

Theorem1: The procedure NAVIGATE-LOCAL always finds a path from S to D in finite 

time for a non-interlocking workspace.  

Theorem2: If one point exists in a non-interlocking workspace, the procedure BACKTRACK 

leads to a solution to the navigation problem.  

Theorem 3: If the LVG converges to the VG with a probability one then no point in the free 

space has zero probability measure of being a source or destination point or a point on a path 

of traversal. 

Theorem4: If N is the total number of vertices of the obstacles then the number of sensor 

operations performed within the procedure Update-Vgraph to learn the complete VG is N
2
. 

The visibility graph of a simple polygon has the polygon's vertices as its point locations, and 

the exterior of the polygon as the only obstacle. Visibility graphs of simple polygons must be 

Hamiltonian graphs: the boundary of the polygon forms a Hamiltonian cycle in the visibility 

graph. However, the precise characterization of these graphs is unknown.  

It is a major open problem in this area whether there exists a polynomial time algorithm that 

can take input as a graph (possibly together with a fixed Hamiltonian in the cycle corresponds 

to the boundary) and produce output as a polygon for the visibility graph, if such a polygon 

exists.  
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2.4.2. Geometric approaches & Cell decomposition method 

To derive solutions to path planning and navigation problem these approaches use geometric 

methods. “Piano- Movers” problem is a famous problem in this category which deals with the 

‘maneuvers’ required to move a long piano out of a room through a narrow door.  

Choset et. al. [90] have been concerned with new method, by using conventional (Polaroid) 

low-resolution ultrasonic sensors mounted in a circular array on a mobile robot for improving 

the azimuth accuracy of range information. Then to fuse sonar data to better approximate the 

actual obstacle location a new method was introduced. This new method is known as the arc 

transversal median method because the robot find out the location of an object 1) with 

intersecting other arcs by one arc as shown in Fig 2.2; 2) by considering only “transversal” 

intersections, those which exceed a threshold in angle as shown in Fig.2.3, and 3) by taking 

the median of the intersections. This method can improve the azimuth accuracy of the sonar 

sensor by a specified amount under well-defined conditions via some simple geometric 

relationships.  

 

Fig.2.2. Object must be tangent to the arc, but there are an infinite number of orientation 

possibilities. Uncertainty is the beam width. 

 

Fig.2.3 Object must be tangent to Arc1 and Arc2. Now there is only one possible orientation. 

Intersection points are the endpoints of the desired segment. 
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Miah and Gueaieb [91] have been outlined two different aspects using received signal 

strength of a customized radio frequency identification system for mobile robot navigation 

problem in indoor environments. First, a trilateration method is applied where the localization 

problem is solved through a geometric approach based on Cayley-Menger determinants to 

estimate the robot’s current location. Second, a desired path along which a mobile robot is 

required to navigate can be found when the problem is explored by a set of points on the 

ground. Jan et. al. [92] have been introduced optimal path planning for navigating rectangular 

mobile robot based on a higher geometry maze routing algorithm among obstacles and 

weighted regions. To obtain an optimal collision free path with linear time and space 

complexities an 8-geomerty maze routing algorithm is applied. These methods cannot only 

search an optimal path among various terrains but also find the 2-D piano mover’s problem 

with 3 DOF optimal paths. In addition to that, the algorithm can be easily extended among 

multiple autonomous robots or path planning problem in the 3-D space to avoid the dynamic 

collision. 

In cell decomposition the free space is decomposed into a large number of small regions 

called cells. These cells define configuration where the robot can trivially navigate between 

them. Path construction here can be realized by an algorithm for graph search. These methods 

are perhaps the most well studied and have been applied widely for robot navigation.    

In the cell decomposition approach [93] the free space is represented as a union of cells and a 

sequence of cells comprises a solution path. For efficiency, hierarchical trees, e.g. octree, are 

often used. The path planning algorithm proposed by Zelinsky [94] is quite reliable and 

combines some advantages of the above algorithms. It makes use of quad tree data structure 

to model the environment and uses the distance transform methodology to generate paths. 

The obstacles are polygonal-shaped which yields a quad tree with minimum sized leaf 

quadrants along the edges of the polygon, but the quad tree is large and the number of leaves 

in the tree is proportional to the polygon’s perimeter and this makes it memory consuming. 

Acar et. al. [95] have been defined an exact cellular decomposition where critical points of 

Morse functions indicate the location of cell boundaries. They introduced a general 

framework for coverage of tasks while varying the Morse function. The variation in Morse 

function effects the recognized pattern change by the robot. To construct the decomposition 

they described a sensor-based algorithm. Acar and Choset [96] have been achieved an exact 

cellular decomposition whose cells are defined in terms of critical points of Morse functions. 

Generically, a cell is defined by two critical points. Using a graph they encoded the topology 

of the Morse decomposition. While incrementally constructing a graph, the nodes in the 
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graph correspond to the critical points and the pairs of critical points represent the edges of 

the cells and simultaneously the robot covers its search space. To encounter all the critical 

points by the robot, they presented a complete algorithm thereby constructing the full graph, 

i.e., achieving complete coverage. 

A planner presented in [97] that determines a robot path to reach its goal such that it does not 

have to heavily rely on odometry. To reach the goal the robot must follow sequence of 

obstacle boundaries determined by the planner. They used an exact cellular decomposition 

with simple structure to simplify the problem and introduced an algorithm to travel the robot 

between two points that does not heavily depend on dead-reckoning. Rekleitis et. al. [98] 

have been presented an algorithm on a team of mobile robots for the complete coverage of 

free space. Based on a single robot coverage algorithm their approach has been done. Single 

robot coverage is achieved by ensuring that the robot visits every cell. The new multi-robot 

coverage algorithm can be approached like a single robot planar cell-based decomposition. 

This method allows planning to occur for a team of N robots in a two-dimensional 

configuration space. 

2.4.3. Virtual force field & Potential fields 

In virtual force field method the robot determines its motion according to the virtual forces 

acting on it. In general, it is assumed that the repulsive forces are producing by obstacles 

whereas target position applying an attractive force on the robot. The summation of force 

vectors is usually determines the robot motion. The result is nothing but the robot will 

approach its target position due to the target attraction and simultaneously avoiding obstacles 

by giving repulsive from the obstacles so that the robot push away from them. The drawback 

of such methods is ‘local minima’; in some situations where the attractive and repulsive 

forces are equal the robot can be trapped easily. 

Olunloyo and Ayomoh [99] have been christened a new methodology hybrid virtual force 

field  for an effective robot path planning, which is an integration of the virtual obstacle 

concept  and the virtual goal concept in combination with the traditional virtual force field 

concept. The specific problem addressed for the local minima problem posed by concave 

shaped obstacles. Djekoune et. al. [100] have been addressed a novel method called DVFF 

combining the virtual force field (VFF) for obstacle avoidance approach and global path 

planning based on D* algorithm for navigation of a mobile robot in unknown environment. 

While the VFF local controller generates the admissible trajectories, D* generates global path 

information towards a goal position that ensure safe robot motion. Since it has the capability 



Literature Survey 

21 
 

of rapid re-planning in partially known or changing environment, the D* search algorithm is 

widely using with challenging terrains. By minimizing a predefined cost function D* search 

algorithm produces an optimal path from the start position to the target. In addition, D* 

algorithm can be easily combined with the real time obstacle avoidance algorithm developed  

because first, they both generate a direction, and second when we use local obstacle 

avoidance algorithm it does not necessary a C-space to enlarge the cells in the map grid 

according to the robot dimensions.  

To determine the frontal repulsive force applied to the robot, the VFF method is applied at 

one critical point. By affixing six ultrasonic sensors at the front of the mobile robot (Fig.2.4) 

it can be measured the resultant repulsive force as the vectorial sum of the individual forces 

from all frontal occupied cells. 

 

Fig.2.4 Computing the frontal repulsive force  

Navigation of a mobile robot in the case of potential fields is defined as the process of 

following the maximum gradient of some particular quantity in the environment. This idea is 

used to identify target position by source of stimulus and gradient of the stimulus can be 

measured by the sensors attached on the robot, so that in the direction of maximum gradient 

of the stimulation, the robot is guided to the target. The gradient can be calculated at any 

position when the diffusion process takes place in all directions in the environment. 

Obviously, starting from any initial position a path can be constructed. This is a navigation 
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technique, which is a structure that “enhances the relationship between an environment and a 

specific target location in that environment”. In some sense it includes the virtual force fields 

described above, in which gradient directions are determined by forces acting on mobile 

robot. 

The potential field methods and their applications to path planning for autonomous mobile 

robots have been extensively studied in the past two decades [101-106].The basic concept of 

the potential field methods is to fill the workspace with an artificial potential field in which 

the robot is attracted to the goal position being at the same time repulsed away from the 

obstacles. Ideally, the potential field should have the following properties: 

 The magnitude of the potential field should be unbounded near to obstacle boundaries and 

should decrease with range. 

 The potential should have a spherical symmetry far away from the obstacle. 

 The equipotential surface near an obstacle should have a shape similar to that of the 

obstacle surface. 

 The potential, its gradient and their effects on the path must be spatially continuous 

Conner et. al. [102] have been developed a method for navigation and control problem when 

the given system operating in a constrained environment. This method composed of simple 

control policies for both kinematic and simple dynamical systems, applicable over a limited 

region in a dynamical system’s free space. This work assumed that the desired velocity vector 

fields are somewhat aligned with the initial velocities. An electrostatic potential field [104] 

through a resistor network is derived to represent the environment. It is used to solve two-

dimensional collision free path planning problem for an autonomous mobile robot. Based on 

cell resolution they generated an approximate optimal path in a real-time frame. The path 

following the steepest gradient from the initial position to the goal position will be the path of 

least resistance. The derived potential function is a global navigation function and is free of 

all local minima. It includes four major modules: 1) Object Detection, 2) Localization, 3) 

Path Planning, and 4) Collision Avoidance.  

While performing all tasks, the sensor based environment map generation and trajectory 

following are being inherently included in the four mentioned modules [105]. 

The algorithm to create the potential field follows four steps: 

 Introduce an occupancy map of the environment 

 Create the resistor network 

 Create the conductance map 
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 Obtain the potential field by solving the resistor network. 

Huang [105] has been applied a potential field method for a mobile robot in a dynamic 

environment where the target and the obstacles are moving. This method can be used for both 

path and the velocity planning. By relative velocities and relative positions among the robot, 

obstacles and targets the robot’s planned velocity is determined. The proposed approach 

guarantees that the robot tracks the moving target while avoiding moving obstacles as shown 

in Fig.2.5. 

 

Fig.2.5 Trajectories of the robot (Solid: target, Dashed: robot) [105] 

A path-planning algorithm presented by using a potential field representation [106] of 

obstacles for the classical mover’s problem in three dimensions. A potential function is 

assigned to each obstacle and the topological structure of the free space is derived in the form 

of minimum potential valleys. In two levels Path planning is done. First, from the minimum 

potential valleys, a global planner selects the robot’s path and its orientations. Second, a 

heuristic estimation is done along the path is to minimize the path length and the chance of 

collision avoidance. Then the path and orientations are modified by a local planner to derive 

the orientations and final collision-free path. A new path and orientations are selected by the 

global planner when the local planner fails and subsequently examined by the local planner. 

This algorithm runs much faster than exact algorithms and simultaneously solves much wider 

class of problems than other heuristic algorithms. This Algorithm summarized in the 

following steps: 

i. The free space is represented by a graph consisting of a finite number of nodes and edges, 

corresponding to points and edges along MPV. 

ii. Each node is assigned a cost depending on the width of free space at the node. 
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iii. A candidate path is found that minimizes both the path length and the chance of 

collisions. 

iv. The local planner modifies the candidate path to derive a final collision-free path and 

orientations of the robot. 

v. If a collision-free path cannot be found, remove the edge at which the unavoidable 

collision occurs, and go to (iii). 

vi. Repeat (iii) to (v) until a solution is found or no candidate path exists. 

vii. If a solution is found, further optimize the solution with the numerical algorithm. 

2.4.4. Reactive approaches 

Reactive approaches attempt to overcome the computational limitations of deliberative 

approaches, like the ones described already, by offering fast solutions for real-time 

applications. The basic idea is to actuation with respect to percept data, so that appropriate 

motor commands directly activate particular sensed patterns. Such couplings can be 

implemented as a simple structure. Although such approaches seems to be quite limited, 

when several behaviors are employed concurrently, the real power of reactive systems is 

exhibited and the overall behavior of the robotic system emerges as a result of some sort of 

combination of them (e.g. competition or weighted summation).  

Reactive Robot Navigation:  

A Purposive Approach has been used in [107] for the process of motion control based on the 

analysis of data gathered by visual sensors. The field of visual navigation is of particular 

importance mainly because of the rich perceptual input provided by vision. A new vision 

paradigm has attracted the interest of the computational vision research community. It is a 

vision based reactive navigation capability that enables a robot to navigate in indoor 

environments (long corridors, narrow passages), avoiding collisions with walls and obstacles. 

The term reactive is used to express lack of a particular destination that could be set by using 

maps of the environment, landmark recognition etc. Free space is defined based on the motor 

capabilities of the robot: since the robot moves on a plane. All those 3D structures are not 

belong to this plane can be potentially harmful, if the robot crashes to them. Therefore, these 

structures are considered as obstacles. By combining the extracted information from the two 

peripheral and one central camera of the proposed configuration, the following function can 

be computed:  

 𝐴 = 𝐶(1 𝑍𝐿⁄ − 1 𝑍𝑅
⁄ )         (2.1) 
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In Eq. (1), A is a quantity that can be directly computed from the images acquired by the 

central and peripheral cameras. C is an unknown constant that depends on the characteristics 

of the body of the observer as well as its constant translational velocity. Finally, ZL and ZR 

are the depths perceived at the left and right peripheral cameras of the robot. A is equal to 

zero when the left and right cameras are in equal distances from the world and takes positive 

or negative values depending on whether the right camera is closer or farther from obstacles 

compared to the left camera. For the robot to move in the middle of the free space, A should 

be kept as close to zero as possible. Since A is a computable quantity, it can be used for 

controlling the rotational velocity of the robot. 

The quantity A depends on the projection of the optical flow (u, v) along the intensity 

gradient direction (i.e. the perpendicular to the edge at that point) which is also known as 

normal flow. The normal flow is less informative than optical flow but can be computed 

robustly and efficiently from image sequences by using differentiation techniques. Moreover, 

in contrast to the computation of optical flow, no environmental assumptions such as 

smoothness are required for normal flow computation. A is the algebraic sum of several 

functions of normal flow. These functions are computed by selecting normal flow vectors in 

particular directions, which depend on specific motion parameters 

However, the lack of any representation in reactive methods limits the scope of tasks they can 

achieve. To overcome this problem, recently several hybrid architectures have been 

addressed. Behavior-based approaches have been popularized within the last decade, mainly 

because of their success on real robots. They have provided a completely different paradigm 

for building ‘intelligent’ robots that departs from the traditional AI approaches. Some of the 

reactive approaches are provided below. 

Bug Algorithm 

Bug algorithm is a local path planning algorithm which uses sensors to detect the nearest 

obstacle when the mobile robot moves towards its target position with limited information 

about the environment. The algorithm uses obstacle border as guidance toward the target as 

the robot circumnavigates the obstacle till it finds certain condition to fulfil the algorithm 

criteria to leave the obstacle toward target point. 

The first bug family algorithm has been proposed by Lumelsky et. al. [108], that incorporates 

a range sensor to calculate shortcuts relative to the path generated by Bug2 algorithm from or 

to m-line. Alg1 has been proposed by Noborio et.al. [109] to improve Bug2 weakness, it can 

trace the same path twice by storing the sequence of hit points occurring within an actual path 
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to the goal. These storing data are used to generate shorter paths by choosing opposite 

direction to follow an obstacle boundary when a hit point is encountered for the second time. 

The same researcher introduced the Alg2 to improve Alg1 by ignoring the m-line of Bug2 

with new leaving condition. The Alg1 and Alg2 still face a reverse procedure problem where 

after encountering a visited point that causes loop; a mobile robot follows an uncertain 

obstacle by an opposite direction until it can leave the obstacle. 

The reverse procedure problem solved in Alg1 andAlg2 by introducing a mixing reverse 

procedure [110] with alternating following method to create shorter average bound of path 

length and named the algorithm as Rev1 and Rev2. Other bug algorithms that also 

incorporate range sensors are DistBug algorithm and TangentBug Algorithm. The basic 

operation of mobile robot using bug algorithm can be viewed as following pseudo code 

While Not Target 

If robot rotation <= 360 

Robot rotates right of left according to position of dmin 

If sudden point 

If 180 degree rotation 

Ignore reading /* to avoid robot return to previous point */ 

Else 

Get distance from current sudden point to next sudden point 

Get angle of robot rotation 

Move to new point according to distance and rotation angle 

Record New dmin value 

Reset rotation 

End if 

End if 

Robot Stop /* No sudden point and exit loop */ 

End if 

While end 

Robot Stop /* Robot successfully reaches target * 

 Devi and Prabakar [111] have been developed an algorithm to navigate a point robot in 

planar unknown environment with stationary obstacles of arbitrary shape. It determines 

where the next point to move toward target from a starting point. The next point is 

determined by output of range sensor which detects the sudden change in distance from 

sensor to the nearest obstacle. The sudden change of range sensor output is considered in 
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constant reading of distance either it is increasing or decreasing. The initial position of robot 

is facing straight to the target point and then the robot rotates left or right searching for 

sudden point. After the first sudden point is found, the rotation direction of the robot is 

according to position of straight line between current sudden point and target point. This 

algorithm attempts to minimize the use of outer perimeter of an obstacle (obstacle border) by 

looking for a few important points on the outer perimeter of obstacle area as a turning point 

to target and finally generate a complete path from source to target. The less use of outer 

perimeter of obstacle area produces shorter total path length taken by a mobile robot. 

Ant colony Optimization, Bacteria foraging & Particle swarm optimization 

Ant Colony Optimization is one of the search algorithms, which have been successfully 

applied to solving NP hard problems. From the behavior of colonies of real ants, ant 

algorithms are inspired and in particular how they forage for food. The ants can communicate 

with one another is one of the main ideas behind this approach. Ant colony optimization has 

been successfully applied to both classes of traveling salesman problem with good and often 

excellent results.  

The ACO algorithm skeleton for this problem is as follows: 

Set parameters, initialize pheromone trails 

While (termination condition not met) do 

Construct Solutions 

Apply Local Search % optional 

Update Trails 

end 

end  

Zheng et. al. [112] have been proposed a novel method based on the ant colony system 

(ACS) algorithm for the real-time globally optimal path planning of mobile robots. This 

method comprised three steps: the first step is to establish the free space model of the mobile 

robot by utilizing the MAKLINK graph theory, the second step is to find a sub-optimal 

collision-free path by utilizing the Dijkstra algorithm, and the third step is to generate the 

globally optimal path with the help of ACO algorithm. It is needed to calculate the cost 

function of a path when using the Dijkstra algorithm. In general, each edge on a path will be 

given a weight, so the cost function can be defined as the sum of the weights of all the edges 

of the path.  To use the MAKLINK graph theory for establishing the free space, the following 

assumptions made:  
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 The heights of the environment and obstacles can be ignored.  

 There exist some known polygonal shape obstacles distributed in the environment. 

 In order to avoid a moving path too close to the obstacles, the boundaries of every 

obstacle can be expanded by an amount that is equal to half of the greater size in the 

length and width of the robots body plus the minimum measuring distance of the 

relevant sensors.  

Garcia et. al. [113] have been presented a new method was named SACOdm, where d stands 

for distance and m for memory based on Simple Ant Colony Optimization Meta-Heuristic. In 

the proposed ACO, the existing distance between the source and target nodes influences the 

decision making process, moreover the ants can remember the visited nodes. The selection of 

the optimal path relies in the criterion of a fuzzy inference system, which is adjusted using a 

simple tuning algorithm. The path planner application has two operating modes, one is for 

virtual environments, and the second one works with a real mobile robot using wireless 

communication. Both operating modes are support static and dynamic obstacle avoidance and 

global planners for plain terrain. Since equivalent distribution of initial pheromone in ant 

colony optimization algorithm results more search period, pheromone gain and heuristic 

information are integrated to reasonably allocate initial pheromone [114]. In [115-116] ACO 

is used to find the shortest path  of  mobile  robot  while avoiding  obstacles  and reach to  its  

target from  the  source  position.  Furthermore, a global attraction term is added which leads 

ant to reach the goal point. 

Natural selection tends to eliminate species with poor foraging strategies and favour the 

propagation of genes of species with successful foraging behavior. Considering all the 

constraints presented by own physiology of foraging organism or animal such as sensing and 

cognitive capabilities of environment, the natural foraging strategy can lead to optimization 

for solving real-world optimization problems. Based on this conception, Passino proposed an 

optimization technique known as the Bacterial Foraging Optimization Algorithm (BFOA). 

Until date, BFOA applied successfully to practical problems such as optimal controller 

design, harmonic estimation, transmission loss reduction, active power filter synthesis, and 

learning of artificial neural networks. 

The classical BFOA algorithm: The bacterial foraging system includes with four principal 

mechanisms, namely chemotaxis, swarming, reproduction, and elimination-dispersal. Below 

we describe briefly each of these processes and provide a pseudo-code of the complete 

algorithm. 
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i) Chemotaxis: Through swimming and tumbling via flagella, an E.coli cell will simulates to 

move. Biologically an E.coli bacterium can move in two different ways as swim and tumble 

and alternate between these two modes of operation for the entire lifetime. 

ii) Swarming: An interesting group behavior has been observed for several motile species of 

bacteria including E.coli and S.typhimurium, in semisolid nutrient medium intricate and 

stable spatio-temporal patterns are produced. A group of E.coli cells arrange themselves in a 

traveling ring by moving up the nutrient gradient when placed amidst a semisolid matrix with 

a single nutrient chemo-effecter. The cells release an attractant aspertate when stimulated by 

a high level of succinate, which helps them to aggregate into groups and thus move as 

concentric patterns of swarms with high bacterial density.  

iii) Reproduction: The least healthy bacteria eventually die while each of those yielding lower 

value of the objective function asexually split into two bacteria, which are then placed in the 

same location. This keeps the swarm size constant. 

iv) Elimination and Dispersal: Due to various reasons e.g. a significant local rise of 

temperature may kill a group of bacteria that are currently in a region with a high 

concentration of nutrient gradients, in the local environment where a bacterium population 

lives Gradual or sudden changes may occur. Events can take place in such a way that a group 

is dispersed into a new location or all the bacteria in a region are killed. To simulate this 

phenomenon in BFOA the new replacements are randomly initialized over the search space 

and some bacteria are liquidated at random with a very small probability. 

Dasgupta et. al. [117] have been presented a mathematical analysis of the chemotactic step in 

BFOA from the viewpoint of the classical gradient descent search. The classical BFOA 

pointed out that the chemotaxis analysis, usually results in sustained oscillation, especially on 

flat fitness landscapes, when a bacterium cell is close to the optima. Two simple schemes for 

adapting the chemotactic step-height have been proposed to accelerate the convergence speed 

of the group of bacteria near global optima. Finally they investigated an interesting 

application to the frequency-modulated sound wave synthesis problem, appearing in the field 

of communication engineering. In the proposed BFOA based path planning [118], the 

bacterial chemotaxis mechanism enables the robot to explore the environment and finally 

locates the target point without colliding any obstacles, while the self-adaptive foraging 

strategy save the traveling time and actuators energy of the self-navigating robot. A new 

method proposed in [119] by using BFO algorithm to solve mobile robot path navigation 

problem.  In their work constraints are defied i.e.  site fix  penalty and  route  fix penalty; 

such  that  the path  generated  by the robot  will avoid the  obstacles in its environment.  
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Finally they proved the proposed BFO algorithm results are efficient than genetic algorithm 

and differential evolution.  

Kennedy and Eberhart [120] have been developed an evolutionary computational method 

named as Particle Swarm Optimization (PSO), which was motivated by social behaviour of 

bird flocking or fish schooling. Because of its special features like proximity, quality, diverse 

response, stability and adaptability; it has been successfully implemented to solve many 

engineering problems. PSO is used it to solve the optimization problems. A "bird" in the 

search space is each single solution in PSO is called a "particle". All of the particles have 

fitness values which are evaluated by the fitness function to be optimized, and have velocities 

which direct the flying of the particles.  In every iteration each particle is updated by 

following two "best" values.  After finding the two best values (position and global bests), the 

particle updates its velocity and positions. 

The pseudo code of the procedure is as follows 

for each particle  

    Initialize particle 

end 

while maximum iterations or minimum error criteria is not attained 

do 

    for each particle  

        Calculate fitness value 

        If the fitness value is better than the best fitness value (pBest) in history 

            set current value as the new pBest 

    end 

    Choose the particle with the best fitness value of all the particles as the gBest 

    for each particle  

        Calculate particle velocity & Update particle position  

    end 

Hassan et. al. [121] have been explained, that PSO is more efficient in computational view 

(uses less number of function evaluations) than the Genetic Algorithm. Because of its 

effectiveness and faster response, various authors have been applied PSO for solving 

scientific problems such as unknown parameters estimation in nonlinear systems [122], 

Bioinformatics [123], Machine Learning [124], job-shop scheduling [125] and constrained 

optimization problem [126] etc..   



Literature Survey 

31 
 

Path planning of a mobile robot can be considered as a multi objective optimization problem 

because it includes generation of trajectories from its source position to destination with less 

distance/time traversal and avoiding obstacles within its known/unknown environments. In 

past, researchers have been applied PSO for solving mobile robot path planning problem. It 

has been proved by Venaygamoorty and Doctor [126], for optimal navigation of mobile 

sensors, the time taken by convergence with PSO is ten times faster than time taken by fuzzy 

logic. Zhang and Li [127] have been applied PSO for motion planning of a robot, when the 

work space is having the obstacles of generalised polygons. But their implementation may 

not generate optimal paths in all situations. To overcome this difficulty Qin et. al. [128] have 

been applied PSO with mutation operator. But this approach requires lot of work to adjust the 

controlling parameters of PSO. Maschian and Sedighizadeh [129] have recently developed a 

novel PSO based motion planner for an autonomous mobile robot. They have done a large 

amount of work for adjusting the controlling parameters of PSO and generating optimal 

trajectories between two successive robot positions. Even though, their work requires an 

adaptive algorithm to generate safest path within its environments.  

The above mentioned algorithms are useful only for known environments, but their 

implementation can't be applied for unknown/partially known environments. Derr and 

Mannic [130] have been outlined a PSO based computational method for motion planning of 

robots in noisy environments, but this methodology increases the robot search time in finding 

its target. Several researchers [131, 132] have applied PSO for obstacle avoidance in 

collective robotic search within the robotic noisy environments. Lu and Gang [133] have 

proposed an algorithm using PSO, for generating optimal path of a mobile robot in unknown 

environment. However their implementation lacks in adjusting the controlling parameters of 

their developed fitness function to improve the performance of system architecture. 

Fuzzy Logic Approach 

Lotfi Zadeh developed a fuzzy set theory, has become a popular tool for control applications. 

In servomotor and process control applications, Fuzzy control has been used extensively. One 

of its main benefits is that without a person need, it can give a mathematical description of 

the problem. This system can also incorporate a human being’s expert knowledge about how 

to control a system. Fuzzy logic is used to keep the robot on its path, except when the danger 

of collision arises. In this case, a fuzzy controller for obstacle avoidance takes over. The basic 

idea of Fuzzy Logic Control (FLC) is to translate a sensor data into a label as performed by 
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human expert controllers. The general structure of a fuzzy logic control is presented in 

Fig.2.6. 

 

Fig.2.6. General Structure of a fuzzy logic control 

In order to secure the desired performances of the system, FLC implements the control law as 

an error function. It contains three main components: the fuzzifier, the inference system and 

the defuzzifier as represented in Fig.2.7. The fuzzifier has the role to convert the 

measurements of the error into fuzzy data. In the inference system, linguistic and physical 

variables are defined. The universe of discourse, the set of linguistic variables, the 

membership functions and parameters are specified for the each physical variable. One option 

giving more resolution to the current value of the physical variable is to normalize the 

universe of discourse. Defuzzifier combines the reasoning process conclusions into a final 

control action. Different models may be applied, such as: the most significant value of the 

greatest membership function, the computation of the weighted average of all the concluded 

membership functions. 

 

Fig.2.7 The structure of the fuzzy logic control 

Bin and Wenfeng [134] have been concerned with a new method using fuzzy logic for 

behavior based control of mobile robots navigation in unknown environments. The basic 

behaviors are designed to form complex robotics system based on fuzzy control technique 

and are integrated and coordinated. To approximate a robot towards its target location while 

avoiding obstacles, the output from the target steering behavior and the obstacle avoidance 

behavior are combined. Narvydas et. al. [135] have been presented a possibility to use 

FUZZY logic, IF-THEN rules, and Genetic Algorithm for autonomous mobile robot control 

is presented. They proved that control using fuzzy logic is softer and better then control using 

IF-THEN rules.  
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In the robotics it is necessary to pay much attention on the intelligent hybrid control systems 

and evolutionary algorithms as well as to improve both the hardware and the software. An 

efficient control systems can be designed in two stages: 

1) To perform a specific task, create a hybrid intelligent control system. 

2) To improve the results of the first stage, use evolutionary programming methods. 

The first one related to the creation of the framework of a FUZZY control system (FCS), and 

the second one related to the methodology using the Genetic Algorithm (GA) to improve the 

control system. Islam et. al. [136] have been introduced a designing model for autonomous 

Mobile Robot Controller (MRC) hardware with navigation concept using Fuzzy Logic 

Algorithm (FLA). Without human intervention, the MRC enables the robot navigation in 

unstructured environment to avoid collisions from the encountered obstacles. Obstacle 

avoidance can be done by turning the robot to proper angle with the help of designed 

hardware architecture. Noureddine et. al. [137] have been implemented an efficient 

positioning of an autonomous car-like mobile robot, respecting to its final orientation. Two 

FLCs, robot positioning controller and robot following controller have been developed to 

accomplish oriented positioning of the robot as shown in Fig. 2.8.  

Pradhan et. al. [138] have been investigated navigation techniques using fuzzy logic for 

several mobile robots as many as (one thousand) robots in a totally unknown environment. 

First a fuzzy controller has been used with four types of input members and two types of 

output members with three parameters in each. Next two types of fuzzy controllers developed 

having same input members and output members with five parameters each. Each robot has 

an array of ultrasonic sensors and an infrared sensor for measuring the distances of obstacles 

around it and the target. Amongst the developed techniques, FLC has Gaussian membership 

function is found to be most efficient for mobile robots navigation. Martinez et. al. [139] 

have been developed a fuzzy logic based intelligent control strategy for handling the collision 

avoidance problem. A mobile robot system was tested by the fuzzy controller in an indoor 

environment and found to perform satisfactorily despite having crude sensors and minimal 

sensory feedback. 
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Fig.2.8 Flow chart of oriented positioning [137] 

Neural network  

Artificial Neural Network (ANN) is an attempt at modeling the information processing 

competencies of nervous systems. The nervous system of an animal has its information 

processing unit which comprises of sensory inputs, i.e., signals from the environment, are 

coded and processed to remind the suitable response. 

To solve the motion-planning problem of mobile robot, ANN based intelligent control 

strategy has been developed in [140]. This methodology works in the environment with any 

number of obstacles of arbitrary shape and size; some of them are allowed to move. A 

dynamic artificial neural network based mobile robot motion and path planning system is 
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addressed in [141]. This method has the able of navigating the robot car on flat surface 

among static and moving obstacles, from any starting point to any endpoint. Neural based 

systems have been developed in [142] for mobile robot reactive navigation. The proposed 

system transforms sensors input to yield wheel velocities. 

Neuro- Fuzzy system 

In the field of artificial intelligence, combination of artificial neural networks and fuzzy logic 

is referred as neuro-fuzzy. Neuro-fuzzy hybridization results in a hybrid intelligent 

system that synergizes these two techniques by combining the human-like reasoning style of 

fuzzy systems with learning and connectionist structure of neural networks. Neuro-fuzzy 

system (the more popular term is used henceforth) incorporates the human-like reasoning 

style of fuzzy systems through the use of fuzzy sets and a linguistic model consisting of a set 

of IF-THEN fuzzy rules. The main strength of neuro-fuzzy systems is that they are 

universally approximate with the ability to solicit interpretable IF-THEN rules. The strength 

of neuro-fuzzy systems involves two contradictory requirements in fuzzy modeling: 

interpretability versus accuracy. In practice, one of the two properties prevails. The neuro-

fuzzy in fuzzy modeling is divided into two fields: linguistic fuzzy modeling that is aimed on 

interpretability and precise fuzzy modeling that is aimed on accuracy. 

Kim and Trivedi [143] have been developed A Neural integrated Fuzzy controller (NiF-T) for 

nonlinear dynamic control problems which combines the fuzzy logic representation of human 

knowledge with the learning capability of neural networks. The NiF-T architecture includes 

three distinct parts as shown in Fig.2.9: (1) Fuzzy logic Membership Functions (FMF), (2) 

Rule Neural Network (RNN), and (3) Output-Refinement Neural Network (ORNN). To 

fuzzify input parameters FMF are utilized. After defuzzification RNN interpolates the fuzzy 

rule set, the output is used to train ORNN. The weights of the ORNN can be adjusted on-line 

to fine-tune the controller. NiF-T can be applied for a wide range of sensor-driven robotics 

applications, which are characterized by high noise levels and nonlinear behavior, and where 

system models are unavailable or are unreliable. Tahboub and Munaf [144] have been 

presented a Neuro-fuzzy reasoning approach has the advantage of greatly reducing the 

number of if-then rules by introducing weighting factors for the sensor inputs, thus inferring 

the reflexive conclusions from each input to the system rather than putting all the possible 

states of all the inputs to infer a single conclusion.  
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Fig.2.9 The NiF-T model and its three main modules [143]. 

To determine the weighting factors for the distance readings acquired by the robot’s sensory 

system four simple neural networks are used. These weighting factors represent the degree of 

collision avoidance by the robot from a certain side then these values are treated as fuzzy 

values that are input to a defuzzifier to come up with a crisp value for the robot’s steering 

angle and speed. For one sensor input each neural network is responsible for determining the 

weighting factor. The suggested system has two advantages. First, if-then rule base is 

replaced by a set of simple neural networks. Second, inference is on the reflexive conclusions 

from each input to the system [145], in which a RAM-based neural network method was 

combined with the fuzzy logic strategy to decrease the number of fuzzy rules and related 

processing.  Using a simple, 8-bit microcontroller the feasibility of this neuro-fuzzy approach 

was demonstrated on a mobile robot.  The neuro-fuzzy approach is code-efficient, fast, and 

easy to relate to the physical world and act as an action supervisor. Based on its observation 

of the environment, a RAM-based neural network chooses the reactive outputs from these 

fuzzy logic controllers. It classifies the current environmental conditions based on sensor 

inputs and then chooses the best control response from the outputs of the two fuzzy logic 

controllers. 

 

Fig.2.10. Block diagram of the neuro-fuzzy navigation system [145] 

Artificial immune system(AIS) 

The interest in studying the immune system is increasing over the last few years. Computer 

scientists, engineers, mathematicians, philosophers and other researchers are particularly 

interested in the capabilities of this system, whose complexity is comparable to that of the 
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brain. Many properties of the immune system are of great interest for computer scientists and 

engineers: 

 Uniqueness: each individual possesses its own immune system.  

 Recognition of Foreigners: the antigens are recognized and eliminated from body. 

 Anomaly Detection: the immune system can detect and react to pathogens that the body 

has never encountered before. 

 Distributed Detection: the cells are distributed all over the body and are not to subject 

any centralized control. 

 Noise Tolerance: the system is flexible since the recognition of the antigens is not 

required. 

 Reinforcement Learning and Memory: future responses to the same pathogens are faster 

and stronger since the immune system can “learn” the structures of pathogens. 

In recent years, researchers have applied artificial immune system algorithms to autonomous 

mobile robot for generating collision free trajectories [146-152]. While developing 

immunological system architectures, they have been investigated the interactions among the 

various immune components.  

Mamady et. al. [148] have developed a new immunised computational method for mobile 

robot navigation, if the robot environment having uniform mass and general shape objects. 

To get better results from the methodology as described in [151], it is necessary to evolve the 

immune network by the presence of much more connections, but this will increase the 

network complexity. An adaptive AIS mechanism has been introduced in [152] for arbitration 

of an autonomous mobile robot. An adaptive learning mechanism based on immune system 

[153, 154] has been developed for Lego robots. Later they applied their mechanism for two 

moving robots on their pre-defined near concentric tracks. An AIS based robot navigation has 

been described in [155], but their implementation is in early state and requires a lot of work 

to apply this mechanism to a real robot. An immune system has been presented to achieve 

behavior of a mobile robot learns to detect vulnerable areas of a track as well as adapts to the 

required speed over such environments. The test bed comprises of two Lego robots placed 

simultaneously on two predefined near concentric tracks. When inner one misaligns from the 

track, outer robot will help the inner one to keep it on predefined track. The panic-stricken 

robot records the conditions under which it was misaligned and learns to detect and adapt 

under similar conditions thereby making the overall system immune to such failures.  
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Fig.2.11 The architecture of the potential field immune network [103] 

Guan-Chun and Weiwen [103] have been proposed a potential filed immune network (PFIN) 

as represented in Fig. 2.11 for dynamic navigation of mobile robots with moving obstacles 

and fixed/moving targets in an unknown environment. To determine imminent obstacle 

collision for a robot moving in the time varying environment the velocity obstacle method is 

utilized. With the aid of fuzzy system the response of the overall immune network is derived. 

Whitbrook et. al. [156] have been addressed a method for integrating an idiotypic AIS 

network with a Reinforcement Learning (RL) based control system. A simplified hybrid AIS-

RL that implements idiotypic selection independently of derived concentration levels and a 

full hybrid AIS-RL scheme are examined. Huang et. al. [157] have been presented a 

metaheuristic artificial immune system (AIS) algorithm for mobile robot navigation in a 

structured environment with obstacles. The path generated from the AIS planner is then 

smoothed using the cubic B-spline technique, in order to construct a collision-free continuous 

path. 

2.5. Objectives 

Since the motion of the arm is unknown a priori, the mobile platform has to use the joint 

position information of the manipulator for motion planning.  

The following objectives were accordingly specified for this project work:  

o Forward and inverse kinematic  analyses  are  performed  on  the  robotic  arm  and the 

mobile platform in  order  to navigate the robot and manipulate the objects in desired 

direction. 

o Modeling of the arm is carried out in CAD software ‘CATIA V6' in order to simulate 

each part of the manipulator.  
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o Intelligent planning and control algorithms are developed for the platform so that the 

manipulator is always positioned at the preferred configurations measured by its 

manipulability. 

o Control scheme associates the mobile base activities and the manipulator activities to 

produce an intelligent hybrid system that performs a coordinated motion and 

manipulation. 

o Finally, experimental analysis is performed in order to validate the efficiency of the 

developed control strategies.  

2.6. Novelty of Work 

The objectives of this research work are to address novel methodologies such as modified 

particle swarm optimisation and artificial immune system to control mobile manipulator. The 

main challenge in these applications is that the robots have less prior knowledge about the 

environment while performing their jobs. In the current research suitable probabilistic 

relational models based on swarm intelligence and immune system are used by robots to 

perform their tasks intelligently.  

2.7. Summary  

This section described the related work on the mechanical structure of a conventional robot 

arm and its control strategies according to its kinematic constraints. Later the survey is 

extended to mobile platforms, its configurations and the motion/velocity control laws 

according to its geometric constraints. Because of its limited workspace, recently researchers 

are concentrated hybridisation of locomotion and manipulation. Various techniques 

developed to control mobile manipulation system is also emphasised in the current section. 

Moreover, this section addressed various approaches used for navigation of mobile platform.  

From this chapter, it is noticed that the mobile robot navigation can be controlled successfully 

in a complex environment using various techniques as described. Keeping in view of the 

above survey, researcher can focus for finding out efficient control strategy for navigation of 

mobile robots for any cooperative or individual task in multidimensional robot environment. 
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3. MECHANICAL DESIGN ARCHITECTURE OF THE ROBOT ARM 

Manipulator kinematics deals with the geometric motion of a robot arm with respect to a 

fixed reference frame without concerning the forces/moments that cause the motion. Thus, 

kinematic models of robot obtain the relations between the joint-variable space and the 

position and orientation of the end-effector of a robot arm. Positioning is to bring the end-

effector of the arm to a specific point within its workspace, whereas orientation is to move 

the end-effector to the required orientation at the specific position. The positioning and 

orientation are the jobs with respect the arm and wrist respectively. Sometime the positioning 

and orientation of the end-effector can decouple to simplify the kinematic analysis. 

3.1. Rotation Kinematics 

The links in a robotic system are modeled as rigid bodies. Therefore, the characteristics of a 

rigid body displacement take a vital place in robotics. Since the robot links may rotate / 

translate with respect to each other, it is required to find their relative configurations with 

respect to world reference frame. The position of one link B relative to another link A is 

defined by a coordinate transformation 
A
TB between reference frames attached to the link.  

Consider a global coordinate frame OXYZ and a rigid body B with a local coordinate frame 

oxyz as shown in Fig.3.1(a). Initially the body B is fixed to the ground G and these two 

coordinate frames are coincident at point O as represented in Fig. 3.1(b). 

  

(a)    (b)    (c) 

Fig.3.1 a) Global & Local Coordinate frames, b) Initial frames position and c) Local frame 

rotation with respect to global frame  

If the rigid body B rotates about the Z-axis of the global coordinate frame with  degrees as 

shown in Fig. 3.1(c), then coordinates of a body point P in the local and global coordinate 

frames are related by the Eq. (3.1). 
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𝐺(𝑝) = 𝑅(𝑍, ∅)𝐵(𝑝)          (3.1) 

Here 𝑅(𝑍, ∅) is rotational mapping matrix 

 𝐺(𝑝) = {
𝑋
𝑌
𝑍
} and 𝐵(𝑝) = {

𝑥
𝑦
𝑧
} 

Let (iX, jY, kZ) and (ix, jy, kz) be the unit vectors along the coordinate axes of the OXYZ and 

oxyz systems respectively.  

pXYZ = XiX  + YjY + ZkZ = xix  + yjy + zkz = pxyz  

Thus, using the definition of a scalar product the point p can be defined as the components of 

a vector as represented in Eq. (3.2). 

𝑋    =  𝑖𝑋 . 𝑝  =  𝑖𝑋 . 𝑖𝑥𝑥 + 𝑖𝑋 . 𝑗𝑦𝑦 + 𝑖𝑋 . 𝑘𝑧𝑧

𝑌    =  𝑗𝑌 . 𝑝  =  𝑗𝑌 . 𝑖𝑥𝑥 + 𝑗𝑌 . 𝑗𝑦𝑦 + 𝑗𝑌 . 𝑘𝑧𝑧

   𝑍 =  𝑘𝑊 . 𝑝 =  𝑘𝑊 . 𝑖𝑥𝑥 + 𝑘𝑊 . 𝑗𝑦𝑦 + 𝑘𝑊 . 𝑘𝑧𝑧
      }     (3.2) 

⇒ {

𝑝𝑋
𝑝𝑌
𝑝𝑍
} = [

𝑖𝑋 . 𝑖𝑥 𝑖𝑋 . 𝑗𝑦 𝑖𝑋 . 𝑘𝑧
𝑗𝑌 . 𝑖𝑥 𝑗𝑌 . 𝑗𝑦 𝑗𝑌 . 𝑘𝑧
𝑘𝑊 . 𝑖𝑥 𝑘𝑊 . 𝑗𝑦 𝑘𝑊 . 𝑘𝑧

] {

𝑝𝑥
𝑝𝑦
𝑝𝑍
}   

= [
𝑐𝑜𝑠(∅) 𝑐𝑜𝑠(90 + ∅) 𝑐𝑜𝑠(90)

𝑐𝑜𝑠(90 − ∅) 𝑐𝑜𝑠(∅) 𝑐𝑜𝑠(90)

𝑐𝑜𝑠(90) 𝑐𝑜𝑠(90) 𝑐𝑜𝑠(0)
] {

𝑝𝑥
𝑝𝑦
𝑝𝑍
}  

= [
𝑐𝑜𝑠 (∅) −𝑠𝑖𝑛 (∅) 0
sin (∅) 𝑐𝑜𝑠 (∅) 0
0 0 1

] {

𝑝𝑥
𝑝𝑦
𝑝𝑍
}  

From the above it is noticed that the mapping matrix 𝑅(𝑍, ∅) =  [
𝑐𝑜𝑠 (∅) −𝑠𝑖𝑛 (∅) 0
𝑠𝑖𝑛 (∅) 𝑐𝑜𝑠 (∅) 0
0 0 1

]. 

Similarly global coordinates of point p can be obtained for the given rotation ∅ degrees about 

the X-axis or Y-axis of the global frame relative to the local frame by the following Eqs.(3.3) 

& (3.4).  

𝑅(𝑋, ∅) =  [

1 0 0
0 𝑐𝑜𝑠 (∅) −𝑠𝑖𝑛 (∅)
0 sin (∅) 𝑐𝑜𝑠 (∅)

]       (3.3) 
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𝑅(𝑌, ∅) =  [
𝑐𝑜𝑠 (∅) 0 𝑠𝑖𝑛 (∅)
0 1 0

−𝑠𝑖𝑛 (∅) 0 𝑐𝑜𝑠 (∅)
]       (3.4) 

Basic rotation matrices are to be multiplied sequentially to represent rotations about the 

principal axes of the OXYZ coordinate system. Since matrix multiplications are not 

commute, the order of performing rotations is important. 

3.2. Homogeneous Transformation  

A simple 3 x 3 rotation matrix does not give any translation and scaling, a fourth component 

is required to a position vector p = (px, py, pz)
T
 in a three-dimensional space which makes it 𝑝̂ 

= (wpx, wpy, wpz, w)
T
. Using a rotation matrix plus a vector directs the use of homogeneous 

coordinates. Representation of the homogeneous coordinates of a point vector is as follows: 

𝑝𝑥 = 
𝑤𝑝𝑥

𝑤⁄              𝑝𝑦 = 
𝑤𝑝𝑦

𝑤⁄              𝑝𝑧 = 
𝑤𝑝𝑧

𝑤⁄    

 

Fig.3.2 Point representation in coordinate frames B and G 

Consider a rigid body with local frame B and global reference frame G as shown in Fig.3.2. A 

body point p can be represented as 
B
rp and 

G
rp in the frames B and G respectively. The vector 

Gd specifies the origin position of the body frame with respect to the global frame. Rigid 

body B (oxyz) motion in the global frame G (OXY Z) can be expressed as a combination of 

rotation 
G
rB as well as translation Gd. 

𝐺𝑟𝑝 = 𝐺𝑟𝐵𝐵𝑟𝑝 + 𝐺𝑑          (3.5) 

Where 𝐺𝑟𝑝 = {
𝑋
𝑌
𝑍
}, 𝐵𝑟𝑝 = {

𝑥
𝑦
𝑧
} and 𝐺𝑑 = {

𝑋0
𝑌0
𝑍0

} 
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The homogeneous transformation matrix maps a position vector expressed in homogeneous 

coordinates from one coordinate system to another coordinate system and this transformation 

matrix is a 4x4 single matrix transformation which represents the rigid motion. 

 𝐺𝑟𝑝 = 𝐺𝑇𝐵𝐵𝑟𝑝         (3.6) 

Where 𝐺𝑇𝐵 = [

𝑟11 𝑟12 𝑟13 𝑋0
𝑟21 𝑟22 𝑟23 𝑌0
𝑟31
0

𝑟32
0

𝑟33
0

𝑍0
1

] =  [
𝐺𝑟𝐵3𝑥3 𝐺𝑑3𝑥1
01𝑥3 11𝑥1

] 

The top left 3 x 3 sub-matrix represents the rotation matrix; the top right 3 x 1 sub-matrix 

relates the position vector of the origin of the rotated coordinate system with respect to the 

global reference system; the lower left 1 x 3 sub-matrix gives the perspective transformation; 

and the fourth diagonal element is the global scaling factor. The homogeneous transformation 

matrix can be used to obtain the geometric liaison between the body attached frame oxyz and 

the global reference frame OXYZ. 

3.3. Manipulator Kinematics  

An articulated object is a set of rigid segments connected with joints; they are usually either 

rotational or translational. A minimal kinematic model is defined by its individual rigid 

segment lengths, joint degrees of freedom, their maximum and minimum joint limits, and a 

tree structured hierarchy of the segments and joints. Each joint maintains the rotations 

currently in effect at the corresponding joint. There are two major problems while developing 

robot arm kinematic models. The first problem brings up the direct/forward kinematics 

problem, while the second problem is the inverse kinematics/arm solution problem. Since the 

joint variables are independent variables in a robot arm, and a manipulator task is usually 

stated in terms of the reference coordinate frame, the inverse kinematics problem is used 

more commonly. 

3.3.1. D-H notation [5] 

Denavit and Hartenberg introduced a systematic and generalized approach to represent the 

spatial geometry of the robot arm links with respect to a fixed reference frame. This method 

uses a 4 x 4 homogeneous transformation matrix to describe the spatial relationship between 

two adjacent links that relates the spatial displacement of the hand coordinate frame to the 

reference coordinate frame. 
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The kinematic relations of robot components according to the D-H notation are as follows:  

i. A robot arm with n joints will have n+1 links. Start numbering the base link with ‘0’ 

and increase sequentially up to ‘n’ for the end-effector link.  

ii. The zi-axis is lined up with the i+1 joint axis. 

iii. The xi-axis is labeled along the common normal for the zi−1 and zi axes, pointing from 

the zi−1to the zi-axis. 

iv. The yi-axis is resolved by the right-hand rule, yi = zi×xi. 

v. ai is the kinematic link length and is the distance along the xi-axis from zi−1 to zi axes.  

vi. αi is the link twist and is measured the rotation about the xi axis between zi−1-axis and 

zi-axis. 

vii. di is the joint distance/link offset along the zi−1-axis between xi−1and xi axes.  

viii. Joint angle θi is the required rotation of xi−1-axis about the zi−1-axis to become parallel 

to the xi -axis. 

3.3.2. Forward kinematic model 

After giving a thorough consideration of the preceding works in this field, a four degree of 

freedom multi-functional reprogrammable manipulator is chosen. This is a four axis articulate 

manipulator designed to move material like machine parts, tools, specialized devices, etc. 

Fig.3.3 shows the different degrees of freedom of the arm and its specification is illustrated in 

Table.3.1. It is driven by four servomotors and has a gripper as an end-effector.  

  

Fig.3.3 3D design of industrial arm with four degrees of freedom  

Base  

Elbow   

Wrist   

Toll   
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Design's practical functions include: 

Movement: The manipulator’s workspace comprises of a 180 degree hemispherical envelop 

round itself throughout the arm’s length as shown in Fig.3.4. 

Manipulation: Servo motors are used for the movement of the arm. 

Power Source: It is powered by batteries as it could be used in different environment. The 

manipulator can also be electrically powered when directly connected to the electric power 

supply with an AC/DC adaptor. 

    

Fig.3.4 Manipulator work envelope 3D & 2D views [All dimensions are in cm.] 

Table 3.1 Basic Specification of the Manipulator 

Specification Value Units 

Number of axes 4  

Horizontal reach 210 mm 

Vertical reach 280 mm 

Drives 5 PMDC servo motors  

Configuration 

4 Axes plus gripper 

All axes completely independent 

All axes can be controlled simultaneously 

 

Work Envelope 

Refer (Fig. 3.5) 

Body Rotation : 180  

Elbow Rotation :- 180  

Wrist Rotation : -60-120  

Gripper Rotation : 90-270 

degrees 
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Fig.3.5 Variation of end-effector position when all joint angles are varied uniformly and other 

joints are at fixed angle [All dimensions are in cm.] 

Kinematics of the manipulator deals with each moveable part of the robot by assigning it a 

frame of reference and since the manipulator has many parts, it has many individual frames. 

An analysis of the links at different position is methodically calculated.  

  

Fig.3.6 Schematic diagram of direct kinematics of a manipulator 

Using D-H convention, coordinate frames for the manipulator are assigned as shown in the 

Fig.3.7. 

 

Fig.3.7 Link coordinate frame of the manipulator 

End-effectors Position Direct Kinematics Joint Angles 

Link Parameters 
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The position and orientation of the end-effector in terms of given joint angles is calculated 

using a set of equations and this is forward kinematics. This set of equations is formed using 

DH parameters obtained from the link coordinate frame assignation. The parameters for the 

manipulator are listed in Table 3.2, where 𝜃𝑖 is the rotation about the Z-axis, α𝑖 rotation about 

the X-axis, d𝑖 transition along the Z-axis, and a𝑖 translation along the X-axis. 

Table 3.2 Kinematic parameters of the manipulator 

Axis 𝜽 d (mm) a (mm) 𝜶 

1 𝜃1 d1 = 70 0 −𝜋 2⁄  

2 𝜃2 0 a2 = 100 0 

3 𝜃3 0 a3 = 70 −𝜋 2⁄  

4 𝜃4 d2 = 45 a4 = 0 0 

The set of link coordinates assigned using DH convention is then transformed from 

coordinate frame (𝑁𝑖) to (𝑁𝑖−1). Using a homogeneous coordinate transformation matrix, the 

relation between adjacent links is given in Eq.(3.7). 

𝑇𝑖 = 𝑅𝑜𝑡(𝑧, 𝜃𝑖) ∗ 𝑇𝑟𝑎𝑛𝑠(0,0, 𝑑𝑖) ∗ 𝑇𝑟𝑎𝑛𝑠(𝑎𝑖, 0,0) ∗ 𝑅𝑜𝑡(𝑥, 𝛼𝑖)   (3.7) 

= [

𝐶𝜃𝑖 −𝑆𝜃𝑖𝐶𝛼𝑖 𝑆𝜃𝑖𝑆𝛼𝑖 𝑎𝑖𝐶𝜃𝑖
𝑆𝜃𝑖 𝐶𝜃𝑖𝐶𝛼𝑖 −𝐶𝜃𝑖𝑆𝛼𝑖 𝑎𝑖𝑆𝜃𝑖
0
0

𝑆𝛼𝑖
0

𝐶𝛼𝑖
0

𝑑𝑖
      1

]      (3.8) 

Here C𝑖=cos(𝜃𝑖), S𝑖=sin(𝜃𝑖) 

On substituting the kinematic parameters illustrated in Table 3.2 into Eq. (3.8), individual 

transformation matrices T0
1 to T4

5 can be found and the global transformation matrix T0
5 of the 

robot arm is fund according to the Eq. (3.9). 

𝑇𝑏𝑎𝑠𝑒
𝑡𝑜𝑜𝑙 = 𝑇𝑏𝑎𝑠𝑒

𝑤𝑟𝑖𝑠𝑡 ∗ 𝑇𝑤𝑟𝑖𝑠𝑡
𝑡𝑜𝑜𝑙                         (3.9) 

Where 𝑇𝑏𝑎𝑠𝑒
𝑤𝑟𝑖𝑠𝑡 =  𝑇0

1 ∗ 𝑇1
2 

𝑇𝑤𝑟𝑖𝑠𝑡
𝑡𝑜𝑜𝑙 =  𝑇2

3 ∗ 𝑇3
4   
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𝑇𝑏𝑎𝑠𝑒
𝑡𝑜𝑜𝑙 = [

𝑚𝑥 𝑛𝑥 𝑜𝑥 𝑝𝑥
𝑚𝑦 𝑛𝑦 𝑜𝑦 𝑝𝑦
𝑚𝑧

0
𝑛𝑧
0

𝑜𝑧 𝑝𝑧
0 1

] = [
𝑅(𝜃)3𝑥3 𝑃3𝑥1

0 1
]     (3.10) 

Where (p𝑥, p𝑦, p𝑧) represents the position and 𝑅(𝜃)3𝑥3represents the rotation matrix of the 

end effector. From this transformation matrix, the position (translation) of end-effector with 

reference to base frame as a function of the joint angles is depicted in Fig.3.5.  

Tool configuration is six-dimensional because arbitrary specified by three position co-

ordinates (x, y, z) and orientation co-ordinates (yaw, pitch, roll). 

Tool position={

𝑝𝑥
𝑝𝑦
𝑝𝑧
} = {

𝑐1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑠1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑑1 − 𝑎2𝑠2 − 𝑎3𝑠23 − 𝑑4𝑐23

}    (3.11) 

Tool orientation coordinates can be defined by its approach vector (tool roll angle 𝜃4). 

Orientation coordinates ={
𝑦
𝑝
𝑟
} = {

−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑐1𝑠23
−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑠1𝑠23
−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑐23

}    (3.12) 

Therefore the final arm equation for the considered 4-axis manipulator is  

𝑋 =

{
 
 

 
 
𝑝𝑥
𝑝𝑦
𝑝𝑧
𝑦
𝑝
𝑟 }
 
 

 
 

=

{
 
 

 
 
𝑐1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑠1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑑1 − 𝑎2𝑠2 − 𝑎3𝑠23 − 𝑑4𝑐23

−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑐1𝑠23
−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑠1𝑠23
−[𝑒𝑥𝑝 (𝜃4)/𝜋]𝑐23 }

 
 

 
 

     (3.13) 

3.3.3. Inverse kinematic model 

Since the independent variables in a robotic arm are the joint variables and a task is usually in 

terms of reference coordinate frame, inverse kinematics is used more frequently. In general, 

the inverse kinematics problem can be solved by various techniques such as matrix algebraic, 

iterative and geometric approaches. 

 

Fig.3.8 Schematic diagram of inverse kinematics of a manipulator 

End-effector’s 

Position & orientation Inverse Kinematics Joint Angles 

Link Parameters 



Mechanical Design Architecture of the Robot Arm 

49 
 

This section describes the development of inverse kinematic models of an arm based on its 

link coordinate systems. 

 

Fig.3.9 Elbow position & Wrist position for the same end-effector position 

By observing the Eq. (3.16), there is a possibility of getting two wrist angles (±𝜃3) for the 

same tool position. Since the elbow angle (𝜃2) depends on wrist angle  (𝜃3 ) , there will be 

two elbow angles corresponds to each wrist angle as shown in the Fig.3.9. 

Since there is no yaw motion, the base angle can be found easily by Eq. (3.14). 

Base angle 𝜃1 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑝𝑦

𝑝𝑥⁄ )       (3.14) 

Where 𝑝𝑥 𝑎𝑛𝑑 𝑝𝑦 can be found from eq(3.13) and from the arm equation, the global pitch 

angle 𝜃23 can be found as follows: 

𝜃23 = 𝑎𝑟𝑐𝑡𝑎𝑛 (
(𝑐1𝑦 + 𝑠1𝑝)

𝑟⁄ )       (3.15) 

The wrist angle can be found as follows: 

𝜃3 = ±𝑎𝑟𝑐𝑐𝑜𝑠 (
(‖𝑏‖2 − 𝑎2

2 − 𝑎3
2)
𝑝𝑥
⁄ )       (3.16) 

Where ‖𝑏‖2 = 𝑏1
2 + 𝑏2

2;      𝑎𝑛𝑑    b1 = 𝑐1𝑝𝑥 + 𝑐2𝑝𝑦 + 𝑑4𝑠23 &  b2 = 𝑑1 − 𝑑4𝑐23 − 𝑝𝑧 

Once 𝜃3 is known then elbow angle 𝜃2 can be found from the global pitch angle 𝜃23. 

∵ 𝜃23 = 𝜃3 + 𝜃2 ⇒ 𝜃2 = 𝜃23 − 𝜃3          (3.17) 

The final joint parameter 𝜃4 can be found from the arm Eq. (3.18) as follows 

Tool roll angle 𝜃4 = 𝜋 ∗ 𝑙𝑛√(𝑦2 + 𝑝2+𝑟2)      (3.18) 
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Fig.3.10 Flow chart for inverse kinematics of a 4-axis articulated robot 

3.4. Summary 

The purpose of the current section is to understand the motion of the robot arm structure. The 

motion of the structure is analyzed in two ways, forward and inverse kinematics. Forward 

kinematics is the determination of the every link configuration, specially the end-effector, 

when the joint variables are given. Inverse kinematics deals with determining the joint 

variables of a robot manipulator for the given position and orientation of the end-effector. 

The standard Denavit-Hartenberg convention is implemented for determining coordinate 

frames attached to each robot’s link. Based on the D-H rule, each transformation matrix can 

be expressed for the adjacent coordinate frames by four kinematic parameters; link length, 

link twist, joint distance, and joint angle. Later, arm equation is developed for the considered 

4-axis manipulator using forward kinematic models. From the developed arm equation, 

inverse kinematic models have been developed to find out the joint parameters.  

Base angle 𝜃1 = arctan (
𝑝𝑦

𝑝𝑥
) 

Global pitch angle 𝜃23 = arctan (
𝑐1𝑦+𝑠1𝑝

𝑟
) 

b1 = 𝑐1𝑝𝑥 + 𝑐2𝑝𝑦 + 𝑑4𝑠23  

b2 = 𝑑1 − 𝑑4𝑐23 − 𝑝𝑧 & ‖b‖
2 = b1

2
+ b2

2 

Wrist angle 𝜃3 = ±arccos (
‖b‖2−a2

2−a3
2

𝑝𝑥
) 

 

Elbow angle 𝜃2 = 𝜃23 − 𝜃3 

 

Tool roll angle 𝜃4 = 𝜋 ∗ ln√(𝑦2 + 𝑝2+𝑟2) 
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4. MECHANICAL DESIGN ARCHITECTURE OF THE MOBILE PLATFORM 

A mobile manipulator is a robotic arm mounted on mobile platform. This combination 

permits manipulation tasks over unlimited workspace. However, since the platform and the 

manipulator are with independent degree of freedom, the system can reach to a specific 

position in the workspace in multiple configurations, resulting in a system with redundancy. 

The mechanical system considered in this research work is a non-holonomic wheeled mobile 

platform.  

4.1. Mobile Platform Position Representation 

A mobile platform is equipped with definite number of wheels which is capable of an 

autonomous motion. In order to achieve the desired motion by the mobile platform, each of 

the wheels is fitted with electric motors. Throughout this analysis we model the mobile 

platform as a rigid body on wheels, operating on a horizontal plane. The total dimensionality 

of this system chassis on the plane is three, two for position in the plane and one for 

orientation along the vertical axis, which is orthogonal to the plane. 

 

Fig.4.1 The global reference plane and the mobile platform local reference frame 

Let the robot is moving on a plane, then the motion of the mobile platform can be depicted as 

follows. In order to specify the position of the mobile platform on the plane, it is required to 

establish a relationship between the global reference frame of the plane and the local 

reference frame of the mobile platform, as in Fig.4.1. An arbitrary inertial base frame 

O:{𝑋𝐼, 𝑌𝐼} is fixed on the plane of motion, while a mobile reference frame M: {𝑋𝑅, 𝑌𝑅} is 

attached to the mobile robot. The position of P in the global reference frame is specified by 

coordinates x and y, and the angular difference between the global and local reference frames 

is given by ψ. 
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Therefore the mobile platform position:  

{𝛸⃗} = [𝑥 𝑦 𝜓]𝑇          (4.1) 

And mapping is accomplished using the orthogonal rotation matrix: 

[𝑅(𝜓)] = [
𝑐𝑜𝑠𝜓 𝑠𝑖𝑛𝜓 0
−𝑠𝑖𝑛𝜓 𝑐𝑜𝑠𝜓 0
0 0 1

]        (4.2) 

From Eq.(4.2) the mobile platform’s motion can be computed in the global reference frame 

with respect to its local reference frame: 

{𝛸⃗𝑚} = [𝑅(𝜓)]{𝛸⃗} and {𝛸⃗𝑚}
̇ = [𝑅(𝜓)]{𝛸⃗}̇       (4.3) 

{𝛸⃗}̇ = [𝑅(𝜓)−1]{𝛸⃗𝑚}          (4.4) 

4.2. Kinematic Constraints of Various Wheel Configurations 

While a mobile platform is in movement, two feasible constraints are existing for every 

wheel. The first constraint enforces the concept of rolling contact as represented in Fig.4.2; 

wheel must roll when motion takes place in the appropriate direction. The second constraint 

enforces the concept of no lateral slippage. It means the wheel must not slide orthogonal to 

the wheel plane as shown in Fig.4.3. The first step to a kinematic model of the mobile 

platform is to express constraints on the motions of individual wheels. The motions of 

individual wheels can be combined later to compute the motion of the mobile platform as a 

whole. 

    

Fig.4.2 Rolling motion     Fig.4.3 Lateral slip 

The following assumptions are taken into consideration while performing the kinematic 

analysis: 

a. Platform movement is on a horizontal plane. 

b. Equipped wheels are not deformable. 

c. Wheels are connected to the rigid frame (chassis). 

d. Attached wheels are always remaining in vertical during the motion of mobile platform. 

e. The contact between wheel and ground is a single point. 
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f. There is no friction for rotation around contact point. 

g. There is no sliding at the single point of contact between the ground plane and the wheel. 

It means that the wheel is in motion under only pure rolling conditions and the rotation is 

about the vertical axis through the contact point. 

In the present investigation the following four basic wheel types are considered: 

 Fixed standard wheel 

 Steered standard wheel 

 Swedish wheel 

 Spherical wheels 

 Castor wheel 

4.2.1. Fixed standard wheel 

The fixed standard wheel [30] has no vertical axis of rotation for steering. Its angle to the 

chassis is thus fixed, and it is limited to motion back and forth along the wheel plane and 

rotation around its contact point with the ground plane. Fig.4.4 depicts a fixed standard wheel 

and indicates its position pose relative to the mobile platform’s local reference frame. The 

position of the wheel is expressed in polar coordinates by distance l and angle α. The angle of 

the wheel plane relative to the chassis is denoted by β. The wheel, which has radius r, can 

spin over time, and so its rotational position around its horizontal axle is a function of time t: 

φ(t). 

        

Fig.4.4 Fixed standard wheel and its parameters [30] 

The rolling constraint for this wheel enforces that complete motion along the direction of the 

wheel plane must be accompanied by the appropriate amount of wheel spin so that there is 

pure rolling at the contact point: 

[𝑠𝑖𝑛(𝜌 + 𝛽)     − 𝑐𝑜𝑠(𝜌 + 𝛽)   (−𝑙)𝑐𝑜𝑠𝛽] ∗ 𝑅(𝜓)𝜉̇𝐼 − 𝑟𝜑̇ = 0     (4.5) 
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The sliding constraint for this wheel enforces that the component of the wheel’s motion 

orthogonal to the wheel plane must be zero:   

[𝑐𝑜𝑠(𝜌 + 𝛽)    𝑠𝑖𝑛(𝜌 + 𝛽)    𝑙 𝑠𝑖𝑛𝛽]𝑅(𝜓)𝜉̇𝐼 = 0      (4.6) 

4.2.2. Steered standard wheel 

The steered standard wheel [30] differs from the fixed standard wheel only when there is an 

additional degree of freedom: the wheel may rotate around a vertical axis passing through the 

center of the wheel and the ground contact point. The orientation of the wheel to the mobile 

platform chassis is no longer a single fixed value β, but instead varies as a function of 

time: β(t) .  

            

Fig.4.5 Steerable standard wheel and its parameters [30] 

The rolling and sliding constraints for the steered standard wheel shown in Fig.4.5: 

[𝑠𝑖𝑛(𝜌 + 𝛽)    − 𝑐𝑜𝑠(𝜌 + 𝛽)   (−𝑙)𝑐𝑜𝑠𝛽]*𝑅(𝜓)𝜉̇𝐼 − 𝑟𝜑̇ = 0    (4.7) 

[𝑐𝑜𝑠(𝜌 + 𝛽)   𝑠𝑖𝑛(𝜌 + 𝛽)   𝑙𝑠𝑖𝑛𝛽]𝑅(𝜓)𝜉̇𝐼 = 0     (4.8) 

4.2.3. Swedish wheel 

Swedish wheels [30] have no vertical axis of rotation, yet are able to move omnidirectionally 

like the castor wheel. This is possible by adding a degree of freedom to the fixed standard 

wheel. Swedish wheels consist of a fixed standard wheel with rollers attached to the wheel 

perimeter with axes that are antiparallel to the main axis of the fixed wheel component. The 

exact angle γ between the roller axes and the main axis can vary, as shown in Fig.4.6. 

The motion constraint that is derived looks identical to the formula is modified by adding γ 

such that the effective direction along which the rolling constraint holds is along this zero 

component rather than along the wheel plane: 

[𝑠𝑖𝑛(𝜌 + 𝛽 + 𝛾)      – 𝑐𝑜𝑠(𝜌 + 𝛽 + 𝛾)     (−𝑙) 𝑐𝑜𝑠(𝛽 + 𝛾)] ∗ 𝑅(𝜓)𝜉̇𝐼 − 𝑟𝜑̇ = 0 (4.9) 
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Orthogonal to this direction the motion is not constrained because of the free rotation 𝜑̇𝑠𝑤 of 

the small rollers. 

[𝑠𝑖𝑛(𝜌 + 𝛽 + 𝛾) 𝑐𝑜𝑠(𝜌 + 𝛽 + 𝛾) (𝑙)𝑠𝑖𝑛(𝛽 + 𝛾)] ∗ 𝑅(𝜓)𝜉𝐼̇ − 𝑟𝜑̇𝑠𝑖𝑛𝛾 − 𝑟𝑠𝑤𝜑̇𝑠𝑤 = 0  

           (4.10) 

     

Fig.4.6 Swedish wheel and its parameters [30] 

Consider γ = 0, this represents the Swedish 90-degree wheel. In this case, the zero 

component of velocity is in line with the wheel plane and so Eq. (4.9) reduces exactly to Eq. 

(4.5), the fixed standard wheel rolling constraint. But because of the rollers, there is no 

sliding constraint orthogonal to the wheel plane. At the other extreme 𝛾 =
𝜋

2
 ,  the rollers have 

axes of rotation that are parallel to the main wheel axis of rotation. For 𝛾 =
𝜋

2
 in Eq. (4.9), 

result the fixed standard wheel sliding constraint, Eq. (4.6). 

4.2.4. Spherical wheel 

A ball or spherical wheel [30], places no direct constraints on motion (Fig.4.7). Such a 

mechanism has no principal axis of rotation, and therefore no appropriate rolling or sliding 

constraints exist.  

      

Fig.4.7 Spherical wheel and its parameters [30] 
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Therefore Eq. (4.11) simply describes the roll rate of the ball in the direction of motion vA of 

point A of the mobile platform. 

[𝑠𝑖𝑛(𝜌 + 𝛽) − 𝑐𝑜𝑠(𝜌 + 𝛽)(−𝑙)𝑐𝑜𝑠 𝛽]𝑅(𝜓)𝜉̇𝐼 − 𝑟𝜑̇ = 0    (4.11) 

By definition the wheel rotation orthogonal to this direction is zero. 

[𝑠𝑖𝑛(𝜌 + 𝛽)𝑐𝑜𝑠(𝜌 + 𝛽)𝑙 𝑠𝑖𝑛𝛽]𝑅(𝜓)𝜉̇𝐼 = 0       (4.12) 

4.2.5. Castor wheel 

Castor wheels [30] are able to steer around a vertical axis. However, unlike the steered 

standard wheel, the vertical axis of rotation in a castor wheel does not pass through the 

ground contact point. Fig.4.8 depicts a castor wheel, demonstrating that formal specification 

of the castor wheel’s position requires an additional parameter which is a rigid rod of fixed 

length connected to wheel. 

   

Fig.4.8 Castor wheel and its parameters [30] 

For the caster wheel, the rolling constraint is identical to equation because the offset axis 

plays no role during motion that is aligned with the wheel plane: 

[𝑠𝑖𝑛(𝜌 + 𝛽) − 𝑐𝑜𝑠(𝜌 + 𝛽)(−𝑙)𝑐𝑜𝑠𝛽]𝑅(𝜓)𝜉̇𝐼 − 𝑟𝜑̇ = 0      (4.13) 

Because of the offset ground contact point relative to A, the constraint with zero lateral 

movement would be wrong. Instead, the constraint is much like a rolling constraint with 

appropriate rotation of the vertical axis as follows: 

[𝑐𝑜𝑠(𝜌 + 𝛽) 𝑠𝑖𝑛(𝜌 + 𝛽)𝑑 + 𝑙 𝑠𝑖𝑛𝛽]𝑅(𝜓)𝜉̇𝐼 + 𝑑𝛽̇  = 0         (4.14) 

4.3.Kinematic Constraints of a Mobile Platform 

Consider a general mobile platform, equipped with N wheels of the five above described 

categories. The five following subscripts to identify quantities relative to these classes: f for 

fixed wheels, s for steerable standard wheels, sw for Swedish wheels, sp for spherical wheel 
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and c for castor wheels. The numbers of wheels for each type are denoted Nf, Ns, Nc, Nsw, Nsp 

with Nf+ Ns+ Nc+ Nsw+ Nsp=N.  The configuration of the mobile platform is fully described 

by the following vectors of coordinates  

 Posture coordinates: 𝜉𝐼 = [𝑥(𝑡) 𝑦(𝑡) 𝜓(𝑡)]𝑇 

 Angular coordinates: 𝛽𝑓 ,  𝛽𝑠(𝑡),  𝛽𝑐(𝑡), 𝛽𝑠𝑤(𝑡), and 𝛽𝑠𝑝(𝑡) for the five types of wheels 

respectively. 

 Rotational coordinates: [𝜑𝑓(𝑡)     𝜑𝑠(𝑡)     𝜑𝑐(𝑡)     𝜑𝑠𝑤(𝑡)     𝜑𝑠𝑝(𝑡)]
𝑇
for the rotation angles 

of the wheels around their horizontal axis of rotation. 

The rolling constraints of all wheels can now be collected in a single expression: 

𝐽1(𝛽)𝑅(𝜓)𝜉̇𝐼 − 𝐽2𝜑̇ = 0        (4.15) 

This expression bears a strong resemblance to the rolling constraint of a single wheel, but 

substitutes matrices in lieu of single values, thus taking into account all wheels. J2 is a 

constant diagonal matrix N x N whose entries are radii r of all standard wheels. 𝐽1(𝛽) denotes 

a matrix with projections for all wheels to their motions along their individual wheel planes: 

𝐽1(𝛽)=

[
 
 
 
 
𝐽1𝑓

𝐽1𝑠(𝛽𝑠)

𝐽1𝑐(𝛽𝑐)
𝐽1𝑠𝑤
𝐽1𝑠𝑝 ]

 
 
 
 

         (4.16) 

where J1f , J1s , J1c , J1sw , and J1sp are  the matrices of  (Nf x 3), ( Ns x 3), (Nc x 3), (Nsw x 3) 

and (Nsp x 3), whose forms derive readily from the constraints (4.5), (4.7), (4.9), (4.11) and 

(4.13). J2 is a constant (N x N) matrix whose diagonal entries are the radii of the wheels, 

except for the radii of the Swedish wheels which are multiplied by cosγ. 

We use the same technique to collect the sliding constraints of all standard wheels into a 

single expression with the same structure as Eqs. (4.15) and (4.16): 

𝐶1(𝛽)𝑅(𝜃)𝜉̇𝐼 + 𝐶2𝛽𝑆̇ = 0        (4.17) 

Where 𝐶1(𝛽)=

[
 
 
 
 
𝐶1𝑓

𝐶1𝑠(𝛽𝑠)

𝐶1𝑐(𝛽𝑐)
𝐶1𝑠𝑤
𝐶1𝑠𝑝 ]

 
 
 
 

 and 𝐶2 =

[
 
 
 
 
0
0
𝐶2𝑐
0
0 ]
 
 
 
 

 

The terms C1f , C1s , C1c , C1sw , and C1sp are  the matrices of  (Nf x 3), ( Ns x 3), (Nc x 3), (Nsw 

x 3) and (Nsp x 3), whose forms derive readily from the constraints (4.6), (4.8), (4.10), (4.12) 

and (4.14). C2 is a constant (N x N) matrix whose diagonal entries are equal to d for Nc of the 

castor wheels. 
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4.4. Maneuverability of a Mobile Platform 

The kinematic mobility of a mobile platform chassis is its ability to directly move in the 

environment. The basic constraint limiting mobility is the rule that every wheel must satisfy 

its sliding constraint. In addition to instantaneous kinematic motion, a mobile platform is able 

to further manipulate its position, over time, by steering steerable wheels. The overall 

maneuverability of a mobile platform is thus a combination of the mobility available based on 

the kinematic sliding constraints of the standard wheels, plus the additional freedom 

contributed by steering and spinning the steerable standard wheels. 

4.4.1. Degree of mobility 

It is observed from the wheel kinematic constraints (Eqs. (4.9), (4.11), and (4.13)), that the 

Swedish wheel, spherical wheel and castor wheel impose no kinematic constraints on the 

mobile platform chassis because these wheels can range freely owing to the internal wheel 

degrees of freedom. Therefore only fixed standard wheels and steerable standard wheels have 

impact on mobile platform chassis kinematics and therefore require consideration when 

computing the mobile platform’s kinematic constraints. 

Consider now the (Nf + NS) wheels of fixed and steered standard wheels. To avoid any lateral 

slip the motion vector R(𝜓)ξ̇I has to satisfy the following constraints: 

𝐶1𝑓𝑅(𝜓)𝜉̇𝐼 = 0         (4.18) 

𝐶1(𝛽𝑠)𝑅(𝜓)𝜉̇𝐼 = 0         (4.19) 

where 𝐶1(𝛽𝑠)=[
C1f

C1s(𝛽𝑠)
] 

Mathematically it represents 𝑅(𝜓)𝜉̇𝐼 must belong to the null space of the projection matrix. 

Null space of  𝐶1(𝛽𝑠) is the space N such that for any vector n in N  

𝐶1(𝛽𝑠). 𝑛 = 0          (4.20) 

Mobile platform chassis kinematics is therefore a function of the set of independent 

constraints arising from all standard wheels. The mathematical interpretation of independence 

is related to the rank of a matrix. Therefore 𝑟𝑎𝑛𝑘[𝐶1𝑠(𝛽𝑠)] is the number of independent 

constraints. In general, a mobile platform will have zero or more fixed standard wheels and 

zero or more steerable standard wheels. Therefore the possible range of rank values for any 

mobile platform is 0 ≤ [𝐶1𝑠(𝛽𝑠)] ≤ 3. 

Now we are ready to formally define a mobile platform’s degree of mobility𝛿𝑚: 

𝛿𝑚 = 𝑑𝑖𝑚𝑁[𝐶1(𝛽𝑠)] = 3 − 𝑟𝑎𝑛𝑘[𝐶1(𝛽𝑠)]      (4.21) 
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It means for a completely constrained mobile platform 𝑟𝑎𝑛𝑘[𝐶1(𝛽𝑠)] = 3 and its motion in 

the plane is totally impossible. Fig.4.9 represents the mobile platform is completely 

constrained when it is equipped with three fixed wheels. 

 

Fig.4.9 Constrained mobile platform 

For this configured mobile platform the matrix 𝐶1(𝛽𝑠) retains three independent constraints 

and has a rank of three. Let the specifications for the mobile platform shown in Fig.4.9 

as  𝑙1 = 𝑙2 = 𝑙3 = 1, 𝛽1 = 𝛽2 = 𝛽2 =
𝜋
2⁄ , and 𝜌1 = 𝜋, 𝜌2 =

𝜋
3⁄ , 𝜌3 =

−𝜋
4⁄  

𝐶1(𝛽𝑠) = C1f =

[
 
 
 
 cos

3𝜋

2
sin

3𝜋

2
1

cos
5π

6
sin

5π

6
1

cos 
𝜋

2
 sin 

𝜋

2
1 ]
 
 
 
 

=[

0 −1 1
−√3

2

1

2
1

0   1  1

]      (4.22)    

By observing equation (4.22), it is obvious that the𝑟𝑎𝑛𝑘[𝐶1(𝛽𝑠)] = 3 and its degree of 

mobility (𝛿𝑚) is 3- 𝑟𝑎𝑛𝑘[𝐶1(𝛽𝑠)]=0 

Consider a mobile platform with two fixed standard wheels having specifications 𝑙1 =

𝑙2 , 𝛽1 = 𝛽2 = 0, and 𝜌2 = 𝜌1 + 𝜋. The configuration is like a differential-drive mobile 

platform as shown in Fig.4.10.  

 

Fig.4.10 Differential-drive mobile platform 

Then the matrix 𝐶1(𝛽𝑠) has two constraints but rank one. Therefore the degree of mobility 

𝛿𝑚 = 3 − 𝑟𝑎𝑛𝑘[𝐶1(𝛽𝑠)]=2 

 𝐶1(𝛽𝑠) = C1f = [
cos (𝜌1)         sin (𝜌1)        0
cos (𝜌1 + π) sin (𝜌1 + π) 0

]=[
cos (𝜌1)       sin (𝜌1) 0
−cos (𝜌1) −sin (𝜌1) 0

] (4.23) 
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4.4.2. Degree of steerability 

Platform can be equipped with the number of centered orientable wheels in order to steer the 

mobile platform. This impact of steering is indirect since the mobile platform must move for 

the change in steering angle of the steerable standard wheel. 

The degree of steerability is defined: 

𝛿𝑠 = rank [𝐶1𝑠(𝛽𝑠)]         (4.24) 

An increase in the rank of [C1s(βs)] implies more degrees of steering freedom and thus 

greater eventual maneuverability. The range of δs is given by 0 ≤ δs  ≤ 2. Since 

[C1(βs)]includes[C1s(βs)], a steerable standard wheel can both decrease mobility and 

increase steerability: 

 Its particular orientation at any instant imposes a kinematic constraint. 

 Its ability to change the orientation can lead to additional trajectories.  

A differential drive mobile platform represented in Fig.4.11 has no centered orientable 

wheels. Therefore its Degree of steerability is  𝛿𝑠 = 0. 

  

Fig.4.11 No centered orientable wheels 

4.4.3. Maneuverability of wheeled platform 

The overall (Degrees of Freedom) DOF that a mobile platform can manipulate is called the 

degree of maneuverability(δM). It can be defined in terms of mobility and steerability. Thus 

the maneuverability is the degrees of freedom that the mobile platform manipulates directly 

through wheel velocity and the degrees of freedom that it indirectly manipulates by changing 

the steering configuration. 

∴ 𝛿𝑀 = 𝛿𝑚 + 𝛿𝑠         (4.25) 

4.4.4. Maneuverability of various configured wheeled platforms 

Consider various wheeled platform configurations as shown in Fig.4.12 having three or four 

wheels with arbitrary orientations with respect to its wheel plane. The maneuverability of 

these platforms are illustrated in Table.4.1. 
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Fig.4.12 WMRs with various configured wheels 

Table.4.1 Maneuverability of various configured wheels for Fig.23 

Figure 4.12 𝜹𝒎 𝜹𝒔 𝜹𝑴 

a (neither fixed wheels nor centered orientable wheels) 3 0 3 

b (one steerable standard wheel & two castor wheels) 2 1 3 

c (two independent steerable standard & one castor wheels) 1 2 3 

d (two dependent fixed & one castor wheels) 2 0 2 

e (two dependent fixed & centered orientable wheels) 1 1 2 

f (three fixed wheels) 0 0 0 

4.5.Velocity Equations of Differential Drive Wheeled Platform 

For a differential robot, linear and angular velocities are depends on its wheel (left and right) 

velocities by following relation:  

𝜔 =
𝑣𝑅𝑡−𝑣𝐿𝑡

2∗𝑠

𝑣 =
𝑣𝑅𝑡+𝑣𝐿𝑡

2

}          (4.26) 

Where 𝑣𝑅𝑡& 𝑣𝐿𝑡are the right and left wheel velocities respectively and ‘2s’ is the wheel base 

for the considered differential robot. The wheel velocities are bounded to some value 𝑣𝑏, 

which depends on the maximum possible linear velocity of the robot. The considered 

differential robot can move in the curved paths with the curvature: 

𝛾 =  
𝑣𝑅𝑡−𝑣𝐿𝑡

𝑠∗(𝑣𝑅𝑡+𝑣𝐿𝑡)
   𝑤ℎ𝑒𝑟𝑒   

−1

𝑠
≤ 𝛾 ≥

1

𝑠
  𝑎𝑛𝑑  0 ≤ 𝑣𝑅𝑡, 𝑣𝐿𝑡 ≥ 𝑣𝑏   (4.27) 
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Sharp turns should be avoided in practice so the constraints are applied to curvature and 

wheel velocities which will avoid the overstress on the robot. If the both wheels are moving 

with same velocity, 𝛾 = 0 and robot takes straight path. If 𝑣𝑅𝑡 = −𝑣𝐿𝑡, robot takes turn with 

large curvature or it takes sharp turns.  

From Eqs.(4.26) & (4.27) the robot velocity coordinates are: 

𝜉̇𝐼 = {
𝑥̇
𝑦̇

𝜃̇

} = [
𝑐𝑜𝑠𝜓
𝑠𝑖𝑛𝜓
0

0
0
1
] ∗ [

1
2⁄

1
2⁄

−1 2𝑠⁄
1
2𝑠⁄
] ∗ {

𝑣𝑅𝑡
𝑣𝐿𝑡
} =

1

2𝑠
[
𝑠 ∗ 𝑐𝑜𝑠𝜓
𝑠 ∗ 𝑠𝑖𝑛𝜓
−1

𝑠 ∗ 𝑐𝑜𝑠𝜓
𝑠 ∗ 𝑠𝑖𝑛𝜓

1
] ∗ {

𝑣𝑅𝑡
𝑣𝐿𝑡
}  (4.28) 

4.6.Summary 

In this section, the behavior of wheeled mobile platforms has been analyzed. These robots 

ride on a system  of  wheels  and  axles,  some  of  which  may  be  steerable  or  driven.  For 

these platforms, there are many wheels and axle configuration have been used.  The  ultimate  

objective  of  this  chapter  is  to  investigate  the  complete  description  of  the  control 

theory  of  wheeled mobile  robots  and  its  maneuverability.  Equations  are  modeled  to  

describe  the  rigid  body motions  that  arise  from  rolling  trajectories  based  on  the  

geometrical  constraints  of  these  wheels. Finally this analysis is applied to various 

three/four wheeled mobile robots. Moreover, this section detailed about the differential drive 

wheeled platform and its motion equations in terms of wheel velocities.  
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5. MECHANICAL STRUCTURE OF THE MOBILE MANIPULATOR 

The important feature of a mobile manipulator is the flexible operational workspace in 

contrast with the bounded workspace of a fixed manipulator which is bolted to the base. This 

property confers a mobile manipulator with the ability of performing many tasks. Among the 

properties possessed by such a system, redundancy is one of the most important factor. This 

property enables one to use the redundant degrees of freedom to accomplish secondary tasks. 

In this way, coordinated motion of the manipulator and mobile platform leads to a wide range 

of redundancy which is a powerful tool. Due to the velocity constraints imposed on the 

mobile base as discussed in Section - 4, the wheeled mobile manipulator (WMM) is a non-

holonomic system. So it is required to develop a kinematic controller to make the robot 

system follow a desired end-effector and platform trajectories in its workspace coordinates 

simultaneously.   

A mobile manipulator in this investigation is a 4 – axis manipulator mounted on a non-

holonomic differential wheeled mobile platform (as shown in Fig.5.1) which has two driving 

wheels and one castor wheels; the two driving wheels are independently driven by two 

motors and the castor wheel considered here for stability of the platform. 

 

Fig.5.1 Mobile manipulator representation      

5.1.Velocity Jacobean of Manipulator 

Chapter 3 addressed the development of forward & inverse kinematic models of a 4-axis 

manipulator. The arm equation is obtained as represented in Eq.(3.13), which is function of 

θ1, θ2, θ3 and θ4. The arm equation consists of six elements; three corresponds to the end-

effector’s position and the remaining three represents the orientation of the end-effector.  
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The time derivative of the end-effector’s position gives the linear velocity of the end-effector. 

The position of the end-effector [𝑝𝑥 𝑝𝑦 𝑝𝑧]𝑇is a function of (θ1, θ2, θ3) because θ4 

indicates the orientation of the tool. According to Eq.(3.13): 

{

𝑝𝑥
𝑝𝑦
𝑝𝑧
} = {

𝑐1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑠1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)
𝑑1 − 𝑎2𝑠2 − 𝑎3𝑠23 − 𝑑4𝑐23

}  

⇒ {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} =

𝑑

𝑑𝑡
{

𝑝𝑥
𝑝𝑦
𝑝𝑧
}         (5.1) 

⇒ {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} = 

{
 
 

 
 −𝑠1𝜃̇1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4) + 𝑐1 (−𝑎2

2𝑠23𝜃̇2−𝑎3
2𝑠23
2 (𝜃2̇ + 𝜃̇3) − 𝑑4

2𝑐23(𝜃2̇ + 𝜃̇3))

𝑐1𝜃̇1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23) + 𝑠1 (−𝑎2
2𝑠23𝜃̇2−𝑎3

2𝑠23
2 (𝜃2̇ + 𝜃̇3) − 𝑑4

2𝑠23(𝜃2̇ + 𝜃̇3))

−𝑎2
2𝑐2𝜃̇2 −

̇ 𝑎3𝑐23
2 (𝜃2̇ + 𝜃̇3) + 𝑑4

2𝑠23(𝜃2̇ + 𝜃̇3) }
 
 

 
 

 

(5.2) 

⇒ {

𝑣𝑥
𝑣𝑦
𝑣𝑧
} =  [𝐽𝑀]3𝑥3 {

𝜃̇1
𝜃̇2
𝜃̇3

}        (5.3) 

Where [𝐽𝑀]3𝑥3 is manipulator velocity Jacobean matrix and is equal to: 

[
−𝑠1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23) −𝑎2

2𝑠2𝑐1−𝑎3
2𝑠23
̇ 𝑐1 − 𝑑4𝑐23𝑐1 −𝑎3𝑠23𝑐1 − 𝑑4𝑐23𝑐1

𝑐1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23) −𝑎2𝑠1𝑠2 − 𝑎3𝑠1𝑠23 − 𝑑4𝑠1𝑠23 𝑠1(−𝑎3𝑠23 − 𝑑4𝑠23)

0 −𝑎3𝑐23 + 𝑑4𝑠23 −𝑎3𝑐23 + 𝑑4𝑠23

]  

(5.4) 

5.2.Velocity Jacobean of Mobile Platform 

There are three constraints for a differential platform as mentioned in chapter – 4; first one 

corresponds to move the platform in the direction of axis of symmetry and the remaining two 

are rolling constraints not allow the wheels to slip. The motion equation of a differential 

mobile platform is a function of left wheel and right wheel velocities as represented in the 

Eq.(4.28), since these two are rotating independently to impart the motion to the entire 

system. 
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From Eq.(4.28) 𝜉̇𝐼 = {

𝑥̇
𝑦̇

𝜓̇
} ==

1

2𝑠
[
𝑠 ∗ 𝑐𝑜𝑠𝜓
𝑠 ∗ 𝑠𝑖𝑛𝜓
−1

𝑠 ∗ 𝑐𝑜𝑠𝜓
𝑠 ∗ 𝑠𝑖𝑛𝜓

1

] ∗ {
𝑣𝑅𝑡
𝑣𝐿𝑡
}   

While moving the mobile manipulator, the following kinematic Eq.(5.5) is used which relates 

the linear velocity of the mobile platform reference frame to the wheel velocities.   

{
𝑉𝑥
𝑉𝑦
} =  [𝐽𝑀𝑃]2𝑥2 {

𝜃̇𝑟𝑡
𝜃̇𝑙𝑡
}        (5.5) 

Where [𝐽𝑀𝑃]3𝑥3 is mobile platform velocity Jacobean matrix and 𝜃̇𝑟𝑡 & 𝜃̇𝑙𝑡 are angular 

velocities of right and left wheels respectively 

Velocity Jacobean matrix [𝐽𝑀𝑃] =  
1

2𝑟
[
𝑐𝑜𝑠𝜓 𝑐𝑜𝑠𝜓
𝑠𝑖𝑛𝜓 𝑠𝑖𝑛𝜓

] 

5.3.Velocity Jacobean of Mobile Manipulator 

The differential kinematics of the mobile manipulator can be obtained by combining the 

kinematic Eqs. (5.4) & (5.5) of a 4-axis manipulator and the differential mobile platform. The 

parametric matrix shown in Eq. (5.6) represents the motion of the mobile manipulator. 

{𝑞̇} =  

{
 
 

 
 
𝜃̇1
𝜃̇2
𝜃̇3
𝜃̇𝑟𝑡
𝜃̇𝑙𝑡}
 
 

 
 

          (5.6) 

 The first parameters in the above equation relate to the manipulator and the remaining two 

corresponds to the differential platform. Therefore the final kinematic model of the mobile 

manipulator is as follows: 

{
 
 

 
 
𝑣𝑥
𝑣𝑦
𝑣𝑧
𝑉𝑥
𝑉𝑦}
 
 

 
 

=  [𝐽𝑊𝑀𝑃]5𝑥5

{
 
 

 
 
𝜃̇1
𝜃̇2
𝜃̇3
𝜃̇𝑟𝑡
𝜃̇𝑙𝑡}
 
 

 
 

        (5.7) 

Where [𝐽𝑊𝑀𝑃] is the Velocity Jacobean of Mobile Manipulator and is represented as follows: 
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[𝐽𝑊𝑀𝑃] =

[
 
 
 
 
 
[𝐽𝑊𝑀𝑃]11 [𝐽𝑊𝑀𝑃]12 [𝐽𝑊𝑀𝑃]13 [𝐽𝑊𝑀𝑃]14 [𝐽𝑊𝑀𝑃]15
[𝐽𝑊𝑀𝑃]21 [𝐽𝑊𝑀𝑃]22 [𝐽𝑊𝑀𝑃]23 [𝐽𝑊𝑀𝑃]24 [𝐽𝑊𝑀𝑃]25
[𝐽𝑊𝑀𝑃]31
[𝐽𝑊𝑀𝑃]41
[𝐽𝑊𝑀𝑃]51

[𝐽𝑊𝑀𝑃]32
[𝐽𝑊𝑀𝑃]42
[𝐽𝑊𝑀𝑃]52

[𝐽𝑊𝑀𝑃]33
[𝐽𝑊𝑀𝑃]43
[𝐽𝑊𝑀𝑃]53

[𝐽𝑊𝑀𝑃]34
[𝐽𝑊𝑀𝑃]44
[𝐽𝑊𝑀𝑃]54

[𝐽𝑊𝑀𝑃]35
[𝐽𝑊𝑀𝑃]45
[𝐽𝑊𝑀𝑃]55]

 
 
 
 
 

  

Where 

[𝐽𝑊𝑀𝑃]11 = −𝑠1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)  

[𝐽𝑊𝑀𝑃]12 = −𝑎2
2𝑠2𝑐1−𝑎3

2𝑠23
̇ 𝑐1 − 𝑑4𝑐23𝑐1  

[𝐽𝑀𝑃]13 = −𝑎3𝑠23𝑐1 − 𝑑4𝑐23𝑐1  

[𝐽𝑊𝑀𝑃]14 = [𝐽𝑀𝑃]15 = 0  

[𝐽𝑊𝑀𝑃]21 =  𝑐1(𝑎2𝑐2 + 𝑎3𝑐23 − 𝑑4𝑠23)  

[𝐽𝑊𝑀𝑃]22 = −𝑎2𝑠1𝑠2 − 𝑎3𝑠1𝑠23 − 𝑑4𝑠1𝑠23 

[𝐽𝑊𝑀𝑃]23 = 𝑠1(−𝑎3𝑠23 − 𝑑4𝑠23)  

[𝐽𝑊𝑀𝑃]24 = [𝐽𝑀𝑃]25 = 0  

[𝐽𝑊𝑀𝑃]31 = 0  

[𝐽𝑊𝑀𝑃]32 = −𝑎3𝑐23 + 𝑑4𝑠23 

[𝐽𝑊𝑀𝑃]33 = −𝑎3𝑐23 + 𝑑4𝑠23  

[𝐽𝑊𝑀𝑃]34 = [𝐽𝑀𝑃]35 = 0  

[𝐽𝑊𝑀𝑃]41 = [𝐽𝑀𝑃]42 = [𝐽𝑀𝑃]43 = 0  

[𝐽𝑊𝑀𝑃]44 = [𝐽𝑀𝑃]45 =
(𝑐𝑜𝑠𝜓)

2𝑟
⁄  

[𝐽𝑊𝑀𝑃]51 = [𝐽𝑀𝑃]52 = [𝐽𝑀𝑃]53 = 0  

[𝐽𝑊𝑀𝑃]54 = [𝐽𝑀𝑃]55 =
(𝑠𝑖𝑛𝜓)

2𝑟
⁄  
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Fig. 5.2 represents the workspace generated by the mobile manipulator, when it is at a 

specific position. The developed hybridised system extends the workspace of a fixed 

manipulator by two times as shown in Fig.5.2.  

  

(a)      (b) 

Fig.5.2 Workspace generated by (a)Manipulator and (b)WMM [All dimensions are in cm.] 

5.4. Summary 

This chapter addressed the kinematic structure of a wheeled mobile manipulator. The study 

integrates the kinematic models of a 4-axis manipulator and a differential mobile platform. 

The developed WMM is controlled by five parameters in which three parameters (joint 

velocities) gives the velocity information of the manipulator and the remaining two (left & 

right wheel velocities) corresponds the differential mobile platform. The final velocity 

Jacobean has been developed for a mobile manipulator which controls the entire robot 

system. Thereby, it makes the robot to follow desired trajectories by the manipulator and 

platform within its workspace.  
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6. SWARM BASED CONTROL SYSTEM PARADIGM 

Navigational strategies for mobile robot in cluttered environment require serious attention by 

the researchers for effective path planning. Path planning generally includes the generation of 

optimal collision free trajectories within its work space and finally reaches its destination 

position. Based on this issue the path planning can be categorized into two types namely 

global path planning and local path planning. In first category, the robot generates the path 

from its initial position to final position in its known static environments. In second category, 

robot generates path trajectories within its unknown environments. While the robot is in 

motion, path planning should follow three aspects: 1) Acquire the knowledge from its 

environmental conditions. 2) Determine its position in the environment and 3) Decision-

making and execution to achieve its highest-order goals. This chapter aims at develop an 

efficient particle swarm optimization (PSO) based path planner of an autonomous mobile 

robot.  

Swarm Intelligence is an innovative distributed intelligent paradigm for solving optimization 

problems that originally took its inspiration from the biological examples by swarming, 

flocking and herding phenomena in vertebrates. 

6.1. PSO Structure  

PSO is a population based methodology, which was inspired by social behaviour of bird 

flocking or fish schooling. The population considered in PSO is called swarm and its 

individuals are known as particles. So a swarm in PSO can be defined as a set 𝑆 =

 {𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛}. Where 𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛 are ‘n’ number of particles in the swarm. These 

particles are assumed to move within the search space. While the particles are moving, their 

new positions can be updated with a proper position shift called velocity. Let us consider the 

positions of ‘n’ particles are: {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} and their velocities are: {𝑣1, 𝑣2, 𝑣3, … , 𝑣𝑛}. 

The new velocity of each particle is obtained from the communicated information of particles 

among the swarm. It can be done in terms of memory i.e. each particle stores its best position, 

it has ever visited during its search. The best position decided by each particle is called 

position best and is indicated by 𝑋𝑝𝑏𝑒𝑠𝑡. So there are ‘n’ number of position best values for 

‘n’ particles in the swarm. 
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Now the particles in the swarm are mutually communicated their experience and they will 

approximate to one global best position, ever visited by all particles as shown in Fig.6.1. 

Selection of global best position can be done by calculating the fitness values of each particle 

in the swarm.  

 

Fig.6.1 Basic structure of PSO for global best approximation   

The particle which has the best fitness value can be treated as the global best position and is 

represented by 𝑋𝑔𝑏𝑒𝑠𝑡. The determination of 𝑋𝑔𝑏𝑒𝑠𝑡 indicates the completion of one PSO-

iteration. This process will be continued until maximum number of iterations has occurred or 

robot has reached its target. Once finding each 𝑋𝑝𝑏𝑒𝑠𝑡 and swarm 𝑋𝑔𝑏𝑒𝑠𝑡, the velocity and 

position of each particle will be updated according to Eqs. (6.1) & (6.2). 

𝑣𝑖(𝑘 + 1) =  𝑣𝑖(𝑘) + 𝐶1 ∗ 𝑟𝑎𝑛𝑑1 ∗ (𝑋𝑝𝑏𝑒𝑠𝑡−𝑥𝑖) + 𝐶2 ∗ 𝑟𝑎𝑛𝑑2 ∗ (𝑋𝑔𝑏𝑒𝑠𝑡−𝑥𝑖) (6.1)     

And 𝑥𝑖(𝑘 + 1) =  𝑥𝑖 + 𝑣𝑖(𝑘 + 1)       (6.2) 

Where k= iteration counter; rand1 & rand2 are random variables and C1 & C2 are cognitive 

and social parameters. 

6.2. Mobile Robot System Architecture 

PSO can be applied to mobile robot navigation by defining a fitness function as well as 

transforming it into a minimization problem. The efficiency of a motion planner depends on 

the two conditions: the primary condition is, the robot has to generate trajectories by avoiding 

obstacles and escaping traps; and second priority (condition) is the robot has to reach its 

target by travelling short distance in minimum possible time. In order to find fitness of each 

individual, a fitness function has to be developed, which should meet the above mentioned 

aspects.  
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If the robot is not sensing any obstacles in its environment, the robot can move towards its 

destination. Therefore it is not necessary to apply any adaptive mechanism to move the robot 

within its work space. But it is very difficult task to generate trajectories for an autonomous 

mobile robot, when it senses obstacles in its environment.  

  

Fig.6.2 Flow chart for mobile robot navigation using PSO 
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The present research work analyzes PSO based system architecture for obtaining optimal path 

trajectories when the robot senses obstacles within its work space. In this way the developed 

system architecture will work for generating optimal path trajectories of an autonomous 

mobile robot within its unknown environments. The flow chart for this methodology is 

represented in Fig.6.2. 

6.2.1. Fitness function development 

During navigation, a mobile robot has sensed certain number of obstacles (𝑆𝑜𝑏) within its 

sensing range, then the robot can detect the nearest obstacle according to reflected radiation 

intensity from the sensed obstacles. The robot is represented as a point (𝑟𝑜𝑏𝑜𝑡𝑥, 𝑟𝑜𝑏𝑜𝑡𝑦) in 

X, Y – plane. Similarly the centres of sensed obstacles are represented as a point 

(𝑜𝑏𝑥𝑖, 𝑜𝑏𝑦𝑖)for 1 ≤ 𝑖 ≤ 𝑆𝑜𝑏. Then the distance between the robot and the sensed obstacles 

can be obtained from equation (6.3): 

  (𝑑𝑖𝑠𝑡𝑅𝑂𝑏)𝑖 = √(𝑟𝑜𝑏𝑜𝑡𝑥 − 𝑜𝑏𝑥𝑖)2 + (𝑟𝑜𝑏𝑜𝑡𝑦 − 𝑜𝑏𝑦𝑖)2  for 1 ≤ 𝑖 ≤ 𝑆𝑜𝑏  (6.3) 

From the calculated ‘𝑆𝑜𝑏’ number of distance values, the obstacle which is having minimum 

𝑑𝑖𝑠𝑡𝑅𝑂𝑏 can be selected as a nearest obstacle. Once the robot detects the nearest obstacle 

(𝑁𝑂𝑏) within its sensing range, robot will generate a random population/swarm around it 

within the sensing range. So one fitness function (F) is required to calculate the fitness of 

each particle in the swarm for further robot movement.  

Let the positions of particle, target and nearest obstacle be represented in XY-plane 

as (𝑝𝑥𝑖 , 𝑝𝑦𝑖), (𝑔𝑜𝑎𝑙𝑥, 𝑔𝑜𝑎𝑙𝑦) and (𝑁𝑂𝑏𝑥, 𝑁𝑂𝑏𝑦), then the distance from each particle to 

robot’s destination and nearest obstacle can be calculated from Eqs. (6.4) & (6.5).  

𝑑𝑖𝑠𝑡𝑝𝑖𝑇 = √(𝑝𝑥𝑖 − 𝑔𝑜𝑎𝑙𝑥)
2
+ (𝑝𝑦𝑖 − 𝑔𝑜𝑎𝑙𝑦)

2
       (6.4) 

𝑑𝑖𝑠𝑡𝑝𝑖𝑁𝑂𝑏 = √(𝑝𝑥𝑖 − 𝑁𝑂𝑏𝑥)
2
+ (𝑝𝑦𝑖 − 𝑁𝑂𝑏𝑦)

2
     (6.5) 

As explained in previous section it is necessary to find the fitness value of each particle in the 

swarm. For this purpose a new fitness function has to model by satisfying the following 

conditions. 
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1. First priority condition: The fitness of particle should maintain the maximal distance from 

the nearest obstacle, in other words the fitness function is indirectly proportional to 

distance between the particle and nearest obstacle. Because of this condition, a repulsive 

action is generated between the particle and the obstacle.  

⇒ 𝐹𝑖 ∝ (
1
𝑑𝑖𝑠𝑡𝑃𝑖𝑁𝑂𝑏
⁄ )  for 1 ≤ 𝑖 ≤ 𝑛      (6.6) 

Where 𝑑𝑖𝑠𝑡𝑃𝑖𝑁𝑂𝑏 indicates the distance between i
th

 particle and nearest obstacle. 

2. Second priority condition: The fitness of particle should maintain the minimal distance 

from the robot’s destination, in other words the fitness function is directly proportional to 

distance between the particle and target. Because of this condition, an attractive action is 

generated between the particle and the target in order to move the robot towards its 

destination.   

⇒ 𝐹𝑖 ∝ (𝑑𝑖𝑠𝑡𝑃𝑖𝑇)  for 1 ≤ 𝑖 ≤ 𝑛      (6.7) 

Where 𝑑𝑖𝑠𝑡𝑃𝑖𝑇 indicates the distance between i
th

 particle and target position.    

6.2.2. Type 1 fitness function 

From the above mentioned conditions shown by Eqs.(6.6) and (6.7), the required fitness 

function should maintain the both attractive action towards its target and repulsive action 

towards the nearest obstacle. So the final form of the fitness function can be generated as 

represented by Eqs.(6.8) and (6.9). 

𝐹𝑖 = 𝑊1 ∗ 𝑑𝑖𝑠𝑡𝑃𝑖𝑇 +𝑊2 ∗  (
1
𝑑𝑖𝑠𝑡𝑃𝑖𝑁𝑂𝑏
⁄ )       (6.8) 

Where 𝑊1and 𝑊2are the proportionality constants/controlling parameters can be varying 

according to the positions of particle, target and nearest obstacle.  

6.2.3. Type 2 fitness function 

 Eqs.(6.6) and (6.7) is can be represented in another way (Eqs. 6.9) 

𝐹𝑖 = 𝐾1 ∗ (
𝜆𝑃𝑖−𝑇

𝜆𝑃𝑖−𝑁𝑂𝑏
⁄ )  for 1 ≤ 𝑖 ≤ 𝑝       (6.9) 
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Where 𝐾1 is the proportionality/controlling parameter can be varying according to the 

positions of particle, target and nearest obstacle. 

While considering the 𝑚𝑖𝑛(𝜆𝑃𝑖−𝑇) and 𝑚𝑎𝑥(𝜆𝑃𝑖−𝑁𝑂𝑏), there are two particles say 

𝑘𝑡ℎ & 𝑙𝑡ℎ particles which maintain 𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇) & 𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏) respectively. Therefore the 

possible minimum value of the fitness using equation (6.10) is 

𝐹𝑚𝑖𝑛 = (
𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇)

𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏)
⁄ )  for 1 ≤ 𝑘, 𝑙 ≤ 𝑝       (6.10) 

The objective of the motion planner is to find out the particle which would maintain the 

similar properties of the 𝑘𝑡ℎ & 𝑙𝑡ℎ particles. Therefore the final fitness function can be 

transformed from equations (6.9) & (6.10):  

(𝐹𝑓𝑖𝑛𝑎𝑙)𝑖
= |𝐹𝑚𝑖𝑛 − 𝐹𝑖| 

⇒ (𝐹𝑓𝑖𝑛𝑎𝑙)𝑖
= |(

𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇)

𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏)
⁄ ) − 𝐾1 ∗ (

𝜆𝑃𝑖−𝑇
𝜆𝑃𝑖−𝑁𝑂𝑏
⁄ )|              

for 1 ≤ 𝑖, 𝑘, 𝑙 ≤ 𝑝   (6.11) 

The selection of 𝑋𝑔𝑏𝑒𝑠𝑡 will be continued for several cycles until the robot is away from the 

obstacle or it reaches to its destination. 

By observing Eqs. (6.8) & (6.11), the particle which is having the minimum fitness value can 

be treated as 𝑋𝑔𝑏𝑒𝑠𝑡, because that particle (𝑋𝑔𝑏𝑒𝑠𝑡) is away from nearest obstacle and close to 

the goal position. The selection of 𝑋𝑔𝑏𝑒𝑠𝑡 will be continued for several cycles until the robot 

is away from the sensed obstacles or it reaches to its destination. The algorithm for PSO 

based mobile robot navigation is as follows: 

Step 1: Initialize robot source and destination positions. 

Step 2: Robot moves until it senses any obstacles or its target position. 

Step 3: If robot senses any obstacles, apply PSO. 

Step 4:  Initialize positions and velocities of random population.  

Step 5: Obtain each particle’s 𝑋𝑝𝑏𝑒𝑠𝑡 and swarm 𝑋𝑔𝑏𝑒𝑠𝑡.   
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Step 6: Find out new positions and velocities of each particle by using Eqs. (6.1) & (6.2) 

Step 7: Repeat steps 4, 5 and 6 until the robot is away from the sensed obstacles. 

Step 8: Repeat step 2 until robot reaches its destination.  

Note: The velocities of particles in the swarm are here used for obtaining their position best 

and swarm global best position; but the particle velocities are not influencing the 

robot velocity. 

Once the robot detects global best position among the swarm, it will start its motion towards 

the 𝑋𝑔𝑏𝑒𝑠𝑡. In this manner, iterations will be continued until the robot is away from the sensed 

obstacles or maximum possible number of cycles has reached. 

6.3. Simulation Results 

From Eqs. (6.8) & (6.11), it can be noticed that the minimum fitness value is considered as 

𝑋𝑔𝑏𝑒𝑠𝑡 from the particle among the swarm. During the analysis, population (=80) is initialized 

randomly by defining their positions and velocities around the robot within its sensing range 

(say 20 units for calculation purpose) and velocities of particles are varying from 0 to 5. Until 

the robot senses any obstacles within its sensing range, it will continue its motion towards the 

predefined destination as shown in Fig.6.3. Once the robot senses any obstacles in front it, it 

will form a swarm of 80 particles randomly within its sensing range as shown in Fig.6.4. 

Robot path generated in green colour indicates the robot motion when it is not facing any 

obstacles; yellow coloured points around the mobile robot symbolize the random particle 

distribution within its sensing range and small red coloured circles correspond to the global 

best positions obtained by calculating fitness value of each individual. White coloured 

trajectories represent the most favourable path obtained by the proposed PSO algorithm as 

shown in Fig.6.4. 
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Fig.6.3 Initial robot motion towards goal      Fig.6.4 Swarm generation by robot 

6.3.1. First fitness function controlling parameters (𝑾𝟏&𝑾𝟐) 

For getting the feasible paths generated by robot, it is necessary to tune the fitness parameters 

as explained above. As discussed in previous section, the primary objective of the work is to 

obtain collision free path and target seeking is the secondary priority, therefore the obstacle 

avoidance parameter W2 should convey more weight than target seeking parameter W2. The 

first controlling parameter 𝑊1 in Eq. (6.8) indicates the closeness of the particle to the robot’s 

target and second controlling parameter 𝑊2 indicates the particle far away from the nearest 

obstacle. So 𝑋𝑔𝑏𝑒𝑠𝑡 can be obtained by minimizing the fitness function as shown in Eq.(6.8). 

High value of 𝑊1 indicates the particle is very close to the target and low value of 𝑊1 

indicates the particle is far from the robot’s target. Similarly high value of 𝑊2 indicates the 

particle is maintaining more distance from the nearest obstacle and low value of 𝑊2 indicates 

the particle is very close to the nearest obstacle. So it is required to adjust the controlling 

parameters of fitness function to low 𝑊1 and high 𝑊2 values. 

Tuning of  𝑊1&𝑊2: 

Velocity of each particle depends on the parameters 𝐶1&𝐶2 and 𝑟𝑎𝑛𝑑1 & 𝑟𝑎𝑛𝑑2. Usually the 

random values 𝑟𝑎𝑛𝑑1 & 𝑟𝑎𝑛𝑑2 are varying in the range of [0, 1], these values are influencing 

the particle velocity but not the robot travelled distance. For simplicity these values are 

adjusted to a fixed value ‘1’.   The fitness parameters 𝑊1and 𝑊2 can be adjusted according to 

the mobile robot travelled distance within its work space. It means 𝐶1&𝐶2 are indirectly 

effecting (to find 𝑋𝑔𝑏𝑒𝑠𝑡) while tuning the parameters 𝑊1and 𝑊2. For easy consideration, 

simulation experiments are conducted at the values of 𝐶1 = 1 & 𝐶2 = 1.    

PSO parameters: 𝑟𝑎𝑛𝑑1 =  𝑟𝑎𝑛𝑑2 = 𝐶1 = 𝐶2 = 1 
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While performing the analysis, there are four possible cases as follows: 

Case 1: High values of 𝑊1(≥ 1) and High values of 𝑊2(≥ 150) 

Table 6.1 Experimental results for Case 1 

W1 W2 Robot travelled distance (cm) Collision free path(Yes/No) 

1 

150 457.2 No 

300 460.8 No 

450 466.4 No 

600 477.6 No 

750 488 No 

900 481.6 No 

2 

150 453.2 No 

300 457.2 No 

450 459.6 No 

600 460.8 No 

750 466 No 

900 466.4 No 

3 

150 453.2 No 

300 453.2 No 

450 457.2 No 

600 460.8 No 

750 459.6 No 

900 460.8 No 
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Fig.6.5 Mobile robot path for Case 1 

Case 2: High values of 𝑊1(≥ 1) and Low values of 𝑊2(≤ 150) 

Table 6.2 Experimental results for Case 2 

W1 W2 Robot travelled distance (cm) Collision free path(Yes/No) 

1 

0 457.2 No 

50 461.6 No 

100 464.4 No 

150 465.6 No 

2 

0 455.6 No 

50 474 No 

100 455.6 No 

150 461.6 No 

3 

0 462 No 

50 455.2 No 

100 462.8 No 

150 462.8 No 



Swarm Based Control System Paradigm 

78 
 

 

Fig.6.6 Mobile robot paths for Case 2 

Case 3: Low values of 𝑊1(≤ 1) and Low values of 𝑊2(≤ 150) 

Table 6.3 Experimental results for Case 3 

W1 W2 path travelled (cm) Collision free path(Yes/No) 

0 

0 566.4 Robot follows zigzag motion (Yes) 

50 519.6 Robot takes more navigational time (Yes) 

100 553.2 Robot follows zigzag motion (Yes) 

150 553.2 Robot follows zigzag motion (Yes) 

0.3 

0 455.6 No 

50 456.4 No 

100 467.6 No 

150 471.6 No 

0.6 

0 458.4 No 

50 472.8 No 

100 465.6 No 

150 463.2 No 

0.9 

0 484 No 

50 460.8 No 

100 453.2 No 

150 462 No 
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Fig.6.7 Mobile robot paths for Case 3 

Case 4: Low values of 𝑊1(≤ 1) and High values of 𝑊2(≥ 150) 

Table 6.4 Experimental results for Case 4 

W1 W2 Robot travelled distance (cm) Collision free path(Yes/No) 

0.1 

150 545.2 Yes 

300 625.2 Yes 

450 613.2 Yes 

600 553.2 Yes 

750 553.2 Yes 

900 553.2 Yes 

0.3 

150 466.4 No 

300 488.4 No 

450 545.2 Yes 

600 580 Yes 

750 661.2 Yes 

900 625.2 Yes 

0.5 

150 460.8 No 

300 477.6 No 

450 481.6 No 
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600 497.6 No 

750 545.2 Yes 

900 538 Yes (Min.) 

0.7 

150 460 No 

300 466.4 No 

450 481.6 No 

600 488 No 

750 484.4 No 

900 499.6 No 

0.9 

150 457.2 No 

300 460.8 No 

450 466.4 No 

600 481.6 No 

750 488 No 

900 488.4 No 

 

Fig.6.8 Mobile robot paths for Case 4 

By observing the results from Table.6.1 to 6.3 and Figs.6.6 to 6.8, the robot can’t satisfy the 

primary criteria i.e. avoiding obstacle in first three cases. The robot is generating collision 

free paths in some situations, when W1 and W2 values according to Case 4. By observing the 

results from first two cases, it can be noticed that the robot can’t generate collision free path 

at larger values of W1 (>1). From Table.6.4, it can be observed that the robot is generating 
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least distance path at the values of W1=0.5& W2=900. So it is necessary to carry out the 

experiments at W1=0.5 to 0.65 & W2=750 to 900 to find the best path travelled by the mobile 

robot. 

Table 6.5 Experimental results for W1=0.5 to 0.65 & W2=750 to 900    

W1 W2 Robot travelled distance (cm) Collision free path(Yes/No) 

0.5 

750 545.2 Yes 

800 532.8 Yes (Min.) 

850 537.6 Yes 

900 538 Yes 

0.55 

750 505.2 No 

800 543.2 Yes 

850 527.6 No 

900 537.6 Yes 

0.6 

750 504.4 No 

800 505.2 No 

850 505.2 No 

900 545.2 Yes 

0.65 

750 494.8 No 

800 497.6 No 

850 505.2 No 

900 505.2 No 

 

 

Fig.6.9. Mobile robot paths for Table 6.5 (W1 & W2) parameters consideration 
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From the above statistical results illustrated in Table 6.5 corresponds to the Fig.6.9, it is 

concluded that the robot is generating most favorable paths at W1=0.5 & W2=800.  

6.3.2. Second fitness function Controlling Parameters (𝐾1) 

The final form of the fitness function for an i
th

 particle is represented with Eq. (6.11)   

(𝐹𝑓𝑖𝑛𝑎𝑙)𝑖
= |(

𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇)

𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏)
⁄ ) − 𝐾1 ∗ (

𝜆𝑃𝑖−𝑇
𝜆𝑃𝑖−𝑁𝑂𝑏
⁄ )|  

and the value (
𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇)

𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏)
⁄ ) is always less than (

𝜆𝑃𝑖−𝑇
𝜆𝑃𝑖−𝑁𝑂𝑏
⁄ ).  

So the robot path is influenced by the tuning parameter 𝐾1 as follows: 

Case 1: For higher values of 𝐾1 (>2) 

While considering the higher 𝐾1 values (>2), the particles fitness value becoming larger since 

(
𝑚𝑖𝑛(𝜆𝑃𝑘−𝑇)

𝑚𝑎𝑥(𝜆𝑃𝑙−𝑁𝑂𝑏)
⁄ ) is always less than (

𝜆𝑃𝑖−𝑇
𝜆𝑃𝑖−𝑁𝑂𝑏
⁄ ). A particle with higher 

fitness value is nothing but the particle is maintaining less  𝜆𝑃𝑖−𝑁𝑂𝑏 which gives obstacle 

collision path by the robot as shown in Fig.6.10 (a) (robot path at K1=2). So the consideration 

according to the case 1 contradicts the problem statement.  

Case2: For lower values of 𝐾1 (0< 𝐾1<2) 

While considering the lower 𝐾1 values (<2), the particles fitness value becoming smaller and 

satisfying the criteria of maintaining shortest distance from the target and highest distance 

from the nearest obstacle. But at very less fitness values, the particle is far away from the 

nearest obstacle. In this situation, the developed algorithm may find the wrong 𝑋𝑔𝑏𝑒𝑠𝑡 which 

causes the robot is in indefinite motion as shown in Fig.6.10 (c) (robot path for 𝐾1=0.1).  

By observing the above two cases, it is not recommended the higher (>2) and lower (<0.1) K1 

values. It means that the robot will generate feasible paths at 0.1< 𝐾1<2. From the statistical 

results it is found that the robot is giving most favorable paths at 𝐾1=1.3. 
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(a)       (b) 

 

(c) 

Fig.6.10. Robot motion at (a) 𝐾1= 2, (b) 2< 𝐾1>0.1, (c) 𝐾1= 0.1 

A large amount of experiments as tabulated in Table 6.6 have been performed in order to tune 

the parameter 𝐾1. Statistical results showed that the values of 𝐾1 greater than ‘1.6’ are not 

obtaining collision free paths as shown in Fig.6.10 (b) and it can be noticed that the robot is 

facing trap situation for small values of 𝐾1 ≤0.3. 

Table 6.6 Experimental results for K1 variation 

𝑲𝟏 Robot travelled distance (cm) Collision free path(Yes/No) 

0.1 560.4 Yes (Indefinite motion) 

0.2 555.2 Yes (Indefinite motion) 

0.3 552.4 Yes (Indefinite motion) 

0.4 548.8 Yes 

0.5 548.6 Yes 

0.6 546.4 Yes 
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0.7 545.0 Yes 

0.8 542.8 Yes 

0.9 542.2 Yes 

1.0 542.2 Yes 

1.1 541.6 Yes 

1.2 540.8 Yes 

1.3 538.2 (Minimum) Yes 

1.4 538.6 Yes 

1.5 538.6 Yes  

1.6 535.2 No 

1.7 533.8 No 

1.8 530.4 No 

1.9 528.6 No 

2 525.2 No 

Later experiments have been conducted when 𝐾1is varying from 0.3 to 1.6. Results showed 

that the mobile robot is obtaining optimal trajectories when it sensing obstacles in front of it, 

at the value 𝐾1=1.3. 

6.3.3. Tuning of social parameters (C1&C2) 

The next step is to adjust the social and cognitive parameters C1&C2 in order to get better 

results than the previous analysis. The experiments are conducted at parameter criteria; for 

the first fitness function, the controlling parameters at W1=0.5 & W2=800 and for the second 

fitness function K1 = 1.3. The robot paths are shown in Fig.6.11 at different C1 and C2 values. 
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Fig.6.11 Mobile robot paths at different C1 and C2 values 

Table 6.7 Experimental results for various C1&C2   

C1 C2 
Robot travelled distance (cm) 

Collision free path(Yes/No) 
1

st
  fitness function 2

nd
 fitness function 

0.5 

0.5 533.2 537.4 Yes 

1 533 537 Yes 

1.5 532.6 535.6 Yes 

2 529.6 534.8 No 

1 

0.5 533 537.2 Yes 

1 532.8 535.4 Yes 

1.5 532 534.6 Yes (Min.) 

2 530.4 532.8 No 

1.5 

0.5 534 536.8 Yes 

1 533.6 535 Yes 

1.5 532.8 535.6 Yes 

2 531.6 532.8 No 

2 

0.5 534.2 536 Yes 

1 534.2 536 Yes 

1.5 534.6 538.2 Yes 

2 534.8 538.2 Yes 

From Table 6.7, the results showed that the robot is generating most favorable and shortest 

paths at  𝐶1 = 1 & 𝐶2 = 1.5. 
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6.3.4. Stochastic nature of the developed PSO motion planners 

While implementing PSO path planner for several runs in the same environmental criteria, 

the path deviation is observed within the first twenty runs.  

The following norms are considered for the proposed PSO motion planner: 

Start criteria: when obstacle(s) are sensed. 

Population: generation of 80 individuals randomly. 

Stop criteria: until obstacle avoidance. 

Number of runs performed: 20 runs for the same environmental criteria.   

The stochastic nature of the developed PSO algorithm is represented in Fig.6.12. When the 

number of runs increased, threshold deviation is decreased continuously for the first 18 cycles 

and then it reaches to an asymptotic value of threshold 0.09%.  

  

Fig.6.12 Stochastic nature of the developed PSO based path planner  

For the scenarios case 1 & 2 of Fig.6.14, the shortest paths are achieved at 13
th

 & 20
th

 runs 

respectively. The threshold variation with respect to shortest path at each run is shown 

Fig.6.13. Path analysis results for the scenario, Fig.6.14 are illustrated in Table 6.8. 

 

Fig.6.13 Shortest path achievement with respect to each run 
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Case (1)     Case (2) 

Fig.6.14 Path obtained by the robot in the same environmental criteria for 20 runs 

Table 6.8 Path analysis results for Fig.6.14 

Case (1) 

Run 

index 

Distance travelled(cm) by 

the robot 

% deviation with respect to 

shortest distance travelled Stop criteria 

1
st
 Fitness 2

nd
 Fitness 1

st
 Fitness 2

nd
 Fitness 

1
st
 run 569.2 573.9 0.351 0.36 Target reached 

2
nd

 run 568.8 573.6 0.345 0.35 Target reached 

3
rd

 run 616 620.9 1.084 1.09 Target reached 

4
th

 run 581.6 586.4 0.557 0.56 Target reached 

5
th

 run 567.2 571.5 0.317 0.32 Target reached 

6
th

 run 562 566.5 0.228 0.23 Target reached 

7
th

 run 552.8 556.8 0.065 0.06 Target reached 

8
th

 run 572.4 576.9 0.405 0.41 Target reached 

9
th

 run 591.2 595.9 0.71 0.71 Target reached 

10
th

 run 566.4 570.9 0.304 0.31 Target reached 

11
th

 run 569.6 574.4 0.358 0.37 Target reached 

12
th

 run 579.2 584.2 0.518 0.53 Target reached 

13
th

 run 549.2 553.4 0 0 Target reached 

14
th

 run 581.2 585.8 0.551 0.55 Target reached 

15
th

 run 575.2 579.8 0.452 0.45 Target reached 

16
th

 run 608 613 0.967 0.97 Target reached 
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17
th

 run 583.6 588.3 0.589 0.59 Target reached 

18
th

 run 598.8 603.3 0.828 0.83 Target reached 

19
th

 run 554 558.1 0.087 0.08 Target reached 

20
th

 run 578 582.8 0.498 0.5 Target reached 

Case (2) 

Run 

index 

Distance travelled(cm) 
% deviation with respect to 

shortest distance travelled Stop criteria 

1
st
 Fitness 2

nd
 Fitness 1

st
 Fitness 2

nd
 Fitness 

1
st
 run 730.8 736.9 0.427 0.43 Target reached 

2
nd

 run 729.6 735.7 0.411 0.41 Target reached 

3
rd

 run 714 719.7 0.202 0.2 Target reached 

4
th

 run 713.6 719.5 0.196 0.2 Target reached 

5
th

 run 705.6 710.9 0.085 0.08 Target reached 

6
th

 run 700.4 706 0.011 0.01 Target reached 

7
th

 run 710 715.2 0.146 0.14 Target reached 

8
th

 run 724.4 730.1 0.342 0.34 Target reached 

9
th

 run 706 711.6 0.091 0.09 Target reached 

10
th

 run 727.2 732.9 0.38 0.38 Target reached 

11
th

 run 735.6 741.9 0.489 0.49 Target reached 

12
th

 run 719.2 725.4 0.273 0.28 Target reached 

13
th

 run 720.8 726.4 0.294 0.29 Target reached 

14
th

 run 718 723.7 0.256 0.25 Target reached 

15
th

 run 707.2 712.9 0.107 0.1 Target reached 

16
th

 run 703.2 709 0.051 0.05 Target reached 

17
th

 run 716.8 722.5 0.24 0.24 Target reached 

18
th

 run 730.4 735.9 0.422 0.41 Target reached 

19
th

 run 704 709.2 0.062 0.05 Target reached 

20
th

 run 699.6 705.4 0 0 Target reached 
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6.4.  Comparison between the developed PSO motion planners   

Figs.6.15 (a) - (d) show the path generation of the developed autonomous mobile robot in its 

unknown environments. Comparison between simulation as well as experimental results are 

provided to validate the capability of the robot system using the proposed PSO based system 

architectures. 

For scenario - i of Figs.6.15 (a), the mobile manipulator is moving from its source position 

(50, 375) to the target position (440, 10) using type-1 fitness based motion planner.  

 Fig. 6.15 (a) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 6.15 (a) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 6.15 (a) - (iii), Fig. 6.15 (a) - (iv), Fig. 6.15 (a) - (v) represents the robot positions 

during its navigation from source to target. 

Similarly, for scenario - i of Figs.6.15 (b), the mobile manipulator is moving from its source 

position (50, 375) to the target position (440, 10) using type-2 fitness based motion planner.  

 Fig. 6.15 (b) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 6.15 (b) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 6.15 (b) - (iii), Fig. 6.15 (b) - (iv), Fig. 6.15 (b) - (v) represents the robot positions 

during its navigation from source to target. 

For scenario - ii of Figs.6.15 (c), the mobile manipulator is moving from its source position 

(10, 365) to the target position (45, 360) using type-1 fitness based motion planner.  

 Fig. 6.15 (c) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 6.15 (c) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 6.15 (c) - (iii), Fig. 6.15 (c) - (iv), Fig. 6.15 (c) - (v) represents the robot positions 

during its navigation from source to target. 

Similarly, for scenario - ii of Figs.6.15 (d), the mobile manipulator is moving from its source 

position (10, 365) to the target position (45, 360) using type-2 fitness based motion planner.  

 Fig. 6.15 (d) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 6.15 (d) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 6.15 (d) - (iii), Fig. 6.15 (d) - (iv), Fig. 6.15 (d) - (v) represents the robot positions 

during its navigation from source to target. 
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6.15 (a) Path generated by 1
st
 fitness path planner (Scenario (i)) 

 

 

6.15 (b) Path generated by 2
nd

 fitness path planner (Scenario (i)) 

(i) (ii) 

(iii) (iv) (v) 

(i)     (ii) 

(iii)    (iv)     (v) 
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6.15 (c) Path generated by 1
st
 fitness path planner (Scenario (ii))  

 

 

6.15 (d) Path generated by 2
nd

 fitness path planner (Scenario (ii)) 

Fig.6.15 Mobile manipulator paths in its search space while reaching to its target 

(i)     (ii) 

(iii)    (iv)     (v) 

(iii)    (iv)    (v) 

(i)     (ii) 
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For same scenario-i, type-1fitness based PSO motion planner obtained the shortest paths as 

compared to type-2 fitness based PSO motion planner. From the path analysis results as 

illustrated in Table 6.9, for scenario-i type-2 fitness based motion planner deviated the 

travelled distance by 7.3% from the simulation results and 6.6% form the experimental 

results. Similarly, for scenario-ii, type-2 fitness based motion planner deviated the travelled 

distance by 2.3% from the simulation results and 2.2% form the experimental results. Path 

analysis results of scenarios- i & ii showed that the robot motion in simulation environments 

are giving good agreement (percent of error is below 5%) with the real time environments.  

From the path analysis results as illustrated in Table 6.9, it is concluded that the motion 

planner with first fitness function is giving better results as compared to the motion planner 

with second fitness function. 

Table 6.9 Path analysis results for Fig.6.15 

Scenario  

Fitness 

type  

Simulation  Experimental  

% of 

error No. of 

Iterations 

Time 

Taken 

(sec.) 

Distance 

travelled(cm) 

% of 

path 

deviation  

No. of 

Iterations 

Time 

Taken 

(sec.) 

Distance 

travelled(cm) 

% of 

path 

deviation 

i 

 

1 481 192.4 577.2 

7.3% 

495 198 594 

6.6% 

2.8% 

2 519 207.6 622.8 530 212 636 2.1% 

 

ii 

1 461 184.5 553.6 

2.3% 

449 179.6 538.8 

2.2% 

2.7% 

2 472 188.8 566.4 459 183.6 550.8 2.8% 

6.5. Comparison with Previous work  

When the robot moves from its source position to the destination position, the considerations 

for the developed PSO based path planner are as follows: 

Population generated within sensing range: 80 

No. of runs performed: 20 

Distance travelled by the robot when PSO is activated: 1.2 units 

Distance travelled when the robot is not sensed any obstacles: 2 units 

PSO parameters at 𝐶1 = 1 & 𝐶2 = 1.5 and  𝑟𝑎𝑛𝑑1 = 𝑟𝑎𝑛𝑑2 = 1. 

Stop criteria: until Target reached 

First fitness proportional parameters W1=0.5 & W2=800  

Second fitness function proportional parameter K1 = 1.3. 

Note: The path travelled by the robot is represented in various environments by considering 

abscissa as the X-axis in centimeters (cm) and ordinate as the Y-axis in centimeters. 
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6.5.1. Comparison with respect to 1
st
 Fitness function   

Das et. al. [158] have implemented a well-known heuristic A* algorithm for solving mobile 

robot navigation in static unknown environment. In their work, they considered the cost 

function as the time metric of distance travelled by the mobile robot. The aim of their work is 

to minimize the cost function by using A* algorithm. In other words the total distance 

travelled by the mobile robot from its initial position to destination should be minimum.  

     

      Fig.6.16 (a) Path obtained by Das et. al. [158]   Fig.6.16 (b) Path obtained by present 

Motion planner 

           

Fig.6.17 (a) Path obtained by Secchi et. al. [159]     Fig. 6.17(b) Path obtained by present 

Motion planner 
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Secchi et. al. [159] have presented an effective control law for obstacle avoidance in 

unknown environments. The proposed control system concerns two loops namely, position 

control loop and impedance control loop. Impedance here referred as a function of the 

distance between the robot and the sensed obstacles.  

       

Fig.6.18 (a) Robot Path by Zawawi et. al. [160]       Fig.6.18 (b)Path obtained by present 

Motion planner 

Zawawi et. al. [160] have described an efficient system architecture development for an 

autonomous mobile robot using visual simultaneous localisation & mapping, and particle 

swarm optimization. Their developed methodology is suitable for navigating a mobile robot 

in indoor environments.   

Table 6.10 Path analysis results for Figs.6.16-6.18 

Previous methodology 

Distance travelled(cm) 
% of path 

deviation  Previous 

methodology 

Present 

methodology 

Heuristic A* algorithm [158] 470.8 455.2 3.3% 

Position and impedance control 

loops [159] 
1103.6 1037.4 6% 

Particle Swarm Optimization [160] 495.2 482.6 2.5% 

From the Table 6.10, it is noticed that the current motion planner is giving better results as 

compared to results obtained by Das et. al. [158], Secchi et. al. [159] and Zawawi et. al. 

[160] by robot path deviation of 3.3%, 6% and 2.5% respectively. 

6.5.2. Comparison with respect to 2
nd

 Fitness function 

To solve mobile robot navigation task, various approaches have been introduced in last few 

decades. Fuzzy Inference System (FIS) is one of the well-known approach have been used for 
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solving path planning problem of an autonomous mobile robot because of its capacity to 

handle uncertain and imprecise information obtained from sensors using linguistic rules. 

 Yong et. al. [161] have introduced a behaviour based architecture based on fuzzy logic for 

solving mobile robot navigation problem in unknown environments. Fig. 6.19(a) shows the 

path generated by their algorithm for an autonomous mobile robot starting at the position 

S(3.5, 1) and its destination at T(4,9). For the same robotic environment, the path generated 

by current methodology is shown in Fig. 6.19(b). 

   

Fig.6.19 (a) Path obtained by Yong et. al. [161]   Fig.6.19 (b) Path obtained by Current 

methodology 

Recently, Mester and Rodic [162] have explained a sensor based intelligent mobile robot 

navigation in unknown environments. They used Fuzzy Inference System for generating 

obstacle collision free trajectories within robotic work space. A simulation result of their 

approach is shown in Fig. 6.20(a) regarding the goal seeking and the obstacle avoidance 

mobile robot paths. For the same robotic environment, the path generated by current 

algorithm is shown in Fig. 6.20(b).     

  

Fig. 6.20 (a) Path obtained by Mester and Rodic [162]    Fig. 6.20 (b) Path obtained by 

Current methodology 
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Table 6.11 Path analysis results for Figs.6.19-6.20 

Previous methodology 

Distance travelled(cm) 
% of path 

deviation  Previous 

methodology 

Present 

methodology 

Behavior based architecture 

[161]  
1153.8 1107.6 4% 

Fuzzy Inference System [162] 594.2 549.6 7.5% 

 

From the Table 6.11, it is noticed that the current motion planner is generating the shortest 

robot path within the robotic unknown environments as compared to results obtained by 

Yong et. al. [161] and Mester and Rodic [162] by robot path deviation of 4% and 7.5% 

respectively. 

6.6.  Summary 

A new computational methodology has been proposed for solving path planning problem of 

an intelligent mobile platform, based on Particle Swarm Optimization. The developed 

algorithm is effective in avoiding obstacles and generating optimal paths within its unknown 

environments. The trajectories generated by robot are based on the selection of global best 

position in each iteration. Among the swarm, the particle which has the minimum fitness is 

considering as the global best position. There by, the robot moves towards the global best 

position and this process is continued for several iterations until the robot reaches its target 

position. A large number of experiments have been carried out for adjusting the controlling 

parameters of the modelled fitness functions. Simulation results showed the capability of a 

mobile robot, how effectively the robot is generating trajectories with the help of developed 

algorithm, by avoiding obstacles, escaping traps and reaches to its goal position within its 

unknown maze environments. Moreover, from the developed two fitness functions, type-1 

fitness is giving efficient results as compared to type-2 fitness function (Table 6.9). 

Deviations are found to be within 5% during comparisons between simulation and 

corresponding experimental results. Although the proposed methodology solves the local 

minima problem up to certain level than the previous researchers as addressed in Chapter 2, it 

requires some reinforcement learning strategy to achieve better results. 
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7. IMMUNE BASED CONTROL SYSTEM PARADIGM 

Motion planning is one of the vital issues in the field of mobile robots because of their usage 

in various fields such as domestic fields, industries, security environments and hospitals etc. 

The main goal of an efficient motion planner of a mobile platform is to generate collision free 

trajectories from the sensory information without continuous human intervention. 

In this section, two efficient immunological path planners have modelled to make the mobile 

platform work in intelligent way. First motion planner is inspired from the innate immune 

system and is focused on the special feature anomaly detection. Later an adaptive learning 

mechanism has been introduced on the basis of previous sensory information, to the first 

motion planner. The proposed adaptive methodology is simple because of very few 

controlling parameters in its structure. Moreover this approach is useful for solving local 

minima problems (avoiding obstacles & escaping traps in maze environments) and mobile 

platform navigation task in unknown complex environments by generating optimal collision 

free trajectories. 

7.1. Biological Immune System 

The interest in studying the immune system is increasing over the last few years. Computer 

scientists, engineers, mathematicians, philosophers and other researchers are particularly 

interested in the capabilities of this system, whose complexity is comparable to that of the 

brain. Many properties of the immune system are of great interest for computer scientists and 

engineers: 

 Uniqueness: each individual possesses its own immune system.  

 Recognition of Foreigners: the antigens are recognized and eliminated from body. 

 Anomaly Detection: the immune system can detect and react to pathogens that the body 

has never encountered before; 

 Distributed Detection: the cells are distributed all over the body and are not to subject any 

centralized control. 

 Noise Tolerance: the system is flexible since the recognition of the antigens is not 

required. 

 Reinforcement Learning and Memory: future responses to the same pathogens are faster 

and stronger since the immune system can “learn” the structures of pathogens. 
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A brief introduction to development of computational tools is followed by the presentation 

(Fig.7.1) of the concept of immune engineering, and then a more systemic view of the system 

is given.  

 

Fig.7.1 Structural division of the cells and secretions of the immune system 

7.1.1. Basic immune models and algorithms 

Because of its special features, several models have been introduced to solve various 

engineering problems. The following are the some of the immune system inspired algorithms. 

 Bone Marrow Models  

 Negative Selection Algorithms 

 Clonal Selection Algorithm 

 Somatic Hyper-mutation 

 Immune Network Model  

i. Bone marrow models: this model represents the production of various antibodies in the 

bone marrows as represented in Fig.7.2.  

 

Fig.7.2 Antibody production through a random concatenation from gene libraries 
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ii. Negative selection algorithms: This idea taken from the negative selection of T-cells in the 

thymus as shown in Fig.7.3. 

   

Fig.7.3 Negative selection algorithm Censoring & Monitoring 

iii. Clonal selection algorithm  

Randomly initialise a population (P) 

For each pattern in Antigen (ag) 

 Determine affinity to each Antibody (ab) in P 

 Select n antibodies of highest affinity from P 

 Clone and mutate proportional to affinity with Ag 

 Add new mutants to P  

End For  

Select highest affinity Ab in P to form part of M and replace them 

Until stopping criteria 

iv. Immune network models: 

Initialise the immune network (P) 

For each pattern in Ag 

 Determine affinity to each Ab in P 

 Calculate network interaction 

 Allocate resources to the strongest members of P 

 Remove weakest Ab in P 

End For  

If termination condition met exit 

Else Clone and mutate each Ab in P (based on a given probability) and integrate new mutants 

into P based on affinity 

 Repeat  



Immune Based Control System Paradigm 
 

100 
 

v. Somatic hypermutation : 

• Very controlled mutation in the natural immune system. 

• The greater the antibody affinity the smaller its mutation rate. 

• Classic trade-off between exploration and exploitation. 

7.2. System Architecture 

The immune system protects human body from the foreign invaders known as antigens 

(bacteria and virus) in two ways namely 1) innate immune system and 2) adaptive immune 

system. In first category, immune system produces protecting cells (antibodies) according to 

its special feature, anomaly detection [158]. The second type of immune system remembers 

the previous action i.e. when the same antigen encounters again, this immune system 

recognizes the antigens and it produces suitable antibodies rapidly to neutralize antigens in 

quick time. 

7.2.1. Innate immune based motion planner  

The special feature anomaly detection of the innate immune system is the recognition of 

antigens and produces suitable antibodies in order to vanish them. The same criteria can be 

implemented in the case of autonomous mobile platform navigation within its workspace. 

When a mobile platform is moving from one position to another position within its search 

space, it may sense different environmental criteria. According to the environmental 

situation, platform should perform its task. Fig.7.4 shows the similarities of human immune 

system and a behaviour based platform navigation system.  

By observing Fig. 7.4, the basic immune components can be considered as follows: 

 B-cell   → Autonomous Mobile Platform 

 Antibodies   → Robot Actions (antibodies are produced from B-cell) 

 Antigens → Environmental situation (B-cell has to be produced suitable 

antibodies according antigen structure) 

Antibody Consideration: The possible robot actions and their representation in coordinate 

system are illustrated in Table.7.1. 

Antigen consideration: The possible environmental situations are tabulated in Table 7.2 
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Fig.7.4 Relation between basic immune structure & mobile platform navigation systems 

 

Fig.7.5 Antibody representation in mobile platform coordinate system 
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Table 7.1 Possible robot actions  

Antibody Score 

Continuous Motion 
Towards Goal 1 

Random 2 

Left Motion 

Left 10
0
 3 

Left 20
0
 4 

Left 30
0
 5 

Left 0
0
 6 

Right Motion 

Right 10
0
 7 

Right 20
0
 8 

Right 30
0
 9 

Right 0
0
 10 

Forward Motion 90
0
 robot motion 11 

Reverse Motion 

Reverse 0
0
 (Left/Right) 12 

Reverse 10
0
 (Left/Right) 13 

Reverse 20
0
 (Left/Right) 14 

Reverse 30
0
 (Left/Right) 15 

Reverse by +90
0
/-90

0
 16 

Table 7.2 Possible robot actions 

Antigen Score 

Goal Position 
Goal Known 1 

Goal Unknown 2 

Obstacle Position 

No Obstacle 1 

Left 

Far distance 5 

Medium distance 4 

Short distance 3 

Wall following 6 

 Right Far distance 9 
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Medium distance 8 

Short distance 7 

Wall following 10 

wall following- Front 11 

Wall following (Left/Right) 12 

Trap situation  
Behind 

Far distance 15 

Medium distance 14 

Short distance 13 

Wall following (in front/behind) 16 

Note: antibody scores are assigned arbitrarily from 1 to 16 and each antigen score is 

assigned according to the suitable antibody score. For example consider the first antibody, 

robot motion towards the goal. It will occur when the robot is not sensing any obstacles and 

a criterion is goal known. So the scores for goal known (ag-1) is ‘1’ and no object (ag-3) is 

‘1’. 

7.3. Behaviour Learning 

In order to select suitable robot action for specific environment, a new parameter named as 

learning rate is introduced here and is indicated by Eq.(7.1). 

𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 (Γ𝑟) =  𝛼℘ ∗  𝜔𝑎𝑔       (7.1)  

Allowance parameter (𝛼℘): 𝛼℘ indicates the affinity strength between one antibody and one 

antigen. The value of 𝛼℘ is ranging from ‘0’ to ‘1’ and is defined as follows.  

(𝛼℘)𝑖,𝑗 =
𝑚𝑖𝑛{𝑠𝑐𝑜𝑟𝑒(𝑎𝑏𝑖), 𝑠𝑐𝑜𝑟𝑒(𝑎𝑔𝑗)}

𝑚𝑎𝑥{𝑠𝑐𝑜𝑟𝑒(𝑎𝑏𝑖), 𝑠𝑐𝑜𝑟𝑒(𝑎𝑔𝑗)}
⁄    (7.2)  

Where (𝛼℘)𝑖,𝑗 is allowance parameter of the i
th

 antibody (𝑎𝑏𝑖) with respect to j
th

 antigen 

(𝑎𝑔𝑗). 

Antigenic weight (𝜔𝑎𝑔): When the robot is in motion within its work space, there is a 

possibility of antigen criteria as follows: 

 Sensed antigens 
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 Non-sensed antigens 

From the sensed antigens, robot has to perform its action according to the dominant 

environmental situation and other sensed environmental situation. For this purpose three 

antigenic strengths are defined as follows: 

Strength for sensed antigens     → 0.5 

Strength for non-sensed antigens   → 0 

Strength for high scored sensed antigens  → 5 

Once the robot gets the knowledge from its environment, it will score the antigen weights for 

each antigen according to Eq.(7.3) 

𝜔𝑎𝑔 =  𝑠𝑜𝑐𝑟𝑒(𝑎𝑔) ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑎𝑛𝑡𝑖𝑔𝑒𝑛 𝑡𝑦𝑝𝑒)     (7.3) 

From the above analysis the learning rate of i
th 

antibody with respect to j
th 

antigen can be 

found out from Eq.(7.4). 

(Γ𝑟)𝑖,𝑗 = (𝛼℘)𝑖,𝑗 ∗  𝜔𝑎𝑔𝑗        (7.4) 

⟹ (Γ𝑟)𝑖,𝑗 = (
𝑚𝑖𝑛{𝑠𝑐𝑜𝑟𝑒(𝑎𝑏𝑖), 𝑠𝑐𝑜𝑟𝑒(𝑎𝑔𝑗)}

𝑚𝑎𝑥{𝑠𝑐𝑜𝑟𝑒(𝑎𝑏𝑖), 𝑠𝑐𝑜𝑟𝑒(𝑎𝑔𝑗)}
⁄ ) ∗

 𝑠𝑜𝑐𝑟𝑒(𝑎𝑔𝑗) ∗ 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ(𝑎𝑔𝑗)     (7.5) 

Therefore the learning rate of i
th

 antibody with respect to all nine antigens is as follows: 

(Γ𝑟)𝑖⏞
𝑜𝑣𝑒𝑟 𝑎𝑙𝑙

=  (Γ𝑟)𝑖,1 + (Γ𝑟)𝑖,2 +⋯+ (Γ𝑟)𝑖,𝑞      (7.6) 

= (𝛼℘)𝑖,1 ∗  (𝜔𝑎𝑔)1
+ (𝛼℘)𝑖,2 ∗  (𝜔𝑎𝑔)2

+⋯+ (𝛼℘)𝑖,𝑞 ∗  (𝜔𝑎𝑔)𝑞=9
 

⇒ (Γ𝑟)𝑖⏞
𝑜𝑣𝑒𝑟 𝑎𝑙𝑙

= ∑ (𝛼℘)𝑖,𝑗 ∗  (𝜔𝑎𝑔)𝑗
9
𝑗=1        (7.7) 

The suitable robot action for a specific environmental condition is selected from the overall 

learning rate value of each antibody. The antibody which has the highest (Γ𝑟)𝑖⏞
𝑜𝑣𝑒𝑟 𝑎𝑙𝑙

 can be 

selected as the suitable robot action. While the robot is moving from one position to another 
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position within its unknown environment, the robot may face different environmental 

situations in each cycle. According to the extracted sensory information, the robot will 

calculate (Γ𝑟)𝑖⏞
𝑜𝑣𝑒𝑟 𝑎𝑙𝑙

for each predefined robot action and it will select the suitable robot action. 

This process will continue until the robot reaches to its destination.   

7.4.  Adaptive Immune based Motion Planner 

By observing the Innate Immune based Motion Planner (IIMP), the robot is not utilizing any 

previous sensory information when it is moving in its search space. Because of this, the robot 

may take more time to reach its destination. To over face this difficulty a new adaptive 

learning mechanism has been introduced and integrated to IIMP. The new motion planner in 

this investigation is the modified artificial immune system called as Adaptive Immune based 

Motion Planner (AIMP). AIMP utilizes the previous sensory information and makes the robot 

more intelligent in doing works as compared to IIMP. 

7.4.1. Adaptive learning mechanism  

A new adaptive learning mechanism is developed on the basis of previous robot sensory 

information by adding an adaptive score (𝑎𝑙) to a specific allowance parameter such that:   

[(𝛼℘)𝑖,𝑑]𝑡
= [(𝛼℘)𝑖,𝑑]𝑡−1

+ 𝑎𝑙        (7.8) 

Where [(𝛼℘)𝑖,𝑑]𝑡
= allowance parameter of i

th 
antibody with respect to dominant antigen 

(high scored sensed antigen) 

In order to obtain efficient results, adaptive mechanism should be developed in terms of 

previous sensory information. Since the IIMP works on the basis of predominant 

environmental situation, the adaptive score (𝑎𝑙) should be the function of dominant antigen in 

the t
th

 and (t-1)
th

 iterations. So for each cycle, allowance parameter is updating according to 

the robot sensed dominant antigens in the current and previous iterations. Therefore the 

adaptive score can be defined as follows: 

𝑎𝑙  = k ∗ |score of  𝑎𝑔𝑑 (t − 1)
th cycle − score of  𝑎𝑔𝑑 (t)

th cycle|  (7.9) 
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To get optimal path results, several experiments have been carried out for finding optimal ‘k’ 

value. Since (𝛼℘)𝑖,𝑗 should be less than ‘1’ it means the adaptive score (𝑎𝑙) is also less than 

‘1’. Therefore the adaptive score should vary [0, 0.9]. Very less value of 𝑎𝑙 does not affect 

the IIMP, so the experiments have been performed within the range [0.1, 0.9] as shown in 

Fig.7.6. But the paths generated (represented be several colours for various ‘k’ values) are not 

the safest paths.  

Note: The path travelled by the robot is represented in various environments by considering 

abscissa as the X-axis in centimeters (cm) and ordinate as the Y-axis in centimeters. 

 

Fig.7.6 Robot paths for ‘k’ varying [0.1, 0.9]    Fig.7.7 Robot paths for ‘k’ varying [0, 0.09] 

Later experiments have been performed with the ‘k’ value varies from [0, 0.09] as shown in 

Fig.7.7. Robot path at k=0 is nothing but the path planning implementation without adaptive 

mechanism and the path is represented by cyan colour. The blue colored robot path is the 

optimal one and is generated at the ‘k’ value of 0.01. 

7.5. Results & Discussion 

From the developed motion planners, further movement of the robot is decided by finding the 

maximum (Γ𝑟)𝑖⏞
𝑜𝑣𝑒𝑟 𝑎𝑙𝑙

from all considered antibodies. The mobile platform will perform its further 

action according to the selection of best robot action. Figs. 7.8 (a) - (d) represent the 

activation of suitable robot actions by different colours for various environmental situations. 

Figs.7.8 (a) & (b) represent the robot path when the workspace is with individual obstacles 

and Figs.7.8 (c) & (d) represent the robot path when it faces trap situation.  

For scenario - I of Figs.7.8 (a), the mobile manipulator is moving from its source position 

(10, 275) to the target position (40, 300) using type-1 fitness based motion planner.  
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 Fig. 7.8 (a) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 7.8 (a) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 7.8 (a) - (iii), Fig. 7.8 (a) - (iv), Fig. 7.8 (a) - (v) represents the robot positions during 

its navigation from source to target. 

Similarly, for scenario - I of Figs.7.8 (b), the mobile manipulator is moving from its source 

position (10, 275) to the target position (40, 300) using type-2 fitness based motion planner.  

 Fig. 7.8 (b) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 7.8 (b) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 7.8 (b) - (iii), Fig. 7.8 (b) - (iv), Fig. 7.8 (b) - (v) represents the robot positions during 

its navigation from source to target. 

For scenario - II of Figs. 7.8 (c), the mobile manipulator is moving from its source position 

(200,200) to the target position (450, 200) using type-1 fitness based motion planner.  

 Fig. 7.8 (c) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 7.8 (c) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 7.8 (c) - (iii), Fig. 7.8 (c) - (iv), Fig. 7.8 (c) - (v) represents the robot positions during 

its navigation from source to target. 

Similarly, for scenario - II of Figs. 7.8 (d), the mobile manipulator is moving from its source 

position (200,200) to the target position (450, 200) using type-2 fitness based motion planner.  

 Fig. 7.8 (d) - (i) represents the robot motion (in simulation mode) from source to target. 

 Fig. 7.8 (d) - (ii) represents the robot motion (in real mode) from source to target. 

 Fig. 7.8 (d) - (iii), Fig. 7.8 (d) - (iv), Fig. 7.8 (d) - (v) represents the robot positions during 

its navigation from source to target. 

For same scenario-I & II, AIMP obtained the shortest paths as compared to IIMP. From the 

path analysis results as illustrated in Table 7.3, for scenario-I, AIMP maintains the travelled 

distance deviation of 3.8% form the simulation results and 4.5% form the experimental 

results. Similarly, for scenario-ii, AIMP maintains the travelled distance deviation of 4.2% 

form the simulation results and 4.1% form the experimental results. Path analysis results of 

scenarios- I & II showed that the robot motion in simulation environments are giving good 

agreement (% of error is below 5%) with the real time environments.  

 



Immune Based Control System Paradigm 
 

108 
 

 

Fig. 7.8(a) path generated using IIMP (Scenario - I) 

 

 

Fig. 7.8(b) path generated using AIMP (Scenario - I) 

  (i)     (ii) 

 (iii)    (iv)    (v) 

  (i)     (ii) 

 (iii)    (iv)     (v) 
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Fig. 7.8(c) Path generated using IIMP (Scenario - II) 

 

Fig. 7.8(d) Path generated using AIMP (Scenario - II)  

  (i)     (ii) 

 (iii)    (iv)    (v) 

  (i)     (ii) 

 (iii)    (iv)    (v) 
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By observing the path analysis results from Table 7.3, it is concluded that adaptive immune 

based motion planner is generating most favorable and optimal path as compared to path 

obtained by innate immune based motion planner.   

 Table 7.3 Path analysis results for Fig.7.8 

Scenario  
Motion 

planner 

Simulation  Experimental  

% of 

error No. of 

Iterations 

Time 

Taken 
(sec.) 

Distance 

travelled(cm) 

% of path 

deviation  

No. of 

Iterations 

Time 

Taken 
(sec.) 

Distance 

travelled(cm) 

% of path 

deviation  

I 

 

IIMP 369 147.6 442.8 
3.8% 

381 152.4 457.2 
4.5% 

3.1% 

AIMP 355 142 426 364 145.6 436.8 2.5% 

II 
IIMP 502 200.8 602.4 

4.2% 
523 183.6 627.6 

4.1% 
4.0% 

AIMP 481 192.4 577.2 502 199.6 602.4 4.1% 

7.6. Comparison with Previous Work  

Wahab [163] has dealt with neural network based intelligent control of a mobile robot to find 

its target within its environment. In their methodology two neural networks are used, the first 

neural network is used to find the free work space and the second neural network is used to 

navigate the robot towards its destination. 

   

Fig.7.9(a) Path generated by Wahab [163]  Fig.7.9(b) Path generated by AIMP 

Yong et. al. [164] have introduced a behavior based architecture using fuzzy logic for mobile 

platform navigation in unknown environments. They designed four FLC based behaviors for 

mobile platform navigation, including target seeking, obstacle avoidance, tracking and 

deadlock disarming. Later they integrate these four behaviors to determine the control action 

of the mobile platform.  
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The path deviation by the mobile platform in Fig.7.10(a) at ‘7-8-9-10-11’ is seems to be more 

robot travelled distance as compared to the robot travelled distance at ‘7-8-9’ in Fig.7.10(b). 

     

Fig.7.10(a) Robot Path by Yong et. al. [164]  Fig.7.10(b) Path generated by AIMP 

Thus,  polyclonal-based  artificial  immune  network [165] has been proposed  to  solve  the 

mobile robot navigation problem  in  complex unknown  static environment. The developed 

immune based algorithm effectively overcomes the local minima problem. 

  

Fig.7.11 (a) Path by Deng et. al. [165]    Fig.7.11 (b) Path generated by AIMP 
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Table 7.4 Path analysis results for Fig.7.9 – 7.11 

Previous methodology 

Distance travelled(m) 
% of path 

deviation  Previous 

methodology 

Present 

methodology 

neural network [163] 17.2 16.0 3.3% 

Behavior based architecture 

[164] 
15.7 14.8 6% 

Artificial  immune  network 

[165] 
29.1 25.2 2.5% 

By observing the path analysis results from Figs. 7.9 (b), 7.10 (b) & 7.11 (b), the proposed 

motion planner is generating shortest paths as compared to path obtained by Wahab [163], 

Yong et. al.[164] and Dang et. al. [165] with a path deviation of 3.3%, 6% and 2.5% 

respectively. 

7.7.  Summary 

Two efficient immune based motion planners have been introduced for solving mobile robot 

path planning problem in unknown environments. The first motion planner called innate 

immune based motion planner, is working only on the basis of the parameter ‘Learning Rate’ 

and is not getting any global information from the system. For the second motion planner, an 

efficient adaptive learning mechanism has been presented and integrated to the developed 

innate immune based motion planner. Path analysis results showed that, both motion planners 

are generating collision free paths in their robotic search space, but the second motion 

planner called adaptive immune based motion planner is obtaining shortest path than the path 

obtained by the innate immune based system architecture (Table 7.3). Deviations are found to 

be within 5% during comparisons between simulation and corresponding experimental 

results. 
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8. EXPERIMENTAL ANALYSIS 

This chapter deals with the experimental analysis of mobile manipulator to control its motion 

using the techniques described in the previous chapters. Manipulator design and its control 

system architecture are analyzed then various mechatronic components have been integrated 

to the manipulator to perform desired tasks.  

8.1. Manipulator Design 

In Chapter – 3, the motion of the robot arm structure is evaluated by performing forward and 

inverse kinematic analyses. In this investigation a 4-axis manipulator is considered and its 

specifications are illustrated in Table.3.1.  

 

Fig.8.1 Experimental setup of the robot manipulator 

To perform the various tasks, the robot arm is interfaced with several components as 

represented in Fig.8.1. A brief description about each component of the structure is given as 

follows: 

 Microcontroller: AT89C52 type microcontroller has been used in this investigation. A 

detailed description about the pin configuration of the considered microcontroller is given 

in Appendix – C. 

 Servo motor: The servo motor has three pins: VCC, GND and PWM and these are 

connected to 6 V DC power supply, ground and to the microcontroller respectively. The 

rotation direction of each servo is controlled with the help of the pulse duration of the 

generated PWM. If the supplied pulse duration is of 1.5ms then the servo in 90 deg 

position. For clock-wise rotation generated PWM in the range of 1.5ms - 2.0ms; and for 
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anti-clockwise rotation supplied PWM should be in the range of 1.0ms - 1.5ms. Mostly 

pin 0 of port 1 is used for the PWM generation. The 4-axis robotic manipulator is 

represented in Fig.8.2. 

 

Fig.8.2 4-axis robot arm to perform experimental analysis 

As per the requirement of the rotation angle, the microcontroller will execute the 

particular PWM generation code block and will generate the corresponding PWM. Pin 0 

of port 1 should be connected to the PWM pin of the servo motor. Generated pulse from 

the microcontroller will control the rotation angle of the servo.  By controlling each of the 

servo motor (at 4 different axes), we can control the motion of the end-effecter which is 

connected to the manipulator. Fig.8.3 shows the interfacing of arm servo motors to a 

microcontroller. 

 

Fig.8.3 Circuit diagram of 4-axis robot arm servos interfacing with microcontroller  
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A pre-programmed pick & place task is performed by the developed robot arm is 

represented in Fig.8.4. The initial and final positions of the end-effector is given to robot 

and it will move towards the object according to the rotation of each servo which decided 

according to the inverse kinematic model as explained in section 3.3.  

 

 

Fig.8.4 Pick & place task performing by robot 

 Ultrasonic sensors: It consists of an ultrasonic transmitter & receiver which are made up 

of piezoelectric sensors. Transmitter generates an ultrasonic wave when it receives a 

square pulse of 40 KHz from the microcontroller and the receiver generates an AC pulse 

when it receives an ultrasonic wave reflected back from the obstacle. That pulse is 

generated by microcontroller and feed directly to the transmitter.  The square pulse is 

generated by switching the voltage status of the second pin of the microcontroller with 

time duration of 12.5 µs. After 12.5 µs time interval internal code will swap the pin status 

of the microcontroller. The process will go on for infinite. By using any infinite loop 

structure like ‘while (1)’or ‘for ( ; ; )’ we can perform the task. Fig.8.7 represents the 

object detection while robot is in operation condition. Fig. 8.6 represents the interfacing 

of ultrasonic sensor to the microcontroller to detect the object within the robot workspace. 

     

(a)       (b) 

Fig.8.5 (a) ultrasonic receiver & transmitter; (b) Distance measurement in volts 

(a) (b) (c) 

(d) (e) (f) 
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Fig.8.6 Schematic diagram of ultrasonic sensor interfacing with microcontroller 

The transmitted signal will be transmitted through the air and finally reflected by the target 

object at the other end. Due to the noise in the air, the transmitted signal will be distorted and 

gets attenuated. The received signal will be amplified with the help of an op-amp (IC-

LM741). After receiving the transmitted wave it will pass the signal to signal processing unit 

which helps in regenerating the original signal. The signal processing unit consists of 2 major 

blocks: amplifying unit and rectifying unit. Once the received signal gets amplified, then the 

signal will be rectified by a bridge rectifier.  

 

Fig.8.7 Virtual image generation by object detector mounted on end effector 
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 Tactile switch: Tactile (LTS) Sensor is interfaced to a microcontroller (AT89S52). 

Terminal 1 of LTS is connected to a 5V DC supply and terminal 3 to the microcontroller 

(pin 0 of port 1) as shown in Fig. 8.8.  If the applied pressure is not enough, the (LTS) 

sensor will be in open condition. After receiving per-defined pressure, it will close the 

internal connection. This sensor gives the information about the object grasping by the 

end-effector. 

 

Fig.8.8 Pressure application & verification by LTS 

LTS interfacing with Microcontroller is shown in Fig.8.9 and it will sense the pin status 

continuously. If the pin status is 0 V or at logic zero, it indicates enough pressure not yet 

applied and it will run the gripper for grasping object. Once the pin status will jump to 

logic 1 or 5 VDC, it indicates enough pressure has been applied and the microcontroller 

will stop the gripper to maintain its current form. The above operation can be performed 

by a simple logical program. 

 

Fig.8.9 LTS interfacing with microcontroller 
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 Tilt Sensor: When the robot is carrying hazardous materials and moving in the uneven 

terrain manufacturing environments, the loaded material may be unstable. In order to 

maintain the material in specific orientation it is required to measure the slope of the 

rough inclination. So, here tilt sensor is used to measure the tilting of an object which 

is carried by the robot’s end-effector as shown in Fig.8.10. 

 

  

Fig.8.10 End-effector maintaining horizontal orientation at various slopes  

8.2. Trajectory Generation by the End-Effector 

To perform various tasks by the robot arm end effector has to move within its search space 

while satisfying all kinematic relations. The below example here is considered when all the 

joints (servos) are moving with constant speed of 100rpm. The trajectory generated by the 

end-effector is represented in Fig.8.11.  

 
Fig.8.11 End-effector’s trajectory when all the joints are rotating with uniform velocity 
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In order to validate the simulation result, the real robot is programmed in the way that all the 

servos are at the constant speed of 100rpm. Continuous trajectory generation by the robot arm 

is shown in Fig.8.12. 

 

 

 

Fig.8.12 Sequential steps followed by the End-effector’s with respect to Fig.8.11 

 

(a) (b) 

(c) (d) 

(e) (f) 
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8.3. Mobile Platform Design 

In Chapter – 4, the locomotion of the mobile structure is evaluated and it is concluded that the 

differential mobile platform is suitable because of its simple structure. To give the motion to 

entire robot system, the mobile platform is equipped with two independent motorized fixed 

standard wheels and non-motorized caster wheel. The assemble structure of the mobile 

platform is as follows: 

 Platform Chassis: This is made up of Aluminum material. All the accessories 

components are equipped to this chassis. The arm structure is mounted on this platform. 

 

Fig.8.13 Experimental setup of the mobile platform 

  Microcontroller: a similar type of microcontroller as explained in the section 8.3 is used 

for controlling all electronic components those are equipped to the mobile platform. 

 Ultrasonic Sensor: a similar type of ultrasonic sensor as explained in the section 8.3                        

is used for finding obstacles within the robotic search space. 

 DC motor: DC motors are controlled by the microcontroller pins through the motor driver 

IC (L293D). Two pins of the DC motors are for +ve and –ve supply. By changing the 

polarity of the supply voltage we can change the direction of rotation. This technique is 

used to control the direction of the DC motors installed in the mobile platform. In order to 

reverse the direction of the DC motor of the mobile platform we simply swap the status of 

the two pins those are connected to the DC motor. The motors are not directly connected 

to the microcontroller pin. Current rating of the individual microcontroller pin is not 

enough to drive a motor. L293D is a motor driver chip is used between the 
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microcontroller and the DC motor. It amplifies the output pin current so that it can drive 

the motor attached with the microcontroller. 

 

Fig.8.14 Microcontroller interfacing with two DC motors & Motor driver 

 Position Encoder: It is an electro-mechanical device that converts the angular position 

or motion of a rotary element to an analog or digital code. With the help of this device 

the wheel velocities can be measured as shown in Fig.8.14. In this study two position 

encoders are used to measure the velocities of two fixed standard wheels, thereby the 

velocity of the entire robot system can be controlled when it is in operation.  

 

Fig.8.15 Angular velocity measurement of DC motors of the mobile platform 

 Digital Compass: It is used to measure the tilt angle by the robot chassis. When the robot 

is moving in its workspace, it directs toward its target position while avoiding obstacles. 

The direction oriented by the mobile platform is measured with the help of Digital 

compass as shown in Fig.8.15. 
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Fig.8.16 Measurement of the direction of the robot system using digital compass 

8.4. Robot Motion Control 

In order to validate the theoretical results, experimental analysis has been carried out for a 

Mobile manipulator with differential platform. The final configuration the developed mobile 

manipulator is shown in Fig.8.17. 

 

   

Fig. 8.17 Developed manipulator & various end effector orientations 

In the current research work four path planners have been developed as discussed in chapters 

6 & 7. First two are swarm intelligence based and the remaining two are immune inspired 

motion planners. From the two swarm based motion planners, first fitness based motion 

planner is giving better solution in the same way from the developed immune based motion 

planners AIMP is generating shortest paths as compared to IIMP. 
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8.4.1. Comparison between the developed methodologies 

This section presents the simulation and experimental results of the AIMP as compared to the 

first fitness function based PSO motion planner, since the first fitness function gives better 

results than second fitness function.  

 

Fig. 8.18(a) Robot path by AIMP (Scenario - I)  

 

Fig. 8.18(b) Robot path by PSO motion planner (Scenario - I) 

  (i)     (ii) 

 (iii)    (iv)    (v) 

 (iii)    (iv)    (v) 

  (i)     (ii) 
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Fig. 8.19(a) Robot path by AIMP (Scenario - II) 

 

 

Fig. 8.19(b) Robot path by PSO motion planner (Scenario - II) 

 (iii)    (iv)    (v) 

  (i)     (ii) 

 (iii)    (iv)    (v) 

  (i)     (ii) 
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Fig. 8.20(a) Robot path by AIMP (Scenario - III)  

 

Fig. 8.20(b) Robot path by PSO motion planner (Scenario - III) 

 (iii)    (iv)    (v) 

  (i)     (ii) 

 (iii)    (iv)    (v) 

  (i)     (ii) 
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Fig. 8.21(a) Robot path by AIMP (Scenario - IV) 

 

Fig. 8.21(b) Robot path by PSO motion planner (Scenario - IV) 

For scenarios - I to IV of Figs.8.18 (a) to 8.21 (a), the mobile manipulator is moving from its 

source position to the target position using AIMP.  

 (iii)    (iv)    (v) 

  (i)     (ii) 

 (iii)    (iv)    (v) 

  (i)     (ii) 
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 Fig. 8.18 (a) - (I), Fig. 8.19 (a) - (I), Fig. 8.20 (a) - (I) and Fig. 8.21 (a) - (I) represent the 

robot motion (in simulation mode) from its source position to target position. 

 Fig. 8.18 (a) - (II), Fig. 8.19 (a) - (II), Fig. 8.20 (a) - (II) and Fig. 8.21 (a) - (II) represent 

the robot motion (in real mode) from its source position to target position. 

 Fig. 8.18 (a) - (III) to Fig. 8.21 (a) - (III), Fig. 8.19 (a) - (II), Fig. 8.20 (a) - (II) and Fig. 

8.21 (a) - (II) represent the robot positions during its navigation from source to target. 

For scenarios - I to IV of Figs.8.18 (b) to 8.21 (b), the mobile manipulator is moving from its 

source position to the target position using type-1 based PSO motion planner.  

 Fig. 8.18 (b) - (I), Fig. 8.19 (b) - (I), Fig. 8.20 (b) - (I) and Fig. 8.21 (a) - (i) represent the 

robot motion (in simulation mode) from its source position to target position. 

 Fig. 8.18 (b) - (II), Fig. 8.19 (b) - (II), Fig. 8.20 (b) - (II) and Fig. 8.21 (b) - (II) represent 

the robot motion (in real mode) from its source position to target position. 

 Fig. 8.18 (b) - (III) to Fig. 8.21 (b) - (III), Fig. 8.19 (b) - (II), Fig. 8.20 (b) - (II) and Fig. 

8.21 (b) - (II) represent the robot positions during its navigation from source to target. 

The path analysis results for the scenarios Figs.8.18 to 8.21 are illustrated in Tables. 8.1. In 

all the scenarios, AIMP is giving better results as compared to the developed PSO motion 

planner. Path analysis results of scenarios- I to IV showed that the robot motion in simulation 

environments are giving good agreement (percent of error is below 5%) with the real time 

environments. 

Table 8.1 Path analysis results for Figs. 8.18 to 8.21 

Scenario  
Motion 

Planner 

Simulation  Experimental   

% of error 
No. of 

Iter0ations 

Time 

Taken 

(sec.) 

Distance 

travelled 

(cm) 

% of 

path 

deviation 

No. of 

Iterations 

Time 

Taken 

(sec.) 

Distance 

travelled 

(cm) 

% of 

path 

deviation 

I 

AIMP 520 208 624 

6.5% 

529 211.6 634.8 

7.4% 

1.7% 

PSO 556 222.4 667.2 571 228.4 685.2 2.6% 

II 

AIMP 531 212.4 637.2 

6.5% 

539 215.6 646.8 

8.1% 

1.5% 

PSO 568 227.2 681.6 587 234.8 704.4 3.2% 

III 

AIMP 355 142 426 

3.3% 

364 145.6 436.8 

4% 

2.5% 

PSO 367 146.8 440.4 379 151.6 454.8 3.1% 

IV 

AIMP 439 175.6 526.8 

4.8% 

428 513.6 171.2 

4.6% 

2.6% 

PSO 461 184.5 553.6 449 179.6 538.8 2.7% 
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It is observed that the AIMP is the most efficient motion planner among the four developed 

motion planners. Experimental results showed that the designed robot generated safest paths 

by avoiding obstacles and escaping traps and finally reached to its destination with the help 

of proposed algorithms.  Figs. 8.18 to 8.21 represent the path travelled by the differential 

platform using developed immune based and swarm based algorithms. 

In PSO based motion planner, further movement of the robot is decided according the 

particles fitness value. If the robot moves in the environment with longer objects (like to 

perform wall following nature) beyond the sensing rang, it takes more search time for 

determining the global best position.  Due to this nature, sometimes the robot may generate 

indefinite motions within its search space. Unlike PSO control strategy, AIMP works based 

on the dominant antigen in the previous iteration and performs its next movement in short 

span of time. The complete differentiation of AIMP from the PSO algorithm is illustrated in 

Table. 8.2. 

Table 8.2. Comparison between AIMP & PSO motion planner 

Criteria PSO AIMP 

Number of tuning 

parameters 

More  Less  

Mathematical complexity More  Less  

Trap situation avoidance Not as much of AIMP Good in avoiding  

Adaptive nature No  Yes  

Actuation time by robot Takes more time Takes less time 

Shortest path achievement  Certainly not, as compared to AIMP  Yes  

 

Once the robot system reached to its target position, the manipulator which mounted on the 

mobile platform will come to the actuation and will search for the object to perform pick & 

place operation. Fig. 7.17 represents the manipulator picked the detected object after the 

robot system reached to its goal position. 



Experimental Analysis 

129 
 

 

Fig. 8.22 Manipulation task by the developed mobile manipulator for the detected object 

8.5. Validation with ER-400 Mobile Platform 

The ER-400 robot’s platform is ideal for teaching and research in a variety of fields, 

including artificial intelligence, control, navigation, real time programming, remote viewing 

& operation and materials handling. 

ER 400 mobile robot (Intellitek) has been procured (Fig.7.14) and used in this investigation 

to validate the efficiency of the developed methodologies. 

 

Fig.8.23 ER 400 mobile robot 

SPECIFICATIONS OF ER400 MOBILE PLATFORM 

A. Characteristics: 

 Dimensions: Diameter: 43 cm, 

Height: 33 cm 

 Weight: 14 kg (including 2 x 3 

kg batteries) 

 Payload: Up to 10 kg 

 Power: 2 x 12V, 7AH sealed 

lead acid rechargeable batteries 

 Average work time: 5 hours 

 Charging time: 8 hours 
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 Controller: Hitachi 

microcontroller. 

 Drive:  

2-wheel drive,  

2 amp motors with 

odometers, 

Rear caster with position 

sensors, 

Maximum speed: 40 

cm/sec, 

Turn radius: 0 cm. 

 Communications Ports:  

RS232 or USB serial 

ports 

5 IR receivers for remote 

control 

TCP/IP (from on board 

PC or PPC) 

B. Actions of ER400: 

 Run autonomously 

 Avoid obstacles 

 Carry large accessories 

 Localize 

 Follow a wall 

 Communicate and control 

information via sensors 

 Communicate with other robots 

 Play and listen to sound and 

synthesize speech 

 Map spaces, including rooms 

and buildings 

 Plan paths for robot navigation 

 Analyze and transmit video 

C. Ports Available for User Program: 

 Analog and digital I/O 

 3 PWM outputs 

D. Control Software Options: 

 C/C++/VB 

 MATLAB 

E. Sensors 

 10 ultrasonic sensors with 

resolution ±5mm 

 1 Optical Range Measurement 

(PSD) sensor 

 14 analog sensors 

 7 infrared sensors 

 18 digital sensors 

F. Safety Features: 

 Touch sensing bumper  

 Senses contact of less than100g 

 10 ultrasonic sensors 

 Stair detector (robot stops 

operation upon detecting a 

stair) 

 CE approved 

 CIM integration 

G. Camera Specification: 

 1/4 inch color CCD sensor  

 43mm Lens Size  

 Pan: Range 270º  

 Tilt: Range 90º  

 4x Digital Zoom
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Experiments have been conducted using real mobile robots for transporting light weight 

objects from one place (source) to another place (target) in Lab environment. ER-400 robot is 

navigating from source to destination, surrounded with a number of obstacles in a cluttered 

environment. The robot can detect objects and obstacles by using vision sensor (color 

camera) mounted on it. 

The mobile platform is equipped with a 4-axis manipulator as shown in the Fig. 7.15. The 

specifications of the manipulator are illustrated in Table 7.5.  

 

Fig. 8.24 Manipulator mounted on ER-400 mobile platform 

 

Table 8.3 Basic Specification of the Manipulator 

Specification Value Units 

Number of axes 4  

Horizontal reach 300 mm 

Vertical reach 350 mm 

Drives 5 no. of 0.9
0 

stepper motors  

Configuration 

4 Axes plus gripper 

All axes completely independent 

All axes can be controlled simultaneously 
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Here, AIMP methodology has been used as an obstacle avoidance algorithm because form the 

developed motion planners AIMP gives efficient results as discussed in previous sections. 

The Hitachi microcontroller embedded in the robot is loaded with C++ program to carry 

object from initial position i.e. predefined co-ordinate (x1, y1; source) to desired location (x2, 

y2; destination) avoiding obstacles in an unstructured and dynamic environment. 

Robot is handling object during its motion towards the target position. Some of the 

coordinates followed by ER400 robot have been shown pictorially (Figs.8.25 &8.26). During 

the robot navigation (in lab environment) from its source position (100, 15), it reached to 

various intermediate positions (85, 315), (112, 468), (121,591), and (62, 638) as shown in 

Fig.8.26 (iii) - Fig.8.26 (iii).  

From Table 8.3, it is observed that the developed motion planner theoretical result is giving 

good agreement with the experimental result (error < 4%). 

 

  

Fig. 8.25 Path generated by ER400 robot in simulation & experimental environment 
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(i)     (ii) 

 

  

(iii)     (iv) 

Fig. 8.26 Path generated by mobile manipulator to reach its target position 

Table 8.4 Path analysis results of ER-400 mobile platform 

Scenario  

Simulation  Experimental  
% of 

error 

No. of 

Iterations 

Time 

Taken 

(sec.) 

Distance 

travelled(cm) 

No. of 

Iterations 

Time 

Taken 

(sec.) 

Distance 

travelled(cm) 
 

8.25 (a) 69 68.2 682 71 70.5 704.8 3.27% 

 



Experimental Analysis 

134 
 

Once the robot system reached to its target position, the manipulator which mounted on the 

mobile platform will come to the actuation and will search for the object to perform pick & 

place operation. Fig. 8.26 represents the manipulator picked the detected object after the 

robot system reached to its goal position. 

 

Fig. 8.27 Manipulation task by mobile manipulator for the detected object 

8.6. Summary  

Two experimental setups have been developed independently, (i) task performed by the 

manipulator and (ii) the mobile platform path generation within its environments. The 

manipulator in this study has 4-DOF and is used here for pick & place task. While 

performing the operation by the robot online monitoring is performed by embedding various 

electronic elements with microcontroller. In the same way the mobile platform structure is 

made and developed motion planners have been implemented to the designed differential 

mobile platform. Experimental results are deviated within 5% as compared with theoretical 

results. 

Form the simulation as well as the experimental results, AIMP is generating safest and 

shortest paths as compared to the PSO based motion planners (Table 8.1). In addition, the 

efficient motion planner (AIMP is efficient motion planner as compared to PSO motion 

planner) is validated with ER-400 mobile platform. 
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9. CONCLUSION & FUTURE SCOPE 

This thesis work investigation has been carried out to generate flexible operational space 

using the robotic arm by integrating mobility feature to it. This feature facilitates the mobile 

manipulator with the ability to perform its tasks in a large workspace. The mobile 

manipulator considered in this study consists of a robotic manipulator mounted on a mobile 

platform. The development of the hybrid manipulator system covers mechanics of systems 

design, system dynamic modeling and simulations, design optimization, computer 

architecture, and control system design.  

9.1. Contributions 

This section summarizes the main contributions of the current research work as follows: 

 Kinematic modeling of manipulator: The motion of the structure is analyzed in two ways, 

forward and inverse kinematics. Forward kinematics is the determination of the every link 

configuration, specially the end-effector, when the joint variables are given. Inverse 

kinematics deals with determining the joint variables of a robot manipulator for the given 

position and orientation of the end-effector. The standard Denavit-Hartenberg convention 

is implemented for determining coordinate frames attached to each robot’s link. Later, 

arm equation is developed for the considered 4-axis manipulator using forward kinematic 

models. From the developed arm equation, inverse kinematic models have been 

developed to find out the joint parameters. 

 Kinematic modeling of mobile platform: The behavior of various wheeled mobile 

platforms has been analyzed. The  work aimed towards  to  investigate  the  complete  

description  of  the  control theory  of  wheeled robots  and  its  maneuverability.  

Equations  are  modeled  to  describe  the  rigid  body motions  that  arise  from  rolling  

trajectories  based  on  the  geometrical  constraints  of  these  wheels. Moreover, this 

study explains about the differential drive wheeled platform and its motion equations in 

terms of wheel velocities.  

 Coordination of manipulation & locomotion: The prime objective of the work is to 

develop a hybridised robot system by integrating the kinematic models of a 4-axis 

manipulator and a differential mobile platform. The developed WMM is controlled by 

five parameters in which three parameters (joint velocities) gives the velocity information 

of the manipulator and the remaining two (left & right wheel velocities) corresponds the 

differential mobile platform. The final velocity Jacobean has been developed for a mobile 
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manipulator which controls the entire robot system and makes the robot to follow the 

desired trajectories by the manipulator and platform within its workspace.  

 Swarm based motion control paradigm: A new computational methodology has been 

proposed for solving path planning problem of an intelligent mobile platform, based on 

Particle Swarm Optimization. The developed algorithm is effective in avoiding obstacles 

and generating optimal paths within its unknown environments. The trajectories 

generated by robot are based on the selection of global best position in each iteration. 

Among the swarm, the particle which has the minimum fitness is considering as the 

global best position. There by, the robot moves towards the global best position and this 

process is continued for several iterations until the robot reaches its target position. 

Moreover, from the developed two fitness functions, type-1fitness is giving efficient 

results as compared to type-2 fitness function.  

 Immune based motion control paradigm: Two efficient immune based motion planners 

have been introduced for solving mobile robot path planning problem in unknown 

environments. The first motion planner called innate immune based motion planner, 

comprises the parameter ‘Learning Rate’ and is not getting any global information from 

the system. For the second motion planner, an efficient adaptive learning mechanism has 

been presented and integrated to the developed innate immune based motion planner. 

Path analysis results showed that, both motion planners are generating collision free paths 

in their robotic search space. Moreover, from the developed swarm based & immune 

based motion planners, AIMP gives better results as compared to PSO based motion 

planner. 

 Experiments: Two experimental setups have been developed independently, one is the 

task performed by the manipulator and another is for the mobile platform path generation 

within its environments. The manipulator in this study has 4-DOF and is used for pick & 

place task. Online monitoring of the entire robot system is performed while the WMM is 

in operation, by interfacing various electronic elements with microcontroller. In the same 

way the mobile platform structure is made and developed motion planners have been 

implemented to the designed differential mobile platform. Experimental results are in 

good agreement with the theoretical results. Path analysis results showed that, from the 

developed swarm based & immune based motion planners, AIMP gives better results as 

compared to PSO based motion planner. 
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9.2. Conclusions 

The conclusions drawn from the current investigation are depicted below: 

1. Kinematic models of the manipulator have been done to analyze the position of the arm 

during pick and place task in various situations. 

2. Kinematic analysis for the wheeled mobile platform has been done to measure its 

maneuverability while subjected to wheel geometric constraints.  

3. Co-ordination of manipulator and mobile platform has been analyzed to reach the various 

coordinates in cluttered work space efficiently and effectively.  

4. Swarm system architecture has been introduced to generate the optimal trajectories by the 

mobile manipulator. With the help of sensory information, two fitness functions namely 

type-1 fitness and type -2 fitness have been developed to solve path planning problem. 

Results showed that, type-1 fitness based motion planner giving efficient results as 

compared to type-2 fitness function type-1 fitness based motion planner by 7%.  

5. Immune based system architecture has been introduced to generate the optimal 

trajectories by the mobile manipulator. With the help of sensory information, two motion 

planners namely IIMP and AIMP have been developed to solve path planning problem. 

Results showed that, AIMP gives efficient results as compared to IIMP by 4%.  

6. Comparison evaluations have been made for the developed type-1 fitness based motion 

planner (efficient swarm based architecture) and AIMP (efficient immune based 

architecture). . Path analysis results showed that, AIMP gives better results as compared 

to type-1 fitness based PSO motion planner by 6.5%. 

7. Since the developed AIMP solves the path planning problem efficiently, AIMP has been 

validated with ER-400 mobile platform in simulation and lab environments.  

Experimental results are giving good agreement with theoretical results (error <4%). 

9.3. Future Scope 

The focus of this thesis is on modeling, control, and coordination of a single mobile 

manipulator which consists of a 4-axis manipulator mounted on differential mobile platform. 

The following is a list of interesting directions to pursue as future work by improving the 

state of the art immediately related to this work. 

 Multiple mobile manipulators: One of the techniques for coordinating multiple mobile 

manipulators is the leader/follower mothodology, in which one WMM is chosen as the 

leader and the other WMMs are designated as followers. These types of systems are used 

to perform simple tasks such as jointly transporting a large object. The algorithms 
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developed in Chapter 6 & 7 can be implemented to the followers that keep in contact with 

and support the object to be transported. The coordination of multiple WMMs when 

performing complex tasks such as mechanical parts assembly is a future study where 

coordination strategies other than the leader/follower has to be considered. 

 Two manipulators on a mobile platform: In this investigation a mobile manipulator is 

considered which has only one manipulator equipped on top of the mobile platform. In 

general, one may have two or more manipulators on the same mobile platform for 

performing coordination works. In that case, the motion of one manipulator will affect the 

motion of the mobile platform as well as the motion of the other manipulators aboard.  

 The system is to be redesigned with the effects of external forces under certain 

circumstances. This feature renders more applicability of the proposed coordination 

algorithm, while the system is in interaction with ubiquitous environments. 
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Appendix – A: Global Transformation Matrix of 4-Axis Manipulator 

In chapter – 3 rotational kinematics and the homogeneous transformations have been 

discussed to relate the motion of one frame of reference to another frame of reference. Since 

the develop manipulator is of 4 DOF, four reference frames have been considered 

corresponds to each DOF. The end-effector motion is a function of kinematic parameters 

(two of link parameters and two of joint parameters) as illustrated in Table.3.2. The global 

transformation matrix of the manipulator is represented in Eq.(3.9) as follows: 

𝑇𝑏𝑎𝑠𝑒
𝑇𝑜𝑜𝑙 = 𝑇𝑏𝑎𝑠𝑒

𝑤𝑟𝑖𝑠𝑡 ∗ 𝑇𝑤𝑟𝑖𝑠𝑡
𝑡𝑜𝑜𝑙   

Where 𝑇𝑏𝑎𝑠𝑒
𝑤𝑟𝑖𝑠𝑡 =  𝑇0

1 ∗ 𝑇1
2 and 𝑇𝑤𝑟𝑖𝑠𝑡

𝑡𝑜𝑜𝑙 = 𝑇2
3 ∗ 𝑇3

4 

𝑇0
1 = [

𝐶𝜃1 −𝑆𝜃1𝐶𝛼1 𝑆𝜃1𝑆𝛼1 𝑎1𝐶𝜃1
𝑆𝜃1 𝐶𝜃1𝐶𝛼1 −𝐶𝜃1𝑆𝛼1 𝑎1𝑆𝜃1
0
0

𝑆𝛼1
0

𝐶𝛼1
0

          
𝑑1
1

]  

𝑇0
2 = [

𝐶𝜃2 −𝑆𝜃2𝐶𝛼2 𝑆𝜃2𝑆𝛼2 𝑎2𝐶𝜃2
𝑆𝜃2 𝐶𝜃2𝐶𝛼2 −𝐶𝜃2𝑆𝛼2 𝑎2𝑆𝜃2
0
0

𝑆𝛼2
0

𝐶𝛼2
0

          
𝑑2
1

]  

𝑇2
3 = [

𝐶𝜃3 −𝑆𝜃3𝐶𝛼3 𝑆𝜃3𝑆𝛼3 𝑎3𝐶𝜃3
𝑆𝜃3 𝐶𝜃3𝐶𝛼3 −𝐶𝜃3𝑆𝛼3 𝑎3𝑆𝜃3
0
0

𝑆𝛼3
0

𝐶𝛼3
0

          
𝑑3
1

]  

𝑇3
4 = [

𝐶𝜃4 −𝑆𝜃4𝐶𝛼4 𝑆𝜃4𝑆𝛼4 𝑎4𝐶𝜃4
𝑆𝜃4 𝐶𝜃4𝐶𝛼4 −𝐶𝜃4𝑆𝛼4 𝑎4𝑆𝜃4
0
0

𝑆𝛼4
0

𝐶𝛼4
0

          
𝑑4
1

]  

Assume  [𝐴] = [𝑇0
1] ∗ [𝑇0

2] = [

𝐴11 𝐴12 𝐴13 𝐴14
𝐴21 𝐴22 𝐴23 𝐴24
𝐴31
𝐴41

𝐴33
𝐴42

𝐴33
𝐴43

𝐴34
𝐴44

]     (A1) 

And [𝐵] = [𝑇2
3] ∗ [𝑇3

4] = [

𝐵11 𝐵12 𝐵13 𝐵14
𝐵21 𝐵22 𝐵23 𝐵24
𝐵31
𝐵41

𝐵33
𝐵42

𝐵33
𝐵43

𝐵34
𝐵44

]    (A2) 

Where 

𝐴11 =  𝐶𝜃1𝐶𝜃2 − 𝑆𝜃1𝑆𝜃2𝐶𝛼1  

𝐴12 = 𝐶𝜃1(−𝑆𝜃2𝐶𝛼2) − 𝑆𝜃1𝐶𝛼1𝐶𝜃2𝐶𝛼2 + 𝑆𝜃1𝑆𝛼1𝑆𝛼2  

𝐴13 = 𝐶𝜃1𝑆𝜃2𝑆𝛼2 + 𝑆𝜃1𝐶𝛼1𝐶𝜃2𝑆𝛼2 + 𝑆𝜃1𝑆𝛼1𝐶𝛼2  

𝐴14 = 𝐶𝜃1𝑎2𝐶𝜃2 − 𝑆𝜃1𝐶𝛼1𝑎2𝑆𝜃2 + 𝑆𝜃1𝑆𝛼1𝑑2 + 𝑎1𝐶𝜃1  

𝐴21 = 𝑆𝜃1𝐶𝜃2 + 𝐶𝜃1𝐶𝛼1𝑆𝜃2  
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𝐴22 = −𝑆𝜃1𝑆𝜃2𝐶𝛼2 + 𝐶𝜃1𝐶𝛼1𝐶𝜃2𝐶𝛼2 − 𝐶𝜃1𝑆𝛼1𝑆𝛼2  

𝐴23 = 𝑆𝜃1𝑆𝜃2𝑆𝛼2 − 𝐶𝜃1𝐶𝛼1𝐶𝜃2𝑆𝛼2 − 𝐶𝜃1𝑆𝛼1𝐶𝛼2  

𝐴24 =  𝑆𝜃1𝑎2𝐶𝜃2 + 𝐶𝜃1𝐶𝛼1𝑎2𝑆𝜃2 − 𝐶𝜃1𝑆𝛼1𝑑2 + 𝑎1𝑆𝜃1  

𝐴31 =  𝑆𝜃2𝑆𝛼1  

𝐴32 = 𝐶𝛼1𝐶𝜃2𝑆𝛼1 + 𝐶𝛼1𝐶𝛼2  

𝐴33 = −𝑆𝛼1𝐶𝜃2𝑆𝛼2 + 𝐶𝛼1𝐶𝛼2  

𝐴34 = 𝑎2𝑆𝛼1𝑆𝜃2 − 𝑑2𝐶𝛼1 + 𝑑1  

𝐴41 = 𝐴42 = 𝐴43 = 0   

𝐴44 = 1  

 

Matrix B: 

𝐵11 =  𝐶𝜃3𝐶𝜃4 −  𝐶𝜃3𝑆𝜃4𝐶𝛼4  

𝐵12 = −𝐶𝜃3𝑆𝜃4𝐶𝛼4 − 𝑆𝜃3𝐶𝛼3𝐶𝜃4𝐶𝛼4 + 𝑆𝜃3𝑆𝛼3𝑆𝛼4  

𝐵13 = 𝐶𝜃3𝑆𝜃4𝑆𝛼4 + 𝑆𝜃3𝐶𝛼3𝐶𝜃4𝑆𝛼4 +  𝑆𝜃3𝑆𝛼3𝐶𝛼4 

𝐵14 = 𝑎4𝐶𝜃3𝐶𝜃4 − 𝑎4𝑆𝜃3𝐶𝛼3𝑆𝜃4 + 𝑆𝜃3𝑆𝛼3𝑑4 + 𝑎3𝐶𝜃3  

𝐵21 =  𝑆𝜃3𝐶𝜃4 + 𝐶𝜃3𝐶𝛼3𝑆𝜃4  

𝐵22 = −𝑆𝜃3𝑆𝜃4𝐶𝛼4 + 𝐶𝜃3𝐶𝛼3𝐶𝜃4𝐶𝛼4 − 𝐶𝜃3𝑆𝛼3𝑆𝛼4  

𝐵23 =  𝑆𝜃3𝑆𝜃4𝑆𝛼4 − 𝐶𝜃3𝐶𝛼3𝐶𝜃4𝑆𝛼4 − 𝐶𝜃3𝑆𝛼3𝐶𝛼4  

𝐵24 = 𝑎4𝑆𝜃3𝐶𝜃4 + 𝑎4𝐶𝜃3𝐶𝛼3𝑆𝜃4−𝐶𝜃3𝑆𝛼3𝑑4 + 𝑎3𝑆𝜃3  

𝐵31 =  𝑆𝛼3𝑆𝜃4  

𝐵32 =  𝑆𝛼3𝐶𝜃4𝐶𝛼4 + 𝑆𝛼3𝑆𝛼4   

𝐵33 = −𝑆𝛼3𝐶𝜃4𝑆𝛼4 +  𝐶𝛼3𝐶𝛼4 

𝐵34 = 𝑎4𝑆𝛼3𝑆𝜃4 − 𝐶𝛼3𝑑4 + 𝑑3  

𝐵41 = 𝑎4𝐶𝜃4  

𝐵42 =  𝑎4𝑆𝜃4 

𝐵43 =  𝑑4 

𝐵44 = 1  
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Therefore the global transformation matrix of 4-axis manipulator is product of Eqs. (A2) & 

(A3) as follows: 

𝑇𝑏𝑎𝑠𝑒
𝑇𝑜𝑜𝑙 = 𝑇𝑏𝑎𝑠𝑒

𝑤𝑟𝑖𝑠𝑡 ∗ 𝑇𝑤𝑟𝑖𝑠𝑡
𝑡𝑜𝑜𝑙 = [𝐴] ∗ [𝐵]       (A3) 

 

Eq.(3.10) represents the global transformation matrix which maps from its base coordinate 

frame of reference to toll coordinate reference frame as below 

𝑇𝑏𝑎𝑠𝑒
𝑡𝑜𝑜𝑙 = [

𝑚𝑥 𝑛𝑥 𝑜𝑥 𝑝𝑥
𝑚𝑦 𝑛𝑦 𝑜𝑦 𝑝𝑦
𝑚𝑧

0
𝑛𝑧
0

𝑜𝑧 𝑝𝑧
0 1

] = [
𝑅(𝜃)3𝑥3 𝑃3𝑥1

0 1
]  

Comparing the Eq.(3.10) with Eq.(A3) the elements of the rotation and position matrix is as 

follows: 

𝑇𝑏𝑎𝑠𝑒
𝑡𝑜𝑜𝑙 = [

𝐴11 𝐴12 𝐴13 𝐴14
𝐴21 𝐴22 𝐴23 𝐴24
𝐴31
𝐴41

𝐴33
𝐴42

𝐴33
𝐴43

𝐴34
𝐴44

] ∗ [

𝐵11 𝐵12 𝐵13 𝐵14
𝐵21 𝐵22 𝐵23 𝐵24
𝐵31
𝐵41

𝐵33
𝐵42

𝐵33
𝐵43

𝐵34
𝐵44

]    (A4) 

 

𝑚𝑥 = 𝐴11𝐵11 + 𝐴12𝐵21 + 𝐴13𝐵31  

𝑛𝑥 = 𝐴11𝐵12 + 𝐴12𝐵22 + 𝐴13𝐵33  

𝑜𝑥 = 𝐴11𝐵13 + 𝐴12𝐵23 + 𝐴13𝐵33  

𝑝𝑥 = 𝐴11𝐵14 + 𝐴12𝐵24 + 𝐴13𝐵34  

𝑚𝑦 = 𝐴21𝐵11 + 𝐴22𝐵21 + 𝐴23𝐵31  

𝑛𝑦 = 𝐴21𝐵12 + 𝐴22𝐵22 + 𝐴23𝐵33  

𝑜𝑦 = 𝐴21𝐵13 + 𝐴22𝐵23 + 𝐴23𝐵33  

𝑝𝑦 = 𝐴21𝐵14 + 𝐴22𝐵24 + 𝐴23𝐵34  

𝑚𝑧 = 𝐴31𝐵11 + 𝐴32𝐵21 + 𝐴33𝐵31  

𝑛𝑧 = 𝐴31𝐵12 + 𝐴32𝐵22 + 𝐴33𝐵33  

𝑜𝑧 = 𝐴31𝐵13 + 𝐴32𝐵23 + 𝐴33𝐵33  

𝑝𝑧 = 𝐴31𝐵14 + 𝐴32𝐵24 + 𝐴33𝐵34  

 



 

155 
 

Appendix – B: Kinematic Model of a Differential Mobile Platform 

The motion of the wheeled mobile platform is discussed in chapter -3. A kinematic model of 

a wheeled mobile platform with corresponding parameters is represented in Fig. A.1. The two 

rear wheels are fixed parallel to robot body and allowed to roll or spin but not slip.  

 

Fig.B.1   Kinematic model of a wheeled mobile platform 

The configuration of the robot moving on a plane surface at every instant is defined by three 

parameters (𝑥, 𝑦, 𝜓). The rear wheel is always tangent to the orientation of the vehicle. No 

slipping condition mentioned previously requires that the robot navigate in the direction of its 

wheels. Let 𝜃̇𝑅𝑡, 𝑣𝑅𝑡 and 𝜃̇𝐿𝑡 , 𝑣𝐿𝑡 are the left and right wheel rotational and linear velocities 

respectively. By changing the velocities of the two wheels, the instantaneous center of 

rotation will move and different trajectories will be followed. 

At each moment of time the left and right wheels follow a path that moves around its 

instantaneous centre of rotation with a radius of curvature. 

𝑅 =  (
(𝑣𝑅𝑡 + 𝑣𝐿𝑡)

(𝑣𝑅𝑡 − 𝑣𝐿𝑡)
⁄ )

𝑆

2
       (B1) 

The velocity of the centre of mass of the platform, which is the midpoint between the two 

wheels, can be calculated as follows:        

𝜔 = (𝑣𝑅𝑡 − 𝑣𝐿𝑡)/𝑆                                            (B2)                  

𝑣 = (𝑣𝑅𝑡 + 𝑣𝐿𝑡)/2         (B3) 

If 𝑣𝑅𝑡 = 𝑣𝐿𝑡 then the radius R is infinite and the robot moves in a straight line. For various 

values of 𝑣𝑅𝑡& 𝑣𝐿𝑡, the mobile platform does not move in a straight line but rather follows a 

curved trajectory around a point located at a distance R from centre point. If 𝑣𝑅𝑡 = −𝑣𝐿𝑡, then 

the radius R is zero and the robot rotates around one wheel. For any real value of the velocity, 

R must be real, to get a real curved path. Thus, 𝜓 has to lie within 0
0
 and 90

0
, for a non-

holonomic robot. 
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APPENDIX – C: 8051 Microcontroller Pin Configuration  

Schematic diagram of an 8051 microcontroller pin configuration is shown in Fig.C.1 and the 

detailed description about each pin is as follows: 

 

Fig.C.1 8051 microcontroller pin diagram 

Description of each pin 

 Port 0 (P0.0 to P0.7): It is an 8-bit bi-directional addressable I/O port. During external 

memory access, it functions as multiplexed data and low-order address bus AD0-AD7.  

 Port 1 (P1.0 to P1.7): It is an 8-bit bi-directional bit/ byte addressable I/O port. When 

logic 1is written into port latch then it work as input mode.  

 Port 2 (P2.0 to P2.7): It is an 8-bit bi-directional addressable I/O port. During external 

memory access it functions as higher order address bus (A8-A15).  

 Port 3 (P3.0 to P3.7): It is an 8-bit I/O port. In which an alternating function of each pins 

can be used as a special function I/O pin.  
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 P3.0-RxD: This I/P pin receives serial data of serial communication circuit.  

 P3.1-TxD: Through this O/P pin data is transmitted.  

 P3.2- (INT0): It is external hardware interrupt I/P pin used for interrupt generation.  

 P3.3-(INT1): It is external hardware interrupt I/P pin used for interrupt generation. 

 P3.4- T0: External clock pulses can connect to timer-0 through this I/P pin.  

 P3.5-T1: External clock pulses can connect to timer-1 through this I/P pin.  

 P3.6-(WR): It is an active low O/P control pin used during external RAM (Data memory) 

access. If (WR) =0, then microcontroller will perform write operation to the external 

RAM.  

 P3.7-(RD): It is an active low O/P control pin used during external RAM (Data memory) 

access. If (RD) =0, then microcontroller will perform read operation from the external 

RAM.  

 XTAL 1 and XTAL 2: These are two I/P line for on-chip oscillator and clock generator 

circuit. A resonant network as quartz crystal is connected between these two pin. 

 (EA)/VPP: It is an active low I/P pin. When (EA) =0, 8051 microcontroller access from 

external program memory (ROM). If EA =1, it access internal and external program 

memories (ROMS).  

 (PSEN): It is an active low O/P pin. It is used to enable external program memory 

(ROM). When (PSEN) =0, then external program memory becomes enable and 

microcontroller read content of external memory location. Therefore it is connected to 

(OE) of external ROM. It is activated twice for every external ROM memory cycle.  

 ALE-Address latch enable: It is an active high O/P pin. When it goes high, external 

address latch becomes enabling and lower address of external memory (RAM or ROM) 

latched into it. Thus it separates A0-A7 address from AD0-AD7. It provides proper timed 

signal to latch lower byte address. The ALE is activated twice for every machine cycle. If 

external RAM & ROM are not accessed, then ALE is activated at constant rate of 1/6
th

 

oscillator frequency, which can be used as a clock pulses for driving external devices.  

 RESET: It is an active high I/P signal. It should be maintained high for at least two 

machine cycles in order to reset the microcontroller, i.e. it clears the internal registers. 



 

158 
 

List of Publications 

Published in International Journals: 

1. BBVL Deepak, D R Parhi and B M V A Raju, Advance particle swarm optimization 

based navigational controller for mobile robot, Arabian Journal for Science and 

Engineering, Volume 39, No. 8, pp 6477-6487, 2014. 

2. Elias Eliot, B.B.V.L. Deepak, D.R. Parhi, J. Srinivas, Design & kinematic analysis of an 

articulated robotic manipulator, International Journal of Mechanical and Industrial 

Engineering, Vol-3, No-1, , pp. 105-108, 2013. 

3. B. B. V. L. Deepak and Dayal Parhi, Intelligent adaptive immune-based motion planner 

of a mobile robot in cluttered environment, Intelligent Service Robotics, Vol. 6, No. 3, 

pp. 155-16, 2013. 

4. D.R Parhi and BBVL Deepak, “Path Generation of a Differential Mobile Robot using 

Particle Swarm Optimization”, International Journal of Artificial Intelligence and 

Computational Research, Vol.4 No.1, pp: 7-11, 2012. 

5. BBVL Deepak and Dayal R. Parhi, PSO Based Path Planner of an Autonomous Mobile 

Robot, Central European Journal of Computer Science, Vol. 2, No.2, pp. 152-168, 2012. 

6. BBVL Deepak, Dayal R. Parhi and and Anand Amrit, Inverse Kinematic Models for 

Mobile Manipulators, Caspian Journal of Applied Sciences Research, Vol. 1, No.13, pp. 

151-158, 2012. 

7. D.R. Parhi, BBVL Deepak, D. Nayak and and A. Amrit, Forward and Inverse Kinematic 

Models for an Articulated Robotic Manipulator, International Journal of Artificial 

Intelligence and Computational Research, Vol.4 No.2, pp: 103-109, 2012. 

8. BBVL Deepak and Dayal R Parhi, “Kinematic Model of Wheeled Mobile Robots”, 

International Journal of Recent Trends in Engineering & Technology, Vol. 05, No. 04, 

pp.5-10, 2011. 

9. D.R Parhi and BBVL Deepak, “Kinematic Model of Three Wheeled Mobile Robot”, 

Journal of Mechanical Engineering Research, Vol. 3, No.9, pp. 307-318, 2011. 

10. D.R Parhi and BBVL Deepak, “Sugeno Fuzzy Based Navigational Controller of an 

Intelligent Mobile Robot”, International Journal of Applied Artificial Intelligence in 

Engineering System, Vol. 3, No.2, pp. 103-108, 2011. 



 

159 
 

11. D.R Parhi, JC Mohanta, BBVL Deepak and S K Patel, “Analysis of Hybrid Genetic 

Technique for Navigation of Intelligent Autonomous Mobile Robots”, International 

Journal of Applied Artificial Intelligence in Engineering System, Vol. 02, No. 02, pp 133-

136, 2010. 

12. D.R Parhi, JK Pothal and BBVL Deepak, “Navigation of Mobile Robots using Fuzzy-

Ant Optimization Technique”, International Journal of Applied Artificial Intelligence In 

Engineering System, pp 111-117, 2010. 

(B) PAPERS UNDER REVISION  

1. BBVL Deepak and D R Parhi, Control of an Automated Mobile Manipulator Using 

Artificial Immune System, journal of experimental and theoretical artificial intelligence, 

Taylor & Francis Publications. 

Book Chapters Published: 

1. Dayal R. Parhi, B.B.V.L. Deepak, Jagan Mohana, Rao Ruppa, and Meera Nayak, 

"Immunised Navigational Controller for Mobile Robot Navigation", S. Patnaik & Y.-M. 

Yang (Eds.): Soft Computing Techniques in Vision Sci., SCI 395, Springer-Verlag Berlin 

Heidelberg 2012, pp. 171–182, ISBN: 978-3-642-25506-9 (Print) 978-3-642-25507-6 

(Online). 

(C)Published in International Conferences: 

1. B.B.V.L. Deepak and Dayal R. Parhi, Target Seeking Behaviour of an Intelligent Mobile 

Robot Using Advanced Particle Swarm Optimization, Proceedings of IEEE sponsored 

International Conference on CARE 2013, IIIT Jabalpur. 

2. Elias E., B.B.V.L. Deepak, D.R. Parhi, and J. Srinivas, Design & Kinematic Analysis of 

an Articulated Robotic Manipulator, Proceedings of International Conference on 

Mechanical and Industrial Engineering (ICMIE-2012), Goa, pp. 261-264. 

3. BBVL Deepak, Dayal R Parhi, and Subhasri K. “Innate immune based path planner of an 

Autonomous Mobile Robot”, International Conference on Modelling, Optimisation and 

Computing (ICMOC – 2012), NI University, ELSEVIER Procedia Engineering 38(2012), 

pp. 2663 – 2671. 



 

160 
 

4. BBVL Deepak, Dayal R Parhi and Devidutta N., Development of Forward and Inverse 

Kinematic Models for 5-Axis Articulated Manipulator, Proceedings of 4
th

 International 

and 25
th

 All India Manufacturing Technology, Design and Research (AIMTDR) 

Conference, jadavpur university, 2012, pp.102-106. 

5. BBVL Deepak, Dayal R Parhi, and J R Ruppa, “Immunised Navigational Controller for 

Mobile Robot Navigation”, Proceedings of International Conference on Artificial 

Intelligence and Soft Computing (ICAISC 2011),Bhubaneswar, pages. 259-264. 

6. J R Ruppa, DR Parhi and BBVL Deepak, “Ant Colony Optimization Algorithm for the 

Travelling Salesman Problem”, Proceedings of International Conference on Artificial 

Intelligence and Soft Computing (ICAISC 2011), Bhubaneswar, pages. 282-285. 

7. Kalpana S, BBVL Deepak, and Dayal R Parhi, “PSO Based Motion Planner of an 

Intelligent Mobile Robot”, Advances in Modeling, Optimization and Computing (AMOC - 

2011), IIT-Roorkee, pp. 187-191.  

 

(D) Published in National Conferences: 

1. BBVL Deepak, Alok K J and D R Parhi, “Mobile Robot Obstacle Avoidance using 

Particle Swarm Optimization”, Proceedings of National Conference on Emerging Trends 

in Computing and Information Technology (NCETCIT-2011). RKGITW, Ghaziabad, pp. 

40-44. 

2. BBVL Deepak, Alok K J and D R Parhi, “Path Planning of an Autonomous Mobile 

Robot using Artificial Immune System”, Proceedings of National Conference on 

Emerging Trends in Computing and Information Technology (NCETCIT-2011). 

RKGITW, Ghaziabad, pp. 45-48. 

3. BBVL Deepak, A. Amrit, N. Kumar and D R Parhi, “Development of Forward 

Kinematic Model for an Articulated Robotic Manipulator”, Proceedings of 3rd National 

Conference on Recent Advances in Manufacturing (RAM 2012), SVNIT, Surat, pp. 86-

90. 

4. BBVL Deepak, A. Amrit, N. Kumar and D R Parhi, “Path Generation of a Differential 

Mobile Robot using Fuzzy Inference System”, Proceedings of 3rd National Conference 

on Recent Advances in Manufacturing (RAM 2012), SVNIT, Surat, pp. 86-90. 



 

161 
 



 

162 
 



 

163 
 

  



 

164 
 

 



 

165 
 

 



 

166 
 

 



 

167 
 



 

168 
 

 

 



 

169 
 



 

170 
 

  



 

171 
 

  


