
HIGH AND LOW LEVEL CONTROL FOR AN
UNMANNED GROUND VEHICLE.

BYRON SNAIDER HERNÁNDEZ OSORIO

Universidad Tecnológica de Pereira
Maestŕıa en Ingenieŕıa eléctrica- Ĺınea Automática

Facultad de Ingenieŕıa Eléctrica, Electrónica, F́ısica y Ciencias de la Computación
Pereira, Colombia

2019

HIGH AND LOW LEVEL CONTROL FOR AN
UNMANNED GROUND VEHICLE.

BYRON SNAIDER HERNÁNDEZ OSORIO

Submitted for partial fulfillment for the
master degree in electrical engineering

Director:
(Ph.D.) Eduardo Giraldo Suárez

Research line:
Nonlinear control
Research group:

Control Automático

Universidad Tecnológica de Pereira
Maestŕıa en Ingenieŕıa eléctrica- Ĺınea Automática

Facultad de Ingenieŕıa Eléctrica, Electrónica, F́ısica y Ciencias de la Computación
Pereira, Colombia

2019

Dedication

For my dear parents, because they have always inspired and supported me.

iii

Acknowledgements

I would like to thank to “Universidad Tecnológica de Pereira” for welcome me as its
student, and for give me the opportunity of continue with my master degree granting
me the Jorge Roa Martinez scholarship. I would also thank “Maestŕıa en Ingenieŕıa
Eléctrica” for acceptance and financial support during my master process. Finally,
thank to “Colciencias” and the program “Jóvenes Investigadores e Innovadores por la
paz, convocatoria 775-2017” for finantial support carrying out this research project.

iv

Abstract

This research presents the development of a high and low level control methodology for
a mobile robot or unmanned ground vehicle operating into a defined environment, the
application of linear and nonlinear automatic control methods, jointly with search and
planning algorithms provide the platform of autonomy.

The document begins with a background in locomotion systems for robots, explaining
why, a ground vehicle is the most suitable choice for the application in the context of
the outer research project. Water robots, unmanned aerial vehicles, and a wide variety
of ground locomotion configurations like legged or wheeled structures are presented.

Then, for low level control implementations, dynamic models must be developed for
selected systems, chapter 3 shows the approaches in differential driven mobile robots
modelling.

The design and implementation of linear and nonlinear low level control method allow
to show the difference between those approaches and state the advantages of using
nonlinear control structures, a special result is obtained and detailed for a multivariable
state feedback linearization or exact linearization controller.

For high level control, a description of graph theory, search algorithms, and path
planning approaches are presented, the election and implementation of some algorithms
is supported and detailed, the proposed implementation of the probabilistic roadmap
algorithm shows an interesting result for the raised system and environment.

v

Contents

Introduction 1

1 Robotics 4

1.1 Manipulators . 6

1.2 Mobile Robots . 7

2 Common Models of Mobile Robots 8

2.1 Locomotion System . 8

2.2 Aerial Robots . 9

2.3 Water Robots . 10

2.4 Legged Robots . 12

2.4.1 One Leg Robots . 12

2.4.2 Two Legs Robots . 13

2.4.3 Three Legs Robots . 14

2.4.4 Four Legs Robots . 15

2.4.5 Six Legs Robots . 16

2.5 Wheeled Robots (WR) . 17

2.5.1 Two Wheels Robots . 17

2.5.2 Three Wheels Robots . 18

2.5.3 Tricycle Robots . 19

2.5.4 Four Wheels Robots . 20

2.5.5 Ackerman Robots . 20

vi

2.5.6 Five Wheel Robots . 21

2.5.7 Six Wheel Robots . 22

2.5.8 More Than Six Wheel Robots 22

2.5.9 Omnidirectional Wheeled Robots 23

2.5.10 Differential Wheel Robot . 24

2.6 Tracked Robots (TR) . 24

2.6.1 Skid Steer Robots . 24

3 Mathematical Models 25

3.1 The Differential Driven Mobile Robot (DDMR) Model 25

3.2 Three Wheeled Differential Robot (IVWAN) Model 30

4 Low Level Control 33

4.1 Control Basics . 33

4.1.1 Linear systems . 33

4.1.2 Nonlinear Systems . 35

4.1.3 Basic Linear control methods 36

4.1.4 Basic Nonlinear Control Methods 41

4.2 Multivariable State Feedback Linearization 44

5 High Level Control 46

5.1 Roadmap . 47

5.2 Cell Decomposition . 47

5.3 Potential Field . 49

5.4 Most Studied Algorithms . 49

5.4.1 A-star Algorithm . 49

5.4.2 Probabilistic Roadmap . 50

5.4.3 Genetic Algorithm . 51

6 Results and Discussion 52

vii

6.1 High Level algorithms . 52

6.2 Low level control . 59

7 Final remarks 64

7.1 Conclusions . 64

7.2 Future Works . 65

7.3 Academic discussion . 65

Bibliography 66

Academic discussion 71

viii

List of Figures

1.1 Some samples of general purpose robots. 5

1.2 Robotic manipulator Adept 6. 6

1.3 Mobile Robots. 7

2.1 Unmanned Aerial Vehicles. 10

2.2 Underwater systems. 11

2.3 Hopper (Jumper) Robot, MIT Uniroo. 13

2.4 Bipedal Robot Cassie by Agility Robotics (Oregon State University). . 14

2.5 BigDog by Boston Dynamics. 15

2.6 LAURON V: Six legged walking robot. 16

2.7 Roomba robot for home cleaning. 18

2.8 Three Wheel Differential Robot. 18

2.9 Schematic representation of tricycle robot. 19

2.10 Four Wheel Differential Driven Robot Enyo. 20

2.11 Ackerman robot system. 21

2.12 NASA Mars Rover. 22

2.13 Three Swedish wheeled Omnidirectional Robot. 23

2.14 Omnidirectional Mobile Robot Summit-XL Steel by Robotnik 23

3.1 Reference frames for DDRM modelling 26

3.2 Dynamical definition of robot configuration 27

3.3 Free body diagram for the Intelligent Vehicle With Autonomous
Navigation (IVWAN). 31

ix

4.1 Block diagram of feedback transfer function control 36

4.2 Feedback controller with direct loop gain 37

4.3 State regulator scheme . 38

4.4 State feedback controller with direct loop gain 39

4.5 State feedback controller with integral action 40

5.1 Roadmap as a connected graph in the defined environment. 47

5.2 Cell decomposition examples. 48

6.1 Expansion search using connectivity matrix (6.1) 53

6.2 Sampling q randomly . 54

6.3 Local planning or simple connecting . 54

6.4 Result of the A* Algorithm . 55

6.5 Path found between (10, 20) and (400, 100) on a 700× 600 environment 56

6.6 Path found between (10, 20) and (400, 100) on a 700× 600 environment 56

6.7 Result of the Probabilistic Roadmap Algorithm 57

6.8 Result of the Genetic Algorithm . 57

6.9 Nonlinear controller performance for the given path 61

6.10 Linear PI controller performance for the given path 61

6.11 Nonlinear and linear controllers behavior for a given path:
{(0, 0), (130, 160), (360, 270), (320, 480), (400, 500)} 62

x

List of Tables

6.1 Table of results . 58

6.2 Nonlinear controller x coordinate analysis 62

6.3 Nonlinear controller y coordinate analysis 62

6.4 PI Controller x coordinate analysis . 62

6.5 PI Controller y coordinate analysis . 63

6.6 Distance analysis between position and reference path 63

xi

Introduction

Although during history, there appeared references to interesting devices that imitated
the animals and human movements in some sense, it was only until past century that the
word robot appeared and rapidly became a work field. The field of robotics became an
important area in a wide variety of disciplines like science, mathematics and engineering.

Robots were initially developed for industrial applications, the first proper applied
structure proposed is probably the arm manipulator, for repetitive movement and
handling tasks. It is similar to human extremities keeping the tendency in robotics
of imitate alive beings behaviours.

The expansion of manipulators allowed to carry out difficult, critical, dangerous,
repetitive and inefficient tasks with more reliability, better performance and quality,
and very important, with a considerable lower cost. This, aided the extension of
manipulators to other areas like commercial and entertainment applications.

The difference between a robot and a fixed automation machine is flexibility. Fixed
automation is designed only for an specific task and this is the central goal, meanwhile
a robot could be programmed over and over again for carry out different tasks with the
same efficiency. From the increasing need of labor work and expansion there appeared
an important field on robotics nowadays, the mobile robotics that looks for expand
the flexibility and advantages of robot usage to wider areas or work spaces. Current
technologies allow even work with robots in remote areas promoting application of
transportation and exploration.

This research is focused in the development of mobile robots for a landmine cleaning
application, so the first part of this document makes a background of locomotion
systems for mobile robots, special attention were included in differential driven wheeled
and tracked robots. For task development it becomes important to point autonomous
platforms.

Autonomy is an important topic in modern robotics and it is attained by jointly
applying high level tasks and low level control for specific variables. One of the
ultimate goals in robotics, with the introduction of intelligent robots concept is to create
autonomous robots. Such robots may accept generic descriptions of tasks without
many details and execute those tasks without further human intervention. The input
descriptions only specify what the user wants that robots do, rather than how they do

1

it. The above implies the use of planning and searching algorithms for deciding each
step or set of detailed simple tasks that the robot must do for reach the main generic
task [1].

Robotic applications in which robots are designed for moving accross a given workspace,
such as exploration or transportation, it is expected from an autonomous robot the
ability to plan its own motions across the given environment, avoiding any object or
obstacle in there, in literature this problem is stated as motion planning [2].

Motion planning is one of the most important tasks that autonomous robots must carry
out. It involves the definition of a navigation path across a given environment avoiding
any region defined as an obstacle, the found path must connect the initial or current
robot position with a specific goal position.

There exist a large number of methods proposed for solving the path planning
problem, these methods are based essentially in three main approaches: roadmaps,
cell decomposition and potential fields. the document explains in detail the definition
and implementation and some algorithms of these approaches.

But path planning is not the only important problem in development of autonomous
robots, methods for tracking the found path are also very important. While path
planning problem takes into account geometric and kinematic constraints, both of robot
and environment, control methods for following the defined path take into account the
dynamic behaviour of robots and this problem is addressed by automatic control [3].

Control tasks required in mobile robotics for path tracking imply the ability to reach
a set of consecutive reference points or geometrical primitives, such as straight lines or
curves given by the planner that performs the breakdown of high-level tasks [1].

Approaches, like shown in [4], [5] and [6], propose essentially linear control techniques
which do not consider the complete nonlinearities of the differential driven robot, and
it infers disadvantages, like deviation errors or over impulse in transient response.
Tracking errors may cause collisions with obstacles due to deviation from the planned
path [7].

Nonlinear methods has been proposed, for example, in [8] a nonlinear controller is
designed but only for speed control, it reaches path tracking calculating an adaptive
reference model using polynomial regressions. Other works like [9] propose adaptive
algorithms, but they always have bad behaviour at the beggining which could cause
path deaviations and consequently possible collisions.

One common method of nonlinear control is the exact feedback linearization, but it is
mainly popular for SISO systems, the approach for MIMO systems has some advanced
mathematical fundamentals, they are introduced in [10], those fundamentals are used
for designing a nonlinear controller for the Differential Driven Mobile Robot (DDMR).

The structure of this document is as follows: Chapter 1 presents the background in
robotics, general definitions and concepts; Chapter 2 is a review in mobile configurations

2

and its locomotion systems; Chapter 3 describes some mathematical models specially
for the differential configuration; Chapter 4 defines and proposes the automatic control
techniques, linear and nonlinear used in the robot model; Chapter 5 focuses on high
level control tasks, it describes the graph theory, search algorithms and proposes the
implementation of planning algorithms; Chapter 6 shows and discuss the results for high
and low level control methods and algorithms implemented; finally, Chapter 7 concludes
the document. Final part of the document presents discussion articles product of this
research.

3

Chapter 1

Robotics

Robotics is a relatively new word that first appered in 1921 in the theater play called
R.U.R (Rosum’s Universal Robots) by Karel Capel; in his czech languaje, the word
robota means to work or to serve. The adoption of the word robotics for referring
the set of machines that carry out productive tasks came later, the difference between
an automatic machine from a robot is essentially that robots could be programmed
and re-programmed to develop flexible processes without losing productivity given by
dedicated machines [11].

Nowadays, the word robotics is a widely known and used not only by scientist and
engineers, but also by a wider community. Robotics defines all machines and devices
intended for flexible working and production. A robot is a device capable of carry out
processes normally made by a human being or sometimes by other alive beings, they
are designed currently by engineers and scientists to make imitations of alive beings
movements and behavior.

Robots have become very popular because of their application on difficult, dangerous
or maybe impossible tasks for humans, space-limited, repetitive and even other kind of
processes related not only to movements but also to decision making. Around 1990’s
the human labor increased its price while robots became not only cheaper but also more
effective, faster, more accurate and specially more flexible [12].

In that sense, robotics is a multidisciplinary field of science and specifically in
engineering that covers computer science, automatic control, mechanical and electrical
engineering, among others. In general, a robot is composed by mechanical parts
like frames, electrical parts like motor actuators, electronic devices like sensors and
transducers, a communication system like an RF radio and an information processing
system like a micro-controller or micro-processor, or even a computer. Mechanical
engineering covers the study of static, kinematic and dynamic condition of the
mechanical configurations, Mathematics supplies tools for describing motions and
properties of robots. Control theory provides techniques to realize and track desired
motions or force applications [11]. Electrical-engineering techniques play a role in the

4

design of sensors and interfaces for industrial robots, and computer science contributes
a basis for programming these devices to perform a desired task, currently, the rising
trend in the data science provides tools for information processing improving robots
perception and decision making.

Figure 1.1 shows some examples of general purpose robots. Left side shows an
autonomous and configurable robot, focused on the field of research in indoor
applications, RB-1, provided by Robotnik, the middle one is an industrial collaborative
system, RB-KAIROS, also provided by robotnik [13], and the right side one is a military
vehicle used in urban intelligence, surveillance and reconnaissance (ISR) missions,
XM1216, manufactured by iRobot and operated by US Army [14].

Figure 1.1: Some samples of general purpose robots.
Sources: [13],[14].

There are several types of robots depending on the task they must carry out, as
shown in Figure 1.1 there could be mechanical configurations similar to human
extremities, simplistic and advanced configuration for transportation and even
synergistic combination of configurations.

Although the wide variety of robot configurations. it could be evidenced that there are
two big branches to know when studying robotics: manipulators and mobile robots.

5

1.1 Manipulators

The concept of a robotic manipulator come together with the image of machines that
make productive works and essentially imitate the movements and behaviour of alive
beings or part of them as their extremities, which are used to handle materials, pieces,
tools, or special devices relevant for some process, these handle tasks are done through
varied movements programmed for carry out those processes.

A manipulator belongs to a set of devices commonly anchored to any base (main link),
e.g: the floor, and coupled with a defined number of mobile links that provide the system
of motion freedom, therefore, its work-space is bounded by the positions reached by the
final end link, when all links are completely extended.

Until past decade, industrial applications were successfully addressed by manipulators,
then, the Robot Institute of America defined an industrial robot as a manipulator
programmable and multi-functional designed for carrying out flexibly different tasks as
ones previously mentioned.

In the beginning of current century, the manipulators have taken a big strength in
repetitive and accurate tasks like welding and assembly. Then, several discussions arose
about what is o not a robotic manipulator and its difference with a simple machine,
the most often answer is about flexibility, programmability and perhaps sophistication.
Figure 1.2 shows a typical look for an industrial manipulator [12]. Machines which are
for the most part limited to one class of task are considered simply fixed automation.

Figure 1.2: Robotic manipulator Adept 6.
Source: [12].

6

1.2 Mobile Robots

Mobile robots are essentially mobile structures that extend the application of flexible
tasks to much bigger environments, those robots are not anchored to a place, but by
the contrary, they have a locomotion system for auto-transportation, and movement
through a wide defined field or workspace.

Although industrial robotics is generally referred to manipulators, and so, most books
focus only on that robots, during 1880’s and 1990’s, mobile robotics began to cover
special importance on literature since the rising growth of applications in autonomous
transportation, navigation and exploration. Mobile robots can move in a terrain, on
water or even, some can fly freely.

An important concept in the mobile robots field is autonomy, it refers to the ability
of carry out complex tasks without further human intervention. An autonomous robot
may accept generic descriptions of tasks without many details and execute those tasks
following a sequence of operations decided by the robot itself [1].

It is important to consider the difference between an autonomous robot and an
automated car for industrial applications like transportation of materials, pieces or
products, they generally are cable guided, or include optical sensors for tracking of a
line drawn in the floor, those applications refer to strongly structured environments
while autonomous robots are featured by perception systems that allow to plan and
control the system according with the information read from the environment, highest
levels of autonomy assume no acknowledgement of the environment, the system must
build a representation from its perception, this is one of the most difficult tasks, and a
current open field of research in science and engineering.

Figure 1.3 show some examples of autonomous mobile robots.

Figure 1.3: Mobile Robots.
Sources: [13], [15], [16].

Next chapter will be focused on different models and configurations for mobile robots
widely developed by researchers in last decades.

7

Chapter 2

Common Models of Mobile Robots

As previously said, a mobile robot could be defined as an autonomous system both for
indoor applications and outdoor navigation, it is about that the robot is intelligent
enough for fast reaction and make decisions according to the observation of the
environment, this is reached through a perception system consisting of different sensors
that provide specific information about the environment, a central bran, generally
a computer, that processes the information and generate high and low level control
actions, and finally, the actuators or final control elements, these always include a
locomotion system, and sometimes other elements like e.g: a robotic arm.

Some examples of mobile robots are humanoids, unmanned space exploration rovers,
entertainment pets, drones, military exploration ground and water vehicles, among
others, they could be classified essentially by the kind of locomotion system, according
to their bioligual counterpart, they can for example walk, run, jump, and so on.

2.1 Locomotion System

According to the biological principle the systems use to perform their motion, they can
be divided into robots that can walk, run or jump based on the following structures:

• Legged Robots (LR)

• Walking Robots (WR)

• Flying Robots (FR)

• Swimming Robots (SR)

• Wheeled Mobile Robots (WMR)

• Tracked Mobile Robots (TMR)

8

• Articulated Robots (AR)

• Others

Trends in Mobile Robotics are led by artificial intelligence, autonomous driving, network
communication, cooperative work, nanorobotics, friendly human–robot interfaces, safe
human–robot interaction, and emotion expression and perception. Furthermore, these
news trends are applied to different fields such as medicine, health care, sports,
ergonomics, industry, distribution of goods, and service robotics. These tendencies
will keep going their evolution in the coming years [17].

Locomotion system determines a specific problem in mobile robotics, it is solved by
understanding the mechanism kinematics, dynamics, and determining an appropriate
control scheme.

The robot’s locomotion system is an important aspect of the mobile robot design,
understanding and control, and it depends not only on the medium in which the robot
moves (on the Earth’s surface, under water, in the air, etc.) but also on technical
criteria such as maneuverability, controllability, terrain conditions, efficiency, stability,
and so on.

2.2 Aerial Robots

An aerial robot, sometimes called as drone, is a device designed and inspired to operate
as an airplane normally do, but with no crew in it, a more common name is Unmanned
Aerial Vehicle (UAV) defined as an aerial system that operates autonomously. The
most advanced UAV systems can now take off and land completely with only high level
instructions. At their beginning, the UAV were mostly used in military applications but
they have quickly expanded their operation to other applications such as agricultural,
scientific, commercial, surveillance, product delivering, distribution, logistics, aerial
imaging, altimetry, and even recreational [17]. Figure 2.1 shows the aspect of some
common configurations used in UAVs.

9

Figure 2.1: Unmanned Aerial Vehicles.
Sources: [18], [19], [20].

2.3 Water Robots

Sea and undersea applications are also important topic in the field of robotics. One
of man’s oldest goals has been to explore the oceans and underwater areas that are
inaccessible to him. The ocean is rich in several mineral, marine biological and energetic
resources and they can play an important role on a sustainable development of human
society. Oceanographers can predict earthquakes, tsunamis and other natural disasters
to reduce the damage to human beings by observing the ocean; Biologists make related
research by observing the plankton, microorganisms and other living species in the
ocean [21].

The observation, exploration, surveillance, cleaning and even renewable energy
generation from ocean, are important topics of research nowadays, many devices have
been built for this, including robotic systems. Again, the locomotion system of those
devices are inspired in biological systems, Figure 2.2 show some examples of sea animals
and humanoid based systems.

10

Figure 2.2: Underwater systems.
Source: [22].

As an important branch of mobile robots, the underwater vehicle manipulator system
is one the hottest research topics nowadays. OceanOne is an example of a submarine
robot. It is a humanoid robot that explores the seabed. It takes advantage of the best
of remotely operated vehicles and the advantages of humanoid robots, such as having
a robotic hand with which to rescue objects as if it were a human being [23].

11

2.4 Legged Robots

Legs are one common form of locomotion, giving rise to walking robots. Legs allow
to isolate the moving body from the terrain using some specific points of support.
The use of legs allow to define a method for passing over obstacles, which implies
an advantage over other ground locomotion systems, the biggest handicap of legged
systems are probably their price given advanced methods and technology they must
use for planning each leg movement or to guarantee the platform stability.

Other important advantages of legged systems are: transversality and efficiency, the
fact that they can also move on soft and uneven terrain, better mobility and a smaller
impact on the ground, in short, adaptability and maneuverability on rough terrain [17].

In walking robots, stability is the main issue, as the balance of the body and gait are
of extreme importance, the mechanism complexity is necessary higher, and sometimes,
there is also more the energy consumption. In principle, control (high and low level)
is a complex task in these robots because it must guarantee the system stability, both
static and dynamic. Static stability refers to the ability of maintain a configuration
while dynamic stability is about keeping upright under reaction and inertial forces
produced by movements or disturbances.

There are many types of walking robots depending on the number of legs. The most
common and important configurations are: biped (two legs) also known as humanoids
since their anthropomorphic form, quadruped (four-legged) emulating lots of mammals,
six-legged (hexapod - do not confuse with hexapod manipulators) inspired essentially in
arthropod animals, and so on. then, a far review of walking configurations are drown.

2.4.1 One Leg Robots

A one leg robot is essentially a jumper robot since they cannot reach static stability,
they just cannot stand still on a position, but they can cross terrains and jump some
obstacles, one important example is Uniroo, developed by MIT [24]. Figure 2.3 shows
this example of one leg robot.

12

Figure 2.3: Hopper (Jumper) Robot, MIT Uniroo.
Source: [25].

2.4.2 Two Legs Robots

As previously mentioned, it is one of the most important configurations of legged robots,
this kind of robots are inspired in human locomotion, so they are called humanoids,
one of the most important problems from this point of view is loss of balance.

The motion of bipedal robots is dependent upon dynamic stability. These robots can
walk, run, go up and down stairs and even do sophisticated jumps. The system balance
and stability has to be dynamic all time. High and low level control are advanced tasks
that must take into account observation of the environment for local planning, and also
carry out global path planning efforts. Figure 2.4 shows the robot Cassie, a bipedal
system developed by Agility Robotics, a spin-off of Oregon State University.

13

Figure 2.4: Bipedal Robot Cassie by Agility Robotics (Oregon State University).
Source: [26].

2.4.3 Three Legs Robots

These kind of walking robots are not very common because of the odd number of
legs. STriDER is an example of a robot with three legs presented in [27], it shows a
straightforward kinematic structure. It is easier to control than previous legged robots
since it is inherently stable like a camera tripod, the article presents evidence of energy
efficiency given its lightweight configuration. In order to walk, the system uses two legs
as supportive legs while the third one works as a swing leg.

14

2.4.4 Four Legs Robots

Robots with four legs are called similar to their biological counterpart: quadrupeds,
since they are inspired on them. Quadrupeds are used when increased safety or payload
capability is needed. They have the advantage that static stability is inherently solved,
but they require dynamic walking control, as the gravity center is changing step by
step. The control and leg coordination of robots with four and more legs is, therefore,
more complicated.

One of the most famous and advanced quadruped robot is BigDog, presented by
Boston Dynamics in 2008 [28] and continuously improved. Figure 2.5 shows a cutaway
illustration by James Provost.

Other relevant references of quadruped robots are Cheetah [29] by MIT and Spot [30]
also by Boston Dynamics.

Figure 2.5: BigDog by Boston Dynamics.
Source: Illustration c©James Provost.com

Configurations for five, seven, and in general odd number of legs, are least common
in literature and applications. Six and eight leg robots are, in practical terms, almost
the same, They are inspired by spiders, underwater walkers, and other arachnids, next
section presents the hexapod configuration.

15

2.4.5 Six Legs Robots

Robots with six legs, also known as hexapods have some control advantages from fewer
legs configurations, a robot with six or more legs can be controlled with static walking
techniques rather than dynamic walking, thus reducing the control complexity. A
straight gain in walking could be reached by a three leg step, which guarantees stability.

The challenge of using hexapod configurations is essentially the mechanism design, and
reaching good movement speeds.

Figure 2.6 shows the six-legged walking robot LAURON V with improved kinematics
and robust mechanical structure. Each leg has four independent joints that enable the
platform to cope with steep inclines, large obstacles and makes it possible to manipulate
objects with its front legs. Autonomy, robustness and a large payload capacity together
with its impressive terrain adaptability make LAURON V highly suitable for wide range
of terrain applications [31].

Figure 2.6: LAURON V: Six legged walking robot.
Source: [31].

16

2.5 Wheeled Robots (WR)

Wheeled robots are one of the simplest and most important solutions for robot
locomotion. Wheels are very efficient to get mobility on hard enough and low hindered
terrains or environments, and they allow to reach relatively high velocities.

The use of wheels is simpler than using legs or other locomotion systems. wheeled
robots are easier to design, build, and program when the robot is intended to moving
on a flat, near even terrain. They also tend to be much cheaper than their legged
counterparts. Wheel control is less complex since static stability, they do not present
any great difficulty in terms of balance issues, because all wheels are usually in contact
with the surface.

Most significant limitations when using wheels are related to impulsion slipping,
adaptability and sometimes vibrations. Wheeled robots are not very good at navigating
over obstacles, such as rocky terrain, sharp surfaces, or areas with low friction as soft
terrains.

Wheeled robots could be classified according to the number of wheels or to specific
configurations that are worth mentioning

2.5.1 Two Wheels Robots

Robots with only one wheel are not common, they are called unicycle robots and they
are inherently unstable systems. Both longitudinal and lateral stability controls are
needed simultaneously to maintain the unicycle’s posture.

More interesting is the two wheels robot, that with the reduced number of wheel could
reach interesting results. These have two alike parallel, conventional wheels linked
to each side controlled by two independent actuators. or sometimes follow a bicycle
structure, where the wheels are aligned and it has a steering control. It is also considered
that the wheels are perpendicular to the ground and the contact between them is pure
rolling, that is, no slipping effects are considered. In any case, the stability problem is
a real challenge. Two interesting references are the cleaner robot Roomba by iRobot
[32], shown in Figure 2.7, and the classic GhostRider robot by DARPA [33].

17

Figure 2.7: Roomba robot for home cleaning.
Source: [32].

2.5.2 Three Wheels Robots

Three wheeled robots could be presented in two different formats, the first one
corresponds to a configuration in which two parallel wheels are driven by independent
actuators, and a third wheel is free, Figure 2.8 shows an example of this configuration,
the second configuration is detailed in the next section.

Figure 2.8: Three Wheel Differential Robot.
Source: [34].

18

2.5.3 Tricycle Robots

Tricycle robots are a classic configuration of robots with three wheels, unlike the
previous one, this configuration drives the parallel pair of wheels with a single actuator,
and uses a second actuator for steering the robot through the third wheel. Figure 2.9
shows a representation of the tricycle robot.

x

y

(x,y)

�

�

L

0

Figure 2.9: Schematic representation of tricycle robot.
Source: [35].

There exist variations of the tricycle configuration, in which the rear axle is passive,
and both, steering and traction are driven by front wheel.

In general, manoeuvrability is better than in other configurations, but it could have
stability problems in difficult terrains, the mass center can move when moving on a
slope which may cause traction loss [11].

19

2.5.4 Four Wheels Robots

Four wheeled robots are more stable than two and three wheeled ones, that is because
the center of gravity is located inside the rectangle formed by the four wheels,
furthermore, it implies four self-complementary supporting points. The wheels can
be deferentially steered, two-by-two powered wheels, or can have car-like steering. in
the Figure 2.10, the Wheeled Mobile Robot Enyo is shown. Its mechanical structure
is based on a four wheel differential-drive configuration driven by a belt system. Two
active front wheels transfer rotating motion to the two passive rear wheels through
belts.

Figure 2.10: Four Wheel Differential Driven Robot Enyo.
Source: [34].

2.5.5 Ackerman Robots

Car-like mobile robots are very important. Google and Uber self-driving cars, AIVs,
and other important autonomous self driving prototypes have this configuration. They
are acquiring a great importance in transportation, logistics, food industry, and food
processing. The classical structure name is Ackerman, Figure 2.11 shows a schematic
representation of this structure.

20

()x y,

l

Px

y

�

�

Figure 2.11: Ackerman robot system.
Source: [36].

2.5.6 Five Wheel Robots

The efforts on designing five wheeled robotic systems are done in applications for moving
through outdoor rough terrains, they improve the contact and stability. One example is
presented by Xu et al at [37], they first proposed an innovative asymmetrical prototype
of a five wheeled robot with reconfiguration features which can overcross obstacles and
climb on slopes. In reference [38] the authors study the slip on that five wheeled mobile
robot when moving on an uneven terrain.

21

2.5.7 Six Wheel Robots

Six wheeled robot configurations are used when maximum traction is needed, they are
normally provided of a suspension system which keeps all six wheels in contact with
the surface and helps them go over slopes and sandy terrain. Some good examples are
rovers used by NASA for mars exploration, Figure 2.12 shows the Sojourner used in
NASA’s Mars Pathfinder mission in 1997.

Figure 2.12: NASA Mars Rover.
Source: [39].

2.5.8 More Than Six Wheel Robots

Those are particular configurations used for special applications, some authors put here
the articulated wheeled robots, used form climbing large obstacles and overcome lots
of terrain challenges [17].

22

2.5.9 Omnidirectional Wheeled Robots

An interesting configuration explored by researchers are the omnidirectional robots,
there exist variations on that configuration, but almost all of them use the Swedish
wheels or active caster wheels. Common models use four of these wheels, but one
variation, like the prototype NG [34] shown in Figure 2.13 use only three of them,
as seen. The main advantage of these Wheeled Mobile Robots is that they exhibit
holonomicity, that is, the ability to move in any direction without an orientation change.

Figure 2.13: Three Swedish wheeled Omnidirectional Robot.
Source: [34].

Most common configuration of omnidirectional robots is shown in Figure 2.14, it is the
Mobile Robot Summit-XL Steel by Robotnik.

Figure 2.14: Omnidirectional Mobile Robot Summit-XL Steel by Robotnik
Source: [13]

23

2.5.10 Differential Wheel Robot

Differential wheeled robots are special cases of some configurations, the key feature
is that each side is controlled independently with separated actuators, some examples
were shown in Figure 2.7 (Two wheeled), Figure 2.8 (Three Wheeled) and Figure 2.10
(four wheeled), additionally skid-steer systems used in some four and six wheeled robots
are also differential and will be detailed in the next section.

2.6 Tracked Robots (TR)

Tracked Robots are a solution provided for the traction problem is soft terrain presented
by wheeled robots, they are commonly an extension of differential driven robots
configuration. These robots use treads or caterpillar tracks instead of wheels. Tracked
robots have much larger ground contact patches, and this fact plays an important role
when improving their maneuverability on loose surface in comparison to conventional
wheeled robots. Nevertheless, because this large ground contact patch, changing the
direction of the robot normally needs a skidding turn, and therefore a large portion of
the track must slide against the surface.

Some examples of tracked robots were shown in Figure 1.3 center and right side.

2.6.1 Skid Steer Robots

Every skid steer robot is a differential driven robot, this locomotion system is commonly
used on tracked vehicles such as tanks and bulldozers, but is also used on some four
and six wheeled vehicles, as previously said, each side can be controlled independently,
so the robot turns according to the difference between each side velocity. The actuators
can usually go in reverse, this allow the robot turning over its own axle, without
displacement [40].

Given the context of development for this research, Ground Tracked Skid-Steer Mobile
Robots are attractive options for landmine search and detection. Next chapter will be
focused on mathematical representations specially of these configurations.

24

Chapter 3

Mathematical Models

In this chapter, the development of mathematical description for some models of mobile
robots is lead, previous chapter showed a review of robot structures and marked off the
use of differential configurations for referred application. Additional math models are
presented for reviewing analysis.

3.1 The Differential Driven Mobile Robot (DDMR)

Model

Mathematical descriptions given in this section are based specially in approaches
detailed in [41] and [42].

To get started, the raised references focus on wheeled configurations, so the initial
assumption is that tracked vehicles are essentially wheeled configuration with caterpillar
or tread transmissions, then the relationship is kinematic and linear.

It is important to notice in Figure 3.1 that there are three key points of analysis, The
first one is a reference point, always fixed, representing the universe or work space origin.
The second and third point belong to the robot, are respectively the geometric center,
and the mass center, they are separated because on real model they rarely match,
also taking into account that over the structure are located all control, perception
and communication devices, modifying again the gravity or mass center. According to
Figure 3.1 there are then defined three refrence frames:

• Σ0(X0, Y0) The inertial frame, a fixed or universal coordinated system representing
the environment.

• Σ1(X1, Y1) The robot geometric center, conveniently located collinearly with the
axles of the motors.

25

• Σ2(X2, Y2) The mass center in a different location from the geometric center for
more realistic and flexible modeling.

2L

L 2R

Y1
X1

X2Y2

y0

x0

y0

x0o

J

~

J

~

R

0

Figure 3.1: Reference frames for DDRM modelling

In order to design a control system considering all robot features the goal is to obtain
a dynamic model taking into account the kinematic and non-holonomic constraints, in
that sense, there are some parameters drawn in Figure 3.1 important to define:

• τR and τL: these are, respectively the right and left side torques applied to
associated internal wheels.

• θ: this is the orientation of the robot qith respect to the inertial frame Σ0

• L: this is the distance between the geometric center and the position of each
internal tracked wheel.

• R this is the radius of the internal wheel, including the track thickness, this is the
distance between the wheel center and the floor.

26

• d this is the distance beteen the geometric center and the mass center in the x
direction of both Σ1 and Σ2

• x0: this is the x coordinate of the robot geometric center position Σ1 with respect
to the inertial frame Σ0.

• y0: this is the y coordinate of the robot geometric center position Σ1 with respect
to the inertial frame Σ0.

From the previous definition, it could be defined a dynamic configuration considering
forces, accelerations and velocities, Figure 3.2 shows this approach that meets Newton
Euler formulations.

y0

x0

y0

x0o

0

r

au
vu

w
vwa

F
u
R

F
u
L

F
w
L

F
w
D

Figure 3.2: Dynamical definition of robot configuration

At this point it is important to note the position of the mass center, recall Σ1(x1, y1), and
the vector r describing this position, also note that these are time dependent functions

~r(t) = r [cos θ(t)x + sin θ(t)y]

27

It can be conveniently converted to a complex plane where y represents the imaginary
component, and rewrite the previous equation in polar form:

~r = r [cos(θ) + i sin(θ)]

and compactly

~r = reiθ (3.1)

From Figure 3.2 is important to define the variables:

• FuL: Radial force component provided by the left side actuator.

• FuR: Radial force component provided by the right side actuator.

• FwL: Tangential force component provided by the left side actuator.

• FwR: Tangential force component provided by the right side actuator.

• au: Radial component of acceleration.

• aw: Tangential component of acceleration.

• Vu: Radial component of velocity.

• Vw: Tangential component of velocity.

The relationship between torques T and forces F applied to each side of the robot is
T = F ·R, then:

F =
T

R
(3.2)

Differentiating Equation (3.1) in time, the velocities and accelerations are obtained:

~̇r = ṙeiθ + irθ̇eiθ (3.3)

~̈r = r̈eiθ + 2iṙθ̇eiθ + irθ̈eiθ − rθ̇2eiθ (3.4)

separating velocity and acceleration into radal and tangencial terms, we have:

~̇r = [ṙ]eiθ + [rθ̇]ei(θ+
π
2)

~̈r = [r̈ − rθ̇2]eiθ + [2ṙθ̇ + rθ̈]ei(θ+
π
2)

28

and then, variables in Figure 3.2 follow:

Vu = ṙ (3.5)

Vw = rθ̇ (3.6)

au = r̈ − rθ̇2 (3.7)

aw = 2ṙθ̇ + rθ̈ (3.8)

The movement equations are:

Mau = FuR + FuL (3.9)

Maw = FwL − FwR (3.10)

Iθ̈ = L(FuR − FuL) + d(FwR − FwL) (3.11)

here, M is the total mass of the robot and I the inertia respect to the center of mass,
and from Eqs. (3.5)-(3.8) we have:

au = V̇u − Vwθ̇ (3.12)

aw = V̇w + Vuθ̇ (3.13)

and then

M(V̇u − Vwθ̇) = FuR + FuL (3.14)

M(V̇w + Vuθ̇) = FwR − FwL (3.15)

Iθ̈ = L(FuR − FuL)− d(FwR − FwL) (3.16)

V̇u =
FuR + FuL

M
+ Vwθ̇ (3.17)

V̇w =
FwR − FwL

M
− Vuθ̇ (3.18)

θ̈ =
L

I
(FuR − FuL) +

d

I
(FwR − FwL) (3.19)

The velocity of mass center Σ2, ẋ2 and ẏ2, respect to the inertial frame Σ0, are given
by

ẋ2 = Vu cos θ − Vw sin θ (3.20)

ẏ2 = Vu sin θ + Vw cos θ (3.21)

and respect to the frame Σ1:

x2 = x0 + d cos θ

ẋ2 = ẋ0 − dθ̇ sin θ (3.22)

y2 = y0 + d sin θ

ẏ2 = ẏ0 + dθ̇ sin θ (3.23)

29

Matching Eqs. (3.20) with (3.22) and (3.21) with (3.23), and taking the sum of their
squares, we have:

ẋ21 + (dθ̇ sin θ)2 + y21 + (dθ̇ cos θ)2 = V 2
u + V 2

w (3.24)

considering that robot has no lateral slipping (ẏ1 = 0) and that ẋ1 = Vu given their
coaxiality, then:

V 2
u + (dθ̇)2(sin2 θ + cos2 θ) = V 2

u + V 2
w

dθ̇ = Vw (3.25)

Finally the set of dynamical equations describing the DDMR are given by Eqs.
(3.26)-(3.29) similar to [41]

V̇u = dθ̇2 +
1

MR
(TR + TL) (3.26)

θ̈ = − Md

I +Md2
Vuθ̇ +

L

(I +Md2)R
(TR − TL) (3.27)

ẋ = Vu cos(θ)− dθ̇ sin θ (3.28)

ẏ = Vu sin(θ) + dθ̇ cos θ (3.29)

3.2 Three Wheeled Differential Robot (IVWAN)

Model

The three wheeled robot described and shown in Figure 2.8 has the model formulation
starting with the free body diagram shown in Figure 3.3.

The subscripts used have the following meaning: f stands for front wheels and c stands
for caster wheel, while the subscripts r and l stand for right and left, respectively.
Finally x and y stand for the corresponding direction in the inertial frame.

u, ū and ω are the radial, tangential and angular velocities, respectively, B represents
the center of the axis connecting both traction wheels; G represents the vehicle’s center
of mass and for simplicity, it is considered as the point to control in position (x, y) and
orientation (ϕ), b is the distance between center of mass and the traction axle, c is
the distance between front and caster axles, and d is the distance between the traction
wheels.

Resultant forces and momentum in the structure using Newton laws can be expressed
by:

30

Figure 3.3: Free body diagram for the Intelligent Vehicle With Autonomous Navigation
(IVWAN).

Source: [34].

m(u̇− ūω) = Ffrx + Fflx + Fcx + FGx (3.30)

m(˙̄u− uω) = Ffry + Ffly + Fcy + FGy (3.31)

Iω̇ =
d

2
(Ffrx − Fflx)− b(Ffry + Ffly) + (c− b)Fcy + τG (3.32)

where m is the vehicle’s total mass and I is the moment of inertia around G.

velocity ū can be reasonable neglected assuming that the wheels do not slip in the robot
motion. The linear velocity u is the mean of both sides velocity, conditioned by the
traction wheel radius r, then:

u =
1

2
[r(ωr + ωl) + (ur + ul)] (3.33)

31

the angular velocity ω is conditioned by the difference between velocities, then:

ω =
1

d
[r(ωr − ωl) + (ur − ul)] (3.34)

Similar to the previous model, in Equations (3.20) and (3.21), the rectangular
components for the mass center G are given by:

ẋ = u cos(ϕ)− bω sin(ϕ) (3.35)

ẏ = u sin(ϕ) + bω cos(ϕ) (3.36)

and consequently ϕ = ω.

As a differential robot, each wheel is driven by a DC motor which can be modelled
neglecting inductive voltage as follows:

τm =
ka
Ra

(Em − kbωm)

Em is the motor voltage ka and kb are the motor’s torque and electromotive force
constants, respectively; Ra is the motor’s electric resistance.

Taking into account two independent motors, Equations describing the wheel-motor
system can be simply written as:

Ieω̇r +Deωr = τr − Ffrxr̂ (3.37)

Ieω̇l +Deωl = τl − Fflxr̂ (3.38)

τr and τl are right and left side motors, respectively, Ie is the moment of inertia of the
wheel-motor system, De is its coefficient of viscous friction, and r̂ is the nominal radius
of the traction wheel tires.

Combining and rearranging all previous Equations, the complete robotic system can be
represented in the matrix form:

ẋ
ẏ
ϕ̇
u̇
ω̇

=

u cos(ϕ)− bω sin(ϕ)
u sin(ϕ) + bω cos(ϕ)

ω
a3
a1
r̂rω2 − 2a4

a1
u

−2a3
a2
r̂ruω − a4

a2
d2ω

+

0 0
0 0
0 0
2r
a1

0

0 2rd
a2

[
Eu
Eω

]
(3.39)

with

Eu =
Er + El

2
, Ew =

Er − El
2

, a1 =
Ra

ka
(mr̂r + 2Ie),

a2 =
Ra

ka
(Ied

2 + 2r̂r(I +mb2)), a3 =
Ra

ka
mb, a4 =

Ra

ka

(
kakb
Ra

+De

)

32

Chapter 4

Low Level Control

In the context of this document, low level control refers to all techniques, methods,
approaches, and strategies for dynamic variables stabilization and reference tracking.
In robotics and other engineering areas the specific tasks are attained by automatic
control, it takes care of regulation, and dynamic tracking of variables like robot
position, orientation and speed, through manipulation of forces, torques, and motors
angular positions and velocities.

The reaching of variable references is important in navigation tasks, but this chapter
covers only the task of reaching a certain position and/or orientation. This pose could
be part of a sequence of actions given for follow a path or interactive behaviour in the
environment, but those are high level tasks that will be covered in the next chapter

4.1 Control Basics

Although robot models are complex expressions, the study of linear system
representations and linear control techniques is fundamental in any robot research.

4.1.1 Linear systems

It is said that a system or model is linear if its behaviour can be defined by the equation:

dny

dtn
+ a1(t)

dn−1y

dtn−1
+ · · ·+ an(t)y = b1(t)

dn−1u

dtn−1
+ · · ·+ bn(t)u (4.1)

for the input u(t) and the output y(t) and the order is n, this is a Single Input Single
Output (SISO) system.

A Multiple Input Multiple Output (MIMO) system is linear if there is a set of equations
fi(yi, uj), i = 1, · · · , p j = 1, · · · , q in the form of Equation (4.1) for q inputs and p
outputs that define the system behaviour.

33

if ak(t)’s and bk(t)’s are constant, then using Laplace transform, the SISO system can
be expressed as a transfer function, defined as the relationship between the output y(t)
and the input u(t), then:

H(s) =
Y (s)

U(s)
=

b1s
n−1 + · · ·+ bn−1s+ bn

sn + a1sn−1 + · · ·+ an−1s+ an
(4.2)

Similarly, for a MIMO system, a transfer matrix can be defined as follows:

Y1(s)

...
Yp(s)

 =

H11(s) · · · H1q(s)

...
. . .

...
Hp1(s) · · · Hpq(s)

U1(s)

...
Uq(s)

 (4.3)

where Hij(s) is the transfer function for the input j to the output i and has the form
of Equation (4.2). The order of a MIMO system is n = n1 + n2 + · · · + np where ni is
the order of the linear differential equation fi.

Modern control techniques are based on vector analysis and then a matrix representation
of systems is relevant in any control systems research. A system could be represented
as a set of first order differential equations:

ẋ = Ax+Bu (4.4)

y = Cx+Du (4.5)

it is called the state space of a system of order n with:

x ∈ Rn×1,

A ∈ Rn×n,

B ∈ Rn×q,

u ∈ Rq×1,

y ∈ Rp×1,

C ∈ Rp×n,

D ∈ Rp×q

Equation (4.4) is the state equation and Equation (4.5) is the output equation. Notice
that this is a MIMO system, the SISO case happens when p = 1 and q = 1.

For the SISO case, a state space representation could be obtained from the transfer
function (Equation (4.2)), two forms of interest are [43]:

34

1. Canonical Controller form

ẋ1
ẋ2
...
ẋn

 =

−a1 −a2 · · · −an
1 0 · · · 0
...

.
...

0 · · · 1 0

x1
x2
...
xn

+

1
0
...
0

u

y =
[
b1 b2 · · · bn

]

x1
x2
...
xn

+

[
0
]
u

2. Canonical Observer form

ẋ1
ẋ2
...
ẋn

 =

−a1 1 · · · 0

−a2 0
. . .

...
...

...
. . . 1

−an · · · 0 0

x1
x2
...
xn

+

b1
b2
...
bn

u

y =
[
1 0 · · · 0

]

x1
x2
...
xn

+

[
0
]
u

4.1.2 Nonlinear Systems

Based on space state representation, a nonlinear system can be defined by a set of
nonlinear differential equations described by:

ẋ = f(x, u) (4.6)

y = h(x, u) (4.7)

where f and h are vector fields.

Most real systems are nonlinear, but a substantial set of them have also an interesting
property: they are affine to the control input, so they can be expressed in the form:

ẋ = f(x) + g(x)u (4.8)

y = h(x) (4.9)

where f, g and h are also vector fields.

35

4.1.3 Basic Linear control methods

Control methods for linear systems are based in both transfer function and state space
representations, these are described below.

Transfer function controllers

For transfer function representation, the controller is defined as a dynamic system whose
input is the error e, defined as the difference between the system output y and a setpoint
or reference r, that is:

e = r − y (4.10)

The controller output is the control signal u, then the controller is represented also by
a transfer function in the form:

C(s) =
U(s)

E(s)
=

l1s
n−1 + · · ·+ ln−1s+ ln

sn + p1sn−1 + · · ·+ pn−1s+ pn
(4.11)

given that configuration, the control system is a feedback scheme which needs the
measurement of output y as shown in Figure 4.1.

Figure 4.1: Block diagram of feedback transfer function control

Using transfer function representation the system convolutions are simply transfer
function products, and from the Figure 4.1 scheme the relationship output-reference
is given by:

HCL(s) =
Y (s)

R(s)
=

C(s)H(s)

1 + C(s)H(s)
(4.12)

called the closed loop transfer function. the controller is designed in such a way that
HCL is stable.

36

Although the controller stabilizes the system, sometimes it does not imply that final
value will be r.

Known as steady state value, it can be computed using the final value theorem:

yss = lim
t→∞

y(t) = lim
s→0

sHCL(s)R(s) (4.13)

if R(s) is the unit step function, then 0 ≤ yss ≤ 1, and a direct loop gain kG can be
included as in Figure 4.2, and defined such that:

yss = lim
t→∞

y(t) = r → kG =
1

yss
(4.14)

Figure 4.2: Feedback controller with direct loop gain

Another approach, more robust than direct loop gain, is the integral action, if a signal
control is defined for error integral:

ui = ki

∫
e(t)dt

then steady state error will be zero.

As Ui(s) = kiE(s)/s then, adding the integral action to the controller gives:

C(s) =
1

s
C ′(s) (4.15)

with C ′(s) in the form of Equation (4.11), for a control scheme similar to Figure 4.1
there could be defined:

H ′(s) =
1

s
H(s) (4.16)

Then, design a controller C ′(s) for an H ′(s) such that the corresponding HCL stable:

HCL(s) =
C ′(s)H ′(s)

1 + C ′(s)H ′(s)
(4.17)

some special cases for C(s) widely used on industrial, commercial an general purpose
systems are PID controllers.

37

PID Controller

A Proportional Integral Derivative (PID) controller is a commonly used control
structure given its simplicity and effectiveness, the PID controller is based on the
actions:

• Proportional (P): for minimizing the error: up = kpe(t)

• Integral (I): for removing steady state error: ui = ki
∫
e(t)dt

• Derivative (D): for quick response to changes in the system or in reference:

ud = kd
de(t)

dt

then the complete control signal is:

u = up + ui + ud = kpe(t) + ki

∫
e(t)dt+ kd

de(t)

dt
(4.18)

and its transfer function is:

PID(s) =
kds

2 + kps+ ki
s

(4.19)

State Space Controllers

The first approach of state space control methods is state regulation, a state regulator
is structure for state stabilization, it reaches:

lim
t→∞

ẋ = ~0 (4.20)

then the control signal is defined over the state vector as u = −Kx, the block diagram
is shown in figure

x'=Ax+Bu
y=Cx

y

x

u

-K

1

y

-Kx

Figure 4.3: State regulator scheme

38

That scheme generates a closed loop system with poles as roots of the polynomial:

det(sI − A+BK) = 0 (4.21)

the controller is designed for K such that this characteristic polynomial has stable poles.

Similar than in transfer function approaches, state regulator stabilizes the system, but
it does not imply that the output final value yss will be as desired, the approaches for
reaching desired values are known as reference tracking tasks.

The first approach is the state feedback controller with direct loop gain shown
in Figure 4.4, where the setpoint r is multiplied by a gain kG as in transfer function
case, for unit step response, it can be defined as:

yss = lim
s→0

C(sI − A+BK)−1B → kG =
1

yss
(4.22)

x

Figure 4.4: State feedback controller with direct loop gain

The state feedback controller with integral action is the more robust approach
for state space control with reference tracking, starting from the error definition in
Equation (4.10), the immediate integral is:

ei =

∫
[r(t)− y(t)]dt (4.23)

and then

ėi = r − y (4.24)

ėi = r − Cx (4.25)

39

there we can define an augmented system:

[
ẋ
ėi

]

︸︷︷︸
ẋa

=

[
A 0
−C 1

]

︸ ︷︷ ︸
Aa

[
x
ei

]

︸︷︷︸
xa

+

[
B
0

]

︸︷︷︸
Ba

u+

[
0
1

]

︸︷︷︸
Ba

r (4.26)

y =
[
C 0

]
︸ ︷︷ ︸

Ca

[
x
ei

]

︸︷︷︸
xa

(4.27)

then the control signal is defined as

u = −Kx+ kiei (4.28)

u = −
[
K −ki

]
︸ ︷︷ ︸

Ka

[
x
ei

]

︸︷︷︸
xa

(4.29)

the controller is designed for Ka such that the characteristic polynomial:

det(sI − Aa +BaKa) = 0 (4.30)

has stable poles. Figure 4.5 shows the block diagram for this controller

Figure 4.5: State feedback controller with integral action

40

4.1.4 Basic Nonlinear Control Methods

A nonlinear system could be approximated to a linear representation around an
operation point (x0, u0) using first Taylor series elements, this allows to use linear control
methods in nonlinear systems, this method is called Approximated Linearization.

Taylor series expand a function f , the representation is as follows:

f(t) =
∞∑

n=0

f (n)(t0)

n!
(t− t0)n (4.31)

f(t) = f(t0) +
f ′(t0)

1!
(t− t0) +

f ′′(t0)

2!
(t− t0)2 +

f ′′′(t0)

1!
(t− t0)3 + · (4.32)

then, a linear approximation could be given by

f(t) ≈ f(t0) +
f ′(t0)

1!
(t− t0) (4.33)

f(t)− f(t0) = f ′(t0)(t− t0) (4.34)

this is a good approximation for ∆f(t) = f(t)−f(t0) if ∆t = t−t0 is small. linearization
of f(t) around t0

For linear representation of systems, the differential equation is linear with respect to
the state variables xi i = 1, 2, · · · , n. then for the state Equation (4.6), and output
Equation (4.7) its linear approximation is:

∆ẋ =
n∑

i=1

∂f

∂xi

∣∣∣∣
x0,u0

∆xi +

q∑

j=1

∂f

∂uj

∣∣∣∣
x0,u0

∆uj (4.35)

∆y =
n∑

i=1

∂h

∂xi

∣∣∣∣
x0,u0

∆xi +

q∑

j=1

∂h

∂uj

∣∣∣∣
x0,u0

∆uj (4.36)

Then the linear state space is given by:

A = ∇f(x0, u0), ∇ =

[
∂

∂x

]
(4.37)

B = ∇f(x0, u0), ∇ =

[
∂

∂u

]
(4.38)

C = ∇h(x0, u0), ∇ =

[
∂

∂x

]
(4.39)

D = ∇h(x0, u0), ∇ =

[
∂

∂u

]
(4.40)

in the Equations (4.4) and (4.5). A is the jacobian of the system.

41

Another important nonlinear method was proposed by Isidori et. all in the eighties [44],
it is the exact feedback linearization first presented for SISO systems. It consists of
finding a control law that transforms nonlinear dynamics on a complete or partial way
into linear dynamics, it is only possible if the system is control input affine (represented
as in Equations (4.6) and (4.7)).

if all nonlinearities are concentrated in a

ẋr = f(x) + g(x)u = ν (4.41)

then the system becomes linear and the control law has the following form [45]:

u = α(x) + β(x)ν (4.42)

where α(x) = −f(x)/g(x) and β(x) = 1/g(x)

Depending on existence of zero dynamics in the system, there may be two cases:

Input-State Linearisation

The system {(4.6),(4.7)} is n order. If there exist a transformation of state variables,
such that only has an n order differential equation then the it is input-state linearizable,
and the system:

ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x1, x2, · · · , xn) + g(x1, x2, · · · , xn)u

becomes linear if

ν = f(x1, x2, · · · , xn) + g(x1, x2, · · · , xn)u (4.43)

and it has a matrix representation:

ẋ =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

x+

0
0
...
0
1

ν (4.44)

it could be controlled using a simple linear control law like in Figures 4.3, 4.4 and 4.5,
for ν = −Kx · · · , an then get u from (4.43) as: [45]

u =
ν − f(x1, x2, · · · , xn)

g(x1, x2, · · · , xn)
(4.45)

42

Input-Output Linearization

If a complete representation cannot be reached since, it is said that system has zero
dynamics. The method could be carried out choosing a new variable set as the output

z = y, ż = ẏ, . . .

Differentiate it until u appears for the first time. The m < n derivatives carried out
define the relative order of the system, and similar to previous case:

ż1 = z2

ż2 = z3
...

żm = f(z1, z2, · · · , zm) + f(z1, z2, · · · , zm)u

and solving the same control law ν = −Kz · · · , u can be gotten from [45]:

ν = f(z1, z2, · · · , zm) + g(z1, z2, · · · , zm)u

u =
ν − f(z1, z2, · · · , zm)

g(z1, z2, · · · , zm)

43

4.2 Multivariable State Feedback Linearization

For multiple-input multiple-output (MIMO) system, the Isidori’s method could be
extended using geometric control concepts [10].

Let a MIMO system given by the following equations [46]

ẋ =f(x) +
m∑

i=1

gi(x)u (4.46)

y1 =h1(x) (4.47)

...

ym =hm(x) (4.48)

or in a compact way

ẋ = f(x) + g(x)u (4.49)

where

g(x) = [g1(x), g2(x), ..., gm(x)] (4.50)

u =

u1
u2
...
um

 (4.51)

The system has a relative grade {r1 · · · rm} for each output if:

LgjL
k
f hi(x) = 0 for all 1 ≤ j ≤ m, k < ri − 1, 1 ≤ i ≤ m

where Lfh is the Lie derivative of the scalar function h in the direction of the vectorial
field f , it is defined as ∇h · f . The k-th Lie derivative is then recursively defined as
L0

fh = f and Lk
f h = Lf (L

k−1
f h)

The expression LgL
k
f h = ∇(Lfh) · g is called Lie derivative of the scalar function h

respect to vectorial fields f and g

Then the decoupling matrix can be defined [47]:

A(x) =

Lg1L
r1−1
f h1(x) · · · LgmL

r1−1
f h1(x)

Lg1L
r2−1
f h2(x) · · · LgmL

r2−1
f h2(x)

...
...

...
Lg1L

rm−1
f hm(x) · · · LgmL

rm−1
f hm(x)

 (4.52)

44

ri is the relative grade of the i-th output yi(t), that is, the number of derivatives required
for the first emergence of at least one u term [48].

This matrix is used to compute the control signals vector for the system defined from
(4.46)-(4.48) as:

y
(ri)
i = Lri

f hi +
m∑

j=1

LgjL
ri−1
f hiuj (4.53)

y
(r1)
1

y
(r2)
2
...

y
(rm)
m

 =

Lr1
f h1(x)

Lr2
f h2(x)

...
Lrm

f hm(x)

+ A(x)

u1
u2
...
um

 (4.54)

Leading m equations in the form:

y
(ri)
i = z

(ri)
i = νi (4.55)

to compute the signal control vector as follows:

u1
u2
...
um

 = A−1(x)

ν1 − Lr1
f h1(x)

ν2 − Lr2
f h2(x)
...

νm − Lrm
f hm(x)

 (4.56)

provided that A(x) is not singular.

45

Chapter 5

High Level Control

Previous chapter approached techniques in low level control, those that carry out
specific tasks for reaching and tracking variables that define the system dynamic
behaviour, considered internal or low level variables, it depends on the robot
configuration or its electromechanical structure. In the other hand, High Level Control
are a set of techniques for provide autonomy to the robot, they define high level tasks,
such as paths or routes for going from one position to another, or reaction behaviour
to any situation in which the agent could be involved.

High level control is normally approached as a planning problem; in mobile robotics an
important concept is exploration, this is a problem or technique of reading or measure
the information of the environment and reconstruct it as a data structure.

Autonomous Robots may accept generic descriptions of tasks without many details and
execute those tasks without further human intervention. The input descriptions only
specify what the robots must do, rather than how to do it. The above implies the use
of planning algorithms for determining each step or set of detailed simple tasks robot
must do for reach the main generic task.

Robotic applications in which robots are designed for moving across a given work space,
such as outdoor exploration or transportation, it is expected from an autonomous robot
the ability to plan its own motions across the given environment, avoiding any object
or obstacle in there, in literature this problem is stated as “motion planning” [2].

Motion planning is one of the most important tasks that autonomous robots must
carry out. It involves the definition of a navigation path across the environment W [49]
avoiding any region Bi defined as an obstacle, the defined path τ goes from an initial
position qinit to a goal position qgoal.

There exist a large number of methods proposed for solving the path planning
problem, these methods are based essentially in three main approaches: roadmaps,
cell decomposition and potential fields [1].

Coming up next, some popular methods are described:

46

5.1 Roadmap

A roadmap is a network of one-dimensional curves (lines) connecting the free-obstacle
space, this network is used as a set of standardized or simple paths, and resulting path
is chosen as the one connecting qinit and qgoal with minimum length. The roadmap
building begins with the allocation of points in the free-obstacle space, and then find a
connected graph using a simple technique (simple or local planner). Figure 5.1 shows
a roadmap in the defined environment where black regions are general obstacles. For
more details on roadmap building see [50][51][52] and [53].

Figure 5.1: Roadmap as a connected graph in the defined environment.

5.2 Cell Decomposition

Cell decomposition methods consist of decomposing the free space into simple regions
called cells and find a non-directed graph representing the adjacency relation between
the cells. This graph is called the connectivity graph, its nodes are the cells extracted
from the free space and two nodes are connected by a link if and only if the two
corresponding cells are adjacent. The method searches a sequence of adjacent cells,

47

which two of them contain qinit and qgoal. Each sequence is called a channel and a
continuous free path can be computed from them [1]. Figure 5.2 shows some common
methods for decomposition such as uniform decomposition Constrained Delaunay
Triangulation (CDT) [54].

(a) Original environment (b) CellsobtainedbyCDT

(c) Cell decompositionbyuniformgridswithtworesolutions

Figure 5.2: Cell decomposition examples.
Source [54]

48

5.3 Potential Field

Similar to cell decomposition, in potential field approach the work space is discretized,
but in this case into a fine regular grid. Each cell represents particle that repel or attract
the mobile robot seen as a mobile particle. The obstacle and the start cells repel the
robot and the goal cells attracts it. This approach requires powerful heuristics to guide
the search through the grid for a free path. Several types of heuristics have been
proposed. The most successful ones take the form of functions that are interpreted as
potential fields [55].

5.4 Most Studied Algorithms

Based on approaches mentioned above, a lot of specific algorithms have been proposed,
some of most studied and popular ones are stated below:

5.4.1 A-star Algorithm

The A-star algorithm or simply A* is an heuristic searching process, its objective is
to find the shortest path in a graph from a node qinit to a node qgoal. It employs a
function f(q) that guides the selection of the next node that will be expanded. f(q) is
an estimate of f ∗(q) that is the cost of the shortest path that passes through a node q
and achieves qgoal. These two functions are computed as shown in equations (5.1) and
(5.2) [56].

f(q) = g(q) + h(q) (5.1)

f ∗(q) = g∗(q) + h∗(q) (5.2)

where g(q) is an estimate of g∗(q), the cost of the shortest path from qinit to q, and h(q)
is an estimate of h∗(q), the cost of the shortest path from q to qgoal. If h(q) ≤ h∗(q) for
all q in the graph the heuristic is admissible and the algorithm can be proved optimal.

The implementation of the A* algorithm generally uses two lists named OPEN and
CLOSED. The OPEN list stores the nodes that are in the frontier of the search.
The CLOSED list stores the nodes that have already been expanded. The expansion
of any point q, is carried out using a matrix called the Connectivity Matrix, where
a number 2 implies current q position, the number 1 shows where a movement
is allowed, and number 0 indicates movement not allowed, examples are C1: only
horizontal-vertical movement allowed, C2: complete neighbour movement alloved and
C3: Larger movements allowed [55].

49

C1 =

0 1 0
1 2 1
0 1 0

 ,

C2 =

1 1 1
1 2 1
1 1 1

 , (5.3)

C3 =

1 1 1 1 1
1 1 1 1 1
1 1 2 1 1
1 1 1 1 1
1 1 1 1 1

In each iteration, the algorithm removes the node from the OPEN list that has the
smallest f -value, expands this node inserts its successors that have not been expanded
yet in the OPEN list and marks the node as expanded, inserting it in the CLOSED list.
It executes these steps until it removes qgoal from the OPEN list or until there are no
more nodes available in the OPEN list. In the first case, A* has computed the shortest
path between qinit and qgoal taking into account the connectivity matrix constraints.
If the second stop condition is true, there are not any solution available [57].

5.4.2 Probabilistic Roadmap

Path computation using this method is organized in two phases: the preprocessing
phase and the query phase. During the preprocessing phase a roadmap is constructed
by repeatedly generating random free node positions in the free space of the environment
and connecting these configurations using some simple, but very fast planner also known
as local planner. In the query phase the algorithm finds a path from the start to the
goal position adding those two nodes in the roadmap. Next, a graph search is performed
to find a sequence of edges connecting these nodes in the roadmap. Concatenation of
the successive path segments transforms the sequence found into a feasible path for the
robot [50].

In preprocessing phase is constructed the roadmap randomly as an undirected graph
R = (N,E). The nodes N are a set of configurations or points chosen over the free
space. The edges in E correspond to simple paths connecting the nodes in N . During
the query phase, the roadmap is used to solve individual path planning problems in
given environment. For an initial position qinit and a goal position qgoal, the method
first tries to connect qinit and qgoal to some two nodes q′init and q′goal in N . If
successful, it then searches in R for a sequence of edges in E connecting q′init and q′goal.
Finally, it transforms this sequence into a feasible path for the robot by recomputing
the corresponding local paths and concatenating them [51].

50

5.4.3 Genetic Algorithm

The genetic algorithms simulate the natural process selection of any specie population.
For robot path planning each chromosome represents a path. Usually, the chromosome
consists of initial location (source), target location destination), and intermediate
locations crossed by the mobile robot. Each location represents a gene of the
chromosome.

When designing a genetic algorithm there are some important steps to follow. First of
all the algorithm needs an initial population of chromosomes to manipulate using some
operators and produce a new superior generation of chromosomes. The operations could
be selection, mutation and crossover. The first generation could be generated randomly
or using any (suboptimal) fast motion planner [58].

Each chromosome of any generation is a multidimensional array whose first element are
the initial location coordinates, and whose last element are the goal location coordinates,
the other elements are the ones changing with genetic algorithm. and their behaviour
is evaluated by a cost function J that takes into account criteria like path length, turns,
number of obstacles, smoothness and other [51].

The mutation operator chooses different genes from the selected chromosome, and
modifies them arbitrarily or following any deterministic criteria, the selection operator
normally takes the best chromosomes (best J-valued) and keep them for next
generation, this method is called elitism, which ensures to conserve the best result
always. Finally crossover operator generates a new chromosome for next generation
from other two or more chromosomes, using e.g. arithmetic average or gene mapping.

These operations are repeated until the obtaining of a (near)-optimal solution or
satisfying some stopping conditions such as a maximum number of iterations or reaching
a defined threshold in J-values [58].

51

Chapter 6

Results and Discussion

For human perception, high level tasks could seem more easy to understand and even
to carry out, while low level tasks, although they are implicit in daily activities, if we
become aware of them, they are not as simple as they seem. This is the reason why
this chapter starts betraying results of high level control implementations.

6.1 High Level algorithms

The implementation of high level tasks involve the use of optimization, graph theory and
search algorithms, the heuristic for expansion of the graph representing the work space
as a set of cells in regular grids and allocated in the OPEN and CLOSED lists is shown
in Figure 6.1 , this expansion is carried out for qinit = (10, 10) and qgoal = (490, 490) in
the 500×500 defined environment, the gray region are points in the CLOSED list, while
the frontier are the points in the OPEN list. The connectivity matrix in the following:

Con =

1 1 1
1 2 1
1 1 1

 (6.1)

52

Figure 6.1: Expansion search using connectivity matrix (6.1)

The heuristic for expansion of the graph representing the work space as a set of points
drawn from a random generator begins as in Figure 6.2. Then, connect the graph
G = (N,E) using connection for simply or straight connected points, i.e. E are
one-dimensional curves as shown in Figure 6.3

For genetic algorithms it is used a uniform random q generator for chromosomes,
fulfilling the condition of keeping qinit and qgoal, the fitness function is de path length
using euclidean distance, the stopping criteria is a maximum number of generations
defined as 100, or the threshold in J defined as 1.5 times the minimum distance between
qinit and qgoal (straight line).

53

Figure 6.2: Sampling q randomly

Figure 6.3: Local planning or simple connecting

54

A* Algorithm

The A algorithm is a search algorithm modified in direction criteria, then, is a Best
search first algorithm. It looks to expand in the OPEN list for the closest cells to the
qgoal location.

Figure 6.4 shows the result of A* algorithm in the shown environment, the result of the
A* algorithms is always the same for a given connectivity matrix.

Figure 6.4: Result of the A* Algorithm

Probabilistic Roadmap

Figure 5.1 presents the connected graph, for qinit = (10, 20) and qgoal = (400, 100),
these two new points are included to the graph and the connection edges E are found
for them, then a Breadth First Search (BSP) is performed to find a sequence of points
connecting qinit and qgoal, Figure 6.5 show the resulting process. Likewise, 6.6 shows
a second query phase for qinit = (400, 100) and qgoal = (100, 500) as a following
requirement in any arbitrary robot task.

55

Figure 6.5: Path found between (10, 20) and (400, 100) on a 700× 600 environment

Figure 6.6: Path found between (10, 20) and (400, 100) on a 700× 600 environment

56

In Figure 6.7 the result for the given 500× 500 environment is presented

Figure 6.7: Result of the Probabilistic Roadmap Algorithm

Genetic algorithm

Figure 6.8 shows a spline result fitted for a sequence given by the genetic algorithm.

Figure 6.8: Result of the Genetic Algorithm

57

As experiment, The three methods were executed 12 times in the 500×500 environment,
and for each iteration it was registered the elapsed time and the distance of found path,
Table 6.1 resumes the results.

Table 6.1: Table of results

Try
A* PRM GA

time[s] len time[s] len time[s] len
1 165.4 746.2 27.3 803.6 155 1074
2 168.3 746.2 25.0 763.9 94.6 1038
3 157.4 746.2 12.8 782.2 90.0 1282
4 168.6 746.2 27.9 716.8 76.2 1036
5 163.2 746.2 7.34 771.4 104.5 1359
6 156.9 746.2 64.6 850.2 115.0 1170
7 155.7 746.2 31.4 832.0 42.7 937
8 163.4 746.2 20.4 681.9 92.9 1224
9 165.8 746.2 29.0 802.2 128.0 964
10 167.7 746.2 17.6 782.6 104.8 1081
11 156.5 746.2 49.9 725.4 91.7 1376
12 160.3 746.2 9.5 798.4 104.5 1193

58

6.2 Low level control

Low level tasks are attained by automatic control, this section is focused specially in
detailing the design of state feedback linearization introduced in Section 4.2 and get a
control signal like in Equation (4.56)

The first step define the relative grade of the robot system described by Equations
(3.26)-(3.29).

It is known that output variables are x and y: the robot position, in some cases θ is
also an output variable, but not for this case, so the output variables are defined as:

z1 = x

z2 = y

and then:

z
(1)
1 = ẋ = vu cos(θ)− dθ̇ sin θ

z
(1)
2 = ẏ = vu sin(θ) + dθ̇ cos θ

z
(2)
1 = v̇u cos θ − vu sin θθ̇ − dθ̈ sin θ − dθ̇2 cos θ (6.2)

z
(2)
2 = v̇u sin θ + vu cos θθ̇ + dθ̈ cos θ − dθ̇2 sin θ (6.3)

replacing Eqs. (3.26) and (3.27) on Eqs. (6.2) and (6.3) respectively, it is easy to see
that the terms of the signal control vector

u =

[
TR
TL

]
(6.4)

appear in z
(2)
1 and z

(2)
2 obtaining r1 = 2 and r2 = 2, then the right equation system is:

z
(2)
1 = ν1 (6.5)

z
(2)
2 = ν2 (6.6)

and the left equation system for computing u is:
[
TR
TL

]
= A−1(x)

[
ν1 + c0vuθ̇ sin θ

ν2 − c0vuθ̇ cos θ

]
(6.7)

where

A(x) =

[
c1 cos θ − c2 sin θ c1 cos θ + c2 sin θ
c1 sin θ + c2 cos θ c1 sin θ − c2 cos θ

]
(6.8)

with

c0 =
I

I +Md2
(6.9)

c1 =
1

MR
(6.10)

c2 =
Ld

R(I +Md2)
(6.11)

59

The obtained linear system is:

ż =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 z +

0 0
0 0
1 0
0 1

[
ν1
ν2

]
(6.12)

where the state vector is given by

z =

x
y
ẋ
ẏ

 (6.13)

and then the output linear equation is:
[
x
y

]
=

[
1 0 0 0
0 1 0 0

]
z (6.14)

The classical state feedback control techniques can be applied to that system, defining
a control law as follows:

ż = Az +Bν (6.15)

y = Cz (6.16)

ν = −Kz (6.17)

as a state regulator, but for tracking references with no steady-state errors it can be
used a direct loop gain or an integral action approach.

Defining an augmented system:
[
ż
ėi

]
=

[
A [0]
−C [0]

] [
z
ei

]
+

[
B
[0]

]
ν +

[
[0]
R

]
(6.18)

ża = Aaza +Baν +Ra (6.19)

where ei is the error accumulation (integral), then ėi is simply the error and R is the
setpoint or reference, the signal control vector is now defined as:

ν = −Kaza (6.20)

where Ka =
[
K −Ki

]
with Ki the integral gain.

A simulation is carried out for the DDMR moving across the previously defined 500×500
environment, with a pre-defined path depicted by a set of ordered points (the result of
high level control), which is taken as successive setpoints for the controllers; the behavior
of the proposed controller is compared with the modified PD controller proposed in [5].

Figure 6.9 shows the performance of the proposed controller working in the DDMR,
while Figure 6.10 shows the performance of linear PI controller.

60

0 5 10 15 20 25 30

t

0

100

200

300

400

500

x

X Position

0 5 10 15 20 25 30

t

0

100

200

300

400

500

600

y

Y position

Figure 6.9: Nonlinear controller performance for the given path

0 5 10 15 20 25 30 35 40

t

0

100

200

300

400

500

x

X Position

0 5 10 15 20 25 30 35 40

t

0

100

200

300

400

500

600

y

Y position

Figure 6.10: Linear PI controller performance for the given path

61

Figure 6.11 shows the behavior of robot in the environmet; as shown, the linear
approaches may have wide deviations from desired paths, while the proposed non-linear
controller shows a better performance.

Figure 6.11: Nonlinear and linear controllers behavior for a given path:
{(0, 0), (130, 160), (360, 270), (320, 480), (400, 500)}

Tables 6.2, 6.3, 6.4 and 6.5 show a numerical analysis of deviations between variables
and their references taken from the given point sequence path, as a complement for
figures 6.9 and 6.10.

Table 6.2: Nonlinear controller x coordinate analysis

Variable Min. Dev. Mean Dev. Max. Dev.
x 0 36.59 230.04

Table 6.3: Nonlinear controller y coordinate analysis

Variable Min. Dev. Mean Dev. Max. Dev.
y 0 31.14 210.27

Table 6.4: PI Controller x coordinate analysis

Variable Min. Dev. Mean Dev. Max. Dev.
x 0 66.53 230.84

62

Table 6.5: PI Controller y coordinate analysis

Variable Min. Dev. Mean Dev. Max. Dev.
y 0 71.97 210.63

Now, Table 6.6 shows the distance between the robot position and the reference into
the work space shown in Figure 6.11

Table 6.6: Distance analysis between position and reference path

controller Min. distance Mean distance Max. distance
PI 0 53.91 130.86

nonlinear 0 1,53 2,18

63

Chapter 7

Final remarks

This chapter closes the document stating some important conclusions and final
comments on mobile robotics control.

7.1 Conclusions

Robotics is an important field of research in science and engineering, the use of robots
for industrial, commercial, military, and even recreational applications has generated
the appearance of too many methods for design, manufacturing, measurement, control
and even management of robotic platforms. these methods have allowed to become
more and more autonomous the current robots.

The study of autonomy in robotics comes coupled with control tasks for reaching
generally an alive being behaviour, these tasks are divided in literature as high level
tasks, and low level tasks, therefore, two big areas are boarded here, low level control
and high level control.

Low level control takes care of very specific tasks, such as reach or track a reference
for an internal or external variable, this problem is attained by automatic control, in
the other hand, high level control refers to a set of methods and algorithms for motion
planning, the combination of high and low level control provide the robot of autonomy,
since high level takes an objective and breaks down it into simpler tasks easily executed
by low level control structures.

This document presented the general approaches for path planning in mobile robots, and
the implementation under computational execution considerations for three well chosen
methods: the A-star algorithm, the Probabilistic roadmap algorithm and a genetic
algorithm, Figures 6.1 - 6.8 show the implementation results. As shown in these figures
and according to the execution resume in Table 6.1, we can say that the application for
autonomous robots in this kind of environment, the probabilistic roadmap method is
more suitable given a good combination between cost and processing time, results show

64

path lengths similar to A star algorithm (optimal for a given connectivity matrix), but
with processing times considerably lower than other methods.

Low level control consider specially the dynamic behaviour of the robotic system. Not
only real systems are essentially nonlinear, but also robotic systems are complex and
strongly nonlinear, then, linear approaches for low level control trend to misbehave as
shown in figures 6.10 and 6.11, the use of nonlinear methods are definitely the solution
for this problem, a good example is the exact feedback linearization presented here,
whose performance is shown in figure 6.9 and also in Figure 6.11.

7.2 Future Works

This work was specially focused in low level control and path planning for known
environments, the next step for providing each time the robots of more and more
autonomy is exploration in partially known or unknown environments. Methods
like frontier based exploration and other approaches, both for planning on a known
environment or exploration of unknown environments are interesting issues for research.

The implementation of the presented algorithms for space environments (3D) is also an
interesting research issues in the sense of this work, we can now consider water and air
robots, or simply the unevenness in the terrain a ground robot is moving on.

For low level control, a wide variety of nonlinear methods are now available in literature;
optimal, robust, Lyapunov, modified linear methods and others, are some common
approaches for testing and advance towards a better control methodology.

7.3 Academic discussion

In this thesis the following articles were published:

• Byron Hernandez, Michael Felipe Cifuentes and Eduardo Giraldo, “A Nonlinear
Controller for a Differential Driven Robot”, 4th IEEE Colombian Conference on
Automatic Control CCAC 2019, Medellin, Colombia. ISBN:978-1-5386-6962-4.

• Byron Hernandez, Eduardo Giraldo; “A Review of Path Planning and Control
for Autonomous Robots”. 2nd IEEE Colombian Conference on Robotics and
Automation. November 1-3, 2018. ISBN:978-1-5386-5541-2.

They are appended in the final part of this document.

65

Bibliography

[1] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.

[2] R. Datouo, F. B. Motto, B. E. Zobo, A. Melingui, I. Bensekrane, and R. Merzouki,
“Optimal motion planning for minimizing energy consumption of wheeled mobile
robots,” in 2017 IEEE International Conference on Robotics and Biomimetics
(ROBIO), pp. 2179–2184, Dec 2017.

[3] R. N. Jazar, Theory of applied robotics: kinematics, dynamics, and control.
Springer Science & Business Media, 2010.

[4] A. T. Mathew et al., “Design, simulation and implementation of cascaded path
tracking controller for a differential drive mobile robot,” in 2015 International
Conference on Advances in Computing, Communications and Informatics
(ICACCI), pp. 1085–1090, IEEE, 2015.

[5] D. E. H. Sánchez, J. R. E. Cuenca, C. C. Sánchez, and J. F. R. Cortés, “Diseño,
construcción y modelo dinámico de un robot móvil de tracción diferencial aplicado
al seguimiento de trayectorias,” in XXIII Congreso internacional anual de la
Sociedad Mexicana de Ingenieŕıa Mecánica (SOMIM), 2017.

[6] J. Cornejo, J. Magallanes, E. Denegri, and R. Canahuire, “Trajectory tracking
control of a differential wheeled mobile robot: a polar coordinates control and
lqr comparison,” in 2018 IEEE XXV International Conference on Electronics,
Electrical Engineering and Computing (INTERCON), pp. 1–4, IEEE, 2018.

[7] I. Anvari, Non-holonomic Differential Drive Mobile Robot Control & Design:
Critical Dynamics and Coupling Constraints. PhD thesis, Arizona State University,
2013.

[8] O. L. Ramı́rez-Mart́ınez, E. A. Mart́ınez-Garcia, R. E. Mohan, and J. K.
Sheba, “Mobile robot adaptive trajectory control: Non-linear path model inverse
transformation for model reference,” in 2014 13th International Conference on
Control Automation Robotics Vision (ICARCV), pp. 877–881, Dec 2014.

[9] R. Kumar, A. Patel, and S. Purwar, “An adaptive control technique for trajectory
tracking of a mobile robot using synchronization method,” in 2017 International
Conference on Intelligent Computing, Instrumentation and Control Technologies
(ICICICT), pp. 344–348, July 2017.

66

[10] N. Chinthaned and P. Sanposh, “Robust geometric control of a two-tank system,”
in 2016 13th International Conference on Electrical Engineering/Electronics,
Computer, Telecommunications and Information Technology (ECTI-CON),
pp. 1–4, June 2016.

[11] A. O. Baturone, Robotics: Manipulators and mobile robots, in spanish: “Robótica:
manipuladores y robots móviles”. Marcombo, 2005.

[12] J. J. Craig, Introduction to robotics: mechanics and control, 3/E. Pearson
Education India, 2009.

[13] R. Guzman, R. Navarro, M. Beneto, and D. Carbonell, “Robotnik—professional
service robotics applications with ros,” in Robot Operating System (ROS),
pp. 253–288, Springer, 2016.

[14] C. Sandu, M. E. Worley, and J. Morgan, “Experimental study on the contact patch
pressure and sinkage of a lightweight vehicle on sand,” Journal of Terramechanics,
vol. 47, no. 5, pp. 343–359, 2010.

[15] W. Commons, “File:lidar equipped mobile robot.jpg — wikimedia commons, the
free media repository,” 2012. [Online; accessed 16-November-2019].

[16] N. Army, Maritime Security, “U.s. marines will use next-gen robot system to
explore dangerous areas,” 2019.

[17] F. Rubio, F. Valero, and C. Llopis-Albert, “A review of mobile robots: Concepts,
methods, theoretical framework, and applications,” International Journal of
Advanced Robotic Systems, vol. 16, no. 2, p. 1729881419839596, 2019.

[18] M. Travis, “All about drones or unmanned aerial vehicles,” 2015.

[19] L. Bañón, S. Ivorra, L. Aragonés Pomares, F. d. B. Varona Moya, M. Cano,
R. Tomás, et al., “Innovación en la producción de materiales curriculares para
titulaciones de ingenieŕıa civil empleando drones telecomandados,” Universidad de
Alicante. Vicerrectorado de Estudios, Formación y Calidad, 2015.

[20] P. UAV, “Design for business. build for endurance.,” 2018.

[21] M. Lingshuai, L. Yang, G. Haitao, X. Hongli, and G. Lingbo, “A new type of small
underwater robot for small scale ocean observation,” in 2016 IEEE International
Conference on Cyber Technology in Automation, Control, and Intelligent Systems
(CYBER), pp. 152–156, June 2016.

[22] N. Degnarain and D. McCauley, “12 robots that could make (or break) the oceans,”
2016.

[23] Y. Wang, S. Jiang, F. Yan, L. Gu, and B. Chen, “A new redundancy resolution
for underwater vehicle–manipulator system considering payload,” International
Journal of Advanced Robotic Systems, vol. 14, no. 5, p. 1729881417733934, 2017.

67

[24] G. J. Zeglin, Uniroo–a one legged dynamic hopping robot. PhD thesis,
Massachusetts Institute of Technology, 1991.

[25] Z. Zhang, J. Zhao, H. Chen, and D. Chen, “A survey of bioinspired jumping
robot: takeoff, air posture adjustment, and landing buffer,” Applied bionics and
biomechanics, vol. 2017, 2017.

[26] Y. Gong, R. Hartley, X. Da, A. Hereid, O. Harib, J.-K. Huang, and J. Grizzle,
“Feedback control of a cassie bipedal robot: Walking, standing, and riding a
segway,” in 2019 American Control Conference (ACC), pp. 4559–4566, IEEE, 2019.

[27] J. Heaston, D. Hong, I. Morazzani, P. Ren, and G. Goldman, “Strider: Self-excited
tripedal dynamic experimental robot,” in Proceedings 2007 IEEE International
Conference on Robotics and Automation, pp. 2776–2777, April 2007.

[28] M. Raibert, K. Blankespoor, G. Nelson, and R. Playter, “Bigdog, the rough-terrain
quadruped robot,” IFAC Proceedings Volumes, vol. 41, no. 2, pp. 10822–10825,
2008.

[29] S. Seok, A. Wang, M. Y. Chuah, D. Otten, J. Lang, and S. Kim, “Design principles
for highly efficient quadrupeds and implementation on the mit cheetah robot,” in
2013 IEEE International Conference on Robotics and Automation, pp. 3307–3312,
IEEE, 2013.

[30] E. Ackerman, “Spot is boston dynamics nimble new quadruped robot,” IEEE
Spectrum, 2015.

[31] A. Roennau, G. Heppner, M. Nowicki, and R. Dillmann, “Lauron v: A versatile
six-legged walking robot with advanced maneuverability,” in 2014 IEEE/ASME
International Conference on Advanced Intelligent Mechatronics, pp. 82–87, July
2014.

[32] J. Forlizzi and C. DiSalvo, “Service robots in the domestic environment: a study of
the roomba vacuum in the home,” in Proceedings of the 1st ACM SIGCHI/SIGART
conference on Human-robot interaction, pp. 258–265, ACM, 2006.

[33] A. Levandowski, A. Schultz, C. Smart, A. Krasnov, D. Song, H. Lee,
H. Chau, B. Majusiak, and F. Wang, “Autonomous motorcycle platform and
navigation–blue team darpa grand challenge 2005,” Blue Team Autonomous
Motorcycle Platform-DARPA. DARPA. Web, vol. 1, 2010.

[34] R. Velázquez and A. Lay-Ekuakille, “A review of models and structures for wheeled
mobile robots: Four case studies,” in 2011 15th International Conference on
Advanced Robotics (ICAR), pp. 524–529, IEEE, 2011.

[35] T. Taniguchi and M. Sugeno, “Trajectory tracking controller design for a tricycle
robot using piecewise multi-linear models,” in Proceedings of the international
multiconference of engineers and computer scientists IMECS, 2017.

68

[36] B. Kiss and E. Szádeczky-Kardoss, “On-line time-scaling control of a kinematic
car with one input,” in 2007 Mediterranean Conference on Control & Automation,
pp. 1–6, IEEE, 2007.

[37] H. Xu, J. Zhao, D. Tan, and Z. Zhang, “Asymmetrical prototype of a five-wheeled
robot and maneuver analysis,” in Intelligent Robotics and Applications (H. Liu,
H. Ding, Z. Xiong, and X. Zhu, eds.), (Berlin, Heidelberg), pp. 488–498, Springer
Berlin Heidelberg, 2010.

[38] O. A. Ani, H. Xu, and G. Zhao, “Analysis and modeling of slip for a five-wheeled
mobile robot (wmr) in an uneven terrain,” in 2011 IEEE International Conference
on Mechatronics and Automation, pp. 154–159, IEEE, 2011.

[39] M. Bajracharya, M. W. Maimone, and D. Helmick, “Autonomy for mars rovers:
Past, present, and future,” Computer, vol. 41, no. 12, pp. 44–50, 2008.

[40] J. L. Mart́ınez, J. Morales, A. Mandow, S. Pedraza, and A. Garćıa-Cerezo,
“Inertia-based icr kinematic model for tracked skid-steer robots,” in 2017 IEEE
International Symposium on Safety, Security and Rescue Robotics (SSRR),
pp. 166–171, IEEE, 2017.

[41] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive mobile
robots using lagrange and newton-euler methodologies: A unified framework,”
Advances in Robotics & Automation, vol. 2, no. 2, pp. 1–7, 2013.

[42] D. E. H. Sánchez, J. R. E. Cuenca, C. C. Sánchez, and J. F. R. Cortés, “Diseño,
construcción y modelo dinámico de un robot móvil de tracción diferencial aplicado
al seguimiento de trayectorias,” in XXIII Congreso internacional anual de la
Sociedad Mexicana de Ingenieŕıa Mecánica (SOMIM), 2017.

[43] D. Giraldo and E. Giraldo, Teoŕıa de control análogo. Universidad Tecnológica de
Pereira, Pereira, Colombia, 2009.

[44] A. J. Krener, A. Isidori, and W. Respondek, “Partial and robust linearization by
feedback,” in The 22nd IEEE Conference on Decision and Control, pp. 126–130,
Dec 1983.

[45] A. Isidori, Nonlinear control systems. Springer Science & Business Media, 2013.

[46] M. R. Kankashvar, H. Kharrati, and A. Khorami, “Design of multivariable
controller based on feedback linearization for five-bar linkage manipulator,” in
2015 23rd Iranian Conference on Electrical Engineering, pp. 916–921, May 2015.

[47] L. Meihui, D. Shangfeng, C. Lijun, and H. Yaofeng, “Greenhouse multi-variables
control by using feedback linearization decoupling method,” in 2017 Chinese
Automation Congress (CAC), pp. 604–608, Oct 2017.

[48] Y. Zhang, G. Tao, and M. Chen, “Relative degrees and adaptive feedback
linearization control of t–s fuzzy systems,” IEEE Transactions on Fuzzy Systems,
vol. 23, pp. 2215–2230, Dec 2015.

69

[49] M. Korkmaz and A. Durdu, “Comparison of optimal path planning algorithms,”
in 2018 14th International Conference on Advanced Trends in Radioelecrtronics,
Telecommunications and Computer Engineering (TCSET), pp. 255–258, Feb 2018.

[50] M. A. Baumann, D. C. Dupuis, S. Léonard, E. A. Croft, and J. J.
Little, “Occlusion-free path planning with a probabilistic roadmap.,” in IROS,
pp. 2151–2156, Citeseer, 2008.

[51] R. M. C. Santiago, A. L. D. Ocampo, A. T. Ubando, A. A. Bandala,
and E. P. Dadios, “Path planning for mobile robots using genetic algorithm
and probabilistic roadmap,” in 2017IEEE 9th International Conference on
Humanoid, Nanotechnology, Information Technology, Communication and
Control, Environment and Management (HNICEM), pp. 1–5, Dec 2017.

[52] N. Kumar, Z. Vámossy, and Z. M. Szabó-Resch, “Robot path pursuit
using probabilistic roadmap,” in 2016 IEEE 17th International Symposium on
Computational Intelligence and Informatics (CINTI), pp. 000139–000144, Nov
2016.

[53] S. R. Cunha, A. C. de Matos, and F. L. Pereira, “An automatic path planing
system for autonomous robotic vehicles,” in Industrial Electronics, Control, and
Instrumentation, 1993. Proceedings of the IECON’93., International Conference
on, pp. 1442–1447, IEEE, 1993.

[54] C. Manta-Caro and J. M. Fernández-Luna, “A discrete-event simulator for the web
of things from an information retrieval perspective,” in 2014 IEEE Latin-America
Conference on Communications (LATINCOM), pp. 1–6, IEEE, 2014.

[55] J.-C. Latombe, Robot Motion Planning, vol. 124. Springer Science & Business
Media, 2012.

[56] J. Yao, C. Lin, X. Xie, A. J. Wang, and C. C. Hung, “Path planning for virtual
human motion using improved a* star algorithm,” in 2010 Seventh International
Conference on Information Technology: New Generations, pp. 1154–1158, April
2010.

[57] C. Wang, L. Wang, J. Qin, Z. Wu, L. Duan, Z. Li, M. Cao, X. Ou, X. Su, W. Li,
Z. Lu, M. Li, Y. Wang, J. Long, M. Huang, Y. Li, and Q. Wang, “Path planning
of automated guided vehicles based on improved a-star algorithm,” in 2015 IEEE
International Conference on Information and Automation, pp. 2071–2076, Aug
2015.

[58] S. Alnasser and H. Bennaceur, “An efficient genetic algorithm for the global
robot path planning problem,” in 2016 Sixth International Conference on Digital
Information and Communication Technology and its Applications (DICTAP),
pp. 97–102, July 2016.

70

Academic discussion

The first article “A Review of path planning and control for autonomous robots”
presents a review of common planning and controls methods for mobile robots, it
was presented as speech and poster in II-CCRA 2019, IEEE Colombian Conference
on Robotics and automation.

The second article “A Nonlinear Controller for a Differential Driven Robot” present the
use of exact MIMO feedback linearization as central topic, it also shows the design and
behaviour of linear PI controller. It was presented as speech in IV-CCAC 2019, IEEE
Colombian Conference on Automatic Control.

71

A Review of Path Planning and Control for
Autonomous Robots

Byron Hernández
Electrical Engineering

Universidad Tecnológica de Pereira
Pereira, Colombia

Email: bshernandez@utp.edu.co

Eduardo Giraldo
Department of Electrical Engineering
Universidad Tecnológica de Pereira

Pereira, Colombia
Email: egiraldos@utp.edu.co

Abstract—Autonomy is an important topic in modern robotics
and it is attained by jointly applying motion planning and control
algorithms. This paper presents a review of some well known
motion planning techniques, which are: A-star A* , Probabilistic
Roadmap and Genetic Algorithms, they are applied to a mobile
robot operating into a given environment which contains random-
shaped obstacles located arbitrarily. The results of any selected
planning algorithm are used as setpoints for a feedback nonlinear
controller that operates the motion of the robot in the environ-
ment. Simulation results show that probabilistic roadmap has
the best performance in time computing, that it has path lengths
close to A* algorithm results (optimal under given constraints),
and also an effective behaviour on the proposed input-output
feedback linearisation control methodology for path tracking.

I. INTRODUCTION

During last decades, robotics has become one of the most
important fields of research on engineering, the use of robots
allow carrying out critical, difficult and dangerous processes
with more precision, reliability and security for humans.
Besides, with current technological development, the robots
have become not only cheaper but also more effective, faster,
flexible and more intelligent [1].

One of the ultimate goals in Robotics, with the introduction
of intelligent robots concept is to create autonomous robots.
Such robots may accept generic descriptions of tasks without
many details and execute those tasks without further human
intervention. The input descriptions only specify what the user
wants that robots do, rather than how they do it. The above
implies the use of planning algorithms for determining each
step or set of detailed simple tasks robot must do for reach
the main generic task [2].

Robotic applications in which robots are designed for
moving accross a given workspace, such as exploration or
transportation, it is expected from an autonomous robot the
ability to plan its own motions across the given environment,
avoiding any object or obstacle in there, in literature this
problem is stated as “motion planning” [2][3].

Motion planning is one of the most important tasks that
autonomous robots must carry out. It involves the definition
of a navigation path across the environment W [4] avoiding
any region Bi defined as an obstacle, the defined path τ goes
from an initial position qinit to a goal position qgoal [2].

There exist a large number of methods proposed for solving
the path planning problem, these methods are based essentially
in three main approaches: roadmaps, cell decomposition and
potential fields [2]. The most important and widely used
methods are the A-star algorithm [5][6][7][8], probabilistic
roadmaps [9][10][11], and meta-heuristic optimization meth-
ods like Particle Swarm or Genetic Algorithms [4][10][12].

But path planning is not the only important problem in
development of autonomous robots, methods for tracking the
path are also very important [1]. While path planning problem
takes into account geometric and kinematic constraints, the
methods for following the path take into account the dynamic
behaviour of robots and this problem is addressed by automatic
control [13].

In this paper is applied an input-output feedback linearisa-
tion control method [14], using the results of the path planning
algorithm as a simple reference model, sampling the found
path from qinit to qgoal.

The remaining of this paper is organized as follows: Section
2 introduces the path planning algorithms implemented for
comparison, Section 3 explains in detail the control method-
ology implemented in simulated robot. Section 4 gives the
simulation conditions in case study, Section 5 shows the
main results of proposed methodology and finally section 6
concludes the article.

II. PATH PLANNING ALGORITHMS

From a large list of methods that have been used for solving
the path planning problem, not all of them solve it in its full
generality, for instance, some methods require the workspace
to be two-dimensional and the objects (robots and obstacles)
to be polygonal. Despite external differences, the methods
are based on few different general approaches: roadmap, cell
decomposition and potential field [2] [15].

A. Roadmap

A roadmap is a network of one-dimensional curves con-
necting the free-obstacle space, this network is used as a set
of standardized paths, and resulting path is chosen as the
one connecting qinit and qgoal with minimum length. In
[9][10][11] and [16] is shown in detail how to build a roadmap,
and some decision criteria is stated.978-1-5386-5541-2/18/$31.00 c©2018 IEEE

72

B. Cell Decomposition
Cell decomposition methods consist of decomposing the

free space into simple regions called cells and find a non-
directed graph representing the adjacency relation between the
cells. This graph is called the connectivity graph, its nodes
are the cells extracted from the free space and two nodes are
connected by a link if and only if the two corresponding cells
are adjacent. The method searches a sequence of adjacent cells,
which two of them contain qinit and qgoal. Each sequence is
called a channel and a continuous free path can be computed
from them [2].

C. Potential Field
Similar to cell decomposition, in potential field approach the

workspace is discretized, but in this case into a fine regular
grid. This approach requires powerful heuristics to guide the
search through the grid for a free path. Several types of
heuristics have been proposed. The most successful ones take
the form of functions that are interpreted as potential fields
[15].

D. Most Studied Algorithms
Based on approaches mentioned above, a lot of specific

algorithms have been proposed, some of most studied and
popular ones are stated below:

1) A-star Algorithm: The A-star algorithm or simply A*
is an heuristic searching process, its objective is to find the
shortest path in a graph from a node qinit to a node qgoal.
It employs a function f(q) that guides the selection of the
next node that will be expanded. f(q) is an estimate of f∗(q)
that is the cost of the shortest path that passes through a node
q and achieves qgoal. These two functions are computed as
shown in equations (1) and (2) [5]

f(q) = g(q) + h(q) (1)
f∗(q) = g∗(q) + h∗(q) (2)

where g(q) is an estimate of g∗(q), the cost of the shortest
path from qinit to q, and h(q) is an estimate of h∗(q), the
cost of the shortest path from q to qgoal. If h(q) ≤ h∗(q) for
all q in the graph the heuristic is admissible and the algorithm
can be proved optimal.

The implementation of the A* algorithm generally uses two
lists named OPEN and CLOSED. The OPEN list stores the
nodes that are in the frontier of the search. The CLOSED
list stores the nodes that have already been expanded. The
expansion of any point q, is carried out using a matrix
called the Connectivity Matrix, where a number 2 implies
current q position, the number 1 shows where a movement
is allowed, and number 0 indicates movement not allowed,
examples are C1: only horizontal-vertical movement allowed,
C2: complete neighbour movement alloved and C3: Larger
movements allowed [15].

C1 =

0 1 0
1 2 1
0 1 0

 , C2 =

1 1 1
1 2 1
1 1 1

 ,

C3 =

1 1 1 1 1
1 1 1 1 1
1 1 2 1 1
1 1 1 1 1
1 1 1 1 1

In each iteration, the algorithm removes the node from the
OPEN list that has the smallest f -value, expands this node
inserts its successors that have not been expanded yet in the
OPEN list and marks the node as expanded, inserting it in the
CLOSED list. It executes these steps until it removes qgoal

from the OPEN list or until there are no more nodes available
in the OPEN list. In the first case, A* has computed the
shortest path between qinit and qgoal taking into account the
connectivity matrix constraints. If the second stop condition is
true, there are not any solution available [6].

2) Probabilistic Roadmap: Path computation using this
method is organized in two phases: the preprocessing phase
and the query phase. During the preprocessing phase a
probabilistic roadmap is constructed by repeatedly generating
random free configurations of the robot and connecting these
configurations using some simple, but very fast motion planner
also known as local planner. In the query phase the algotithm
finds a path from the start and goal configurations to two nodes
of the roadmap. Next, a graph search is performed to find a
sequence of edges connecting these nodes in the roadmap.
Concatenation of the successive path segments transforms the
sequence found into a feasible path for the robot [9].

In preprocessing phase is constructed the roadmap randomly
as an undirected graph R = (N,E). The nodes N are a set
of configurations or points chosen over the free space. The
edges in E correspond to simple paths connecting the nodes
in N . During the query phase, the roadmap is used to solve
individual path planning problems in the input scene. Given
an initial position qinit and a goal position qgoal, the method
first tries to connect qinit and qgoal to some two nodes q′init
and q′goal in N . If successful, it then searches in R for a
sequence of edges in E connecting q′init and q′goal. Finally, it
transforms this sequence into a feasible path for the robot by
recomputing the corresponding local paths and concatenating
them [10].

3) Genetic Algorithm: The genetic algorithms simulate the
natural process selection of any specie population. For robot
path planning each chromosome represents a path. Usually,
the chromosome consists of initial location (source), target
location destination), and intermediate locations crossed by
the mobile robot. Each location represents a gene of the
chromosome.

When designing a genetic algorithm there are some impor-
tant steps to follow. First of all the algorithm needs an initial
population of chromosomes to manipulate using some opera-
tors and produce a new superior generation of chromosomes.
The operations could be selection, mutation and crossover.
The first generation could be generated randomly or using any
(suboptimal) fast motion planner [17].

73

Each chromosome of any generation is a multidimensional
array whose first element are the initial location coordinates,
and whose last element are the goal location coordinates, the
other elements are the ones changing with genetic algorithm.
and their behaviour is evaluated by a cost function J that
takes into account criteria like path length, turns, number of
obstacles, smoothness and other [10].

The mutation operator chooses different genes from the
selected chromosome, and modifies them arbitrarily or follow-
ing any deterministic criteria, the selection operator normally
takes the best chromosomes (best J-valued) and keep them for
next generation, this method is called elitism, which ensures
to conserve the best result always. Finally crossover operator
generates a new chromosome for next generation from other
two or more chromosomes, using e.g. arithmetic average or
gene mapping.

These operations are repeated until the obtaining of a (near)-
optimal solution or satisfying some stopping conditions such
as a maximum number of iterations or reaching a defined
threshold in J-values [17].

III. CONTROL METHODOLOGY

A. Linear Space State Controller

Let any dynamic system with a linear model as shown in
equations (3) and (4).

ẋ = Ax+Bu (3)
y = Cx (4)

where x is the state vector with n elements for a n-order
system, u is the control signal with p elements (the number
of inputs) and y the output vector with q elements, thus A ∈
Rn×n, B ∈ Rn×p and C ∈ Rp×n.

The feedback controller is designed for solving the reg-
ulation problem, that it, to keep stable closed loop system.
A block diagram of this controller is shown in Figure 1, as
shown, the control signal is [18]

u = −Kx (5)

where K ∈ Rp×n, and can be computed using eigen-structure
assignment methods [19].

x'=Ax+Bu
y=Cx

y

x

u

-K

1

y

-Kx

Figure 1. Block diagram of state regulator

B. Feedback Exact Linearization Control

The feedback exact linearisation method transforms on
a complete or partial form, non-linear dynamics on linear
dynamics, through control input affine non-linear systems in
the form of equations (6) and (7).

ẋ = f(x) + g(x)u (6)
y = h(x) (7)

depending on existence of zero dynamics in the system, there
may be two cases:

1) Input-State Linearisation: The system {(6),(7)} is n
order. If there exist a transformation of state variables, such
that only has an n order differential equation then the it is
input-state linearizable, and the system:

ẋ1 = x2

ẋ2 = x3
...

ẋn = f(x1, x2, · · · , xn) + g(x1, x2, · · · , xn)u
becomes linear if

ν = f(x1, x2, · · · , xn) + g(x1, x2, · · · , xn)u (8)

and it has a matrix representation:

ẋ =

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
0 0 0 · · · 0

x+

0
0
...
0
1

ν (9)

it could be controlled using a simple control law like (5) as
ν = −Kx, an then get u from (8) as: [14]

u =
ν − f(x1, x2, · · · , xn)
g(x1, x2, · · · , xn)

(10)

2) Input-Output Linearization: If a complete representation
cannot be reached since zero dynamics on system, the method
could be carried out choosing a new variable set as the output
z = y, ż = ẏ, . . . differentiating it until u appears for the first
time. The m < n derivatives carried out define the relative
order of the system, and similar to previous case:

ż1 = z2

ż2 = z3
...

żm = f(z1, z2, · · · , zm) + f(z1, z2, · · · , zm)u

and solving the same control law ν = −Kz, u can be gotten
from [14]:

ν = f(z1, z2, · · · , zm) + g(z1, z2, · · · , zm)u

u =
ν − f(z1, z2, · · · , zm)

g(z1, z2, · · · , zm)

74

IV. CASE STUDY

It is used the model in [20] for probing the path planning
and tracking methodology, Figure 2 illustrates the mechanic
configuration of the system. Equations (11)-(14) show the
dynamical model.

Figure 2. The simplified vehicle dynamic model [20]

v̇u = dθ̇2 +
1

MR
(τR + τL) (11)

(Md2 + J)θ̈ = −Mdvuθ̇ +
L

R
(τR − τL) (12)

ẋ = vu cos(θ)− vw sin θ (13)
ẏ = vu sin(θ) + vw cos θ (14)

where vw = dθ̇, M is the total robot mass and J its moment
of inertia [20]

The conectivity matrix used in A* algorithms is:

Con =

1 1 1
1 2 1
1 1 1

 (15)

Defining an expansion search as shown in Figure 3.

Figure 3. Expansion search using connectivity matrix (15)

For probabilistic Roadmap method the preprocessing phase
was developed using a uniform random q generator, see Figure
4 as an example, and the connection between points (the local
planner) is defined as straight lines if feasible. One example
is shown in Figure 5

Figure 4. Sampling q for Probabilistic Roadmap search

Figure 5. Local planning in Probabilistic Roadmap model

75

For genetic algorithms it is used a uniform random q
generator for chromosomes, fulfilling the condition of keeping
qinit and qgoal, the fitness function is de path length using
euclidean distance, the stopping criteria is a maximum number
of generations defined as 100, or the threshold in J defined
as 1.5 times the minimum distance between qinit and qgoal

(straight line).

V. RESULTS

Figure 6 shows the result of A* algorithm in the shown
environment, the result of the A* algorithms is always the
same for a given connectivity matrix unlike the probabilistic
roadmap and genetic algorithm methods. Figures 7 shows one
result given by Probabilistic roadmap method and Figure 8
shows one result given by Genetic Algorithm method.

Figure 6. Result of the A* Algorithm

Figure 7. Result of the Probabilistic Roadmap Algorithm

Figure 8. Result of the Genetic Algorithm

Table I
TABLE OF RESULTS

Try A* PRM GA
time[s] len time[s] len time[s] len

1 165.4 746.2 27.3 803.6 155 1074
2 168.3 746.2 25.0 763.9 94.6 1038
3 157.4 746.2 12.8 782.2 90.0 1282
4 168.6 746.2 27.9 716.8 76.2 1036
5 163.2 746.2 7.34 771.4 104.5 1359
6 156.9 746.2 64.6 850.2 115.0 1170
7 155.7 746.2 31.4 832.0 42.7 937
8 163.4 746.2 20.4 681.9 92.9 1224
9 165.8 746.2 29.0 802.2 128.0 964

10 167.7 746.2 17.6 782.6 104.8 1081
11 156.5 746.2 49.9 725.4 91.7 1376
12 160.3 746.2 9.5 798.4 104.5 1193

The three methods were executed 12 times, and for each
iteration it was registered the elapsed time and the distance of
found path, Table I resumes the results.

Taking into account the application for autonomous robots
in environments with similar characteristics to exposed ones,
the probabilistic roadmap method is more suitable. Using the
path plan found with this method, the reference model is
applied to evaluate the designed controller, Figure 9 shows
the behaviour of the controlled robot in the environment and
Figure 10 shows the controlled variables response of the
system

VI. CONCLUSIONS

This work presents a methodology for motion planning
and path tracking for an autonomous robot on a known
static environment, there were analyzed three of most widely
used algorithms in literature, which are, the well known A*
algorithm, probabilistic Roadmap and genetic algorithms, the
simulation results shows that probabilistic Roadmap show a
better performance in processing time. The best result in
path length corresponds to A* algorithm, but processing time
is considerably higher than both probabilistic Roadmap and

76

Reference

Movement

Figure 9. Behaviour of controlled robot in the given environment for a path
with qinit = (10, 10) and qgoal = (390, 490)

t

0 10 20 30 40 50 60 70 80 90 100

x

0

100

200

300

400
x

t

0 10 20 30 40 50 60 70 80 90 100

y

0

100

200

300

400

500
y

Figure 10. Controlled variables response of the system for the given sequence
q = {(10, 10), (145, 159), (361, 266), (327, 478), (390, 490)}

genetic Algorithms, simulation also shows that the exact input-
output linearization shows a good performance tracking given
paths.

AKNOWLEDGEMENTS

This research is supported by ”Programa Jóvenes In-
vestigadores e Innovadores por la paz, convocatoria 775-
2017” funded by Colciencias and Universidad Tecnológica
de Pereira, research project ”Diseño de un vehı́culo terrestre
no tripulado para la inactivación de minas anti-persona el el
territorio colombiano”. The authors also thank to Maestrı́a en
Ingenierı́a Eléctrica at Universidad Tecnolgica de Pereira for
the financial support, and the research group on Automatic
Control COL0031472.

REFERENCES

[1] J. J. Craig, Robotica. Prentice Hall, 2006.
[2] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[3] R. Datouo, F. B. Motto, B. E. Zobo, A. Melingui, I. Bensekrane,

and R. Merzouki, “Optimal motion planning for minimizing energy
consumption of wheeled mobile robots,” in 2017 IEEE International
Conference on Robotics and Biomimetics (ROBIO), pp. 2179–2184, Dec
2017.

[4] M. Korkmaz and A. Durdu, “Comparison of optimal path planning
algorithms,” in 2018 14th International Conference on Advanced Trends
in Radioelecrtronics, Telecommunications and Computer Engineering
(TCSET), pp. 255–258, Feb 2018.

[5] J. Yao, C. Lin, X. Xie, A. J. Wang, and C. C. Hung, “Path planning
for virtual human motion using improved a* star algorithm,” in 2010
Seventh International Conference on Information Technology: New
Generations, pp. 1154–1158, April 2010.

[6] C. Wang, L. Wang, J. Qin, Z. Wu, L. Duan, Z. Li, M. Cao, X. Ou, X. Su,
W. Li, Z. Lu, M. Li, Y. Wang, J. Long, M. Huang, Y. Li, and Q. Wang,
“Path planning of automated guided vehicles based on improved a-star
algorithm,” in 2015 IEEE International Conference on Information and
Automation, pp. 2071–2076, Aug 2015.

[7] T. Nayl, M. Q. Mohammed, and S. Q. Muhamed, “Obstacles avoidance
for an articulated robot using modified smooth path planning,” in
2017 International Conference on Computer and Applications (ICCA),
pp. 185–189, Sept 2017.

[8] X. Huang, Q. Jia, and G. Chen, “Collision-free path planning method
with learning ability for space manipulator,” in 2017 12th IEEE Confer-
ence on Industrial Electronics and Applications (ICIEA), pp. 1790–1795,
June 2017.

[9] M. A. Baumann, D. C. Dupuis, S. Léonard, E. A. Croft, and J. J. Little,
“Occlusion-free path planning with a probabilistic roadmap.,” in IROS,
pp. 2151–2156, Citeseer, 2008.

[10] R. M. C. Santiago, A. L. D. Ocampo, A. T. Ubando, A. A. Bandala,
and E. P. Dadios, “Path planning for mobile robots using genetic
algorithm and probabilistic roadmap,” in 2017IEEE 9th International
Conference on Humanoid, Nanotechnology, Information Technology,
Communication and Control, Environment and Management (HNICEM),
pp. 1–5, Dec 2017.

[11] N. Kumar, Z. Vmossy, and Z. M. Szab-Resch, “Robot path pursuit using
probabilistic roadmap,” in 2016 IEEE 17th International Symposium
on Computational Intelligence and Informatics (CINTI), pp. 000139–
000144, Nov 2016.

[12] Z. Elmi and M. . Efe, “Multi-objective grasshopper optimization algo-
rithm for robot path planning in static environments,” in 2018 IEEE
International Conference on Industrial Technology (ICIT), pp. 244–249,
Feb 2018.

[13] R. N. Jazar, Theory of applied robotics: kinematics, dynamics, and
control. Springer Science & Business Media, 2010.

[14] A. Isidori, Nonlinear control systems. Springer Science & Business
Media, 2013.

[15] J.-C. Latombe, Robot Motion Planning, vol. 124. Springer Science &
Business Media, 2012.

[16] S. R. Cunha, A. C. de Matos, and F. L. Pereira, “An automatic
path planing system for autonomous robotic vehicles,” in Industrial
Electronics, Control, and Instrumentation, 1993. Proceedings of the
IECON’93., International Conference on, pp. 1442–1447, IEEE, 1993.

[17] S. Alnasser and H. Bennaceur, “An efficient genetic algorithm for
the global robot path planning problem,” in 2016 Sixth International
Conference on Digital Information and Communication Technology and
its Applications (DICTAP), pp. 97–102, July 2016.

[18] D. Giraldo and E. Giraldo, “Teorı́a de control análogo,” Universidad
Tecnológica de Pereira, Pereira, Colombia, 2009.

[19] S. Srinathkumar and Srinathankumar, Eigenstructure control algorithms:
applications to aircraft/rotorcraft handling qualities design. Institution
of Engineering and Technology, 2011.

[20] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive
mobile robots using lagrange and newton-euler methodologies: A unified
framework,” Advances in Robotics & Automation, vol. 2, no. 2, pp. 1–7,
2013.

77

2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)
October 15-18, 2019. Diez Hotel, Medellin, Colombia.

A Nonlinear Controller for a Differential Driven
Robot

Byron Hernández
Department of Electrical Engineering
Universidad Tecnológica de Pereira

Pereira, Colombia
Email: bshernandez@utp.edu.co

Michael Felipe Cifuentes Molano
Department of Electrical Engineering
Universidad Tecnológica de Pereira

Pereira, Colombia
Email: mcifuentes@utp.edu.co

Eduardo Giraldo
Department of Electrical Engineering
Universidad Tecnológica de Pereira

Pereira, Colombia
Email: egiraldos@utp.edu.co

Abstract—In this paper, it is presented a nonlinear controller
using a multivariable approach for the exact feedback lineariza-
tion method, applied to the model of a differential driven robot
operating into a two-dimensional space. The system shows an
excellent performance tracking setpoints from a given path,
and this provides a better control behavior compared to linear
controllers, like the multivariable PI controller.

I. INTRODUCTION

During the last decades, autonomous robots have become
one of the most important fields of research on engineering,
the use of robots allow carrying out critical, difficult and dan-
gerous processes with more precision, reliability, and security
for humans. Besides, with current technological development
and research, robots are easier to access; they are cheaper,
more productive, faster, flexible and more intelligent [1].

One of the essential topics in the development of au-
tonomous robots is to control the behavior of the electrome-
chanical arrangement based on its dynamical representation
or model [2]. Differential Driven Robots are a particular case
lately studied since they have many mechanical advantages,
e.g., they can turn around its axle without any displacement,
but at the same time, this implies a more complex dynamical
model with nonholonomic constraints and strong nonlinearities
which are often hard to attain by conventional controllers [3].

Control tasks required in mobile robots are generally related
to path tracking; they imply the ability to reach a set of
consecutive reference points or a set of geometrical primitives,
such as straight lines or curves given by a planner that
performs the breakdown of high-level tasks [4].

Approaches, like shown in [5], [6] and [7], propose es-
sentially linear control techniques which do not consider the
complete nonlinearities of the differential driven robot, and it
infers disadvantages, like deviation errors or over impulse in
transient response. Tracking errors may cause collisions with
obstacles due to deviation from the planned path [2].

The problem has been previously addressed but not in all
its generality, for example, in [8] a nonlinear controller is
designed but only for speed control, it reaches path tracking
calculating an adaptive reference model using polynomial
regressions. Other works like [9] propose adaptive algorithms,
but they always have bad behaviour at the beggining which
could cause path deaviations and consequently possible colli-
sions.

One common method of nonlinear control is the exact
feedback linearization, but it is mainly popular for SISO
systems, the approach for MIMO systems has some advanced
mathematical fundamentals, they are introduced in [10], in this
papers those fundamentals are used for designing a nonlinear
controller for the Differential Driven Mobile Robot (DDMR).

The remaining of this paper is organized as follows: Section
2 presents the kinematic constraints and dynamical represen-
tation of a differential driven robot; Section 3 introduces the
mathematical resources used in multivariate exact feedback
linearization method; Section 4 shows the design of the
nonlinear controller to the studied vehicle; Section 5 draws
some simulation results, and finally Section 6 concludes the
article.

II. ROBOT MODEL

The Differential Driven Mobile Robot (DDMR) is one of
the most studied structures in robotics. It generally consists of
a chassis with two fixed electric motors opposed to each other
[3]. They usually have one extra rear wheel as a third prop,
or they are connected to a continuous track configuration [5]
as shown in Figure 1.

Figure 1. Continuous track configuration in a differential driven robot

Based on references [2], [3], [5] and [6], both kinematic
and dynamic analysis is carried out defining three key points
as coordinated frames:

978-1-5386-6962-4/19/$31.00 c©2019 IEEE
78

• Σ0(X0, Y0) The inertial frame, a fixed or universal coor-
dinated system representing the environment.

• Σ1(X1, Y1) The robot geometric center, conveniently
located collinearly with the axles of the motors.

• Σ2(X2, Y2) The mass center in a different location from
the geometric center for more realistic and flexible mod-
eling.

Figure 2 shows the coordinated frames and some general
dimensional considerations for the robot.

2L

L 2R

Y1
X1

X2Y2

y0

x0

y0

x0o

J

~

J

~

R

0

Figure 2. Robot coordinated frames

The relationship between torques T and forces F applied
to the robot is T = F ·R, then:

F =
T
R

Using a polar coordinate approach and drawing a free body
diagram in Figure 3 the analysis follows

y0

x0

y0

x0o

0

r

au
vu

w
vwa

F
u
R

F
u
L

F
w
L

F
w
D

Figure 3. Robot free body diagram

r̂ = rejθ (1)
˙̂r = ṙejθ + jrθ̇ejθ (2)
¨̂r = r̈ejθ + 2jṙθ̇ejθ + jrθ̈ejθ − rθ̇2ejθ (3)

separating velocity and acceleration into radal and tangencial
terms, we have:

˙̂r = [ṙ]ejθ + [rθ̇]ej(θ+
θ
2)

¨̂r = [r̈ − rθ̇2]ejθ + [2ṙθ̇ + rθ̈]ej(θ+
θ
2)

and then, variables in Figure 3 follow:

vu = ṙ (4)

vw = rθ̇ (5)

au = r̈ − rθ̇2 (6)

aw = 2ṙθ̇ + rθ̈ (7)

The movement equations are:

Mau = FuR + FuL (8)
Maw = FwL − FwR (9)

Iθ̈ = L(FuR − FuL) + d(FwR − FwL) (10)

and from Eqs. (4)-(7) we have:

au = v̇u − vwθ̇ (11)

aw = v̇w + vuθ̇ (12)

and then

M(v̇u − vwθ̇) = FuR + FuL (13)

M(v̇w + vuθ̇) = FwR − FwL (14)

Iθ̈ = L(FuR − FuL)− d(FwR − FwL) (15)

v̇u =
FuR + FuL

M
+ vwθ̇ (16)

v̇w =
FwR − FwL

M
− vuθ̇ (17)

θ̈ =
L

I
(FuR − FuL) +

d

I
(FwR − FwL) (18)

The velocity of mass center Σ2, ẋ2 and ẏ2, respect to the
inertial frame Σ0, are given by

ẋ2 = vu cos θ − vw sin θ (19)
ẏ2 = vu sin θ + vw cos θ (20)

and respect to the frame Σ1:

x2 = x0 + d cos θ

ẋ2 = ẋ0 − dθ̇ sin θ (21)
y2 = y0 + d sin θ

ẏ2 = ẏ0 + dθ̇ sin θ (22)

Matching Eqs. (19) with (21) and (20) with (22), and taking
the sum of their squares, we have:

ẋ21 + (dθ̇ sin θ)2 + y21 + (dθ̇ cos θ)2 = v2u + v2w (23)

79

considering that robot has no lateral slipping (ẏ1 = 0) and that
ẋ1 = vu given their coaxiality, then:

v2u + (dθ̇)2(sin2 θ + cos2 θ) = v2u + v2w

dθ̇ = vw (24)

Finally the set of dynamical equations describing the DDMR
are given by Eqs. (25)-(28) similar to [3]

v̇u = dθ̇2 +
1

MR
(TR + TL) (25)

θ̈ = − Md

I +Md2
vuθ̇ +

L

(I +Md2)R
(TR − TL) (26)

ẋ = vu cos(θ)− dθ̇ sin θ (27)

ẏ = vu sin(θ) + dθ̇ cos θ (28)

III. MULTIVARIABLE EXACT FEEDBACK LINEARIZATION

The exact feedback linearization method was first proposed
by Isidori et al. in the eighties [11] only for single-input single-
output (SISO) sytems. It consists of finding a control law that
transforms nonlinear dynamics on a complete or partial way
into linear dynamics, it is only possible if the system is control
input affine (represented as in Equations (29) and (30)).

ẋ = f(x) + g(x)u (29)
y = h(x) (30)

if all nonlinearities are concentrated in a

ẋr = f(x) + g(x)u = ν (31)

then the system becomes linear and the control law has the
following form [12]:

u = α(x) + β(x)ν (32)

where α(x) = −f(x)/g(x) and β(x) = 1/g(x)
Depending on existence of zero dynamics in the system,

there may be two cases (see [11]):
• Input-State Linearization, for trivial zero dynamics

(r = n)
• Input-Output Linearization, for non-trivial zero dyamics

(r < n)

A. Multvariable extention for feedback linearization method

For multiple-input multiple-output (MIMO) system, the
Isidori’s method could be extended using geometric control
concepts [10].

Let a MIMO system given by the following equations [13]

ẋ =f(x) +

m∑

i=1

gi(x)u (33)

y1 =h1(x) (34)
...

ym =hm(x) (35)

or in a compact way

ẋ = f(x) + g(x)u (36)

where

g(x) = [g1(x), g2(x), ..., gm(x)] (37)

u =

u1
u2
...
um

 (38)

The system has a relative grade {r1 · · · rm} for each output
if:

LgjLkf hi(x) = 0 for all 1 ≤ j ≤ m, k < ri − 1, 1 ≤ i ≤ m

where Lfh is the Lie derivative of the scalar function h in the
direction of the vectorial field f , it is defined as ∇h · f . The
k-th Lie derivative is then recursively defined as L0

fh = f and
Lkf h = Lf (Lk−1

f h)

The expression LgLkf h = ∇(Lfh)·g is called Lie derivative
of the scalar function h respect to vectorial fields f and g

Then the decoupling matrix can be defined [14]:

A(x) =

Lg1Lr1−1
f h1(x) · · · LgmLr1−1

f h1(x)

Lg1Lr2−1
f h2(x) · · · LgmLr2−1

f h2(x)
...

...
...

Lg1Lrm−1
f hm(x) · · · LgmLrm−1

f hm(x)

 (39)

ri is the relative grade of the i-th output yi(t), that is, the
number of derivatives required for the first emergence of at
least one u term [15].

This matrix is used to compute the control signals vector
for the system defined from (33)-(35) as:

y
(ri)
i = Lrif hi +

m∑

j=1

LgjLri−1
f hiuj (40)

y
(r1)
1

y
(r2)
2
...

y
(rm)
m

=

Lr1f h1(x)
Lr2f h2(x)

...
Lrmf hm(x)

+A(x)

u1
u2
...
um

 (41)

Leading m equations in the form:

y
(ri)
i = z

(ri)
i = νi (42)

to compute the signal control vector as follows:

u1
u2
...
um

 = A−1(x)

ν1 − Lr1f h1(x)
ν2 − Lr2f h2(x)

...
νm − Lrmf hm(x)

 (43)

provided that A(x) is not singular.

80

IV. DESIGNING THE CONTROLLER FOR THE DIFFERENTIAL
DRIVEN ROBOT

The first step to find a linear control law is define the realtive
grade of the robot system decribed by Eqs. (25)-(28).

It is known that output variables are x and y, the robot
position, in some cases θ is algo an output variables, but not
in ths study. Then, the output variables are defined as:

z1 = x

z2 = y

and then:

z
(1)
1 = ẋ = vu cos(θ)− dθ̇ sin θ

z
(1)
2 = ẏ = vu sin(θ) + dθ̇ cos θ

z
(2)
1 = v̇u cos θ − vu sin θθ̇ − dθ̈ sin θ − dθ̇2 cos θ (44)

z
(2)
2 = v̇u sin θ + vu cos θθ̇ + dθ̈ cos θ − dθ̇2 sin θ (45)

replacing Eqs. (25) and (26) on Eqs. (44) and (45) respectively,
it is easy to see that the terms of the signal control vector

u =

[
TR
TL

]
(46)

appear in z(2)1 and z(2)2 obtaining r1 = 2 and r2 = 2, then the
right equation system is:

z
(2)
1 = ν1 (47)

z
(2)
2 = ν2 (48)

and the left equation system for computing u is:
[
TR
TL

]
= A−1(x)

[
ν1 + c0vuθ̇ sin θ

ν2 − c0vuθ̇ cos θ

]
(49)

where

A(x) =

[
c1 cos θ − c2 sin θ c1 cos θ + c2 sin θ
c1 sin θ + c2 cos θ c1 sin θ − c2 cos θ

]
(50)

with

c0 =
I

I +Md2
(51)

c1 =
1

MR
(52)

c2 =
Ld

R(I +Md2)
(53)

The obtained linear system is:

ż =

0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 z +

0 0
0 0
1 0
0 1

[
ν1
ν2

]
(54)

where the state vector is given by

z =

x
y
ẋ
ẏ

 (55)

and then the output linear equation is:
[
x
y

]
=

[
1 0 0 0
0 1 0 0

]
z (56)

The classical state feedback control techniques can be
applied to that system, defining a control law as follows:

ż = Az +Bν (57)
y = Cz (58)
ν = −Kz (59)

as a state regulator, but for tracking references with no steady-
state errors it can be used a direct loop gain or an integral
action approach.

Defining an augmented system:
[
ż
ėi

]
=

[
A [0]
−C [0]

] [
z
ei

]
+

[
B
[0]

]
ν +

[
[0]
R

]
(60)

ża = Aaza +Baν +Ra (61)

where ei is the error accumulation (integral), then ėi is simply
the error and R is the setpoint or reference, the signal control
vector is now defined as:

ν = −Kaza (62)

where Ka =
[
K −Ki

]
with Ki the integral gain .

V. RESULTS

Simulation is carried out for the DDMR moving across a
given 2D environment, with a pre-defined path depicted by a
set of ordered points, which is taken as succesive setpoints
for the controllers; the behavior of the proposed controller is
compared with the modified PD controller proposed in [6].

Figure 4 shows the performance of the proposed controller
working in the DDMR, while Figure 5 shows the performance
of linear PI controller.

Figure 6 shows the behavior of robot in the 2D environmet;
as shown, the linear approaches may have wide deviations
from desired paths, while the proposed non-linear controller
shows a better performance.

0 5 10 15 20 25 30

t

0

100

200

300

400

500

x

X Position

0 5 10 15 20 25 30

t

0

100

200

300

400

500

600

y

Y position

Figure 4. Nonlinear controller performance for the given path

81

0 5 10 15 20 25 30 35 40

t

0

100

200

300

400

500
x

X Position

0 5 10 15 20 25 30 35 40

t

0

100

200

300

400

500

600

y

Y position

Figure 5. Linear PI controller performance for the given path

Figure 6. Nonlinear and linear controllers behavior for a given path:
{(0, 0), (130, 160), (360, 270), (320, 480), (400, 500)}

Tables I, II, III and IV show a numerical analysis of
deviations between variables and their references taken from
the given point sequence path, as a complement for figures 4
and 5.

Table I
NONLINEAR CONTROLLER x COORDINATE ANALYSIS

Variable Min. Dev. Mean Dev. Max. Dev.
x 0 36.59 230.04

Table II
NONLINEAR CONTROLLER y COORDINATE ANALYSIS

Variable Min. Dev. Mean Dev. Max. Dev.
y 0 31.14 210.27

Table III
PI CONTROLLER x COORDINATE ANALYSIS

Variable Min. Dev. Mean Dev. Max. Dev.
x 0 66.53 230.84

Table IV
PI CONTROLLER y COORDINATE ANALYSIS

Variable Min. Dev. Mean Dev. Max. Dev.
y 0 71.97 210.63

Now, Table V shows the distance between the robot position
and the reference into the 2D workspace shown in Figure 6

Table V
DISTANCE ANALYSIS BETWEEN POSITION AND REFERENCE PATH

controller Min distance Mean distance Max idstance
PI 0 53.91 130.86

nonlinear 0 1,53 2,18

CONCLUSIONS

This paper presents a multivariable approach for the feed-
back exact linearization method applied to control the behavior
of a differential driven mobile robot on a given environment,
it is compared to the performance of a linear multivariable PI
controller. The simulation results show that even when the PI
controller, and, in general linear controllers reach references,
the trajectory tracked is not exactly the desired one because
they attain linear dynamics, and consequently, they show wide
deviations between points as shown. The above implies the risk
of obstacle collision on a real situation.

In the other hand, the proposed nonlinear controller, shows
a much closer trajectory to desired one, not only point to point
but between points as a consistent path, the results also show
that it needs shorter time to reach the setpoints.

Real systems are, on their majority nonlinear and multi-
variable, it is then important to develop researh in nonlinear
control techniques, and multivariable extensions of that theo-
ries, this work is one example of rewarding results it could
submit.

ACKNOWLEDGMENTS

This research is supported by ”Programa Jóvenes In-
vestigadores e Innovadores por la paz, convocatoria 775-
2017” funded by Colciencias and Universidad Tecnológica
de Pereira, research project ”Diseño de un vehı́culo terrestre
no tripulado para la inactivación de minas anti-persona en el
territorio colombiano”. The authors also thank to “Maestrı́a
en Ingenierı́a Eléctrica” at Universidad Tecnológica de Pereira
for the financial support, and the research group on Automatic
Control COL0031472.

82

REFERENCES

[1] J. J. Craig, Robotica. Prentice Hall, 2006.
[2] I. Anvari, “Non-holonomic differential drive mobile robot control &

design: Critical dynamics and coupling constraints,” Ph.D. dissertation,
Arizona State University, 2013.

[3] R. Dhaouadi and A. A. Hatab, “Dynamic modelling of differential-drive
mobile robots using lagrange and newton-euler methodologies: A unified
framework,” Advances in Robotics & Automation, vol. 2, no. 2, pp. 1–7,
2013.

[4] S. M. LaValle, Planning algorithms. Cambridge university press, 2006.
[5] A. T. Mathew et al., “Design, simulation and implementation of cas-

caded path tracking controller for a differential drive mobile robot,” in
2015 International Conference on Advances in Computing, Communi-
cations and Informatics (ICACCI). IEEE, 2015, pp. 1085–1090.

[6] D. E. H. Sánchez, J. R. E. Cuenca, C. C. Sánchez, and J. F. R. Cortés,
“Diseño, construcción y modelo dinámico de un robot móvil de tracción
diferencial aplicado al seguimiento de trayectorias,” in XXIII Congreso
internacional anual de la Sociedad Mexicana de Ingenierı́a Mecánica
(SOMIM), 2017.

[7] J. Cornejo, J. Magallanes, E. Denegri, and R. Canahuire, “Trajectory
tracking control of a differential wheeled mobile robot: a polar coor-
dinates control and lqr comparison,” in 2018 IEEE XXV International
Conference on Electronics, Electrical Engineering and Computing (IN-
TERCON). IEEE, 2018, pp. 1–4.

[8] O. L. Ramı́rez-Martı́nez, E. A. Martı́nez-Garcia, R. E. Mohan, and J. K.
Sheba, “Mobile robot adaptive trajectory control: Non-linear path model
inverse transformation for model reference,” in 2014 13th International
Conference on Control Automation Robotics Vision (ICARCV), Dec
2014, pp. 877–881.

[9] R. Kumar, A. Patel, and S. Purwar, “An adaptive control technique for
trajectory tracking of a mobile robot using synchronization method,” in
2017 International Conference on Intelligent Computing, Instrumenta-
tion and Control Technologies (ICICICT), July 2017, pp. 344–348.

[10] N. Chinthaned and P. Sanposh, “Robust geometric control of a two-
tank system,” in 2016 13th International Conference on Electrical En-
gineering/Electronics, Computer, Telecommunications and Information
Technology (ECTI-CON), June 2016, pp. 1–4.

[11] A. J. Krener, A. Isidori, and W. Respondek, “Partial and robust lin-
earization by feedback,” in The 22nd IEEE Conference on Decision and
Control, Dec 1983, pp. 126–130.

[12] A. Isidori, Nonlinear control systems. Springer Science & Business
Media, 2013.

[13] M. R. Kankashvar, H. Kharrati, and A. Khorami, “Design of multivari-
able controller based on feedback linearization for five-bar linkage ma-
nipulator,” in 2015 23rd Iranian Conference on Electrical Engineering,
May 2015, pp. 916–921.

[14] L. Meihui, D. Shangfeng, C. Lijun, and H. Yaofeng, “Greenhouse multi-
variables control by using feedback linearization decoupling method,”
in 2017 Chinese Automation Congress (CAC), Oct 2017, pp. 604–608.

[15] Y. Zhang, G. Tao, and M. Chen, “Relative degrees and adaptive feedback
linearization control of t–s fuzzy systems,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 6, pp. 2215–2230, Dec 2015.

[16] J. C. Montesdeoca, M. C. P. Santos, M. Monllor, and D. Herrera,
“Trajectory tracking controller for differential-drive mobile robots,” in
2017 XVII Workshop on Information Processing and Control (RPIC),
Sep. 2017, pp. 1–4.

[17] D. Diaz and R. Kelly, “On modeling and position tracking control of
the generalized differential driven wheeled mobile robot,” in 2016 IEEE
International Conference on Automatica (ICA-ACCA), Oct 2016, pp. 1–
6.

[18] W. Meiling, W. Zhen, Y. Yi, and F. Mengyin, “Model predictive control
for ugv trajectory tracking based on dynamic model,” in 2016 IEEE
International Conference on Information and Automation (ICIA), Aug
2016, pp. 1676–1681.

83

	Introduction
	1 Robotics
	1.1 Manipulators
	1.2 Mobile Robots

	2 Common Models of Mobile Robots
	2.1 Locomotion System
	2.2 Aerial Robots
	2.3 Water Robots
	2.4 Legged Robots
	2.4.1 One Leg Robots
	2.4.2 Two Legs Robots
	2.4.3 Three Legs Robots
	2.4.4 Four Legs Robots
	2.4.5 Six Legs Robots

	2.5 Wheeled Robots (WR)
	2.5.1 Two Wheels Robots
	2.5.2 Three Wheels Robots
	2.5.3 Tricycle Robots
	2.5.4 Four Wheels Robots
	2.5.5 Ackerman Robots
	2.5.6 Five Wheel Robots
	2.5.7 Six Wheel Robots
	2.5.8 More Than Six Wheel Robots
	2.5.9 Omnidirectional Wheeled Robots
	2.5.10 Differential Wheel Robot

	2.6 Tracked Robots (TR)
	2.6.1 Skid Steer Robots

	3 Mathematical Models
	3.1 The Differential Driven Mobile Robot (DDMR) Model
	3.2 Three Wheeled Differential Robot (IVWAN) Model

	4 Low Level Control
	4.1 Control Basics
	4.1.1 Linear systems
	4.1.2 Nonlinear Systems
	4.1.3 Basic Linear control methods
	4.1.4 Basic Nonlinear Control Methods

	4.2 Multivariable State Feedback Linearization

	5 High Level Control
	5.1 Roadmap
	5.2 Cell Decomposition
	5.3 Potential Field
	5.4 Most Studied Algorithms
	5.4.1 A-star Algorithm
	5.4.2 Probabilistic Roadmap
	5.4.3 Genetic Algorithm

	6 Results and Discussion
	6.1 High Level algorithms
	6.2 Low level control

	7 Final remarks
	7.1 Conclusions
	7.2 Future Works
	7.3 Academic discussion

	Bibliography
	Academic discussion

